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A B S T R AC T

This thesis primarily deals with developing a data-driven feedback control algorithm for
shaping Magnetohydrodynamic (MHD) flow, which is the flow of electrically conducting
fluid in a magnetic field. The control algorithm is validated on an experimental setup
comprising a tank with a water-based electrolyte, electrodes and coils for actuation, and a
system for real-time flow measurement using tracing particles and a camera. Initially, the
thesis presents a simulation environment for the MHD fluid flow within the experimental
setup. This environment solves the incompressible Navier–Stokes equations in three dimen-
sions using the Finite Element Method, incorporating external body forces generated by
the electrodes and coils. Next, the simulation environment is utilized to collect data for
developing the control algorithm. The thesis explores two control scenarios. The first scenario
is simplified, where the electrodes are fixed to a constant potential, and only the coils are
used for actuation. Two control algorithms are developed for the simplified scenario: a neural
network-based Model Predictive Control (MPC) algorithm and a Koopman operator-based
MPC algorithm. The second scenario is more complex, where both the electrodes and coils
are used for actuation. The control algorithm is based on the Koopman MPC algorithm from
the first scenario but extended to include the electrodes as control inputs and solved using
an alternating optimization approach.

Keywords: Data-driven Control, Koopman Operator, MPC, Magnetohydrodynamic Flow,
Neural Networks
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A B S T R A K T

Tato práce se primárně zabývá vývojem na datech založeného zpětnovazebního řídicího algo-
ritmu pro tvarování magnetohydrodynamického (MHD) proudění, což je proudění elektricky
vodivé kapaliny v magnetickém poli. K validaci řídicího algoritmu slouží experimentální
platforma, která se sestává z nádrže s elektrolytem na bázi vody, elektrod, cívek a systému
pro měření proudění v realném čase pomocí obrazu z kamery a trasovacích částic. V práci je
nejprve prezentováno simulační prostředí pro proudění kapaliny v experimentální platformě.
Toto prostředí řeší nestlačitelné Navier-Stokesovy rovnice ve třech dimenzích pomocí metody
konečných prvků a zahrnuje síly působící na kapalinu generované elektrodami a cívkami.
Následně je simulační prostředí využito k získání dat pro vývoj řídicího algoritmu. Práce
zkoumá dva scénáře řízení. První scénář je zjednodušený, kde jsou na elektodách udržovány
konstantní potenciály a proudění je tvarováno pouze pomocí cívek. Pro tento scénář jsou
vyvinuty dva řídicí algoritmy: algoritmus prediktivního řízení (MPC) založený na neurono-
vých síti a algoritmus MPC založený na aproximaci Koopmanova operátoru. Druhý scénář je
složitější, jelikož jsou k tvarování proudění využívány jak elektrody, tak cívky. Řídicí algorit-
mus je založen na MPC pomocí aproximace Koopmanova operátoru z prvního scénáře, ale
rozšířen o potenciály na elektrodách jako řídicí vstupy a řešen pomocí alternující optimalizace.

Klíčová slova: na datech založené řízení, Koopmanův operátor, MPC, magnetohydrodyna-
mické proudění, neuronové sítě
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1
I N T RO D U C T I O N

Fluid dynamics plays a pivotal role in numerous industrial, environmental, and engineering
applications. Despite its significance, real-time control of fluid flows still remains a challenging
task due to the inherent complexity of fluid dynamics, which is characterized by nonlinearity,
high dimensionality, and, in many cases, chaotic behavior. However, in recent years, the
advent of data-driven control algorithms has opened up new possibilities for the control of
fluid flows. By utilizing models derived from data rather than first-principle models, these
algorithms have the potential to mitigate the computational costs associated with traditional
control methods while providing robust solutions adaptable to evolving conditions.

I explore the design of data-driven control algorithms for a unique fluid flow phenomenon
known as magnetohydrodynamic (MHD) flow. MHD flow arises in conducting fluids in
the presence of magnetic fields and electric currents. The interaction between the electric
currents and the magnetic fields results in a force on the fluid, which in turn causes the fluid
to move. I specifically deal with a flow induced in a water-based electrolyte by applying
potentials to a set of electrodes submerged in the liquid and by magnetic fields generated by
a set of coils. I illustrate the principle of this MHD flow in Fig. 1.1.

Magnetic field

Electric current+ −

Fluid motion

Figure 1.1: Illustration of the basic principle of MHD flow. Electrodes submerged in conducting fluid
cause an electric current to flow between the electrodes. The current interacts with external
magnetic field, resulting in a force on the fluid, which in turn causes the fluid to move.

goals

The primary goal of this thesis is to design a data-driven feedback control algorithm for the
real-time shaping of MHD flows. By shaping the flow, it is meant driving the velocity field
of the fuild in a designated region to some prescribed reference velocity field or achieving
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2 introduction

close proximity to it. Subsequently, the developed control algorithm should be deployed and
tested on an experimental setup to validate its efficacy.

1.1 outline

In Chapter 2, I describe the experimental setup used throughout the thesis, formally give
the control objectives, and provide a brief mathematical description of the MHD flow in
the setup. In Chapter 3, I present the simulation environment of the MHD flow in the
experimental setup that I developed over the course of my thesis and the previous semester.
In Chapter 4, I introduce the control and identification methods used in the thesis, including
Model Predictive Control and surrogate models. In Chapter 5, I design control algorithm for
shaping the flow by only varying the coil currents and fixing the electrodes to a constant
potential. This gives an insight into the control of the MHD flow and serves as a basis for the
control algorithm developed in Chapter 6, which shapes the flow by setting both the coil
currents and the electrode potentials. In Chapter 7, I present the results of the experiments
conducted to validate the control algorithms. Finally, in Chapter 8, I summarize the results
and discuss further research directions.

1.2 background

For many years, the Advanced Algorithms for Control and Communications group at the
Czech Technical University in Prague, which I am a part of, has pursued research in the
development of control algorithms for distributed manipulation through the shaping of
physical fields. Distributed manipulation involves the placement of actuators throughout
a spatial domain, each exerting localized influence. These actuators collectively form a
physical field, which exerts force on objects within the domain. The physical field is then
shaped using control algorithms to achieve specific objectives, typically positioning objects
at desired locations. This approach has been applied across various physical fields, including
electric [Zemánek et al., 2018], magnetic [Zemánek, 2018], and acoustic pressure fields
[Matouš et al., 2019]. Despite the diversity of fields, the primary objective remains consistent:
guiding sets of objects to predetermined states. One intriguing extension of this problem
involves essentially taking the limit of the number of controlled objects to infinity, thereby
transitioning to continuum control. A typical continuum is a fluid, and one way to exert a
force over a fluid is through the use of electric and magnetic fields, a phenomenon known as
magnetohydrodynamic flow, which is the focus of this thesis.

1.3 state of the art

Despite numerous applications of MHD flows, including fusion reactors, electromagnetic
pumps, and liquid cooling systems, the work on feedback control of MHD flows has been
rather limited. Authors Ren et al. [2018, 2019], Chen et al. [2020] have developed control
algorithms for controlling the velocity in simple 1D channel flows. Other works like by
Schuster et al. [2008], Vazquez et al. [2009] deal with mixing in 2D channel flows and



1.4 contributions 3

stabilization of 3D flows, respectively. These works have in common that they are based on
first-principle models of the MHD flow rather than data-driven models, are limited to simple
geometries, and do not experimentally validate the control algorithms.

However, recently, there has been a growing interest in data-driven control algorithms and
frameworks for fluid flows. There are lot of works applying data-driven methods based on
deep learning and Koopman operator theory to control fluid flows. To name a few, Arbabi
et al. [2018] developed a data-driven framework for the control of nonlinear flows based on
Koopman operator theory, similarly, Peitz and Klus [2019], Peitz et al. [2020], Peitz and Bieker
[2023] developed frameworks for control of PDEs including fluid flows using Koopman
operator theory, Morton et al. [2018] combined Koopman operator theory with deep learning
to suppress vortex shedding in a cylinder wake, and Bieker et al. [2020] used deep learning
based-models for control of mildly chaotic fluid flows.

1.4 contributions

The primary contribution of this thesis is demonstrating the concept of shaping an MHD
flow using a set of electrodes and coils in a feedback manner with a model-free, data-driven
control algorithm perfomed on a physical experimental setup. To the best of my knowledge,
this has not been published before and could give rise to interesting applications. Therefore,
I aim to publish the results in a scientific journal at a later date.

Secondary contribution is the development of a fast simulation environment for the MHD
flow in the experimental setup, which is not necessary based on novel methods, but could be
useful for future research.





2
TA S K D E S C R I P T I O N

This chapter introduces and briefly describes the experimental setup used in the thesis to
validate the control algorithms designed later in the thesis. The chapter further covers the
formal definition of the control task and provides a mathematical description of the MHD
flow within the setup.

2.1 experimental setup

The experimental setup comprises a small cylindrical tank (dish) filled with water-based
electrolyte, with a set of electrodes submerged in the fluid and coils underneath the tank.
To give a perspective, the tank has an inner diameter of 143 mm and a height of 16 mm.
Overlooking the tank is a high-speed camera that captures the flow of the fluid seeded with
small particles. The velocity field of the fluid is then obtained by processing the images
captured by the camera. I present a sketch of the experimental setup in Fig. 2.3.

The setup was put together mainly by an undergraduate student, Šimon Pecháček.
Therefore, for a more detailed description, I refer the reader to his thesis [Pechacek, 2024].

Camera

Control board

MagMan

Electrodes

Electrodes

(a) Sketch of the experimental setup (reprint from
[Pechacek, 2024]). Does not show the tank. (b) Actual experimental setup.

Figure 2.1: Experimental setup.
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6 task description

2.1.1 MagMan

The coils are part of a system dubbed MagMan. MagMan is a platform that was previously
used for distributed manipulation of steel balls via magnetic fields. The platform is now being
repurposed for the control of MHD flows. MagMan is comprised of modules, each having
four coils, necessary circuitry, and a communication interface. The communication interface
allows for setting the current in the individual coils, both in magnitude and direction. There
are four modules in total, each with a set of four coils, meaning that the platform has a total
of sixteen coils. I show a single MagMan module as well as the complete platform in Fig. 2.2.

(a) Single module. (b) Complete platform.

Figure 2.2: MagMan platform (reprint from [Zemánek, 2018]).

2.1.2 Electrode Array

The electrodes used in the experimental platform are made of a titanium mesh with platinum
coating. Currently, four electrodes are used, and they are placed in a square configuration at
the border of the cylindrical tank. Each of the electrodes can be set to a specific voltage within
the range of 0 V to 10 V using a custom-built power supply. I show a shot of the electrode
array in Fig. 2.3.

Figure 2.3: Shot of the electrode array with the electrodes submerged in the fluid. Fluid is also seeded
with particles for measurement of the velocity field.
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2.1.3 Particle Image Velocimetry

A crucial part of the experimental setup is the measurement of the velocity field of the fluid.
This is done using a technique known as Particle Image Velocimetry (PIV). The method
involves seeding the surface of the fluid with small particles and capturing their flow with a
camera. The velocity field is then inferred from the displacement of the particles between
subsequent images. Only the surface flow at a rectangular measurement region of the tank is
captured. I present a sketch of the PIV pipeline as well as the measured region in Fig. 2.4.

𝑡 − Δ𝑡
𝑡

Subsequent frames Velocity field

𝑡

Image
processing

Camera

Figure 2.4: PIV pipeline. The fluid is seeded with particles. The camera captures images of a 10 cm×
10 cm region. The images are then processed to obtain the velocity field.

2.1.4 Electrolyte

The fluid used in the experimental setup is a water-based electrolyte. Two electrolytes were
considered for the experiments: 0.6 % solution of sulfuric acid in water and 0.05 % solution
of sodium sulfate in water. At these concentrations, the fluid conductivity is about 5 S m−1

and 4 S m−1, respectively.

2.2 control task

Having described the experimental setup, I now outline the control task. The goal is to design
a feedback control algorithm that sets the potentials on the electrodes and the currents in the
coils to shape the velocity field of the fluid in a designated region to a prescribed reference
velocity field. However, the prescribed reference velocity field may not always be physically
realizable, making this an ill-posed problem. Therefore, the aim is to achieve close proximity
to the reference velocity field instead. Furthermore, I restrict myself to the two-dimensional
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surface flow, as it is the only part of the flow that is measured by the PIV system. I show the
high-level control loop diagram in Fig. 2.5.

This could have several practical applications. E.g., the flow could be manipulated to mix
the fluid in a tank, use velocity profiles for optimal heat transfer, or transport particles in a
specific manner.

Electrode potentials

Coil currents

Velocity field Frames

Reference
velocity field

Controller

PIV

Figure 2.5: High level overview of the feedback loop.

2.2.1 Formal Definition

The stated objective can be formalized by minimizing the error between the actual velocity
field and the reference velocity field. I propose using the square of the well-known 𝐿2 norm
of the difference between the velocity field and the reference velocity field as the error

𝑒(𝑡) =
∫
ℛ
(𝑣𝑥(𝑥, 𝑦, 𝑡) − 𝑟𝑥(𝑥, 𝑦, 𝑡))2 + (𝑣𝑦(𝑥, 𝑦, 𝑡) − 𝑟𝑦(𝑥, 𝑦, 𝑡))2 d𝜂(𝑥, 𝑦), (2.1)

where 𝑣𝑥 and 𝑣𝑦 are the 𝑥 and 𝑦 components of the velocity field, 𝑟𝑥 and 𝑟𝑦 are the
corresponding components of the reference velocity field, 𝑡 is time, ℛ is the region of interest,
and 𝜂 is a measure on the region ℛ. The reason for using a general measure 𝜂 is that it
accommodates both cases ofℛ being a discrete set of points or possibly collection of connected
subregions. For the former, 𝜂 would be the sum of Dirac measures at the appropriate points,
and for the latter, 𝜂 would be the Lebesgue measure.

