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Abstract
This work is a part of an ongoing plat-
form development originally for national
quitting line but now extended for general
counseling. The main focus is on finding
solution for automatization of arbitrary
data extraction from within The dialo-
goues collected by The platform. Since
this task falls within The many problems
of natural language processing I first pro-
vide a general overview of NLP methods
arguing The importance of neural nets.
Subsequently I introduce key NN archi-
tectures which pioneered NLP. Following
I present a summary of LLMs and choose
six of these models to be tested within
The NQL data framework. A manual se-
lection of 40 dialogues is made from the
NQL data, these samples are chosen based
on the potential field information they
contain and on their diarization and tran-
scription quality, basic errors are manually
corrected. Given The unlabelled nature
of The data an unsupervised evaluation
pipeline based on word similarity is pro-
posed and used. Based on this evaluation
Llama3-70B is argument to be The best
performing model. With respect to com-
putational efficiency Gemma-7B is The
best performer.

Keywords: LLM, transformers, RNN,
National quitting line, addictology,
counseling, cosine similarity

Supervisor: doc. Ing. Daniel Novák,
Ph.d.

Abstrakt
Tato práce je součástí probíhajícího vý-
voje platformy, která byla původně ur-
čena pro národní linku pro odvykání, ale
nyní byla rozšířena pro obecné poraden-
ství. Hlavní zaměření je na nalezení ře-
šení pro automatizaci libovolné extrakce
dat z dialogů shromážděných platformou.
Protože tento úkol spadá do mnoha pro-
blémů zpracování přirozeného jazyka, nej-
prve poskytuji obecný přehled metod NLP
a zdůrazňuji důležitost neuronových sítí.
Následně představím klíčové architektury
neuronových sítí, které byly průkopníky
v NLP. Poté prezentuji souhrn LLM a
vybírám šest z těchto modelů, které bu-
dou testovány v rámci datového prostředí
NQL. Z dat NQL je manuálně vybráno
40 dialogů, tyto vzorky jsou vybrány na
základě potenciálních informačních polí,
která obsahují, a na základě kvality dia-
rizace a transkripce; základní chyby jsou
ručně opraveny. Vzhledem k nelabelované
povaze dat je navržen a použit nesupervi-
dovaný hodnotící proces založený na po-
dobnosti slov. Na základě tohoto hodno-
cení je argumentováno, že model Llama3-
70B je nejlépe fungující. S ohledem na
výpočetní efektivitu je Gemma-7B nejlep-
ším modelem.

Klíčová slova: LLM, transformery,
RNN, Národní linka pro odvykání,
adiktologie, kosinová vzdálenost

Překlad názvu: Zpracování dialogových
dat z oblasti poradenské praxe pro závislé
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Chapter 1
Introduction

This project is a part of an ongoing collaboration between the CTU and
czech national qutting line (NQL). The cooperation started with the NQL’s
need for new advanced system to help their patients. However now it scaled
beyond just the NQL system development. The aim is to develop an efficient
platform powered by the state-of-the-art technology and help provide support
for service lines anywhere.

With the recent growth in drug use [1] the time staff can use for targeted
care growths more important. Unfortunately with this also comes more
administration workload which needs to be processed by the respective workers.
The recent boom of LLM systems[2] begs the question if some of these tasks
couldn’t be automated. We focus on identification and automatization of
these tasks while keeping the solutions scalable and incorporatable into the
NQL system.

This work aims at automatization of data extraction from the dialogues
collected on the platform. This will greatly help to alleviate redundant
rewriting job from the consultants thus allowing them to better tend to the
patients.

Our approach involves using mainly pretrained LLMs and fine-tuning them
to recognize entities that are crucial to achieve more effective support for
NQL patients. We present a pipe-line for unsupervised evaluation on the
unlabelled data gather by NQL.

The aim of this work is to provide an informed selection recommendation
on a system usage to achieve the above mentioned extraction of client data.
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Chapter 2
The platform under development

In this chapter we briefly introduce the system being developed for the NQL.
We present its most important functionalities and in greater detail present
those directly impacted by this work.

2.1 Motivation behind platform development

To fully understand the improvement a modern platform would bring we first
should examine the problem the NQL and other similar agencies are trying to
solve. While some studies suggest small positive effects of few drugs namely
psylocybin and cannabis. Pilot studies were done and while suggesting some
positive effects might be present, but generally authors agree further study
in the field is recommended [3],[4],[5].

While the positives of certain drug usage are in the phase of research the
negative impacts are fairly well studied from both medical and statistical
point of view. Reviewing effects of drugs from medical perspective is beyond
the scope of both this work and my education. To prove the above statement
we refer the reader to these studies presenting the negative effects of drugs
from medical side: Meta analysis of different effects of methamphetamine[6],
cocaine toxicity:[7], amphetamines toxicity:[8].

Let’s start with statistics on alcohol as it is one of the most common drugs.
With the COVID pandemic it is warranted to ask for its effects on alcohol
consumption. Studies in USA and Germany suggest an increase in alcohol
consumption between adults [9], [10], [11]. Eventhough the extrapolation
of studies done in USA may be incorrect, the fact that when we compare
consumption per capita in Europe countries vs US the higher consumption
in Europe is indisputable. In 2019 in the top 20 alcohol consumers only 2
countries we not European [12]. These fact further justify the extrapolation.

Further looking at figure 2.1 suggest an increase with covid years also,
although this consumption growth is even more noticeable when inspecting
data from USA 2.2. I use the above mentioned facts as a backbone to say
the effect of the COVID pandemic on alcohol consumption was at most not
positive, the data suggest the effect was mainly negative even-though statistics
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2. The platform under development ............................
from years to come will clarify.

Figure 2.1: Evolution of alcohol consumption in CZ. Image source: [13]

Figure 2.2: Alcohol consumption through years in USA. Image source: [14]

Further diving into the data in Czech republic we can observe the amount
of alcohol and drug induced deaths through the past years in figure 2.3. In
Europe the trend was generally a decrease in deaths with slowing/stopping
nature in the past years, while in CZ the pattern is inverse, with the amount
of deaths having a growing nature. This is especially troublesome given that
the quality of healthcare in Czech republic steadily rises [15].

These results may seem confusing give figure 2.1 shows a relatively steady
amount of alcohol consumed. So where do the deaths come from when
healthcare is better and the consumption is the same. Since we can safely

4



........................ 2.1. Motivation behind platform development

reason the amount of alcohol consumed to induce death threatening states
is quite high the explanation I provide is a shift of consumption load from
casual drinkers to those chronically addicted. This furthers the need for
an intervention and subsequently bettering of the services provided by the
national quitting line.

(a) : Czech republic (b) : Europe

Figure 2.3: Comparison of alcohol and drug induced deaths in Czech republic
and Europe. Image source:[16]

An investigation into drugs purely yields the same results. As figure 2.4
suggests the trend in drug induced deaths in CZ slowly increases in the past
years while the trend in Europe is steady in past years. Looking further back
the patterns between these two seem to be even more inverse, Europe going
down and CZ up.

(a) : Czech republic (b) : Europe

Figure 2.4: Comparison of drug induced deaths in Czech republic and Europe.
Image source:[16]

On the other hand looking at the second most common drug, smoking.
We witness a positive trend where both Europes and Czech republics deaths
induced by smoking steadily decrease as we see in figure 2.5.

5



2. The platform under development ............................

Figure 2.5: Smoking induced deaths per 100,000 people in EU and CZ. Image
source:[17]

Having investigated both the positive and negative effects of drugs it is
safe to assume drugs are harmful for most people in both social and physical
aspects. These findings truly justify the need for improvement in accessibility
of drug quitting help. Even-though this tendency is promising, its presence is
only due to continuous work from governments and agencies like NQL.

Cigarette addiction is still a big topic and we have to keep in mind that
proving the causality of death being induced purely by smoking can be hard
even with modern approaches. The correlation between leading death causes
[18] like hearth disease, cancer and smoking is undisputed [19], [20].

