
Faculty of Electrical Engineering
Department of Measurement

Master’s thesis

Sensorless Field Oriented Control of
PMSM Based on STSPIN32G4
Bc. Kristián Šlehofer

May 2024
Supervisor: Ing. Jan Stejskal

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

483516 Personal ID number: Šlehofer Kristián Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Measurement

Open Informatics Study program:

Computer Engineering Specialisation:

II. Master’s thesis details

Master’s thesis title in English:

Sensorless Field Oriented Control of PMSM Based on STSPIN32G4

Master’s thesis title in Czech:

Bezsenzorové vektorové řízení PMSM pomocí STSPIN32G4

Guidelines:

1) Develop a mathematical model of the PMSM.
2) Perform a study of sensorless algorithms for PMSM control.
3) Build a simulation model of the selected sensorless FOC algorithm for PMSM control.
4) Implement the algorithm on the EVSPIN32G4 evaluation board.

Bibliography / sources:

[1] R. Krishnan, 'Permanent Magnet Synchronous and Brushless DC Motor Drives,' 1st edition, CRC Press, 616 p., 2010,
ISBN 978-0-8247-5384-9
[2] G. F. Franklin, 'Feedback Control of Dynamic Systems,' 8th Edition, Pearson, 2018, ISBN-13: 978-0134685717
[3] H. K. Khalil, 'Nonlinear Systems,' Third edition, Prentice Hall, 2002, ISBN 0-13-067389-7
[4] STMicroelectronics, 'High performance 3-phase motor controller with embedded STM32G4 MCU,' DS13630 Datasheet
[on-line]

Name and workplace of master’s thesis supervisor:

Ing. Jan Stejskal Department of Electric Drives and Traction FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 24.05.2024 Date of master’s thesis assignment: 14.02.2024

Assignment valid until:
by the end of summer semester 2024/2025

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature

Head of department’s signature Ing. Jan Stejskal
Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1

Declaration

I declare that the presented work was developed independently and that I have listed all sources
of the information used within it in accordance with the methodical instructions for observing
the ethical principles in the preparation of university theses.

Prague, May 24, 2024

. .
Bc. Kristián Šlehofer

i

Acknowledgements

I would like to express my deepest appreciation to my thesis supervisor Ing. Jan Stejskal for his
advices, friendly approach and sharing of valuable experiences, without which I would not have
been able to solve many problems. Furthermore, I would like to thank STMicroelectronics for
providing me with the necessary hardware and test instruments. Last but not least, I am also very
grateful mainly to my family and all my friends for supporting me and keeping me sane during
my studies.

ii

Abstract

This thesis presents a sensorless field-oriented control (FOC) algorithm for permanent magnet
synchronous motors (PMSMs) and its implementation on the STSPIN32G4-based evaluation
board. The objective is to develop an efficient control method without relying on position sen-
sors. The study begins with a mathematical model of the PMSM, followed by an investigation
of various sensorless control algorithms. A simulation model of the selected Model Reference
Adaptive System (MRAS) method was created in MATLAB to validate its performance. The
algorithm was then implemented on the EVSPIN32G4 evaluation board, which was modified
to improve current sensing resolution. Experimental results demonstrated that the sensorless
FOC algorithm is stable and exhibits a significant degree of robustness to input parameter error.
Furthermore, the whole control logic runs on a microcontroller, making it a viable option for
cost-effective applications.

Keywords: PMSM, sensorless FOC, observer, embedded system, STSPIN32G4

iii

Abstrakt

Tato práce prezentuje algoritmus bezsenzorového vektorového řı́zenı́ (FOC) pro synchronnı́ mo-
tory s permanentnı́mi magnety (PMSM) a jeho implementaci na evaluačnı́ desce založené na
STSPIN32G4. Cı́lem je vyvinout účinnou metodu řı́zenı́ bez nutnosti spoléhat se na snı́mače
polohy. Studie začı́ná matematickým modelem PMSM, po jehož odvozenı́ následuje přehled
různých algoritmů bezsenzorového řı́zenı́. V prostředı́ MATLAB byl vytvořen simulačnı́ model
zvolené metody Model Reference Adaptive System (MRAS) a ověřena jeho funkčnost. Algorit-
mus byl poté implementován na evaluačnı́ desce EVSPIN32G4, která byla upravena pro zlepšenı́
rozlišenı́ snı́mánı́ proudu. Na základě experimentů bylo prokázáno, že algoritmus je stabilnı́
a vykazuje značnou mı́ru odolnosti vůči chybě vstupnı́ch parametrů. Celá řı́dicı́ logika navı́c
běžı́ na mikrokontroléru, což z nı́ činı́ výhodnou variantu pro aplikace zaměřené na nı́zkou cenu.

Klı́čová slova: PMSM, bezsenzorové vektorové řı́zenı́, pozorovatel, vestavěný systém,
STSPIN32G4