The error evolves over time, so the actual control task is finding such electrode potentials
and coil currents that minimize the total error over some time horizon 𝑇∫ 𝑇

0
𝑒(𝑡)d𝑡 → min . (2.2)

However, due to the discrete nature of the control algorithm and the velocity measurements,
the task is not directly tractable. Therefore, I propose an approximation as typically done in
practice. First, let me define the grid on which the PIV measurements are taken

ℳ = {𝑥1, 𝑥2, . . . , 𝑥𝑁𝑥 } × {𝑦1, 𝑦2, . . . , 𝑦𝑁𝑦 }, (2.3)
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where 𝑁𝑥 and 𝑁𝑦 are the number of grid points in the 𝑥 and 𝑦 directions, respectively. Now,
let me define the measure 𝜂 as the sum of Dirac measures at the grid points:

𝜂 =
∑
(𝑥,𝑦)∈ℳ

𝛿(𝑥,𝑦). (2.4)

The error w.r.t to this measure will essentially be the error computed at the grid points within
the region ℛ, i. e., the setℳ∩ℛ. The error, therefore is

𝑒(𝑡) =
∑

(𝑥,𝑦)∈ℳ∩ℛ

[
(𝑣𝑥(𝑥, 𝑦, 𝑡) − 𝑟𝑥(𝑥, 𝑦, 𝑡))2 + (𝑣𝑦(𝑥, 𝑦, 𝑡) − 𝑟𝑦(𝑥, 𝑦, 𝑡))2

]
. (2.5)

This is a quantity that can be computed from the PIV measurements. Furthermore, this error
is discretized in time

𝑒𝑘 = 𝑒(𝑡𝑘), 𝑘 = 1, 2, . . . , 𝑁𝑇 , (2.6)

where 𝑡𝑘 are the discrete time steps at which the control algorithm runs, and 𝑁𝑇 is the
number of time steps in the time horizon. The task, therefore becomes

𝑁𝑇∑
𝑘=1

𝑒𝑘 → min . (2.7)

This is a cost that can be directly optimized by the control algorithm, and thus, the problem
is tractable in practice, at least in the sense of local optimization.

2.2.2 Choice of the region ℛ

Now is a good time to elaborate on the choice of the region ℛ. Prescribing the reference
velocity field over the entire measured surface and thus minimizing the error across the
whole surface can lead to undesirable behavior. E. g., consider a scenario where the reference
velocity field comprises of a vortex at the center of the surface while the velocity field is
zero everywhere else. The prevalence of the zero velocity field in the reference would likely
prevent the vortex from forming, as that actually might be the optimum of the presented
error. Therefore, I propose prescribing the velocity only within a specific region of interest,
ℛ, and allowing the controller to determine the velocity for the rest of the surface. In the
case of the example, the reference velocity field would be prescribed only within the region
where the vortex is desired, and the controller would determine the velocity field elsewhere.

2.3 mathematical description of mhd flow

The platform is subject to a MHD flow known as inductionless MHD flow. Inductionless
MHD flow, as the name suggests, describes the flow of a conducting fluid where the magnetic
field induced by the current in the fluid is negligible compared to the external magnetic
field. The determination of whether MHD flow can be considered inductionless hinges on a
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dimensionless quantity dubbed the magnetic Reynolds number, denoted as Rm, and defined
as

Rm = 𝜇𝜎𝑉𝐿. (2.8)
Here, 𝜇 is the magnetic permeability of the fluid, 𝜎 is the fluid conductivity, 𝑉 is the
characteristic fluid velocity, and 𝐿 is the characteristic length of the system.

For the experimental setup—employing a water-based electrolyte—the relative mag-
netic permeability (𝜇𝑟) of the fluid corresponds to that of water, i. e., 𝜇𝑟 = 1, giving
𝜇 = 𝜇0𝜇𝑟 ∼ 1 µH m−1. Additionally, the fluid conductivity was measured to be 𝜎 ∼ 1 S m−1,
the observed velocity in our setup is 𝑉 ∼ 1 cm s−1, while the characteristic length of the
system is 𝐿 ∼ 10 cm. Substituting theses values, the magnetic Reynolds number for the
system is Rm ∼ 10−9, which is significantly less than unity. This result justifies the assertion
that the flow can indeed be regarded as inductionless.

2.3.1 Equations of Magnetohydrodynamics

Furthermore, I assume the fluid is incompressible. This together with the inductionless
assumption, implies the physics phenomena can be described by the incompressible Navier–
Stokes equations with an external body force term—the Lorentz force. These Navier–Stokes
equations read

𝜕v
𝜕𝑡
+ v · ∇v− 𝜈∇2v+ ∇𝑝 =

1
𝜌

F, (2.9a)

∇ · v = 0, (2.9b)

where v is the velocity field, 𝑝 is the pressure, 𝜈 is the kinematic viscosity, 𝜌 is the density,
and F is the Lorentz force. The Eq. (2.9a) is called the momentum equation, and the Eq. (2.9b)
is called the continuity equation. Further, the Lorentz force is given by the cross product of
the current density J and the external magnetic field B, as per the Lorentz force law

F = J×B. (2.10)

The current density in the fluid is then described by Ohm’s law

J = 𝜎(E+ v×B), (2.11)

where 𝜎 is the conductivity, and E is the electric field in the fluid. Expanding the Lorentz
force using the Ohm’s law gives

F = 𝜎E×B+ 𝜎 (v×B) ×B. (2.12)

The magnitude of the second term in the above equation can be bounded by

𝜎∥(v×B) ×B∥22 ≤ 𝜎∥v∥2∥B∥22, (2.13)

From the experimental measurements, I know that ∥B∥2 ∼ 10 mT and ∥v∥2 ∼ 1 cm s−1,
making the second term to be ∼ 1 µN m−3, which is negligible compared to the first term,
which is ∼ 1 mN m−3. Therefore, it can be readily omitted, and the Lorentz force can be
approximated as

F = 𝜎E×B. (2.14)
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S I M U L AT I O N E N V I RO N M E N T

In this chapter, I present the simulation environment I developed to efficiently simulate the
MHD flow in the experimental setup. The simulation environment is designed to solve the
incompressible Navier-Stokes equations in the presence of the body force generated by the
electric and magnetic fields. The development of the simulation environment stretched over
several months, beginning in the last winter semester. Therefore, this chapter describes the
work not only from the period of the thesis but also from the previous semester.

3.1 motivation

For the purposes of developing a feedback control methodology for the MHD flow, I required
a fluid flow simulation framework with few specific capabilities. First and foremost, the
simulation environment should be capable of operating within a closed loop, i. e., allowing
me to evaluate the current solution at each timestep and, based on that evaluation, adjust
the body forces for the next timestep. The second is the ability to run fast, preferably
close to real-time, to facilitate the high data requirements of data-driven control methods.
Unfortunately, neither the free Computational Fluid Dynamics (CFD) software I encountered
nor the commercial software available to me were completely suitable for this task. As an
example, popular open-source CFD software is OpenFOAM, which, by default, does not
support arbitrary body forces and coupling with external software. On the other hand, while
COMSOL Multiphysics® offers a closed-loop capability through its LiveLink™ for Simulink
add-on, it only supports scalar inputs and outputs, and the simulation time significantly
increases when operating in this mode. As a result, I opted to develop my own simulation
environment. Moreover, as the programming language, I selected Julia because it is highly
performant, while being easy to use.

3.2 problem setup

The simulation environment is designed to solve the incompressible Navier–Stokes equations
in the following form

𝜕v
𝜕𝑡
+ (v · ∇)v = −∇𝑝 + 𝜈∇2v+ 1

𝜌
F in Ω, (3.1a)

∇ · v = 0 in Ω, (3.1b)

where Ω is a given 3D domain, v is the velocity field, 𝑝 is the pressure field, 𝜈 is the kinematic
viscosity, 𝜌 is the fluid density, and F is the body force. The body force is the force exerted by
the electric and magnetic fields

F = 𝜎E×B, (3.2)

11
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where 𝜎 is the conductivity of the liquid, E is the electric field, and B is the magnetic field.
Moreover, I also consider a Dirichlet boundary condition for the velocity field

v = g on 𝜕Ω, (3.3)

where g comprises the following
v = 0 on Γwalls, (3.4)

i. e., the velocity is zero at the walls, and zero flux of the velocity through the surface of the
domain

v · n = 0 on Γsurface. (3.5)

The sets Γwalls and Γsurface represent the walls and the surface of the domain, with n being
the normal vector to the surface, and 𝜕Ω = Γwalls ∪ Γsurface.

As pressure only appears in the Navier–Stokes equations in the form of its gradient and
no outflow boundary conditions are imposed, it is determined up to a constant. Therefore,
I need to impose a condition to fix this constant. I choose the condition that the average
pressure over the domain is zero, i. e., ∫

Ω

𝑝 dΩ = 0. (3.6)

3.3 temporal discretization & spliting scheme

I handle the temporal discretization of the problem by utilizing the Backward Difference
Formula of the second order (BDF2). BDF2 is a well-established multi-step implicit method
known for its unconditional stability and second-order accuracy, making it a popular choice
in the field of CFD. I apply the BFD2 in conjunction with the Incremental Pressure Correction
Scheme (IPCS) in the rotational form, as shown in the work by Guermond et al. [2006]. IPCS
weakly decouples the velocity and pressure computations, therefore breaking down the
computation of each timestep into more manageable and efficiently computable sub-problems.
This decoupling strategy is crucial, as solving the fully coupled incompressible Navier-Stokes
equations results in so-called saddle point problem, which is notoriously difficult to solve
efficiently.

IPCS is a member of the family of projection methods. Generally, these methods exploit the
fact that in incompressible isothermal flows, the pressure is not a state quantity, but rather
a Lagrange multiplier enforcing the continuity equation. One timestep of the projection
methods usually consists of the following three steps:

1. Solve the momentum equation Eq. (3.1a) with some a priori guess for the pressure.
Ignore the continuity equation Eq. (3.1b).

2. Compute a posterior pressure field that would make the velocity field from the previous
step incompressible.

3. Using the posterior pressure field project the velocity field found by the first step to
make it divergence-free.
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However, the final velocity is just a projection. It does not satisfy the boundary conditions.
From the point of error analysis, both the velocity from the first and last step are equally good
approximations of the true solution. Thus, there is no need to prefer the velocity from the
last step over the first one as the output of the simulation. This incentive is further supported
by the fact that in the IPCS algorithm, the final step can be easily eliminated, effectively
reducing the scheme to two steps. This is the approach I take in my simulation environment.
Thus, the scheme consists of the following two steps.

3.3.1 Velocity Step

The first step is so-called Velocity Step, where the current value of the velocity field v𝑘 , i. e., the
velocity field at the time 𝑡 = 𝑘Δ𝑡, is computed. The velocity is computed from the knowledge
of the previous two values of the velocity field v𝑘−1, v𝑘−2, the pressure 𝑝𝑘−1, 𝑝𝑘−2, 𝑝𝑘−3, and
the current value of the body force F𝑘 . The step is realized by solving the following PDE
problem

3v𝑘 − 4v𝑘−1 + v𝑘−2
2Δ𝑡 + [(2v𝑘−1 − v𝑘−2) · ∇]v𝑘 − 𝜈∇2v𝑘

+1
3∇ (7𝑝𝑘−1 − 3𝑝𝑘−2 + 𝑝𝑘−3) =

1
𝜌

F𝑘 in Ω, (3.7a)

v𝑘 = g on 𝜕Ω, (3.7b)

which arises from the discretization of the momentum equation using the BDF2 method. To
linearize the problem, I approximate the convection term (v · ∇)v using extrapolated velocity

(v𝑘 · ∇)v𝑘 ≈ [(2v𝑘−1 − v𝑘−2) · ∇]v𝑘 .

3.3.2 Pressure Step

The second and the last step is the computation of the pressure 𝑝𝑘 at the current timestep 𝑘.
This is achieved by solving the Pressure Poisson Problem

−∇2 (𝑝̃𝑘 − 𝑝𝑘−1) = −
3

2Δ𝑡∇ · v𝑘 in Ω, (3.8a)

𝜕 (𝑝̃𝑘 − 𝑝𝑘−1)
𝜕n

= 0 on 𝜕Ω, (3.8b)

where n is the normal vector to the boundary of the domain, and 𝑝̃𝑘 is the tentative pressure
field, to which the rotational projection

𝑝𝑘 = 𝑝̃𝑘 − 𝜈∇ · v𝑘 , (3.9)

is applied to obtain the final pressure field 𝑝𝑘 .
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3.4 spatial discretization

I approach the spatial discretization of the problem using the conventional Galerkin Finite
Element Method (FEM). This decision primarily stems from the prevalence of FEM packages
within the Julia ecosystem, contrasting with the availability of Finite Volume Method and
Finite Differences Method alternatives.

FEM also has the advantage of being easily adaptable to complex geometries. Generally, It
can also handle arbitrary meshes on these geometries, but I prefer using structured meshes
with hexahedral elements, as they have fewer degrees of freedom and, therefore, require
fewer computational resources.

I utilize quadratic polynomials to approximate the velocity space and linear polynomials
for the pressure space, forming what is commonly referred to as Taylor–Hood elements or
Q2-Q1 discretization. This selection is deliberate, as it adheres to the well-known inf-sup
condition, ensuring numerical stability. However, it should be noted that when the flow
becomes advection-dominated at high Reynolds numbers, the standard Galerkin method
with Taylor–Hood elements can still suffer spurious oscillations in the solution. In such cases,
stabilization techniques like the Streamline Upwind Petrov–Galerkin, Galerkin Least-Squares,
or Discontinuous Galerkin methods can be employed.

The spatial discretization leads to the differential operators being approximated by matrices.
I do not provide the explicit form of these matrices for the brevity of the exposition, as
their construction is well-known in the literature. If the reader is interested in the details, I
recommend consulting the work by Elman et al. [2005] or the documentation of different
FEM packages, such as the Julia package Ferrite.jl1.

