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Abstract

Parkinson’s disease is a severe, the sec-
ond most common progressive neurode-
generative disease. With no causal treat-
ment, current research focuses on find-
ing biomarkers that indicate the onset
of the disease before full manifestation.
One such biomarker is hypomimia, a low-
ered magnitude of facial movement, which
disrupts wrinkle formation. In recent
years wrinkle segmentation with neural
networks has become widely used. Due
to no sufficient public wrinkle dataset
being available, we assembled an origi-
nal dataset with 674 total high-resolution
images being annotated. An architec-
ture trained on this dataset achieved a
Jacquard Similarity Index (JSI) of 31.2 %.
This model was used to segment wrinkles
in video recordings of de-novo-diagnosed
100 Parkinson’s disease patients and their
matched healthy control counterparts.
The parameters calculated from wrin-
kles represented hypomimia characteris-
tics according to the literature. These
features showed significant differences be-
tween Parkinson’s disease patients and
healthy controls. Logistic regression fit-
ted to these features with leave-one-out
cross-validation resulted in an accuracy
of 74 %. Features extracted from wrin-
kles segmented by neural networks can
indicate Parkinson’s disease in an early
stage; however, detected wrinkles by neu-
ral networks can be unstable during video
processing.

Keywords: Parkinson’s disease,
wrinkles, segmentation

Supervisor: Ing. Michal Novotny, PhD.
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Abstrakt

Parkinsonova nemoc je zavazné progre-
sivni druhé nejrozsirenéjsi neurodegenera-
tivni onemocnéni. Vzhledem k chybéjici
pric¢inné 1écbé, se snahy védca ubiraji k
detekci biomarkert, které se objevuji pred
plnym rozvojem nemoci. Jednim ze zkou-
manych biomarkert je hypomimie, pro-
jevujici se jako snizené vychylky v obli-
¢ejovych pohybech, kterd narusuje tvorbu
vrasek. Pro segmentaci vrasek se v posled-
nich letech zacaly hojné pouzivat neuro-
nové sité. Vzhledem k nedostateénym do-
stupnym datasettim anotovanych vrasek,
jsme zkompletovali vlastni dataset o 674
anotovanych obréazcich s vysokym rozlise-
nim. Architektura natrénovana na tomto
datasetu dosahovala 31.2 % Jacquardova
indexu podobnosti (JSI). Tento model byl
pouzit pro segmentaci 100 videi pacientt s
de-novo diagnostikovanou Parkinsonovou
nemoci a odpovidajici skupinou zdravych
kontrol. Parametry vypocitané z vrasek
reprezentovaly charakteristiky hypomimie
podle dostupné literatury a ukézaly signi-
fikantni odliSnost mezi skupinou pacientu
a zdravych kontrol. Klasifikator logistické
regrese s kiizovou validaci typu leave-one-
out byl natrénovan na téchto parametrech
s presnosti 74 %. Parametry ziskané z
vrasek segmentovanych za pomoci neuro-
nové sité mohou indikovat rané projevy
Parkinsonovy nemoci, avsak segmentovani
vrasek pomoci neuronové sité muze byt
nestabilni pii zpracovani video zaznamu.

Klicova slova: Parkinsonova nemoc,
vrasky, segmentace

Pteklad nazvu: Automatickd analyza
vraskovych charakteristik pacientt s
Parkinsonovou nemoci
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Chapter 1

Introduction

Parkinson’s disease (PD) is a progressive neurodegenerative disorder caused
by the loss of dopaminergic neurons in the substantia nigra pars compacta
(SNc) region of the midbrain. Although the causes of the disease are not yet
exactly known, age is identified as one of the main risk factors. PD primarily
affects individuals over the age of 50. PD is the second most common
neurodegenerative disease after Alzheimer’s disease [1]. With the population
getting older overall, it is realistic to expect increasing numbers of patients
with PD. It is important to note that PD is not yet fully understood [2].

Because of the severe impact on the quality of a patient’s life, there is a
need to find a causal treatment for PD. There have been attempts to find
early biomarkers that could diagnose PD in prodromal stages [2]. One of the
first occurring motor symptoms is hypomimia [3]. An important sign of facial
expressivity disruption is a change in movement and formation of wrinkles [4].
Therefore, reliable wrinkle segmentation and detection of significant wrinkle
parameters could be used to reveal PD in the early stages, a possible approach
to finding wrinkle parameters for hypomimia is debated in bachelor thesis [5]
written in Czech. Wrinkle segmentation has risen in popularity because of
the recent expansion of neural networks, which outperform prior basic image
segmentation techniques.

The goal of this diploma thesis is to study facial disruption of wrinkle
formatting caused by hypomimia, review approaches for wrinkle segmentation,
and propose a method for an automatic evaluation of wrinkle disruptions
caused by Parkinson’s disease. This diploma thesis is divided into two parts.
In Part [T we briefly discuss Parkinson’s disease and look into hypomimia and
previous approaches for its detection in Chapter |2; then image segmentation
techniques, neural networks, and prior work in wrinkle segmentation are
debated in Chapter [3. The research project in Part Il consisting of wrinkle
dataset assembling, training of a neural network model, and video analysis
is divided into methodology, results, and discussion (Chapters 4, 5/ and 6)
concluded in Chapter 7. The dataset and video-analyzing code were uploaded
to (GitHub €) for easy access. Results too large to be displayed in the main
text can be found in Appendix |Al


https://github.com/vanijan/Wrinkle-Dataset-and-Wrinkle-Video-Evaluation

Part |

Theory and Literature Review



Chapter 2

Parkinson’s Disease

. 2.1 Prevalence

Parkinson’s disease (PD) primarily affects individuals over the age of 50
years, with occurrences in younger age groups being extremely rare. In the
population, the incidence is 0.3%, but it grows to 3 % among individuals aged
over 80. This makes it the second most common neurodegenerative disease
after Alzheimer’s disease . With the population getting older overall, it is
realistic to expect increasing numbers of patients with PD . PD is rarely
inherited, but different ethnicities can vary in the incidence of PD . It has
been shown that chemical exposures can alter the probability of PD onset,
with smokers and caffeine users being less likely to develop PD .

. 2.2 Patomechanism

Two factors cause PD: (i) loss of dopaminergic neurons in substantia nigra
pars compacta (SNc) and (ii) deposition of a-synuclein in neurons, for PD
specifically, both factors mentioned must be present . This results in motor
and mental complications ,. The cause of changes in the human body
leading to PD is not yet fully understood and is viewed as multifactorial .

Dopamine is a neurotransmitter with diverse functions. In motor pathways,
it modifies responses in basal ganglia, so movements are more sudden. The
exact motor wiring is beyond the scope of this work and for deeper under-
standing, see ﬂ§|, Lack of dopamine then induces problems with a sudden
voluntary starting and ceasing of a movement accompanied by tremors and
progressively more severe cognitive impairment .

B 23 Symptoms

The first occurring motor symptoms are best remembered by an abbreviation
TRAP: tremor, rigidity, akinesia, and postural instability. The tremor mostly
dominates one side and its average frequency is approximately 5 Hz. Rigidity
is described as a force preventing one from moving, whereas akinesia is a



2.4. Diagnosis

lack of movement. Postural instability increases the risk of falls, resulting
in fractures, particularly in the advanced stages of the disease. Besides
motor symptoms, PD patients also exhibit depression, fatigue, and REM
sleep disorders . Milder forms of these abnormalities are discussed in
Section The most used scale for measuring the severity of PD symptoms
is the Unified Parkinson’s Disease Rating Scale (UPDRS) described by the
Movement Disorder Society (MDS). This MDS-UPDRS rating has to be
performed by specialized physicians or nurses @ﬂ

As the disease progresses, the severity of the symptoms intensifies. In its
final stages, most of the patients are barely able to move, talk, or swallow
and suffer from cognitive impairment, often leading to dementia . PD
patients’ quality of life is lowered, as well as life expectancy. PD patients are
expected to live approximately 5 years shorter than people without diagnosed
PD. There exist many causes of death among PD patients, with pneumonia
being a significantly more frequent cause compared to healthy controls .
Figure depicts a PD patient with the typical symptoms.

Typical appearance of Parkinson’s disease

%3—

Stooped posture

Masked facial
expression

Rigidity
Forward tilt
of trunk

Flexed elbows

& wrists Reduced arm

swinging

3))

Slightly flexed
hips & knees

Trembling of ’
extremities

Shuffling, short-

stepped gait

Figure 2.1: PD patient and their symptoms. Image source: .

B 24 Diagnosis

As mentioned in Section the loss of dopaminergic neurons in SNc causes
Parkinson’s disease. Therefore, neuroimaging would be ideal for definitive



2.5. Treatment and Management

PD diagnosis. This approach would be costly, which is why diagnosis is done
differently. MDS provides commonly used guidelines for how PD should be
diagnosed. It offers supportive criteria, exclusion criteria, and red flags. If
any exclusion criterion is present, PD is not diagnosed. In other cases, it
depends on the ratio of the supportive criteria and the red flags. Supportive
criteria can be a beneficial response to dopaminergic therapy or rest tremor
of a limb. Among the exclusion criteria are normal functional neuroimaging
of the presynaptic dopaminergic system or an absence of observable response
to high-dose levodopa. Red flags contain a complete absence of progression of
motor symptoms and also a rapid progression of gait impairment. For more
information about diagnosis, please read the original paper [12].

B 25 Treatment and Management

To this day, there is no approved medication to cure or even slow down PD’s
progression |2]. The main focus of current treatment is to diminish symptoms
and consequently improve the patient’s quality of life. The standard most used
medication is called levodopa, this drug can be ingested and can penetrate
the blood-brain barrier. In the brain, levodopa transforms into dopamine
to substitute its lack caused by PD. There are other chemicals used for PD
treatment and their exact mix depends on each individual’s reactions and side
effects [1,2]. For more information about the precise treatment mechanism,
see [1].

Another treatment option is to use electrodes to stimulate the brain from
the inside with a signal of low amplitude and high frequency. This method is
called deep brain stimulation (DBS). It can also improve the quality of life of
a patient, especially when they build resistance to medications. In the future,
hopes for causal treatment are placed in gene therapy or dopaminergic cell
implantation, however, these approaches are only in the early development
stages. Diagnosing PD in the prodromal stage could also be beneficial to the
treatment because, at that time, fewer dopaminergic neurons are lost [1},2].

. 2.6 Biomarkers

The scientific community puts effort into discovering biomarkers - early signs
of PD that can be revealed before the diagnosis. Most discussed motor
biomarkers are milder forms of akinesia and rigidity: (i) hypomimia (also
called facial bradykinesia) [13-21], (ii) dysarthria [22-26], (iii) dysphagia [27],
(iv) reduced arm swing [28.29], and (v) sialorrhoea (drooling) [30,31]. However,
there is no consensus on sialorrhoea being an early sign [32]. Other studies
suggest non-motor symptoms can be used as biomarkers: (vi) composition
of bodily fluids [33,[34] or (vii) measuring sleep disorders [35]. A study from
2013 suggests that men suffering from idiopathic rapid eye movement sleep
behavior disorder (iRBD) will develop either PD or dementia with an 81%
chance [36].