Překlad názvu: Bezsenzorové vektorové řı́zenı́ PMSM pomocı́ STSPIN32G4

iv

Contents

1 Introduction 1

2 Mathematical model 2

2.1 Initial description . 2

2.1.1 Model in abc reference frame . 4

2.2 Clarke transformation . 4

2.2.1 Model in αβ reference frame . 6

2.3 Park transformation . 6

2.3.1 Model in dq reference frame . 7

3 Sensorless FOC 8

3.1 Overview . 8

3.1.1 Signal injection methods . 8

3.1.2 Methods using the fundamental components 9

3.2 MRAS . 10

4 Simulation 13

4.1 Environment . 13

4.2 PMSM model . 13

4.3 Control . 15

4.4 Simulation profile . 16

4.5 Simulation results . 17

5 Implementation 19

5.1 Hardware . 19

5.1.1 Board modifications . 21

5.2 Software and libraries . 21

5.3 Peripheral configuration . 23

v

5.4 Protections . 25

5.5 Current sensing . 26

5.6 Software architecture . 27

5.7 Main control loop . 28

5.8 MRAS observer . 30

5.9 Startup procedure . 31

5.10 Code structure . 32

5.11 Configuration and usage . 33

6 Results 36

6.1 Experimental setup . 36

6.2 dq current PI controller . 37

6.3 No load start . 38

6.4 Run under load . 39

6.5 Startup with erroneous parameters . 41

7 Conclusion 43

References 44

vi

List of Figures

1 Analytical model of PMSM and rotor . 2

2 Clarke transformation [2] . 5

3 Park transformation [3] . 6

4 Block diagram of MRAS . 10

5 MRAS-based speed estimator . 12

6 Simulink model in αβ reference frame . 14

7 Simulink model in dq reference frame . 14

8 Block diagram of the sensorless FOC . 15

9 Field-oriented control subsystem . 15

10 MRAS subsystem . 16

11 Speed tracking . 17

12 Comparison of output currents . 17

13 Angle error . 18

14 STSPIN32G4 gate driver IC block diagram [33] 20

15 One of the three half-bridges . 21

16 Pin assignments . 23

17 Illustration of the timer behavior . 24

18 PWM timing diagram and ADC trigger . 26

19 Program state machine . 28

20 Block diagram of the field-oriented control . 29

21 Startup procedure illustration . 32

22 Example of the live variable watch feature . 35

23 Experimental setup . 36

24 id current PI controller response . 37

25 Angle comparison . 38

26 Speed comparison . 39

vii

27 Run under load, ωm = 750 rpm . 40

28 Run under load, ωm = 1500 rpm . 40

29 Worse startup with 5 ·R, angle comparison . 42

viii

List of Tables

1 PMSM parameters used in simulation . 16

2 Maxon EC-i 40 motor parameters . 19

3 Settings of the control software . 37

4 Results of average angle differences . 41

ix

List of Abbreviations

Abbreviation Meaning

ADC Analog-to-Digital Converter
DAC Digital-to-Analog Converter
DMA Direct Memory Access
DSP Digital Signal Processing
EMF Electromotive force
FOC Field-Oriented Control
GPIO General-Purpose Input/Output

IC Integrated Circuit
IDE Integrated Development Environment
I2C Inter-Integrated Circuit

MCU Microcontroller Unit
MOSFET Metal Oxide Semiconductor Field Effect Transistor

MRAS Model Reference Adaptive System
PID Proportional-Integral-Derivative

PMSM Permanent Magnet Synchronous Motor
PWM Pulse Width Modulation

x

List of Used Notation

Quantity Meaning Unit

a,b,c Subscript - quantity in abc reference frame

α,β Subscript - quantity in αβ reference frame

d,q Subscript - quantity in dq reference frame

θm Mechanical angle rad

θe Electrical angle rad

ωm Mechanical angular velocity s−1

ωe Electrical angular velocity s−1

R Stator resistance Ω

L Stator inductance H

Ψa,Ψb,Ψc Total flux linking each stator winding Wb

Ψam,Ψbm,Ψcm Permanent magnet fluxes linking stator windings Wb

ΨPM Permanent magnet flux linkage Wb

Ψq q-axis flux linkage Wb

pp Number of motor pole pairs -
J Moment of inertia kgm2

Pgap Air gap power W

Tem Motor electromechanical torque Nm

Tload Load torque Nm

e Back-EMF V

ua, ub, uc Voltages in abc reference frame V

ia, ib, ic Phase currents in abc reference frame A

uα, uβ Voltages in αβ reference frame V

iα, iβ Phase currents in αβ reference frame A

ud, uq Voltages in dq reference frame V

id, iq Phase currents in dq reference frame A

kv Back-EMF constant rpmV−1

ke Back-EMF constant in SI units V s rad−1

fsw Switching frequency Hz

xi

Chapter 1

Introduction

Thanks to continuous industrialization, automation, and the recent massive boom in electromobility,
Permanent Magnet Synchronous Motors (PMSM) are widely popular and used in various segments.
PMSMs are known for their high performance and high power density.

However, knowing the exact position of the rotor is essential for proper control and thus achieving
high efficiency. Position information is commonly obtained from position sensors, such as encoders
or resolvers, that are mounted on the rotor shaft. Not only do these sensors increase the cost and size,
but they also reduce the reliability and immunity to noise.

To overcome this handicap of PMSM, a great effort has been made to develop sensorless control
techniques. Several approaches have been proposed, each with its own advantages and disadvantages.

This thesis focuses on the development of one such sensorless field-oriented control algorithm and
its implementation on real hardware. Based on the research, an algorithm using the Model Reference
Adaptive System (MRAS) control scheme was selected.

First, a mathematical model of the PMSM is derived. Then, research and comparison of available
sensorless techniques is performed, MRAS-based position estimation is developed, and the whole
sensorless solution is tested in simulations. Consequently, the control software is implemented on
the real hardware based on the STSTPIN32G4 by STMicroelectronics and tested with a motor from
Maxon. Finally, the last section summarizes the results and presents a proposal for possible future
work.

1

Chapter 2

Mathematical model

In order to analyze and simulate the dynamics of a three-phase Permanent Magnet Synchronous
Motor (PMSM), a mathematical model is required. To derive the model, the following assumptions
are made:

• Windings are assumed to be identical and sinusoidally distributed.

• Resistance and inductance are assumed to be constant.

• Change in inductance due to the rotor position is neglected.

• Hysteresis losses and eddy current losses are neglected.

2.1 Initial description

S

 N
rotor

Figure 1: Analytical model of PMSM and rotor

Figure 1 shows the simplified electrical circuit of the wye-wound stator. Windings are assumed to be
identical and sinusoidally distributed. They define a three-phase coordinate system abc in the two-
dimensional space with axes shifted by 120 degrees.

Mechanical angle θm is defined as an angle between the a-phase magnetic axis and the d-axis of
the rotor and refers to the angle of the rotor shaft with respect to the stator. The relation to the electrical
angle θe is given by:

θm = pp θe , (1)

2

2.1 Initial description

where pp is the number of pole pairs.

Since the wye-wound PMSM in a fault-free condition is a balanced system, both stator currents and
stator voltages are in equilibrium:

ia + ib + ic = 0 (2)

ua + ub + uc = 0 (3)

Voltage equations for particular phases are:

ua = Ria +
d
dt
Ψa (4)

ub = Rib +
d
dt
Ψb (5)

uc = Ric +
d
dt
Ψc (6)

The following applies to the flux equations:

Ψa = Lia +Ψam (7)

Ψb = Lib +Ψbm (8)

Ψc = Lic +Ψcm (9)

The permanent magnet flux linking a particular phase is maximum when the rotor d-axis aligns with
the phase magnetic axis and zero when perpendicular. Therefore, the following holds for the linked
motor flux:

Ψam = ΨPM cos (θe) (10)

Ψbm = ΨPM cos

(
θe −

2π

3

)
(11)

Ψcm = ΨPM cos

(
θe +

2π

3

)
(12)

where ΨPM is permanent magnet flux linkage.