NQL main communication method is phone calls. This comes with many
disadvantages. The anonymity of the caller is partially compromised due
to their voice being known. Also studies [21],[22] show that texting/online-
chatting is very popular especially between teenagers and young adults. The
need to catch up to this trend grows with each day, forcing NQL to act,
subsequently leading to the above mentioned cooperation.

2.2 General platform capabilities

The main idea is to provide a client management system with an integrated
chatting platform. This platform is developed in a scalable manner providing
configurable features so not only NQL can use it. The system should be
capable of the following:.Keeping client profile.Allowing anonymous access to chatting (chatting without profile)

6



.............................. 2.3. Automating data gathering

. Scheduling of consultations.Allow gathering of custom data predefined by the operator (such as
NQL).Managing the operator roles and assigning clients to them.Generate summaries of chats

Some of these key capabilities will be powered by machine learning. In this
work I mainly focus on making the data gathering procedure more efficient,
trying to automate as much data collection as much as possible to relief
operator workload. In the next section I dive more into how exactly this
should be achieved.

2.3 Automating data gathering

In order to fulfill the patient card data like name, address, phone number etc.
have to be gathered. NQL also needs to gather some more advanced data
such as type of addiction, used medicament’s, frequency of using, general
health data (weight, height, any long-term illnesses). In this project I mainly
focus on the easier data as these not only don’t need such precision but also
are very tedious for the operators to gather while the automatization seems
reasonably difficult to achieve.

The main source of this data would be the chatting platform where we can
scan each message and decide if it contains any valuable information and if it
does we can either mark it for the operator so they can fill the respective field
with one click not having to write anything or even better if our algorithm is
good enough fill the card directly without any human effort. This problem
can be classified as Named entity recognition(NER). NER tasks are generally
performed to extract data with direct format like Name, Date, Adress etc.
these entities are easily markable within the given text. Our aim is to be
able to fill fields with a more abstract format like, financial situation, medical
history, relationship status these fields cannot be directly marked within the
text but have to be inferred from the context. This brings many difficulties
with both design and evaluation of the proposed solutions.

2.4 Summary generation

Two types of summaries are useful:. Summary of general state.. Summary of each session.

7



2. The platform under development ............................
Summary of general state grossly simplifies the transfer between operators.

Each patient has its own operator but it might happen that their operator is
not able to conduct a session to ensure quality of the session the new operator
has to gather information from the previous operator. A summary of the
patients current health and progress could alleviate the need for this transfer
as the new operator could just read the summary.

Since every operator handles multiple patients thus having many consulta-
tions per day, sometimes without a break it is very helpful for them to have a
session summary so they can better remember what was discussed. Summary
also helps with the preparation for the next consultation.

2.4.1 How to do it?

In order for the summary to be useful the generator should have access to
data relevant to the field. In our case addictology and general medicine
since the patient’s health state is very important. As a generator we use a
LLM namely Mistral to achieve the data relevancy we use retrieval-augment
generation (RAG). RAG is a method to augment response of a model with
data from a vectorized database. RAG is also used to provide a platform of
knowledge for the user where it is possible to query the model with questions
to generate responses which are augmented by the data included in the RAG
database. The user will also be able to add specialized data to the database
to achieve higher relevancy of the responses to their given field of operation. I
won’t dive into more details as this is not the task I am primarly working on.

8



Chapter 3
Natural language processing approaches

Since most of the work done within this thesis utilizes some kind of neural
network I delegate a big part of the chapter to talk about those. First we
dive into the core building blocks of virtually every architecture used in my
thesis then I present an introduction to several critical LLM architectures.
I discuss their major characteristics like size, speed, applicability. Then I
provide major use cases of these architectures across multiple fields with a
focus on applications in the medical industry.

3.1 Recurrent neural networks

Recurrent neural networks(RNNs) were the first attempt to handle sequential
data by maintaining a memory of past states(inputs). This allows them to
capture temporal relationships within the data. Among the context of natural
language processing this is very important as the inherent dependency of the
currently processed text on its predecessors plays a huge role in understanding
the underlying semantic meaning of the data being processed.

To understand how the memory sequential is incorporated into a neural net
let us first compare two simple graph representations of RNN and classical
feed forward network (FFN). Looking at figure 3.1 we notice both networks
same three main building blocks:..1. Input layer..2. Hidden layers - commonly these multi-layer perceptron layers..3. Output layer

The only imminent difference we notice is how these blocks are connected,
with RNN having one more connection (W ). This is the recurrent connection
and serves as the memory source for the network. In practice W is basically
a backward connection between all the hidden layers.

9



3. Natural language processing approaches .........................

(a) : FFN (b) : RNN

Figure 3.1: High level graph representations of recurrent a feed forward networks

Though the high level graph is helpful for demonstrating the main difference
among the two types of network it doesn’t provide a good insight towards
how the sequential data is actually processed. To demonstrate this let us
unpack the RNN in time. In figure 3.2 we observe this unpacking in action.

Figure 3.2: Illustration of RNN unpacking in time. Image source: [23]

We notice that we can think about RNN’s as multiple feed forward networks
connected in a sequential manner. While this intuition is correct the training
phase of the network changes slightly due to the intersequential connection
(parameters encapsulated by W ), this change is especially noticeable when
calculating gradient for the backward pass of backpropagation algorithm. We
will discuss this in the next section while also superficially diving into the
mathematics [24][25][26][27].

3.1.1 Training recurrent neural networks

As mentioned above RNN’s can be learned using the widely used back-
propagation algorithm [28]. Backpropagation algorithm can be fundamentally
divided into two parts:

10



............................... 3.1. Recurrent neural networks..1. Forward pass..2. Backward pass
In the forward pass part the data is fed to the network to get it’s output.
Then a loss function is applied to calculate the performance of the network
on this batch of data. Let us now formalize this in a mathematical sense for
our general RNN structure:

sn = fa(Wsn−1 + Uxn) (3.1)

on = V sn (3.2)

Where:. sn is the state in time n. on is the output the network in time n. xn is the input in time n.W, U, V are the parameter matricies. fa is an arbitrary activation function such as tanh or sigmoid

Before we move to the backward pass we also have to define a general
loss for the whole sequence. For this we annotate a loss in moment n of the
sequence as ℓ(yn, on), (yn is the ground truth). Then the total loss is average
over the sequence:

L(y0...yN , o0...oN ) = 1
N

N−1∑
n=0

ℓ(yn, on) (3.3)

For the backward pass gradients of the loss function with respect to all param-
eters are needed. I will only superficially derive the general formula without
any concrete activation functions as this can get quite complicated and I only
want to demonstrate the general difference to the classical backpropagation.

Going back to figure 3.2 we can see 3 different parameter groups (U, V, W ).
We will need gradient of the function L with respect to each one of these.
Let’s start with W as this might be the most complicated one. Taking the
derivative of 3.3:

∂L(y0...yN , o0...oN )
∂W

= 1
N

N−1∑
n=0

∂ℓ(yn, on)
∂W

(3.4)

Using the chain rule we can rewrite the derivative of ℓ(yn, on) as follows:

∂ℓ(yn, on)
∂W

= ∂ℓ(yn, on)
∂on

∂on

∂sn

∂sn

∂W
(3.5)

Here we run into the issue since ∂sn
∂W is dependent on sn−1 which is also

dependent on W . In other words there are multiple paths to W unlike in
classical FFN’s. In figure 3.3 we observe 4 different paths leading to E3.