2.7. Hypomimia

B 27 Hypomimia

Hypomimia (facial bradykinesia) is one of the earliest symptoms of PD. Mimic
muscles differ significantly from skeletal muscles mainly in two ways; most are
not attached to a bone and can be controlled voluntarily and involuntarily.
Research suggests that hypomimia manifests in (i) reduced spontaneous
smiling - both amplitude and frequency, (ii) reduced blinking rate in early
stages, (iii) flattened nasolabial folds, (iv) widened palpebral fissures, (v)
reduced movement of the upper part of face while smiling, (vi) unintentional
mouth opening, (vii) reduced number of wrinkles or creases around the mouth,
and (viii) reduced range of lip movement. All factors together result in PD
patients having more emotionless facial expressions. Many of the symptoms
above improve with levodopa treatment . A sketch of a PD’s patient’s
face is illustrated in Figure

Figure 2.2: Sketch of a PD patient’s face. Image source: \\

B Prior Work in Hypomimia Evaluation

Most prior work in hypomimia detection relies on facial landmarks to varying
degrees. Facial landmarks are important points on a human face, e.g. mouth
corners, eyes, or a nose tip. There are various available algorithms used for
facial landmark detection. For hypomimia evaluation, only one approach
uses a singular image. Evaluating only one image saves memory and time,
but it sacrifices the accuracy of the classification of healthy controls from

6



2.7. Hypomimia

PD patients. Other approaches utilize more images of the same person, vast
majority use videos [13H21]. Table summarizes previous approaches in
hypomimia evaluation techniques.



2.7. Hypomimia

Author, Year

Input

Method

Grammatikopoulou, 2019

Maycas-Cepeda, 2021

Su, 2021

Novotny, 2022

Marsili, 2014

Jin, 2020

Ligiong, 2022

Bandini, 2017

Rajnoha, 2018

Images

Video

Video

Video

3D Video

Video

Video

Video

Image

Variability and means of locations of
facial landmarks were used to analyze
a series of selfies from different places
and times [13].

Blink rate of recorded speech videos
was evaluated [14].

Histogram of oriented gradients was
used to analyze smiling videos [15].

Variability and means of locations of
facial landmarks as well as the entropy
of facial segments were used to analyze
monologue videos [16].

3 IR videorecorders were used to ana-
lyze the movement of reflective mark-
ers attached to the smiling patient’s
skin [17].

Jitter of facial landmarks was calcu-
lated and the most important land-
marks for hypomimia detection were
established from video recordings [18].

Third-party software was used to ana-
lyze emotions from videos of slideshow
readings [19].

Emotion expression was analyzed from
videos of patients asked to show differ-
ent emotions. The emotion estimation
was performed from the location of fa-
cial landmarks [20].

A CNN was used for feature extraction
of a single image. The features were
then used to train a random forest tree
classifier [21].

Table 2.1: Comparison of prior work in hypomimia analysis. Input = Input
needed to evaluate a single person.

8



Chapter 3

Segmentation of Digital Images

A grayscale image I in the computer memory is represented by a I € R7*W
matrix, where we call H the image height and W image width, cells of this
matrix are called pixels. Let I; ; represent a pixel in the ith row and jth
column. The value of I; ; is called the image intensity, which tells how much
the corresponding pixel shines. Image intensities are often stored as non-
negative integers ranging from I; ; € [0,255]. Value 0 of I; j results in the
corresponding pixel not shining and its color is black, whereas value 255
results in a white pixel. Note that we will be using zero-based indexing in
the future, meaning i ranges from 0 to H — 1 and j from 0 to W — 1. Thus
Ip,o denotes the pixel in the upper left corner of image I.

A color image IB has three channels C' = 3 for each color red, green,
blue, and T8 ¢ REXWXC three-dimensional matrix. When we refer to
a pixel at coordinates i, j of a color image TP we mean triplet of values
for each channel, thus Ii}E?B € R?, where . denotes all values alongside this
dimension.

In image segmentation, we assign a class to each pixel in the image I. Let
M denote a H x W matrix called a segmentation mask (further abbreviated to
just a mask) for the image I or I®“B, The values of M are integers and they
correspond to a class associated with their value. In binary segmentation,
these classes are called foreground and background. Usually, M;; = 0
indicates that an image pixel in the coordinates (i,j) corresponds to the
background, and M; ; = 1 denotes the foreground pixel.

B 31 Segmentation Metrics

Segmentation metrics, which evaluate the performance of algorithms, require
both a mask of ground truth labels and a mask of the resulting image
segmentation predictions. In image segmentation, we denote foreground as
a positive class and background as a negative class. True positives (TP) is
defined as the sum of all correctly annotated foreground pixels, see Equation

3.1L



3.1. Segmentation Metrics

H-1W-1
TP = Z [pred(i,j) = 1 A truth(i, j) = 1] (3.1)
i=0 j=0
where pred is a mask of predicted labels, truth is a mask of ground truth
labels and [-] is the Iverson bracket (it is equal to 1 if the inside is true and
0 otherwise). True negatives (TN), false positives (FP), and false negatives
(FN) are defined similarly in Equations 3.2|- |3.4.

H-1W-1

TN =Y > [pred(i,j) = 0 Atruth(i,j) = 0] (3.2)
=0 j=0
H-1W-1

FP= [pred(i,j) = 1 A truth(i,j) = 0] (3.3)
=0 j=0
H-1W-1

FN = [pred(i,j) = 0 A truth(i,j) = 1] (3.4)
=0 j=0

From these four basic metrics, the following metrics can be derived [38]:

® Accuracy (ACC)

TP+TN
ACC = TP+TN + FP+FN (3:5)
8 Precision
PRECISION = L (3 6)
TP+ FP ’
® Recall Tp
FCALL = ————— .
REC TP+ FN (3.7)
® F1 score (F1)
PRECISION x RECALL
Il =2 X S RECISION + RECALL (38)
® DICE Similarity Coefficient (DSC)
2xTP
DSO_2><TP+FP+FN (3.9)
® Jaccard Similarity Index (JSI)
TP D
JSI = __Dbse (3.10)

TP+ FP+FN 2-DSC

When using a dataset where a positive class is not as common as a negative
one - an unbalanced dataset; it is standard not to choose accuracy as the
performance metric. This is because high accuracy can be achieved by
predicting a negative class for every pixel. F1, JSI, and DCS do not compute
with true negatives, consequently they are more suited for unbalanced datasets.
JSI can be called Intersection over Union (IoU) of the ground truth mask
and the prediction mask.

10



3.2. Convolution

. 3.2 Convolution

2D image convolution, represented by the symbol x*, is the fundamental of
many image segmentation techniques. It is an operation between an image
and a kernel, which is typically a smaller square matrix. The product of
convolution between an image I and kernel k& € RM*¥ is computed as follows:

M—-1N-1
f$ay = Iw,y * kx,y = Z Z Ix—m,y—n : km,n (311)

m=0 n=0

where f is the result of the convolution.

For simplicity, imagine a sliding kernel that multiplies image values in
a neighborhood of a pixel, sums these values together, and moves to the
next pixel. For a single pixel neighborhood, the procedure is illustrated in
Figure One undesired property of convolution is that it makes the output
smaller in spatial dimensions than the input if the kernel size is larger than 1.
Consider a case where z,y = 0 and m,n = 1 in the Equation 3.11} this will
result in reaching for the value of I_; _; which is undefined. To handle this
issue, padding was introduced. Padding implies adding rows and columns of
chosen values around the original which causes the output image to have a
preferred size. One of the most used padding is zero padding, meaning the
added rows and columns all have values of zero, you can see zero padding
visualized in Figure (3.2

(4x0)
(0x0)
{0x0)
{0x0)
©x1)
x1)
{0 x0)
0x1)
+(-4x2)

Center element of the kemel is placed over the
source pixel. The source pixel is then replaced
with a weighted sum of itself and nearby pixels.

Source pixel

Convolution

Mew pixel value (destination pixel)

Figure 3.1: Visualization of convolution for one pixel. The original image is on
the left, the kernel in the middle, resulting pixel on the right. At the top of the
image, there is a detailed summation. Tmage source: [39].

Convolution with a specific kernel can yield desired results, there are
many kernels used for image sharpening or edge detection, but probably the
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3.2. Convolution

o|lo|o|lo|o]lo|lo] o
oclo|lo|le|lo|lole]| e

éx6 image{input)

6x6 image with 1layer of zero
padding

3x3 kernel

6x6 image(output)

Figure 3.2: Visualization of zero padding. The 6 x 6 original image is padded
with one row of zeros at each side. The result of convolving the padded image
with a 3 x 3 kernel yields a 6 x 6 result. Image source:

most used kernel is the 2D Gaussian. Convolution with this kernel is called
Gaussian smoothing or Gaussian blurring. The 2D Gaussian kernel, denoted
by G(z,y;0), is a sampled two-dimensional probability distribution function
defined as:

1 z2+y2

= T 252 3].2
w02’ ’ (3.12)
where G(z,y; o) is the value of the Gaussian kernel at position (z,y) with

standard deviation o controlling the spread of the distribution - the bigger

the sigma, the smoother the result is. The 2D Gaussian is depicted in Figure

3.3

G(z,y;0)

o =2 with 30x30 o =5 with 30x30
kernel kernel

Figure 3.3: Visualization of two 2D Gaussian kernels. On the left 2D Gaussian
with 0 = 2, and on the right 0 = 5. Image source: .
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3.3. Image Histogram

B 33 Image Histogram

An image histogram is a discrete representation of pixel intensities in an
image. Let I denote the image again, the histogram h € R??® for 256 image
intensity levels is defined as:

1

T HW

hi (3.13)
where n; is the number of pixels in the image with intensity 7. For color
images, separate histograms are computed for each color channel.

B 3.3.1 Histogram Equalization

In general, we would like an image’s histogram to be as spread as possible.
Image with a histogram skewed too much to the left or right results in
underexposed or overexposed images, respectively, see Figure for visual
examples.

Underexposed Correct exposure Overexposed

Figure 3.4: Visualization of image histogram. The underexposed image has a
histogram skewed to the left, and the overexposed to the right. The correctly
exposed image has its histogram evenly spread. Image source: .

If we are provided an overexposed or underexposed image there is a tech-
nique for its correction - image equalization. The following lines describe how
histogram equalization of an image I is performed.

Histogram Equalization Algorithm :

For each channel ¢ repeat:
1. Histogram Computation:

® Compute histogram h from image I as described in Equation [3.13

13



3.4. Classical Image Segmentation Techniques
2. Cumulative Distribution Function (cdf) computation:
i
cdf (i) = Ay (3.14)
k=0

3. Normalize cdf:

® compute normalized cdf cdf,, so that it ranges from 0 to 255:

(cdf; — min(cdf))

df* = 255 - 3.15
cdfi max (cdf) — min(edf) (3:15)
4. Round all values of cdf,, to integers.
5. Apply Transformation to the Original Image:
® Obtain new pixel value for the equalized image I°? given by
IZ?C = cdej . (3.16)

where ¢, j are the space coordinates and c is the chosen channel.

B 3.4 Classical Image Segmentation Techniques

Before the era of neural networks, image segmentation was done by methods
that consisted of simple steps. We will briefly explore some image segmenta-
tion techniques not utilizing neural networks. The following algorithms can
be found implemented available online, most of them can be found in the
OpenCV library for Python [44].

B 3.4.1 Thresholding

Thresholding is done by finding pixel threshold T that separates well fore-
ground and background. Then mask M for a grayscale image I can be defined
by equation:
0 ifl;;<T
ij = 1 " (3.17)
1 if Ii,j Z T

Images are often noisy, thus it is a good practice to apply a 2D Gaussian
convolution before thresholding to ensure smoother segmentation boundaries.

B 3.4.2 Clustering

Clustering is used for estimating clusters corresponding to each class. Fa-
mous clustering techniques are K-means, expectation maximization (EM)
algorithms, and SLIC Superpixels [45]. Pixels closest to cluster centers are
labeled by a label assigned to the center, selected distance metrics can make
clustering applicable to color images.