Motor manufacturers often do not provide the value of permanent magnet flux linkage in their
datasheets. The induced back-electromotive force (back-EMF) is equal to the rate of flux linkages
[1]. Therefore, it is possible to use an alternative flux linkage parametrization using the back-EMF
constant, which is proportional to motor pole pairs and permanent magnet flux linkage and is usually
provided in the datasheet.

If the constant is in SI units [V s rad−1], the following applies:

ke = pp
d
dt

(ΨPM) (13)

To complete the model, the electromechanical relation is required. Assuming that the moment of
inertia is constant, mechanical dynamics of the PMSM can be expressed as∑

Ttot = Tem − Tload = J
d
dt
ωm , (14)

where Tem is the motor electromechanical torque and Tload is the load torque, including the friction
torque caused by the load.

3

2.2 Clarke transformation

2.1.1 Model in abc reference frame

By substitution of equations (7) - (12) into the voltage equations (4) - (6), we obtain the complete
electrical model of the PMSM:

ua = Ria + L
d
dt
ia +

d
dt

(ΨPM cos (θe)) (15)

ub = Rib + L
d
dt
ib +

d
dt

(
ΨPM cos

(
θe −

2π

3

))
(16)

uc = Ric + L
d
dt
ic +

d
dt

(
ΨPM cos

(
θe +

2π

3

))
(17)

After differentiating the last term representing the back-EMF in equations (15) - (17), we can
substitute the equation (13) and obtain the alternative model:

ua = Ria + L
d
dt
ia −

d
dt

(ΨPM) · ωe sin (θe) = Ria + L
d
dt
ia − keωm sin (θe) (18)

ub = Rib + L
d
dt
ib −

d
dt

(ΨPM) · ωe sin

(
θe −

2π

3

)
= Rib + L

d
dt
ib − keωm sin

(
θe −

2π

3

)
(19)

uc = Ric + L
d
dt
ic −

d
dt

(ΨPM) · ωe sin

(
θe +

2π

3

)
= Ric + L

d
dt
ic − keωm sin

(
θe +

2π

3

)
(20)

Hence, the back-EMF for one phase is:

e = −keωm (21)

The electromechanical torque Tem is defined as the power transmitted through the air gap divided
by the mechanical angular velocity of the rotor. We can write:

Tem =
Pgap

ωm
=

eaia + ebib + ecic
ωm

(22)

2.2 Clarke transformation

In electrical engineering, Clarke transformation (or the alpha-beta transformation) is a mathematical
transformation utilized to analyze three-phase systems. It transforms the three-phase reference frame
(abc) into a two-phase orthogonal stationary reference frame (αβ), reducing the number of equations
and, thus, the analysis complexity of the system.

4

2.2 Clarke transformation

Figure 2: Clarke transformation [2]

The alpha-beta transformation is defined as:

xαxβ
x0

 =
2

3

1 −1

2 −1
2

0
√
3
2 −

√
3
2

1
2

1
2

1
2

xaxb
xc

 (23)

where zero component x0 equals zero in balanced systems.

The inverse Clark transformation is used to convert a two-phase reference frame back to a three-
phase reference frame: xaxb

xc

 =

 1 0 1

−1
2

√
3
2 1

−1
2 −

√
3
2 1

xαxβ
x0

 (24)

This version of the Clarke transform is amplitude-invariant, which means it preserves the ampli-
tude of the electrical variables to which it is applied. The Clarke transform also exists in a power-
invariant version, which, on the other hand, preserves the active and reactive powers, but current am-
plitudes are not the same as those in the abc reference frame. The power-invariant version is similar
to the amplitude-invariant and is defined as:

xαxβ
x0

 =

√
2

3

1 −1

2 −1
2

0
√
3
2 −

√
3
2

1√
2

1√
2

1√
2

xaxb
xc

 (25)

5

2.3 Park transformation

2.2.1 Model in αβ reference frame

Applying the transformation (25) on voltage equations (18) - (20) and electromechanical torque equa-
tion Tem, we obtain the PMSM model in the αβ coordinate system:

uα = Riα + L
d
dt
iα − keωm sin(θe) (26)

uβ = Riβ + L
d
dt
iβ + keωm cos(θe) (27)

Tem =
3

2
ke [cos(θe)iβ − sin(θe)iα] (28)

2.3 Park transformation

Another crucial mathematical transformation used in electrical engineering is the Park transformation.
It serves to simplify the analysis and subsequent control by transforming the two-phase stationary
αβ reference frame into a two-phase rotating dq reference frame. The transformed quantities appear
stationary if the reference frame rotates at the same speed as the rotor.

Figure 3: Park transformation [3]

The transformation equations are given by:[
xd
xq

]
=

[
cos(ϕ) sin(ϕ)
− sin(ϕ) cos(ϕ)

] [
xα
xβ

]
(29)

where ϕ is an angle between the α- and d-axes.

The inverse Park transformation is used to convert the rotating reference frame back to the station-
ary reference frame: [

xα
xβ

]
=

[
cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

] [
xd
xq

]
(30)

6

2.3 Park transformation

2.3.1 Model in dq reference frame

Applying the transformation (29) on voltage equations (26), (27) and electromechanical torque equa-
tion (28) in αβ coordinate system, we obtain the PMSM model in the dq coordinate system rotating
with the same speed as the rotor:

ud = Rid + L
d
dt
id − Lωeiq (31)

uq = Riq + L
d
dt
iq + Lωeid + keωm (32)

Tem =
3

2

(
keiq − ppΨqid

)
(33)

7

Chapter 3

Sensorless FOC

3.1 Overview

High efficiency, reliability, and high linearity between current and torque made PMSMs favored and
widely used in many applications. However, these characteristics greatly depend on the correct control
method and its accuracy.

Among the most straightforward control techniques, it is possible to use a simple six-step commu-
tation scheme that is used primarily to control three-phase brushless DC (BLDC) motors. This method
energizes two legs of the inverter, and the third one is left floating to measure the back-EMF and find
the commutation point to advance to the next step. However, the simplicity of the method is redeemed
by the introduced torque and current ripple, which can be unsuitable for applications requiring precise
control. As the name suggests, this control scheme uses only six voltage vectors to create the rotating
field. Therefore, the control achieves the torque angle of 90 degrees but with a deviation of 30 degrees,
resulting in a significant torque ripple.

Field-Oriented Control (FOC), also called Vector control, solves this problem by continuously
controlling the rotating voltage vector. Nevertheless, achieving precise control of PMSM requires
accurate knowledge of the rotor position. Traditionally, this information is obtained through position
sensors such as encoders or resolvers. However, the integration of such sensors increases system
complexity, cost, and susceptibility to wear over time [4].