11



3. Natural language processing approaches .........................

Figure 3.3: Possible gradient paths through the network graph. Image source:
[29]

The chain rule for multivariable function with one independent variable
says following [30]: Given three functions g(x), h(x) and f(g(x), h(x)) for the
derivative of f with respect to x stands the following:

∂f

∂x
= ∂f

∂g(x)
∂g(x)

∂x
+ ∂f

∂h(x)
∂h(x)

∂x
(3.6)

Since sn is a function of W and sn−1 we can define g(W ) = W and use 3.6:

∂sn(g(W ), sn−1(W ))
∂W

= ∂sn

∂g(W )
∂g(W )

∂W
+ ∂sn

∂sn−1(W )
∂sn−1(W )

∂W
(3.7)

Given g(W ) = W we simplify 3.7:

∂sn(g(W ), sn−1(W ))
∂W

= ∂sn

∂W
+ ∂sn

∂sn−1(W )
∂sn−1(W )

∂W
(3.8)

It might seem confusing that the first term on the right looks like it equals
the left side of the equation but note that this derivative is taken while
treating sn−1 as a constant. Let me demonstrate on an example. Suppose:

x2 = Wx1 + B

x1 = Wx0 + B

First let’s just substitute x1 and calculate the derivative normally:

x2 = W (Wx0 + B) + B = W 2x0 + WB + B (3.9)

Thus the derivative:
∂x2
∂W

= 2Wx0 + B (3.10)
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............................... 3.1. Recurrent neural networks

Now using 3.8 let’s first calculate the needed derivatives, x∗
n means we treat

the x1 as a constant.

∂x∗
2

∂W
= x1,

∂x2
∂x1

= W,
∂x1
∂W

= x0

Now to combine and substitute using the 3.8 template:

∂x2
∂W

= x1 + Wx0 = Wx0 + B + Wx0 = 2Wx0 + B (3.11)

Thus achieving the same result as in 3.10.
Let’s now get back to equation 3.8. We notice another term (∂sn−1(W )

∂W )
which has both direct and indirect dependency on W . But what we can do
now is reapply the same expansion this moves us again one move back in
time. In equation 3.12 we can see how two of these steps back in time would
look.

∂sn

∂W
= ∂sn

∂W
+ ∂sn

∂sn−1

∂sn−1
∂W

+ ∂sn

∂sn−1

∂sn−1
∂sn−2

∂sn−2
∂W

= ∂sn

∂W
+ ∂sn

∂sn−1

∂sn−1
∂W

+ ∂sn

∂sn−1

∂sn−1
∂sn−2

∂sn−2
∂W

+ ∂sn

∂sn−1

∂sn−1
∂sn−2

∂sn−2
∂sn−3

∂sn−3
∂W

(3.12)

In a better notion the pattern observed from 3.12 can be written using
sums and product like this:

∂sn

∂W
= ∂sn

∂W
+

n−1∑
i=1

 n∏
j=i+1

∂sj

∂sj−1

 ∂si

∂W
(3.13)

If we plug 3.13 into 3.5 and then into 3.4 we get the equation for calculating
the gradient with respect to W . The gradient with respect to U can be
derived in a similar fashion, we again define the total and partial losses in a
same way:

∂L(y0...yN , o0...oN )
∂U

= 1
N

N−1∑
n=0

∂ℓ(yn, on)
∂U

(3.14)

∂ℓ(yn, on)
∂U

= ∂ℓ(yn, on)
∂on

∂on

∂sn

∂sn

∂U
(3.15)

We again observe the same issue as sn depends on U directly and through
sn−1. Doing the same tedious derivation we will arrive to basically the same
equation as 3.4:

∂sn

∂U
= ∂sn

∂U
+

n−1∑
i=1

 n∏
j=i+1

∂sj

∂sj−1

 ∂si

∂U
(3.16)
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3. Natural language processing approaches .........................
Which we would again plug into 3.15 and 3.17 respectively to get the formula
for the gradient. Obtaining the gradient with respect to V is easy, we can
directly write the total loss as:

∂L(y0...yN , o0...oN )
∂U

= 1
N

N−1∑
n=0

∂ℓ(yn, on)
∂on

∂on

∂U
(3.17)

Here no dependency on previous states is present allowing us to calculate the
gradient directly without any complications.

Having derived the backpropagation for RNN allows us to closely inspect
it’s properties. I would like to point the readers attention especially to the
products present in equations 3.13, 3.16. The continuous multiplication leads
to amplification of the vanishing and exploding gradient problems. The
number of multiplications is dependent on the sequence length and it is
notoriously difficult to train RNN’s on this type of data [31],[32], [33]. This is
not the only problem imposed by the gradient multiplications, inherently the
network tends to forget. As the gradients are propagated they loose magnitude
thus as the sequence elongates the effect of the firs elements in the sequence
decreases. In the next section we introduce several RNN architectures diving
deeper into how these architectures try to solve the problems associated with
the basic RNN architecture.

3.1.2 Different RNN based architectures

LSTM

Long short-term memory or LSTM networks use an idea of so called memory
unit to control what information the model stores for later. This control is
done through three different gates.. Forget gate

. Input gate

.Output gate

As the names suggest each of these gates regulates distinct type information.
To govern this flow each gate uses a sigmoid activation paired with multi-
plication to act as a weighting block. The memory block structure can be
observed in figure 3.4. First let me explain the notation.
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............................... 3.1. Recurrent neural networks

Figure 3.4: Memory block architecture of LSTM’s. Image source:[34]

. Ct - Cell state representation in time t,. ht - Hidden state in time t, we can think about this as a mediator layer
between the external inputs and the cell state. This can also be thought
of as the network output since it’s a function of the previous state, cell
state and the input.. it - The input gate in time t. ft - The forget gate in time t. ot - The output gate in time t

Note that these are abstractions, mostly we can think about the notation
as being matricies, the sizes of these matricies are defined by the concrete
architecture input and output sizes. The operations in red are element-wise.
Everything in yellow is a learnable network which has the depicted activation
function on its output.

Forget gate
The conceptual functionality of the forget gate is to give the cell state an

ability to forget previous information. The input to this gate consists of the
current network input xt concatenated with the previous hidden state ht−1.
The result of the concatenation is dot producted with a parameter matrix of
the forget gate, this matrix is learnable, finally a sigmoid function is applied
to get a weight vector which is then multiplied with the previous cell state
Ct−1 to perform the forgetting. Mathematically this is pretty simple:

ft = σ(Wf · ([ht−1; xt])) (3.18)

Normally a bias term is added but for simplicity sake I just assume its included
in the xt as this is how one would implement it in practice.
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Input gate

The purpose of the input gate is to facilitate addition of new information
gathered from the current input xt. To achieve this a proposal cell state Ĉt is
calculated. A learnable network is used for this. In figure 3.4 we see a tanh

function on the outputs of the network, note that this activation function
could be actually be arbitrary as no defined output range is needed. To
produce it another network is learned, unlike in the previous case the sigmoid

activation is mandatory here as we need the outputs to serve as weights for
the proposal cell state Ĉt.

Writing the equations for this we get:

it = σ(Wi · ([ht−1; xt])) (3.19)

Ĉt = tanh(Wc · ([ht−1; xt])) (3.20)

Now the equations required to get the cell state update are finalized. As
depicted in figure 3.4 the update is given by simple summation:

Ct = ftCt−1 + itĈt (3.21)

Output gate
Now we are left with updating the hidden state and that is the objective

of the output gate. The hidden state update is dependent on cell state Ct

calculated using the equation 3.20 and again on the concatenation [ht−1; xt]
which are processed by another learnable network. The update is facilitated
by multiplication of the network output ot and the tanh activated cell state
Ct.[35][36] Mathematically:

ot = σ(Wo · ([ht−1; xt])) (3.22)

ht = ot · tanh(Ct) (3.23)

This architecture allow for a more sophisticated network memory manage-
ment. It was successfully used in many applications though now is mostly
outperformed by transformer based networks. Some of these applications
include language modeling [37], speech recognition [38], handwritten text
transcription [39], in combination with convolutional neural network in medi-
cal imaging [40], and finally various named entity recognition tasks such as
CoNLL benchmark[41], drug recognition [42], NER in twitter messages [43].