14



3.4. Classical Image Segmentation Techniques

B 3.4.3 Edge Detection

When our desired segmentation masks are important edges of an image,
we can choose from many edge detection techniques. The image edge is
a neighborhood of pixels where the image function changes rapidly in a
direction. Edge detection in its simplest form can be done by convolution of
an edge-detecting kernel with the input image followed by thresholding. By
choosing specific kernels we can detect edges of various sizes and directions.
Examples of these kernels can be the Sobel windows.

-1 0 1 -1 -2 -1
Sy=1-2 0 1/,5%=]0 0 0 (3.18)
-1 0 1 12 1

where S, is the Sobel window for edge detection in the horizontal direction
and Sy is the Sobel window for edge detection in the vertical direction.

Other more complex edge detection algorithms are the Marr-Hilderth Edge
Detector, Canny Edge Detector, and Gabor filters. They all can be described
in three basic steps:

1. Preprocessing

B8 [mage is blurred with a 2D Gaussian Kernel. This prevents the
response from Step 2 from being too wiggly due to random noise.

2. Convolution
8 Blurred image is convolved with a specific kernel or more kernels.
3. Postprocessing

®8 Postprocessing consists mainly of thresholding and non-maxima
suppression.

Specifics of each of the three approaches mentioned above are summarized
in Table [3.1] below. For more details about Canny Edge Detector and Marr-
Hilderth Edge Detector see [45] and we refer you to [46] for more information
about Gabor filters.

B 3.4.4 Graph Cut Based Segmentation

A graph G(E,V) is a structure made of vertices V and edges E. Let e =
(u,v) € E be one of the graph’s edges and u,v € V graphs vertices; the
existence of such an edge e implies a connection from vertex u to vertex v.
We can assign weights to each edge w(e) € R in a weighted graph. A special
type of graph is undirected graphs, in undirected graphs (u,v) € E implies
(v,u) € E and also w((u,v)) = w((v,u)) [45].

We can transform H x W(xC') image I to an undirected weighted graph
by following steps:
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3.4. Classical Image Segmentation Techniques

Algorithm Preprocessing Convolution Postprocessing
Name Kernel
Canny Gaussian smoothing | Sobel operators Gradient estimation

Non-maxima surpression

Hysteresis thresholding

Marr-Hildreth

Gaussian smoothing | Laplacian of Gaus-

sian (LoG)

Zero crossing detection

Gabor

None

Gabor kernel(s)

Tresholding

Table 3.1: Comparison of Edge Detection Algorithms. Canny = Canny Edge
Detector; Marr-Hilderth = Marr-Hilderth Edge Detector; Gabor = Gabor fil-

ters.

Transformation an of image to a graph [45,47]:

1. Create graph vertices

® Create set of vertices V

V={vlic[0,H—-1],j€[0,W—1]} (3.19)

where H, W are the height and width of image I respectively.

2. Create graph edges

® Start with empty edges set F

® For each pair of different vertices v; ; and vg; € V do:

E=FE U (vij,v) if (4,7) € Ny

(3.20)

where 4, j and k,[ are the image coordinates; Nz ;) is the neigh-
bourhood of coordinates k, [

3. Assign weights to edges

® for each edge e = (v; j,v;,;) € E compute:

w((vij, Vk,1)) o eTii—Ii1)?

4. Add source and sink vertices

B add two special vertices "source' s and "sink" ¢ to V'

(3.21)

m for each vertex v € V add an edges (s,v) and (t,v) to E

16
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® for each vertex v; ; assign weights to (v; j,s) and (v; j,t) so that:
w((vij,8)) o< —In(Pr(l; ;| fore)) (3.22)
w((vi4,t)) o< =In(Pr(I; ;] back)) (3.23)

where Pr(I; ;| fore) denotes apriori probability that pixel of image
I at coordinates 7, j belongs to foreground; back = background; fore
= foreground.

After creating a weighted undirected graph G(F, V') from an image accord-
ingly, the graph’s vertices are partitioned into two sets V, and V} so that
VoUV, =V and V, NV, = 0. The quality of such partition is measured by
metric cut described in the following equation.

cut(Va, Vp) = Z w((u,v)) (3.24)

UEVy eV,

Algorithms that find these two subsets with minimal cut are called graph
cut algorithms, widely used examples are approaches from the Max-Flow Min-
Cut algorithm family. Figure depicts an image’s visual representation as a
graph. When the optimal partition is found, vertices connected to the "source"
vertex are labeled as foreground and background otherwise. For multiclass
segmentation, the same process as above can be applied to subgraphs of the

original graph recursively .

Original image

Figure 3.5: Visualization of image to graph transformation. S and T "source"
and "sink" vertices respectively. R, (1) = weight of edge (p, s); R,(0) = weight
of edge (p,t). Image source: .

B 3.4.5 Line Segmentation

Lines and curves can also be important image features, for example, a road,
a vessel, and wrinkles fall into this category.

B Hough Transform

The Hough method is a method for finding known patterns by transforming
image points to parameter space. It is best explained as an example of

17



3.4. Classical Image Segmentation Techniques

segmenting a line. A line can be parametrized by a non-commonly used
equation:
p(0,z,y) = xcos(0) + ysin(0) (3.25)

where x,y are space coordinates; 6 is angle between the line and the x-axis; p
is the distance of the line to the origin. For finding different templates other
parameterizations need to be computed accordingly.

Hough Transform Algorithm [45]:
1. Detect edge points E (see Subsection |3.4.3)
2. Create parameters grid

B create vector axisy is a uniformly spaced numbers in the interval
[771-/27 7T/2[

B create vector axis, is a uniformly spaced axis in the interval [—D, D],
where D is the distance between image corners

® create a grid G which is a |axis,| X |axisy| matrix filled with zeros.
3. Let points vote for parameters

® for edge point x,y in B
for j in range(|axisg|)
» 0 =azxisg(j)
= compute p as described in Equation |3.25
= find ¢ so that awxis,(i) < p < awis,(i + 1)
= Gi,j = Gm‘ +1

4. Selecting most voted line

B Detected line is a line with p and 6 corresponding to coordinates
with maximum value in the grid G

Hough transform of two points is depicted in Figure 3.6
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y 0 0
xjcosf + y;sind = p
= /
P
(xj' yj)
’ f /
(xi: YE) P /
x;cosfl + y;sinf = p
x P

Figure 3.6: Visualisation of Hough transform for two points. In the left part of
the image are visualized two points in cartesian space. In the right part, both
points are transformed into sinusoids in parameter space. Image source: [45].

B Frangi Filter

Frangi filter is an algorithm designed for detecting blood vessels in both 2D
and 3D images. It estimates the Hessian matrix for each pixel of the image
and computes eigenvalues Ay and Ag. If Ao >> Ay, it is suggested that there
is a direction in which image intensity changes, and in the perpendicular
direction there is no change, which indicates a line. If Ao &~ A1 >> 0 it signals
a blob-like structure there [48].

Frangi Filter Algorithm for a grayscale image [48]:
1. Choose a sigma o
® The sigma size determines the width of detected curves.
2. Gaussian second derivatives computation

® Precompute 2D Gaussian G(z,y;0) second derivatives kernels G,
Gzy and Gyy. Subcript zz denotes derivating twice w. r. t. =z,
similarly for other subscripts. 2D Gaussian is defined in Equation
3.12.

3. Hessian Matrix Computation:
® Coompute I, = I * Gy, similarly for I, and I,

® The Hessian matrix for pixel ¢, j is defined as:

Lonii i Lpoyi s
H’L,j = LT3, TY3t,J (326)
Ifcymj Iyy;z}j

4. Eigenvalue Decomposition:
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3.5. Image Segmentation with Convolutional Neural Networks

® Compute the eigenvalues A1;; ; and A j of the Hessian matrix H; ;
at each pixel 17, j.

5. Blobness and Vesselness Measure Calculation:

® define R, S and vesselness V' as

A1 /32 2

Rr2 S2

V=e 22(1—¢ 22) (3.28)
where [ and ¢ are tunable paramethers.
6. Chosing bright or dark vessels:

® [f we are looking for dark vessels on a bright background, we set
v = 0 for pixels where Ay > 0. On the contrary, when bright vessels
are sought we set V = 0 for pixels where Ao < 0.

7. Repeat steps 1. - 6. for different sigmas and find the maximum
among the responses V.

B 35 Image Segmentation with Convolutional
Neural Networks

The recent uprise of neural networks also affected image segmentation and
these approaches tend to surpass classical image segmentation techniques.
A convolutional neural network (CNN) can be described as a sequence
of layers applied to the original image. These layers contain tunable pa-
rameters 6. Applying a segmentation neural network NN for to an in-
put image x;, € RFwinXWainXCasin - results in your = NN (z;0), where
Your € RHFvoutxWyoutxClyiout Hy.in, Waiin, Cy.in are the input dimensions;
Hy.outs Wysouts Cysout are the output dimensions. It is a good practice to set
H;, = Hyy and Wy, = Wy,,;. For binary image segmentation Cyys € {1,2},
for multiclass segmentation Cout = Nejasses, Where ngjgsses number of classes
for desired segmentation task. NN is trained to generate for each input I;,
predictions ¥, closest to ground truth segmentation labels y;.

B 3.5.1 Layers of CNNs

Layers of CNNSs can be described as operations to an input z € Rf=We.Cz

producing output y € R7v:Wv:Cy,
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3.5. Image Segmentation with Convolutional Neural Networks

B Activation Functions

Activation function f,. does not change the input dimensions meaning
H,=H,,W, =W,, and C; = C,. It is applied to each spacial element of
x separately, meaning y; j . = fact(Zij.c), where 4, j, ¢ are row, column and
channel respectively.

® Rectified Linear Unit (ReLU)

ReLU is the most often used activation layer [49] for its fast computation.
It is defined as [50]:

Tije if Tije >0

, (3.29)
0 if T e < 0.

y¢7j7c = RELU(ZL‘L]”C) = {

ReLU has several modifications that address zero outputs of ReLU for
every negative number, namely Leaky ReLU and Exponential Linear
Unit (ELU), their definitions are below [50].

8 Leaky ReLLU

i >0
Yije = L@a]{;yR@LU(xi’j’C) _ Li el .3327370 = (330)
kxzije if zijc < 0,245,k €R
k is chosen to be a small positive integer, e.g. 0.1.
= ELU
Yije = ELU(a) = { Tiie B Fide = (3.31)
k(ei%c - 1) lf xi7j7c < O, k E R

® Sigmoid Function

The sigmoid function is denoted by () and is computed as follows |50]:

1
Yije = 0(Tije) = 11 ®€ R (3.32)

The output of o() is a real number between 0 and 1. For this reason, the
sigmoid function is often used in the last layer of a neural network for
binary classification. Its output can represent the probability of a pixel
belonging to the foreground.

8 Hyberbolic Tangent

Hyperbolic Tangent (tanh) can be also a choice for an activation function,
it is defined as [50]:

ym’c = tanh(a:i’jjc) = 20’(2%1'7]‘75) -1 (3.33)

where o() is the sigmoid function. Tanh and all previously mentioned
activation functions are visualized in Figure 3.7,
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Activation Functions

5 = ReLU
— ELU

—— Leaky RelU
= Sigmoid

1 —— Tanh

Output
N

Input

Figure 3.7: Visualization of activation functions. ReLU and ELU are covered
by Leaky ReLU for positive inputs because their output is the same. k is set to
0.1 for Leaky ReLU and to 1 for ELU.

