
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of master’s thesis

Graph neural networks and deep reinforcement learning in job-

shop scheduling

Bc. Yury Hayeu

prof. Ing. RNDr. Martin Holeňa, CSc.

Informatics

Knowledge Engineering

Department of Applied Mathematics

until the end of summer semester 2024/2025

Instructions

One of the most common problems in industries such as manufacturing and

transportation [1] is the assignment of large amounts of operations to available

resources, i.e. processing units, in such a way that the order of processed operations and

the specification of processing units are respected. The solution to the problem is the

schedule that is optimal to business-aligned criteria, e.g. the time of completion,

manufacturing cost, utilization rate and others. The problem is known as a job-shop

scheduling problem (JSSP). It is commonly solved using heuristic methods such as

priority dispatch rules, evolutionary algorithms, ant colony optimisation and others.

However, these methods use the assumptions of a static environment and invariable

problem specification that compromises performance in practice. Recent studies [2-7]

claim that methods based on Reinforcement Learning (RL) perform well in dynamic

environments with random job arrival. However, the application of RL-based methods to

JSSP is complicated due to flexibility in state and action spaces. One of the prominent

research directions is to represent the state of the shop floor using a graph and later

process it with graph neural networks (GNN) [4, 6] to obtain a fixed-length

representation. There is a lack of a unified benchmarks to evaluate the performance of

methods under dynamic conditions. In most cases, the authors either implement their

dynamic simulator or evaluate it on static instances.

The student has to accomplish the following tasks:

1. Get familiar with methods of solving JSSP employing RL and Graph Neural Networks.

Electronically approved by Ing. Magda Friedjungová, Ph.D. on 16 February 2024 in Prague.

2. Implement a simulator to evaluate the performance of JSSP under random job arrival.

The simulator must support basic JSSP and some possible extensions, e.g. flexible JSSP,

JSSP with setup times, JSSP with breakdowns and others.

3. Select and implement at least 5 methods you learned in 1.

4. Propose a novel method. Focus on

- the improvement of current methods by incorporating ideas from research in RL or GNN;

- incorporating information about system evolution using recurrent neural networks or

dynamic graph networks.

5. Propose an evaluation pipeline and use it to perform a comparative study of the

implemented methods.

Resources:

1. The flexible job shop scheduling problem: A review: https://www.sciencedirect.com/

science/article/pii/S037722172300382X

2. A deep multi-agent reinforcement learning approach to solve dynamic job shop

scheduling problem: https://dl.acm.org/doi/10.1016/j.cor.2023.106294

3. An End-to-end Hierarchical Reinforcement Learning Framework for Large-scale

Dynamic Flexible Job-shop Scheduling Problem: https://ieeexplore.ieee.org/document/

9892005

4. Combining Reinforcement Learning Algorithms with Graph Neural Networks to Solve

Dynamic Job Shop Scheduling Problems": https://www.mdpi.com/2227-9717/11/5/1571

5. Deep reinforcement learning for dynamic flexible job shop scheduling problem

considering variable processing times: https://www.sciencedirect.com/science/article/

abs/pii/S0278612523001917

6. Dynamic job-shop scheduling using graph reinforcement learning with auxiliary

strategy: https://www.sciencedirect.com/science/article/abs/pii/S0278612524000025

7. Dynamic scheduling for flexible job shop with new job insertions by deep

reinforcement learning: https://www.sciencedirect.com/science/article/abs/pii/

S1568494620301484

Electronically approved by Ing. Magda Friedjungová, Ph.D. on 16 February 2024 in Prague.

Master’s thesis

GRAPH NEURAL
NETWORKS AND DEEP
REINFORCEMENT
LEARNING IN JOB-SHOP
SCHEDULING

Bc. Yury Hayeu

Faculty of Information Technology
Department of Applied Mathematics
Supervisor: prof. Ing. RNDr. Martin Holeňa, CSc.
May 9, 2024

Czech Technical University in Prague
Faculty of Information Technology
© 2024 Bc. Yury Hayeu. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It
has been submitted at Czech Technical University in Prague, Faculty of Information
Technology. The thesis is protected by the Copyright Act and its usage without author’s
permission is prohibited (with exceptions defined by the Copyright Act).

Citation of this thesis: Hayeu Yury. Graph neural networks and deep reinforcement
learning in job-shop scheduling. Master’s thesis. Czech Technical University in Prague,
Faculty of Information Technology, 2024.

Contents

Acknowledgments vi

Declaration vii

Abstract viii

List of abbreviations ix

1 Job Shop Scheduling Problem 4
1.1 Definition . 4
1.2 Dynamic Job Shop Scheduling 5
1.3 Criteria . 7
1.4 Flexible Job Shop Scheduling 8
1.5 Graph Representation . 9
1.6 Dynamic Job Shop Scheduling Methods 10
1.7 Reactive Methods . 10
1.8 Proactive Reactive Methods . 14
1.9 Static Problem Benchmark . 15
1.10 Dynamic Problem Benchmarks 16

2 Reinforcement Learning 19
2.1 Exploration and Exploitation 20
2.2 Markov Decision Process . 20
2.3 Q-learning . 24
2.4 Deep Q-Learning . 27
2.5 REINFORCE . 29
2.6 Proximal Policy Optimization 31

3 Graph Neural Networks 34
3.1 Message Passing Paradigm . 34
3.2 Graph Convolutional Networks 35
3.3 Graph Sample and Aggregate 36
3.4 Graph Attention Networks . 37
3.5 Graph Isomorphism Networks 38

ii

Contents iii

4 Methodology 40
4.1 Review of the Literature . 40

4.1.1 Deep Multi-Agent Reinforcement Learning 40
4.1.2 Graph Neural Networks and other methods 45

4.2 Experimental evaluation of Deep MARL 47
4.3 Experimental evaluation of Graph State Encoding 48
4.4 Evaluation Procedure . 50

5 Evaluation 54
5.1 Simulation Parameters . 54
5.2 Experimental Evaluation of Priority Dispatch Rules 55
5.3 Rule Sets . 55
5.4 Experimental Evaluation of Deep MARL 56
5.5 Experimental Evaluation of Graph Neural Networks 61
5.6 Final Evaluation . 62
5.7 Discussion . 64

List of Figures

1.1 Flow of a job consisting of 5 operations. 5
1.2 Disjunctive graph of JSSP instance 9

2.1 Maximization Bias . 26

4.1 DQN training . 52
4.2 PPO training . 53

5.1 Histogram of DQN decisions . 60

List of Tables

1.2 JSSP terminology . 6
1.3 Priority Dispatch Rules . 12

4.1 Deep Multi-Agent Reinforcement Learning Abstract State rep-
resentation . 42

4.2 Overview of JSSP literature . 46
4.3 Evaluation procedure for 7 dispatching rules 51

5.1 Simulation parameters . 54
5.2 Average Ranking of PDRs . 55
5.3 Experimental study of model parameters 56
5.4 Experimental study of optimizer 57
5.5 Experimental study of initialization 57
5.6 Experimental study of Deep MARL state encoding 58
5.7 Experimental study of Rainbow 59
5.8 Experimental of reward functions 59
5.9 Experimental study of PPO . 61
5.10 Final experimental study of MARL 61
5.11 Final experimental study of deep MARL trained with DQN . . 62
5.12 Final experimental study of deep MARL trained with PPO . . 63
5.13 Final experimental study of graph state encoding 63

iv

List of Algorithms v

5.14 Final evaluation of DRL methods 64

List of Algorithms

1 Tabular TD Learning . 26
2 Deep Q-Network . 28
3 REINFORCE with Baseline . 31
4 Proximal Policy Optimization 33

5 Graph Sample and Aggregate . 36

Throughout the writing of the thesis, I have received a
great deal of support and assistance.

I would first like to thank my supervisor, prof.
Ing. RNDr. Martin Holeňa, CSc. for his guidance.

I would also like to thank my family for their
support and encouragement throughout my studies.
I also gratefully acknowledge the assistance of my
brother, who helped me with the continuous proofread-
ing of the thesis.

Finally, I wish to thank the CTU FIT staff for
being so helpful and supportive during the two years of
my study.

vi

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular the fact that the Czech Technical University in Prague has the right
to conclude a licence agreement on the utilization of this thesis as a school
work pursuant of Section 60 (1) of the Act.

In Prague on May 9, 2024

vii

Abstract

Dynamic Job Shop Scheduling Problem is an NP-hard optimization problem
with a wide range of real-world applications. One of the ways to approach the
problem is to use priority dispatch rules, which are simple heuristic functions to
compute job priority. Priority dispatch rules are known to behave well in some
but not all applications and their performance deteriorates over time in the
dynamic environment. Recent methods mitigate the issue by learning how to
adaptively select the optimal rule. Some of them are based on Reinforcement
Learning and Graph Neural Networks. The thesis studies the performance of
these methods in a dynamic environment with machine breakdowns with the
objective of tardiness minimization.

Keywords Dynamic Job Shop Scheduling Problem, Deep Reinforcement
Learning, Graph Neural Networks, Machine Breakdown, Tardiness Minimiza-
tion

Abstrakt

Problém dynamického rozvrhováńı úloh je NP-těžký optimalizačńı problém s
širokou škalou reálných aplikaćı. Jedńım ze zp̊usob̊u, jak přistoupit k problému
dynamického rozvrhováńı úloh, je použit́ı pravidel prioritńıho rozvrhováńı, což
jsou jednoduché heuristické funkce pro výpočet priority úlohy. Je známo, že
pravidla prioritńıho rozvrhováńı se v některých, ale ne ve všech aplikaćıch
chovaj́ı dobře a jejich výkon se v dynamickém prostřed́ı s časem zhoršuje.
Nejnoveǰśı metody př́ıstupuj́ı k problému tak, že se uč́ı adaptivně vyb́ırat nej-
lepš́ı pravidlo. Některé z nich jsou založené na posilovaném učeńı a grafových
neuronových śıt́ıch. Tato práce studuje výkon těchto metod v dynamickém
prostřed́ı s poruchami stroj̊u s ćılem minimalizovat zpožděńı provedeńı práce.

Kĺıčová slova Dynamický Rozvrhovaćı Problém, Hluboké Posilované Učeńı,
Grafové Neuronové Śıtě, Porucha Stroj̊u, Minimalizace Zpožděńı

viii

List of abbreviations

ACO Ant Colony Optimization
DQN Deep Q-Network

DDQN Double Deep Q-Network
DJSSP Dynamic Job Shop Scheduling Problem

DRL Deep Reinforcement Learning
FJSSP Flexible Job Shop Scheduling Problem

GA Genetic Algorithm
GAT Graph Attention Network

GATv2 Graph Attention Network v2
GraphSAGE Graph Sample and Aggregate

GCN Graph Convolutional Network
GIN Graph Isomorphism Network
GP Genetic Programming

GNN Graph Neural Network
JK Jumping Knowledge

LWKR Least Work Remaining Priority Dispatch Rule
MDP Markov Decision Process
MLP Multi-Layer Perceptron

MS Minimum Slack Priority Dispatch Rule
MPP Message Passing Paradigm
NPT Natural Policy Gradient
PDR Priority Dispatch Rule
PSO Particle Swarm Optimization
PPO Proximal Policy Optimization

RL Reinforcement Learning
SPT Shortest Processing Time Priority Dispatch Rule
SVM Support Vector Machine

TRPO Trust Region Policy Optimization
WINQ Work In Next Queue Priority Dispatch Rule

Deep MARL Deep Multi-Agent Reinforcement Learning
Deep MARL-AS Deep Multi-Agent Reinforcement Learning Abstract State

Deep MARL-MR Deep Multi-Agent Reinforcement Learning Minimum Repetition

ix

Introduction

The problem of the assignment of a large number of operations to available
processing units is one of the most common problems in industries such as
manufacturing and transportation. The problem is also known as the Job
Shop Scheduling Problem (JSSP). The JSSP by definition is a static problem,
i.e. no dynamic factors (e.g. new job arrivals, machine breakdowns, etc.) are
considered, which limits the applicability of the methods to real-world scenar-
ios. The extension of the JSSP, which considers various dynamic factors, is
known as the Dynamic Job Shop Scheduling Problem (DJSSP). One of the
ways to approach the DJSSP is to use a simple heuristic function to compute
the priority of the jobs, known as priority dispatch rules (PDRs). PDRs are
simple to implement, however, their performance is known to deteriorate in
dynamic environments. Therefore, modern methods focus on the automatic
selection of the optimal rule based on the current state of the shop floor. One
group of these methods learns to select the optimal PDR using Deep Rein-
forcement Learning (DRL) methods. Some methods combine Graph Neural
Networks (GNNs) with DRL to represent the state of the system. The thesis
focuses on the study of methods employing DRL and GNNs for the DJSSP to
minimize a total production delay (total cumulative tardiness).

The theoretical part starts with the definition of the Job Shop Schedul-
ing Problem and its most common variants. The thesis primarily focuses on
the DJSSP, therefore, after the introduction, the narrative proceeds with an
overview of methods applied to solve the problem. The description is concluded
with a discussion of methods to benchmark the DJSSP solver. The theoretical
part then introduces the basic concepts of RL. After the basics are introduced,
the description continues with a detailed explanation of DRL methods. Fol-
lowing DRL methods, GNNs are discussed in detail. Finally, the theoretical
part ends with a description of methods applied to solve the DJSSP problem
using RL and GNNs and a discussion of the evaluation procedure proposed in
the scope of the thesis.

The practical part of the thesis starts with a series of experiments to gain
insights into the performance of the studied methods. At the end of the prac-

1

2

tical part, the insights are combined to perform the final evaluation of the
studied methods.

Goals

The main goal of the thesis is to evaluate the performance of methods employ-
ing Deep Reinforcement Learning and Graph Neural Networks to solve the
Dynamic Job Shop Scheduling Problem with the objective of the minimiza-
tion of total cumulative tardiness. After the initial study of the literature, we
found it challenging to perform an exact comparison of different approaches
due to their focus on specific applications and, in some cases, limited avail-
ability of the source code. Therefore, the goal of the thesis is pointed out as
follows:

RL methods learn to select the action that achieves the best overall outcome
by observing the state of the system. Some of the studied methods use a
set of tailored indicators to describe the state of the system, which rules
out the possibility of reusing publicly available simulators for the JSSP.
Hence, the first subgoal is to implement a simulator for the DJSSP that
can be used to evaluate the performance of the studied methods.

Most of the studied methods don’t focus on the minimization of the tar-
diness of job production. Hence, the second goal is to identify the most
important components of the studied methods and propose the set of ap-
proaches that must be evaluated in the scope of the thesis.

Finally, the proposed set of approaches must be evaluated on the imple-
mented simulator. It is important to note, that RL methods are sensitive to
the initializations and hyperparameter configurations, therefore, the eval-
uation must be designed to ensure the reliability of the results.

3

Chapter 1

Job Shop Scheduling Problem

Job Shop Scheduling Problem (JSSP) is one of the most frequently encoun-
tered combinatorial optimization problems in such industries as manufactur-
ing, transportation, etc. [1, 2] The wide range of applications makes it one
of the most studied problems in the field of operational research. Research
in JSSP extends beyond the standard definition, encompassing modifications,
and extensions adapted to specific application needs. This and long research
history, dating back to the 1960s, has led to the development of a wide range
of methods to solve the problem. The goal of the chapter is to introduce the
standard definition of the problem, define a set of modifications and extensions
related to the thesis, and provide a brief overview of methods used to solve
the problem.

1.1 Definition

JSSP is a classic optimization problem [3]. Let J be the set of jobs and M
be the set of machines on the shop floor. Each job j ∈ J has a sequence
of associated operations oij ∈ Oj . Each operation oij can be processed on a
specific machine mk ∈ M with processing time poij ,mk

. The goal is to find
an assignment of starting times for each operation that minimizes the given
objective function. Furthermore, the assignment must satisfy the following set
of constraints [4].

C1: All jobs are simultaneously available for processing (at time 0).
C2: Machines can process only one operation at a time.
C3: Machines setup time is independent of job sequence and incorporated in

operation processing time.
C4: Machines are continuously available (no breakdowns occur).
C5: Machines never idle while work is waiting.
C6: Once an operation starts, it proceeds without interruptions.

4

Dynamic Job Shop Scheduling 5

time

o1 o2 o3 o4 o5

Job Arrival Time

o3 Start Time

o3 Arrival Time
on machine

o3 Completion Time

Job Due Time

Wait Time

Tardiness

Job Completion TimeMoment t

Time Till Due

Flow Time

Figure 1.1 Flow of a job consisting of 5 operations.

The JSSP problem is known to be NP-hard for |M| ≥ 3 [5] meaning that
the optimal solution is usually intractable. To obtain sub-optimal solutions,
a wide range of heuristics and metaheuristics were developed. These meth-
ods usually attempt to solve the problem locally relying on domain-specific
information. To describe these methods a set of job-, machine- and shopfloor-
specific definitions is needed.

The flow of a job consisting of 5 operations is presented in Figure 1.2. When
a job arrives at the shop floor it is immediately dispatched to the machine.
The machine receives the job and starts processing if it is available. Otherwise,
the job is stored in the machine queue until the machine decides to process it.
After the processing of the operation, the job is forwarded to the next machine.
The process is repeated until all operations are completed. One of the natural
methods to incorporate job priorities is to assign due time to each job. The
job not completed by the due time is called tardy. The duration between the
due time and the completion time for a tardy job is called tardiness. If the job
is completed before the due time, the job is early and the duration is denoted
as earliness. The time the job spends on the shop floor is called flow time. The
notation of the variables and further definitions are presented in Table 1.2.

1.2 Dynamic Job Shop Scheduling

Following the (C1) constraint, all jobs must be simultaneously available for
processing at the beginning of the simulation. While this assumption simplifies
the research of the problem, it is a significant limitation for applications in
real-world environments that are continuously affected by dynamic factors.
By relaxing the aforementioned constraint, the set of J jobs presented on
the shopfloor changes over time. Furthermore, researchers relax (C4), (C5),
and (C6) constraints by considering machine breakdowns, idle time, and job

Dynamic Job Shop Scheduling 6

Table 1.2 List of terms and variables used for the description of JSSP.

Ji i-th job
J Set of all jobs
J k Set of all jobs in the queue of k-th machine
mi i-th machine
M Set of all machines
Oi Number of operations of i-th job
oi,j i-th operation of j job
pi,k Processing time of Ji on machine mk

pji Processing time of j-th operation of Ji
Di Due time of Ji
NOW Current time in the system
TTDi Time till due, TTDi = Di −NOW

WRi Remaining time of the job, WRi =
Oi∑
j=k

pji where k is the index of Ji’s

next operation
Si Slack time of Ji, Si = TTDi − WRi
cri,j Completion rate of j-th job at i-th operation, i.e. cri = i/Oi
ai,k Arrival time of Ji on machine k
ri,k Release time of Ji on machine k
Ri Release time of Ji
Ci Completion time of Ji
Li Lateness of Ji, Li = Ci −Di

Ti Tardiness of Ji, Ti = max(Ci − Di, 0)

Tsum Cumulative tardiness, Tsum =
J∑
i

Ti

Ei Earliness of Ji, EI = min(Di − Ci, 0)

Esum Cumulative earliness, Esum =
J∑
i

Ei

Fi Flow time of Ji, Fi = Ci −Ri

cancellations [6]. The JSSP problem with dynamic events is then called the
Dynamic Job Shop Scheduling Problem (DJSSP).

DJSSP instance can be decomposed into a set of static instances which
also means that the problem remains NP-hard [7]. In comparison to the static
problem, the dynamic variant requires the method to continuously reconsider
the schedule and adapt to the changing environment.

Criteria 7

1.3 Criteria

One of the essential components of the optimization task is the criterion func-
tion used to evaluate the quality of the solution. For JSSP, optimization cri-
teria are commonly represented by functions of completion times.

O = f(C1, C2, . . . , Cn), i = 1, 2, . . . , |J | (1.1)

Furthermore, these measures belong to an important class of criteria called
regular criteria.

▶ Definition 1.1 (Regular Criterion). Let O be a function of completion
times. O is regular if the optimization task minimizes O and O can increase
only if at least one of the completion times in the schedule increases.

By considering regular criteria we restrict attention to the set of schedules
called a dominant set. To verify that a set of schedules is dominant, it is
required to show that for any possible schedule, there exists a better sched-
ule from the dominant set. For example, by relaxing the (C6) constraint the
pre-emption of operations can be allowed, but it would never lead to a bet-
ter solution, because the set of solutions with the restriction is known to be
dominant [4].

One of the most common and most studied regular criteria is the maximum
completion time of all jobs in the system or makespan which is defined as
follows.

Cmax = max
i∈J

Ci

Under the assumption of static JSSP, the makespan represents an intu-
itive measure of the schedule quality. However, in dynamic environments, the
makespan is a misleading measure in some scenarios. For example, one such
scenario is the late arrival of the long-processing job. The makespan is equal
to the completion time of the late-arrived job which doesn’t reflect the quality
of the schedule [8]. Hence, the makespan criterion should be cautiously used
in dynamic environments.

The other regular criterion more suitable for dynamic environments is total
weighted flow time (TWF) which is defined as follows.

TWF =
∑
i∈J

wiFi

The measure is suitable when the quality of the solution is directly related
to the speed of job processing by the system. It is usually achieved by neglect-
ing the priority of the job. For instance, let’s consider JSSP with due dates
which contains a large number of small jobs and one already tardy job. The
model minimizing the TWF criterion prioritizes the job with the smallest flow
time through the system over the tardy one.

Flexible Job Shop Scheduling 8

If the extreme delays in job completion must be avoided, the maximum or
cumulative tardiness (Tsum) criteria can be used.

Tmax = max
i∈J

Ti

Finally, if the penalty doesn’t depend on the delay, the weighted number
of tardy jobs (TWT) can be used. The criterion is known to be equivalent to
the maximization of system throughput [9].

TWT =
∑
i∈J

Ti

In general, regular criteria that focus on the completion times fall short
of capturing how the individual operations are performed. This led to the
development of non-regular criteria which took a step away from the idea that
criterion must be represented as a function of job completion times. The group
of just-in-time criteria is one of the representatives of non-regular criteria. One
of the just-in-time criteria is an Earliness-Tardiness criterion which is defined
as a linear combination of total weighted earliness and tardiness [6].

E/T =
∑
i∈J

wiTi +
∑
i∈J

wiEi

Overall, optimization criteria are the essential part of the optimization
task which defines the expected behavior of the solution. Research in the
field of JSSP mainly focuses on the makespan criterion while other criteria are
significantly less studied. However, the makespan criterion is not suitable for
dynamic environments which complicates the application of static methods in
real-world scenarios.