Sensorless FOC aims to eliminate the physical position sensor and deduce the rotor position with-
out it, allowing for a more robust control strategy. Various control methods have been proposed to
eliminate speed and position sensors. They can be generally classified into two types: signal injection
methods and methods using the fundamental components of voltage and current signals.

3.1.1 Signal injection methods

Methods based on signal injection exploit the effects of PMSM magnetic saturation or rotor saliency.
In the high-frequency injection method, a high-frequency voltage or current vector signal is superim-
posed on motor fundamental excitation. The corresponding high-frequency current (or voltage) signal
contains rotor position information and is analyzed to track spatial saliencies and estimate the rotor or
flux position [5].

Methods based on signal injection are effective at a standstill and in low-speed ranges because
the amplitude of high-frequency signals used for position estimation does not depend on rotating
velocity [6]. However, additional superimposed test signals can introduce unwanted audible noises,
motor micromovements, or twitching, and the performance is limited at high speeds. It is mainly
because the stator resistance voltage and the rotating voltage cannot be ignored at high speed, resulting

8

3.1 Overview

in the simplified model of high-frequency signal injection can no longer be applied. Furthermore,
these methods do not work well with surface-mounted PMSM with low or zero magnetic saliency and
require complex signal processing [7].

The high-frequency injection is utilized to detect rotor position at low speeds, for example, in an
open-source VESC project [8].

Even though the injection usually uses high-frequency signals, some methods use low-frequency
injection to estimate the rotor position. The advantage of the low-frequency signal injection is the
reduction of loss and harsh acoustic noise. However, it creates new problems, and the filter for signal
separation could lead to instability and degradation of the current control and position estimation
performance [9].

3.1.2 Methods using the fundamental components

Latter methods based on fundamental components of control signals mostly employ the PMSM model
and motor parameters to estimate the position. These methods perform best at medium and high
speeds and do not generate any ripple or audible noises due to the injection of additional signals.

However, model-based methods tend to be sensitive to parameter variations since the motor pa-
rameters are required for the PMSM model. These parameters depend on the operating conditions,
and this, in turn, degrades the control performance and causes an estimation position error. The volt-
age references are usually used for voltage information, but the reference and actual voltages differ
because of the dead-time of the pulsewidth-modulated inverter and the voltage drop in the switching
devices [10]. In the low-speed region, the estimate is erroneous and usually cannot be used for con-
trol. Regardless, in most industrial applications (fans, pumps, compressors, etc.), the motor is in the
low-speed region only temporarily during the start, and thus, this disadvantage can be overcome by a
suitable startup method.

Many fundamental component approaches were presented; some are based on the estimation of the
back-EMF or flux linkage due to permanent magnets containing position information. For this reason,
a Luenberger state observer, sliding-mode observer, or various Kalman filters are used [11][12][13].
These methods usually utilize the PMSM model in the αβ coordinate system and extract the position
using goniometric functions. Some employ the more accurate Extended EMF model with fewer ap-
proximations, notably benefiting interior PMSMs. The Extended EMF includes position information
from not only the traditionally defined EMF but also from the stator inductance [14]. Kalman filter-
based methods require complex computational operations to obtain proper accuracy, which always
causes problems in real time operation [15].

For instance, STMicroelectronics’ Motor Control SDK employs the Luenberger observer as a
sensorless solution [16].

Other methods are based on the voltage or current error between the measured and calculated
variables from the motor model. This information is either directly used or processed by an observer
or an appropriate adaptation mechanism [17][18]. A linear feedback control technique where it is
desirable to obtain a closed-loop system whose behavior is described by a reference model is called
adaptive control [19]. One such method utilizes a Model Reference Adaptive System (MRAS) control
scheme, which works with a reference model (the motor) and an adaptive model. Motor input voltages
are also supplied into the adaptive model with PMSM equations. The current response from both

9

3.2 MRAS

systems is then compared, and using an adaptation law based on Popov superstability, the angle and
speed are estimated. The estimate has good convergence, the computational complexity is moderate,
and it is convenient for engineering realization [20]. Also, it offers robustness against parameter
variations and has a good speed response ranging from low to high speed [21].

Due to its simplicity and potential, the MRAS observer technique was selected for further investi-
gation.

3.2 MRAS

Model Reference Adaptive System (MRAS) is a control method that compares outputs of two systems
to make an uncertain controlled system track the behavior of a given reference plant model. The
MRAS algorithm is well-known in the sensorless control of an induction motor, and has been proved
to be effective and physically clear [22][23].

Reference
model

Adjustable
model

Adaptive Law

errorinput
+

-

Figure 4: Block diagram of MRAS

The Model Reference Adaptive System structure consists of a reference model, an adaptive model
with the same physical meaning, and a suitable adaptive law. The structure is visualized in Figure 4.
The reference and adaptive models are connected in parallel and excited with the same input signals.
The error between the estimated quantities obtained by the two models is used to drive a suitable
adaptation mechanism that generates the estimated rotor speed.

The controlled PMSM itself is selected as a reference model. The adaptive model is derived from
current equations in (31) and (32). First, the equations are rewritten into a matrix representation as
follows:

d
dt

[
id
iq

]
=

[
−R

L ωe

−ωe −R
L

] [
id
iq

]
+

[
1
L 0
0 1

L

] [
ud
uq

]
+

[
0

− 1
L

ke
pp
ωe

]
(34)

This representation can be further simplified to resemble the standard form [24]:

d
dt

[
id +

1
L

ke
pp

iq

]
=

[
−R

L ωe

−ωe −R
L

][
id +

1
L

ke
pp

iq

]
+

[
1
L 0
0 1

L

][
ud +

R
L

ke
pp

uq

]
(35)

10

3.2 MRAS

Now define new state variables as:

i′d = id +
1

L

ke

pp
(36)

i′q = iq (37)

u′d = ud +
R

L

ke

pp
(38)

u′q = uq (39)

Then, the model can be expressed as:

d
dt

[
i′d
i′q

]
=

[
−R

L ωe

−ωe −R
L

] [
i′d
i′q

]
+

1

L

[
u′d
u′q

]
(40)

d
dt
i′ = Ai′ +Bu′ (41)

Because the reference model and the adjustable model outputs have the same physical meaning, the
adjustable model can be expressed using the estimated values:

d
dt

[
î′d
î′q

]
=

[
−R

L ω̂e

−ω̂e −R
L

] [
î′d
î′q

]
+

1

L

[
u′d
u′q

]
(42)

d
dt
î′ = Âî′ +Bu′ (43)

In order to design a robust adaptation law, the Popov superstability theory is used. According to
the theory of Popov [25], if the feedback system is stable, it must meet the following two aspects:

1. The nonlinear time-varying feedback link satisfies the Popov integral inequality:

η(0, t) =

∫ t

0
vTω dτ ≥ −γ2 , ∀t ≥ 0 , (44)

where γ2 can be any finite positive real number.