Bi-Directional LSTM

As discussed above the RNN/LSTM are used mainly for sequential data but
given the nature of information flow through the network they both capture
inter-sequential relationships only in one direction. Bi-directional LSTM
tries to solve this problem by essentially stacking two LSTM networks, this
stacking is depicted in figure 3.5. The result is then given by the normalized

16



.....................................3.2. Transformers

Figure 3.5: Bi-directional LSTM architecture diagram. Image source: [44]

sum of the network’s outputs. This simple yet effective modification pioneered
sequential data processing especially in the case of text data [44][45][46].

Many of the above mentioned LSTM applications use this approach. As
we will discover in later sections many other architectures take inspiration
from this bi-directional approach as well as adapting some core concepts of
RNN architectures.

3.2 Transformers

Transformers are a big step forward from architectures based on reccurent
layers, instead of using these transformers depend on so called attention
mechanism. This mechanism provides variety of benefits making transformers
completely overtake virtually every other architecture for a majority of tasks,
especially natural language processing. Almost every model used in this work
utilizes some version of this architecture so I deem important to introduce
the internal mechanisms of transformers thoroughly thus dedicating whole
section.

3.2.1 Architecture

Transformers mostly utilize an encode-decoder architecture. What differenti-
ates them is the attention layers inside both the encoder and decoder which
allow updating of the embedded vectors of tokens with respect to context.
Tokenization must be done beforehand for simplicity we can think about
tokens as words in text but it is not always the case. Tokens can be anything
the important part is they are the entity which is input to the embedding
layer of the encoder. Let us now understand how the attention works.

Attention

The main three building blocks of attention layer are queries Q, keys K and
values V . Before explaining how these interact with each other let’s look at
them separately to get some concrete idea. To make the explanation simpler
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we will track one embedding of a token as it goes through the network. To
denote this I will use lower-case letters. Also note all vectors are treated as
columns.

Query
To get intuition for what queries represent we can think about them as

abstractions of questions. In practice every query is a vector calculated from
the embedding. The calculation is done using a learnable parameter matrix
WQ. This matrix is shared for the whole attention block and should somehow
learn what "questions" are most relevant to a given embedding. So a query q1
for embedding e1 would be calculated as follows:

q1 = WQe1 (3.24)

Key
Keys should somehow abstract the answers for the question posed by

queries. In practice the calculation of key is very similar to queries. We again
have a learnable matrix WK and simply multiply each embedding with this
matrix:

k1 = WKe1 (3.25)

Value
As mentioned in the intro the attention layer tries to find how to adjust

the embedding to better represent the context of the sequence. The value
vectors do that. Again there is a learnable value matrix used to calculate
value for each embedding:

v1 = WV e1 (3.26)

To fully understand the meaning of value we have to provide context to
how the introduced building block actually interact. We do this in the next
paragraph.

Block interactions
The result of the interaction should be a vector of shift to apply onto the

initial embedding vector. Let’s call this vector ∆e1. Remember we want
to shift the embedding vector with respect to the sequence context. This
context is conceptualized by the query key pair. In other word we want to
move the embedding vector while considering queries with the most relevant
key. Transforming these thoughts into the math world, since keys and queries
exist within a space of the same dimension we can measure the relevance
between these two by how much the direction they point to differ.

Matrix multiplication is perfect for this as for vectors pointing in the same
direction its values are high and in opposite they are negative thus quantifying
the similarity in an unbounded manner. The unbound nature is not very
practical as it can lead to numerical issues while also not really representing
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any mathematical measure per say. To solve this we convert the output to
probability using softmax function on the result.

In our case of one embedding the query will be a vector but we need to
measure the similarity to all keys so let’s denote the matrix of keys as K and
put the vectors k1...kN so each column of K is one of these vectors, we also
need a matrix of all values let’s call it V and fill it in the same fashion like K.

∆e1 = softmax(qT
1 K)V T (3.27)

Now the update to the embedding is simply given by addition with ∆e1:

enew
1 = e1 + ∆e1 (3.28)

Defining matricies ∆E and Q in similar fashion like K and V we can write
equations 3.30 and 3.27 for all embeddings:

∆E = softmax(QT K)V T (3.29)

subsequently the update:
Enew = E + ∆E (3.30)

Let’s now discuss the dimension of the learnable matricies as they define
the number of parameters the model has. The notation is following:. dQK - dimension of the query and key vectors. de - dimension of the embedding space

From this we can infer the parameter matricies sizes. WQ and WK both
map from space of dimension de to a space of dimension dQK so WQ and WK

are both of dimension dQK × de. The value matrix WV maps between two
spaces of dimension de so it’s size is de × de.

Generally the embedding space has much higher dimension than the key
query space. This makes the matrix WV really large. But since the matrix is
square a low rank approximation using two matricies can be made. The inner
dimension of the two matricies is usually set to match the query key space
dimension. This greatly reduces the number of parameters while keeping
the embedding space large enough to capture most of the semantic meaning.
Also doing this can save computation as we can perform the weighting on
smaller vector. Let me demonstrate in a mathematical framework.

We will need to define the low rank approximation of V . This is simply:

V = WU WDE (3.31)

Where WU and WD are the low rank approximation matricies. The dimensions
of WU and WD are de × dQK and dQK × de respectively. Now we substitute
for V into 3.29:

∆E = softmax(QT K)(WU WDE)T (3.32)
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And using the transpose rule for matrix multiplication we get:

∆E = softmax(QT K)ET W T
DW T

U (3.33)

Now we see that the dimensions of the multiplication ET W T
D are N × dQK

and as mentioned above generally dQK << de. In simple terms using equation
3.33 allows us to calculate the weighting on a much smaller vectors.

Multi-headed attention

It is no surprise that in the transformer there are many of these attention
blocks. Just like FFN’s have many neurons in each layer transformer has
many attention blocks in each layer. We call this layer a multi-head attention
layer as each attention block is known as a head. In practice this is many
attention blocks ran in parallel. Running them in parallel allows us to merge
the output operations across all the attention blocks. What we can do is
split out WU from equation 3.33 each head will now produce an output of
dimension N × dQK . Now we do two concatenations:..1. All WU matricies across all heads. We get a big matrix of dimensions

de × nheads · dQK..2. The split heads outputs across the dQK dimension to get big matrix of
size N × nheads · dQK

Multiplying these two big matricies equals to taking all the proposed changes
∆E from each head and summing them. From this we can calculate the new
embedding vectors using 3.30.[47], [48], [49].

Cross-attention

Following the original transformer paper [47] many others differentiate be-
tween self-attention and cross-attention. So far we assumed keys, queries
and values are all calculated from the same embeddings but this doesn’t
have to be the case. In cross-attention block these are not calculated from
the same embeddings. Simple intuition why this might be helpful could be
demonstrated on the example of text translation.

In this case we can calculate the queries from emebedding in one language
and the keys from the other. This makes perfect sense as the query key
pair resembles the translation pattern quite well. Most commonly the cross-
attention is between the encoder and decoder block of the whole architecture
as we will see in the next section where we present the original transformer
of [47].

Example architecture

Obviously the attention layer is only one component of the whole network.
Let’s now inspect the original transformer of [47]. The whole structure can be
seen on figure 3.6. The left part is the encoder on the right the decoder. Let’s
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Figure 3.6: Original transformer architecture. Image source: [47]

now discuss the blocks. On each multi-head attention we see an add&norm
block. This block is inspired by the residual skip architecture [50]. It simply
adds the input of the multi-head attention block to its output. The residual
networks are known to increase performance of very deep networks as they
propagate the input even to the weights hidden deep in the network [51].

After, a normalization is performed, as its positive effect on both the
performance and mostly calculation load needed when training is widely
established [52], [53], [54]. A classical simple FFN with another residual skip
is then used to further increase the models capacity. Let’s now talk about
the attention blocks. The block in the encoder is just a normal multi head
attention. But the blocks in the decoder differ slightly. We see the upper one
being connected to the encoder. This is exactly the case of cross-attention,
the keys and values come from the encoder while the queries are made by the
decoder. In a simple sense the keys and values are the low level representations
present in any encoder decoder structure.