3.5 handling of the body force term

The body force generated by the interaction of the electric field in the fluid and the external
magnetic field is a crucial part of the simulation. However, it is computationally expensive
to simulate the electric and magnetic fields together with the fluid flow. Fortunately, the
fields can be precomputed and stored in a file, as they are not dependent on the velocity and
pressure fields.

I approach the generation of the body force by constructing a basis of simulated electric
and magnetic fields. These simulated fields are then used to compute the total fields in the
domain by linearly combining the basis with the corresponding electrode and coil commands.
Specifically, assuming 𝑛el electrodes, the electric field is expressed as

E =

𝑛el∑
𝑖=1

𝜙𝑖E𝑖 , (3.10)

1 https://ferrite-fem.github.io/Ferrite.jl/stable/

https://ferrite-fem.github.io/Ferrite.jl/stable/
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where 𝜙𝑖 denotes the command for 𝑖th electrode, basically a voltage scaling factor, and E𝑖

is the field generated by the 𝑖th electrode at 1 V while all the other electrodes grounded.
Similiary, assuming 𝑛coils coils, the magnetic field is expressed as

B =

𝑛coils∑
𝑖=1

𝜓𝑖B𝑖 ,

where 𝜓𝑖 is the command for 𝑖th coil, acting as current scaling factor, and B𝑖 is the field
generated by the 𝑖th coil when subjected to a reference current of 440 mA, with all other coils
turned off. It is noteworthy that due to the nonlinear BH curve of the ferromagnetic material
composing the coil cores, the magnetic fields of individual cores are not superimposable.
However, the nonlinearity can be partially alleviated by considering

𝜓 = 𝑓 (𝑖), (3.11)

where 𝑖 is the coil current, and 𝑓 (𝑖) is the nonlinear scaling function, which was experimentaly
determined by Zemánek [2018] for MagMan platform as:

𝑓 (𝑖) = 0.889 atan
(
2.5 |𝑖 | + 5.38𝑖2

)
sign (𝑖). (3.12)

Furthermore, the cross interaction of the coils can be neglected, as the coils are placed far
enough from each other, and the magnetic field decays rapidly with distance.

The total body force acting on the fluid is then given as:

F = 𝜎
𝑛el∑
𝑖=1

𝑛coils∑
𝑗=1

𝜙𝑖𝜓 𝑗E𝑖 ×B𝑗 . (3.13)

3.5.1 Implementation

I utilize COMSOL Multiphysics® to conduct simulations of the electromagnetic field,
employing a high-fidelity model that encompasses the entire platform. However, COMSOL
Multiphysics® presents a challenge when it comes to exporting solutions, as it only allows
for pointwise evaluations of the fields.

In my experience, simply evaluating the fields on a uniform grid embedded in the domain
and then linearly interpolating them on the grid for arbitrary point evaluation does not yield
accurate results. To overcome this limitation, I export the fields evaluated in the nodes of the
COMSOL mesh. This approach provides the most accurate representation of the solution.
However, I conduct the fluid simulations on a different (arbitrary) mesh, which may not align
with the COMSOL mesh. Consequently, I need to interpolate the fields from the COMSOL
mesh to the fluid mesh, specifically from the nodes of the COMSOL mesh to the quadrature
points of the fluid mesh. To achieve this, I employ the Euclidean distance-based Nearest
Neighbor interpolation, which I illustrate in Fig. 3.1.

Algorithmically, the Nearest Neighbor search is done by constructing a KD tree from the
COMSOL nodes and then querying the tree for the nearest node to the quadrature point.
The value of the field at the nearest node is then assigned to the quadrature point.
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Nodal point
Quadrature point

COMSOL mesh Fluid mesh

Figure 3.1: Illustration of the Nearest Neighbor interpolation of the fields generated by COMSOL
Multiphysics® to the quadrature points of the fluid mesh. The two meshes spatially
represent the same domain.

3.6 solution strategy

In the following section, I outline the solution strategy employed to efficiently solve the
arising linear sub-problems obtained from the temporospatial discretization of the simulation
timestep. Notation-wise, symbols v, p and F from this section onwards do not denote the
approximated functions, but rather the corresponding vectors of values of the Degrees of
Freedom (DOFs) from the FEM discretization, i. e., v, F ∈ RDOF𝑣 and p ∈ RDOF𝑝 , where DOF𝑣

and DOF𝑝 are the number of DOFs in the velocity and pressure space, respectively.

3.6.1 Velocity Step

The discrete form of the Velocity Step is

1
2Δ𝑡M (3v𝑘 − 4v𝑘−1 + v𝑘−2) +C(v𝑘−1, v𝑘−2)v𝑘 + 𝜈Kv𝑘 −

1
3G

(
7p𝑘−1 − 3p𝑘−2 + p𝑘−3

)
=

1
𝜌

F𝑘 + b.c. terms, (3.14)

where M is the (velocity) mass matrix, K is the stiffness matrix, C(v𝑘−1, v𝑘−2) is the convection
matrix, G is the gradient matrix. These matrices arise from discretization of their corre-
sponding differential operators using the FEM. The b.c. terms are the terms arising from the
prescribed boundary conditions. The step can be rewritten as a system of linear equations

Av𝑘 = b, (3.15)
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where

A =
3

2Δ𝑡M+ 𝜈K+C(v𝑘−1, v𝑘−2), (3.16)

b =
1
𝜌

F𝑘 +
1
3G

(
7p𝑘−1 − 3p𝑘−2 + p𝑘−3

)
+ 1

2Δ𝑡M (4v𝑘−2 − v𝑘−3) + b.c. terms. (3.17)

I solve Eq. (3.15) by standard restarted GMRES method with Incomplete LU preconditioner.

3.6.2 Pressure Step

Next step, is the solution of the system arising from the Pressure Poisson Equation

Rp̃𝑘 =
3

2Δ𝑡Dv𝑘 +Rp𝑘−1 + b.c. terms. (3.18)

Note that for matrix D—which represents the discretization of the divergence operator—it
holds that D = −GT. Additionally, matrix R, resulting from the discretization of the Laplace
operator, remains constant throughout the simulation runtime. Therefore, I precompute its
LU factorization. This allows me to just employ forward and backward substitution during
the actual simulation to solve the system efficiently.

Lastly, the rotational projection is applied,

p𝑘 = p̃𝑘 − 𝜈Dv𝑘 . (3.19)

3.6.3 Pressure Mean Value Constraint

Additionally, I should elaborate on how the constraint for the zero mean value of the pressure
is enforced. The mean value of the pressure is computed by the following quadrature∫

Ω

𝑝 dΩ ≈
DOF𝑝∑
𝑖=1

𝑤𝑖𝑝𝑖 , (3.20)

where 𝑝𝑖 are the individual DOFs of the pressure field, and 𝑤𝑖 are the corresponding
quadrature weights. This implies the mean value of the pressure is zero if and only if

DOF𝑝∑
𝑖=1

𝑤𝑖𝑝𝑖 = 0. (3.21)

Furthermore, the previous sum can be used to express the pressure DOF 𝑝 𝑗 as a linear
combination of the other pressure DOFs 𝑝𝑖 , i. e.,

𝑝 𝑗 = −
DOF𝑝∑
𝑖=1
𝑖≠𝑗

𝑤𝑖

𝑤 𝑗
𝑝𝑖 . (3.22)
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Thus, I can eliminate the pressure DOF 𝑝 𝑗 from my computations. The question remains,
which pressure DOF to eliminate? I need to make sure that 𝑤 𝑗 is nonzero. Therefore, I choose
the pressure DOF 𝑝 𝑗 with the largest (absolute) quadrature weight 𝑤 𝑗

𝑗 = argmax
𝑖=1,...,DOF𝑝

|𝑤𝑖 | . (3.23)

3.7 implementation

I implemented the simulation environment in Julia using the FEM toolbox Ferrite.jl2. Ferrite
is a low-level FEM toolbox, facilitating the user with tools for computing quadrature rules,
FEM interpolations, evaluating shape functions and their derivatives in the finite element
space, enforcing boundary conditions, etc.

Where possible, the assembly of the FEM matrices and vectors is done in a parallelized
manner, utilizing the Julia’s native threading capabilities (Base.Threads). This significantly
speeds up the computation, especially for large meshes. The GMRES solver is provided by
the Krylov.jl3 package and the Incomplete LU preconditioner by the IncompleteLU.jl4 package.
The direct LU factorization solver is provided by the SparseArrays.jl5, which is interfacing the
SuiteSparse6 library.

The simulation environment itself is constructed as a Julia package and is available on
CTU FEE Gitlab 7 including the example of its usage.

3.8 mesh generation

I generate the mesh using the open-source mesh generator Gmsh8, specifically its Julia interface
Gmsh.jl9. The mesh is a cylinder, corresponding to the dish’s interior in the experimental
setup, with a diameter of 143 mm and a height based on the fluid level in the experimental
setup. The mesh is structured, consisting of hexahedral elements. I refine the mesh near the
walls and the surface of the domain to capture the boundary layers accurately. I show the
generated mesh in Fig. 3.2.

2 https://github.com/Ferrite-FEM/Ferrite.jl
3 https://github.com/JuliaSmoothOptimizers/Krylov.jl
4 https://github.com/haampie/IncompleteLU.jl
5 https://github.com/JuliaSparse/SparseArrays.jl
6 https://github.com/DrTimothyAldenDavis/SuiteSparse
7 https://gitlab.fel.cvut.cz/aa4cc/mhd/MHDSim.jl
8 https://gmsh.info/
9 https://github.com/JuliaFEM/Gmsh.jl

https://github.com/Ferrite-FEM/Ferrite.jl
https://github.com/JuliaSmoothOptimizers/Krylov.jl
https://github.com/haampie/IncompleteLU.jl
https://github.com/JuliaSparse/SparseArrays.jl
https://github.com/DrTimothyAldenDavis/SuiteSparse
https://gitlab.fel.cvut.cz/aa4cc/mhd/MHDSim.jl
https://gmsh.info/
https://github.com/JuliaFEM/Gmsh.jl
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Figure 3.2: Used mesh.

3.9 validation using experimental data

In the following section, I compare the outputs from the simulation environment with the
experimental data obtained from our experimental setup. The experimental data consist of
surface velocity fields on a 32× 32 grid of points, corresponding to the 10 cm× 10 cm surface
area of the domain. These velocity fields were obtained using PIV with 85 µm polymethyl
methacrylate (PMMA) particles dispersed over the surface of the fluid.

I present the results of three different scenarios, each with a different flow configuration.
The first scenario is a simple one-directional flow, the second scenario is a flow induced by
multiple coils, and the third scenario showcases an oscillatory behavior. All three experiments
were conducted with the same electrolyte, a 0.5 % solution of sulfuric acid in water with
a conductivity of 5 S m−1, and the fluid height of 8 mm. The electric field was generated
by two electrodes, which were placed on opposite sides of the domain. The magnetic field
was generated by four coils below the center of the domain. I present the coil and electrode
configurations for each experiment in Fig. 3.4, Fig. 3.6, and Fig. 3.8, respectively. The coils
were excited with a current of ±440 mA, and the electrodes were kept at the potentials of
10 V and 0 V, respectively.
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Scenario 1: Simple One Directional Flow

In this scenario, a solitary coil is used to actuate the flow, resulting in a mostly straightforward
unidirectional flow pattern flow pattern with slight vortices created by the interaction of the
flow with the domain walls. I show both the experimental and simulated velocity fields at
different time instances in Fig. 3.3.

Scenario 2: Flow Induced by Multiple Coils

In this scenario, the flow is induced by exciting all four coils simultaneously with maximum
current in the same direction. This results in a more intricate flow pattern characterized
by prominent lateral vortices alongside a streamlined flow in the center. The comparison
between the experimental and simulated velocity fields is illustrated in Fig. 3.5.

Scenario 3: Oscillations

The final scenario aims to highlight oscillatory flow patterns. The flow is induced by activating
two diagonally adjacent coils using opposing currents. Once more, the comparison between
the experimental and simulated velocity fields is presented in Fig. 3.7. The fluid patterns
observed in the experiment recur periodically.

Discussion

The simulation environment effectively captures the general structure of the flow patterns,
meaning their shape and direction. However, it tends to overestimate velocity magnitudes
by up to 30 %, leading to slightly accelerated dynamics. Identifying the precise source
of this deviation is challenging due to various factors affecting the experimental setup’s
accuracy. These include slight unevenness in the setup’s level, the dish’s imperfect cylindrical
shape, and the fluid’s initial state not being entirely still. Additionally, the PIV technique
itself can influence the flow, as the PMMA particles sometimes form a crust on the fluid’s
surface, slowing down the flow. Moreover, the simulation involves simplifications such as
disregarding the temperature dependence of fluid properties, the non-superimposability of
coil magnetic fields, surface tension effects, and the absence of mesh electrodes within the
domain or other possible factors.
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Figure 3.3: Scenario 1. Comparison of the velocity field obtained by PIV in the experimental setup (left
column) and the velocity field produced by my simulation environment (right column).

Figure 3.4: Config-
uration of the elec-
trodes and coils in
Scenario 1.
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Figure 3.5: Scenario 2. Comparison of the velocity field obtained by PIV in the experimental setup (left
column) and the velocity field produced by my simulation environment (right column).

Figure 3.6: Config-
uration of the elec-
trodes and coils in
Scenario 2.
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Figure 3.7: Scenario 3. Comparison of the velocity field obtained by PIV in the experimental setup (left
column) and the velocity field produced by my simulation environment (right column).

Figure 3.8: Config-
uration of the elec-
trodes and coils in
Scenario 3.
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3.10 validation using comsol multiphysics®

Lastly, I compare the solutions obtained by my simulation environment with the solutions
obtained by a commercial CFD software, COMSOL Multiphysics®. The COMSOL simulation
encompasses the entire platform, including the fluid flow and the electric and magnetic
fields, while the simulation environment only solves the fluid flow with the pre-computed
basis of electric and magnetic fields from COMSOL.