2. Transfer matrix H(s) = C(sI −A)−1 is strictly positive definite matrix.

The Popov integral inequality is solved by the reverse procedure. At the initial state, the error is close
to zero (limt→0 e(t) = 0), and the estimated speed is convergent to the actual value, so the MRAS is
asymptotically stable. The specific process of reverse solution is as follows:

v = ei = i′ − î′ (45)

ω = (ω̂e − ωe)

[
0 −1
1 0

] [
î′d
î′q

]
= J(ω̂e − ωe)̂i

′ (46)

Substitute (45) and (46) into Popov integral inequality equation (44):

η(0, t) =

∫ t

0
eTi J (ω̂e − ωe) î

′ dτ ≥ −γ2 (47)

According to the PI control strategy of MRAS, the adaptive law is obtained as follows:

ω̂e =

∫ t

0
F1(v, t, τ) dτ + F2(v, t) + ω̂e(0) , (48)

11

3.2 MRAS

where ω̂e(0) is the initial value.

After deformation and calculation, the adaptation law is obtained:

ω̂e =

∫ t

0
ki

[
idîq − îdiq −

1

L

ke

pp

(
iq − îq

)]
dτ + kp

[
idîq − îdiq −

1

L

ke

pp

(
iq − îq

)]
+ ω̂e(0) ,

(49)

where kp and ki are the PI controller’s proportional and integral term coefficients. Then, the estimated
rotor position is:

θ̂e =

∫
ω̂e dτ (50)

The complete structure of the MRAS-based speed estimator is in Figure 5, where err is the error term
given by

err = idîq − îdiq −
1

L

ke

pp
(iq − îq) . (51)

Adaptive law

Reference
model

Adjustable
model

Speed error

PI
regulator

+
+

Figure 5: MRAS-based speed estimator

12

Chapter 4

Simulation

4.1 Environment

MATLAB is a programming and numeric computing platform used by millions of engineers and sci-
entists to analyze data, develop algorithms, and create models [26]. It is also widely used in academia
regarding signal and image processing, filter design, control design, robotics, and various simulations
and computations. The most powerful aspect of MATLAB is its almost infinite extensibility with
additional packages, toolkits, or environments, such as the MATLAB Simulink.

Simulink is a block diagram environment used to design systems with multidomain models, simu-
late before moving to hardware, and deploy without writing code [27]. It is a multi-purpose graphical
tool that can be used for model-based design and simulation, ranging from simple problems to com-
plex simulation models. Simulink shares the same degree of extensibility with the entire MATLAB
suite.

One such mentionable additional package is Simscape, namely Simscape Electrical. Simscape
enables the rapid creation of models of physical systems within the Simulink environment. It is pos-
sible to model systems such as electric motors, bridge rectifiers, hydraulic actuators, and refrigeration
systems, by assembling fundamental components into a schematic. Simscape add-on products pro-
vide more complex components and analysis capabilities [28]. Simscape Electrical provides prepared
electrical blocks and many examples, which could be used to test the derived models and compare the
correctness and accuracy of the solution in the early phases of development.

4.2 PMSM model

In order to simulate the derived PMSM model in MATLAB Simulink, it is first necessary to rewrite
the differential equations to the standard form. Both the αβ and dq models were implemented and
verified against the Simscape PMSM block. It is also possible to form the model in the abc reference
frame. However, the complexity of the model is unnecessarily higher and, therefore, is unsuitable for
implementation in a microcontroller.

To retrieve equations suitable to implement the model in the αβ reference frame, rewrite equations
(26) - (28) and (14) as:

d
dt
iα = ˙iα = −R

L
iα +

1

L
keωm sin(θe) +

1

L
uα (52)

d
dt
iβ = i̇β = −R

L
iβ − 1

L
keωm cos(θe) +

1

L
uβ (53)

ω̇m =
1

J

3

2
ke [cos(θe)iβ − sin(θe)iα] +

1

J
Tload (54)

θ̇m = ωm (55)

13

4.2 PMSM model

abc αβ0

Clarke	Transform

1

V_abc
1

I_abc

−++

−+−

sin

cos

x

x

−
+

T_em

+−

2

T_load

speed

angle

sin

cos

x

x

αβ0 abc

Inverse
Clarke	Transform

I_alpha

I_beta

2

angle_m

3

speed_mu_alpha

u_beta

i_alpha

i_beta

T_load

omega_m

angle_e

omega_m*ke

e_alpha

e_beta

Figure 6: Simulink model in αβ reference frame

To implement the model in the dq reference frame, the procedure is similar - rewrite the equations
(31) and (32) as:

d
dt
id = i̇d = −R

L
id + ωeiq +

1

L
ud (56)

d
dt
iq = i̇q = −R

L
iq − ωeid −

1

L
keωm +

1

L
uq (57)

(58)

Then take (33) and (14) and assuming that id = 0, we can write:

ω̇m =
1

J

3

2
keiq +

1

J
Tload (59)

θ̇m = ωm (60)

abc

θ
elec

dq0

Park	Transform1

−++

Id

−−+−

Iq

x

x

+−

speed

angle

dq0

θ
elec

abc

Inverse
Park	Transform

1

V_abc

2

T_load

2

angle_m

1

I_abc

3

speed_m

T_em

T_load

omega_e

u_q

angle_e

omega_m

L*i_q

u_d

L*i_d

omega_m

i_q

i_d

Figure 7: Simulink model in dq reference frame

Figures 6 and 7 show the αβ and dq models. Inputs to both models are voltages uα and uβ ,
respectively ud and uq; outputs are currents iα and iβ , respectively id, iq, and angular velocity ωm.
The angle is retrieved by integrating ωm:

θm =

∫
ωm dt+ θm0 , (61)

where θm0 is an initial angle.

14

4.3 Control

4.3 Control

The complete sensorless control scheme was implemented in the MATLAB Simulink environment
based on the derived equations. The block diagram is shown in Figure 8.