The last head, also in the decoder, has masking present. The decoders access
to the output creates a simple problem for the attention block where when
calculating the query key similarity we could actually make keys corresponding
to future embeddings influence past queries. This backward flow of information
is not desired as it basically allows the network to learn how to cheat. Also in
practice it never has access to the future so this flow makes no sense. A simple
fix is to set everything under the diagonal of QT K to −∞ as when softmax
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is calculated the −∞ turns into 0 to make the future-present similarity 0.
This is what masking refers to as we mask the lower triangle of the matrix to
the further layers of the model.

We also notice that unlike in the RNN there is no inherent encoding of
position given by the architecture. The transformer processes the sequence
without any recurrent connections thus omitting the position of the token in
the sequence. To solve this a vector of the same dimension as the embedding
is added. This vector is calculated using a function of the sequence position.
This function can be arbitrary as long as it is dependent on the sequence
position and the output dimension matches de to allow for the vector addition.
In our example a sine based function is used.

3.3 Large language models overview

3.3.1 BERT

Bidirectional Encoder Representations from Transformers (BERT)[55], is
a natural language processing (NLP) architecture introduced by Google in
2018. Unlike previous transformer models that mostly processed text in
a unidirectional manner, BERT employs a bidirectional approach taking
inspiration from above mentioned bi-directional LSTM. The training process
also differentiates BERT from its predecessors. BERT generally uses two
learning strategies, masking and next sentence prediction. A loss function
combining the two strategies is subsequently optimized.

Masking

The model is fed a sentence with a masked token a tries to predict this token,
note here the model will predict the whole sentence but we only care about
the masked word prediction. This procedure leads to very efficient usage of
the available data since each word in the sentence can be masked yielding
number of examples from one sentence equal to its length in words. Note
that the tokens are not used directly but rather their vector embeddings as
illustrated in 3.7

Next sentence prediction (NSP)

In NSP the training data are divided into pairs of sentences 50% of these
pairs are random the other 50% are subsequent sentences. The model’s goal
is to predict if the given sentences are in fact subsequent or a random pair.

3.3.2 Applications

BERT was applied to most natural language processing tasks such as Named
entity recognition (NER), relation extraction, question answering, sentence
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Figure 3.7: Masked training diagram [56]

embedding [57], [58], [59]. The network is mostly trained in unsupervised
manner on a large corpus of data from one field, for example biomedical[58]
or scientific[59] data. Results show superior performance of the models
augmented with the unsupervised context learning within its field. These
models mostly outperform bare BERT and are comparable to state-of-the-art
solutions within their respective field. NLP is a fast evolving field so even
results old only few years can be outperformed by now.

Big advantage of BERT is its size, the base model has only 110million
parameters. Compared to other language processing models this is very
lightweight. For example GPT-4 [60] has 1.7 trillion parameters, mistral [61]
7.3 billion.

3.3.3 Llama2

Llama2 [62] is the predecessor of Llama3 both being LLMs developed by Meta.
I mainly mention it here just for the sake of comparison to Mistral discussed
below. LLama2 uses classical learning approach, self-supervised pretraining
followed by fine-tuning step including multiple inputs but mainly using
human feedback for evaluation of chat generation also known as reinforcement
learning, the whole cycle is illustrated in Figure 3.8. The main difference
from other LLMs is the presence of safety reward model. This "loss" function
gives the network feedback on usage of personal data trying to keep this
information safe. Most other open source LLM don’t use this and probably
would be safe to assume private LLMs don’t use this either. Even though this
model is mostly outperformed one scientific benchmarks by openAI models
(GPT-3/4) it is open-source and notably not trained on any data which Meta
might have. This is important as the amount of data greatly influences the
performance of the model. Also the open license makes it more usable for a
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Figure 3.8: Training cycle of Llama2 [62]

project like this.

3.3.4 Llama3

The brand new successor of llama2 comes in two versions an 8billion parameter
smaller model and a large model consisting of 70 billion parameters, also a
model of 400B+ is currently being trained. Both a larger dataset and token
vocabulary (128k tokens) were used for training. To provide some context the
dataset was 7 times larger then the one used for Llama2 training. The novel
dataset also includes 5% of data in other languages than English, this is done
to better the performance on multilingual tasks. As far as the origin of data
used goes, meta claims only publicly available sources were used, avoiding
using 3rd party licensed data like GPT models.

The architecture is decoder only based. Looking back at figure 3.6 we could
achieve this architecture by only taking the right side (decoder) and switching
out the "output embedding" branch for the normal input. Obviously the
subsequent architecture differs and is mostly deeper with many more layers.
Rather than using the basic attention we already discussed Llama3 employs
grouped query attention [63]. In simple terms the queries are divided into a
given number of groups. Instead of each query having its own key each group
now has its own key. This leads to a substantial speed up in learning and
an increase in memory efficiency of the model. This is important for both
learning and inference.
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Performance

Unlike the llama2 model the performances of both the small and large versions
are competitive if not better than other popular state-of-the-art models. A
human preference evaluations done by meta can be seen in 3.9

Figure 3.9: Llama3 human evaluation versus popular models. Image source: [64]

Meta also provides comparison performances on some benchmark datasets
of different tasks:

Figure 3.10: Benchmark performance comparisons done by Meta. Image source:
[64]

Both of these results presented by meta suggest very good performance of
the model. Especially with comparison to much larger models like GPT-3.5.
Next I introduce results of independent evaluators.

First let’s look at Huggingface leaderboard [65],[66],[67],[68],[69],[70],[71] as
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it provides a good insight into performance on commonly used benchmarks.
Looking at the average across all the benchmarks in the top 10 performers a
llama3-70B based models take 4 spots in the top 15 it is 8.

Another popular benchmark is the ChatBot arena [72]. An elo system
driven ranking approach similar to one in chess. An elo is assigned to each
model, the higher the elo the "stronger" the model is compared to the others.
The elo is based on 1v1 clashes where the models outputs are compared by
many people to asses the winner, each model takes part in many of these
"duels" to obtain its elo. The instruct fine-tuned version of Llama3 70B takes
shared 7th place (with Bard(Gemini pro)) on the overall leader-board, being
beaten by only proprietary licensed models namely, 4 iterations of GPT-4
[60], Claude 3 Opus [73] and Gemini 1.5 pro[74].

All these results are very impressive given that Llama3 is public for two
months.

3.3.5 Mistral

Mistral is a new model which demonstrates that the number of parameters
is not everything. The base version has 7B parameters and outperforms the
above mentioned much larger Llama2 (13B parameter version) on basically
all benchmarks. It is also open-source making it a great option to test in
our project. We already use Mistral to perform multiple tasks such as above
mentioned summary generation but also text-completion.

3.3.6 Mixtral

The mixtral models are developed by the same authors as the mistral ones.
These models aim to provide accessible inference computational load while
maximizing performance on different tasks. They adapt an old idea of mixture
of experts [75]. A quite simple idea of training so called expert networks
and one gate network, this gate network acts like a selector of which of the
expert networks will be used for inference on a given input. In practice the
gating network calculates weight for each of the expert and then the experts
with the highest weight are selected. The amount of selected experts is a
hyperparameter of the model. This approach allows the network to maintain
high amount of parameters in training providing greater context scope while
enabling the inference to run only on a subset of all the models parameters
[76].

Performance

Mixtral models come in two sizes 8x7B and 8x22B. Both having 8 experts of
the two respective parameter sizes. We again use the hugging face leaderboard
and Chatbot arena [72] as these are the most popular and together cover both
human evaluation and benchmark performance metrics. On the benchmark
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leaderboard from huggingface mixtral 8x22B takes 6th place beating all the
llama3-70B based models while also having the least inference cost. The
performance on human evaluated benchmarks is rather worse, the larger
version of mixtral shares 21st place in Chatbot arena with the medium sized
version of Mistral.