There are further differences in the numerical methods used to solve the fluid flow which
I summarize in Table 3.1. To validate the simulation environment, I compare the velocity
fields obtained in the same configuration as in Scenario 3. The comparison is illustrated in
Fig. 3.9. The flow fields obtained by the two methods are in good agreement. There may be
slight time discrepancies, as the comparison at time 𝑡 = 24 s suggests, but the overall flow
patterns are consistent.

The computational performance of the two methods is compared in Table 3.2. My simulation
environment solves the fluid flow in almost one-tenth of the time required by COMSOL
Multiphysics®. This is due to the simpler numerical methods used in the simulation
environment, the structured mesh, and the decoupled solution strategy. It should be noted
that the COMSOL simulation has a slightly higher number of DOFs, as the mesh is tetrahedral
and automatically generated.

Table 3.1: Comparison of the simulation parameters for the simulation environment and COMSOL
Multiphysics®.

Parameters COMSOL Multiphysics® Simulation Environment

Number of fluid DOFs 265438 209577
Mesh Tetrahedral Hexahedral

Method Galerkin/Least-Squares Galerkin
Spliting Scheme — IPCS

Temporal Scheme BDF1/BDF2 BDF2
Timestep Dynamic 0.25 s

Table 3.2: Comparison of the computational performance of the simulation environment and COMSOL
Multiphysics®.

Metric COMSOL Multiphysics® Simulation Environment

Solve time (EM fields) 14 min 5 s —
Solve time (CFD) 59 min 6 min 41 s
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Figure 3.9: Comparison of the flow fields produced by COMSOL Multiphysics® (left column) and my
simulation environment (right column). The situation is the same as in Experiment 3.
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U S E D M E T H O D S F O R I D E N T I F I C AT I O N A N D CO N T RO L

This chapter serves as an overview of the identification and control methods used in the
thesis while also providing a brief overview of the relevant literature. First, I introduce the
concept of surrogate modeling, motivating it with the Model Predictive Control framework.
Then, I further elaborate on methods for constructing data-driven surrogate models and
their use in the Model Predictive Control framework.

4.1 motivation: model predictive control

With the rise of computational power, real-time optimization-based controllers have become
increasingly popular, as they can handle complex systems with nonlinear dynamics and
constraints. However, why should I be interested in optimization-based controllers for the
problem at hand? The answer dwells in the fact that I want to minimize the error between
the desired flow field and the actual flow field, which is an optimization problem.

A concrete example of an optimization-based controller is Model Predictive Control (MPC).
Given a measured or estimated state x(𝑡) at time 𝑡, MPC computes the optimal control input
u(𝑡) by solving the following optimization problem:

minimize
{u𝑘}

𝑁p−1
𝑘=0 , {x𝑘}

𝑁p
𝑘=1

𝐽
(
{x𝑘}

𝑁p
𝑘=1 , {u𝑘}

𝑁p−1
𝑘=0

)
, (4.1a)

subject to x𝑘+1 = f (x𝑘 , u𝑘) , 𝑘 = 0, . . . , 𝑁p − 1, (4.1b)
x𝑘 ∈ 𝒳, 𝑘 = 1, . . . , 𝑁p, (4.1c)
u𝑘 ∈ 𝒰 , 𝑘 = 0, . . . , 𝑁p − 1, (4.1d)
x0 = x(𝑡), (4.1e)

where 𝐽 is the cost function, f is the system dynamics, 𝒳 and 𝒰 are the state-space and
input-space constraints, respectively, and 𝑁p is the prediction horizon. The control input
u(𝑡) applied to the system is obtained as the first element of the optimal control sequence{

u★
𝑘

}𝑁−1
𝑘=0 . The entire process is repeated at the next timestep, with the state x(𝑡) updated to

the new measured or estimated state.

4.1.1 Surrogate Modeling

It is necessary to solve the optimization problem Eq. (4.1) in real-time within the control
timestep. This is a challenging task, particularly for highly dimensional nonlinear systems.
Consider, for instance, system dynamics f arising from the spatio-temporal discretization of
a PDE, such as the FEM-based scheme discussed in Chapter 3. In such cases, the state may

27
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exhibit high dimensionality coupled with nonlinear dynamics, rendering the optimization
problem intractable.

Fortunately, the optimization problem is solved on a finite horizon, requiring only a
prediction of the system behavior over a time window of length 𝑁p. Thus, the idea of
replacing the original system dynamics in Eq. (4.1) with a surrogate model arises. The surrogate
model should give an accurate prediction of the system behaviour over the prediction horizon
while making the optimization problem in Eq. (4.1) much more manageable. Methods used
for constructing such surrogate models, as well as their use in the MPC framework, are the
subject of the following sections.

4.2 delay embeddings

It may be expensive or outright impossible to measure or estimate the entire state of such a
complex system as fluid flow. Moreover, I am interested in controlling only the flow field
that I am able to measure, i. e., the flow in the top fluid layer. Thus, it may be ill-advised
to construct the surrogate model with the full state, as the input-output dynamics can be
simpler than the full state-space dynamics. Fortunately, by means of Takens’ embedding
theorem [Takens, 1981] and its forced variant [Stark et al., 1997], the input-output dynamics
can be reconstructed from the past measurements and the past inputs. The idea is to construct
the state vector x𝑘 at time 𝑘 from the time series of 𝑑 past measurements y𝑘−𝑑+1, . . . , y𝑘 and
𝑑 − 1 past control-inputs u𝑘−𝑑, . . . , u𝑘−1 as

x𝑘 =

[
yT
𝑘−𝑑+1 . . . yT

𝑘
uT
𝑘−𝑑 . . . uT

𝑘−1

]T
, (4.2)

where 𝑑 ≥ 1 is the embedding dimension, left to be determined. The reconstructed state x𝑘 is
then used to construct the surrogate model.

4.3 proper orthogonal decomposition

A well-established method for constructing surrogate models, namely that of a reduced-
order, is the Proper Orthogonal Decomposition (POD), also called the Principal Component
Analysis (PCA) in the statistics community or the Karhunen-Loève expansion in the stochastic
processes community. POD was first introduced by Lumley [1967] to study coherent structures
in turbulent flow and later popularized by Sirovich [1987]. In POD, the evolution of some
spatio-temporal quantity of interest, such as the flow field, is approximated by a linear
combination of a few spatial modes with time-varying coefficients, i. e.,

y(r, 𝑡) ≈
𝑟∑

𝑖=1
𝑎𝑖(𝑡)ξ𝑖(r), (4.3)

where y(r, 𝑡) is the quantity of interest, r is the spatial coordinate, 𝑡 is the time, 𝑟 is the number
of modes, 𝑎𝑖(𝑡) are the time-varying coefficients, and ξ𝑖(r) are the spatial modes.
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The POD modes are usually obtained in the following data-driven manner. Starting with a
series of snapshots of the quantity of interest at different time instances 𝑡1, 𝑡2, . . . , 𝑡𝑁 , and
spatial coordinates r1, r2, . . . , r𝑀 , organized into a snapshot matrix

Y =


y(r1, 𝑡1) . . . y(r1, 𝑡𝑁 )

... . . . ...
y(r𝑀 , 𝑡1) . . . y(r𝑀 , 𝑡𝑁 )

 , (4.4)

POD modes are extracted by performing Singular Value Decomposition (SVD) on the
snapshot matrix Y

Y = UΣVT, (4.5)
then selecting the first 𝑟 left singular vectors as the POD modes denoted as

ξ𝑖 = U𝑖 , 𝑖 = 1, . . . , 𝑟. (4.6)

The choice of the number of modes 𝑟 typically involves analyzing the decay of the singular
values 𝜎𝑖 of the matrix Y. One common approach is to select the number of modes that
collectively capture a certain percentage of the total energy, such as 99%.

The obtained modes can then be used to project the original equations of motion onto a
low-dimensional subspace, essentially obtaining a reduced-order model for the evolution of
the temporal coefficients. Many control strategies have been developed based on POD, see,
e.g., [Bergmann et al., 2005, Hinze and Volkwein, 2005, Peitz et al., 2019].

4.4 koopman operator-based approaches

A prominent class of system models are linear models. They are simple, interpretable, and host
a plethora of mature control design methods. Linear models typically come from linearizing
the system dynamics about an equilibrium point, but the validity region of such models is
usually small. Here, I present a class of linear models that are not obtained by linearizing
the system dynamics about an equilibrium point but acting as a global linearization of the
system, making them much more suitable for the task at hand. First, let me consider the
system dynamics in the form of

x+ = f(x, u), x ∈ 𝒳, u ∈ 𝒰 , (4.7)

where 𝒳 is the state-space of the system and𝒰 is the input-space of the system. Moreover,
consider the output equation of the system in the form of

y = g(x). (4.8)

Given a state x𝑘 at time 𝑘, the goal is to predict the output y𝑘+𝑖 over some prediction horizon
𝑁p. To this end, I define an artificial dynamical system, so-called Koopman predictor, in the
form of

z0 = Ψ(x𝑘), (4.9a)
z𝑖+1 = Az𝑖 +Bu𝑘+𝑖 , 𝑖 = 0, . . . , 𝑁p − 1, (4.9b)
ŷ𝑘+𝑖 = Cz𝑖 , 𝑖 = 1, . . . , 𝑁p, (4.9c)
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where z ∈ R𝑁 is the lifted state, Ψ : 𝒳 → R𝑁 is the lifting map, A ∈ R𝑁×𝑛 , B ∈ R𝑁×𝑚 ,
C ∈ R𝑝×𝑁 are the system matrices, 𝑁 is the dimension of the lifted state space, 𝑚 is the
dimension of the input space, and 𝑝 is the dimension of the output space. Finally, the
predicted output is denoted as ŷ𝑖 . The existence of such a system is justified by the Koopman
operator theory, which I will now briefly introduce.

4.4.1 The Koopman Operator

The idea of the Koopman Operator essentially boils down to capturing the dynamics of a
nonlinear system by a linear yet infinite-dimensional operator. It dates back to the works
of Koopman [1931] and Koopman and v. Neumann [1932] but has gained popularity in
the control community only relatively recently. To set the stage, I now quickly go over the
operator’s definition. Consider an autonomous, unforced dynamical system in the form of

x+ = f(x), x ∈ 𝒳. (4.10)

Let me call a function 𝑔 : 𝒳 → R an observable of the system. The Koopman operator 𝒦 is
then defined on the space of observables as:

𝒦 𝑔 = 𝑔 ◦ f, (4.11)

where ◦ denotes the composition of functions. Even though the underlying dynamical system
is nonlinear, the Koopman operator is always linear, albeit generally infinite-dimensional.

The definition of the Koopman operator can also be extended to controlled systems in the
form of Eq. (4.7). This extension is achieved by introducing so-called extended state-space, i.e,
the state-space augmented with the of all possible control input sequences, i.e.,

𝒮 = 𝒳 × ℓ (𝒰), (4.12)

where
ℓ (𝒰) =

{
{u𝑘}∞𝑘=0 | u𝑘 ∈ 𝒰

}
.

Let me now consider the observable defined on the extended state-space, i. e., 𝑔 : 𝒮 → R.
The Koopman operator for controlled systems then reads:

𝒦 𝑔
(
x, {u𝑘}∞𝑘=0

)
= 𝑔

(
f(x, u0), {u𝑘}∞𝑘=1

)
. (4.13)

The main idea of the Koopman operator-based approaches is to essentially try to find a
good finite set of observables 𝑔1, . . . , 𝑔𝑁 , compose them into the feature map

Ψ(x) =
[
𝑔1(x) . . . 𝑔𝑁 (x)

]T
, (4.14)

and find the system Eq. (4.9) or similar, as the finite-dimensional approximation of the
Koopman operator in Eq. (4.13).

This is a valid approach because when the set of observables spans an invariant subspace,
meaning for every 𝑔 ∈ span {𝑔1, . . . , 𝑔𝑁 } it holds that

𝒦 𝑔 ∈ span {𝑔1, . . . , 𝑔𝑁 }, (4.15)
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then, the Koopman operator can be represented exactly by a finite-dimensional matrix. Even
if the observables do not span an invariant subspace, it is still possible to look for the set of
observables that approximate the Koopman operator well, i. e., the set of observables that
minimizes the error in the approximation.

4.4.2 Extended Dynamic Mode Decomposition

Probably the most well-known method for constructing Koopman predictors is the Extended
Dynamic Mode Decomposition (EDMD), first introduced by Williams et al. [2015]. EDMD is
a data-driven method for approximating the Koopman operator with proven convergence in
the unforced case in the data and dimensionality limit by Korda and Mezić [2018a].

The method goes as follows. Given a series of state measurements {x𝑘}𝑁d
𝑘=0 and control

inputs {u𝑘}𝑁d−1
𝑘=0 , which are assumed to be related by the system dynamics Eq. (4.7) and

provided the lifting function Ψ, EDMD computes the best-fit linear system matrices A and B
as a solution to

minimize
A,B

𝑁d−1∑
𝑘=0
∥Ψ (x𝑘+1) −AΨ (x𝑘) −Bu𝑘 ∥22 . (4.16)

Moreover, the output matrix C may be obtained as the minimizer of the following optimization
problem

minimize
C

𝑁d∑
𝑘=0
∥x𝑘 −CΨ (x𝑘)∥22 . (4.17)

These optimization problems have closed-form solutions. Stacking the lifted states into
matrices

Z =

[
Ψ(x0) Ψ(x1) . . . Ψ(x𝑁d−1)

]
, Z+ =

[
Ψ(x1) Ψ(x2) . . . Ψ(x𝑁d)

]
, (4.18)

and the control inputs into a matrix

U =

[
u0 u1 . . . u𝑁d−1

]
, (4.19)

the matrices A and B can then be obtained as[
A B

]
= Z+

[
Z
U

]†
, (4.20)

where † denotes the Moore–Penrose pseudoinverse. The matrix C matrix can then be obtained
in an analogous manner.