1.4 Flexible Job Shop Scheduling

Flexible Job Shop Scheduling Problem (FJSSP) is a generalization of the JSSP
problem where each operation can be processed by any machine from a fixed set
of machines arranged in the work center. Similarly to JSSP, the job must visit
each work center in a specific order to be completed, but it must be processed
by only one machine in each work center. The main prerequisite of the FJSSP
is the heterogeneity of processing times across machines. Otherwise, the work
center can be represented as a single machine with an increased capacity of
memory which leads to the standard JSSP problem. The FJSSP problem also
belongs to the set of NP-hard problems. However, the problem is significantly
more complicated due to the additional degree of freedom in the selection of
the best machine suitable for processing the operation at the moment.

Graph Representation 9

s s′

o11 o12 o13 o14

o21 o22 o23 o24

o31 o32 o33 o34

Figure 1.2 The disjunctive graph of JSSP instance of 3 jobs on the shop floor with
3 machines. It is assumed that the job has several operations processed on the same
machine. Dashed edges represent the disjunctive graph for a single machine, while
colored directed edges represent the partial solution of the JSSP instance.

1.5 Graph Representation

JSSP is often modeled as a disjunctive graph G = (V,E).

▶ Definition 1.2 (Disjunctive Graph). The disjunctive graph is a directed
graph G = (V,C ∪D) where

V is a set of vertices consisting of nodes for job operations and source s
and sink s′ node (V = {∀Ji ∈ J ,∀oij ∈ Ji : oij} ∪ {s, s′}).

C is the set of directed edges (conjunctions) representing the precedence
constraints between operations of a single job.

D is the set of undirected edges (disjunctions) between operations executed
on the same machine.

The solution of the JSSP is equivalent to selecting the direction of all
edges in the disjunctive graph without introducing any cycles. Note, that the
disjunctive graph is formed by the union of |M| complete graphs, where each
graph has at most |J | nodes. The disjunctive graph representation can be
applied to the FJSSP problem. Each job operation is represented with a set of
nodes, one for each machine in the work center. The solution of the FJSSP is
equivalent to the construction of |M| paths from source to sink node of length
at most |J | without introducing any cycles. The constructed set of paths must
cover all operations for all jobs.

Dynamic Job Shop Scheduling Methods 10

1.6 Dynamic Job Shop Scheduling Methods

Methods for solving dynamic JSSP are usually separated into the following
categories [10]:

Reactive Methods: These methods perform scheduling based on real-
time information of the system. Hence they are suitable for both static
and dynamic environments. The main representative category of reactive
methods is priority dispatch rules (PDRs). While most of the PDRs are
simple and easy to implement, they are unable to provide strong perfor-
mance on all objectives in all scenarios [11, 12].

Robust-proactive Methods: These methods usually employ metaheuris-
tics techniques used for solving the static JSSP instances. The solution
development starts with a population of candidate schedules which are
evaluated in dynamic environments under various scenarios. Candidates
with better performance are replicated and mutated in iterative evolution.
The goal is to find a solution robust to various disruptions on the shop
floor. The obtained solution is usually more complete and less myopic but
to process of finding the solution has a high computational cost.

Proactive Reactive: These methods construct a schedule by consider-
ing a static version of the JSSP problem. When a disruption occurs, the
method either corrects the schedule to obtain the sub-optimal solution or
reconstructs it based on the new system state. The main challenge of these
methods is to assess the severity of the disruption whether the schedule
should be reconstructed or the corrected version is satisfactory.

1.7 Reactive Methods

One of the main representatives of reactive methods is priority dispatch rules
(PDRs). When a machine completes an operation of the job, the priority
dispatch rule selects the next operation to be processed. The selection is done
by calculating the priority for each job in the machine queue and selecting one
with the best value. Alternatively, the rule can decide to idle, but under the
scope of regular schedules, the decision is obsolete. There are several ways to
classify PDRs.

First, the rules are classified depending on the locality of information they
use to make a decision. Local rules employ only the information about jobs
stored in the machine’s memory. For instance, rules, which select the job with
the smallest available slack time or the job with the shortest processing time are
local. In contrast, global rules consider the state of other machines on the shop
floor. For example, the Work In Next Queue (WINQ) rule selects the job that
after processing is dispatched to the machine with the smallest workload. From
the performance perspective, global rules should perform better than local

Reactive Methods 11

ones but there is no evidence to that claim. From the number of considered
parameters perspective, global rules have more information about the shop
floor state which usually leads to higher complexity from the implementation
perspective.

The second method of PDRs classification is based on the dynamics of the
input information. The rule is static if the information doesn’t change over
time and otherwise dynamic. For instance, the Earliest Due Date belongs to
the class of static rules. Certain rules are static to operations of the job, e.g.
the Shortest Processing Time (SPT) rule or the Least Work Remaining Rule
(LWKR). The dynamic rules usually incorporate information related to the
due time of the job (slack time, tardiness, etc.)[13].

Finally, rules can be classified based on the information they are using to
make a decision. These rules are usually designed to target specific optimiza-
tion criteria. For instance, the rule that doesn’t consider the due time of the
job performs poorly for the tardiness criterion.

Research of PDRs is directed towards the development of new methods
based on PDRs that can adapt to various scenarios. In dynamic environments,
even the optimal selection of PDRs deteriorates over time. One of the ways to
mitigate the issue is to perform an adaptive selection of PDRs. The idea can
be further expanded by selecting a set of rules for individual machines on the
shop floor in a multi-agent fashion. Adaptive simulation-based optimization
[14] method employs the simulation-assisted genetic algorithm for selecting the
optimal rule for each machine. Most recent methods employ Deep Reinforce-
ment Learning (DRL) for adaptive selection of PDRs. A detailed overview of
these methods is covered in Chapter 4.

The other direction of research is the manual or automatic design of PDRs.
These methods are usually built on the premise of simplicity for rule combina-
tions. For instance, the SPT rule can be adapted to due dates by adding slack
time for each job in the queue. The process of manual rule design is tedious
and requires a deep understanding of relations between system parameters.
Modern methods attempt to design new PDRs automatically. The majority
of such methods are based on Genetic Programming (GP). GP is an evolu-
tionary algorithm to automatically find computer programs to solve specific
tasks. For JSSP the individual of the population is represented with a tree
structure where inner nodes are operands and leaves are parameters of the job.
In comparison to manually designed rules, rules obtained by GP possess a high
level of adaptability to various scenarios and consider a wider range of system
parameters. The other advantage is the high interpretability of rules obtained
by GP. GP-generated rules can be used as basic building blocks of adaptive
methods discussed in the previous paragraph for further possible performance
gains [15]. Further details on the methods of automatic rules design can be
found in [16, 17].

For the scope of the thesis a wide range of PDRs initially studied in [8]
and further expanded by us is presented in Table 1.3.

Reactive Methods 12

Table 1.3 Overview of PDRs evaluated in the scope of the thesis. The rules are
further classified by scope information (L: ✓- local vs. ✗- global), by structure (S:
✓- simple vs. ✗- composite), by involvement of processing time (P: ✓- with vs. ✗-
without), and by due date information (D: ✓- with vs. ✗- without).

Rule L S P D
Apparent Tardiness Cost (ATC) [18] ✓ ✓ ✓ ✓

Average Processing Time per Operation (AVPRO) ✓ ✓ ✓ ✗

Cost Over Time (COVERT) ✓ ✓ ✓ ✓

Critical Ratio (CR) ✓ ✓ ✓ ✓

Earliest Due Date (EDD) ✓ ✓ ✗ ✓

First In First Out (FIFO) ✓ ✓ ✗ ✗

Generatic Programming 1 (GP1) [19] ✗ ✗ ✓ ✗

Generatic Programming 2 (GP2) [20] ✗ ✗ ✓ ✗

Last In First Out (LIFO) ✓ ✓ ✗ ✗

Longest Processing Time (LPT) ✓ ✓ ✓ ✗

Least Remaining Operations (LRO) ✓ ✓ ✗ ✗

Least Work Remaining (LWKR) ✓ ✓ ✓ ✗

Longest Waiting Time (LWT) ✓ ✓ ✓ ✗

Modified Due Date (MDD) ✓ ✓ ✓ ✓

Modified Operational Due Date (MOD) ✓ ✓ ✓ ✓

Montagne Heuristics (MON) ✓ ✓ ✓ ✓

Most Remaining Operations (MRO) ✓ ✓ ✗ ✗

Minimum Slack (MS) ✓ ✓ ✓ ✓

Most Work Remaining (MWKR) ✓ ✓ ✓ ✗

Next Processing Time (NPT) ✓ ✓ ✓ ✗

Random ✗ ✓ ✗ ✗

Slack per Remaining Work (SPW) ✓ ✓ ✓ ✓

Shortest Processing Time (SPT) ✓ ✓ ✓ ✗

Shortest Waiting Time (SWT) ✓ ✓ ✓ ✗

Work In Next Queue (WINQ) ✗ ✓ ✓ ✗

CR + SPT ✓ ✗ ✓ ✓

2PT+ LWKR ✓ ✗ ✓ ✓

2PT + LWKR + Slack ✓ ✗ ✓ ✗

2PT + WINQ + NPT ✗ ✗ ✓ ✗

LWKR + MOD ✓ ✗ ✓ ✓

LWKR + SPT ✓ ✗ ✓ ✗

SPW + SPT ✓ ✗ ✓ ✓

PT + WINQ ✗ ✗ ✓ ✗

PT + WINQ + Slack ✗ ✗ ✓ ✗

Reactive Methods 13

As we discussed in previous sections, the solution of the FJSSP involves an
additional complexity. When the work center receives a job or a batch of jobs,
it must select the best machine suitable for job processing. Literature distin-
guishes two types of methods applied to solve the FJSSP problem: integrated
[21] and hierarchical [22]. At first, integrated methods try to avoid complex
decisions on the work center level by selecting the machine with the Earliest
Available (EA) rule. By doing so, these methods assume that the process-
ing power of each machine is the same which isn’t usually true. Hierarchical
methods use an additional routing rule to select the best machine suited for
the processing of the job. Research methods and directions of routing rules
are similar to methods in PDR research discussed earlier. It is worth mention-
ing that the simultaneous optimization of routing and dispatching rules pos-
sesses a high level of complexity. Hence, earlier studies focus on the integrated
methods [12]. However, modern methods usually focus on the hierarchical ap-
proach. For instance, authors in [23] propose a cooperative coevolution genetic
programming framework, which evolves routing and dispatching rules in two
sub-populations simultaneously.

As we discussed earlier, the goal of robust proactive methods is to find a
solution that is robust to a wide range of disruptions on the shop floor. To be
more specific robustness is divided into two groups [24]: solution robustness
and quality robustness. Quality robustness refers to the sensitivity of the solu-
tion performance in terms of the objective function, while solution robustness
is used to describe the insensitivity of the activity start times to variations
in input data. Robustness is also important for proactive reactive methods
because robust solutions can be usually corrected when a disruption occurs
[25].

To create a robust schedule two factors must be considered. At first, the
quality of the solution is directly related to the set of disruptions the method
is created for. While it is possible to cover a wide range of them, the method
robust to all disruptions appearing in the real-world scenario is intractable.
Secondly, the measure of robustness must be defined. Literature [26, 27] dis-
tinguishes two types of robustness measures:

Scenario-based measures: The schedule is evaluated under various sce-
narios for which a deviation in the performance is measured. A small
deviation indicates a highly robust solution. These measures are known to
be effective albeit with high computational costs [28].

Surrogate measures: These methods measure a set of various indicators
for the schedule. Then by considering the measurements, it is possible
to estimate the robustness of the solution. Commonly indicators are the
functions of slack time [27].

Metaheuristics are the most common methods employed to find a robust
solution for JSSP instances. They represent a wide set of problem-agnostic

Proactive Reactive Methods 14

frameworks that are applied to develop heuristic optimization methods. All
of these methods consist of two main components: diversification and inten-
sification. During the diversification phase, the method explores the search
space globally to find the region of good solutions, while during the intensi-
fication phase, the method focuses on searching for the best solution in the
obtained region. For a good rate of convergence, the balance between both
phases must be maintained. Depending on the number of solutions meta-
heuristics operate on they can be divided into local and global methods. Local
methods, for instance, the Simulated Annealing (SA) or the Tabu Search (TS),
develop a single solution by searching a region of states close in some matter
to the current solution. On the contrary, global methods, for instance, Ge-
netic Algorithm (GA), Ant Colony Optimization (ACO), and Particle Swarm
Optimization (PSO) deal with a set of solutions, that allow the exploration of
distinct search space regions simultaneously [29].

In the context of JSSP, the most common metaheuristics applied is GA.
The method starts with the initial population of schedules usually represented
in the form of ordered assignment of operations that must processed by the
machine. The quality of each individual from the population is measured by
the objective or fitness function. Then the search is performed by exchanging
parts of the solutions between good (in terms of fitness function) individu-
als (crossover) or random adjustments of the individual (mutation). From
the perspective of finding robust solutions, the fitness function is usually a
combination of the criterion and surrogate robustness measure. Hence, the
extensions of the GA for multi-objective optimization are usually employed.
For instance, authors of the [28] develop two surrogate measures and study
their effectiveness for FJSSP with machine breakdowns using non-dominated
sorting genetic algorithm II (NSGA-II) [30]. Other applications include a non-
dominated ranking genetic algorithm [31] for FJSSP [32], a two-stage-genetic
algorithm for FJSSP with breakdowns [33], etc.

ACO imitates the behavior of ants to find the shortest path between the
source and the origin. The first application of ACO to solve the JSSP problem
was developed in the year 1994 [34], by visiting nodes of the disjunctive graph
the ant constructs the solution. The behavior of ants is later tuned using a
pheromone-based mechanism. The method was later generalized to FJSSP
[35]. In the context of robust proactive methods, authors of [36] propose a
set of improvements for the ACO method to solve robust FJSSP problem
[36]. The other application can be seen in [37], in which authors enhance the
standard ACO method with a local search method to obtain a robust schedule
for hot-rolling production.

1.8 Proactive Reactive Methods

Proactive reactive methods construct the solution relying on the current state
of the shop floor without considering any future events, i.e. the problem re-

Static Problem Benchmark 15

sembles static scheduling. When an event is received, the method corrects the
solution in response. The type of correction is directly related to the type
of event. For instance, the arrival of a new job with a late due time can
be resolved by delaying the processing of the arrived job until the next con-
struction of the schedule, while the machine breakdown requires immediate
schedule reconstruction. In practice, most events arrive on the shop floor with
high frequency and have a local impact (e.g. job creation, job modification,
job cancellation, etc.) Under such conditions, complete reconstruction is at
most as difficult as the complexity of the method employed for initial sched-
ule creation. Commonly, reconstruction possesses high computational cost,
hence, repair methods are widely applied to obtain sub-optimal yet feasible
solutions without significant delays. Simple heuristics are employed in prac-
tice because they produce stable schedules. The examples are right-shift [38]
rescheduling, which postpones unfinished jobs for the disruption time, and
left-shift rescheduling [39], which shifts the start times of unfinished jobs to
the moment of the disruption. Note, that both of these methods preserve the
schedule before the disruption. Due to the locality of the impact, some repair
methods aim to perform rescheduling only for disrupted parts of the shop floor.
For instance, the matchup [40] method performs rescheduling to restore the
schedule before the disruption at some moment in the future.

Evidently, after the series of repairs the original schedule performance de-
teriorates. Hence, the schedule must be fully reconstructed at some moments
of the production. The simplest approach is to reconstruct periodically after
fixed time intervals. In a system with flexible dynamics, periodic rescheduling
may not be optimal, because the reconstruction may be either too frequent or
too rare. Alternatively, the reconstruction can be performed, when a severe
disruption occurs. To not regress into the fully reactive method, the severity
of the disruption must be assessed to decide the necessity of the reconstruc-
tion. For instance, authors of [41] employ a variant of the SVM to solve the
assessment problem.

Overall, proactive reactive methods are intermediate between reactive schedul-
ing and static scheduling which allows them to benefit from advances in both
fields. Additionally, these methods benefit from robust scheduling methods
due to additional resistance. For instance, authors of [42] employ PSO for
multi-objective optimization to find robust schedules. The method is then
employed in a proactive reactive framework for schedule construction.

1.9 Static Problem Benchmark

For JSSP and FJSSP evaluation and comparison, there are several sets of pub-
licly available benchmarks. A single instance of the benchmark is represented
by a set of 20-100 jobs available at time 0, each job has a sequence of oper-
ation processing times and a path through the shop floor usually consisting
of 10-20 machines. In other words, these benchmarks focus on the standard

Dynamic Problem Benchmarks 16

definition of the problem with the makespan minimization objective. For each
instance, the lower and upper bounds of the makespan are available, which
allows us to compare the relative performance of the method with the optimal
solution. The most common benchmarks are the Tailard [43], DMU [44], and
other benchmarks [45]. Since most of the methods usually operate in the ex-
tended definition of the problem, static problem benchmarks are only used to
verify that the method preserves the ability to solve the standard problem.

1.10 Dynamic Problem Benchmarks

DJSSP is inherently closer to practical applications than JSSP. Depending on
the application, the variety of the disruptions considered also varies. Hence,
for each application, an individual benchmark instance must be developed.
Yet, if we restrain from excessive disruption factors, the configuration of the
common benchmark considers the following set of parameters [8, 46]:

Operation Processing Time: The heterogeneity of the operation pro-
cessing time is the main source of idleness in the JSSP problem. To model
job processing times two probability distributions are often employed: uni-
form and normal. The uniform distribution is capable of creating various
scenarios. The normal distribution is used in combination with uniform
distribution to incorporate the stochasticity in job processing time. De-
pending on the requirements of the application, other probability distribu-
tions can be used. However, to preserve the transferability of the methods,
the aforementioned variants are studied. In the context of the thesis, the
mixture of the uniform and normal distribution is used. Let Uniform[a, b]
be the uniform distribution, N (0, σ2) be the normal distribution of noise,
[n,m] be the boundary of the studied operation processing time. Then
operation processing time of j-operation of job Ji on k-th machine (pji,k) is
sampled as follows:

t1 ∼ Uniform[a, b]
t2 ∼ N (0, σ2)

pi,k = max(min(t1 + t2,m), n)
(1.2)

Time Till Due: Time till due is applied to incorporate job priorities.
The most common approach is to model it using the tightness factor λ,
which is the multiplier of job total processing time. The tightness factor
is usually sampled from the uniform distribution, the parameters of which
depend on the specific application. However, it is worth mentioning that
too tight or too loose due dates can lead to either infeasible or trivial
solutions. It is usually recommended to make time till due at least 2 times
the total processing time of the job [47]. In the context of the thesis,

Dynamic Problem Benchmarks 17

we follow the approach from [8] which estimates total job processing time
as the mean of operation processing times on each machine multiplied by
the total number of job operations. The reason for such a definition is
to incorporate heterogeneity of processing times from the FJSSP problem,
while for the JSSP problem, the value is equivalent to the sum of operation
processing times. Let Uniform[a, b] be the uniform distribution, pi be the
mean of processing times of job Ji time till due is sampled as follows:

λi ∼ Uniform[a, b]
TTDi = NOW + (1 + λi)Oipi

(1.3)

Job Arrival: Job arrival is modeled to correspond to the expected uti-
lization rate of the system. Let E(t) be the expected operation processing
time for all jobs, E(interval) be the expected duration of intervals between
job arrival, then the expected utilization rate E(util) is defined as follows:

E(util) = E(t)
E(interval) ∗ 100% (1.4)

From the previous equation, the expectation of expected interval lengths
between job arrival is derived as follows:

E(interval) = E(t)
E(util) (1.5)

Arrival intervals are usually modeled using the Poisson random process.
Hence, the arrival time follows the exponential distribution, i.e. let µ be
the floating point value for the utilization rate for the simulation, then
the expected duration of intervals between job arrival ai is computed as
follows:

ai ∼ Exp(µ

E(t)) (1.6)

Irregularities in the operation sequence: The number of job opera-
tions and job paths through the shop floor can vary significantly depending
on the practical application. The most restrictive approach is to consider
that all jobs have |M| operations and pass through all machines in the
same order (flow shop problem). Alternatively, we can consider that the
job has a variable length and must visit machines in fully random order. In
the scope of the thesis, we consider the latter. The job path is constructed
by generating a random permutation of machines on the shop floor. The
variability of length is achieved by removing a suffix of length k from the
permutation where k is sampled from the uniform distribution.

Dynamic Problem Benchmarks 18

Machine breakdowns and maintenance: Machine breakdowns and
maintenance are usually dependent on the specific application of the JSSP
problem. Their models can include various factors, e.g. the residual life of
the machine, average utilization rate, wear factor, the latest maintenance
date, etc. [48]. While the model considering the aforementioned parame-
ters can result in a more realistic understanding of the disruption impact
and, hence, improve the quality of the model, the effect of the disruption
is similar to any other kind of dynamic event. Since we are usually in-
terested in robust solutions, machine breakdowns, and maintenance are
usually modeled stochastically. In the scope of the thesis, the disruption
arrival is modeled using the Poisson process running for every machine on
the shop floor, and the duration of the disruption repair is modeled with
uniform distribution.

Number of jobs on the shop floor: Under the condition of minimizing
the regular criterion the optimal schedule is usually obtained with a no-
wait scheduling. If we consider that there is no job on the shop floor at
the beginning of the simulation and job arrival times follow the utilization
rate model mentioned earlier, we observe that a vast majority of machine
decisions were made with only one job in the machine queue. We call such
a decision passive, while the scheduling decision with more than one job in
the machine queue is called active. To be more precise the ratio of active
decisions to all decisions is proportional to the expected utilization rate
and inversely proportional to the number of machines on the shop floor.
For further details, we refer to Section 5.2.3 of [8]. While the issue can be
mitigated by increasing the number of jobs available at the beginning of the
simulation on the shop floor, the complexity of the problem is increased.

Chapter 2

Reinforcement Learning

Reinforcement learning (RL) is a branch of machine learning that stands on
the idea of learning an optimal behavior through continuous interactions with
the environment. The inspiration for these methods usually comes from the
way human beings learn to perform various tasks. For instance, learning to
ride a bicycle involves a series of unsuccessful attempts, until the rider learns
to maintain the balance. The learning curve doesn’t stop after the first suc-
cessful ride, but it extends until the driving becomes an automatic process. If
we look at the process of learning, it notably happens without a teacher. The
rider instinctively grasps the cause-and-effect relationship through repeated
attempts. After the so-called exploration phase, the rider develops his under-
standing until he performs the optimal sequences of actions that lead to the
desired outcome. This phase of learning is called exploitation.