3.3.7 Gemma

The gemma models developed by google come in two versions both relatively
small, 2B and 7B parameters. These models were trained on 3T and 6T
tokens respectively. On human evaluated benchmarks it has around 60%
winrate against mistral-7B-v0.2 since I deem the human evaluation more
important than concrete supervised benchmark evaluation I decide to use
the larger gemma instead of mistral, except for in the fine-tuning part. From
now on when I refer to Gemma I mean the 7B version [77].
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Chapter 4
Methodology and results

This chapter presents the data gathered by the NQL, describing the difficulties
encoutered while processing it. Later we implement an API capable of
extracting entities from text mainly adapting work of [78]. We also build the
foundation for future work and present ideas about evaluating accuracy on
unlabeled data. We don’t show any statistically significant results since this
work is mainly exploratory and statistics will be subsequently included in my
diploma thesis.

4.1 Using NER to extract basic entities from czech
text

There are many approaches to Named entity recognition. Classical approaches
include Hidden Markov Models [79], Decision trees [80], SVM [81] and more
statistically based approaches leveraging entropy maximization [82]. Even-
though these approaches pioneered the research of Named Entity recognition
problems, with the rise of neural networks and mainly transformer architec-
tures capable of context based learning and inference NER tasks like many
others became solvable using these methods yielding superior performance
over the traditional ones mentioned above. This lead me to subsequent
research and usage of LLMs for solving NER problem presented previously.
To explore the possibilities I adapted the work done by [78] to solve my task
at hand. Next I briefly introduce their work and then provide details about
implementation of an API capable of producing model output and parsing it.

Authors of [78] use a bi-directional LSTM architecture and treat the
problem as a seq2seq task, each token is treated as a sequence and the output
labels are predicted also as a sequence a special label is used for end of
word. To further augment the data, pretrained networks (BERT + Flair) are
used to calculate contextual embedding of the data to further improve the
classification.

My work was the implementation of an API capable of calling the model
and parsing both input and output. The simple API was implemented in
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Flask [83]. Flask is a python framework mainly for back-end web development.
I chose it due to its simplicity implementing an API of this size doesn’t require
a framework like Django which generates a whole project, flask enables me to
program everything in one simple code file.

This API served mainly as an introductory work to extract entities like
name, adress, phone number, omitting the more context based entities like
financial situation etc. In the next sections I evaluate models on the more
difficult task of having arbitrary fields possible.

4.2 The data used

NQL provided around 1500 hours of dialog from phone call consultation
sessions. This data was transcribed and provided in form of text files, a
version translated to English was also provided. An effort was made to test
the above implemented system one this data but the transcriptions were
deemed bad. I independently read about 250 conversations and they proved
to be hard to understand even for a human. I selected 39 best examples from
these conversations, to use for further processing. I corrected the diarization
and some basic mistakes in these dialogues.

For fine-tuning an automatically generated data was used. The generation
was provided by GPT-3.5 and GPT-4 models. Both these models were asked
to create artificial dialogues between a therapeut and a patient, a list of form
fields was also given. After the generation the models were tasked to fill the
form provided. This data was subsequently used to fine-tune other models.
In other words the output of GPT models was used as ground truth.

4.3 Fine-tuning

Fine-tuning of mistral 7B and mixtral 8x7B was employed on the data
generated by the GPT models. Both these models are relatively small but
still a 4bit quantization had to be used. Mixtral had to be trained on A100
with GPU memory of 40Gb as it wouldn’t fit on my GPU with 12Gb memory.
The next section introduces the fine-tuning approach used.

4.3.1 QLoRa

Quantized Low rank adaptation [84] is and efficient way to fine-tune large
networks while utilizing a fraction of memory needed for their full training.
To achieve this goal it combined the original LoRa [85] with NormalFloat
quantization. To fully understand QLoRA let’s briefly introduce LoRa in the
next section.
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LoRa

Let’s start by defining the objective of the fine-tuning. We want to tweak
the current models weights W to improve the performance on a specialized
task. More rigorously we are searching for such ∆W , a change to apply to W ,
which minimizes the loss on our task. Given the nature of neural networks
layers the W can be thought of as a matrix, in general this matrix is very
large and subsequently the ∆W matrix will be large too. LoRa leverages a
low rank approximation of ∆W just like the value matrix in transformers.
Mathematically:

∆W = w1w2 (4.1)

where:.∆W - matrix of dimensions n × k. w1 and w2 - matricies of dimensions n × r and r × k respectively

The justification for this is following. The W matrix is large it almost
certainly doesn’t have full rank and thus contains redundant information, the
objective is then to get rid of the linearly dependent rows/columns which
contain this redundancy. The main problem is we don’t have access to the rank
of the matrix W and also the network contains multiple of these matricies and
most certainly each has different rank and we want to generalize. What we
then do is make the rank a hyperparameter of the fine-tuning. More concretely
we make the dimensions of the estimate matricies the hyperparameter. This
corresponds to the dimension r of w1 and w2 from 4.1.

The training step of the fine-tuning is then done only on these low-rank
approximations w1 and w2 greatly reducing the number of parameters needed
to be stored on the GPU memory. Once these are trained ∆W is calculated
and added to the models W to obtain the fine-tuned version.

To bring this further, an idea from the adapters[86] based fine-tuning can be
employed. Instead of inserting adapters we can simply only modify matricies
W of certain layers.

NormalFloat quantization

Normally the quantization assumes uniform distribution of the values to be
quantized. In neural net we generally don’t have uniform distribution of the
weight values. This information can be leveraged to retain more information
when performing quantization. As the name suggest NormaFloat quantization
assumes normal distribution. Note that the weights have to be normalized to
zero mean and standard deviation of 1.

QLoRa

QLoRa is basically LoRa on a NormalFloat quantized model. In our case we
quantize down to 4 bit integer.
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4.4 Measuring text similarity

Measuring text similarity is important for comparison of the model outputs.
Use of classical distances such as Levenshtein distance is not viable given the
nature of some form fields. Since our problem is not concretely defined and
arbitrary form fields should be acceptable we need to find a measure capable
of capturing similarity between outputs grossly varying in format. There are
two broad approaches to text similarity. First leveraging the strings directly
by either calculating some kind of a distance such as Levenshtein distance,
Hamming distance or a more elaborate approach using some kind of corpora
or a knowledge base. Second and more modern approach tries to extract
semantic meaning from the given text with a mathematical transformation.
The acquisition of these transform is defined by the concrete approach, this
could be deep learning from a dataset or employing a dimensionality reduction
technique on corpus matrix. In the next sections we will dive deeper into
these methods.[87],[88].

4.4.1 Basic string distance and similarity measures

Hamming distance
Hamming distance is pretty simple it is just the amount of non-corresponding

characters between the two strings. It is only defined for strings of the same
length. One might ask why we even mention it and the reason is following.
If we don’t think about the distance in a correspondence manner but rather
imagine how many and which operations we would need to transform one
string to the other we can come to interesting conclusions. If we define a
"replace" operation (switch one character in a string to another) hamming
distance just becomes the minimum number of "replace" operations needed
to transform one string to match the other. The framework of counting the
minimum operations needed to achieve equality between strings is a powerful
tool and as we will see in next sections helps define other more complex string
distances.

Levenshtein distance
There is one big flaw to Hamming distance and that is the inability to deal

with string of different lengths. Levenshtein distance solves this problem by
adding two new operations:. Insert - places a new character into the string. Delete - removes a character from a string

Having defined the two new operations alongside "replace" calculating the
distance becomes again a problem of finding the least amount of operations
needed to transform one string to the other. [89]
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Damerau–Levenshtein distance
This string metric introduces the last operation we will discuss. The

operation is know as:.Transposition - switch the position of two adjacent characters.

Damerau’s main work focus was on spell checking. He found that majority of
errors in spell checking could be corrected by one of the four operations used
in his distance measure. This distance also saw usage in different applications
genetics [90] and was inspiration for other metrics using the transposition
operation.