® Softmax

Softmax is most commonly used as the last layer for multiclass classifica-
tion. It is described as:

eTig,c

Yije = softmax(zij.c) = (3.34)

Co—1 _z; ;1
e €Thd

Results of softmax layers have nice properties, they sum up to 1 alongside
the channel dimension and they fall within the range of 0 to 1. This
is why v; j. can be used as the posterior probability of a spatial (3, j)
coordinate belonging to a class ¢ ,.

B Pooling Layers

Pooling layers, also known as downsampling layers, reduce the size of the input.
The most used downsampling factor is 2, meaning H, = H, /2, W, = W, /2,
and the number of channels remains the same. In average pooling, the input
within 2 X 2 non-overlapping windows is averaged for each channel, in max-
pooling the maximum in the window is calculated instead . Both max
pooling and average pooling are depicted in Figure 3.8

B Convolutional Layers

Convolutional layers are the backbone of CNNs, at default, a convolutional
layer has Cy-Cy kernels. Each kernel performs convolution independently with
its corresponding input channel and produces an output for the corresponding
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Max Pooling Average Pooling
29 | 15 | 28 | 184 | 15 | 28 | 184
0O |100 | 70 | 38 0 100 | 70 | 38
12 | 12 i 2 12 12 7 2
12 | 12 |45 6 12 | 12 | 45 6
2% 2x2
pool size pool size
Y Y
100 | 184 36 | 80
12 | 45 12 | 15

Figure 3.8: Visualisation of max pooling is on the left and average pooling on
the right. As you can see, the input gets downsampled by 2, input is 4 x 4 and
output is 2 x 2. Image source:

output channel. They are summed together if multiple results are generated
for a single output channel (when C,, > 1). To preserve the original height and
width, padding has to be applied as described in Section 3.2l For convolutional
layers, we also define parameter stride. Stride s a positive integer, which
indicates how many pixels the convolution kernel moves when transitioning
to the next pixel. We can also define dilation, denoted by d, which essentially
controls the spacing between the elements of the convolution kernel ,,
as illustrated in Figure 3.9
The output height H, can then be computed as follows :

CH.+2-p—d-(H,—1)—1
S

H, +1, (3.35)
where p denotes number of rows used for padding and Hj, kernel height. W,
can be computed similarly. While it is possible to use different dilation,
stride, padding, and kernel sizes for the height and width dimensions, the
vast majority of networks use the same values for both dimensions.

B Fractionally-Strided Convolutional Layer

A special type of convolutional layer is the fractionally-strided convolution
layer. The main contrast to classic convolution is that padding is applied
by inserting a row and column of zeros between each row and column of the
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(b) (c)

Figure 3.9: Comparison between general convolution kernel and dilated convo-
lution kernel. Black dots mark the neighborhood of a computed pixel. (a) A
general 3x3 convolution kernel (b) A 2-dilated 3x3 convolution kernel (c) A
4-dilated 3x3 convolution kernel. Image and caption source: [52]

original image, resulting in output two times larger, that is why this layer is
also called the upsampling layer [53]. The fractionally-strided convolution is
depicted in Figure |3.10.

(a) (b)

Figure 3.10: Visualisation of fractionally-strided convolution. (a) the original
array is padded with one row and column between each two rows and columns
creating a 7x7 array (b) convolution of the padded array with 3x3 kernel
resulting in 5x5 output. Image source: [53].

B 3.5.2 Batch Normalization

Neural networks process images in small groups - batches, number of images
in these batches is called batch size B. It has been shown, that normalizing
a batch so that its average is 0 and standard deviation is 1 is beneficial to
the network’s performance. This calculation is done for each batch processed
by a neural network and it is referred to as batch normalization [55].
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B 353 Losses

The objective function we try to minimize in the segmentation task with
neural networks is called the loss function. Among the most well-known loss
functions are cross-entropy loss and dice loss.

B Crossentropy Loss

Cross entropy loss [; j . for one output element yoyz.i j.. and target v ;. is
computed as:

lor(Youtsije Yiije) = —welog(so ftmax (Youtsi je)) * Yesijoes (3.36)
where w, are weights assigned to each class. For one image, the loss is then:
C—1H-1W-1
L(youtayt) = Z Z Z l(yout;i,j,cayt;i,jc) (337)
=0 i=0 j=0
For binary segmentation, the output can have only one channel, in this
case, we define binary cross-entropy loss as:

IBeE Youtsijr Ytsii) = —Yij - 109(0 Youtsij)) + (1 — yij)log(1 — 0 (Youtsi ;)
(3.38)

B Dice Loss

Cross-entropy loss can yield very good segmentation results when the numbers
of pixels for each class are approximately the same. If this is not the case,
weights for each class can be assigned to help the imbalance, but a more
stable solution is to use dice loss [56]. Dice loss for one channel is defined
as [56]:

I -1 2- fial ZJVZBI Ytsi,jYout;i,j + Y 3.39
dice(youtyyt) -+ H-1—<W—-1 W—1 _ 2o ’ ( . )

2 H—1
i=0 j=0 yt;i,j + =0 Zj:O yout;i,j +’Y
where « is a parameter chosen for faster convergence. For multiclass segmen-

tation, lg;.. is applied to each channel separately and the background channel
can be omitted.

B 3.5.4 Training and Validation

The neural network training process utilizes backpropagation, a form of
gradient descent known as stochastic gradient descent (SGD). Stochastic
gradient descent is specific in not computing derivation of the loss function
for all data at once but for small batches of images. CNNs are trained by
upgrading parameters in their layers, from the layers we have mentioned,
the only tunable parameters (also called weights) are the values of kernels in
convolution layers. The learning process is broken into epochs, in one epoch
usually all data are fed to the network, and its parameters are adjusted. The
number of epochs is one of the hyper-parameters that needs to be chosen by
the user.
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B Backpropagation

As we already defined input to our network is denoted by z;, and the output
by Yout = NN (x;0), where 6§ are parameters of the network. If we have
ground truth labels y; we call this supervised learning. Backpropagation is a
process where the derivation of the loss function I() is computed w. r. t. 6.
Neural network output NN (z;n;6) can be expressed as sequence of N layers:

NN (zin;0) = LN(LnN—1(..;0n—-1);0N) (3.40)
and loss [() then expressed as
UNN(zing),y) = ULN(LN-1(--;0n-1);ON), 91),

0; are the parameters of the ith layer L;.
Let us set a temporary goal which is to compute the derivation of [() w.r.t.
On_1. The derivation can be computed by applying the chain rule:

M (Yout, yt) _ (Yout, yt) COLN(Ln-1(.-;0n-1)) (3.41)
00N _1 OLN(Ln-1(.-;0Nn-1)) 00n_1 '
and
OLN(Ln-1(--50n-1)) _ OLN(Ln-1(-s0n-1) OLNn-1(.;0n-1) (3.42)
ION_1 OLN_1(...;0N-1) 00N -1 B
Together it yields
M(Yout, yt) _ Ol (Yout, Yt) OLN(Ln-1(-30n-1)) OLN-1(.-50N-1)
00N _1 OLN(LN-1(-;0N-1))  OLn-1(..;0Nn-1) 00N _1 '
(3.43)
It can be generalized to:
8l(yout7yt) _ 8l(yout7yt) N aLg aLz (344)

09; 0Ly 1%, 0Li 06,

Thus in practice, the derivation of parameters in all layers is computed
iteratively by applying the chain rule.

B Learning Rate

Learning rate Ir is a hyper-parameter, that determines the magnitude of
weight adjustments during the training process. Selecting an appropriate
learning rate is not an easy task. It can be picked heuristically by testing
different learning rates and seeing how fast the loss function results decrease.

During the training phase, when the loss function approaches some local
minimum the learning rate can be too high and it skips the local minimum,
this is why sometimes it can be beneficial to lower the learning rate during
the training process. It is achieved by using a learning rate scheduler, which
predetermines how fast the learning rate drops in each epoch. For example,
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an exponential decay learning rate scheduler multiplies the learning rate each
epoch by constant . Exponential decay learning rate scheduler and other
broadly used schedulers are plotted in Figure [3.11. There are numerous
other strategies and approaches to selecting a learning rate suitable for each
task .

Optimizers are algorithms that update the weights of the neural network
during training. A well-known optimizer (and arguably the most used one) is
the Adam optimizer (abbreviated from adaptive momentum estimation) [58|,
but plain stochastic gradient descent can be selected, too.

Compare Learning Rate Curves Generated from Different Schedulers

05 ~— Constant LR
Time-based Decay

—— Step-based Decay

—— Exponential Decay
linear Decay

04

03

Leaming Rate

01

0.0

0 20 40 60 80 100
Epochs

Figure 3.11: Visualized different learning rate schedulers. Image source: .

B Validation

During the training, the neural network is learned only from the training data,
when presented with new data, its behavior may be unpredictable. If the
network fails to provide desired results for other data than the training data,
we call this state overfitting. During the training, we usually set a portion of
our collected data aside - those are called testing data and we select a metric
that evaluates how well our network performs. During the training, we can
feed the testing data to the network without backpropagating the results, and
if the metric consistently worsens, it is best to shut off the training process
completely.

B Data Augmentation

Data augmentation is a method to create more training data without costly
labeling procedures and data acquirement, which may help with overfitting.
Data augmentation techniques for images may include flipping, rotation, color
jitter, contrast change, noise addition, sharpening, blurring, cropping, resizing
and many more . Some of the basic augmentations applied to a single
image are depicted in Figure 3.12L It is of course important to augment the
ground truth labels in the same way as the image.
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Horizontal Vertically +45 Rotation -45 Rotation Blur
N LA
Original Image % ? . [*
Brighter Noise added Darker Grayscale Crop

“ ]
¢ ¥ — Y

Augmented Images

Figure 3.12: Basic image augmentations applied to an image of a cat. Image
source: [61].

B Training process

The training process can be described in a few basic steps:

Steps of Training Process

1. Prepare data and network

B Joad training data and testing data. Your data should be stored in
RAM for quick access during training.

® Joad your neural network NN model to RAM or GPU if possible

® initialize optimizer, loss function /(), and learning rate scheduler

2. Choose hyperparameters

® Set hyperparameters like learning rate, batch size, number of epochs

3. Training loop

® for epoch in range(number of epochs)
for batch = (zn,y¢) in training data
a. augment the batch

move batch to GPU if possible

compute Your = NN (xip)

compute I(Yout, Yt)

backpropagate loss function with the optimizer to update
parameters

® @ e

update learning rate in the optimizer via its scheduler
validate network on the test data (not necessarily every epoch)
= if validation is significantly decreasing: terminate training

4. Save the best-performing model (on the testing dataset) to a
file
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Bl 3.5.5 CNN Architectures for Image Segmentation

Neural network architecture is a given set of layers, their specific sizes, used
activation functions, and ordering. A NN architecture is best visualized by a
schematic as in Figure These schematics contain the type of each layer,
their parameters, the size of their corresponding input, and the direction of
forward propagation.

B Fully Convolutional Neural Networks

A fully convolutional neural network (FCNN) consists mainly of convolution
layers and activation functions. One of the FCNN networks used for image
classification is the VGG net. It contains many convolutional layers followed
by a few fully connected layers - these layers apply matrix multiplication so
that the output is a single vector of length n.4sses- A schematic of the VGG
structure is depicted in Figure |3.13
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Figure 3.13: Schematic of the VGG-16 net. Beneath each layer, there is a size
of H x W in the layer. Image source: .