The first major success of the RL method was TD-Gammon, a backgammon-
playing program developed by Gerald Tesauro in 1992 [49]. The method
achieved a level comparable to intermediate human players after learning from
1.5 million self-play games. While the method itself led to the creation of new
strategies in backgammon, it wasn’t able to beat experienced players. The
supremacy of RL was achieved 5 years later when Deep Blue, a chess-playing
program developed by IBM, defeated the reigning world champion Garry Kas-
parov in 1997 [50]. However, these methods were limited to games with simple
state representation and usually required enormous computational resources.
The breakthrough in the field of RL came in 2013 when DeepMind developed
a method called Deep Q-Network [51], which combines RL with Convolutional
Neural Networks to learn to play a collection of different Atari games. For the
first time, the method based on RL and Neural Networks was able to outper-
form human players in three Atari games [51]. The goal of this chapter is to
introduce the basic concepts of RL and briefly describe RL algorithms used in
job shop scheduling problems. The notation used in the chapter is based on
the book [52].

19

Exploration and Exploitation 20

2.1 Exploration and Exploitation

Similarly to metaheuristics described in the previous chapter, RL methods
learn through the process of exploration and exploitation. Generally speaking,
the agent in RL methods learns to perform a sequence of actions to maximize
the cumulative strength of the signal called return. To learn such a sequence
the agent must explore the environment by trying different actions and ob-
serving the consequences of them (exploration phase). The agent receives the
response signal from the environment called reward usually after each executed
action. It is worth mentioning that the effect of the action on the return is
neither immediate nor stable. For instance, one bad move in chess mid-game
can lead to a loss of the game if the opportunity is taken by the opponent. The
learning is usually performed by associating either the state or the state and
action with the expected value of the return. The exploitation is then achieved
by selecting such action that maximizes the expected value of return. To ob-
tain the optimal rate of convergence and a good estimation of the return, the
balance between exploration and exploitation is crucial. The way to achieve it
usually depends on the method employed.

2.2 Markov Decision Process

Problems in RL are usually formulated as Markov Decision Processes (MDP)
or their further extensions as presented in [53].

▶ Definition 2.1 (Markov Decision Process). A Markov Decision Process is
a 5-tuple (S,A, P, ρ, γ) where

S is a set of states

A is a set of actions

p : S×A→ P(S)×R is the transition model, with p(st+1, rt+1|st, at) being
the probability of transitioning into state st+1 ∈ S from state st ∈ S by
taking action at ∈ A and receiving reward rt+1 ∈ R

ρ is the initial distribution of states

γ ∈ [0, 1] is discount factor

Contrary to the deterministic planning problem, the MDP transitions to
the next state stochastically. The term ”Markov” in the MDP refers to the
Markov property from Markov Chain theory, which states that the next state
and obtained reward depend only on the information of the current state and
the action taken, which can be denoted in the following way:

p(st+1, rt+1|st, at) = p(st+1, rt+1|st, at, st−1, at−1, . . . , s0, a0) (2.1)

Markov Decision Process 21

Reinforcement Learning methods commonly learn from an agent-environment
interaction sequence called a trajectory.

▶ Definition 2.2 (Trajectory). A trajectory is a sequence of states, actions,
and rewards

τ = (s1, a1, r2, s2, a2, r3, . . . , st, at, rt+1, . . .) (2.2)
where

s1 ∼ ρ
∀t ∈ T : at ∼ π(at|st)

∀t ∈ T : st+1, rt+1 ∼ p(st+1, rt+1|st, at)
(2.3)

In some applications, the trajectory of agent-environment interactions can
be naturally broken into subsequences called episodes. Each episode ends in a
special state called the terminal state followed by the independent state usually
sampled from the distribution of initial states ρ. For instance, in games, each
playthrough can be considered an episode. The aforementioned task is called
episodic. For episodic tasks, we consider a set of terminal states denoted as
S+. Given the episode starting in the state st and ending in the state sT ∈ S+,
the return Gt, which we seek to maximize, is defined as the sum of obtained
rewards.

Gt = rt+1 + rt+2 + . . .+ rT (2.4)
Alternatively, the agent-environment interactions sequence could go on con-

tinually without the terminal state. We call such tasks continuous. Note, that
the return in the continuous task couldn’t be defined as the sum of rewards,
because the sum may be divergent due to the infinite length of the trajectory.
Hence, the discount factor γ ∈ [0, 1] is introduced. The discounted return is
then defined as follows:

Gt = rt+1 + γrt+2 + γ2rt+3 + . . . =
∞∑
k=0

γkrt+k+1 (2.5)

If the discount factor γ < 1, the sum converges. In general, the discount
factor γ determines the importance of future rewards. If the discount factor
is close to 0 the agent focuses on the immediate rewards, while the discount
factor close to 1 enforces the agent to take into account future rewards.

Most of the RL methods can be applied to both episodic and continuous
tasks. To define the return for both tasks, we consider that the episode in
episodic tasks is represented as an infinite sequence in the trajectory. When
an agent achieves the terminal state, it is absorbed in it and always receives the
reward of 0. In other words, the trajectory is represented as the concatenation
of infinite sequences for each episode, i.e.

Markov Decision Process 22

τ =(s1,1, a1,1, r2,1, . . . , sT,1, aT,1, rT,1, sT,1, aT+1,1, 0, sT,1, aT+2,1, 0 . . .) ||
(s1,2, a1,2, r2,2, . . . , sT,2, aT,2, rT,2, sT,2, aT+1,2, 0, sT+2,2, aT+2,2, 0 . . .) ||
. . .

(2.6)

where || stands for the concatenation and the additional index denotes the
episode number. The return at state t is then defined as follows

▶ Definition 2.3 (Return). Let τ be the trajectory, γ be the discount factor
and T be the final time step of the information. The return at state st, t < T
is defined when T ̸=∞ or γ < 1 as

Gt =
T∑

k=t+1
γk−t−1rk (2.7)

The restriction T ̸= ∞ or γ < 1 in the definition ensures that the return
is bounded. In case T is finite, the return is finite, because rewards are finite.
Otherwise, the γ < 1 ensures the convergence of the infinite sum. Finally, we
would note that returns at successive time steps are related to each other, i.e.

Gt
.= rt+1 + γrt+2 + γ2rt+3 + γ3rt+4 + · · ·

= rt+1 + γ
(
rt+2 + γrt+3 + γ2rt+4 + · · ·

)
= rt+1 + γGt+1

(2.8)

The behavior of the agent is defined by the policy π(a|s) which is the map-
ping from the environment state to the probability distribution over actions
(S → A). Let’s for now consider that we have obtained some policy π. Almost
all RL methods estimate either the quality (in terms of the expected return)
of the agent being in the particular state or the quality of the agent taking
the particular action in the particular state. The estimation is usually done
by either the value function or the state-action function correspondingly.

▶ Definition 2.4 (Value Function). Let π be the policy and s ∈ S be the state.
We define the value function of state π under policy π as

vπ(s) = Eπ[Gt|st = s] = Eπ

[∞∑
k=0

γkrt+k+1|st = s

]

▶ Definition 2.5 (Action-Value Function). Let π be the policy, s ∈ S be the
state and a ∈ A be the action. We define the action-value function of taking
action a in state s under policy π as

qπ(s, a) = Eπ[Gt|st = s, at = a] = Eπ

[∞∑
k=0

γkrt+k+1|st = s, at = a

]

Markov Decision Process 23

Both the value function and the action-value functions represent the ex-
pected return, hence, one is expressable in terms of another and vice versa.

vπ(s) = Ea∼π[qπ(s, a)]
qπ(s, a) = Es′,r∼P [r + γvπ(s′)]

(2.9)

In equation 2.8 the recursive relationship between return at step t and
t + 1 was shown. A similar recursive relationship can be shown for the value
function for all s ∈ S.

vπ(s) .= Eπ [Gt | st = s]
= Eπ [rt+1 + γGt+1 | st = s]
=

∑
a

π(a | s)
∑
s′

∑
r

p
(
s′, r | s, a

) [
r + γEπ

[
Gt+1 | st+1 = s′

]]
=

∑
a

π(a | s)
∑
s′,r

p
(
s′, r | s, a

) [
r + γvπ

(
s′

)] (2.10)

The final equation in 2.10 can be read as the expected value of random variable
rt+1 + γGt+1 with the probability of π(a|s)p(s′, r|s, a). The equation is also
known as the Bellman equation for the value function [54].

▶ Definition 2.6 (Bellman Equation for Value Function). Let π be the policy,
s ∈ S be the state, a ∈ A be the action, and r ∈ R reward. Then the Bellman
equation for the value function vπ is defined as

vπ(s) = Eπ [Gt | st = s] =
∑
a

π(a | s)
∑
s′,r

p
(
s′ ∈ S, r | s, a

) [
r + γvπ

(
s′

)]
The goal of the RL methods is to find the policy π∗ that maximizes the

expected return. Intuitively, the policy π is better than the policy π′ if the
expected return of the policy π is greater than or equal to the expected return
of the policy π′ for all states s ∈ S. In other words, π is better than π′ if
vπ(s) ≥ vπ′(s) for all s ∈ S, because the value function is exactly the expected
return in the state under the policy π. There is always at least one policy
that is better or equal to all other policies. All such policies are called optimal
and are denoted as π∗. The value function of the optimal policy is called the
optimal value function and is denoted as v∗.

▶ Definition 2.7 (Optimal Value Function). The optimal value function v∗
for all states s ∈ S is defined as

v∗(s)
.= max

π
vπ(s) (2.11)

Optimal policies share the same optimal action-value function q∗.

Q-learning 24

▶ Definition 2.8 (Optimal Action-Value Function). The optimal action-value
function q∗ for all states s ∈ S and actions a ∈ A is defined as

q∗(s, a) .= max
π

qπ(s, a) (2.12)

Since the v∗ is the value function for a policy, it must satisfy the Bellman
equation for the value function. However, due to the optimality of the policy,
it can be expressed without it, i.e.

v∗(s) = max
a

qπ∗(s, a)

= max
a

Eπ∗ [Gt | St = s,At = a]

= max
a

Eπ∗ [rt+1 + γGt+1 | st = s, at = a]

= max
a

E [rt+1 + γv∗ (St+1) | st = s, at = a]

= max
a

∑
s′,r

p
(
s′, r | s, a

) [
r + γv∗

(
s′

)]
.

(2.13)

The equation is the Bellman optimality equation for the value function,
which states the fact that the return in the state s under the optimal policy
is equal to the expected return by taking the best action from that state. The
Bellman optimality equation for the action-value function is the following.

q∗(s, a) = Es′∼P

[
Rt+1 + γmax

a′
q∗

(
St+1, a

′)]
=

∑
s′,r

p
(
s′, r | s, a

) [
r + γmax

a′
q∗

(
s′, a′

)]
.

(2.14)

The Bellman Equations are the basic building blocks of various RL al-
gorithms. In the case of the finite MDP with a finite number of states and
actions, we can use algorithms like Value Iteration and Policy Iteration to find
the optimal policy. Some algorithms additionally define an advantage function
which represents the change in the value function by taking the action a in the
state s.

▶ Definition 2.9 (Advantage Function). Let π be the policy, s ∈ S be the
state and a ∈ A be the action. The advantage function is defined as

aπ(s, a) = qπ(s, a)− vπ(s) (2.15)

2.3 Q-learning

The goal of the RL methods is to employ value functions in order to guide the
search for the optimal policy. Since the value functions are unknown, their
values are estimated through the agent-environment interaction. The core
method in RL to estimate the value function under policy π is the Temporal

Q-learning 25

Difference (TD) learning. The TD learning performs the update of the estimate
after k interactions with the environment. The simplest update of the TD
learning would happen after one interaction and is the following:

V (st)← V (st) + α [rt+1 + γV (st+1)− V (st)] (2.16)
where V (st) is the estimated value of the value function for state st and α is
the learning rate. Note, that the update is performed based on the current
estimate. In other words, the method updates the guess based on the previous
guess, i.e. it bootstraps. The quantity in the brackets represents the error
between the current estimate V (st) and the new estimate rt+1 + γV (st+1).
This quantity is called the TD error and it is usually denoted in the following
way:

δt = rt+1 + γV (st+1)− V (st) (2.17)
After obtaining a good estimate, the policy can be easily derived by se-

lecting the action with the highest value. The aforementioned behavior of
the agent is called greedy and it is suitable for the evaluation of the policy.
However, the greedy policy estimation limits the exploration of the environ-
ment. Hence, one of the ways to control the exploration is to employ ϵ-greedy
policy, i.e. the policy takes greedy action with the probability 1 − ϵ and a
random action with the probability ϵ. The former methods that employ the
policy derived from the current estimation of value functions are called on-
policy methods, while the latter methods that take actions different from the
current estimation of value functions are called off-policy methods.

For the following section, we suppose that the set of states S and the set of
actions A in the MDP are finite. The methods that operate in the finite MDP
are called tabular. The common training procedure of the tabular TD method
is presented in Algorithm 1. In the algorithm, we suppose that policy includes
all possible modifications, i.e. ϵ-greedy, etc. The procedure for estimating the
action-value function is derived by replacing the value table with the action-
value table.

The Q-learning [55] is the off-policy tabular TD-Learning method with the
following update rule:

Q(st, at)← Q(st, at) + α
[
rt+1 + γmax

a
Q(st+1, a)−Q(st, at)

]
(2.18)

Q-learning method supposes that the new estimate of the action-value func-
tion is the discounted maximum over current estimates and the reward. The
problem with such an approach is that the maximum of estimated values can
lead to significant positive bias. For example, we consider the MDP presented
in Figure 2.1 taken from [52]. In initial state A the agent can either go to ter-
minal state B or to state C. In both cases, it receives the reward of 0. From
the state C the agent has many actions all leading to the terminal state D

Q-learning 26

Algorithm 1: Tabular TD Learning
Input: The policy to be evaluated π, the learning rate α
Output: Estimated value function V

1 Initialize arbitraly V (s) for all s ∈ S and V (sterminal) = 0
2 while the termination condition is not met do
3 S ← Initial state sampled from ρ
4 while S is not terminal do
5 A ← action given by π for state S′
6 Take action A and observe R,S′
7 δ ← R+ γV (S′)− V (S)
8 V (S)← V (S) + αδ
9 S ← S′

10 end
11 end

with the reward sampled from the normal distribution with the mean of -0.1.
The expected return for the transition from state A to state C is -0.1, while
the expected return for the transition from state A to state B is 0. Hence,
the optimal policy is to go to state B. However, the Q-learning algorithm
may favor the transition from state A to state C, if the expected return of the
transition happens to be greater than 0. In the end, the estimation converges
to the true value of −0.1, but it significantly slows down the convergence of
the method. This phenomenon is called the maximization bias.

One of the ways to overcome the issue is to use the Double Q-learning
algorithm [56]. To minimize the bias the algorithm updates two estimates of
action value function Q1(s, a) and Q2(s, a). The first action value function
estimate Q1(s, a) is used to select the action maximizing the expected return
A∗ = arg maxaQ1(s, a), while the second one Q2(s, a) provides the estimate
of its value Q2 (s,A∗) = Q2 (s, arg maxaQ1(s, a)). The estimate is unbiased,
i.e. E [Q2 (s,A∗)] = q (s,A∗). This leads to the following update procedure for
Q1(s, a):

r = 0 r = 0

r ∼ N (−0.1, 1)

A BCD

Figure 2.1 MDP for maximization bias example. The state A is the initial state
and states B and D are terminal states.

Deep Q-Learning 27

Q1(st, at)← Q1(st, at)+α [rt+1 + γQ2(st+1, argmaxaQ1(st+1, a))−Q1(st, at)]
(2.19)

Similar procedure can be applied to Q2(s, a), i.e.

Q2(st, at)← Q2(st, at)+α [rt+1 + γQ1(st+1, argmaxaQ2(st+1, a))−Q2(st, at)]
(2.20)

At each step, the method only updates one estimate of the action-value
function, which is selected randomly. Finally, the estimation of the action-
value function for policy construction is derived w.r.t. both estimates, for
instance, as the sum, i.e. Q(s, a) = Q1(s, a) +Q2(s, a).

2.4 Deep Q-Learning

The main limitation of the Q-learning algorithm is the finite size of the MDP
state space. One of the ways to solve the problem is to learn the approximate
action-value function. However, when function approximation is integrated
into the Q-learning algorithm, the obtained method may diverge during the
training. It is because, we have created the combination known as the deadly
triad, i.e. function approximation, bootstrapping, and off-policy learning. The
Baird counterexample [57] shows the training divergence of the deadly triad.
The problem may be avoided by giving up one of the three components, but
it yields an increase in the computational complexity.

The main breakthrough had been achieved by the Deep Q-Network (DQN)
paper [51]. The paper comes with two significant improvements: target net-
work and experience replay buffer. The first improvement is the idea of the
target network, which represents a copy of the original network with frozen
parameters used to estimate the target value. During the training, the pa-
rameters of the current action value function estimate are copied to the target
network usually after a fixed number of training steps. Note, that the value
function is still bootstrapped, but the delay in the update of the target network
helps to break the conditions of the deadly triad. The second improvement is
the experience replay buffer, i.e. buffer for storing agent-environment interac-
tions for training. Since Q-learning requires only the current and next state,
action, and reward for learning, the experience from exploration can be used
multiple times. This usually leads to a more stable training process. The DQN
algorithm is presented in Algorithm 3.

For the DQN algorithm, many improvements have been proposed. The
combination of the most successful improvements has led to a new architec-
ture called Rainbow [58]. The Rainbow architecture combines the following
improvements: double Q-learning, dueling network, prioritized experience re-
play, noisy networks, multi-step learning, and distributional RL. In the scope
of the thesis, we study the first 5 improvements of the Rainbow architecture.

Deep Q-Learning 28

Algorithm 2: Deep Q-Network
Input: Q-function parameters θ, experience replay memory M , target

update interval C
1 Set the target network parameters θtarget ← θ
2 while the termination condition is not met do
3 Observe state S, select action A according to ϵ-greedy policy, i.e.

4 A =
{

random action, with probability ϵ
argmaxA′ Q(S,A′; θ), otherwise.

5 Execute action A, observe reward R, next state S′ and done flag D
6 Store transition (S,A,R, S′, D) in M
7 Sample minibatch B = {(S,A,R, S′, D)} from M
8 Compute new targets for each transition (Si, Ai, Ri, S′i, Di) ∈ B
9

yi = Ri + γ(1−Di) max
A′

Q(S′i, A′; θtarget)

10 Perform a gradient step w.r.t. θ on
11

|B|∑
i=0

(yi −Q(Si, Ai; θ))2

12 Every C steps reset target network
13

θtarget ← θ

14 end

The DQN algorithm similar to Q-learning suffers from the maximization
bias. Similarly, to the Double Q-learning, the double DQN (DDQN) algorithm
[59] employs two action-value function estimates. However, instead of learning
a second estimate the target network is used. This leads to the following loss
for the DDQN:

(R+ γ(1−D)Q(S′, argmaxA′ Q(S′, A′; θ); θtarget)−Q(S′, A; θ))2 (2.21)

The dueling network architecture is the neural network architecture de-
signed for value function estimation [60]. It splits the network into two streams,
one for the state value estimation and the other for the advantage function es-
timation sharing the same encoder. The final value function is then derived as
the sum of the state value and the advantage function, i.e.

Q(s, a; ϵ, ϕ, ν) = V (f(s; ϵ);ϕ) +A(f(s; ϵ), a; ν)− 1
NActions

∑
a′

A(f(s; ϵ), a′; ν)

(2.22)

REINFORCE 29

where ϵ, ϕ, and ν are the parameters of the encoder, the value stream, and the
advantage stream respectively.

The DQN algorithm samples uniformly from the experience replay buffer.
However, for large buffers, the uniform sampling may lead to the inefficient use
of the experience. Ideally, the agent should sample more frequently transitions
that have a lot to learn from, i.e. have a high TD error. A prioritized experience
replay [61] buffer attempts to solve the issue by sampling transitions with the
probability proportional to the absolute value of TD error, i.e.

pt ∝
∣∣∣∣R+ γ(1−D) max

A′
Q(S′, A′; θtarget)−Q(S,A; θ)

∣∣∣∣ω (2.23)

where w is the hyperparameter that determines the shape of the distribution.
New transitions are added to the buffer with the maximum priority.

The ϵ-greedy policy can significantly limit the exploration of the environ-
ment when a lot of actions must be taken to receive the reward. Noisy networks
[62] propose a noisy linear layer that combines deterministic and noisy behav-
ior, i.e.

y = (b + Wx) +
(
bnoisy ⊙ ϵb + (Wnoisy ⊙ ϵw) x

)
(2.24)

where ϵb and ϵw are random noise variables and ⊙ denotes the element-wise
multiplication. The introduction of noisy nets transforms DQN from off-policy
to on-policy. Over the training, the algorithm can learn to ignore the noise,
but this happens at different rates in different parts of the state space.

Rewards obtained after a single step can be noisy and may not represent
the effect of the action. Alternatively, the multi-step learning algorithm [63]
proposes to estimate the return by forward-view targets. The truncated return
is then estimated as follows:

Gt:t+n =
n−1∑
k=0

γkrt+k+1 (2.25)

The training is done w.r.t. the following loss:(
Gt:t+n + γn max

a
Q(St+n, a; θ)−Q(St, At; θ)

)2
(2.26)

2.5 REINFORCE

Instead of approximating the value function, the agent can directly learn a
stochastic parametrized policy. To explore the environment the suitable action
is sampled from the current estimation of the policy, i.e. the method is on-
policy. When the agent is confident in the specific action, the action has a
high probability of being selected, so the exploitation is achieved. One of the
ways to train the parametrized policy is to use the gradient descent method or

REINFORCE 30

its extension. Our goal is to maximize the expected return, i.e. the following
objective function

J(θ) = vπθ
(s0) = Eπθ

[Gt|s0] (2.27)

where s0 represents an initial state. However, to compute the expected value
of return, the state distribution at each step of agent-environment interaction
is needed, which is the function of the environment dynamics and is usually
unknown. One of the ways to overcome the issue is to use the Policy Gradient
Theorem.

▶ Theorem 2.10 (Policy Gradient Theorem [64]). Let τ be the trajectory. It
holds

∇θJ(θ) = Eτ∼πθ

[∞∑
t=0

Ψt
∇θπθ(at|st)
πθ(at|st)

]
= Eτ∼πθ

[∞∑
t=0

Ψt∇θ log πθ(at|st)
]

(2.28)
where Ψt is any of the following:

Ψt = Gt: the return

Ψt = Gt − b(st): the return with baseline

Ψt = Qπθ
(st, at): the action-value function

Ψt = Aπθ
(st, at): the advantage function

For truncated trajectory, the gradient can be estimated and it is proportional
to the exact value of the gradient, i.e.

∇θJ(θ) ∝ Eτ∼πθ

[
T∑
t

Ψt∇θ log πθ(at|st)
]

(2.29)

where T is the final step of the truncated trajectory.