The next few measures are represented in and inverse manner to distance
also known as similarities. Most of them are normalized to output number
between 0 and 1 but in general it stands that higher the number the bigger
the similarity. Note that these are not metrics in mathematical sense anymore
since most of them break the triangle inequality condition.

Jaro similarity
Jaro distance utilizes only one operation just like hamming distance, namely

the "transposition".

DICE similarity
DICE similarity is mostly known and vastly defined on sets. Given two

sets X and Y DICE similarity is defined as:

DICE = 2|X ∩ Y |
|X| + |Y |

(4.2)

We can define the intersection of sets as the number of matching characters
between the strings and the cardinality of the sets as the lengths. Doing this
we get:

DICEs = 2 · match(S1, S2)
len(S1) + len(S2) (4.3)

4.4.2 Deep-learning based approaches

As previously discussed the need for a measure able to compare more abstract
semantic meaning within the text is warranted. A deep learning based
approaches generally use vector embedding and then some vector distance
measure to achieve a more contextually relevant results. This approach is
what I will use for evaluation.

Embedding models

A BERT based architectures from [91] are used for calculation of text em-
beddings. Authors also provide a whole library for sentence similarity which
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is used to calculate the embedding [57]. With the library also multiple pre-
trained models are available all being pretty light-weight in the amount of
parameters making the computational load not that heavy. I choose the
all-MiniLM-L6-v2 this models has around 23M parameters. It is a fine-tuned
version of nreimers/MiniLM-L6-H384-uncased trained on around 1B sentence
pairs from multiple datasets, and it maps the input to a 384 dimensional
vector space.

Vector distance measure

There are two commonly used vector similarity/distance measures, euclidean
distance and cosine similarity. With the authors of the embedding models
using cosine similarity in the training process the choice is straight forward.
Also in comparison cosine similarity is normalized and doesn’t suffer from
curse of high dimensionality like euclidean distance [92]. Cosine similarity
between two vectors is defined as follows:

cossim(x, y) = xT y

||x|| ||y||
(4.4)

It is basically a normalized vector product. It measures the how far angle
wise the vectors are from each other.

4.5 Evaluation pipeline

4.5.1 Using the models

Most of the models tested are too large to be run locally, thus some hosting
had to be used. Huggingface [48] provides hosting and library API for some
models, this was used for fine-tuning of the Mistral models. The GPT models
have a paid API provided by openai. For the Llama3, Gemma and eventually
even mixtral a new hosting called GroqCloud was used, since it is in beta
phase all the models were provided free of charge but under rather strick
restrictions on amount of tokens processed per minute. This is the second
big reason for only processing a small part of the data provided.

4.5.2 Reference models

Since the unlabelled nature of the data a two models of the models with the
best expectation on performance were chosen as a reference. These models
were GPT-4 and Llama3-70B. These were selected for two main reasons, one
they are developed by different companies thus the training data might differ
more than if I used two GPT based models and two because these models
have outstanding results on human evaluated benchmarks. All the testing
was done with respect to each reference model we discuss the effects of this
scheme are discussed further down the work.
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4.5.3 Form field and data filtering

For evaluation an example 9 form fields were chosen, but in general any form
field should be acceptable. These fields were chosen:
gender, name, age, phone number, type of addiction, length of addiction,
frequency of use, medical history, financial situation
It happens that in the given dialogue the information about the field is not
present thus the models are not able to fill it. This occurs quite often and
as will be demonstrated in the results section the models generally answer
correctly that the given information could not be retrieved. In order to
remove a bit of this bias in the results a filtering is applied and the results
are then calculated on both the unfiltered and filtered data. The filtering is
following, when the reference models output is that the information about
the given field is not present in the text we remove this entry from further
processing.

4.5.4 Model output format

The reliable output format of the model is very important as if the format is
not stable the subsequential parsing becomes more difficult and sometimes
impossible. All the models were asked to deliver the results in json format.
Most models also add some kind of comment to the json output so further
parsing was implemented. A sample json output after parsing could look like
this.

1 {
2 "gender": "not included",
3 "name": "Veronika",
4 "age": "not included",
5 "phone number": "not included",
6 "type of addiction": "nicotine",
7 "length of addiction": "2.5 years",
8 "frequency of use": "30 heatsticks a day",
9 "medical history": "Throat issues",

10 "financial situation": "not included"
11 }

4.6 Results

4.6.1 Fine-tuning results

The data generated by the GPT model was divided into a test and training
splits respectively. Fine-tuning of Mistral 7B and Mixtral 8x7B was performed
yielding 100% accuracy on the test set. Subsequently the models were used
on the NQL data and both failed to produce results in a usable format. Thus
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forcing us to remove them from further testing.

The suspected reasons for the poor performance are a big bias in the data
used for fine-tuning. The desired objective was mostly to make the models
learn the correct output format, but instead the fine-tuning mostly allowed to
models to fixate on wrong aspects of the dataset. These aspects were a simple
and repeating nature of the dialogues and a quite short length compared to
the NQL data.

Especially the length posed a big problem as when the fine-tuned models
were presented with the longer samples from the selected NQL dialogues they
were inable to process the text and outputted results of no value. To fix this
I tried cutting the longer dialogues to segments, this helped and the models
yielded a correctly formatted output but with completely made up answers.
Given the performance of the bare models I deemed the fine-tuning unhelpful.

4.6.2 Field-wise performance

To asses the performance of the different models on each field an average
cosine similarity over both the unfiltered and filtered data was calculated for
each model on every field. For visual clarity and evaluation purposes the
fields were divided into three categories by an estimated semantic context
abstraction needed to fill the field. The categories contain the following fields:..1. Gender, Name, Age - the easiest category, Gender might need more

context but when name is present can be inferred easily..2. Phone number, type of addiction, length of addiction - The medium
category, requires a basic understanding of the dialog context but answers
are generally simple..3. Frequency of use, medical history, financial situation - The hardest
category requires understanding of the text while also requiring answer
of no predefined structure

Inspecting figures 4.1-4.4 suggest a decreasing trend in cosine similarity values
through the different categories, calculating average values on each reference
for every category can be seen in table 4.1. These values suggest that the
difficulty of category 1 and 2 are on the same level as the averages are close.
This can be the case due to the phone number field as its presence has mostly
binary nature, either the models are very close to the reference or they don’t
find the phone number at all. The dataset doesn’t contain many examples
with phone numbers included and if they do the transcription isn’t very good.
This may affect the evaluation accuracy between these two categories.

36



....................................... 4.6. Results

Llama3-70B GPT-4
1. category 0.72 0.72
2. category 0.76 0.69
3. category 0.55 0.41

Table 4.1: Average cosine similarities over both data types for each category

Figure 4.1: Unfiltered data cosine similarities, fields comparison. Reference
model: GPT-4

As expected the average values in the 3rd category are smaller than in the
two easier categories. Main reason for this is obviously the more abstract
and thus harder semantic meaning of the fields. But also the evaluation
method plays a bigger role here as now it is more likely the correct outputs
in the fields won’t be close in some string distance sense(4.4.1 ) but more in
their semantic meaning. Comparing semantically close sentences is generally
harder task even for the embedding based approach. This fact contributes to
generally lower similarity values within the 3rd category.

Again an exploratory analysis of figures 4.1-4.4 begs the question if some
models performance is dependent on category. This is justified as one might
think the smaller models might underperform on the harder categories. For
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Figure 4.2: Filtered data cosine similarities, fields comparison. Reference model:
Llama3 70B

this a separation of models was made based on their size. Smaller models
being Llama3-8B and Gemma-7B. Larger models the rest.

Smaller models Bigger models Differences
Reference Llama3-70B GPT-4 Llama3-70B GPT-4 Llama3-70B GPT-4
1. category 0.65 0.67 0.77 0.76 0.12 0.09
2. category 0.60 0.61 0.86 0.74 0.26 0.13
3. category 0.47 0.35 0.61 0.46 0.14 0.11

Table 4.2: Table of average cosine similarities over both data types on smaller
and larger models across all categories along with the respective differences
between small and large models

An average performances of small and large models on each category on
both references are summarized in table 4.2. Looking at the difference columns
we notice the values are relatively stable with one exception.