The predictor’s performance depends heavily on the choice of the lifting map Ψ, i. e.,
the choice of observables. There are many possible choices for the lifting map, typically
the observables are chosen to form a basis of some functional space, but other choices are
possible, e. g., Mamakoukas et al. [2019] proposed to use the observable in form of the higher
order derivatives of the underlying nonlinear functions, Arbabi et al. [2018] used delay
embeddings, which itself are a form of nonlinear lifting.
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It is of note that when considering Ψ(x) = x, the EDMD presented here reduces to the
standard Dynamic Mode Decomposition (DMD) in the unforced case and Dynamic Mode
Decomposition with Control (DMDc) in the forced case. These algorithms were introduced
by Schmid [2010] and Proctor et al. [2016], respectively. Moreover, the original DMD and
DMDc algorithms first project the data onto a low-dimensional subspace spanned by the
dominant POD modes, thus giving a reduced-order model.

4.4.3 Other Methods

There exist other approaches of approximating the Koopman operator, which I do not use
in this thesis. However, I will briefly mention them here. Notable are approaches that use
neural networks to simultaneously learn the lifting function and the linear system matrices,
e. g., [Li et al., 2020, Fan et al., 2022, Mandić et al., 2023]. Korda and Mezić [2020] constructed
both the lifting function and the system matrices as a solution of an optimization problem.
Lastly, Peitz and Klus [2019] constructed a surrogate model for a PDE system with a switched
control input using a set of Koopman operators, each corresponding to a different input mode
this approach was later extended to interpolating between different Koopman operators in
[Peitz et al., 2020].

4.4.4 Koopman Model Predictive Control

Koopman Model Predictive Control, shortly Koopman MPC, introduced by Korda and Mezić
[2018b], is a way of exploiting Koopman predictors for the purposes of MPC. Consider the
standard linear MPC problem with the system dynamics given by the Koopman predictor in
Eq. (4.9), i. e.,

minimize
{u𝑘}

𝑁p−1
𝑘=0 , {z𝑘}

𝑁p
𝑘=1

𝐽
(
{z𝑘}

𝑁p
𝑘=1 , {u𝑘}

𝑁p−1
𝑘=0

)
, (4.21a)

subject to z𝑘+1 = Az𝑘 +Bu𝑘 , 𝑘 = 0, . . . , 𝑁p − 1, (4.21b)
E𝑘z𝑘 + F𝑘u𝑘 ≤ b𝑘 , 𝑘 = 1, . . . , 𝑁p, (4.21c)
z0 = Ψ(x0), (4.21d)

where 𝐽 is a convex quadratic cost function, A and B are the Koopman system matrices, E𝑘

and F𝑖 are the state and input constraints, and b𝑘 are the constraint bounds. This problem
is a convex quadratic program, which means that it can be solved efficiently by specialized
solvers, and the solution is guaranteed to be a global optimum. Furthermore, the problem
can be reformulated into a so-called dense formulation, i. e., a quadratic program only in
terms of the control inputs, meaning that the dimension of the lifted state does not affect the
computational complexity of the problem.
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4.5 deep learning-based approaches

Deep learning-based approaches represent the surrogate models using Neural Networks
(NNs). The main advantage of NNs is that they can approximate highly nonlinear functions,
which is particularly useful for systems with complex dynamics. However, they are also black
box models, meaning that they are hard to interpret, and they are typically data-hungry,
meaning that they require a large amount of data to learn the dynamics properly. Recently,
there has been a surge of interest in reducing the data requirements of NN-based models by
embedding symmetries, conservation laws, and other physical constraints into the model,
see, e.g., Raissi et al. [2019].

There exist many works dealing with learning NN-based surrogate models from data, see,
e.g., [Parish and Carlberg, 2020, Regazzoni et al., 2019, Fresca et al., 2021]. However, they
usually do not focus on the learning model for the purposes of control.

4.5.1 Deep Model Predictive Control

Deep Model Predictive Control, shortly DeepMPC, is the use of the NN predictor in the MPC
framework. The optimization problem arising from DeepMPC is typically non-convex due to
the presence of the NN model, and thus is generally hard to solve. Despite this, DeepMPC
has shown promising results in many applications across different fields, e.g., Lenz et al.
[2015] used DeepMPC for robotic foodcutting, Baumeister et al. [2018] used DeepMPC for
self-tuning of mode-locked lasers, Bieker et al. [2020] controlled a chaotic fluid flow using
DeepMPC and more recently, Lugagne et al. [2024] used DeepMPC to control gene expression
in thousands of single cells simultaneously.
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F LU I D F L OW S H A P I N G BY CO M M A N D I N G CO I L S A N D K E E P I N G
E L E C T RO D E S AT F I X E D P O T E N T I A L S

This chapter focuses on designing control methods to shape the fluid flow field by adjusting
individual coil currents while keeping the electrode potentials fixed. This approach simplifies
the control problem by eliminating the inherent nonconvexity caused by the multiplication
of coil and electrode commands in the body force term. I elaborate on the concept of this
nonconvexity and tackle the full control problem in the following chapter, Chapter 6. Despite
the simplification, this task still allows for a fairly rich set of different fluid flow patterns to
be achieved.

Briefly going over the chapter, I first describe the setup of the control problem. Following
this, I detail the process of generating data for the purpose of identifying the data-driven
models. Subsequently, I present the design of controllers based on the DeepMPC and
Koopman MPC methods. Concluding the chapter, I present the performance of both control
methods.

Notes on the Chapter

Chronologically, my initial focus was on developing the Koopman MPC-based approach,
which showed promise due to its resulting MPC problem being convex, allowing for rapid and
optimal solutions. However, this approach failed to maintain the desired flow shape as the
learned model struggled to capture system’s steady-state behavior. Consequently, I devised
the DeepMPC approach, which showcased improved performance, primarily attributed to
its training methodology involving the minimization of multi-step prediction error. Yet, after
refining the identification signal to induce varied steady states better, I observed the Koopman
MPC approach achieving competitive performance akin to the DeepMPC approach.

5.1 setup

The setup is illustrated in Fig. 5.1. Four electrodes and four coils are used, giving 𝑛el = 4 and
𝑛coil = 4. The electrodes are kept at a fixed potentials, employing commands (equivalent to
potentials in Volts, see definition in Section 3.5) of 𝜙1 = 10, 𝜙2 = 5, 𝜙3 = 5, and 𝜙4 = 0. The
coils are considered to be the actuators, and thus, the coil commands from the control input

u =

[
𝜓1 𝜓2 𝜓3 𝜓4

]T
. (5.1)

Furthermore, they are subject to box constraints

−1 ≤ 𝜓𝑖 ≤ 1, 𝑖 = 1, . . . , 4. (5.2)

35
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𝜓1

𝜙1 = 10

𝜙4 = 0

𝜓2

𝜓3 𝜓4

𝜙
2
=

5 𝜙
3
=

5

Figure 5.1: The coil based control setup. Dashed lines denote the 10 cm× 10 cm measurement domain.
The electrodes are kept at fixed potentials, thus are colored. The coils are the actuators,
and are shaded. The indexes of 𝜙s and 𝜓s denote the assignment of the coil commands
and the electrode commands to the coils and electrodes.

This more generally corresponds to the control input constraints

umin ≤ u ≤ umax. (5.3)

These constraints arise from the current limitation of the coils, which is ±440 mA.
The available measurements are the 2D top velocity field evaluated on a uniform 64× 64

grid inside the 10 cm× 10 cm measurement domain highlighted in Fig. 5.1. The measurements
are stacked into a vector y, defined as

y =

[
𝑣1,1,𝑥 , 𝑣1,1,𝑦 , . . . , 𝑣64,64,𝑥 , 𝑣64,64,𝑦

]T
, (5.4)

where 𝑣𝑖,𝑗,𝑥 and 𝑣𝑖,𝑗,𝑦 are the 𝑥 and 𝑦 components of the velocity at the 𝑖th grid row at the 𝑗th
grid column, respectively.

5.2 data generation

I seek to learn a model of the system dynamics from data. To this end, I employ my simulation
environment to generate a dataset of different input-output trajectories, where each trajectory
is a sequence of input-output pairs of the form{

(u0, y0), (u1, y1), . . . , (u𝑁−1, y𝑁−1)
}

, (5.5)

where 𝑁 is the length of the trajectory.
I always start the simulation from zero initial pressure and velocity. Therefore, the dynamics

is completely driven by the identification signal. I run the simulation using the timestep of
Δ𝑡 = 0.25 s. However, I subsample the measurements to Δ𝑡 = 0.5 s as the system dynamics
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is much slower than this sampling rate. This gives me a longer time horizon in the MPC
for the same computational cost. The total amount of the trajectories is 6, and length of
each trajectory is 𝑁 = 22001, giving the single trajectory length of 11 000 s. Next, I describe
the identification signal used to generate the data, the symmetry exploited to double the
trajectory amount, and the dimensionality reduction of the measurements.

5.2.1 Identification Signal

I found that it is necessary to have a signal that can drive the system into different steady-states
and keep it there for a certain time, as otherwise, the inferred models are not able to capture
the steady-state behavior of the system, and consequently, the control methods cannot keep
the flow in the desired shape.

To this end, I designed the following pseudorandom identification signal

u𝑘+1 =


u𝑘 if 𝑞𝑘 ≤ 𝑝,

s𝑘+1 if 𝑞𝑘 > 𝑝,
(5.6)

where 𝑝 is the probability of the input staying the same, 𝑞𝑘 ∼ 𝑈 ([0, 1]) is an uniformly
distributed random variable, and s𝑘 ∼ 𝑈

(
[−1, 1]4

)
is an uniformly distributed random vector

within the bounds of the input space. Moreover, I initialize the sequence with u0 = 0. The
probability 𝑝 can be adjusted to control the expected time between changes in the input
signal in the following way.

I now describe how to derive 𝑝 for a given expected time between changes in the input
signal. Whether the input signal changes or not is determined by the following binary random
variable

𝑐𝑘 = ⟦𝑞𝑘 > 𝑝⟧, (5.7)

where ⟦·⟧ is the Iverson bracket, which is equal to 1 if the condition inside the brackets is
true, and 0 otherwise. The total number of changes in the input signal in the first 𝑁 steps is
then given by

𝐶𝑁 =

𝑁∑
𝑘=1

𝑐𝑘 . (5.8)

Taking the expectation of the above equation gives

E [𝐶𝑁 ] =
𝑁∑
𝑘=1

E [𝑐𝑘] =
𝑁∑
𝑘=1

P (𝑞𝑘 > 𝑝) =
𝑁∑
𝑘=1

1− 𝑝 = 𝑁(1− 𝑝). (5.9)

For the expected time between changes in the input signal, 𝜏, the sampling period, Δ𝑡, the
following relationship holds

𝜏 =
𝑁Δ𝑡

𝐶𝑁 + 1. (5.10)
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By substituting the expression for 𝐶𝑁 into the above equation, doing some algebraic
manipulations, and solving for 𝑝, I obtain

𝑝 =
𝑁 + 1
𝑁
− Δ𝑡

𝜏
. (5.11)

For large enough 𝑁 , the above relationship can be approximated as

𝑝 ≈ 1− Δ𝑡

𝜏
. (5.12)

Furthermore, to obtain a bandlimited smooth signal, I apply a first-order low pass noncausal
filter to the identification signal. I present examples of the identification signal for different
values of 𝜏 in Fig. 5.2. The subplot Fig. 5.2a corresponds to the value of 𝜏 = 25 s, and the
subplot Fig. 5.2b corresponds to the value of 𝜏 = 80 s, which is the value I used to generate
the data.
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Figure 5.2: One dimensional example of the identification signal for different values of 𝜏.

5.2.2 Exploiting Symmetry

The system contains a symmetry with respect to the 𝑦-axis, allowing for the input-output
pairs to be mirrored across the 𝑦-axis. This symmetry is exploited to double the dataset’s size
and improve the generalization of the learned models. I attempt to illustrate the symmetry in
Fig. 5.3.

5.2.3 Dimensionality Reduction

I reduce the dimensionality of the trajectories by projecting them onto the dominant POD
modes. I visualize the first six POD modes in Appendix b, specifically in Fig. b.1.

I obtain the POD modes using the SVD-based method, as I described in Chapter 4. The
selection criterion for the number of modes is based on the energy captured by the modes,
and I select the number of modes that capture about 90 % of the energy of the measurements,
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Figure 5.3: Illustration of the symmetry with respect to the 𝑦-axis.

which in this case is 𝑟 = 300. The projection itself is done by first stacking the individual POD
modes in the following matrix:

Ξ =

[
ξ1, . . . ,ξ𝑟

]
, (5.13)

and then computing the reduced measurements as

ỹ = ΞTy. (5.14)

5.3 deep model predictive control

The first type of control method I consider is DeepMPC. The idea is to learn a model of the
system dynamics in the form of a NN and use this model in an MPC scheme. Specifically, the
NN, represented by fNN, predicts the next state x̂+ based on the current state x and control
input u, parameterized by θ, i. e.,

x̂+ = fNN(x, u;θ). (5.15)

Employing the delay embeddings discussed in Chapter 4, I take the state to be equivalent
to the POD projected velocity measurements from the previous section, i. e.,

x = ỹ. (5.16)

While using a single measurement as the state may seem unconventional, it proves sufficient
for capturing system dynamics in this case. Moreover, it reduces the state space dimensionality,
resulting in a smaller neural network and faster training and optimization processes.

5.3.1 Architecture

I illustrate the architecture of the NN as well as the input and output shapes of its layers in
Fig. 5.4a. The network is composed of multiple fully connected (Dense) layers, each of these
layers is composed of an affine transformation followed by a non-linear activation function,
in my case the ReLU. The structure of a Dense layer is illustrated in Fig. 5.4b.
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Figure 5.4: Neural network predictor.