The policy is a function f : S → A and the gradient through it can be
computed by the backpropagation algorithm implemented by all deep learn-
ing frameworks. The Policy Gradient Theorem states that the sum of states
weighted by the return over the probability of action given by the policy in a
given state is proportional to the exact policy gradient, i.e. differs by constant
scale factor. Since there are no constraints on the learning rate, the scale of the
gradient is absorbed by it. The detailed proof of the theorem can be found in
[52]. In practice, the gradient is computed over a sample of records of limited
size. Hence, the tradeoff between the reasonable size of the sample and the
quality (in terms of variance) of the estimated gradient is crucial. It is the
main reason why in the definition of the theorem there are several forms of the

Proximal Policy Optimization 31

Algorithm 3: REINFORCE with Baseline
Input: Parametrized policy π(a|s; θ), parameterized value function

v(s;ψ), policy learning rate α, value function learning rate β
1 while the termination condition is not met do
2 Generate an episode τ = (S0, A0, R1, S1, A1, R2, . . . , ST) using

π(a|s; θ)
3 Compute the return for each state st
4

Gt =
T∑

k=t+1
γk−t−1Rk

5 Take the gradient step w.r.t. θ on
6

T∑
t=0

(Gt − v(st;ψ))∇θ log π(At|St; θ)

7 Take the gradient step w.r.t. ψ on
8

T∑
t=0

(Gt − v(st;ψ))2

9 end

Ψt. It can be shown that the estimation with return Ψt = Gt has the highest
variance, while the estimation with the advantage function Ψt = Aπθ

(st, at) is
low-variance estimator [65].

REINFORCE algorithm [66] is the policy gradient method that uses the
return as the Ψt. However, the return is a high-variance estimator, because
it is just the sum of rewards that depends on the policy. One of the ways
to reduce the variance is to train a baseline function b(s), s ∈ S that reduces
the variance of the return. Note, that the baseline is a function of the state,
which means it doesn’t affect the policy function gradient. A suitable choice
for the baseline function can be the value function, i.e. b(st) = vπθ

(st) [67].
A better choice for the baseline function can be the advantage function, i.e.
b(st) = Aπθ

(st, at). Overall, this leads to the Algorithm 3.

2.6 Proximal Policy Optimization

The policy gradient methods are first-order optimization methods. They are
capable of estimating the direction of the gradient but not the step size. This
usually leads to either too large or too small steps during optimization, which
results in policy forgetting or slow convergence respectively. The problem

Proximal Policy Optimization 32

has led to the development of the Policy Gradient extension called Natural
Policy Gradient (NPT) [68]. One of the NPT methods is Trust Region Policy
Optimization (TRPO) [69], which constitutes the following optimization task

maximizeθ Es∼ρ(πθ0),a∼πθ0

[
πθ(a | s)
πθ0(a | s)Aπθ0

(s, a)
]

subject to Es∼ρ(πθ0)[DKL (πθ0∥πθ)] < δ

(2.30)

where πθ0 is the initial policy, ρ(πθ0) is the state distribution under the initial
policy, Aπθ0

(s, a) is the advantage function, and DKL (πθ0∥πθ) is the Kullback-
Leibler divergence between the initial and the new policy, δ is improvement
constant. Although the in-depth explanation of the TRPO is out of the thesis’s
scope, the details of the optimization task are essential for further discussion.
In general, the agent must maximize the advantage, which states if the action
leads to the increase in return (A(s, a) > 0) or not (A(s, a) < 0). Hence,
the new policy should have increased the probability of actions with positive
advantage and decreased the probability of actions with negative advantage.
At the same time, the step in the direction of the improvement shouldn’t be
excessively large to avoid policy collapse, i.e. the maximum size of the step
is δ. δ is the constant and it is found empirically for the specific problem.
Finally, to compute the length of the step the KL-divergence between the old
and a new policy is used.

The TRPO is the second-order optimization method, i.e. at some step the
optimization procedure involves the computation of the Hessian w.r.t. policy
parameters. Proximal Policy Optimization (PPO) [70] method is a popular
simplification of TRPO that converts the algorithm to the first-order optimiza-
tion task while preserving the performance of TRPO. The method proposes a
modified TRPO objective that penalizes significant changes in the policy, i.e.

LCLIP (θ) = Êt
[
min

(
rt(θ)Ât, clip (rt(θ), 1− ϵ, 1 + ϵ) Ât

)]
(2.31)

where ϵ is policy change step size, Ât is a advantage function estimate and
rt(θ) is the policy update ratio, i.e.

rt(θ) = πθ (at | st)
πθ0 (at | st)

(2.32)

The advantage is estimated with the generalized advantage estimation
(GAE) [64] that is defined as follows:

Ât = δt + (γλ)δt+1 + · · ·+ · · ·+ (γλ)T−t+1δT−1 (2.33)

where λ is the eligibility trace parameter and δt is the TD error at moment t,
T is the final step of the truncated trajectory.

Proximal Policy Optimization 33

Algorithm 4: Proximal Policy Optimization
1 for iteration i = 1, 2, . . . do
2 for actor j = 1, 2, . . . do
3 Run policy πθ0 in environment for T timesteps
4 Compute advantages estimates Â1, . . . , ÂT
5 end
6 Optimize surrogate objective w.r.t. θ for K epochs and minibatch

size M
7 θ0 ← θ

8 end

The neural network for the PPO algorithm commonly follows an actor-
critic architecture, i.e. the actor represents the parametrized policy and the
critic represents the parametrized value function. One of the properties the
method possesses is the fast convergence that leads to limited exploration of
the environment. To motivate the exploration of the environment the loss is
augmented with the discrete entropy of πθ term. The final objective that the
method maximizes is the combination of the clipped surrogate objective, the
entropy, and the value function loss, i.e.

LCLIP+V F+S
t (θ) = Êt

[
LCLIPt (θ)− c1L

V F
t (θ) + c2S [πθ] (st)

]
(2.34)

where c1 is value loss coefficient, c2 is the entropy coefficient, S[πθ](st) is the
discrete entropy of policy at state st. The training procedure of the PPO
algorithm is presented in Algorithm 4.

The reader shouldn’t be misled by the simplicity of the pseudo-code. The
method possesses high sensitivity to the hyperparameters, i.e. the learning
rate, number of epochs, and batch size as well as the initialization of the
neural network. At the same time, the implementation usually involves a
series of tricks e.g. gradient normalization, advantage normalization, entropy
regularization coefficient decay, etc. [71]. To analyze the training process, the
development of policy entropy should be monitored [72].

Chapter 3

Graph Neural Networks

From the data-modeling perspective, a natural representation of the system
state is a disjunctive graph discussed in Chapter 1. The goal of this chapter
is to introduce the reader to the basic principles of graph neural networks as
well as the graph embedder methods used in the thesis.

3.1 Message Passing Paradigm

Message Passing Paradigm (MPP) is a general framework for designing graph
neural network embedders. The MPP can be thought of as an extension of
the convolution operator that computes the value from the data local to the
node. Let G = (V,E) be a graph with the set of nodes V and the set of edges
E. The most common definition of the MPP is the following [73]:

x(k)
i = γ(k)

x(k−1)
i ,

⊕
j∈N (i)

ϕ(k)
(
x(k−1)
i ,x(k−1)

j , ei,j
) (3.1)

where

x(k)
i ∈ Rn is the representation of the node i of dimensionality n at the
k-th layer or the message

ei,j ∈ Rd is the representation of the edge features between nodes i and j
of the dimensionality d

N (i) is the neighbourhood of the node i

ϕ(k) is the encoder function of node-edge features at layer k e.g. a neural
network

γ(k) is the composition function of current node features and hidden rep-
resentation of the neighborhood at layer k, e.g. a neural network

34

Graph Convolutional Networks 35

⊕ is a permutation-invariant function, e.g. sum, mean, max, etc.

The output of an MPP graph neural network is a latent representation of
the node applicable to a large variety of tasks such as node classification, link
prediction, and graph classification. In node classification, the latent represen-
tation of the node is directly used to classify the node. In link prediction, the
existence of an edge is modeled as the similarity criterion between a pair of
nodes e.g. distance-based metric, sigmoid, etc. Finally, in graph classification,
the most common approach to obtain the graph representation is to pass the
latent representation of the nodes through readout or pooling functions. The
simplest variant of a readout function is permutation-invariant pooling func-
tions such as sum, mean, or max taken across the latent representation of all
graph nodes. While these functions are simple, they may lack the representa-
tive power to capture the structure of the graph. Recently, there has been a
growing interest in more sophisticated readout functions such as Hierarchical
Graph Pooling, Memory Readout, etc. [74].

From the theoretical perspective, the representative power of Graph Neu-
ral Networks (GNN) is analyzed by comparing the GNN with the Weisfeiler-
Lehman graph isomorphism test [75]. The task of determining the graph iso-
morphism between a pair of graphs belongs to the class of NP-intermediate
problems, which means no polynomial-time algorithm is known to solve the
problem. The Weisfeiler-Lehman test assigns every node of the graph a label.
The output of the test are sets of node labels for the graph in the tested pair.
If sets are distinct for a pair, then the graphs aren’t isomorphic. Otherwise,
the test doesn’t tell us anything about the isomorphism of the graphs.

3.2 Graph Convolutional Networks

First, we introduce the Graph Convolutional Networks (GCN) [76]. The GCN
uses the following update rule:

X(k) = σ
(
D̃−

1
2 ÃD̃−

1
2 X(k−1)W(k−1)

)
(3.2)

where Ã = A + I is the adjacency matrix of an undirected graph G with
self-loops, D̃ is the diagonal degree matrix of Ã, X(k) ∈ R|V |×d is the node
feature matrix at layer k, W(k−1) is the weight matrix at layer l − 1, and
σ is the activation function e.g. ReLU, Sigmoid, etc. The equation 3.2 is
equivalent to aggregating the neighborhood of every node in the graph. With
the increasing number of layers k, the GCN aggregates the information from
the further neighborhood of the node. In most cases, though, these networks
are inefficient in aggregating neighborhood information, hence, in practice, the
GCN is limited to a small number of layers. One of the attempts to improve the
GCN and layers that we discuss in the next sections is the Jumping Knowledge

Graph Sample and Aggregate 36

Algorithm 5: Graph Sample and Aggregate
Input: Graph G = (V,E), node features xv,∀v ∈ V , depth K,

number of samples S, differentiable aggregation function
AGGREGATEk for all k = 1, . . . ,K, activation function σ,
weight matrices Wk, ∀k = 1, . . . ,K

Output: Node latent representation zv,∀v ∈ V
1 h(0)

v ← xv, ∀v ∈ V
2 for k = 1 to K do
3 for v ∈ V do
4 h(k)

N (v) ← AGGREGATEk({h(k−1)
u ,∀u ∈ N (v)})

5 h(k)
v ← σ

(
W(k) · CONCAT

(
h(k−1)
v ,h(k)

N (v)

))
6 end
7 h(k)

v ← h(k)
v /

∥∥∥h(k)
v

∥∥∥
2
, ∀v ∈ V

8 end
9 zv ← h(K)

v , ∀v ∈ V

(JK) that merges latent representations of nodes across all graph layers to
increase awareness of the graph structure [77], i.e.

hG =
Kn

k=1

(
READOUT

({
h(k)
j | vj ∈ G

})
| k = 0, 1, . . . ,K

)
(3.3)

where K is the depth of the number of GNN layers. Note, that the GCN is
defined mainly for the undirected graphs, to apply it to the directed graph the
adjacency matrix should be normalized only from the left side [78]. Overall,
GCN represents one of the first successful attempts at implementing a deep
graph convolution operator. At the same time, the GCN has some limitations
such as weak generalization to the unseen nodes and high memory requirements
for the large graphs [76].

3.3 Graph Sample and Aggregate

GCN performs well in the transductive setting where both the graph struc-
ture and node features are known beforehand. To be more precise, in the
transductive setting, the subgraphs of the original graph are used for training,
validation, and testing. However, in most cases, the method must operate well
in the inductive setting, in which the network must generalize to unobserved
data. As an attempt to address this issue, the Graph Sample and Aggregate
(GraphSAGE) method was proposed [79]. The method follows the procedure
shown in 5. Additionally, the authors consider a fixed-size neighborhood usu-
ally sampled from the graph to preserve constant computational complexity.

Graph Attention Networks 37

For the AGGREGATE function, the authors propose either taking the mean
of the neighborhood and node itself or encoding with the bidirectional Long-
Short Term Memory network [80] Alternatively, pooling methods discussed
in the first section can be used, however the aggregation happens after the
activation function. The original method was trained in a fully unsupervised
manner with a negative sampling of distant nodes and a contrastive loss func-
tion. However, there are no restrictions to using GraphSAGE in the supervised
setting.

3.4 Graph Attention Networks

The Graph Attention Networks (GAT) [81] employ a self-attention mecha-
nism [82] to improve the aggregation of the neighborhood information by as-
signing different importance weights to the nodes. Given the node features
hi ∈ Rd, vi ∈ V the GAT computes the attention coefficients αij for all nodes
in the neighborhood vj ∈ N (vi) of the node vi as follows:

e(hi,hj) = σ (a[Whi∥Whj]) (3.4)

αij = exp (e(hi,hj))∑
k∈N (vi) exp (e(hi,hk))

(3.5)

where e(hi,hj) is scoring function for edge between nodes i and j, W ∈ RN,d is
the weight matrix of linear layer, a ∈ R2N is attention weight vector, and σ is
the activation function. In their paper, the authors use LeakyReLU [83] with
the slope of α = 0.2 as the activation function. After obtaining the attention
coefficients, the hidden representation of the node vi is derived as a weighted
sum of the neighborhood nodes’ hidden representations, i.e.

h′i = σ

 ∑
j∈N (vi)

αijWhj

 (3.6)

Finally, the GAT employs a multi-head attention mechanism to ensure
the stability of attention weights training. Let K be the number of attention
heads, then the hidden representation of the node given by the GAT layer is
the following:

h′i =
Kn

k=1
σ

 ∑
j∈N(vi)

α
(k)
ij W(k)hj

 (3.7)

On the final layer, the concatenation is no longer reasonable, hence, the
values of attention heads are averaged, i.e.

h′i = σ

 1
K

K∑
k=1

∑
j∈N (vi)

α
(k)
ij W(k)hj

 (3.8)

Graph Isomorphism Networks 38

Later, one important correction was proposed to the GAT. The authors of
[84] propose the following correction to the original score function:

GAT: e(hi,hj) = σ (a[Whi∥Whj])
GATv2: e(hi,hj) = aσ (W[hi∥hj])

(3.9)

They motivate the update by noting that the original GAT computes static
attention. In terms of GNN, the attention mechanism is static if it always
weighs one node at least as much as any other node of the graph unconditioned
on the node generating the neighborhood. The static attention phenomenon
can be spotted by looking at the attention coefficients matrix A ∈ R|V |,|V |, in
which attention scores of node j are larger in comparison to all other nodes.
Static attention has limited expressiveness because it always focuses on one
particular node from the neighborhood for every node in the graph. On the
other hand, the correction makes GAT compute dynamic attention, which
can focus on every node from the neighborhood and assign them different
relevance scores. The dynamic attention mechanism possesses a higher level of
expressiveness than the static one, which results in better model performance.
The corrected version of the GAT is usually denoted as GATv2.

3.5 Graph Isomorphism Networks

Graph Isomorphism Networks [85] are proved to have the same representative
power as the Weisfeiler-Lehman test in the ”upper” bound. The main theorem
stated in the original paper is the following:

▶ Theorem 3.1. Let A : G → Rd be a GNN. With a sufficient number
of GNN layers, A maps any graphs G1 and G2 that the Weisfeiler-Lehman
test of isomorphism decides as non-isomorphic, to different embeddings if the
following conditions hold:

A aggregates and updates node features iteratively with

h(k)
i = ϕ

(
h(k−1)
i , f

({
h(k−1)
j : vj ∈ N (vi)

}))
, (3.10)

where the functions f , which operates on multisets, and ϕ are injective.

A ’s graph-level readout, which operates on the multiset of node features{
hki

}
, is injective.

The reader can find proof of the theorem in the original paper. The injec-
tiveness of the aggregate and readout functions over multisets (i.e. set with
repeated elements) is the main requirement for the GNN to reach the expres-
sive power of the WL-test. For the aggregate function, the paper proves that

Graph Isomorphism Networks 39

the sum of node features can represent an injective function over a multiset
which results in the following definition of the GIN layer:

h(k)
i = ϕ

(
1 + ϵ(k)

)
· h(k−1)

j +
∑

vj∈N (vi)
h(k−1)
j

 (3.11)

where ϕ is the Multi-Layer Perceptron (MLP), ϵ(k) is the weight of the node
generating the neighborhood that can be either learnable or constant. It must
be noted, that there can be infinitely as many variants of GNN that possess the
aforementioned property, but GIN is the simplest architecture from a design
perspective. At the same time, GIN focuses specifically on the representative
power of the GNN, while for some practical applications as mentioned in the
paper, the information associated with the node may have higher importance
for the task. For the readout function, the authors use JK with sum pooling.

One of the important achievements of GIN is the analysis of common pool-
ing operations. As we discussed earlier, the sum pooling has the highest repre-
sentative power. In comparison to it, mean pooling is only capable of learning
the distribution of elements in the multiset. To see this let there be two mul-
tisets. The first multiset is non-empty, while the other has k-times elements
from the first set. Then the averaging cancels the scale factor k out which
results in the same embeddings for the pair of graphs. Finally, the max pool-
ing operation can learn sets but not multisets because the operation considers
only one element for all repetitions in the multiset. The order of the operations
based on their representative power is the following: sum, mean, max.

Chapter 4

Methodology

In this chapter, the methods approaching the Job-Shop Scheduling problem
employing Deep Reinforcement Learning and Graph Neural Networks are pre-
sented. Instead of being an improvement of some existing methods, almost all
of them represent a concrete solution with a specific architecture, application,
and evaluation pipeline that makes it difficult to compare them and identify
the best one. At the same time, most of them lack the availability of source
code, and the ones that have source code available usually employ a specific set
of constraints that make it difficult to reuse them in different environments.
Hence, in the scope of the thesis, we focus on a task of dynamic JSSP problem
with the objective of tardiness minimization. The goal of the chapter is to
introduce the reader to the methods studied in the scope thesis, as well as,
describe conducted experiments and the evaluation procedure.

4.1 Review of the Literature

Almost all methods that are covered in the following section construct the
solution by selecting the best priority dispatch rule for each job based on the
current system state. All of them fall into the category of the reactive meth-
ods introduced in Section 1.7. The main distinction of the methods besides
their application is the way how they define the MDP and the DRL method
employed for searching for the optimal policy.

4.1.1 Deep Multi-Agent Reinforcement Learning
Deep Multi-Agent Reinforcement Learning (deep MARL) is the group of meth-
ods presented in the doctoral thesis [8] that approaches the dynamic JSSP
problem with machine breakdowns. In particular, the work introduces two
types of state encoding, i.e. Deep MARL Minimum Repetition (Deep MARL-
MR) and Deep MARL Abstract State (Deep MARL-AS), and two methods

40

Review of the Literature 41

of reward shaping, i.e. reward shaped through decomposition and surrogate
reward shaping. The model is trained using the multi-agent DDQN algorithm
following centralized training and a decentralized execution scheme. In other
words, each machine on the shop floor has a dedicated agent that is trained
on its own decisions and the decisions of other agents. During the evalua-
tion phase, the agents act independently without any communication between
them.

To start the discussion about state encoding, it is important to note that
the use of PDRs for the action space can guarantee at least some level of
performance because they are designed to minimize the specific criterion. At
the same time, PDRs are pretty restrictive because they commonly consider
only one feature of the job. For example, the job with minimum slack time can
have the most remaining processing time. These characteristics can be difficult
for the model to learn based on the state representation. Deep MARL-MR
directly encodes the criteria computed by the PDRs in the form of the matrix
of size 5× 5. The first four rows represent the features of jobs in the machine
queue, i.e. operation processing time, remaining job processing time, slack
time of the job, available time of succeeding machine, and the current wait
time of the job in the machine queue. The available time of the machine is the
amount of time the machine needs to process all jobs in the queue. At the same
time, the first four job features are the criteria computed by SPT, LWKR, MS,
and WINQ priority dispatch rules that represent the action space. If there are
more than 4 jobs in the machine queue, then jobs for the state representation
are selected using the aforementioned PDRs without repetition until the pool
of jobs from the machine queue is exhausted. After that, the repetition of job
features is allowed and the rest of the matrix is filled using the aforementioned
procedure. The last row of the matrix represents the job that was selected for
processing and is about to arrive on the machine. If the arriving job exists,
then the row consists of the following features, i.e. operation processing time,
remaining job processing time, slack time of the job, available time of the
current machine, and the time till the job arrival. Otherwise, the row will
contain only the available time of the current machine and other values will
be zeros. The resulting matrix has features of both jobs in the machine queue
and the job that is about to arrive at the machine that allows us to learn the
direct mapping from the state to the job. Hence, the action space is reduced
to the state space, in the way that the agent only selects jobs whose features
are represented in the state.

In comparison to the Deep MARL-MR state encoding, the Deep MARL-AS
encoding is represented by the vector of shop floor indicators. The representa-
tion allows us to use any priority dispatch rule as the action and the original
work uses the set of 4 PDRs, i.e. SPT, CR, MS, and WINQ. The list of
indicators is presented in Table 4.1.

Review of the Literature 42

Table 4.1 Deep MARL-AS Indicator List, where CV stands for Coefficient of
Variation, (JMQ) stands for jobs in k-th machine queue, AMk is the estimated time
of processing all jobs in k-th machine queue, J NOW is the set of jobs on the shopfloor
at the moment, J C is the set of all completed jobs till the moment, Oc

i the number
of completed operations for job Ji, P is the multiset of processing times for all jobs
from J NOW.