B ResNet

When using too many convolution layers, the gradient of the parameters in
the first layers can be small, it is called the vanishing gradient problem. This
issue can be solved by adding an identity mapping of input to each layer to
its output. This layer is called the residual block and it is depicted in Figure
3.14L ResNet is a very famous architecture employed for image classification
consisting mainly of residual blocks and it is visualized in Figure 3.15

We previously mentioned that both ResNet and FCNs were used for image
classification, not segmentation. If we remove the last fully connected layers
and replace them with upsampling layers, we can achieve pixel-wise segmen-
tation. DeepLab v1, v2, v3, and v3+ are notable examples of architectures
for image segmentation with many convolution layers, they use convolution
layers with different dilatations . Deeplab v3 architecture is illustrated in
Figure 3.16.
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Figure 3.14: Visualized residual block image from the original paper. Image
source: [63].

Il UNet

A famous neural network for biomedical image segmentation is called UNet
for its U-shape structure with multiple levels. In the downsampling part,
called the encoder, each level has two convolution layers and a downsampling
layer. Before downsampling the result on each level is stored. When the last
level is reached, the decoder part begins with iterative upsampling. With
each upsampling, the signal gets one level up and it is concatenated with the
stored result from the decoder part. The concatenation is iteratively again
convolved by two convolution layers and upsampled until the initial level is
reached. Then there is a last convolution layer where output has n.gsses
channels [67]. Visualization may be needed to fully understand the process,
the scheme of UNet is provided in Figure |3.17.

Many variations and improvements of UNet were developed over time e.g.
using more convolutions in each layer or adding residual units. UNet++
network modifies the concatenation inside the UNet [68]. UNet-like networks
are particularly well suited for biomedical data segmentation because they in-
corporate both local information from the upper levels and global information
from lower levels [65].

B 36 Segmentation of Wrinkles

Wrinkles are folds of facial skin and are one of the aging features. Different
types of wrinkles can arise from (i) loss of skin elasticity, (ii) gravity, (iii)
repeated facial expressions, or (iv) inherited factors [69]. When showing facial
expressions or when talking, different types of wrinkles can emerge or change
their position. Prior knowledge can help with wrinkle detection; for example,
wrinkles are typically horizontal lines on the forehead. We can name wrinkles
according to their localization, as depicted in Figure |3.18|
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Figure 3.15: Visalized schematic of ResNet. It consists primarily of residual
blocks. Image source: .

B 3.6.1 Facial and Wrinkle Datasets

Datasets play a critical role in neural network training because a network
usually needs a large amount of annotated data. To our knowledge, no
publicly available dataset for wrinkle segmentation has been published, or
the quality of published datasets is deemed inadequate.

On the contrary, there are many facial datasets without annotated wrinkles.
These datasets may contain images of people in various contexts, such as "in
the wild", with multiple individuals in one image, or individuals in multiple
facial expressions. Additionally, the resolution of images in these datasets can
vary. Because of the numerous datasets, we will not discuss them individually,
but we refer the reader to websites that list the best ones, allowing them to
select a dataset fit for their purpose [70-72].

B 3.6.2 Prior Work in Wrinkle Segmentation

Wrinkles ordinarily manifest as dark curves on a human face, although light
conditions can rarely cause them to be lighter than their surrounding pixels.
This specific dark-light-dark (light-dark-light) transition sets them apart from
image edges, which are just light-dark or dark-light transitions.
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Figure 3.16: Visualization of Deeplab v3. Upsampling is done by Atrous Spatial
Pyramidal Pooling, which applies fractionally strided convolution of different
sizes and sums these responses together. [66].

B Basic Image Techniques for Wrinkle Segmentation

Two surveys for wrinkle detection algorithms have been published, one in
2016 [73] and the other in 2021 [74]. Both surveys agree that basic image
methods for edge detection (Canny Edge Detector, Marr-Hilderth Edge
Detector, Gabor filters, Sobel windows) fail to detect wrinkles or produce
too many false positives. Other approaches are harder to evaluate because
they, for example, detect points along the wrinkle, and/or the authors did
not provide a quantitative measurement for their performance.

One algorithm that stands out the most in both reviews is called Hybrid
Hessian Filtering (HHF). HHF is a slight extension of Frangi filter [4§],
which we described in |3.4.5] It shows that vessels in the eye retina are
in a way similar to wrinkles. The main advantages of this approach are
(i) simplicity, (ii) fast computation, and (iii) being publicly available. The
authors reported an average JSI of 75.57 % for the Bosphorus dataset’s [75]
forehead segments [76]. This method does not generalize properly to the
whole face where the direction of wrinkles changes [77].

B CNNs for Wrinkle Segmentation

There are more recent approaches that make use of CNNs for wrinkle detection.
In a study from 2021, authors used the FACES dataset 78] to evaluate their
detection approach. They used U-NET structured CNN with dice loss function
and reported a mean accuracy of 98.9 %. Accuracy was computed from the
JSI of each image, where successful detection meant 80 % or higher JSI value.
However, the authors only segmented nasolabial folds [79].

A newer article from 2022 uses a semiautomatic labeling strategy; a com-
bination of human-annotated labels and a computed texture map from an
image function. A UNet++4 architecture with dice loss is trained to detect
wrinkles. Another alternation from classical UNet was computing loss for each
level of the UNet++ on resized ground truth labels, which is known as deep
supervision. They reported 47 % and 44 % JSI in the forehead and the eye
area, respectively. They used their original dataset acquired by skin analysis
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Figure 3.17: Visualization of UNet. On the left of each layer is the size H x W,
and above it is the number of channels C. With each layer down the number
of channels doubles and the size of the output is roughly halved. Note that the
convolution in the original UNet does not use padding so the output is smaller
than the input. Image source: .

device and the images were then annotated by three human labelers .
Another study utilized UNet++ for segmenting wrinkles for subsequent
wrinkle removal, however, even when reporting a high JSI, their segmentation

results did not look plausible .

B Visual Transformers for Wrinkle Segmentation

A very fresh contribution to wrinkle detection by neural networks is from
2024. The authors used a new dominant type of network based on visual
transformers (ViT) with cross-entropy loss combined with auxiliary losses and
named their model Striped WriNet [81]. The authors reported a very high
JSI of 65.54 % for wrinkles on the whole face for their public data set and
46.51 % for their private dataset. Wrinkles were annotated by professional
dermatologists and for the facial dataset, they used the Flickr-Faces HQ
dataset combined with the CelebA-HQ dataset . It is important to
mention that authors deployed multiple architectures for wrinkle detection
and all the other networks showcased lower, but fairly close JSI to Striped
Wrinet architecture, ranging from 63.01 % to 64.92 % on the public dataset,
and 43.65 % to 45.63 % on the private dataset citewrinet. The architecture
of Striped WriNet is available online on the authors’ GitHub page €).
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Figure 3.18: Wrinkles localization. HF, horizontal forehead lines; GF, glabellar
frown lines; PO, periorbital lines; PA, preauricular lines; CL, cheek lines; NL,
nasolabial folds; UL, upper radial lip lines; LL, lower radial lip lines; CM, corner
of the mouth lines; ML, marionette lines; LM, labiomental crease; NF, horizontal
neck folds. Image and caption source: .

B 3.6.3 Wrinkle Segmentation Summary

The main obstacle to wrinkle segmentation is a missing publicly available
dataset of human-annotated wrinkles . The reason for this is that there
can be a variety of wrinkles on a human face and it is very time-consuming to
annotate them all correctly. Even though all the articles previously mentioned
show promising results no authors made their models or datasets public. They
evaluated models on their private datasets, and despite the authors of Striped
WriNet naming one of their datasets "public’, it was unfortunately unavailable.
A good dataset would help with training neural networks and could be used
to validate algorithms. Out of classical approaches, Hybrid Hessian Filtering
provides the best results, but more recent algorithms using CNNs and Visual
Transformers seem to surpass it.
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Chapter 4
Methodology

We decided to segment wrinkles in a video dataset of Parkinson’s disease
patients and healthy controls by neural networks since they show the best per-
formance. For this purpose, we trained multiple architectures and appointed
the most fitted for video wrinkle segmentation. With a public wrinkle dataset
not being available, we assembled our own containing a high amount of 674
annotated images for training and validation. With the selected trained net-
work we segmented wrinkles in the videos and obtained wrinkle characteristics
which were statistically tested. Characteristics that emerged significantly
different between Parkinson’s disease patients and healthy controls were then
used to fit a logistic regression model and evaluate its performance.

All programming for this diploma thesis was done in Python language with
free-to-use libraries, including NumPy, PyTorch, OpenCV, MONALI, SciPy,
MediaPipe, etc. Additionally, we also used solutions published to GitHub €)
by other authors with adherence to relevant licenses. We published our
methods for video analysis and wrinkle dataset onto a public

repositor

. 4.1 Datasets

Two datasets were used for this diploma thesis, the first dataset contains
videos of Parkinson’s disease patients and healthy controls, and the second
dataset consists of images with labeled wrinkles.

B 4.1.1 Dataset of Parkinson’s Disease Patients and Healthy
Controls

To study the changes in the early stages of Parkinson’s disease, videos of 100
de-novo-diagnosed Parkinson’s disease patients (PN) were recorded. This
group was matched in terms of age and gender with a healthy controls (HC)
group and the dataset totals 200 one-minute-long video segments. Table
provides basic clinical data about the study participants. PN were recorded
between 2015 and 2020 and diagnosed by MDS-UPDRS standards [9]. The
exclusion criteria from the study were:
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4.1. Datasets

Name PN
Count (-) 100
Males/Females 61/39
Age mean (y) 61.2

Age standard deviation (y) 11.9

Table 4.1: Clinical data of PN included in the PNHC dataset

® previously used treatment for PD

® history of hypomimia-inducing disease in the family tree
® depression

® therapy for hypomimia or speech improvement

The study received approval from the ethics committee of General University
Hospital in Prague, Czechia, and has been performed following the ethical
principles laid down by the Declaration of Helsinki.

Videos were recorded by a digital camera Panasonic Handycam HDR-CX410
placed approximately 1 meter in front of the examined study participant. The
resolution of the videos is 1440 x 1080 pixels and the sampling frequency is 25
frames per second. All the videos contain monologues on an arbitrary topic
and they were provided to the author of this thesis by the Signal Analysis,
Modelling, and Interpretation (SAMI) team in .mp4 format. For future
distinctness, we will call this dataset of videos the PNHC dataset.

B 4.1.2 Wrinkle Dataset

As previously mentioned, no publicly available datasets for wrinkle annotation
that adhere well to wrinkles are available. Thus, if we wanted to obtain a
human-labeled dataset, we had to assemble our own. For this purpose, we
needed a free-to-use face dataset. Among many choices, we picked the Flickr
Faces HQ (FFHQ) dataset [82].

The FFHQ dataset was introduced in 2019 by NVIDIA. It contains 70,000
images of people collected from Flickr at 1024 x1024 resolution. The dataset
also includes a .json file with links to the original images, their landmarks,
and the distribution license for each image. These images are centered and
depict a wide variety of people of different ages and races. The advantages of
this set are mainly high resolution and the number of available faces. The
disadvantage for our purposes is an excess of photographs of children or people
with make-up that do not have many wrinkles. The dataset includes faces
in different poses and under various light conditions. All images displayed
from the FFHQ dataset in this thesis are under PDM 1.0 Deed of CCO 1.0
Creative Commons licenses.

The wrinkle dataset was completed in five stages.
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B Stage 1 - Selection from Images 0-999

In the first stage out of the first 1000 images of the FFHQ dataset, 192 images
were selected. The exclusion criteria were:

B image of non-person

B image of another face covering the main face
® image of a child

® image of a person with excessive make-up

® image under difficult light conditions

B image of people facing too much to a side

B images with sunglasses

® image that was too blurry

No gender or race was preferred during the selection. The number of wrinkles
was also not a selection criterion, because the PNHC dataset includes people
with various wrinkle counts. The reader can see examples of the selected
images in Figure 4.1

(a) : 00064.png (b) : 00312.png (c) : 00365.png

Figure 4.1: Samples of selected images from FFHQ dataset in Stage 1. The
names of the images are the same as in the FFHQ database. Images source: .