The network contains a multiplicative nonlinearity, more precisely, a Hadamard product
between the embeddings of the state and the control input just before being passed to the
final layer. The original system does not explicitly contain this type of nonlinearity. However,
it helps the network to learn the system dynamics better. Moreover, the whole network has a
residual structure, where the input to the network is added to the output of the last layer.
The Euler-type integrators inspire this structure. More specifically, when the first order ODE
of the form

¤x = f(x), (5.17)

is integrated using the explicit Euler method, the state-transition map takes the form of

x+ = x+Δ𝑡f(x) = x+ g(x), (5.18)

which is precisely the structure of the neural network.

5.3.2 Training

I employ a two-stage training procedure, simplified from the method described by Bieker
et al. [2020]. Essentially, in the first stage, a one-step-ahead predictor is trained, while in the
second stage, the model is trained in a recurrent manner over the entire prediction horizon.
The first stage is conducted to avoid the vanishing or exploding gradient problem that arises
when training recurrent neural networks. The second stage is conducted to train the network
to predict accurately over the entire prediction horizon in the same manner as the MPC
scheme will use it.
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Thus, the first stage is done by minimizing the mean squared error of a one-step ahead
prediction, i. e., the loss function for one sample (x, u, x+) reads

ℒ(θ) = ∥fNN(x, u;θ) − x+∥22. (5.19)

In the second stage, the network is trained in a recurrent manner by minimizing the mean
squared error over the entire prediction horizon 𝑁p. This is done by standard backpropagation
using a time algorithm. I depict the unrolling of the network in Fig. 5.5.

x0

u0

𝑁p times

fNN
x̂1 fNN fNN

x̂𝑁p

u𝑁p−1u1

Figure 5.5: Unrolled recurrent neural network.

The loss function for the entire prediction horizon reads

ℒRNN(θ) =
1
𝑁p

𝑁p∑
𝑘=1
∥x̂𝑘 − x𝑘 ∥22, (5.20)

where

x̂𝑘+1 = fNN(x̂𝑘 , u𝑘 ;θ), 𝑘 = 1, 2, . . . , 𝑁p − 1, (5.21)
x̂1 = fNN(x0, u0;θ). (5.22)

The network is trained stochastically using minibatches and the ADAM optimizer. For the
used training hyperparameters, I refer the reader to Table 5.1. The parameters are the same
for both stages of training.

Table 5.1: Training hyperparameters.

Hyperparameter Value

Learning Rate 0.001
Batch Size 256

Number of Epochs 1000



42 fluid flow shaping by commanding coils and keeping electrodes at fixed potentials

5.3.3 Model Predictive Control

I adopt a standard formulation of a tracking MPC scheme as can be found, e. g., in [Borrelli
et al., 2017]. The arising optimization problem reads

minimize
{u𝑘}

𝑁p−1
𝑘=0

1
2eT

𝑁p
Qe𝑁p +

1
2∆uT

0R∆u0 +
1
2

𝑁p−1∑
𝑘=1

eT
𝑘Qe𝑘 +∆uT

𝑘R∆u𝑘 , (5.23a)

subject to x𝑘+1 = fNN(x𝑘 , u𝑘 ;θ), 𝑘 = 0, 1, . . . , 𝑁p − 1, (5.23b)
e𝑘 = r𝑘 −Cx𝑘 , 𝑘 = 1, 2, . . . , 𝑁p, (5.23c)
umin ≤ u𝑘 ≤ umax, 𝑘 = 0, 1, . . . , 𝑁p − 1, (5.23d)
∆u𝑘 = u𝑘 − u𝑘−1, 𝑘 = 1, 2, . . . , 𝑁p − 1, (5.23e)
x0 given. (5.23f)

In this context, e𝑘 represents the tracking error, {r𝑘}
𝑁p
𝑘=1 denotes the reference trajectory of

the tracked quantity, ∆u𝑘 stands for the control rate, Q and R are the matrices weighting
the tracking error and the control rate, respectively, and umin and umax are the lower and
upper bounds on the control input. The matrix C serves as the output matrix, determining
the tracked quantity. In the special case, when

C = Ξ, (5.24)

the tracked quantity becomes the entire velocity field, as the output matrix projects the state
back to the space of the original measurements. I solve this problem using the Sequential
Quadratic Programming Solver from the NLopt library1. The gradients are computed using
the automatic differentiation library ReverseDiff 2.

5.4 koopman operator-based control

The second type of control method I consider is Koopman MPC. The idea is to learn a model
of the system dynamics by approximating the Koopman operator and then use this model
in an MPC scheme. I start by identifying the system dynamics in form of the Koopman
predictor as described in Chapter 4, i. e.,

z0 = Ψ(x𝑘), (5.25a)
z𝑖+1 = Az𝑖 +Bu𝑘+𝑖 , 𝑖 = 0, . . . , 𝑁p − 1, (5.25b)
ŷ𝑘+𝑖 = Cz𝑖 , 𝑖 = 1, . . . , 𝑁p. (5.25c)

Here, I do not have to take the dimensionality of the Koopman state z into account, as it
will be eliminated by the dense formulation of the Koopman MPC problem. Therefore, I
still employ the delay embeddings of the POD projected velocity measurements as the state.

1 https://github.com/stevengj/nlopt
2 https://github.com/JuliaDiff/ReverseDiff.jl

https://github.com/stevengj/nlopt
https://github.com/JuliaDiff/ReverseDiff.jl
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However, I do not consider just a single measurement as in the case of the DeepMPC, but the
past 4 measurements and the past 3 inputs, i. e.,

Ψ(x𝑘) =
[
ỹT
𝑘−3 ỹT

𝑘−2 ỹT
𝑘−1 ỹT

𝑘
uT
𝑘−3 uT

𝑘−2 uT
𝑘−1

]T
. (5.26)

The dimensionality of the Koopman state is 1212.
The velocity measurements in the original space can then be reconstructed from the

Koopman state by selecting the corresponding values and multiplying them by the POD
modes Ξ. This relation gives the C matrix in the Koopman predictor for predicting the entire
velocity field. Lastly, I obtain the matrices A and B of the Koopman predictor by applying the
pseudoinverse-based DMD algorithm in Eq. (4.20) to all the trajectories in the dataset. The
found matrix A has all the eigenvalues inside the unit circle, thus the Koopman predictor is
stable.

I should note that for finding the predictor, it was vital to do the dimensionality reduction
of the measurements using POD, as the solution of the DMD algorithm would take a long
time (upwards of hours) otherwise, and the found predictory was badly conditioned.

5.4.1 Model Predictive Control

Having formed the Koopman predictor, I construct the Koopman MPC problem. Again, I use
the standard tracking MPC formulation. However, the Koopman predictor now gives the
system dynamics, i. e.,

minimize
{u𝑘}

𝑁p−1
𝑘=0

1
2eT

𝑁p
Qe𝑁p +

1
2∆uT

0R∆u0 +
1
2

𝑁p−1∑
𝑘=1

eT
𝑘Qe𝑘 +∆uT

𝑘R∆u𝑘 , (5.27a)

subject to z𝑘+1 = Az𝑘 +Bu𝑘 , 𝑘 = 0, 1, . . . , 𝑁p − 1, (5.27b)
e𝑘 = r𝑘 −Cz𝑘 , 𝑘 = 1, 2, . . . , 𝑁p, (5.27c)
umin ≤ u𝑘 ≤ umax, 𝑘 = 0, 1, . . . , 𝑁p − 1, (5.27d)
∆u𝑘 = u𝑘 − u𝑘−1, 𝑘 = 0, 1, . . . , 𝑁p − 1, (5.27e)
z0 given by Eq. (5.26), (5.27f)
u−1 given. (5.27g)

The matrices Q and R are the same as in the DeepMPC case, altough they should be positive
semidefinite, and the matrices A and B are obtained from the Koopman predictor. The matrix
C can be, again, constructed to express the quantity to be following the reference {r𝑘}

𝑁p
𝑘=1.

Furthermore, I solve this MPC problem in the dense formulation using the OSQP solver
[Stellato et al., 2020].

5.5 results

In this section, I present the performance of the developed control methods as well as the
prediction performance of the identified predictors.
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5.5.1 Prediction Performance

I showcase the typical prediction performance of the predictors over a validation trajectory
in Fig. 5.6. The figure shows the evolution of a 𝑥 velocity at a certain measurement point. It
shows both the long-term prediction and the prediction over the MPC prediction horizon of
𝑁p = 10 steps, or 5 s.
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(b) Prediction on the prediction horizon.

Figure 5.6: Comparison of the prediction performance of the identified predictors. Red region denotes
the prediction horizon.

The performance of the predictors is comparable. However, the Koopman predictor is
slightly more accurate in the short-term prediction, while the NN predictor captures the
close-to-steady-state behavior of the system more accurately.

5.5.2 Control Performance

Here, I present the control performance of the developed control methods. Using both
controllers, I was, in simulations, able to achieve the desired flow in all four primary directions,
i. e., up, down, left, and right. This was accomplished by setting the reference velocity over a
certain region ℛ of the domain to a constant desired value, e. g., 𝑣𝑥 = 0 cm s−1, 𝑣𝑦 = 1 cm s−1

for the up direction.
Practically, this involves constructing the output matrix C for the predictors, ensuring that

the output represents the velocity field at the measurement points within the region ℛ, and
taking the reference r to be the prescribed velocity field. I visualize the reference velocity
fields together with the control regions for the cases of the up and right directions in Fig. 5.11.
Furthermore, I take the Q and R in the cost functions of both MPCs to be

Q =
2 · 103

𝑁ℛ
I2𝑁ℛ×2𝑁ℛ , R = I𝑛coil×𝑛coil , (5.28)

where I is an identity matrix, and by 𝑁ℛ I denote the number of measurement points that lie
within the region ℛ.
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Up Direction

To assess the performance of the controllers, I study one of these directions, the up direction,
in detail. I conduct a 160 s simulation for each controller, where at the 10 s mark, the reference
velocity is set to 𝑣𝑥 = 0 cm s−1, 𝑣𝑦 = 1 cm s−1. Both of the simulations start from the same
initial condition, i. e., zero pressure and velocity. I give the plots that display the spatially
averaged velocity field across the control region in Fig. 5.8, the tracking error in Fig. 5.9, and
the control inputs for the DeepMPC and Koopman MPC in Fig. 5.10. The tracking error is
normalized by the initial error, and is defined as:

error𝑘 =
∥y𝑘 − r∥2
∥y0 − r∥2

, (5.29)

where y𝑘 is the actual velocity field at the 𝑘-th time step, and r is the reference velocity field.
Moreover, I present the velocity fields at the end of the simulation in Fig. 5.7.
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Figure 5.7: Velocity fields at the end of the simulation for the up direction.
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Figure 5.8: Comparison of spatially averaged velocity field for the DeepMPC and Koopman MPC.
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Figure 5.9: Comparison of tracking error for the DeepMPC and Koopman MPC.
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Figure 5.10: Comparison of control inputs for the DeepMPC and Koopman MPC.
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From the point of minimizing the tracking error, the performance of both controllers seems
to be comparable, as both controllers achieve the desired flow in the upward direction. The
DeepMPC achieves the final error of about 6 % while the Koopman MPC achieves the final
error of about 10 %. This appears to be in order with the prediction performance of the
predictors, where the NN predictor seems to be more accurate when close to the steady state.

However, from the point of the quantity of the response and the control inputs, there is a
clear difference between the two controllers. The DeepMPC seems to be driving the system
in much more oscillatory manner, as evident from Fig. 5.8 and Fig. 5.9. Moreover, notice that
in Fig. 5.10, the Koopman MPC puts the coils 1 and 2 to zero, while the DeepMPC does not.
Since coils 1 and 2 are unnecessary to achieve the desired flow in the upward direction, the
Koopman MPC demonstrates greater efficiency in this case.

Table 5.2: Comparison of MPC computation times for the DeepMPC and Koopman MPC.

Method Average Maximum Minimum

DeepMPC 320 ms 731 ms 85 ms
Koopman MPC 219 µs 297 µs 193 µs

Furthermore, I compare the computational times3 of both controllers in Table 5.2. The
Koopman MPC is about 1000 times faster than the DeepMPC, which makes it viable for
deployment on the real system. Unfortunately for the DeepMPC, it overruns the control
timestep of 500 ms in the worst case, which makes it unsuitable for real-time control.

However, I am certain that the computational time of the DeepMPC could be improved
upon by not completely relying on the automatic differentiation for the computation of the
gradients. Currently, the gradients are computed by the automatic differentiation, which is
okay for the network itself. However, the Jacobian matrix of the criterion w.r.t. the system
output could be computed analytically.

3 The computation times are measured on the MacBook Pro 14" (2023) with the M2 Max chip.
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Figure 5.11: References for the up and right directions (left column) and their corresponding simulated
velocity fields (right column). The arrows in the reference are placed at the measurement
points, where the velocity field is prescribed. References for the left and down directions
are analogous.



6
F LU I D F L OW S H A P I N G BY CO M M A N D I N G B O T H CO I L S A N D
E L E C T RO D E S

This chapter aims to design a control strategy for the full problem of driving the fluid flow of
a conductive liquid to a desired shape by setting both the coil currents and the electrode
potentials.