LOAD

I_abc
angle_m
speed_m

speed_target

V_abc

Control

Clock

Z-1

Target	speed

V_abc

T_load

I_abc

angle_m

speed_m

PMSM	model	dq

Scope	Position
Comparison

Scope	Angle	Error+−

V_abc

I_abc

angle_m

speed_m

MRAS

speed_est

angle_ref

speed_ref

angle_est

Figure 8: Block diagram of the sensorless FOC

The implementation of the field-oriented control is in Figure 9. It is realized as a triggered sub-
system with switching frequency fsw = 20 000Hz. The control uses strategy, where the current id is
controlled to zero.

In the simulation process, the difficulty of speed estimation is to select the appropriate PI pa-
rameters to obtain good dynamics and reduce the current noise of the whole system. In general, for
different parameters of the motor, the adaptive law PI parameters are usually obtained by the trial and
error method, first adjusting the proportional term and then adjusting the integral term [29].

Scope	CURRENT Scope	POSITION

abc

θelec
dq0

Park	Transform

PI(z)

PI	Iq

dq0

θelec
abc

Inverse
Park	Transform

+−
+−

Target	Id

PI(z)

PI	speed

+−

Scope	SPEEDScope	Id Scope	IqScope	VOLTAGE

3

speed_m

2

angle_m
1

I_abc

1

V_abc

4

speed_target

PI(z)

PI	Id

dref

qref

dsat

qsat

magref

DQ
Limiter

DQ	Limiter

speedIq_tarId angleId_tar Iq

Figure 9: Field-oriented control subsystem

Figure 10 shows the implementation of the MRAS subsystem according to Section 3.2, with the

15

4.4 Simulation profile

slight difference that the adaptive system is the current PMSM model in the αβ reference frame given
by equations (52) and (53). Currents are transformed into the dq reference frame afterwards.

abc

θ
elec

dq0

Park	Transform

αβ0

θ
elec

dq0

Clarke	to	Park
Angle	Transform

αβ0abc

Inverse
Clarke	TransformScope	Current

Comparison

2I_abc

V_abc

angle_e

speed_m

I_alpha

I_beta

Adaptive	System

Id

Iq

Id_ada

Iq_ada

omega_e

Adaptive	Law

1V_abc

1angle_m

2speed_m

I_ada

angle

I_ref

Figure 10: MRAS subsystem

The parameters used for the simulation are in the table 1. Parameters are slightly altered from the
motor Maxon EC-i 40 specification sheet, which was later used for the implementation [30].

Table 1: PMSM parameters used in simulation

Quantity Meaning Value

U Nominal voltage 48V

I Nominal current 3A

R Terminal resistance 1.01Ω

L Terminal inductance 0.955mH

pp Number of pole-pairs 7

kv Back-EMF constant 105 rpmV−1

J Rotor and load combined inertia 0.05 kgm2

Tload Load torque 0.15Nm

4.4 Simulation profile

The simulation profile was designed to show the motor start and dynamic behavior when the external
load is suddenly applied. The profile can be divided into two phases:

First phase

In the first phase, at simulation time t = 0.1 s, the motor starts from a standstill with no load. The
motor accelerates until the reference speed of 100 rpm is reached. Due to the high inertia configured
in simulation parameters, the acceleration is relatively slow. The motor reaches the reference speed
after approximately 1 second.

16

4.5 Simulation results

Second phase

The second phase executes at simulation time t = 1.2 s. Execution time is set to occur after the motor
reaches a steady speed. At this point, an external load of 0.15Nm is applied to the rotor.

4.5 Simulation results

Figure 11 shows the simulation results of speed tracking, Figure 12 shows current outputs from the
reference model (’i ref’) and adaptive model (’i ada’).

Figure 11: Speed tracking

Figure 12: Comparison of output currents

17

4.5 Simulation results

Figure 13: Angle error

The results confirmed the applicability and robustness of the method. Current outputs are almost
the same; hence, the error is near zero. Figure 13 presents the angle difference, which confirms the
near-zero error.

18

Chapter 5

Implementation

5.1 Hardware

The sensorless control algorithm is implemented on the evaluation board EVSPIN32G4 by STMicro-
electronics [31]. Experimental testing was performed with the Maxon EC-i 40 motor equipped with a
10-bit ENX 16 EASY encoder [30][32].

Parameters of the motor can be found in Table 2. Resistance and inductance values were divided
by two because they are listed as ”phase to phase” values in the datasheet and the model expects phase
values.

Table 2: Maxon EC-i 40 motor parameters

Symbol Parameter Value

U Nominal voltage 48V

No load speed 5000 rpm

No load current 150mA

Nominal speed 4390 rpm

I Nominal current 2.39A

R Terminal resistance 0.505Ω

L Terminal inductance 0.4775mH

pp Number of pole-pairs 7

kv Back-EMF constant 105 rpmV−1

The EVSPIN32G4 is a fully assembled and easy-to-deploy tool for assessing motor control al-
gorithms. This board is built around the STSPIN32G4, a high-performance 3-phase motor controller
with an integrated STM32G4 MCU. The STSPIN32G4 is a fully self-supplied device with high de-
gree of integration. It embeds a triple half-bridge gate driver with integrated bootstrap diodes, power
management structures, a complete set of protections (thermal shutdown, short-circuit, undervoltage
lockout), and an extended temperature range [33]. Figure 14 shows a block diagram of the gate driver.

Power management consists of a high-precision, low-dropout (LDO) linear regulator and a pro-
grammable buck regulator. The linear regulator generates a 3.3V supply for both the gate driver logic
and the microcontroller. An embedded programmable buck regulator powers the gate drivers. It can
generate four different voltages: 8V, 10V, 12V, and 15V. Additionally, there is a standby regulator
with a very low quiescent current for power saving. Power supplies are visualized at the top of the
diagram.

The gate driver is internally connected to the MCU using the signals on the left side of the diagram.
Inputs INH1-3 are intended for control signals of high-side switches, inputs INL1-3 are intended for

19

5.1 Hardware

control signals of low-side switches, SCL and SDA are clock and data signals of the communication
I2C bus, and finally, WAKE, READY, and nFAULT are control and status signals, respectively. The
right side of the diagram displays outputs for the power stage.

Figure 14: STSPIN32G4 gate driver IC block diagram [33]

The power stage on the board consists of a triple half-bridge inverter with STL110N10F7 N-channel
power MOSFETs. The board provides three-shunt topology low-side current sensing using the in-
tegrated operational amplifiers of the STSPIN32G4 in differential amplifier configuration for better
rejection of common mode signal.