The performance of large models with reference to Llama3 in second
category is significantly higher than the one of smaller models. Looking at
figures 4.2 and 4.4 we notice a very poor performance of the Gemma model on
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the phone number field. In reality this is due to Llama3-70B not detecting the
phone numbers. This might seem like a mistake but in reality after inspecting
the transcriptions it is impossible to extract the phone numbers from the
transcriptions that include them as they are not fully transcribed. I wouldn’t
put this as a mistake of either model since it is mostly originated in the poor
nature of the data.

With this understanding I categorize this exception as irrelevant and
observing the other differences we notice no major change with respect to
the category.

Figure 4.3: Filtered data cosine similarities, fields comparison. Reference model:
GPT-4
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Figure 4.4: Unfiltered data cosine similarities, fields comparison. Reference
model: Llama3 70B
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4.6.3 Output reliability

A simple count of mistakes was used to asses the reliability of the models
outputs. A mistake was counted when it wasn’t possible to extract the
given field from the output using simple parsing, this means in one output a
model can make more mistakes. Most common mistakes were either complete
disobedience of the requested format or missing out on quatation marks.

Llama3-8b gemma-7b-it Llama3-70b gpt-3.5-turbo gpt-4 mixtral
Output mistakes 12 2 0 4 0 5

Table 4.3: Table of mistakes in output of each model

As table 4.3 indicates the worst performer by far is the small Llama3 model.
The main reason for this is its complete disobedience on one sample thus
having 9 mistakes from it. The same case is with the mixtral where all the
mistakes occured within one faulty sample. The only models without any
mistakes were the reference models, even gpt-3.5 had few mistakes, these
were mainly missing quatataion marks. It could be argued the reliability of
gpt-3.5 is worse than mixtral as it makes mistakes in different samples when
mixtrals mistake is only one faulty sample. To conclude these results are
quite concerning as the reliability is a huge factor in model selection for the
application.

4.6.4 Effects of data filtering and reference selection on
results

In order to compare the performance with respect to each reference an average
of all data and fields was calculated for both the reference models. These
averages can be seen in table 4.4 and suggest around 7% higher average on
the Llama3-70B reference. Using a voting scheme for evaluation this would
imply better performance of Llama3-70B as the tested models tend to agree
with it more.

Llama3-70B GPT-4
Average over reference 0.68 0.61

Unfilt. vs filt data difference 0.035 0.098

Table 4.4: Comparison of different average metrics over reference models and
data types

Inspecting figures 4.5, 4.6 one would assume a generally lower cosine
similarity values on filtered data, the calculated differences in table 4.4
confirm around 6% difference. This discrepancy is mainly due to models
having easier time performing on fields about which no information is included
in the text. In general it seems confirming no occurrence of information about
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a given is a simpler task. The filtered dataset removes some of these samples
thus generally decreasing the average performance of all the models.

4.6.5 General model performance

First looking at the average cosine similarities on the filtered data in figure
4.5 the highest performing model with respect to the reference is in each case
the other reference model. This further justifies the usage of these models as
references. The other models perform about the same with respect to GPT-4
while when using Llama3-70B as the ground truth model we see mixtral
slightly outperform the other models.

(a) : Reference: GPT-4 (b) : Reference: Llama3 70B

Figure 4.5: Comparison of average cosine similarities across all fields on filtered
data for different reference models

(a) : Reference: GPT-4 (b) : Reference: Llama3 70B

Figure 4.6: Comparison of average cosine similarities across all fields on unfiltered
data for different reference models

On the unfiltered data in figure 4.6 we notice that GPT-4 is actually
outperformed by mixtral. As explained above this is probably due to the
phone number field not being recognized by Llama3-70B while being found by
the GPT-4 model thus lowering its performance with respect to Llama3-70B.
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We also notice a substantial decrease in performance of the Gemma model.
As discussed Gemma is the smallest model and its ability to follow instructions
completely is thus limited. This leads to differently phrased output to describe
the inability to fill the field from the given text. Sometimes instead of saying
"not included" Gemma outputs and abbreviation with similar meaning, for
example "Not provided". Since the embeddings of completely same strings are
mapped to equal vectors the models which match completely with reference
have higher performance. This problem only occurs on unfiltered data as in
the filtered case we never compare samples where the reference model doesn’t
find the information.

4.6.6 Cosine similarity scores distributions

So far only all the results observed were averages over the data. To better
understand how the scores are distributed we can inspect one sample histogram
for each model. In figure 4.7 we see histograms of cosine similarities averaged
over the fields for each model with GPT-4 as a reference, these were calculated
on filtered data. Since the histograms have generally similar pattern the other
cases are included in the appendix.

The general pattern is obvious, when the models agree with the reference
the cosine similarity tend to be close to 1. The disagreement is harder to
grasp, generally there tends to be a smaller peak around 0.2. The value
mean value of a dissimilarity will never be exactly 0 as the model compares
from both semantic and basic string perspective and two sentences will share
characters even when their meanings are completely different.
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Figure 4.7: Histograms of cosine similarity averages across all fields. Reference
model: GPT-4
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Chapter 5
Conclusion

This work is a part of an ongoing development of a platform originally designed
for NQL but counting on scalability to general counseling. I introduce the
platform and argue its importance in the current society. Then I identify
processes with potential for either partial or full automation. Subsequently
I choose the task of form filling from dialogues obtained by the counseling
feature. I clasiffy the problem as an extension of the well studied named
entity recognition problem within the realm of natural language processing.
Subsequently I introduce key deep learning methods which revolutionized
natural language processing. In depth I discuss recurrent neural networks and
transformer architectures as these are the pilot architectures. Following the
theoretical exploration of the internal mechanisms of these architectures, I
argue the importance of Large language models and their impact and usability
for NLP tasks.

Subsequently I introduce the key large language models. I discuss they
concrete architectures, training details, the differences in size and provide
a summary of their performance on both human evaluated and common
benchmark based metrics. To determine the usability of these models on
our task an unsupervised evaluation pipeline based on calculating cosine
similarity with respect to chosen reference models is proposed. Next a
representative subset of the data provided by NQL is created by manually
selecting and refurbishing relevant dialogues. Without any success a fine-
tuning method is applied but subsequently removed from further evaluation
for poor performance.

Following, six models are tested on the selected data using the proposed
pipeline. A difficulty categorization of selected evaluation form fields is
performed. The performance of the models is then assessed both in an overall
and category-wise manner. Output reliability is also reviewed.

Based on these finding I propose the usage of Llama3-70B model for the
platform to solve the problem at hand. If there is a need for computational
efficiency thus forcing the selection of smaller model I recommend using
Gemma over Llama-3-8B as the performance discrepancy is not big and
Gemma provides better output reliability. If disk space is not a problem
mixtral is a good option for a model with smaller inference cost. Generally I
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would not recommend GPT-3.5 as its performance is not satisfactory and the
cost for hosting is rather high. If cost is not a problem GPT-4 is on par with
the previously recommended Llama3-70B.
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Appendix A
Cosine similarity histograms
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A. Cosine similarity histograms ..............................

Figure A.1: Histograms of cosine similarity averages across all fields on filtered
data. Reference model: Llama3 70B
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...............................A. Cosine similarity histograms

Figure A.2: Histograms of cosine similarity averages across all fields on unfiltered
data. Reference model: GPT-4
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A. Cosine similarity histograms ..............................

Figure A.3: Histograms of cosine similarity averages across all fields on unfiltered
data. Reference model: Llama3 70B
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Appendix B
Used software

B.1 Spell-checking

Overleaf built-spell check, Chat-GPT

B.2 Transalation and synonym generation

Chat-GPT, Abstract was translated to czech language.

59



60



Appendix C
Source code

Given the evaluation on sensitive data the code will only be made available
upon request to the author. Source codes used to generate figure are not
included.
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