6.1 setup

Similarly to the previous chapter, I start by introducing the control setup. The setup is
essentially the same as in the previous chapter but with the addition of the electrode
commands as control inputs. This means that the control inputs are now the coil commands
of the four middle coils:

u𝜓 =

[
𝜓1 𝜓2 𝜓3 𝜓4

]T
, (6.1)

and the electrode commands of the four peripheral electrodes

u𝜙 =

[
𝜙1 𝜙2 𝜙3 𝜙4

]T
. (6.2)

Thus, 𝑛coil = 4 and 𝑛el = 4. The assignment of the coil commands and the electrode commands
to the coils and electrodes is shown in Fig. 6.1. Furthermore, the commands are bounded by
the following constraints

0 ≤ 𝜙𝑖 ≤ 10, 𝑖 = 1, 2, 3, 4, (6.3)

and
−1 ≤ 𝜓𝑖 ≤ 1, 𝑖 = 1, 2, 3, 4. (6.4)

Generally, the constraints take the form of

u𝜓,min ≤ u𝜓 ≤ u𝜓,max, u𝜙,min ≤ u𝜙 ≤ u𝜙,max. (6.5)

Again, there are available 2D measurements of the top velocity field in a 10 cm × 10 cm
region denoted by the dashed line in Fig. 6.1. However, the measurements are taken on a grid
of 32× 32 points, half of the grid used in the previous chapter. This because the real platform
uses this resolution of the PIV measurements. The measurements are stacked into a vector:

y =

[
𝑣1,1,𝑥 , 𝑣1,1,𝑦 , 𝑣2,1,𝑥 , 𝑣2,1,𝑦 , . . . , 𝑣32,32,𝑥 , 𝑣32,32,𝑦 ,

]
(6.6)

where 𝑣𝑖,𝑗 is the 𝑥 or 𝑦 component of the velocity at the 𝑖th row and the 𝑗th column of the
grid.

49
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𝜙2 𝜙3

Figure 6.1: Full control setup. The dashed lines denote the 10 cm× 10 cm measurement region. The
indexes of 𝜙s and 𝜓s denote the assignment of the coil commands and the electrode
commands to the coils and electrodes.

6.2 data generation

I use the same data as in the previous chapter. However, I augment them using symmetries
of the full control problem. This is possible due to the full control problem containing
many more symmetries than the reduced one. In addition to symmetry about the 𝑦 axis, I
can exploit the symmetry about the 𝑥 axis and also rotational symmetries. I illustrate the
symmetries in Fig. 6.2.

This allows me to take the six trajectories from the previous and generate the full dataset of
48 trajectories. The length of trajectories, therefore, stays the same as in the previous chapter,
i.e., a total of 22001 samples, with the timestep of 0.5 s resulting in the length of 11 000 s.
Again, I reduce the dataset’s dimensionality by projecting it on its dominant POD modes. I
showcase the first six POD modes of the dataset in Appendix b, specifically in Fig. b.2. The
truncation criterion stays the same as in the previous chapter, i.e., the cumulative energy of
the modes is at least 90% of the total energy, leading to 512 modes.
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(a) Symmetry about the 𝑥 axis. (b) Symmetry about the 𝑦 axis.

90◦

(c) Rotational symmetry.

Figure 6.2: Symmetries of the full control problem.

6.3 koopman mpc

The success of Koopman MPC from the previous chapter begs the question of whether the
same approach can be used to solve the full control problem. The answer is affirmative.
However, there are some caveats, which I discuss in the following sections and subsections.

6.3.1 Rank-One Control Input Constraint

Now, let me explain what I referred to in the last chapter as inherent nonconvexity arising
from the multiplication of the coil commands and the electrode commands in the body force
term. Recall that the Lorentz Force term of the Navier–Stokes equations is

F = 𝜎E×B =

𝑛el∑
𝑖=1

𝑛coil∑
𝑗=1

𝜙𝑖𝜓 𝑗𝜎E𝑖 ×B𝑗 . (6.7)

The Lorentz Force term enters into the Navier Stokes equations in a linear fashion, but it is
not the actual control input. The control inputs are the coil commands 𝜓, and the electrode
commands 𝜙. Whenever the coil or electrode commands are fixed, the term becomes linear in
the other set of commands. However, the term is nonlinear when both sets of commands are
allowed to vary. This breaks the assumption of linearity in the control inputs of the Koopman
predictor.
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Therefore, neither of the commands can be considered as control inputs. Instead, let me
introduce a new virtual control variable, u ∈ R𝑛el𝑛coil , which is the product of the coil and
electrode commands, more precisely

u = vec
(
u𝜓uT

𝜙

)
, (6.8)

where vec is the vectorization operator, which stacks the columns of a matrix into a vector.
Then, the Lorentz Force term becomes

F =

𝑛el𝑛coil∑
𝑖=1

𝑢𝑖𝜎E(𝑖−1)div 𝑛coil+1 ×B(𝑖−1) mod 𝑛coil+1, (6.9)

where mod is the modulo operator and div is the integer division operator.
The control input u is now linear in the Lorentz Force term. However, it still must be

decomposable into the coil and electrode commands, meaning it must satisfy Eq. (6.8) for
some u𝜙 and u𝜓. This is a rank-one constraint on the control input, which is nonconvex.

6.3.2 Koopman Predictor

Based on the former argument, the Koopman predictor has the same form as in the previous
chapter but with the virtual control input u = vec

(
u𝜓uT

𝜙

)
instead of the coil commands

z0 = Ψ(x𝑘), (6.10a)
z𝑖+1 = Az𝑖 +Bu𝑘+𝑖 , 𝑖 = 0, . . . , 𝑁p − 1, (6.10b)
ŷ𝑘+𝑖 = Cz𝑖 , 𝑖 = 1, . . . , 𝑁p. (6.10c)

The Koopman state can be taken the same as in the previous chapter, i.e., the delay embedded
POD projected fluid flow measurements

Ψ(x𝑘) =
[
ỹT
𝑘−3 ỹT

𝑘−2 ỹT
𝑘−1 ỹT

𝑘
uT
𝑘−3 uT

𝑘−2 uT
𝑘−1

]T
. (6.11)

This time the dimensionality of the Koopman state is 2060. The control input u is the rank-one
control input as defined in Eq. (6.8). The Koopman predictor matrices A, B are computed
using the EDMD algorithm on the symmetrized dataset from Section 6.2. The matrix A has
all the eigenvalues inside the unit circle, which means that the Koopman predictor is stable.
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6.3.3 Model Predictive Control

The MPC problem is similar to the one in the previous chapter, but with the penalization of
the rates of both types of commands and the rank-one constraint on the virtual control input
u. The full control MPC is therefore

minimize
{u𝜙,𝑘}𝑁p−1

𝑘=0 ,{u𝜓,𝑘}𝑁p−1
𝑘=0

𝐽
({

u𝜙,𝑘
}𝑁p−1
𝑘=0 ,

{
u𝜓,𝑘

}𝑁p−1
𝑘=0 , {e𝑘}

𝑁p
𝑘=1

)
, (6.12a)

subject to z𝑘+1 = Az𝑘 +Bu𝑘 , 𝑘 = 0, 1, . . . , 𝑁p − 1, (6.12b)
e𝑘 = r𝑘 −Cz𝑘 , 𝑘 = 1, 2, . . . , 𝑁p, (6.12c)

u𝑘 = vec
(
u𝜙,𝑘uT

𝜓,𝑘

)
, 𝑘 = 0, 1, . . . , 𝑁p − 1, (6.12d)

u𝜙,min ≤ u𝜙,𝑘 ≤ u𝜙,max, 𝑘 = 0, 1, . . . , 𝑁p − 1, (6.12e)
u𝜓,min ≤ u𝜓,𝑘 ≤ u𝜓,max, 𝑘 = 0, 1, . . . , 𝑁p − 1, (6.12f)
Δu𝜙,𝑘 = u𝜙,𝑘 − u𝜙,𝑘−1, 𝑘 = 0, 1, . . . , 𝑁p, (6.12g)
Δu𝜓,𝑘 = u𝜓,𝑘 − u𝜓,𝑘−1, 𝑘 = 0, 1, . . . , 𝑁p, (6.12h)
u𝜙,−1 given, (6.12i)
u𝜓,−1 given, (6.12j)
z0 given by Eq. (6.11), (6.12k)

where the criterion 𝐽 is

𝐽
({

u𝜙,𝑘
}𝑁p−1
𝑘=0 ,

{
u𝜓,𝑘

}𝑁p−1
𝑘=0 , {e𝑘}

𝑁p
𝑘=1

)
=

1
2eT

𝑁p
Qe𝑁p +

1
2ΔuT

𝜙,0R𝜙Δu𝜙,0 +
1
2ΔuT

𝜓,0R𝜓Δu𝜓,0

+1
2

𝑁p−1∑
𝑘=1

eT
𝑘Qe𝑘 +ΔuT

𝜙,𝑘R𝜙Δu𝜙,𝑘 +ΔuT
𝜓,𝑘R𝜓Δu𝜓,𝑘 ,

(6.13)

where Q is the tracking error weight, R𝜙 is the electrode commands rate weight, and R𝜓 is
the coil commands rate weight.

6.4 alternating minimization scheme

To simplify the notation, I denote the sequence of the commands over the prediction horizon
as

𝑈𝑎 = {u𝑎,𝑘}
𝑁p−1
𝑘=0 , 𝑎 ∈

{
𝜙,𝜓

}
. (6.14)

The nonconvex rank-one constraint on the virtual control input u makes the optimization
problem Eq. (6.12) hard to solve, even locally. However, the problem still retains a structure
that can be exploited. Essentially, the problem becomes convex in 𝑈𝜓 for a fixed 𝑈𝜙, and vice
versa. This suggests an alternating minimization scheme, where the optimization problem is
solved iteratively by fixing one set of commands and optimizing the other set. Furthermore,
when the single set of commands is fixed, the problem becomes a standard Koopman MPC
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problem developed in the previous chapter, which can be solved extremely efficiently in the
dense formulation using a specialized quadratic programming solver.

6.4.1 Algorithm

Let me now rephrase the Koopman MPC problem from the previous chapter, more specifically
Eq. (5.27), in a slightly more general form, which will be used in the alternating minimization
scheme. The Koopman MPC problem reads

minimize
𝑈𝑎

1
2eT

𝑁p
Qe𝑁p +

1
2∆uT

𝑎,0R∆u𝑎,0 +
1
2

𝑁p−1∑
𝑘=1

eT
𝑘Qe𝑘 +∆uT

𝑎,𝑘R𝑎∆u𝑎,𝑘 , (6.15a)

subject to z𝑘+1 = Az𝑘 +B𝑎,𝑘u𝑘 , 𝑘 = 0, 1, . . . , 𝑁p − 1, (6.15b)
e𝑘 = r𝑘 −Cz𝑘 , 𝑘 = 1, 2, . . . , 𝑁p, (6.15c)
u𝑎,min ≤ u𝑘 ≤ u𝑎,max, 𝑘 = 0, 1, . . . , 𝑁p − 1, (6.15d)
∆u𝑎,𝑘 = u𝑎,𝑘 − u𝑎,𝑘−1, 𝑘 = 0, 1, . . . , 𝑁p − 1, (6.15e)
z0 given by Eq. (6.11), (6.15f)
u𝑎,−1 given, (6.15g)

where 𝑎 ∈
{
𝜙,𝜓

}
. This formulation covers both cases of fixing the electrode commands

and optimizing over the coil commands and vice versa. The only significant difference is
the time-varying input matrix B𝑎,𝑘 , which is either B𝜙,𝑘 or B𝜓,𝑘 . These time-varying input
matrices can be constructed from the other set of commands, and the constant input matrix
B of the full Koopman predictor as

B𝜓,𝑘 = B
(
u𝜙,𝑘 ⊗ I𝑛coil×𝑛coil

)
, 𝑘 = 0, 1, . . . , 𝑁p − 1, (6.16)

in case of fixing the electrode commands and optimization over the coil commands, and

B𝜙,𝑘 = B
(
I𝑛el×𝑛el ⊗ u𝜓,𝑘

)
, 𝑘 = 0, 1, . . . , 𝑁p − 1, (6.17)

in the other case. Moreover, ⊗ is the Kronecker product. By this construction, the minimizer
of the problem in Eq. (6.15) is the same as the minimizer of the problem in Eq. (6.12) when
the appropriate set of commands is fixed.

I show the pseudocode of the alternating minimization scheme in Section 6.4.1. The
algorithm requires an initial guess for one set of commands. Here, I provide the algorithm
for the case when the initial guess is provided for the electrode commands. The other case is
similar.

For the termination criterion, I suggest using the change in the electrode commands, i.e.,
the RMSE of the change in the electrode commands between two consecutive iterations:√√√

1
𝑁p

𝑁p−1∑
𝑘=0




u(𝑛)
𝑘,𝜙 − u(𝑛−1)

𝑘,𝜙




2

2
≤ 𝜀, (6.18)

where 𝜀 is the tolerance.
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Algorithm 1 Alternating Minimization Scheme for solving Eq. (6.12)

Require: z0, u𝜙,−1, u𝜓,−1, initial guess: 𝑈 (0)𝜙
𝑛 ← 0
repeat

𝑈
(𝑛+1)
𝜓 ← Solve Eq. (6.15) fixing 𝑈

(𝑛)
𝜙

𝑈
(𝑛+1)
𝜙 ← Solve Eq. (6.15) fixing 𝑈

(𝑛+1)
𝜓

𝑛 ← 𝑛 + 1
until termination
return 𝑈

(𝑛)
𝜙 , 𝑈 (𝑛)𝜓

6.4.2 Convergence

The optimization problem Eq. (6.15) is nonconvex, and thus the alternating minimization
scheme, can at best find a local minimum. This begs the question of convergence. To shine
some light on this question, let me give the following well-known result of Grippo and
Sciandrone [2000]:

Result 1 Consider the following optimization problem

minimize
x∈𝑋,y∈𝑌

𝑓 (x, y), (6.19)

where 𝑓 (x, y) is a continuously differentiable function over the set 𝑋 ×𝑌, where 𝑋 and 𝑌 are closed
and convex sets. Assuming that every problem of the alternating minimization scheme

x(𝑛+1) = argmin
x∈𝑋

𝑓 (x, y(𝑛)), y(𝑛+1) = argmin
y∈𝑌

𝑓 (x(𝑛+1), y), (6.20)

has a solution, then every limit point of the sequence
{(

x(𝑛), y(𝑛)
)}

is a stationary point of the original
problem.

The result suggests that the alternating minimization scheme will converge to a stationary
point of the original problem.