B Stage 2 - Fully Manual Wrinkle Anotation

The author of this thesis manually labeled the 192 selected images from
the first stage. No additional images were added or discarded. Initially,
pre-annotating the images via Hybrid Hessian Filter was attempted to help
with the speed of labeling. However, this approach was abandoned due to
a high wrinkle false positive rate. We used image equalization for wrinkle
annotation to increase the contrast of the wrinkles. Background pixels and
pixels of eyebrows, mouth, and eyes were not used when calculating the
image’s cumulative distribution function.
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B Stage 3 - Training First Model

For the first model, we utilized the implementation of a UNet-like neural
network with dice loss from MONALI python library [34]. It differs from
the original UNet in (i) a lowered number of channels per level, (ii) single
convolution instead of double convolution, and (iii) residual blocks are added
alongside the convolutions. In Python, we call the model as follows:

1 model = monai.networks.nets.UNet (

2 spatial_dims=2,

3 in_channels=3,

4 out_channels=1,

5 channels=(32, 64, 128, 256, 512),
6 strides=(2, 2, 2, 2),

7 num_res_units=2)

For augmentation of the data horizontal flip was used at a 50 % rate, and
also rescaling ranging from 0.95 to 1.05 with rotation up to 7° was used at a
30 % rate. One epoch consisted of 160 images from the first stage, 32 were
used for validation. The learning rate of Adam optimizer was set to 0.01 with
an exponential learning rate scheduler v = 0.95.

B Stage 4 - Selection from Images 1000-2999

Criteria for selection from these images were similar to Stage 1, but the criteria
for exclusion were less strict - we allowed for images with more difficult light
conditions and blurrier images. In total new 482 images were selected out of
2000. We tried to include more faces with their eyes closed, as in the PNHC
dataset videos people blink and we did not want our network to overfit to
images where people have their eyes open. Examples of images selected from
Stage 4 are displayed in Figure [4.2]

7

(a) : 01222.png (b) : 02434.png (c) : 02497.png

Figure 4.2: Samples of selected images from FFHQ dataset in Stage 4. (a)
image with no difficult conditions; (b) an item present in front of woman’s face;
(c¢) closed eyes and more difficult light condition. Images source: .
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B Stage 5 - Semi-Manual Annotation of Wrinkles

Images selected from Stage 4 were first labeled by the network from Stage
3 and later these labels were manually adjusted again. Upon completion,
the wrinkle dataset contained 674 manually annotated faces, automatically
cropped to remove excessive background.

B 2.2 Neural Network Training

We trained multiple network architectures to see which performs the best: (i)
Classical UNet with padding; (ii) UNet with single convolution and ResNet
blocks; (iii) UNet++ with deep supervision as used in [68]; (iv) Striped
WriNet as used in [81]; (v) Deeplab v3 with ResNet 101 backbone; and (vi)
FCN with ResNet 101 backbone. For the loss function, we used dice loss, in
case of (iii) four dice losses, one for each level. In our code, we called the
models for reproducibility as follows:

1 from monai.networks.nets import BasicUNet, UNet,
— BasicUnetPlusPlus

2 from striped_wrinet import *

3 from torchvision.models.segmetation import fcn_resnetlO1,
— deeplabv3_resnet101

5 model_1 = BasicUNet(spatial_dims=2, in_channels=3,
— out_channels=1, features=(64, 128, 256, 512, 1024, 64)

7 model_2 = monai.networks.nets.UNet(spatial_dims=2,
— in_channels=3, out_channels=1, features=[32, 64, 128, 256,
— 512], strides=[2, 2, 2, 2], num_res_units=4)

9 model_3 = BasicUNetPlusPlus(spatial_dims = 2, in_channels = 3,
< out_channels = 1, features=(32, 64, 128, 256, 512, 32),
— deep_supervision=True)
10
11 model 4
12
13 model_5
14

StripedWriNet (n_channels=3, n_classes=1)

deeplabv3_resnet101(num_classes = 1)

15 model_6 = fcn_resnetl101(num_classes = 1)

The Monai library in Python is part of the the MONAI project, which is set
to provide open-source user-friendly worksheets for neural network training
with a focus on biomedicine [84]. Striped_wrinet is the Python file containing
WriNet’s architecture provided by their authors [81] and Torchvision is a
library from the PyTorch creators containing neural network models and
other powerful tools for NN training [85].

We split the wrinkle dataset into training and testing datasets at a 90 %-
10 % ratio. The learning rate of Adam optimizer was set to 1072 for model 2
and to 1073 for other models heuristically with exponential decay learning rate
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scheduler, v = 0.95. The images and labels were resized to H = 928xW = 768,
for them to be divisible by 32 which is required by UNet architecture. [65].
It was also attempted to train networks with histogram-equalized images as
it was beneficial for manual wrinkle annotation or to train them only with
segmented face patches without background. For augmentation of the data
horizontal flip and affine transform were used at the same rate as in Stage
3 of wrinkle dataset creation, the augmentation was computed in Python
Albumentations library [86]. Models were trained on T4 GPU on Google
Colab.

For video analysis, the same model architecture as for model 2 was trained
on resized images and labels to H = 640 x W = 480 to approximately match
the size of faces from the PNHC dataset’s videos.

B 43 Video Processing

Apart from the author of this thesis’s bachelor’s work, there has been no
comprehensive automatic evaluation study of segmented wrinkles and how
they relate to hypomimia in PD. Therefore, the video processing was designed
to produce characteristics representing hypomimia manifestation debated in
Section [2.7L

B 43.1 Segmentation of Face Images

For face image segmentation we decided to use Google MediPipe [87] face
landmarks, a free-to-use solution that produces 478 landmarks with x, y, and
estimated z coordinates. The predicted face coordinates of a single image
are depicted in Figure [4.3. These landmarks were used for face segmentation
into (i) the upper half; (ii) the bottom half; (iii) the left half; (iv) the right
half; (v) the left nasolabial fold; (vi) the right nasolabial fold. The masks
were created as a convex polygon containing landmarks bordering particular
regions. Parts of the segmented face are depicted in Figure 4.4.

B 4.3.2 2D Face Alignment

Face alignment is important for wrinkle movement analysis because when
faces are not aligned, it is impossible to tell if segmented wrinkles’ movement
originates in facial expression change or head movement.

We have a source image I; and a target image I; to which we want the source
image aligned. We predict landmark coordinates for both images crds and crd;,
for 2D affine transformation we need only the x and y coordinate generated
by MediaPipe, thus crds, crd; € RA78*2. The 2D affine transformation can
be defined by a matrix T' € R?*3 by the following equation:

=T Ys (4'1)
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Figure 4.3: 478 Google MediaPipe landmarks detected for one person’s face.

where (x4,ys) are the coordinates in source image and (%, ;) is their co-
ordinates after applying the transformation. The goal is to minimize the
sum

2
a78—1|| [~
Tt:g Tsii
> A I (4.2)
i—0 ||| Yt Yssi

which can be solved in the least square sense. After calculating matrix T'
we can apply it to Is. This is implemented in the OpenCV’s warpAffine
function. This affine transformation contains rotation in the image plane,
scaling, and shearing, which can be sufficient for aligning images that are
close to each other, for example, when I; and I; are subsequent frames of a
video.

Bl 4.3.3 3D Face Aligmnemnt

Assessing depth from a single image is an ill-possed problem. However, when
apriori knowledge is incorporated, z coordinate of facial landmarks can be
estimated. 3D transformation relies on interpolating 2z coordinate value from
landmarks to target image regular grid. Then the target grid is transformed
by inverse transformation matrix 7! to obtain estimates of the coordinates
in the source image domain, and finally, the corresponding RGB values can
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(a) : left half (b) : right half (c) : left nasolabial

(d) : upper half (e) : bottom half (f) : right nasolabial

Figure 4.4: Six segmented parts of one face.

be found. Matrix T" can be estimated by least squares minimization, which is
generalized previous case to three dimensions, or the following equations can
generate a 1 of user’s choice:

Tshift ]

T'=| R. Ry Ry | yspige (4.3)
Zshift |
10 0 |

Ry =10 cos(0;) —sin(6;) (4.4)
0 sin(0z) cos(0) |

cos(0;) 0 sin(fy)
R, = 0 1 0 (4.5)
sin(0;) cos(0,,)
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cos(0;) —sin(6z) O
R. = |sin(6;) cos(f;) Of, (4.6)
0 0 1

where 0,,0,,0. are rotation angles corresponding to coordinate axes. The
3D transformation of a grid was applied in an article about facial landmark
estimation [88].

B 4.3.4 Hidden Landmarks Elimination

We offer a procedure for eliminating face landmarks occluded by the face
surface since some of the landmarks predicted can be localized on parts of
the face not visible from the camera viewpoint. Transformations involving
occluded landmarks may cause ambiguities and artifacts in the result. We
transform the face landmarks into vertices of a graph and give each vertex v
the following attributes:

® x - x coordinate: set to x coordinate of the corresponding landmark
B y - y coordinate: set to y coordinate of the corresponding landmark

® 7 - 2z coordinate: set to z coordinate of the corresponding landmark

B neighs - list of vertices: set to list of v’s neighbors, this information is
provided by MediaPipe. Sort them by z coordinate
® surface - condition: set to False, indicates if v is on surface

® queue - condition: set to False, indicates if v ever got onto queue

Hidden Landmarks Elimination Algorithm:

1. Create a mask M corresponding to image grid, set all pixels of
M to O

2. Crete queue @

3. Push vertex v"™" with lowest z to Q

[ vmzn

quere = True

B Vsurface = 1'Tue, because the vertex with the lowest z coordinate
must be on visible surface

4. While @) is not empty:
a. pop vertex v’ from Q
b. if Mv;,v; =0

7 _
. vsurface =True
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J
sur face

7

neighs = True

® find all vertices v7 in v so that v

® if at least 3 such v/ are found:
compute the convex polygon of z and y coordinates v’/ and
v* vertices
set all pixels of M inside the polygon to 1

k = True if v*

k i k
m for v e push v" on ) and set Vqueue queue

neighs

= False

Upon terminating, all vertices will have attribute vgy, face set to True when
they belong to the face surface visible from the camera point and vice versa.
The algorithm is based on a breadth-first search with nodes sorted by their z
coordinate.

More flexible non-linear transformations (Thin-plate spline, piece-wise
affine) that work with image coordinates can be a powerful tool. Thin-plate
spline (TPS) is a transformation that simulates physical forces induced by
bending a metal plate [89] and piece-wise affine applies a 2D affine to each
triangle from a grid formed by image landmarks.

When transforming by a non-linear transformation from crds to crd, many
artifacts can occur. To make this transformation more rigid, we can multiply
crdy by T to receive erdy and apply a non-linear transformation from crds to
C?:dt, furthermore we reduce the artifacts by elimination of hidden landmarks.
Piece-wise affine transformation used is implemented in the scikit-image
Python library and interpolation for TPS and 3D grid transformation was
calculated with the help of the SciPy interpolate functions.