Indicator Expression
1. In System job number |J |
2. Size of machine queue |J k|
3. Number of arriving jobs at the
machine |AJk|

4. Min processing time (JMQ) minJi∈J k pi,k

5. Mean processing time (JMQ) pk = 1
|J k|

∑
Ji∈J k pi,k

6. Cumulative processing (JMQ)
∑

Ji∈J k pi,k

7. CV of processing time (JMQ) std({pi,k : ∀Ji ∈ J k})/pk

8. Min remaining processing time
(JMQ) minJi∈J k WRi

9. Mean remaining processing time
(JMQ) WR

k = 1
|J k|

∑
Ji∈J k WRi

10. Cumulative remaining processing
time (JMQ)

∑
Ji∈J k WRi

11. CV of remaining processing time
(JMQ) std({WRi : ∀Ji ∈ J k})/WR

k

12. Min time until due (JMQ) minJi∈J k TTDi

13. Mean time until due (JMQ) TTD
k = 1

|J k|
∑

Ji∈J k TTDi

14. Cumulative time until due (JMQ)
∑

Ji∈J k TTDi

15. CV of time until due (JMQ) std({TTDi : ∀Ji ∈ J k})/TTDk

16. Min slack time (JMQ) minJi∈J k Si

17. Mean slack time (JMQ) S
k = 1

|J k|
∑

Ji∈J k Si

18. Cumulative slack time (JMQ)
∑

Ji∈J k Si

19. CV of slack time (JMQ) std({Si : ∀Ji ∈ J k})/Sk

20. Mean slack time of arriving jobs
AJk (JMQ)

1
|AJk|

∑
Ji∈AJk TTDi

21. Available time ratio w.r.t. all
machines on the shop floor AMk/

∑
mk∈M AMk

22. CV of cumulative processing time of
all machines on the shop floor std(P)/P

23. Average completion rate of jobs in
the shop floor

∑
Ji∈J NOW Oc

i /
∑

Ji∈J NOW Oi

24. Current tardy rate |Ji : Ji ∈ {J C ∧ Ti < 0}|/|J C|
25. Expected tardy rate |Ji : Ji ∈ {J NOW ∧ Si < 0}|/|J NOW|

Review of the Literature 43

The reward the method aims to maximize must be directly related to the
objective function of the JSSP. The thesis focuses on the tardiness minimiza-
tion objective. One of the most natural reward functions for each active deci-
sion along the path of job Ji ∈ J through the shop floor is the following:

ri = −Ti (4.1)

where Ti is the tardiness of the job Ji. However, this reward function has
several drawbacks. At first, the reward is available only after the job is com-
pleted, because the tardiness is realized at the completion time of the job. For
off-policy methods like DQN, it is not a problem in episodic and continuing
tasks, because the state-action-reward tuple can be stored in the replay buffer
when the reward is available. However, for on-policy methods like PPO, it is
a significant technical challenge to use it in the continuing task because the
truncated trajectory can’t be sampled without discarding some of the agent-
environment interactions. The second drawback from the perspective of the
MARL algorithm is that all agents receive the same reward although each de-
cision along job path has a different impact on the tardiness of the job. Finally,
the reward function is unbounded resulting in a high variance of the expected
return. One of the ways to mitigate the last issue is to normalize reward by a
constant factor c and clip it to the range [−1, 0], i.e.:

ri = clip(−Ti
c
,−1, 0) (4.2)

Reward shaping through decomposition proposed by [8] is a method that
weights the reward of each agent by the impact of the decision on the tardiness
of the job. The contribution of each machine is incorporated by considering
the wait time in the machine queue and the slack time of the job in the queue.
The decomposed reward for the tardy job is computed in the following 3 steps:

Reconstruction of queue time: Let qi,k = ri,k − ai,k be the queue time
the job waits in the machine queue. The reconstructed queue time for job
Jm is computed as follows:

RQi = (1−α)qi,k +αq′i+1,k, where q′i+1,k =
{
qi+1,k if i+ 1 < Om

0 otherwise
(4.3)

where α = 0.2 is the hyperparameter. Agent decisions must follow two
objectives, i.e. the minimization of wait time for tardy jobs in the machine
queue and at the same time the minimization of the overall system conges-
tion. By shifting back queue time from the succeeding machine, the agent
is encouraged to select the job that satisfies both objectives.

Review of the Literature 44

Criticality of the job: At the same time, the agent is punished for de-
taining jobs with short slack time. To achieve this each decision is weighted
by the criticality factor, which is defined as follows:

CRi = 1− Si
|Si|+ γ

(4.4)

where Si is the slack time of the job Ji and γ = 128 is the hyperparameter
representing the sensivity to slack time.

Reward shaping: The final reward for the tardy job is computed as
follows:

ri = clip(−(CRi +RQi/ψ)2,−1, 0) (4.5)

where ψ = 128 is the hyperparameter that normalizes RQi. Finally, the
sum of CRi +RQi/ψ is squared to penalize the agent for excessively long
wait times in the machine queue.

The received reward function is capable of measuring the impact of the
agent’s decision on the tardiness of the job, but it is still available only after the
job is completed. The surrogate reward shaping makes it possible to compute
the reward after the job is produced on the machine by stepping away from
the global objective of tardiness. The minimization of tardiness is equivalent
to the preservation of the slack time, i.e. if the job possessing more slack time
is less likely to be tardy. At the same time, the preservation of the slack time
is equivalent to the minimization of the wait time in the machine queue. In the
loaded system, it is not always possible to preserve the slack time of all jobs,
because queueing is inevitable. Hence, it is more reasonable to focus on jobs
that are more likely to be tardy. To select such jobs, we can use the criticality
factor defined in the previous step. Now, when the importance of the selected
jobs is defined, we can focus on the machine decision. From the machine’s
perspective, the selection of the job has two side effects. At first, the machine
ends the queue time of the selected job by extending the queue time of other
jobs in the machine queue. At the same time, the selected job is exposed to
the queueing at the next machine. The change in the queue time caused by
the machine decision is derived by considering these two side effects. Let Js
be the job selected by the k-th machine decision and Ĵ be the set of the job
left in the machine queue, NMi be the next machine for the job Ji, AMk be
the available time of the m-th machine, and ξ be the hyperparameter. The
reward function is defined as follows:

Queue time change for the selected job:

∆S1 = CRs ×
∑
Ji∈Ĵ ti,k∣∣∣Ĵ ∣∣∣ − ξ ×AMNMs (4.6)

Review of the Literature 45

Queue time change for the not selected jobs:

∆S2 =
∑
Ji∈Jk CRi

|Jk|
× ts,k − ξ ×

∑
Ji∈Ĵ AMNMi∣∣∣Ĵ ∣∣∣ (4.7)

Reward:
rt = ∆S1 −∆S2 (4.8)

Normalization and clipping:

r′t = clip(−rt
c
,−1, 1) (4.9)

Hyperparameters ξ and c are found empirically for each problem configu-
ration. In the context of the thesis, the configuration of the simulator similar
to Deep MARL is used for all experiments, hence, we reuse the value from the
original work ψ = 0.2 and c = 30.

4.1.2 Graph Neural Networks and other methods
A subset of methods employing Graph Neural Networks studied in the context
of the thesis is presented in Table 4.2. Most of them solve the dynamic variant
of the JSSP problem with the task of makespan minimization. The reward is
defined as the difference between the quality measure q(·) of partial solutions
at states st and st+1, i.e.

rt = q(st)− q(st+1)

The most common quality measure is the maximum lower bound of the
operation completion time, q(st) = maxoi,j∈Ost

CLB(oi,j), where Ost is the set
of all operation for jobs presented at the shop floor in the system state st. Let
Jj be the job, rji be the release time of operation oi,j , the lower bound of the
completion time is defined as follows [86]:

CLB(oi,j) =
{
rji if oij is completed
CLB(oi−1,j) + pji otherwise

To show the idea behind the reward, let’s compute the undiscounted return
for a single episode.

T∑
t=0

rt = q(s0)− q(s1) + q(s1)− q(s2) + . . .+ q(sT−1)− q(sT) = q(s0)− q(sT)

= q(s0)− q(sT) = q(s0)− Cmax
(4.10)

Review of the Literature 46

Table 4.2 Overview of RL methods used to solve the JSSP problem. By direct
action, we mean that the agent selects the operation to be processed from all jobs
presented in the machine queue.

Title Task Action Reward GNN RL
1. An End-to-end
Hierarchical
Reinforcement Learning
Framework for
Large-scale Dynamic
Flexible Job-shop
Scheduling Problem [46]

DFJSP Direct Makespan GIN PPO

2. Combining
Reinforcement Learning
Algorithms with Graph
Neural Networks to
Solve Dynamic Job Shop
Scheduling Problems
[87]

DJSP 6 PDRs Custom GCN DQN

3. Deep Reinforcement
Learning for dynamic
flexible job shop
scheduling problems
considering variable
processing times [88]

DFJSP 4 PDRs Makespan - PPO

4. Dynamic Job-Shop
Scheduling Problems
Using Graph Neural
Networks and Deep
Reinforcement Learning
[89]

DJSP Direct Makespan Custom
(MLP) PPO

5. Dynamic job-shop
scheduling using graph
reinforcement learning
with auxiliary strategy
[90]

DJSP 8 PDRs Makespan
Graph
Trans-
former

Truly
PPO
[91]

6. Flexible Job-Shop
Scheduling via Graph
Neural Network and
Deep Reinforcement
Learning [92]

FJSP Direct Makespan GATv2 PPO

7. Learning to Dispatch
for Job Shop Scheduling
via Deep Reinforcement
Learning [86]

JSP Direct
Number of
the waiting

jobs
GIN PPO

where q(s0) is a constant. From the last equation, we can observe that the
maximization of return is equivalent to the minimization of the makespan.

Experimental evaluation of Deep MARL 47

While the minimization of makespan has its rationale, in the context of the
dynamic JSSP problem, it is not the best metric as it was discussed in Sec-
tion 1.3. At the same time, it is not clear how the quality measure q(·) is
updated when the new job arrives on the shop floor because the arrival leads
to the increase CLB(·), which results in the reward independent of the machine
decision. While the possible solution can be to ignore newly arrived jobs dur-
ing reward computation, we couldn’t find any discussion on the subject in the
literature. Alternatively, the work [87] proposes the reward function for just-
in-time scheduling. However, the reward is obtained by comparing the current
solution and the best-achieved one, which makes it difficult to compute the
reward in the continuing task.

From the perspective of the Graph Neural Networks, we can observe a
high diversity of applied methods. Most of them employ well-known graph
embedder architectures discussed in Chapter 3. One of the papers [90] pro-
poses the transformer architecture for the JSSP problem. At the same time,
they show that their method slightly outperforms the GATv2, hence, the latter
is used during the evaluation. From the perspective of the MDP, the state is
represented by the disjunctive graph or its modification which is discussed in
Section 1.5. The action space is often modeled as the distribution over opera-
tion nodes representing jobs in the machine queue. Alternatively, some papers
employ a set of PDRs that ensures the lower boundary on the performance of
the model. Finally, from the perspective of the RL methods, the majority of
works employ the PPO algorithm or its modification.

4.2 Experimental evaluation of Deep MARL

To experimentally evaluate the performance of the Deep MARL method a
series of studies is conducted to identify, whether the adjustment in the ar-
chitecture of the model can lead to a significant performance improvement.
There are two main reasons for a such decision. Firstly, the performance im-
provement proposed by the Deep MARL is not that significant in comparison
to regular PDRs. To be more specific, the Deep MARL-MR is only 5 percent
better on average than the MS rule that it uses to select the job based on the
results from the original work. At the same time, due to the implementation
of methods and the simulator from scratch, we don’t possess any knowledge
about what works and what doesn’t. Hence, the representative set of models
is proposed after the initial set of experiments is performed.

The original work trains the DQN agent for 100000 seconds which is equiv-
alent to the completion of 3100 jobs on average. The first 10000 seconds are
dedicated to the warm-up process, in which the agent explores the environ-
ment with the FIFO rule. The training starts after the warm-up and the
optimization step is performed every 5 seconds yielding a total of 19000 steps.
There are two issues with the original training procedure that we address. At
first, the interval of 5 seconds is too small to generate enough new interactions

Experimental evaluation of Graph State Encoding 48

for the agent to learn from, which from our perspective results in an exces-
sively large number of optimization steps and, hence, higher computational
costs. Secondly, the agent learns from the interactions with one environment,
which may hurt the convergence speed of the model due to correlations be-
tween records in the replay buffer [93]. We propose to correct the first issue
by performing the optimization step when 32 new records are stored in the
replay buffer. The second issue is addressed by training the agent on 5 dif-
ferent environments running in parallel. Finally, instead of interacting with
the environment in long sequences, the agents learn from 150 simulations of
150 jobs each. By performing these corrections the pool of training data is
increased 7 times and the training time is increased only by a factor of 2.

To train the Deep MARL agent with the PPO we train the agent when
3 episodes of agent-environment interactions are collected for a total of 300
episodes. The agent is trained for 10 epochs with a batch of size 392. The
number of simulations is increased in comparison to DQN because the PPO
method is on-policy and must be trained on several episodes. At the same
time, the computational complexity of the PPO doesn’t change significantly,
because, in comparison to DQN, the number of optimization steps is roughly
the same.

4.3 Experimental evaluation of Graph State En-
coding

The experimental evaluation of graph state encoding is performed by study-
ing a set of candidates proposed by us following the approaches used in the
literature. The training procedure for DQN agents is the same as for Deep
MARL. Agents trained with PPO are trained on 500 simulations, but the
training stops when the average entropy of decisions per the last 5 episodes is
less than 0.25. The training starts with a high value of entropy regularization
coefficient, i.e. 0.5, and decays by a factor of 0.995 after every optimization
step. The adjustment is made due to the variability of entropy development
for different architectures, which may lead to the overfitting of models that
were converging faster than others. For GNN the state of the environment is
represented by the disjunctive graph. As it was discussed in Section 1.5, the
disjunctive graph contains a complete graph of operations representing jobs
in the machine queue, i.e. the number of edges is O(|J k|2), which results in
the high computational complexity of the system with a large number of jobs
in machine queue. The problem becomes even more severe with RL methods
because to train the model around several thousands of graphs must be stored
in the memory. To address the issue, we propose to prune the disjunctive
graph by selecting only jobs that are in the machine queue and the jobs that
are next to arrive at the machine, which is inspired by the Deep MARL-MR
state encoding. Additionally, we consider the modification of the graph from

Experimental evaluation of Graph State Encoding 49

[92] where authors propose to add a node representing the machine to the
graph. Then the machine node is connected with undirected edges to oper-
ations representing jobs in the machine queue and jobs that were processed
by the machine. The modification results in O(|J |k) edges to represent the
connections between all operations for jobs in the machine queue.

For the evaluation, the architecture of the GNN is proposed based on the
approaches from the literature. At first, node features are passed through
a single-layer MLP with the LeakyRelu activation function. The obtained
node representations are used as input to 3-layer Jumping Knowledge GNN,
i.e. hidden representations of nodes at each graph layer are concatenated and
passed through the MLP with the LeakyRelu activation function. Finally, node
representations are aggregated following the requirements of specific tasks,
which depend on the training algorithm and the action space. For the graph
readout, the mean pooling is chosen. The output of the GNN is passed through
the MLP with the LeakyRelu activation function. For all layers, the size of
the hidden dimension is set to 128.

The studied set of candidates consists of all combinations of the following
components:

Action space: The action space can be modeled directly (D) as the dis-
tribution over operation nodes representing jobs in the machine queue. To
construct the distribution only latent representations of the aforementioned
nodes are considered. Alternatively, the action space is encoded indirectly
(I) by the set of PDRs. In this case, the graph latent representation is ob-
tained by the graph readout of operations representing jobs in the machine
queue. From the obtained latent representation, the distribution of actions
is constructed by decoding the representation with the MLP and softmax
activation function.

Graph Layer: Following the literature two most popular GNN architec-
tures are either GATv2 or GIN, hence, they are selected for evaluation. For
GATv2 the number of heads is set to 2.

Graph Encoding: Two graph encodings are considered, i.e. the disjunc-
tive graph (D) and the graph constructed with machine nodes (M).

Node Features: Different papers propose different sets of operation fea-
tures added to the node. In the scope of the thesis, two sets are considered.
The first one is based on the paper [46] and we call it hierarchical (H). In
the original work, each node contains the lower bound of operation com-
pletion time CLB(oi,j) and the status of the operation, i.e. a binary flag
indicating whether the operation was completed or not. To incorporate the
information about the job priority, we propose to add the estimated value
of slack time of the job Ji derived from the CLB(oi,j), i.e.

S(oi,j) = Di − CLB(oi,j)

Evaluation Procedure 50

where Di is due time. When the job is completed, the estimated value
of slack time is equal to the actual slack time of the job at the moment
of the job production on the machine, otherwise it is the upper bound of
the future slack time. The second set of features is proposed by us and
we call it custom (C). It consists of three feature groups. The first group
contains operation features, i.e. the lower bound of operation completion
time CLB(oi,j), the operation processing time pi,j , the estimated value of
slack time S(oi,j), criticality factor derived from the estimated value of
slack time, and the completion rate of the j-th job at the i operation
cri,j . The second group consists of binary indicators, i.e. whether the
operation has arrived at the machine and whether the machine has started
and finished the operation. The last group contains indicators to improve
the observability of the model, i.e. the utilization rate of the machine,
the wait time of the job in the machine queue, the expected tardy rate
from Deep MARL-AS, the number of jobs arriving at the machine, the
available time of the machine, the available time of the next machine, and
the indicator of the next machine breakdown. To decorrelate the features
from the last group from the number of jobs in the machine queue, the
features are normalized by the number of jobs in the machine queue and
they are added only to operations representing jobs in the machine queue.
Finally, all time-related features are scaled down by the constant factor
c = 128.

RL method: Models are trained with both DDQN and PPO.

There are a total of 32 models. To refer to the candidate, the following
notation is used: Action Space - Graph Layer - Graph Encoding - Node Features
- Training Algorithm, e.g. I-GATv2-C-H-DDQN refers to the candidate with
the indirect action space, GATv2 graph layer, disjunctive graph encoding,
hierarchical node features, and DDQN training algorithm. For each training
method and each action space, we consider only two candidates that achieved
the best performance on the validation set.

4.4 Evaluation Procedure

For experiments, a new simulator was developed and it is available at [94].
The simulator supports the DJSSP and homogeneous DFJSSP problem with
machine breakdowns and random arrival of the jobs. From the job perspective,
the simulator is capable of generating jobs following the description presented
in Section 1.10. At the same time, it can be applied to other JSSP problems
with slight modifications because of the codebase quality from the perspective
of software development. The simulator architecture is inspired by the [8] simu-
lator, but we significantly refactored the codebase to support the experimental
evaluation of different methods. The evaluation of the agent is performed by

Evaluation Procedure 51

simulating the production of 150 jobs under the same configuration of the dy-
namic JSSP problem and different random seeds. For each run, the cumulative
tardiness of the first 100 produced jobs is measured. The cumulative tardiness
of remaining jobs is not considered in the evaluation due to the high number
of passive decisions caused by no arrival of new jobs. At the same time, the
performance is not measured by computing the cumulative tardiness at the
specific moment of the simulation like in [8], because the cumulative measure
is computed over completed jobs that depends on the behavior of the agent.
Finally, a lot of passive decisions may happen at the beginning of the simula-
tion, when machine queues are filling up. Hence, each machine starts with 3
jobs in the queue.

The baseline rule for all experiments is the FIFO priority dispatch rule
which represents the most passive decision-making strategy. To measure rela-
tive performance, the normalized cumulative tardiness is selected as the metric
that is computed in the following way for each run:

Normalized Performance =
∑|J |
i (TFIFO

i − TAgent
i)∑|J |

i TFIFO
i

(4.11)

where J is the set of completed jobs.
To minimize the effect of randomness, every model is trained 3 times with

different random seeds. Then all agents are evaluated on 100 randomly gener-
ated tasks to produce 150 jobs under the same configuration of dynamic JSSP
problem. Note, that evaluation instances are randomly generated, but they
are the same for all agents. The evaluation of agents on static instances is not
considered because they lack the information about due dates of the job. The
quality of trained agents is then compared following the methodology presented
in [95]. The first step of the procedure ranks all methods by the normalized
performance for every run. Then the Friedman test is performed to determine
whether there is a significant global difference between the models. Once the
null hypothesis is rejected, a series of post-hoc tests is performed to determine
the concrete pairwise differences between the models. In the context of the

Table 4.3 Comparison of 7 dispatching rules with the level of significance α = 0.05.
Friedman procedure rejects null-hypothesis with pFriedman = 1.7 · 10−10.

Rule Avg. Rank
CR+SPT 1.26

SPT 2.39
LWKR 3.29

CR 4.03
MS 4.97

WINQ 5.18
LIFO 6.88

Hypothesis p

CR+SPT vs. SPT 0.001
SPT vs. LWRK 0.009
LWKR vs. CR 0.030

CR vs. MS 0.008
MS vs. WINQ 0.491

WINQ vs. LIFO 2.36 · 10−7

Evaluation Procedure 52

Figure 4.1 The development of the average reward per episode and average Q-
values during the training of the DQN agent.

0 50 100
Episode

-0.38

-0.35

-0.33

-0.30

-0.28

-0.25

Va
lu

e

Mean reward per episode

10000 20000
Step

−6

−5

−4

−3

−2

Q
-V

al
ue

Mean Q-Value

thesis, we choose Shaffer’s multiple hypothesis testing [96]. The Shaffer’s pro-
cedure is performed with the significance level of α = 0.05. The example of
the evaluation is presented in Table 4.3. We can observe that the CR+SPT
rule is the best rule for all candidates. At the same time, there is not enough
evidence to claim the difference between the MS and WINQ rules. It must
be noted that the implementation of the procedure from [95] is used and we
found out that doesn’t rank correctly negative measures. Hence, normalized
performances are standardized and shifted to the positive domain. The cor-
rection doesn’t affect the results of any of the tests, because all of them are
based on relative rankings of models over tasks that are not affected by the
transformation.

For RL methods, it is important to define the behavior of agents during the
evaluation phase. For instance, the DQN was evaluated on Atari games with
.05-greedy behavior and random starts to minimize the effect of overfitting
[51]. In comparison, Deep MARL agents act greedily during the evaluation
phase [8]. At the same time, agents trained with the PPO method learn the
stochastic policy that for some problems, e.g. poker is the optimal policy. In
the context of the thesis, DQN agents are evaluated with greedy behavior,
while PPO agents are evaluated stochastically.

Finally, it is important to indicate, if the agent learns from the interactions.
For agents trained with DQN, there are two ways to analyze the learning pro-
cess. The first one is to observe the trend of cumulative undiscounted returns
for each run. Reinforcement learning maximizes the cumulative return, hence,
a positive trend in return per episode should be observed. The second one is the
development of the q-function values during training. As presented in [51] the
absolute value of q-function values should increase during the training process.
The development of the average reward per episode and the q-function values

Evaluation Procedure 53

Figure 4.2 The development of the average reward per episode and average Q-
values during the training of the PPO agent.

0 100 200
Episode

-0.45

-0.4

-0.35

-0.3

Va
lu

e

Mean reward per episode

0 100 200
Episode

0.8

0.9

1.0

1.1

1.2

1.3

Va
lu

e

Mean entropy per episode

of the Deep MARL-MR model are presented in Figure 4.1. Both indicators
tell that the model is learning.