Figure 15 shows the half-bridge for the first phase along with the amplifier network for current
sensing. Resistors R41 and R47 realize voltage bias. If conditions

R44 = R50

R41||R47 = R53

hold, where R41||R47 is a parallel combination of aforementioned resistors, then the amplifier gain is
given by resistors R50 and R53:

G =
R53
R50

.
= 7.33 . (62)

20

5.2 Software and libraries

C13
220n

R13
33

D5
BAT48

R19
0

C16
1u

R25
33

R22
0

D
G

S
Q4
STL110N10F7

VREF+

R41
22k

R47
22k

GND

R50
1k5

R44
1k5

D2
BAT48

+
1

-
2

5

OPAMP1

VBUS

GND

D

G

S

Q1
STL110N10F7

R53
11k

R32
10m

R10
0

GND

R31
10m

OUT1

BOOT1

GLS1

GHS1

ADC

VBUS
C13

220n

Figure 15: One of the three half-bridges

5.1.1 Board modifications

The board was initially equipped with two 10mΩ shunt resistors in parallel, allowing for a continuous
current rating of 20A. Due to the 12-bit ADC resolution and current sensing network with a gain of
7.33, this configuration resulted in the smallest measurable current value of 22mA.

resolution =
VREF+

212
1

Rshunt ·G
.
= 21.98mA , (63)

where Rshunt is the total shunt resistance, G is amplifier gain and VREF+ is the ADC reference voltage.

While sufficient for high-power applications, this resolution is inappropriate for applications with
low phase currents, as is the case with the Maxon motor used for testing, which is rated for maximal
continuous current of 2.39A. Phase currents were, accordingly, expected to be low when operating un-
der no or low load, and imprecise current measurements would degrade the algorithm’s performance.
Consequently, parallel shunt resistors were replaced with a single 20mΩ shunt resistor, thereby im-
proving the resolution by a factor of 4.

5.2 Software and libraries

The control software was developed in C language with a mixture of STM32 HAL (Hardware Abstrac-
tion Layer) and LL (Low Layer) libraries. The HAL driver layer offers high-level and feature-oriented
APIs (application programming interfaces) to interact with the application and hides the peripheral
complexity from the end-user. On the other hand, the LL driver layer offers low-level APIs at the

21

5.2 Software and libraries

register level, with better optimization but less portability. It offers hardware services based on the
available features of the STM32 peripherals, which exactly reflect the hardware capabilities. These
require deep knowledge of the MCU and peripheral specifications [34].

The application leverages the best of both: HAL for simple configuration and most of the periph-
eral servicing and LL primarily for time-critical parts and interrupt handling. The application also
uses the ARM CMSIS-DSP library with implementations of transformations used in motor control
and PID controllers. CMSIS-DSP is a standalone signal processing library for embedded systems,
which provides optimized compute kernels for Cortex-M targets [35].

STM32CubeMX was used to set up the project files and generate primary code for peripheral and
clock configuration. STM32CubeMX is a graphical tool that provides a convenient user interface to
configure the microcontroller. It allows a simple configuration of pin assignments, peripherals, or the
clock tree, and the corresponding C initialization code generation [36]. Generated configurations were
customized afterward and implemented into the control library to ensure the correct settings based on
the user parameters in settings.h file.

To develop, build, and mainly debug the software, STM32CubeIDE was employed. STM32CubeIDE
is an advanced C/C++ development platform with peripheral configuration, code generation, code
compilation, and debug features for STM32 microcontrollers and microprocessors. STM32CubeIDE
also includes standard and advanced debugging features including views of CPU core registers, mem-
ories, and peripheral registers, as well as live variable watch, Serial Wire Viewer interface, or fault
analyzer [37].

A git version control system was used to track the software development. The git made it easier
to navigate changes and test new features without the risk of breaking the code altogether and being
unable to revert. Git is a free and open-source distributed version control system designed to handle
everything from small to very large projects with speed and efficiency [38].

22

5.3 Peripheral configuration

5.3 Peripheral configuration

Figure 16: Pin assignments

The microcontroller is clocked at the highest frequency of 170 MHz with a clock source set to a
24MHz external crystal oscillator mounted on the EVSPIN32G4 board.

Figure 16 shows the microcontroller pin assignments. The red-pink-colored pins are not routed
outside of the package. Pins prepended with ”DRV_” are internally connected to the gate driver IC;
their names principally correspond with datasheet names in Figure 14.

An I2C bus is used to communicate with the gate driver. The bus is configured for the highest
possible communication speed that the gate driver can handle and is accordingly set to the ”Fast Mode
Plus” with a bus frequency of 1000 kHz.

A timer TIM1 responsible for the PWM generation is configured in center-aligned mode in ”PWM
mode 1”, generating three complementary outputs with hardware dead-time insertion to prevent ”shoot-
through” (effectively short-circuiting the power supply). In center-aligned mode, the counter counts

23

5.3 Peripheral configuration

from 0 to the auto-reload value (content of the TIMx_ARR register) – 1, generates a counter overflow
event, then counts from the auto-reload value down to 1 and generates a counter underflow event.
Then it restarts counting from 0 [39]. The timer frequency is twice the motor switching frequency,
preload registers are activated, and the repetition counter is set to 1.

CNT

t

UEV UEV

Figure 17: Illustration of the timer behavior

This configuration ensures that new duty-cycle values are transferred from the preload registers on
the update event just before the counter starts counting up again. Without the repetition counter, the up-
date event would occur even in the middle of the PWM period, which is unnecessary. ”PWM mode 1”
guarantees that all low-side switches are turned ON when the update event arrives.

Figure 17 shows the timer’s behavior and the update event’s occurrence (UEV). The axis ”CNT”
indicates the counter value.

A fourth capture-compare channel without the output is configured to internally trigger the ADC
measurements at exact moments synchronized with the PWM. Synchronized triggering is illustrated
in Figure 18 in Section 5.5. The gate-driver nFAULT signal is internally connected to the timer break
input to shut down the PWM outputs immediately in case of gate-driver-related problems.

The system window watchdog feature is activated to ensure fault-free control software operation,
and it resets the whole board if the control software unexpectedly hangs.

An ADC utilizes both regular and injected channels. Regular channels are configured in 12-bit
resolution and continuous conversion mode, and they monitor board supply voltage, potentiometer
output voltage, and MCU internal voltage reference. The channel measuring board supply voltage has
the analog window watchdog feature activated to implement voltage protection. Section 5.4 provides
more information about protections. Injected channels measure the outputs of operational amplifiers
connected to shunt resistors and are triggered by the PWM timer.