B 4.3.5 Wrinkle Parameters Calculation

We denote Wy, the detected wrinkle mask for the whole image Iy, with Hj, de-
noting the Hybrid Hessian Filter response. Then we define Ly, Ry, Uy, Bi, N Ly,
and N Ry as a mask for the face left, right, upper, bottom, left nasolabial,
and right nasolabial parts respectively, masks applied to an image were shown
in Figure [4.4. In our work, we partially utilized the implementation of the
Frangi filter found jonline, our modification is in splitting 2D convolution
kernel into two 1D kernels for computational speed up. From one image I,
we can calculate the following parameters:

ALLp =Y > Wi (4.7)

By i Y (Wi © Uy — Wy, © By)

U - VAP (4.8)
22 Wr O Ly — W © Ry,
L—Ry:= rTE (4.9)
H, O NLy + H,ON
TUBU = |22 Wi © (i © Ny & Hi © NIy) (4.10)

(212] WkQ(NLk+NRk))+1 ’
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4.3. Video Processing

©® denotes element-wise matrix multiplication, 3" Y denotes summation of
all elements. For two images I, and I; we define these parameters:

JSI{EE == JST(Wy, Wi) (4.11)

JSI)TP = JSI(Wy, 0 Up, Wi 0 Up) = JSI(Wi © B, W © By)  (4.12)
JSILT = JSI(Wy, © L, Wy © Ly) = JSI(Wi © R, W O Ry)  (4.13)

S Wi @ (|Hy — Hy| © NLg + |Hy, — Hy| ©® NRy,)

TUBUGMT = :

(5%, Wi © (NLy + NRy) + 1
(4.14)

JST is defined in Equation 3.10, and |- | in this case also denotes the element-
wise absolute value of a matrix
The next list explains the reasoning behind choosing these parameters:

ALL: Low variability of ALL parameter should represent lack of appear-
ing and disappearing wrinkles due to hypomimia

U — B: It has been suggested that when smiling, there is a lack of
movement in the upper part of the face. Higher peaks of U — B compared
to baseline could be associated with hypomimia present.

L — R: Asymmetry has not been associated with hypomimia, but tremor
in PD patients mostly predominates on one side. A high variability of
L — R would suggest asymmetric wrinkle arising.

TUBU: This variable measures the average tubularity of nasolabial
folds. Lower tubularity change would suggest the presence of hypomimia
because hypomimia induces flattened nasolabial folds.

JSTALL: The Jaccard Similarity Index between image wrinkles is a way
to compare how much the wrinkles changed between frames. Lower
JSTALL implicates higher movement of wrinkles between frames.

JSITV=B: This measures the same phenomenon as U — B, higher JSIV—5
means a higher discrepancy in movement between the lower and upper
half of the image face.

JSTE—E: If this value differs significantly from zero, it suggests asymme-
try in wrinkle movement.

TUBUPIFFE ower difference in tubularity between frames can be po-
tentially a key parameter for hypomimia detection [5].
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4.3. Video Processing

Parameter Calculation Procedure for One Video:

1. Load NN model for wrinkle segmentation (to GPU if possible)

2. Set batch size = 5, W = 480, H = 640

3. Create variables for saving calculated parameters

4. Allocate memory for the batch as B x C x H x W array

5. load video and while video loader is not empty:

® read 5 video frames

® calculate landmarks

B resize images to H x W, transform the landmarks’ coordinates
accordingly

B Joad images into preallocated memory

B segment wrinkles through the model

B calculate single image parameters for each image of the batch

B calculate two image parameters for each pair of aligned subsequent

images

® calculate two image parameters for the first and last aligned image

of the batch

B save the parameters

This procedure applied to 1500-frame video results in 1500 values for single
image parameters (ALL, U — B, L — R, TUBU) and 1500 for two image
parameters: 1200 for subsequent images (JSTALL? JSTV=B2  jSri—FR2
TUBUPHEZ) and 300 (JSIALS, JSIV=5B5 JSIF—H  TUBUPIFES) for

the first and last image of each batch.

We denote variables which will be a single number calculated from param-

eters across the images for one video.

dALL L Std(ALL)

t _ _orN)
norms mean(ALL)

stdy_p = std(U — B)

stdl =T .= std(L — R)

std(TUBU)

td =
normsterusy mean(TUBU)

mean7EF? .= mean(JSTAFL?), meanLFs = mean(JSTAELS)
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4.4. Data analysis

mean’ s P? := mean(|JSTV=P2)), meany5® .= mean(]7STV=5%)) (4.20)

L-—R2 , L-R5 |

mean’i g := mean(|JST*~2|), mean’ 5[ := mean(|JST*1))

prprpe  Sstd(TUBUPTFE?2)

normstdripy” = mean(TU BUPIFE2)’
prrpps _ Sstd(TUBUPTFES)
normstdyigy = mean(TU BUDTFF3)

B 4.4 Data analysis

(4.21)

(4.22)

The procedure above parametrized all videos of 100 PN and 100 HC and
then variables from the Equations [4.15| - [4.22] for each study participant
were calculated. The Kolmogorov-Smirnov test was performed to assess the
normality of the data. Consequently, depending on the result, an unpaired
two-sample t-test or Mann-Whitney U-test was performed to evaluate the
statistical difference of computed variables between PD and HC. Computed
variables were also used to classify HC from PD with a logistic regression

classifier. Because we performed 12 tests, we adjusted o,q =

Bonferroni correction for significance value.
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Chapter 5

Results

This section shows the results of the procedures described in Chapter

. 5.1 Dataset Results

First, we display the results of the wrinkle dataset composure. Figure
illustrates the result of pre-labeling image with HHF filter. In Figure
we show the contrast enhancement by histogram equalization to ease the
manual wrinkle annotation. In Figure we show the results of wrinkle
pre-annotation by CNN trained in Stage 3 of wrinkle dataset assembling.
Lastly, we display manually annotated examples from the wrinkle dataset in

Figure [A.4]
B 52 Model Training Results

Table evaluates the performance of models used for wrinkle segmentation.
For the PNHC dataset evaluation, we chose model 1-Conv UNet because it
had a lower computation time and memory size. A new model of the same
architecture was trained again on resized images of the wrinkle dataset with
a mean JSI of 31.24 %. The results of wrinkle segmentation of the validation
dataset are displayed in Figure Image enhancements such as histogram
equalization, removing the background, or changing the augmentations did
not result in a noticeable improvement.

B 53 Face Alignment Results

Figure illustrates the elimination of facial landmarks occluded by the face
surface. The entire algorithm ran for ~ 0.5 seconds for one image. Figure
provides a visual comparison of the used alignment methods. Because
the FFHQ dataset does not intentionally contain multiple images of the
same person, we used a stock video (attributions: Free Broll by .
There was a wide disparity in the time needed for each transformation. 2D
affine transformation required ~ 0.25 seconds, 3D grid transformation ~ 2.23
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5.4. Video Evaluation Results

Model Type  Mean JSI (%) Epoch Time (min:sec)

UNet 32.12 6:57
1Conv UNet 31.53 2:50
UNet++ 30.70 8:53
Striped WriNet 31.90 6:37
Deeplab v3 31.56 13:16
FCN ResNet 101 28.51 07:12

Table 5.1: Performance of models for the validation dataset. Mean JSI is the
mean JSI for each image in the validation dataset. Epoch Time is a time of
evaluating the first training epoch, other epochs took a similar amount of time.

seconds, piece-wise transformation ~ 4 seconds and TPS took a very long
time ~ 40 seconds. Because of the duration of the alignments and present
artifacts, we decided to use 2D Affine transformation, despite its low elasticity.

. 5.4 \Video Evaluation Results

The videos were evaluated using AMD Radeon RX 590 GPU. The alignment
chosen for two image parameter estimation was a 2D affine transformation.
Evaluation of a one-minute video ran for ~ 12 minutes and the whole evalua-
tion process for all the videos took 41 hours with no breaks. Frames where
people could not be segmented because they accidentally moved too close to
the camera were omitted from the calculations. Upon visual inspection of the
model performance on the PNHC videos, there were noticeable changes in
wrinkle segmentation in some parts of the videos, even when the participants
did not change their position or expression considerably.

B 55 Data analysis Results

Kolmogorov-Smirnov test for normality and subsequent t-test or Mann-
Whitney U-test were performed to reveal significant differences between
PN and HC groups. Results of statistical tests are provided in Table [A.1
and means and standard deviations of the variables are available in Table
A2l Figures|A.§|-[A.11] display histograms and estimated probability density
function of the 4 most significant variables. A logistic regression model was
trained on the 5 most significant variables with leave-one-out cross-validation.
Figures |A.12/ and A.13| show the Receiver Operating Characteristic (ROC)
curve and confusion matrix of the logistic regression model. The accuracy of
the logistic regression model was 74 %, with sensitivity of 72 %, and specificity
77 %.
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Chapter 6

Discussion

In this chapter, we discuss our results, compare them with state-of-the-art
methods, and mention limitations and possible improvements.

. 6.1 Dataset

We completed a wrinkle dataset with a total count of 672 wrinkle-annotated
images selected from the FFHQ database. Selected images cover faces in
various poses, emotions, and wrinkle counts, making it challenging for correct
segmentation. It also included people with glasses and objects like a micro-
phone in front of their faces. Because a missing available dataset is one of the
major issues for wrinkle segmentation, we decided to make this dataset public.
Bear in mind that the dataset is imperfect, the main reason being wrinkles in
some images were difficult even for a human labeler, and the labeler was not
a professional dermatologist. However, we hope the provided dataset could
benefit research towards more precise wrinkle segmentation models. The
dataset purposely contained a higher variety of images because the networks
trained for this dataset should evaluate monologue videos, where people do
not sit perfectly still.

B 6.2 Wrinkle Segmentation Model Training

The JSI of the trained networks on the validation dataset ranged from 28.51
to 32.12 %. The state-of-the-art Striped WriNet study showed JSI of 63.01
to 64.92 % for their "public" dataset and 43.65 to 45.63 % for their "private"
dataset [81]. This may appear to be an underperformance from our model;
however, it is hard to tell, without having access to the same datasets as
other authors had. Since the WriNet article showed that using a different
dataset lowered the performance of their networks by ~ 20% it seems like
the bottleneck of current wrinkle segmentation approaches is the dataset
used, not the architecture of the neural network. We argue that our dataset
included harder images to correctly segment, but it was crucial as the model
was subsequently used for frames of PNHC videos.
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6.3. Facial Alignment and Video Evaluation

Our trained architectures correctly managed not to detect many objects
like hair and glass frames as false positive wrinkles, the predictions also
did not contain an excess of little noisy segments but consisted of mostly
compact wrinkles. However, the main drawback was that the trained networks
predicted wrinkles to have almost the same width, whether the ground truth
wrinkles were finer or broader.

When it came to video evaluation, the performance of these networks
was not comparable with their results for the wrinkle dataset, with cropped
faces from videos being % of the size the architectures were originally trained
on. This is why we trained the 1-conv UNet again on smaller reshaped
faces, which helped significantly. To improve the results we tried to use
histogram-equalized images with no greater success even though this helped
manual wrinkle annotation. Removing image content beyond the convex
polygon of face landmarks produced more true positive wrinkles. Still, missing
context also resulted in more hair being denoted as a false positive wrinkle,
meaning JSI stayed approximately the same. Utilizing larger neural network
architectures probably would not make the wrinkle segmentation more precise
and it would not be suitable for video evaluation which can be time-sensitive.

B 6.3 Facial Alignment and Video Evaluation

We attempted to align faces via more elastic transformations, which can create
artifacts on a face image. Artifacts were reduced when hidden face landmarks
were eliminated from the transformation computations. The process took 0.5
seconds to eliminate hidden landmarks and 2 seconds for the fastest elastic
transformation to be estimated. Unfortunately, even when a lot of effort
was put into more flexible transformations, because of time constraints, 2D
affine transformation was selected in the end. Adding 1 second to each frame
alignment would result in an 84-hour increase in the duration for evaluating
the entire PNHC dataset.