For agents trained with PPO, the development of average entropy per
episode during the training is measured [72]. In general, the slow decay in
the absolute value of the entropy should be observed, which indicates the shift
of the model from active exploration to exploitation. Otherwise, the indicators
of no learning process are either the maximum possible entropy, which means
that the agent has learned random policy, or the steep decay of the entropy
to zero, which indicates the agent lacks exploration of the environment. To
achieve the aforementioned behavior, we empirically select the hyperparame-
ters presented that can be found in [94]. The development of the entropy and
the average return per episode for Deep MARL-MR are presented in Figure
4.2. Overall, the expected development of the entropy is observed, but at the
same time, we can observe a high sensitivity of the method to the data it was
trained on.

Chapter 5

Evaluation

In this chapter, we conduct the experimental evaluation of methods introduced
in the previous chapter. The chapter starts with a description of the simula-
tion environment and the evaluation of priority dispatch rules introduced in
the previous sections. Then it proceeds with the description of the series of
experiments conducted to evaluate the performance of Deep MARL methods
and Graph Neural Networks to gain insights into the performance of the stud-
ied methods. Finally, the chapter concludes with the final evaluation of the
methods obtained by the incorporation of obtained insights.

5.1 Simulation Parameters

DJSSP simulation parameters for all experiments are presented in Table 5.1.
In general, we follow parameters from the Deep MARL [8], but we additionally
consider the variability in job length and the noise in the processing time.

Table 5.1 Simulation parameters

Number of machines 10
Processing time p Uniform[1, 50]

Processing time noise N [0, 102]
Tightness Uniform[1, 3]

Utilization rate 0.8
Job length {5 . . . 10}

Machine breakdown arrival Exponential[0.0002]
Breakdown duration Uniform[200, 300]

54

Experimental Evaluation of Priority Dispatch Rules 55

5.2 Experimental Evaluation of Priority Dispatch
Rules

PDRs discussed in Section 1.7 are evaluated on the same set of tasks as the
DRL agents. To show the relative strength of PDRs on the configuration of
the DJSSP problem, we present the average ranking of the rules in Table 5.2.
Overall, we can observe that composite rules outperform simple ones.

Table 5.2 Average ranking of 33 PDRs studied in the scope of the thesis.

Rule Avg. Rank
CR+SPT 4.45

SPW +SPT 4.45
MOD 7.35

2PT+WINQ+NPT 7.81
GP2 8.19

LWKR+SPT 8.29
2PT + LWKR 8.29

COVERT 8.65
SPT 9.58
ATC 10.38

LWKR + MOD 10.82
PT + WINQ 11.38

AVPRO 12.27
GP1 13.61

PT + WINQ + S 14.05
LWKR 14.63

2PT + LWKR +S 15.96

Rule Avg. Rank
MDD 17.00
SPW 17.88
CR 17.88

EDD 18.17
MS 20.76

WINQ 21.32
LRO 21.63
MON 22.03
NPT 26.59
LIFO 27.70
LWT 27.87

Random 27.99
SWT 28.13
MRO 31.45
LPT 32.04

MWKR 32.40

5.3 Rule Sets

In the scope of the chapter, the following rule sets are considered:

Deep MARL-MR rule set (MR): The set of rules used in the Deep
MARL-MR, i.e. SPT, CR, LWKR, WINQ.

Deep MARL-AS rule set (AS): The set of rules used in the Deep
MARL-AS, i.e. SPT, CR, MS, WINQ.

Rule set extended with due dates rules (E): The extended set of
rules containing all rules from Deep MARL-MR and Deep MARL-AS, as
well as, two additional rules involving due dates of the job, i.e. SPT, CR,
MS, WINQ, EDD, LWRK, ATC.

Experimental Evaluation of Deep MARL 56

Rule set extended with rules showing good performance (S) - The
extended set of rules containing all rules from Deep MARL-MR and Deep
MARL-AS, as well as, rules that have strong performance on the current
configuration of the problem, i.e. MS, SPT, LWKR, WINQ, CR+SPT,
SPW+SPT, MOD, COVERT, ATC, 2PT+WINQ+NPT.

5.4 Experimental Evaluation of Deep MARL

For the study of Deep Multi-Agent Reinforcement Learning, the Deep MARL-
MR state encoding and reward shaped through the decomposition are selected.
The reader can find exact hyperparameters used for the training in [94].

At first, the impact of the architecture on the performance of the model is
evaluated. The original work uses a small feedforward neural network with 6
hidden layers of sizes (64, 48, 48, 36, 24, 12) and the Tanh activation function.
We note that the number of parameters can be too small for the complexity
of the problem. Hence, we compare the performance of the model with two
larger models with 3 hidden layers of sizes (256, 256, 256) and Relu/Tanh
activation functions. Candidates are named by the activation function and the
baseline model is Deep MARL-MR. The results of the evaluation procedure
are presented in Table 5.3. At first, we can observe that none of the candidates
nor the baseline outperforms the priority dispatch rule it uses, although, all
models have achieved a similar high return per episode. The main reason
behind the poor performance of the model seems to be the difference between
the DJSSP problem configurations used in the original work and the thesis or
possible differences in the simulation environments.

Secondly, the impact of the optimizer on the performance of the model is
evaluated. In the previous experiment, the model was trained with the Adam
optimizer and the learning rate of 0.001. We evaluate a series of optimizers,
i.e. SGD with momentum, Adam [97], AdamW [98], AdaMax [97], RMSProp,
RAdam [99], and non-stationary Adam. Non-stationary Adam [100] is the con-
figuration of the Adam, that sets the same value for the coefficients used for

Table 5.3 Comparison of 4 dispatching rules and 3 candidates with the level of
significance α = 0.05. Friedman procedure rejects null-hypothesis with pFriedman =
0.0.

Rule Avg. Rank
SPT 1.39

LWRK 2.21
MS 3.64

WINQ 3.89
Baseline 5.48
RELU 5.68
Tanh 5.70

Hypothesis p

WINQ vs. Baseline 1.38 · 10−18

Baseline vs. Tanh 0.64
Baseline vs. RELU 0.64

RELU vs. Tanh 0.91

Experimental Evaluation of Deep MARL 57

Table 5.4 Comparison of 4 dispatching rules and 7 candidates with the level of
significance α = 0.05. Friedman procedure rejects null-hypothesis with pFriedman =
0.0. Adam (NS) stands for non-stationary Adam.

Rule Avg. Rank
SPT 1.76

LWRK 2.73
MS 4.72

WINQ 5.10
SGD 6.48

AdamW 6.54
Adam (NS) 6.85

AdaMax 7.62
Adam 7.64

RAdam 7.69
RMSProp 8.89

Hypothesis p

WINQ vs. SGD 7.25 · 10−7

SGD vs. AdamW 3.108
AdamW vs. Adam (NS) 1.149
Adam (NS) vs. AdaMax 0.037

AdaMax vs. Adam 3.108
Adam vs. RAdam 3.108

RAdam vs. RMSProp 1.78 · 10−4

Adam (NS) vs. SGD 1.149
Adam (NS) vs. Adam 0.033

SGD vs Adam 3.25 · 10−4

Adam W vs. Adam 7.03 · 10−4

Table 5.5 Comparison of 4 dispatching rules and 2 candidates with the level of
significance α = 0.05. Friedman procedure rejects null-hypothesis with pFriedman =
0.0.

Rule Avg. Rank
SPT 1.41

LWRK 2.16
MS 3.49

WINQ 3.78
Xavier 4.96

Orthogonal 5.20

Hypothesis p

WINQ vs. Xavier 3.77 · 10−14

Xavier vs. Orthogonal 0.12
WINQ vs. Orthogonal 5.79 · 10−20

computing running averages of gradient (β1, β2) and the small value of weight
decay. The authors claim that it prevents the policy forgetting of the PPO
on some tasks. The results of the evaluation are presented in Table 5.4. Sim-
ilarly, to the previous experiment, the model performs poorly in comparison
to the priority dispatch rule it uses. Yet, we can observe that non-stationary
Adam, SGD, and AdamW optimizers found better models than Adam, which
is confirmed by the rejection of hypotheses Adam vs. Adam (NS), Adam vs.
SGD, and Adam vs. AdamW.

In the third experiment, the impact of the initialization on the performance
of the model is evaluated. The original work initializes the weights of the model
with the Xavier initialization [101]. Additionally, the orthogonal initialization
is considered, which was shown to be beneficial for the training of the deep
neural networks [102]. The results of the evaluation are presented in Table 5.5.
No significant difference between the two initializations is observed.

Then, the impact of the Deep MARL-AS state encoding on the performance
of the model is evaluated. In comparison to the Deep MARL-MR that encodes

Experimental Evaluation of Deep MARL 58

Table 5.6 Comparison of 4 dispatching rules and 3 candidates with the level of
significance α = 0.05. Friedman procedure rejects null-hypothesis with pFriedman =
2.37 ·10−10. AS stands for Deep MARL-AS encoding, AS (E) stands for Deep MARL-
AS with the extended rule set, and MR stands for Deep MARL-MR state encoding.

Rule Avg. Rank
SPT 2.17

AS (E) 2.64
AS 2.71

LWRK 3.42
MS 5.10

WINQ 5.45
MR 6.50

Hypothesis p

SPT vs. AS (E) 0.025
AS (E) vs. AS 0.69
AS vs. LWKR 2.52 · 10−4

AS vs. MS 2.04 · 10−101

the actions directly into the state, the Deep MARL-AS learns to select the best
PDRs based on system indicators. The original work uses the (AS) rule set.
Additionally, a candidate with the (E) rule set is evaluated. The results of the
evaluation are presented in Table 5.6. We can observe that the Deep MARL-
AS encoding outperforms the Deep MARL-MR state encoding trained on the
reward shaped through decomposition, which is the opposite of the results
from the original work. At the same time, there is not enough evidence to
claim the difference between rule sets.

In the next step, Rainbow improvements discussed in Section 2.3 are eval-
uated. The original work uses the DDQN method. Additionally, the set of
7 candidates is considered, i.e. DQN, Dueling DQN, Prioritized Experience
Replay (Prioritized), Noisy Nets (Noisy), 3-step learning (3-step), all of the
improvements (All), and all of the improvements without noisy nets, and 3-
step learning (All-nn3). The results of the evaluation are presented in Table
5.7. Overall, we can observe that the Prioritized Experience Replay and 3-step
learning led to the improvement in the performance of the model.

In the final step of the DQN experiment, the impact of the reward functions
is evaluated. We consider the set of 4 rewards, i.e. clipped tardiness, reward
shaped through decomposition, surrogate reward shaping, and the makespan.
For the makespan reward function, the reward is only computed based on
the jobs presented on the shop floor at the moment of the decision. For the
global tardiness and makespan reward, we normalize the metric by the con-
stant c = 128 and clip the normalized metric to the range [−1, 0] and [−1, 1]
respectively. For reward functions from the Deep MARL, the same sets of
hyperparameters as presented in the original work are used. Additionally, for
each reward function, we consider DDQN and All-nn3 variants of the Rainbow
improvements. The results of the evaluation are presented in Table 5.8.

We can observe that surrogate reward shaping and makespan reward func-
tions led to significant performance improvement. To understand the main
reason behind the improvement, we analyze decisions made by the agents dur-

Experimental Evaluation of Deep MARL 59

Table 5.7 Comparison of 4 dispatching rules and 3 candidates with the level of
significance α = 0.05. Friedman procedure rejects null-hypothesis with pFriedman = 0.

Rule Avg. Rank
SPT 1.56

LWRK 2.52
MS 4.48

WINQ 4.80
Prioritized 5.62

3-step 7.38
All-nn3 8.02

All 8.48
Noisy 8.48

DDQN 8.54
DQN 9.02

Dueling 9.10

Hypothesis p

WINQ vs. Prioritized 0.082
WINQ vs. 3-step 5.12 · 10−7

Prioritized vs. 3-step 5.63 · 10−7

3-step vs. All-nn3 0.471
All-nn3 vs. All 0.827
All vs. Noisy 3.178

Noisy vs. DDQN 3.178
DDQN vs. DQN 0.786
DQN vs. Dueling 3.178

Table 5.8 Comparison of 4 dispatching rules and 8 candidates with the level of
significance α = 0.05. Friedman procedure rejects null-hypothesis with pFriedman = 0.

Rule Avg. Rank
All-nn3 (S) 2.23
DDQN (S) 2.76
All-nn3 (M) 3.93

SPT 3.93
DDQN (M) 4.77

LWKR 5.43
MS 7.59

WINQ 8.02
DDQN (CT) 8.54
All-nn3 (CT) 10.06

DDQN (GDT) 10.28
All-nn3 (GDT) 10.47

Hypothesis p
All-nn3 (S) vs. DDQN (S) 0.502

All-nn3 (S) vs. SPT 0.0029
DDQN (S) vs. All-nn3 (M) 8.74 · 10−4

All-nn3 (M) vs. SPT 1.323
All-nn3 (M) vs. DDQN (M) 0.043

SPT vs. DDQN (M) 0.043
DDQN (M) vs. LWKR 0.199
WINQ vs. DDQN (CT) 0.502

DDQN (CT) vs. All-nn3 (CT) 4.33 · 10−6

All-nn3 (CT) vs. DDQN (GDT) 1.323
DDQN (GDT) vs. All-nn3 (GDT) 1.323

ing the last 10000 steps of the training. At this moment of training the agent
has 0.1-greedy behavior, hence, by analyzing the frequency of the actions we
can understand the behavior of the agent. The results for the All-nn3 variant
are presented in Figure 5.1. We can observe that the agents trained with the
surrogate reward shaping and makespan reward functions are more likely to
select the job following the SPT rule, which is known to be a good rule for
makespan minimization [4]. While the agents trained with the clipped tardi-
ness and reward shaped through decomposition are more likely to select the
job following the LWKR and WINQ rules. At the same time, the All-nn3
variant resulted in better overall results, yet, there is not enough evidence to
claim the difference between variants.

Finally, the PPO method is evaluated. The results of the evaluation are

Experimental Evaluation of Deep MARL 60

Figure 5.1 Histogram of DQN decisions during the last 10000 seconds of the
simulation. (S) stands for surrogate reward shaping. (M) stands for makespan reward.
(CT) stands for clipped tardiness reward. (GDT) stands for reward shaped through
decomposition.

LW
RK MS

SP
T

W
IN

Q

0

500

1000

1500

2000

2500

C
ou

nt

Histogram of actions (All-nn3 (S))

LW
RK MS

SP
T

W
IN

Q

0

1000

2000

3000

4000

C
ou

nt

Histogram of actions (All-nn3 (M))

LW
RK MS

SP
T

W
IN

Q

0

200

400

600

800

1000

1200

C
ou

nt

Histogram of actions (All-nn3 (GDT))

LW
RK MS

SP
T

W
IN

Q

0

200

400

600

800

1000

1200

C
ou

nt

Histogram of actions (All-nn3 (CT))

presented in Table 5.9. While we formally reject the null hypothesis of the
difference between the PPO and DDQN methods, we can not claim that the
PPO method is better than the DDQN method due to the low performance of
the obtained models.

Overall, after the series of 7 studies, we can observe that only some of
the candidates possessed significant performance improvement which doesn’t
allow us to make strong statements about the strength of the adjustment.
Yet, a series of the most prominent adjustments was found, which are selected
for the final evaluation. These adjustments are the Deep MARL-AS state
encoding, the surrogate reward shaping, the non-stationary Adam optimizer,
the Prioritized Experience Replay, and the PPO method.

Experimental Evaluation of Graph Neural Networks 61

Table 5.9 Comparison of 4 dispatching rules and 2 candidates with the level of
significance α = 0.05. Friedman procedure rejects null-hypothesis with pFriedman =
1.89 · 10−10.

Rule Avg. Rank
SPT 1.41

LWKR 2.36
MS 3.49

WINQ 4.00
PPO 4.34

DDQN 5.22

Hypothesis p
WINQ vs. PPO 0.052
PPO vs. DDQN 2.94 · 10−8

5.5 Experimental Evaluation of Graph Neural Net-
works

The experimental evaluation of Graph Neural Networks is performed on the set
of models and the training procedure discussed in Section 4.3. All models are
trained with the reward shaped through decomposition and the extended rule
set. The results of the evaluation are presented in Table 5.10. The best models
are the ones that were trained with DDQN and have direct action encoding
and custom node features. These models have achieved their performance by
selecting either the SPT or the ATC rule most of the time. The second group
of models is the ones that were trained with PPO and have hierarchical node
features. In comparison to the DDQN models, these models have learned more

Table 5.10 Comparison of 5 dispatching rules and 8 candidates with the level of
significance α = 0.05. Friedman procedure rejects null-hypothesis with pFriedman = 0.
The abbreviation is read as follows, i.e. (Direct|Indirect action set) - (GATv2|GIN)
- (Machine node|Complete graph encoding) - (Hierarchical|Custom node features) -
(DQN|PPO).

Rule Avg. Rank
SPT 3.01

D-GATv2-M-C-DQN (1) 3.01
D-GIN-C-C-DQN (2) 3.21

D-GATv2-M-H-PPO (3) 3.94
D-GATv2-C-H-PPO (4) 4.25

LWRK 4.76
MS 7.21

WINQ 7.76
I-GATv2-M-H-DQN (5) 9.70

I-GIN-C-C-PPO (6) 9.92
I-GIN-C-H-PPO (7) 10.38

I-GATv2-C-C-DQN (8) 11.69
Random 12.16

Hypothesis p

SPT vs. (1) 2.86
(1) vs. (2) 2.86
(2) vs. (3) 2.03
(3) vs. (4) 2.86

(4) vs. LWRK 2.86
WINQ vs. (5) 0.01

(5) vs. (6) 2.86
(6) vs. (7) 2.86
(7) vs. (8) 0.31

(8) vs. Random 2.30 · 10−4

Final Evaluation 62

balanced policies, i.e. all rules have a high probability of being selected. Fi-
nally, all models with the indirect action encoding have performed poorly in
comparison to the models with the direct action encoding. However, they have
achieved better performance than the random policy. At the same time, all
models with indirect action encoding have learned to obtain a high average
reward per episode, which indicates that the problem may be with the reward
function. Therefore, for the final evaluation, the same set of models is consid-
ered, but the reward function is changed to the surrogate reward shaping that
has shown good performance in deep MARL experiments.

5.6 Final Evaluation

In the first step of the final evaluation, the set of 8 models is constructed
based on the results of the previous studies. To describe the set we use the
following notation: State Encoding - Reward Function - Prioritized Replay
Buffer - Architecture - Rule Set. The state encoding is either Deep MARL-AS
(AS) or Deep MARL-MR (MR). The reward function is either the surrogate
reward shaping (S) or the reward shaped through decomposition (GDT). The
model is either trained with a prioritized replay buffer (P) or not (N). The
architecture is either from the original work (O) or the 3-layer MLP with
RELU activation function and the hidden dimension of 256 (R). The evaluation
results and models are presented in Table 5.11. Overall, it can be observed that
the Deep MARL-MR with surrogate reward shaping trained with the original
architecture and the base rule set is the only model that is capable of learning
the policy better than the rules it uses. At the same time, the agent is unable
to learn the policy that is better than CR+SPT which is one of the best rules
for the current configuration of the DJSSP problem.

For the evaluation of PPO, the set of models is constructed similarly to

Table 5.11 Comparison of 5 dispatching rules and 8 candidates with the level of
significance α = 0.05. Friedman procedure rejects null-hypothesis with pFriedman = 0.

Rule Avg. Rank
CR+SPT 2.38

MR-S-P-O-MR (1) 3.59
MR-S-N-O-MR (2) 4.21

SPT 4.81
AS-GDT-N-O-E (3) 5.24

AS-S-P-R-S (4) 6.49
AS-GDT-P-O-E (5) 6.73

LWRK 7.17
AS-S-P-O-E (6) 8.11
AS-S-N-O-E (7) 8.58

MS 10.09
WINQ 10.62

Hypothesis p
CR+SPT vs. (1) 4.56 · 10−4

(1) vs. (2) 0.24
(2) vs. SPT 0.025
(1) vs. SPT 4.56 · 10−4

SPT vs. (3) 0.42
(3) vs. (4) 0.42
(4) vs. (5) 0.421

(5) vs. LWRK 0.421
LWRK vs. (6) 0.012

(6) vs. (7) 0.421
(7) vs. MS 6.72 · 10−6

Final Evaluation 63

Table 5.12 Comparison of 5 dispatching rules and 5 candidates with the level of
significance α = 0.05. Friedman procedure rejects null-hypothesis with pFriedman = 0.

Rule Avg. Rank
CRSPT 1.60

SPT 3.40
AS-S-O-AS (1) 3.41

AS-GDT-O-E (2) 4.63
LWRK 4.97

AS-S-R-S (3) 5.68
MS 7.23

WINQ 7.71
MR-S-R-MR (4) 7.84
MR-S-O-MR (5) 8.54

Hypothesis p
SPT vs. (1) 1.23
(1) vs. (2) 7.47 · 10−6

(2) vs. LWRK 0.51
LWRK vs. (3) 0.025

(3) vs. MS 5.57 · 10−9

WINQ vs. (4) 0.006
(4) vs. (5) 0.027

Table 5.13 Comparison of 5 dispatching rules and 8 candidates with the level of
significance α = 0.05. Friedman procedure rejects null-hypothesis with pFriedman = 0.
The abbreviation is read as follows, i.e. (Direct|Indirect action set) - (GATv2|GIN)
- (Machine node|Complete graph encoding) - (Hierarchical|Custom node features) -
(DQN|PPO).

Rule Avg. Rank
CRSPT 3.24

I-GATv2-M-C-DQN (1) 3.62
I-GINv2-M-C-DQN (2) 4.19
D-GATv2-C-H-DQN (3) 5.49
D-GATv2-C-H-PPO (4) 5.66

SPT 6.38
D-GATv2-M-C-DQN (5) 6.28
D-GATv2-M-C-PPO (6) 6.65

I-GIN-M-H-PPO (7) 8.47
LWRK 8.49

I-GIN-C-C-PPO (8) 9.11
MS 11.45

WINQ 11.96

Hypothesis p
CRSPT vs. (1) 1.39

(1) vs. (2) 0.61
(1) vs. (3) 7.14 · 10−4

(3) vs. (4) 1.77
(4) vs. SPT 0.28
SPT vs. (5) 1.77
(5) vs. (6) 1.39
(6) vs. (7) 2.22 · 10−7

(7) vs. LWRK 1.77
LWRK vs. (8) 0.49

(8) vs. MS 6.2 · 10−11

the DQN. However, PPO doesn’t use the experience replay buffer, hence, there
are only 5 models considered in the evaluation. From the perspective of the
entropy development variants AS-S-R-S and MR-S-R-S were terminated after
around 170 episodes of simulation due to a fall in the entropy of the policy.
The results of the evaluation are presented in Table 5.12. Overall, we can
observe that with PPO method is unable to learn better policies than the
DDQN method.