6.5 results

In this section, I present the performance of the developed control algorithm. Similarly, to
the previous chapter, I construct a reference flow at certain points in the measured region.
The penalty matrices are the same in all examples, i.e.,

Q =
104

𝑁ℛ
I2𝑁ℛ×2𝑁ℛ , R𝜙 =

1
10I𝑛el×𝑛el , R𝜓 = I𝑛coil×𝑛coil , (6.21)

where 𝑁ℛ is the number of points in the measured region, where the reference flow is
prescribed. The prediction horizon is 𝑁p = 10, or 5 s. In the first timestep, the alternating
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minimization scheme is initialized with random electrode commands sampled from a uniform
distribution within the input constraints. The electrode commands from the previous timestep
are used as the initial guess in the following timesteps.

Being able to set both the coil and electrode commands opens up more possibilities for
achievable flow shapes. E. g., the flows do not have to be just in the 𝑥 or 𝑦 direction but can be
rotated or have a more complex shape. I showcase two such flows: two rotated vortices and a
diagonal flow. The simulations are started from the same initial condition, i. e., zero initial
velocity and pressure. The reference is set at the time 𝑡 = 0 and is kept constant throughout
the simulation. The length of each simulation is 90 s.

6.5.1 Two Rotated Vortices

I start with a reference of two vortices rotated by 45◦, which are together with the flow field
at the final time of the simulation shown in Fig. 6.3a, and the evolution of the tracking error
is shown in Fig. 6.3b. As the figures show, the control algorithm successfully creates the
two vortices. The final tracking error achieved is 32 %. Note that the reference is not really
physically realizable. Therefore the error is not expected to be zero.

Moreover, I present the statistics1 of the MPC solution time and the number of iterations of
the alternating minimization scheme in Table 6.1. The solution time is well below the 500 ms
of the control timestep, which is a good sign. The number of iterations is also low, which
suggests that the alternating minimization scheme converges quickly.

Table 6.1: Statistics of the MPC solution time and iterations of the alternating minimization scheme
for the two rotated vortices.

Metric Average Maximum Minimum

Solution time 17 ms 36.6 ms 8.7 ms
Iterations 3.4 7 1

6.5.2 Diagonal Flow

The second example is a diagonal flow, which is shown in Fig. 6.4a, and the evolution of the
tracking error is shown in Fig. 6.4b. The control algorithm shapes the flow into a diagonal
shape. However the tracking error is higher than in the previous example, reaching 70 % at
the end of the simulation. It appears there is a large discrepancy between the magnitude of
the reference and the achieved flow, which is about twice as large in the maximum. This may
be a sign of a local minimum, which the alternating minimization scheme has converged to.
However, I must again note that the reference is not physically realizable, and therefore, the
error is not expected to be zero.

1 The computation times are measured on the MacBook Pro 14" (2023) with the M2 Max chip.
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Figure 6.3: Two rotated vortices.

Table 6.2: Statistics of the MPC solution time and iterations of the alternating minimization scheme
for the diagonal flow.

Metric Average Maximum Minimum

Solution time 13.3 ms 35.1 ms 3.6 ms
Iterations 3 8 1
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Figure 6.4: Diagonal flow.
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6.6 notes on online learning

The official thesis assignment includes the consideration of incorporating online learning into
the control algorithm. After consulting with my supervisor, we have decided to postpone the
implementation of online learning to future work due to time constraints.

However, I can share my thoughts on how online learning could be integrated into the
control algorithm. Online learning involves updating the Koopman matrices, A and B, in
real time as data is collected during the execution of the control algorithm. I suggest using a
minibatch approach for the updates, where the matrices are revised every 100 or so samples
using, for example, the ADAM optimizer. The challenge is that the dense formulation of
the Koopman MPC must be entirely recomputed with each update of the A matrix. This
process takes several seconds, making real-time applications infeasible. A potential solution
is to employ a parallel processing environment, where the predictor is updated, and the
dense formulation of the Koopman MPC problem is recomputed in the background while
the control algorithm continues to run.
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E X P E R I M E N TA L VA L I DAT I O N O F D E S I G N E D CO N T RO L
A L G O R I T H M

In this chapter, I detail the experiments performed to validate the control algorithm designed
for shaping MHD flows. Specifically, the control algorithm from Chapter 6 is applied to shape
the flow within the experimental setup outlined in Chapter 2. Additionally, the complete
control loop diagram is provided in Fig. 7.1, and the parameters of the experiments are listed
in Table 7.1.

𝑓 −1

Reference

Velocity field y𝑘

Electrode
potentials

z0

Subsequent frames

u𝜙,𝑘

u𝜓,𝑘u𝑘

ỹ𝑘

MPC

minimizeu𝜙 𝐽(u𝜙)minimizeu𝜓 𝐽(u𝜓)

ỹ𝑘 = ΞTy𝑘

POD
projection

u𝑘 = vec
(
u𝜓,𝑘u𝜙,𝑘

T)
Virtual input

Coil
currents

Ψ(x𝑘)

Delay
Embeddings

PIV
image processing

Figure 7.1: Signal flow diagram of the control loop. Function 𝑓 −1 maps the coil commands to the coil
currents and is the inverse of 𝑓 introduced in Eq. (3.12).

Table 7.1: Parameters of the experiments.

Parameter Value

Seeding 85 µm PMMA particles
PIV resolution 32× 32 (10 cm× 10 cm)

Electrolyte 0.6 % sulfuric acid in water
Fluid height 8 mm

The goal of each experiment is to shape the flow into a desired reference flow. Each
experiment is conducted in the same way: the flow is at rest initially, and the controller is
turned on for the duration of the experiment, which is 87 s. For each experiment, I provide
the prescribed reference flow, the flow at the end of the experiment, and the long exposure
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shot of the flow. Moreover, for qualitative evaluation, I use the normed tracking error from
Eq. (5.29).

I provide the results of four experiments in the following sections. The first two experiments
use the same reference flows as in the previous chapter so the reader can compare the results
of the simulation and the experiment. The last two experiments use different reference flows
to show the controller’s additional capabilities.

7.1 experiment 1: two vortices

The first experiment is shaping the flow into two vortices. I present the results of the
experiment in Fig. 7.2. As the figures show, the controller is able to shape the flow into the
desired shape, and the tracking error converges to about 45 %. Compare that to the simulation
results in Fig. 6.3, where the tracking error converges to about 32 %.
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(b) Evolution of the tracking error.

Figure 7.2: Experiment 1: Two Vortices.
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7.2 experiment 2: diagonal flow

The second experiment consists of creating a diagonal flow. I show the experiment results in
Fig. 7.3. The controller is able to shape the flow into the desired shape, and the tracking error
converges to about 65 % of the initial error. Compare that to the simulation results in Fig. 6.4,
where the tracking error reaches 70 %.
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Figure 7.3: Experiment 2: Diagonal Flow.

7.3 experiment 3: multiple directional flow

The third experiment consists of creating flows in multiple directions, which in turn lead to
four vortices. I show the results of the experiment in Fig. 7.4. The controller, again, shapes
the flow close to the desired shape and decreases the error to about 55 % of the initial error at
the end of the experiment.
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Figure 7.4: Experiment 3: Multiple Directional Flow.

7.4 experiment 4: striped flow

The last experiment consists of creating a flow of two stripes offseted from the origin. I show
the results of the experiment in Fig. 7.5. The controller successfully shapes the flow into the
desired shape and decreases the tracking error to about 56 % of the initial error at the end of
the experiment.
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Figure 7.5: Experiment 4: Striped Flow

7.5 discussion

At the end of the experiments, the fields were close to the desired shapes, at least in
terms of fluid patterns and flow directions. The tracking error decreased throughout the
experiments, indicating that the controller effectively guided the flow toward the desired
shape. However, there are indications that the controller could be improved. Oscillations were
present in all experiments, and in the final experiment, the error significantly increased at the
beginning. This is likely due to two main factors: significant noise in the measurements and
the predictor being trained on simulation data that do not perfectly match the experimental
data. Additionally, further error reduction might be possible, but this is difficult to determine
without a comprehensive reachability analysis of the system, which is beyond the scope of
this thesis.





8
CO N C LU S I O N S & O U T L O O K

In this thesis, I aimed to develop a data-driven feedback control algorithm for shaping MHD
flows. This algorithm was to be validated using an experimental setup comprising a tank
with a water-based electrolyte, electrodes, and coils for actuation and a PIV system for flow
measurement. I approached this task in the following steps:

In Chapter 2, I described the experimental setup, outlined the control objectives, and
provided a brief mathematical description of the MHD flow.

In Chapter 3, I presented the simulation environment of the MHD flow in the experimental
setup that I developed during my thesis and the previous semester. The simulation environ-
ment solves the incompressible Navier-Stokes equations in three dimensions using the Finite
Element Method with an Incremental Pressure Correction Scheme. Additionally, I validated
the simulation environment by comparing its results with those from experiments conducted
using the setup. The simulation results showed good agreement with the experimental results.
Furthermore, I validated the simulation environment using the commercial computational
fluid dynamics software COMSOL Multiphysics. My simulation environment was able to
conduct the simulation approximately ten times faster.

In Chapter 4, I introduced the methods used for constructing the control algorithm,
including MPC and techniques for building surrogate models.

In Chapter 5, I designed two control algorithms for shaping the flow using only the coils
while fixing the electrodes at a constant potential. The first algorithm was a DeepMPC, which
utilized a deep neural network to predict future states of the flow. The second algorithm
was a Koopman MPC, which used a linear system approximating the Koopman operator to
predict future states. These models were constructed from data generated by the simulation
environment. Both controllers successfully shaped the flow into the desired configurations
and exhibited similar performance in terms of tracking error. However, the Koopman MPC
outperformed the DeepMPC in computational efficiency by approximately 1000 times.

In Chapter 6, I developed a control algorithm for shaping the flow using both the coils and
the electrodes. This algorithm was based on the Koopman MPC algorithm from Chapter 5, but
extended to include the electrodes as control inputs, resulting in a nonconvex MPC problem.
However, the problem had an exploitable structure. I solved the problem by alternately
solving the MPC problems from the previous chapter, once with fixed electrode potentials
and once with fixed coil currents. This approach rapidly converged to a stationary point of
the nonconvex problem, enabling the control algorithm to shape the flow into the desired
patterns.

Lastly, in Chapter 7, I conducted experiments on the experimental setup to validate the
control algorithm developed in Chapter 6. The control algorithm successfully shaped the
flow close to the desired configurations in all experiments, albeit with some discrepancies.
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8.1 future work

Firstly, designing a more effective initialization scheme for the MPC problem beyond the
current random initialization would be highly beneficial. A systematic approach to initial-
ization could significantly improve the algorithm’s efficiency and reliability. Additionally,
training the predictor directly on experimental data could enhance the control algorithm’s
performance. However, this approach presents significant challenges. It requires a substantial
amount of data, and the data from the experiments are highly noisy. DMD-based methods
are particularly sensitive to noise, complicating the training process. Incorporating the
system’s symmetries directly into the predictor could potentially reduce data requirements
and mitigate some of these issues.

Exploring other tasks beyond flow shaping presents another promising direction. For
instance, optimizing fluid mixing in the tank would involve developing a new cost function,
such as maximizing the flow’s vorticity. Alternatively, the task of transporting objects within
the tank could be considered. This is exceptionally challenging due to the disturbance of
flow measurements caused by the object’s presence, necessitating a highly adaptive control
algorithm or a robust observer.

Expanding the experimental platform is another avenue for future work. Integrating more
electrodes and coils would enable the generation of more complex flow patterns. Furthermore,
if the electrodes were more localized, it could open up opportunities for the development
and exploration of distributed control algorithms. This would allow for more precise and
varied control over the fluid dynamics within the tank.
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a
D E N S E F O R M U L AT I O N O F T R AC K I N G M P C

In this appendix, I present the dense formulation of the tracking MPC algorithm. It was left
out in the main text for brevity and clarity of the exposition.

The minimizer of problems in Eq. (5.27) and Eq. (6.15) can be efficiently computed using
the dense formulation of the MPC algorithm. This dense formulation reads

minimize
U

1
2UTHU+ fTU (a.1a)

subject to Umin ≤ U ≤ Umax, (a.1b)
(a.1c)

where U =

[
uT

0 uT
1 . . . uT

𝑁p−1

]T
is the vector of control inputs, H is the Hessian matrix, f

is the gradient vector, and Umin and Umax are the bounds on the control inputs. The Hessian
matrix H and the gradient vector f can be expressed as

H = ĀTC̄TQ̄C̄Ā+ R̄, fT
=


zT

0G
−uT
−1R̂
−r̄TF

 , (a.2)

where

F = Q̄C̄Ā, G = ÂTC̄TQ̄C̄Ā, (a.3a)

Â =


A
A2

...
A𝑁p


, R̂ =


RT

0
...
0



T

, r̄ =


r0

r1
...

r𝑁p


, (a.3b)

Q̄ =


Q 0 · · · 0
0 Q · · · 0
...

... . . . ...
0 0 · · · Q


, R̄ =


−R 2R −R · · · 0
0 −R 2R · · · 0
...

...
... . . . ...

0 0 · · · −R R


. (a.3c)

C̄ =


C 0 · · · 0
0 C · · · 0
...

... . . . ...
0 0 · · · C


, Ā =


B 0 · · · 0

AB B · · · 0
...

... . . . ...
A𝑁p−1B A𝑁p−2B · · · B


. (a.3d)
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b
V I S UA L I Z AT I O N O F P O D M O D E S

In this appendix, I visualize the first 6 dominant POD modes of the dataset from Chapter 5
and the symmetrized dataset from Chapter 6 in Fig. b.1 and Fig. b.2, respectively. These
figures were omitted from the main text to maintain conciseness and readability.
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Figure b.1: First six POD modes of the dataset from Chapter 5.
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Figure b.2: First six POD modes of the symmetrized dataset from Chapter 6.
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