Despite reshaping being able to distort desired image features [65], it was
necessary for image processing by UNet-like models in batches. Some of
the segmented wrinkles differed too significantly between very similar image
frames, we partially attribute the reason for this to the role of image compres-
sion noise. Blurring images with a 2D Gaussian partially solved the problem
with compression noise, but also made the finer wrinkles indistinguishable, so
we decided not to use it.

B 6.4 Data Analysis

Statistical tests confirmed significant differences in many variables computed;
after adjusting the level of significance value oyq4;, 5 variables emerged as
significant.

® normstdrypgy: This variable measured the fluctuation of the depth of
nasolabial wrinkles. PN had values significantly lower which we expected

52



6.5. Meeting the Thesis Goals

from the literature.

[ ] mef:mj"sliLz and mean?&i{‘s : These parameters reflected lower wrinkle

movement in PN patients resulting in higher mean JSI. The mean JSI
calculated from images 5 frames apart was overall lower, which is expected
as the frames are not that similar to subsequent frames. This variable
indicated the differences between HC and PN the most.

L mean}]JS_IB5 : Higher values of this variable for the PN group hinted at

the more disproportional movement of the lower and upper part of the

face. However, meangg IB 2 did not confirm this phenomenon.

L mean}§IR2 : Higher values of this variable for HC could indicate more

asymmetry in facial expressions in HC. On the contrary, meanggf%
resulted in almost the same distribution for both HC and PN, which is a

more expected result.

The three most significant variables behaved as we expected, mean?s_ IB 5

and meanggjm gave results that were not confirmed by their counterparts
meangs_ IB 2 and meangglRS. We fitted and evaluated logistic regression with
leave-one-out cross-validation to obtain an accuracy of 74 %, sensitivity of 72
%, and specificity of 77 %. This is slightly worse than in [5]. We attribute
this to neural networks showing unstable results between similar frames,
probably because there is still not a sufficient amount of annotated data.
This instability was further amplified by the video compression rate.

These results show that even the earliest stage of PD can be detected
from wrinkle movement. Only one variable showed a significant difference
in terms of single image parameters, other variables came from differences
between aligned image pairs. Choosing a more sophisticated alignment could
benefit the hypomimia detection from wrinkles, however, at this time it would
prolong the computations to an immense amount of time.

B 65 Meeting the Thesis Goals

In this section, we reflect on how we fulfilled the goals of this thesis.

® Study the topic of facial expressivity disruption in people with
Parkinson’s disease.

Disruption of facial expressivity is a common symptom of Parkinson’s
disease which is called hypomimia, hypomimia signs are discussed in
Section [2.7. Recent studies have been focusing on the automatic of
hypomimia and a review of these approaches is concluded in Table [2.1]

B Study the topic of facial wrinkle assessment. Wrinkle segmentation
is getting more popular in the scientific community and is receiving fresh
contributions from various authors. Best-performing algorithms make use
of neural networks with higher JSI values than basic image segmentation
methods. JSI is the most commonly used metric regarding wrinkle
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6.5. Meeting the Thesis Goals

segmentation evaluation. Wrinkle segmentation was discussed in Section
3.6.2l

Design an automatic approach for the assessment of facial
expressivity disruption based on the evaluation of facial wrinkles.
Like the other authors, we decided as well to use wrinkle segmentation
via a neural network. For this purpose, we completed a new wrinkle
dataset and trained neural network architectures on the dataset. A
selected network was then used for frame-by-frame wrinkle segmentation
of videos, with wrinkle parameters being calculated with adherence to
hypomimia symptoms.

Analyze differences in the facial characteristics of people with
Parkinson’s disease and healthy control group. For two groups
of 100 de-novo-diagnosed Parkinson’s disease patients and 100 healthy
controls we conducted statistical tests of the parameters established by
the previous steps. 5 parameters emerged with a very high significance
and showed that early symptoms of facial expressivity disruption can be
detected even in the earliest stages of Parkinson’s disease from wrinkle
parameters.
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Chapter 7

Conclusion

The goal of this thesis was to study the concept of loss in facial expressivity
(hypomimia) in patients with PD, wrinkle assessment approaches, and to
design an automatic approach to evaluate hypomimia from wrinkles and
analyze the differences found by this approach in PD patients and healthy
controls.

Hypomimia is an early symptom of Parkinson’s disease with new approaches
for its evaluation still appearing. Many authors used face landmarks for
hypomimia evaluation which met with great success, we provided a summary
of approaches used in Table 2.1l Wrinkles as a mark of emotional expression
could be also used to evaluate hypomimia in PD, but no study directly
segmented wrinkles for this purpose.

Wrinkle assessment has risen in popularity because of the recent expan-
sion of neural networks, which outperform prior basic image segmentation
techniques. Wrinkle datasets are challenging to obtain as a result of the
wide disparity of wrinkles and the precision required for correct annotation.
Authors used their private datasets to evaluate different neural network
architectures with Jaccard Similarity Index (JSI) being the most frequent
segmentation metric. From the studies, one can assume that a wrinkle dataset
can impact JSI more than the neural network architecture used.

The authors of wrinkle segmentation techniques did not provide any of
their datasets online, which is why we assembled our dataset containing 672
annotated images from the Flickr-Faces HQ dataset and made it publicly
available on (GitHub €) . Architectures trained for this dataset achieved a JSI
of 32% for the validation set, which is lower than the state-of-the-art, most
likely as a consequence higher variety of the images selected for the dataset.

A selected trained network was used for the wrinkle segmentation of videos.
Estimated parameters from wrinkles were then statically analyzed to find
the differences between the PN and HC groups. Parameters that set these
groups apart were utilized to fit a logistic regression classifier. The p-value of
three parameters was < 0.001 and the classifier performed classification of
HC from PN with an accuracy of 74 %.

Even though we showed that wrinkle formation in HC and PN significantly
differs, wrinkle parameters seem not to be the most informative criteria
obtainable from the videos and need a large amount of resources to estimate.
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7. Conclusion

Room for improvement lies in making models for wrinkle segmentation more
reliable and stable between video frames. Better results from the video
classification could be achieved by higher quality videos or by combining
the parameters obtained from wrinkle segmentation with ones from other
approaches that evaluate hypomimia.
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Appendix A

Results

In this Appendix, we display results that did not fit into the main text.

(a) : 00365 cropped (b) : 00365 HHF

Figure A.1: Tmage 00365.png. (a) original cropped; (b) HHF labeled. HHF
response produces too many false positives.
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(a) : 00204 cropped (b) : 00204 histogram-equalized

Figure A.2: Tmage 00204.png. (a) original cropped; (b) histogram-equalized.
The histogram-equalized image has more apparent wrinkles.

Figure A.3: Images with pre-annotated wrinkles from Stage 3. Wrinkles are
depicted in red. On the top left image, the model fails; on the top right, pre-
annotated wrinkles adhere well and can be manually adjusted.
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Figure A.4: Manually annotated images. The reader can observe a wide
disparity of human faces in terms of total wrinkle count, position of head, and
illumination. 68
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(a): (b): (c):

Figure A.5: Results of wrinkle segmentation. (a) original images; (b) manually
labeled wrinkles; (¢) manual labeling and prediction comparison, red = automati-
cally segmented wrinkles, green = manually labeled wrinkles, blue = intersection

of red and green.
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Figure A.6: Results of hidden face landmarks elimination. Green lines connect
landmarks on the surface, red lines connect landmarks not on the surface, and blue
lines connect a landmark on the surface with a not-on-the-surface landmark.

Variable Name | Normal | p-value |t(198) | U
normstdAr True 0.03* 2.136 -
stdy—_p True 0.04* 2.03 -
stdr—gr True 0.013* 2.49 -
normstdry By False <0.001%** - 6737
meanLE? True <0.001*** | -4.05 -
mean&E® True <0.001*** | 593 -
meangngQ True >0.1 1.34 -
mean?§IB5 True 0.002%%* -3.08 -
mean’ it False 0.003%** - 6224
mean’; 5 ¥ False >>0.1 - 5096
normstdRHE? False 0.09 - 5695
normstdPEE? False 0.015* - 5994

Table A.1: Statistical test results. p-value in bold denotes that it is lesser
than aeq = %32, * = p € [0.05,0.01], ** = p € [0.01,0.001[, ¥** =
p <0.001
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(c) : 2D all (d) : 2D valid

(e) : TPS all (f) : TPS valid (g) : PW all (h) : PW valid

(i) : 3D all (j) : 3D valid

Figure A.7: Visualized facial alignment results. source = source image; target
= target image; 2D = 2D affine transformation; TPS = thin-plate spline trans-
formation; PW = piece-vise affine transformation; 3D = 3D grid transformation,
all = all landmarks used; valid = not eliminated landmarks used. We purposely
chose a major rotation angle to illustrate the artifacts.
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Variable Name | Mean HC | Std HC | Mean PN | STD PN
normstd Lt 0.145 0.049 0.130 0.052
std’—b 0.168 0.059 0.150 0.067
stdl— 1t 0.163 0.056 0.143 0.053
normstdry gy 0.301 0.176 0.246 0.265
mean&F? 0.378 0.064 0.420 0.081
mean&E> 0.184 0.072 0.253 0.093
meanygi? 0.158 0.040 0.150 0.041
meany g’ 0.132 0.034 0.151 0.051
mean’; i 0.111 0.030 0.102 0.034
mean’ 5 ¥ 0.103 0.030 0.104 0.036
normstdR 2 0.00085 | 0.00030 | 0.00076 0.00026
normstdPLEL? 0.00114 | 0.00042 | 0.00097 0.00034

Table A.2: Means and standard deviations of calculated values from all 200
videos.

Normalized histogram with pdf estimate

—— HC pdf
—— PN pdf
HC
PN

0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55
Mean JSI ALL 2 (-)

Figure A.8: Histogram of mean‘}%}g plotted with pdf estimation, pdf was

estimated through maximum likelihood. A higher JSI indicates more similarity
between frames.
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Normalized histogram with pdf estimate

Figure A.9: Histogram of mean’g;

0.1

0.2 0.3
Mean JSI ALL 5 (-)

ALLS5

—— HC pdf
—— PN pdf
[ HC

PN

A. Results

plotted with pdf estimation, pdf was

estimated through maximum likelihood. A higher JSI indicates more similarity

between frames.

Normalized histogram with pdf estimate
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Figure A.10: Histogram of normstdrypy plotted with pdf estimation, pdf was
estimated through kernel estimation. A higher value indicates more variability

between frames.
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Normalized histogram with pdf estimate

124

—— HC pdf
—— PN pdf
10 4 [ HC
PN
8 4
5 6
[eX
4 .
2 4
0- : .
0.05 0.10 0.15 0.20 0.25 0.30 0.35

Mean JSI UB5 (-)

Figure A.11: Histogram of meangS_IB ® plotted with pdf estimation, pdf was
estimated through kernel estimation. A higher value indicates a higher difference

in the upper and lower parts of the face.

Receiver Operating Characteristic Curve

1.0 A
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0.4 1

True Positive Rate (-)
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0.0 4 === Area under curve (AUC)= 0.79

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate (-)

Figure A.12: Reciever Operating Characteristic Curve of logistic regression

classifier trained for 5 values with the most significant difference between PD
and HC.
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70

True label

Predicted label

Figure A.13: Confusion matrix of logistic regression classifier trained for 5 values
with the most significant difference between PD and HC.
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