For graph evaluation, the same set of models is constructed, but the im-
provements from deep MARL are considered, i.e. the agent is trained with the
surrogate reward shaping, DDQN agents use the prioritized replay buffer and
for rule set, the (S) set of rules is used. The results are presented in Table 5.13.
Similarly to Deep MARL-MR state encoding, the models with direct action

Discussion 64

encoding perform significantly better than models encoding jobs indirectly.
Finally, the models from Deep MARL (MR-S-P-O-MR, MR-S-N-O-MR,

AS-GDT-N-O-E) and GNN (I-GATv2-M-C-DQN, I-GINv2-M-C-DQN) that
performed the best in comparison to CRSPT rule are evaluated on the new
dataset of consisting of 200 tasks. The results are presented in Table 5.14. I-
GATv2-M-C-DQN obtained statistically better results than any other trained
model, yet, the performance of the model is not sufficient to outperform the
CRSPT rule.

Table 5.14 Comparison of 10 dispatching rules and 5 candidates with the level of
significance α = 0.05. Friedman procedure rejects null-hypothesis with pFriedman = 0.

Rule Avg. Rank
CRSPT 3.52

I-GATv2-M-C-DQN (1) 4.01
MR-S-P-O-MR (2) 5.06

MOD 5.15
I-GINv2-M-C-DQN (3) 5.36

MR-S-N-O-MR (4) 5.45
2PT + WINQ + NPT 6.06

SPT 7.32
ATC 7.33

AS-GDT-N-O-E (5) 10.10
CR 10.20
MS 11.75

LWRK 11.31
WINQ 12.35

Hypothesis p
CRSPT vs. (1) 0.43

(1) vs. (2) 2.19 · 10−4

(1) vs. (3) 4.46 · 10−7

(1) vs. (4) 5.04 · 10−8

(2) vs. (3) 2.675
(2) vs. (4) 0.82
(3) vs. (4) 2.67
(4) vs. (5) 1.11 · 10−8

5.7 Discussion

After evaluating a wide range of models and methods, we have observed that
the best models are the ones that learn to select the job directly. We believe
that the main reason behind the weak performance of the rule-based methods
is the necessity of learning the result of rule application from the system state.
This introduces additional complexity to the problem, which results in the
poor performance of the models. An interesting direction of further research
can be the direct indication of the job that will be selected by the rule in
the system. By doing so almost all time-related information (e.g. operation
processing time, remaining work, etc.) can be encoded in the form of binary
indicators, which will make the input time-independent and help the model to
generalize to other configurations of the DJSSP problem. From the perspec-
tive of the RL methods, we have observed that the DQN-based methods were
yielding similar or sometimes even better results than the PPO. One of the
possible reasons for the observed behavior of the PPO method can be some
unknown implementation detail that we are not aware of [71]. Being concep-

Discussion 65

tually simpler, we advise beginning with the DQN-based methods and then
proceeding to the PPO, if the DQN-based methods are not sufficient. There-
fore, further research can be conducted in the direction of improving DRL
methods to solve the DJSSP problem. One of the interesting observations was
the similarity between the makespan reward function and the surrogate reward
shaping. Intuitively, blind minimization of tardiness may result in an overall
increase in the flow time of the job through the system, which eventually will
increase the total cumulative tardiness. Surrogate reward shaping seems to be
the trade-off between the makespan and the tardiness that results in better
overall outcomes for the DJSSP with job priorities. An interesting direction
of further research can be the development of new reward functions that will
consider several objectives at once. Finally, the configuration of the DJSSP
problem used in the thesis may be too complicated for practical needs. Hence,
further research by evaluating the methods under different configurations and
evaluation of DRL methods on real-world data should be conducted.

Conclusion

The main goal stated at the beginning of the thesis is to perform a compara-
tive study of the methods employing Deep Reinforcement Learning and Graph
Neural Networks to solve the Dynamic Job Shop Scheduling Problem with the
objective of the minimization of total cumulative tardiness. One work that
focuses on our task is Deep MARL [8], which becomes the starting point of
the simulation environment, training, and evaluation procedure. After the de-
velopment of the simulator, we conduct a series of experiments to gain insights
into the performance of the Deep MARL method. Then we propose a series of
improvements to the training and evaluation procedure such as more efficient
gathering of the training data, Rainbow, etc. We perform a series of exper-
iments to evaluate the proposed improvements following the new evaluation
procedure. A lot of methods in literature, that use GNN focus on the mini-
mization of the makespan and don’t consider job priorities represented by the
due dates. To evaluate the performance of graph state representation on our
task, we propose a set of 32 methods that cover the most important compo-
nents of the studied methods. The evaluation of the set showed that one of
the novel methods has shown a statistically significant improvement over the
Deep MARL method. Yet, its performance is still slightly behind one of the
PDRs studied in the scope of the thesis. Overall, we have evaluated a wide
range of methods, proposed a various set of improvements, and provided a
comprehensive evaluation of the methods employing DRL and GNNs to solve
the DJSSP problem.

66

Bibliography

1. VIEIRA, Guilherme E.; HERRMANN, Jeffrey W.; LIN, Edward. Reschedul-
ing Manufacturing Systems: A Framework of Strategies, Policies, and
Methods. Journal of Scheduling. 2003, vol. 6, no. 1, pp. 39–62. isbn
1099-1425. Available from doi: 10.1023/A:1022235519958.

2. ZHENG, Pai; WANG, Honghui; SANG, Zhiqian; ZHONG, Ray Y.; LIU,
Yongkui; LIU, Chao; MUBAROK, Khamdi; YU, Shiqiang; XU, Xun.
Smart manufacturing systems for Industry 4.0: Conceptual framework,
scenarios, and future perspectives. Frontiers of Mechanical Engineering.
2018, vol. 13, no. 2, pp. 137–150. isbn 2095-0241. Available from doi:
10.1007/s11465-018-0499-5.

3. MUTH, J.F.; THOMPSON, G.L. Industrial Scheduling. Prentice-Hall,
1963. Industrial Scheduling. Available also from: https://books.google.
cz/books?id=A5AgAAAAMAAJ.

4. Single-machine Sequencing. In: Principles of Sequencing and Scheduling.
John Wiley & Sons, Ltd, 2018, chap. 2, pp. 11–37. isbn 9781119262602.
Available from doi: https://doi.org/10.1002/9781119262602.ch2.

5. MOSHEIOV, Gur. Complexity analysis of job-shop scheduling with de-
teriorating jobs. Discrete Applied Mathematics. 2002, vol. 117, no. 1,
pp. 195–209. isbn 0166-218X. Available from doi: https://doi.org/
10.1016/S0166-218X(00)00385-1.

6. DAUZÈRE-PÉRÈS, Stéphane; DING, Junwen; SHEN, Liji; TAMSSAOUET,
Karim. The flexible job shop scheduling problem: A review. European
Journal of Operational Research. 2024, vol. 314, no. 2, pp. 409–432. issn
0377-2217. Available from doi: https://doi.org/10.1016/j.ejor.
2023.05.017.

7. OUELHADJ, Djamila; PETROVIC, Sanja. A survey of dynamic schedul-
ing in manufacturing systems. Journal of Scheduling. 2009, vol. 12, no.
4, pp. 417–431. isbn 1099-1425. Available from doi: 10.1007/s10951-
008-0090-8.

67

https://doi.org/10.1023/A:1022235519958
https://doi.org/10.1007/s11465-018-0499-5
https://books.google.cz/books?id=A5AgAAAAMAAJ
https://books.google.cz/books?id=A5AgAAAAMAAJ
https://doi.org/https://doi.org/10.1002/9781119262602.ch2
https://doi.org/https://doi.org/10.1016/S0166-218X(00)00385-1
https://doi.org/https://doi.org/10.1016/S0166-218X(00)00385-1
https://doi.org/https://doi.org/10.1016/j.ejor.2023.05.017
https://doi.org/https://doi.org/10.1016/j.ejor.2023.05.017
https://doi.org/10.1007/s10951-008-0090-8
https://doi.org/10.1007/s10951-008-0090-8

Bibliography 68

8. LIU, Renke. Deep reinforcement learning-based dynamic scheduling.
2022.

9. YUGMA, Claude; DAUZÈRE-PÉRÈS, Stéphane; ARTIGUES, Chris-
tian; DERREUMAUX, Alexandre; SIBILLE, Olivier. A batching and
scheduling algorithm for the diffusion area in semiconductor manufactur-
ing. International Journal of Production Research. 2012, vol. 50, no. 8,
pp. 2118–2132. isbn 0020-7543. Available from doi: 10.1080/00207543.
2011.575090.

10. AYTUG, Haldun; LAWLEY, Mark A.; MCKAY, Kenneth; MOHAN,
Shantha; UZSOY, Reha. Executing production schedules in the face of
uncertainties: A review and some future directions. European Journal of
Operational Research. 2005, vol. 161, no. 1, pp. 86–110. issn 0377-2217.
Available from doi: https://doi.org/10.1016/j.ejor.2003.08.027.
IEPM: Focus on Scheduling.

11. URASEVIĆ, Marko; JAKOBOVIĆ, Domagoj. A survey of dispatching
rules for the dynamic unrelated machines environment. Expert Systems
with Applications. 2018, vol. 113, pp. 555–569. isbn 0957-4174. Available
from doi: https://doi.org/10.1016/j.eswa.2018.06.053.

12. VERONIQUE SELS, Nele Gheysen; VANHOUCKE, Mario. A compar-
ison of priority rules for the job shop scheduling problem under differ-
ent flow time- and tardiness-related objective functions. International
Journal of Production Research. 2012, vol. 50, no. 15, pp. 4255–4270.
Available from doi: 10.1080/00207543.2011.611539.

13. Simulation Models for the Dynamic Job Shop. In: Principles of Sequenc-
ing and Scheduling. 2018, pp. 427–452. isbn 9781119262602. Available
from doi: https://doi.org/10.1002/9781119262602.ch15.

14. QUADRAS, Djonathan; FRAZZON, Enzo M.; MENDES, Lucio G.;
PIRES, Matheus C.; RODRIGUEZ, Carlos M. T. Adaptive Simulation-
Based Optimization for Production Scheduling: A Comparative Study.
IFAC-PapersOnLine. 2022, vol. 55, no. 10, pp. 424–429. isbn 2405-8963.
Available from doi: https://doi.org/10.1016/j.ifacol.2022.09.
430.

15. PICKARDT, Christoph; BRANKE, Jürgen; HILDEBRANDT, Torsten;
HEGER, Jens; SCHOLZ-REITER, Bernd. Generating dispatching rules
for semiconductor manufacturing to minimize weighted tardiness. In:
Proceedings of the 2010 Winter Simulation Conference. 2010, pp. 2504–
2515. Available from doi: 10.1109/WSC.2010.5678946.

16. NGUYEN, Su; MEI, Yi; ZHANG, Mengjie. Genetic programming for
production scheduling: a survey with a unified framework. Complex &
Intelligent Systems. 2017, vol. 3, no. 1, pp. 41–66. isbn 2198-6053. Avail-
able from doi: 10.1007/s40747-017-0036-x.

https://doi.org/10.1080/00207543.2011.575090
https://doi.org/10.1080/00207543.2011.575090
https://doi.org/https://doi.org/10.1016/j.ejor.2003.08.027
https://doi.org/https://doi.org/10.1016/j.eswa.2018.06.053
https://doi.org/10.1080/00207543.2011.611539
https://doi.org/https://doi.org/10.1002/9781119262602.ch15
https://doi.org/https://doi.org/10.1016/j.ifacol.2022.09.430
https://doi.org/https://doi.org/10.1016/j.ifacol.2022.09.430
https://doi.org/10.1109/WSC.2010.5678946
https://doi.org/10.1007/s40747-017-0036-x

Bibliography 69

17. ZHANG, Fangfang; MEI, Yi; NGUYEN, Su; ZHANG, Mengjie. Survey
on Genetic Programming and Machine Learning Techniques for Heuris-
tic Design in Job Shop Scheduling. IEEE Transactions on Evolutionary
Computation. 2024, vol. 28, no. 1, pp. 147–167. Available from doi:
10.1109/TEVC.2023.3255246.

18. LEE, YOUNG HOON; BHASKARAN, KUMAR; PINEDO, MICHAEL.
A heuristic to minimize the total weighted tardiness with sequence-
dependent setups. IIE Transactions. 1997, vol. 29, no. 1, pp. 45–52.
isbn 0740-817X. Available from doi: 10.1080/07408179708966311.

19. NGUYEN, Su; ZHANG, Mengjie; JOHNSTON, Mark; TAN, Kay Chen.
Genetic Programming for Job Shop Scheduling. In: Evolutionary and
Swarm Intelligence Algorithms. Ed. by BANSAL, Jagdish Chand; SINGH,
Pramod Kumar; PAL, Nikhil R. Cham: Springer International Pub-
lishing, 2019, pp. 143–167. isbn 978-3-319-91341-4. Available from doi:
10.1007/978-3-319-91341-4{_}8.

20. ZHANG, Fangfang; MEI, Yi; NGUYEN, Su; ZHANG, Mengjie. Evolv-
ing Scheduling Heuristics via Genetic Programming With Feature Se-
lection in Dynamic Flexible Job-Shop Scheduling. IEEE Transactions
on Cybernetics. 2021, vol. 51, no. 4, pp. 1797–1811. Available from doi:
10.1109/TCYB.2020.3024849.

21. DAUZÈRE-PÉRÈS, Stéphane; PAULLI, Jan. An integrated approach
for modeling and solving the general multiprocessor job-shop scheduling
problem using tabu search. Annals of Operations Research. 1997, vol. 70,
no. 0, pp. 281–306. isbn 1572-9338. Available from doi: 10.1023/A:
1018930406487.

22. BRANDIMARTE, Paolo. Routing and scheduling in a flexible job shop
by tabu search. Annals of Operations Research. 1993, vol. 41, no. 3,
pp. 157–183. isbn 1572-9338. Available from doi: 10.1007/BF02023073.

23. YSKA, Daniel; MEI, Yi; ZHANG, Mengjie. Genetic Programming. Ge-
netic Programming Hyper-Heuristic with Cooperative Coevolution for
Dynamic Flexible Job Shop Scheduling. Ed. by CASTELLI, Mauro;
SEKANINA, Lukas; ZHANG, Mengjie; CAGNONI, Stefano; GARCÍA-
SÁNCHEZ, Pablo. Cham: Springer International Publishing, 2018. isbn
978-3-319-77553-1.

24. HERROELEN, Willy; LEUS, Roel. Project scheduling under uncer-
tainty: Survey and research potentials. European Journal of Operational
Research. 2005, vol. 165, no. 2, pp. 289–306. isbn 0377-2217. Available
from doi: https://doi.org/10.1016/j.ejor.2004.04.002.

25. SEVAUX, Marc; SÖRENSEN, Kenneth. A genetic algorithm for robust
schedules in a just-in-time environment. University of Antwerp, Faculty
of Applied Economics, Working Papers. 2002.

https://doi.org/10.1109/TEVC.2023.3255246
https://doi.org/10.1080/07408179708966311
https://doi.org/10.1007/978-3-319-91341-4{_}8
https://doi.org/10.1109/TCYB.2020.3024849
https://doi.org/10.1023/A:1018930406487
https://doi.org/10.1023/A:1018930406487
https://doi.org/10.1007/BF02023073
https://doi.org/https://doi.org/10.1016/j.ejor.2004.04.002

Bibliography 70

26. MINGUILLON, Fabio Echsler; LANZA, Gisela. Coupling of centralized
and decentralized scheduling for robust production in agile production
systems. Procedia CIRP. 2019, vol. 79, pp. 385–390. issn 2212-8271.
Available from doi: https://doi.org/10.1016/j.procir.2019.02.
099. 12th CIRP Conference on Intelligent Computation in Manufactur-
ing Engineering, 18-20 July 2018, Gulf of Naples, Italy.

27. HAZIR, Öncü; HAOUARI, Mohamed; EREL, Erdal. Robust scheduling
and robustness measures for the discrete time/cost trade-off problem.
European Journal of Operational Research. 2010, vol. 207, no. 2, pp. 633–
643. isbn 0377-2217. Available from doi: https://doi.org/10.1016/
j.ejor.2010.05.046.

28. XIONG, Jian; XING, Li-ning; CHEN, Ying-wu. Robust scheduling for
multi-objective flexible job-shop problems with random machine break-
downs. International Journal of Production Economics. 2013, vol. 141,
no. 1, pp. 112–126. isbn 0925-5273. Available from doi: https://doi.
org/10.1016/j.ijpe.2012.04.015.

29. SHELOKAR, Prakash; KULKARNI, Abhijit; JAYARAMAN, Valadi
K.; SIARRY, Patrick. Metaheuristics in Process Engineering: A Histori-
cal Perspective. In: Applications of Metaheuristics in Process Engineer-
ing. Ed. by VALADI, Jayaraman; SIARRY, Patrick. Cham: Springer
International Publishing, 2014, pp. 1–38. isbn 978-3-319-06508-3. Avail-
able from doi: 10.1007/978-3-319-06508-3{_}1.

30. DEB, K.; PRATAP, A.; AGARWAL, S.; MEYARIVAN, T. A fast and
elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions
on Evolutionary Computation. 2002, vol. 6, no. 2, pp. 182–197. isbn
1941-0026. Available from doi: 10.1109/4235.996017.

31. JADAAN, Omar al; RAJAMANI, Lakishmi; RAO, C. Non-dominated
ranked genetic algorithm for solving multi-objective optimization prob-
lems: NRGA. Journal of Theoretical and Applied Information Technol-
ogy. 2008.

32. AHMADI, Ehsan; ZANDIEH, Mostafa; FARROKH, Mojtaba; EMAMI,
Seyed Mohammad. A multi objective optimization approach for flexible
job shop scheduling problem under random machine breakdown by evo-
lutionary algorithms. Computers & Operations Research. 2016, vol. 73,
pp. 56–66. isbn 0305-0548. Available from doi: https://doi.org/10.
1016/j.cor.2016.03.009.

33. AL-HINAI, Nasr; ELMEKKAWY, T. Y. Robust and stable flexible job
shop scheduling with random machine breakdowns using a hybrid ge-
netic algorithm. International Journal of Production Economics. 2011,
vol. 132, no. 2, pp. 279–291. isbn 0925-5273. Available from doi: https:
//doi.org/10.1016/j.ijpe.2011.04.020.

https://doi.org/https://doi.org/10.1016/j.procir.2019.02.099
https://doi.org/https://doi.org/10.1016/j.procir.2019.02.099
https://doi.org/https://doi.org/10.1016/j.ejor.2010.05.046
https://doi.org/https://doi.org/10.1016/j.ejor.2010.05.046
https://doi.org/https://doi.org/10.1016/j.ijpe.2012.04.015
https://doi.org/https://doi.org/10.1016/j.ijpe.2012.04.015
https://doi.org/10.1007/978-3-319-06508-3{_}1
https://doi.org/10.1109/4235.996017
https://doi.org/https://doi.org/10.1016/j.cor.2016.03.009
https://doi.org/https://doi.org/10.1016/j.cor.2016.03.009
https://doi.org/https://doi.org/10.1016/j.ijpe.2011.04.020
https://doi.org/https://doi.org/10.1016/j.ijpe.2011.04.020

Bibliography 71

34. COLORNI, Alberto; DORIGO, Marco; MANIEZZO, Vittorio; TRU-
BIAN, Marco. Ant system for job-shop scheduling. STATISTICS AND
COMPUTER SCIENCE. 1994, vol. 34.

35. S. G., Ponnambalam; N, Jawahar; BS, Girish. An Ant Colony Optimiza-
tion Algorithm for Flexible Job Shop Scheduling Problem. In: 2010. isbn
978-953-307-067-4. Available from doi: 10.5772/9425.

36. WANG, Lei; CAI, Jingcao; LI, Ming; LIU, Zhihu. Flexible Job Shop
Scheduling Problem Using an Improved Ant Colony Optimization. Sci-
entific Programming. 2017, vol. 2017, pp. 1–11. Available from doi: 10.
1155/2017/9016303.

37. ZHANG, Rui; SONG, Shiji; WU, Cheng. Robust Scheduling of Hot
Rolling Production by Local Search Enhanced Ant Colony Optimization
Algorithm. IEEE Transactions on Industrial Informatics. 2019, vol. PP,
pp. 1–1. Available from doi: 10.1109/TII.2019.2944247.

38. LEON, V. Jorge; WU, S.; STORER, Robert. Robustness Measures and
Robust Scheduling for Job Shops. Iie Transactions. 1994, vol. 26, pp. 32–
43. Available from doi: 10.1080/07408179408966626.

39. MEHTA, Sanjay V. Predictable scheduling of a single machine subject
to breakdowns. International Journal of Computer Integrated Manufac-
turing. 1999, vol. 12, no. 1, pp. 15–38. isbn 0951-192X. Available from
doi: 10.1080/095119299130443.

40. BEAN, James C.; BIRGE, John R.; MITTENTHAL, John; NOON,
Charles E. Matchup Scheduling with Multiple Resources, Release Dates
and Disruptions. Operations Research. 1991, vol. 39, no. 3, pp. 470–483.
isbn 0030-364X. Available from doi: 10.1287/opre.39.3.470.

41. SONG, Lijun; XU, Zhipeng; WANG, Chengfu; SU, Jiafu. A New Deci-
sion Method of Flexible Job Shop Rescheduling Based on WOA-SVM.
Systems. 2023, vol. 11, no. 2. isbn 2079-8954. Available from doi: 10.
3390/systems11020059.

42. AL-BEHADILI, Mohanad; OUELHADJ, Djamila; JONES, Dylan. Intel-
ligent Systems Design and Applications. Multi-objective Particle Swarm
Optimisation for Robust Dynamic Scheduling in a Permutation Flow
Shop. Ed. by MADUREIRA, Ana Maria; ABRAHAM, Ajith; GAM-
BOA, Dorabela; NOVAIS, Paulo. Cham: Springer International Pub-
lishing, 2017. isbn 978-3-319-53480-0.

43. TAILLARD, E. Benchmarks for basic scheduling problems. European
Journal of Operational Research. 1993, vol. 64, no. 2, pp. 278–285. isbn
0377-2217. Available from doi: https://doi.org/10.1016/0377-
2217(93)90182-M.

https://doi.org/10.5772/9425
https://doi.org/10.1155/2017/9016303
https://doi.org/10.1155/2017/9016303
https://doi.org/10.1109/TII.2019.2944247
https://doi.org/10.1080/07408179408966626
https://doi.org/10.1080/095119299130443
https://doi.org/10.1287/opre.39.3.470
https://doi.org/10.3390/systems11020059
https://doi.org/10.3390/systems11020059
https://doi.org/https://doi.org/10.1016/0377-2217(93)90182-M
https://doi.org/https://doi.org/10.1016/0377-2217(93)90182-M

Bibliography 72

44. DEMIRKOL, Ebru; MEHTA, Sanjay; UZSOY, Reha. Benchmarks for
shop scheduling problems. European Journal of Operational Research.
1998, vol. 109, no. 1, pp. 137–141. isbn 0377-2217. Available from doi:
https://doi.org/10.1016/S0377-2217(97)00019-2.

45. WEISE, Thomas. jsspInstancesAndResults: Results, Data, and Instances
of the Job Shop Scheduling Problem. Hefei, Anhui, China: Institute of
Applied Optimization, Hefei University, 2019–2020. Available also from:
https://github.com/thomasWeise/jsspInstancesAndResults. A
GitHub repository with the common benchmark instances for the Job
Shop Scheduling Problem as well as results from the literature, both in
form of CSV files as well as R program code to access them.

46. LEI, Kun; GUO, Peng; WANG, Yi; XIONG, Jianyu; ZHAO, Wenchao.
An End-to-end Hierarchical Reinforcement Learning Framework for Large-
scale Dynamic Flexible Job-shop Scheduling Problem. In: 2022 Interna-
tional Joint Conference on Neural Networks (IJCNN). 2022, pp. 1–8.
Available from doi: 10.1109/IJCNN55064.2022.9892005.

47. RANGSARITRATSAMEE, Ruedee; FERRELL, William G.; KURZ,
Mary Beth. Dynamic rescheduling that simultaneously considers effi-
ciency and stability. Computers & Industrial Engineering. 2004, vol. 46,
no. 1, pp. 1–15. isbn 0360-8352. Available from doi: https://doi.org/
10.1016/j.cie.2003.09.007.

48. CARVALHO, Thyago P.; SOARES, Fabŕızzio A. A. M. N.; VITA, Roberto;
FRANCISCO, Roberto da P.; BASTO, João P.; ALCALÁ, Symone
G. S. A systematic literature review of machine learning methods ap-
plied to predictive maintenance. Computers & Industrial Engineering.
2019, vol. 137, p. 106024. isbn 0360-8352. Available from doi: https:
//doi.org/10.1016/j.cie.2019.106024.

49. TESAURO, Gerald. Temporal difference learning and TD-Gammon.
Commun. ACM. 1995, vol. 38, no. 3, pp. 58–68. issn 0001-0782. Avail-
able from doi: 10.1145/203330.203343.

50. CAMPBELL, Murray; HOANE, A. Joseph; HSU, Feng-hsiung. Deep
Blue. Artificial Intelligence. 2002, vol. 134, no. 1, pp. 57–83. isbn 0004-
3702. Available from doi: https://doi.org/10.1016/S0004-3702(01)
00129-1.

51. MNIH, Volodymyr; KAVUKCUOGLU, Koray; SILVER, David; GRAVES,
Alex; ANTONOGLOU, Ioannis; WIERSTRA, Daan; RIEDMILLER,
Martin. Playing Atari with Deep Reinforcement Learning. 2013. Avail-
able from arXiv: 1312.5602 [cs.LG].

52. SUTTON, Richard S.; BARTO, Andrew G. Reinforcement Learning:
An Introduction. Cambridge, MA, USA: A Bradford Book, 2018. isbn
0262039249.

https://doi.org/https://doi.org/10.1016/S0377-2217(97)00019-2
https://github.com/thomasWeise/jsspInstancesAndResults
https://doi.org/10.1109/IJCNN55064.2022.9892005
https://doi.org/https://doi.org/10.1016/j.cie.2003.09.007
https://doi.org/https://doi.org/10.1016/j.cie.2003.09.007
https://doi.org/https://doi.org/10.1016/j.cie.2019.106024
https://doi.org/https://doi.org/10.1016/j.cie.2019.106024
https://doi.org/10.1145/203330.203343
https://doi.org/https://doi.org/10.1016/S0004-3702(01)00129-1
https://doi.org/https://doi.org/10.1016/S0004-3702(01)00129-1
https://arxiv.org/abs/1312.5602

Bibliography 73

53. BOUTILIER, Craig. Planning, learning and coordination in multiagent
decision processes. In: Proceedings of the 6th Conference on Theoretical
Aspects of Rationality and Knowledge. The Netherlands: Morgan Kauf-
mann Publishers Inc., 1996, pp. 195–210. TARK ’96. isbn 1558604179.

54. BELLMAN, RICHARD. A Markovian Decision Process. Journal of Math-
ematics and Mechanics [online]. 1957, vol. 6, no. 5, pp. 679–684 [visited
on 2024-04-19]. issn 00959057, issn 19435274. Available from: http:
//www.jstor.org/stable/24900506.

55. WATKINS, Christopher J. C. H.; DAYAN, Peter. Q-learning. Machine
Learning. 1992, vol. 8, no. 3, pp. 279–292. isbn 1573-0565. Available
from doi: 10.1007/BF00992698.

56. HASSELT, Hado. Double Q-learning. In: LAFFERTY, J.; WILLIAMS,
C.; SHAWE-TAYLOR, J.; ZEMEL, R.; CULOTTA, A. (eds.). Advances
in Neural Information Processing Systems. Curran Associates, Inc., 2010,
vol. 23. Available also from: https : / / proceedings . neurips . cc /
paper_files/paper/2010/file/091d584fced301b442654dd8c23b3fc9-
Paper.pdf.

57. WILLIAMS, Ronald J.; BAIRD, Leemon C. Analysis of Some Incre-
mental Variants of Policy Iteration: First Steps Toward Understanding
Actor-Cr. In: 1993. Available also from: https://api.semanticscholar.
org/CorpusID:18786951.

58. HESSEL, Matteo; MODAYIL, Joseph; HASSELT, Hado van; SCHAUL,
Tom; OSTROVSKI, Georg; DABNEY, Will; HORGAN, Dan; PIOT,
Bilal; AZAR, Mohammad; SILVER, David. Rainbow: Combining Im-
provements in Deep Reinforcement Learning. 2017. Available from arXiv:
1710.02298 [cs.AI].

59. HASSELT, Hado van; GUEZ, Arthur; SILVER, David. Deep Reinforce-
ment Learning with Double Q-learning. 2015. Available from arXiv: 1509.
06461 [cs.LG].

60. WANG, Ziyu; SCHAUL, Tom; HESSEL, Matteo; HASSELT, Hado van;
LANCTOT, Marc; FREITAS, Nando de. Dueling Network Architectures
for Deep Reinforcement Learning. 2016. Available from arXiv: 1511.
06581 [cs.LG].

61. SCHAUL, Tom; QUAN, John; ANTONOGLOU, Ioannis; SILVER, David.
Prioritized Experience Replay. 2016. Available from arXiv: 1511.05952
[cs.LG].

62. FORTUNATO, Meire; AZAR, Mohammad Gheshlaghi; PIOT, Bilal;
MENICK, Jacob; OSBAND, Ian; GRAVES, Alex; MNIH, Vlad; MUNOS,
Remi; HASSABIS, Demis; PIETQUIN, Olivier; BLUNDELL, Charles;
LEGG, Shane. Noisy Networks for Exploration. 2019. Available from
arXiv: 1706.10295 [cs.LG].

http://www.jstor.org/stable/24900506
http://www.jstor.org/stable/24900506
https://doi.org/10.1007/BF00992698
https://proceedings.neurips.cc/paper_files/paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf
https://api.semanticscholar.org/CorpusID:18786951
https://api.semanticscholar.org/CorpusID:18786951
https://arxiv.org/abs/1710.02298
https://arxiv.org/abs/1509.06461
https://arxiv.org/abs/1509.06461
https://arxiv.org/abs/1511.06581
https://arxiv.org/abs/1511.06581
https://arxiv.org/abs/1511.05952
https://arxiv.org/abs/1511.05952
https://arxiv.org/abs/1706.10295

Bibliography 74

63. PENG, Jing; WILLIAMS, Ronald J. Incremental multi-step Q-learning.
Machine Learning. 1996, vol. 22, no. 1, pp. 283–290. isbn 1573-0565.
Available from doi: 10.1007/BF00114731.

64. SCHULMAN, John; MORITZ, Philipp; LEVINE, Sergey; JORDAN,
Michael; ABBEEL, Pieter. High-Dimensional Continuous Control Using
Generalized Advantage Estimation. 2018. Available from arXiv: 1506.
02438 [cs.LG].

65. GREENSMITH, Evan; BARTLETT, Peter; BAXTER, Jonathan. Vari-
ance Reduction Techniques for Gradient Estimates in Reinforcement
Learning. In: DIETTERICH, T.; BECKER, S.; GHAHRAMANI, Z.
(eds.). Advances in Neural Information Processing Systems. MIT Press,
2001, vol. 14. Available also from: https://proceedings.neurips.cc/
paper_files/paper/2001/file/584b98aac2dddf59ee2cf19ca4ccb75e-
Paper.pdf.

66. SUTTON, Richard S; MCALLESTER, David; SINGH, Satinder; MAN-
SOUR, Yishay. Policy Gradient Methods for Reinforcement Learning
with Function Approximation. In: SOLLA, S.; LEEN, T.; MÜLLER, K.
(eds.). Advances in Neural Information Processing Systems. MIT Press,
1999, vol. 12. Available also from: https://proceedings.neurips.cc/
paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-
Paper.pdf.

67. WEAVER, Lex; TAO, Nigel. The Optimal Reward Baseline for Gradient-
Based Reinforcement Learning. 2013. Available from arXiv: 1301.2315
[cs.LG].

68. KAKADE, Sham M. A Natural Policy Gradient. In: DIETTERICH, T.;
BECKER, S.; GHAHRAMANI, Z. (eds.). Advances in Neural Informa-
tion Processing Systems. MIT Press, 2001, vol. 14. Available also from:
https://proceedings.neurips.cc/paper_files/paper/2001/file/
4b86abe48d358ecf194c56c69108433e-Paper.pdf.

69. SCHULMAN, John; LEVINE, Sergey; MORITZ, Philipp; JORDAN,
Michael I.; ABBEEL, Pieter. Trust Region Policy Optimization. 2017.
Available from arXiv: 1502.05477 [cs.LG].

70. SCHULMAN, John; WOLSKI, Filip; DHARIWAL, Prafulla; RADFORD,
Alec; KLIMOV, Oleg. Proximal Policy Optimization Algorithms. 2017.
Available from arXiv: 1707.06347 [cs.LG].

71. The 37 Implementation Details of Proximal Policy Optimization [on-
line]. [N.d.]. [visited on 2024-04-01]. Available from: https://iclr-
blog-track.github.io/2022/03/25/ppo-implementation-details/.

72. FISH, Amid. Lessons Learned Reproducing a Deep Reinforcement Learn-
ing Paper [online]. 2018. [visited on 2024-04-01]. Available from: http:
//amid.fish/reproducing-deep-rl.

https://doi.org/10.1007/BF00114731
https://arxiv.org/abs/1506.02438
https://arxiv.org/abs/1506.02438
https://proceedings.neurips.cc/paper_files/paper/2001/file/584b98aac2dddf59ee2cf19ca4ccb75e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2001/file/584b98aac2dddf59ee2cf19ca4ccb75e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2001/file/584b98aac2dddf59ee2cf19ca4ccb75e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://arxiv.org/abs/1301.2315
https://arxiv.org/abs/1301.2315
https://proceedings.neurips.cc/paper_files/paper/2001/file/4b86abe48d358ecf194c56c69108433e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2001/file/4b86abe48d358ecf194c56c69108433e-Paper.pdf
https://arxiv.org/abs/1502.05477
https://arxiv.org/abs/1707.06347
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
http://amid.fish/reproducing-deep-rl
http://amid.fish/reproducing-deep-rl

Bibliography 75

73. Creating Message Passing Networks pytorchgeometricdocumentation.
[N.d.]. Available also from: https://pytorch-geometric.readthedocs.
io/en/latest/tutorial/create_gnn.html.

74. LIU, Chuang; ZHAN, Yibing; WU, Jia; LI, Chang; DU, Bo; HU, Wen-
bin; LIU, Tongliang; TAO, Dacheng. Graph Pooling for Graph Neural
Networks: Progress, Challenges, and Opportunities. 2023. Available from
arXiv: 2204.07321 [cs.LG].

75. DOUGLAS, B. L. The Weisfeiler-Lehman Method and Graph Isomor-
phism Testing. 2011. Available from arXiv: 1101.5211 [math.CO].

76. KIPF, Thomas N.; WELLING, Max. Semi-Supervised Classification with
Graph Convolutional Networks. 2017. Available from arXiv: 1609.02907
[cs.LG].

77. XU, Keyulu; LI, Chengtao; TIAN, Yonglong; SONOBE, Tomohiro; KAWARABAYASHI,
Ken-ichi; JEGELKA, Stefanie. Representation Learning on Graphs with
Jumping Knowledge Networks. 2018. Available from arXiv: 1806.03536
[cs.LG].

78. TKIPF. Directed graph & edge classification, issue 63, TKIPF/GCN.
[N.d.]. Available also from: https://github.com/tkipf/gcn/issues/
63.

79. HAMILTON, William L.; YING, Rex; LESKOVEC, Jure. Inductive
Representation Learning on Large Graphs. 2018. Available from arXiv:
1706.02216 [cs.SI].

80. HOCHREITER, Sepp; SCHMIDHUBER, Jürgen. Long Short-Term Mem-
ory. Neural Comput. 1997, vol. 9, no. 8, pp. 1735–1780. issn 0899-7667.
Available from doi: 10.1162/neco.1997.9.8.1735.

81. VELIČKOVIĆ, Petar; CUCURULL, Guillem; CASANOVA, Arantxa;
ROMERO, Adriana; LIÒ, Pietro; BENGIO, Yoshua. Graph Attention
Networks. 2018. Available from arXiv: 1710.10903 [stat.ML].

82. BAHDANAU, Dzmitry; CHO, Kyunghyun; BENGIO, Yoshua. Neural
Machine Translation by Jointly Learning to Align and Translate. 2016.
Available from arXiv: 1409.0473 [cs.CL].

83. MAAS, Andrew L. Rectifier Nonlinearities Improve Neural Network
Acoustic Models. In: 2013. Available also from: https://api.semanticscholar.
org/CorpusID:16489696.

84. BRODY, Shaked; ALON, Uri; YAHAV, Eran. How Attentive are Graph
Attention Networks? 2022. Available from arXiv: 2105.14491 [cs.LG].

85. XU, Keyulu; HU, Weihua; LESKOVEC, Jure; JEGELKA, Stefanie. How
Powerful are Graph Neural Networks? 2019. Available from arXiv: 1810.
00826 [cs.LG].

https://pytorch-geometric.readthedocs.io/en/latest/tutorial/create_gnn.html
https://pytorch-geometric.readthedocs.io/en/latest/tutorial/create_gnn.html
https://arxiv.org/abs/2204.07321
https://arxiv.org/abs/1101.5211
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1806.03536
https://arxiv.org/abs/1806.03536
https://github.com/tkipf/gcn/issues/63
https://github.com/tkipf/gcn/issues/63
https://arxiv.org/abs/1706.02216
https://doi.org/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/1710.10903
https://arxiv.org/abs/1409.0473
https://api.semanticscholar.org/CorpusID:16489696
https://api.semanticscholar.org/CorpusID:16489696
https://arxiv.org/abs/2105.14491
https://arxiv.org/abs/1810.00826
https://arxiv.org/abs/1810.00826

Bibliography 76

86. ZHANG, Cong; SONG, Wen; CAO, Zhiguang; ZHANG, Jie; TAN, Puay
Siew; XU, Chi. Learning to Dispatch for Job Shop Scheduling via Deep
Reinforcement Learning. 2020. Available from arXiv: 2010.12367 [cs.LG].

87. YANG, Zhong; BI, Li; JIAO, Xiaogang. Combining Reinforcement Learn-
ing Algorithms with Graph Neural Networks to Solve Dynamic Job Shop
Scheduling Problems. Processes. 2023, vol. 11, no. 5. isbn 2227-9717.
Available from doi: 10.3390/pr11051571.

88. ZHANG, Lu; FENG, Yi; XIAO, Qinge; XU, Yunlang; LI, Di; YANG,
Dongsheng; YANG, Zhile. Deep reinforcement learning for dynamic flex-
ible job shop scheduling problem considering variable processing times.
Journal of Manufacturing Systems. 2023, vol. 71, pp. 257–273. isbn
0278-6125. Available from doi: https://doi.org/10.1016/j.jmsy.
2023.09.009.

89. LIU, Chien-Liang; HUANG, Tzu-Hsuan. Dynamic Job-Shop Scheduling
Problems Using Graph Neural Network and Deep Reinforcement Learn-
ing. IEEE Transactions on Systems, Man, and Cybernetics: Systems.
2023, vol. 53, no. 11, pp. 6836–6848. Available from doi: 10 . 1109 /
TSMC.2023.3287655.

90. LIU, Zhenyu; MAO, Haoyang; SA, Guodong; LIU, Hui; TAN, Jianrong.
Dynamic job-shop scheduling using graph reinforcement learning with
auxiliary strategy. Journal of Manufacturing Systems. 2024, vol. 73,
pp. 1–18. isbn 0278-6125. Available from doi: https://doi.org/10.
1016/j.jmsy.2024.01.002.

91. WANG, Yuhui; HE, Hao; WEN, Chao; TAN, Xiaoyang. Truly Proximal
Policy Optimization. 2020. Available from arXiv: 1903.07940 [cs.LG].

92. SONG, Wen; CHEN, Xinyang; LI, Qiqiang; CAO, Zhiguang. Flexible
Job-Shop Scheduling via Graph Neural Network and Deep Reinforce-
ment Learning. IEEE Transactions on Industrial Informatics. 2023, vol. 19,
no. 2, pp. 1600–1610. Available from doi: 10.1109/TII.2022.3189725.

93. MNIH, Volodymyr; BADIA, Adrià Puigdomènech; MIRZA, Mehdi; GRAVES,
Alex; LILLICRAP, Timothy P.; HARLEY, Tim; SILVER, David; KAVUKCUOGLU,
Koray. Asynchronous Methods for Deep Reinforcement Learning. 2016.
Available from arXiv: 1602.01783 [cs.LG].

94. HAYEU, Yury. Dynamic Job Shop Scheduling Simulator. 2024. Ver-
sion 1.0.0. Available also from: https : / / github . com / yura - hb /
diploma-thesis/.

95. I, Salvador; HERRERA, Francisco. An Extension on ”Statistical Com-
parisons of Classifiers over Multiple Data Sets” for all Pairwise Com-
parisons. Journal of Machine Learning Research - JMLR. 2008, vol. 9.

https://arxiv.org/abs/2010.12367
https://doi.org/10.3390/pr11051571
https://doi.org/https://doi.org/10.1016/j.jmsy.2023.09.009
https://doi.org/https://doi.org/10.1016/j.jmsy.2023.09.009
https://doi.org/10.1109/TSMC.2023.3287655
https://doi.org/10.1109/TSMC.2023.3287655
https://doi.org/https://doi.org/10.1016/j.jmsy.2024.01.002
https://doi.org/https://doi.org/10.1016/j.jmsy.2024.01.002
https://arxiv.org/abs/1903.07940
https://doi.org/10.1109/TII.2022.3189725
https://arxiv.org/abs/1602.01783
https://github.com/yura-hb/diploma-thesis/
https://github.com/yura-hb/diploma-thesis/

Bibliography 77

96. SHAFFER, Juliet. Multiple Hypothesis Testing. Annual Review of Psy-
chology. 1995, vol. 46, pp. 561–84. Available from doi: 10.1146/annurev.
ps.46.020195.003021.

97. KINGMA, Diederik P.; BA, Jimmy. Adam: A Method for Stochastic
Optimization. 2017. Available from arXiv: 1412.6980 [cs.LG].

98. LOSHCHILOV, Ilya; HUTTER, Frank. Decoupled Weight Decay Regu-
larization. 2019. Available from arXiv: 1711.05101 [cs.LG].

99. LIU, Liyuan; JIANG, Haoming; HE, Pengcheng; CHEN, Weizhu; LIU,
Xiaodong; GAO, Jianfeng; HAN, Jiawei. On the Variance of the Adap-
tive Learning Rate and Beyond. 2021. Available from arXiv: 1908.03265
[cs.LG].

100. DOHARE, Shibhansh; LAN, Qingfeng; MAHMOOD, A. Rupam. Over-
coming Policy Collapse in Deep Reinforcement Learning. In: Sixteenth
European Workshop on Reinforcement Learning. 2023. Available also
from: https://openreview.net/forum?id=m9Jfdz4ymO.

101. GLOROT, Xavier; BENGIO, Yoshua. Understanding the difficulty of
training deep feedforward neural networks. In: TEH, Yee Whye; TIT-
TERINGTON, Mike (eds.). Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics. Chia Laguna Resort,
Sardinia, Italy: PMLR, 2010, vol. 9, pp. 249–256. Proceedings of Ma-
chine Learning Research. Available also from: https://proceedings.
mlr.press/v9/glorot10a.html.

102. HU, Wei; XIAO, Lechao; PENNINGTON, Jeffrey. Provable Benefit of
Orthogonal Initialization in Optimizing Deep Linear Networks. 2020.
Available from arXiv: 2001.05992 [cs.LG].

https://doi.org/10.1146/annurev.ps.46.020195.003021
https://doi.org/10.1146/annurev.ps.46.020195.003021
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1908.03265
https://arxiv.org/abs/1908.03265
https://openreview.net/forum?id=m9Jfdz4ymO
https://proceedings.mlr.press/v9/glorot10a.html
https://proceedings.mlr.press/v9/glorot10a.html
https://arxiv.org/abs/2001.05992

	Acknowledgments
	Declaration
	Abstract
	List of abbreviations
	Job Shop Scheduling Problem
	Definition
	Dynamic Job Shop Scheduling
	Criteria
	Flexible Job Shop Scheduling
	Graph Representation
	Dynamic Job Shop Scheduling Methods
	Reactive Methods
	Proactive Reactive Methods
	Static Problem Benchmark
	Dynamic Problem Benchmarks

	Reinforcement Learning
	Exploration and Exploitation
	Markov Decision Process
	Q-learning
	Deep Q-Learning
	REINFORCE
	Proximal Policy Optimization

	Graph Neural Networks
	Message Passing Paradigm
	Graph Convolutional Networks
	Graph Sample and Aggregate
	Graph Attention Networks
	Graph Isomorphism Networks

	Methodology
	Review of the Literature
	Deep Multi-Agent Reinforcement Learning
	Graph Neural Networks and other methods

	Experimental evaluation of Deep MARL
	Experimental evaluation of Graph State Encoding
	Evaluation Procedure

	Evaluation
	Simulation Parameters
	Experimental Evaluation of Priority Dispatch Rules
	Rule Sets
	Experimental Evaluation of Deep MARL
	Experimental Evaluation of Graph Neural Networks
	Final Evaluation
	Discussion