The Direct Memory Access (DMA) manages data transfers from regular channels, and the data
are later processed in the low-frequency task. The MCU processes data from injected channels in the
interrupt handler. Each injected channel has its specialized data register to hold the converted value;
therefore, DMA usage is not beneficial.

All three built-in operational amplifiers are activated in the default ”Standalone” mode with no
additional special settings.

An incremental encoder with quadrature output provides a reference angle and velocity for com-

24

5.4 Protections

parison with estimated values. The output processing is simplified by exploiting the encoder interface
mode of the timer peripheral. In this mode, the counter register value corresponds to the encoder posi-
tion, and the rotation direction can be directly obtained by reading a counting direction bit in a register.
To virtually double the encoder’s resolution, the timer peripheral is configured in ”x2 counting mode”,
where the counter is updated on both rising and falling edges of the signal. The incremental encoder
is connected to the timer TIM4.

The software uses Serial Wire Output (SWO) mainly to output debugging strings via printing. It
is also possible to output internal variables using SWO, but care must be taken not to overwhelm the
internal trace buffers of STM32CubeIDE Serial Wire Viewer. High bandwidth data overloads them
very quickly, causing SWO packet loss and making the IDE hardly controllable.

To overcome the bandwidth bottleneck, the control software utilizes a Digital-to-Analog Converter
(DAC) as a debug feature to output fast changing internal variables and inspect them on an oscillo-
scope. Both channels of DAC1 are enabled. To make the debug feature as non-intrusive as possible,
values to be outputted by the DAC are transferred by two separate DMA channels that are triggered
independently by timers TIM6 and TIM7 configured for 1 µs period. However, using a DAC to out-
put internal variables introduces a small error in comparison results because the output buffer is not
perfectly accurate.

5.4 Protections

Control software realizes several protections of the involved hardware. The motor is immediately
turned off if the protection triggers.

Overvoltage and undervoltage protections are implemented using the analog window watchdog
feature of the ADC. The board supply voltage is continuously measured and automatically compared
against settable thresholds. An interrupt is triggered, and the motor stops if the supply voltage is not
in the configured voltage range.

The software overcurrent protection is evaluated after every current measurement. Raw ADC
values are first converted to current in the respective interrupt handler and straightaway compared
against the settable threshold in both polarities. If out of range, the motor is stopped.

Gate driver offers two sources of thermal protection. Both the internal switching regulator supply-
ing the voltage to the gate driver and the linear low-dropout (LDO) regulator have their own thermal
protection. If the temperature exceeds the threshold, the corresponding regulator is switched off until
the temperature returns to the normal operating range.

Gate driver also implements ”VDS monitoring” protection. Drain-source voltages of power switches
are monitored and compared against a reference threshold. This mechanism detects anomalous con-
ditions, such as power switch failure resulting in short to either ground or supply voltage, and in that
case, it forces all the gate driver outputs low. The protection is latched and has to be cleared by the
software.

In the case of an unexpected program failure, the system window watchdog provides another way
of protecting the involved hardware. Suppose the software does not reload the watchdog counter
periodically before the set time threshold. In that case, the watchdog generates a reset of the micro-
controller, resulting in a reset of the whole board. The counter is reloaded in the low-frequency task,

25

5.5 Current sensing

and the threshold is set to approximately 1.5ms. This setup assures that the hardware is reset to the
safe state after one missed low-frequency task iteration at maximum.

5.5 Current sensing

To correctly perform the field-oriented control, it is mandatory to measure the motor current every
switching period. For the sensorless operation, this is the only feedback between the motor and the
control software, and thus, it is mandatory to measure precisely and accurately.

As the board implements three-shunt topology low-side current sensing, the only time window
when the motor phase current flows through the shunt resistor is if the low-side transistor of the same
leg is turned on. Therefore, measuring the current flowing through the motor phases is possible only
if all the low-side switches are turned on. Due to this, care must be taken to synchronize the ADC
trigger with the PWM precisely.

UEV UEV

Ch3

Ch2

Ch1

Ch4
ADC ADCADC

t

Figure 18: PWM timing diagram and ADC trigger

The internal trigger output of the fourth channel of the PWM timer ensures exact ADC triggering.
By the nature of center-aligned PWM, all low-side switches are turned on when the update event
arrives. Therefore, the trigger is set to be right before the update event.

Figure 18 displays an example of two PWM periods. Ch1 - Ch3 are timer output signals for
individual high-side switches, and Ch4 is the synchronized internal ADC trigger. Inverted signals for
low-side switches are not included in the figure. The measurement is possible in transparent orange
sections, where the condition about low-side switches is fulfilled. Pink rectangles illustrate the ADC
current measurement.

The ADC can only convert a value between 0V and its reference voltage 3.3V. To enable the
measurement of current in both directions, the output of the shunt resistor is biased to half of ADC
reference voltage by two equal-size resistors, and after that, it is amplified. Schematic showing the
biasing can be found in Figure 15 in Section 5.1.

Even though equal-size resistors are used, the real resistance always differs and creates an offset.

26

5.6 Software architecture

Thus, assuming the bias voltage is strictly half of the reference voltage and, therefore, half of the
maximum ADC value is erroneous. Instead, the magnitude of the offset is measured and calibrated
before every start of the motor prior to the charging phase of the bootstrap capacitor. With all outputs
disabled, the ADC performs several measurements of the offset, and an average value is stored for
further current conversions.

With the increasing duty cycle of the PWM, the ON period of the low-side switch decreases,
but the ADC conversion time is fixed. If it decreases to the point where the ADC conversion takes
longer, then the ADC measures incorrectly, and current readings are unreliable. The control software
leverages the current identity

ia + ib + ic = 0 (64)

to overcome this issue. If the highest phase duty cycle is higher than 75%, then the current for that
phase is computed using the identity.

5.6 Software architecture

The control software is interrupt-driven and does not depend on any real-time operating system (RTOS).
Instead, the context execution relies on hardware interrupts with assigned priorities and internal soft-
ware state machine. A diagram of the state machine is displayed in Figure 19.

The program starts with the basic initialization of the hardware and advances to the idle state. If
the program receives a start command, it leaves the idle state, configures the gate driver and concerned
peripherals, and advances to successive execution states. After that, the program flow can be divided
into two ”tasks” based on the execution frequency. Both tasks execute relevant procedures according
to the state of the program.

High-frequency task

The high-frequency task is a set of vital procedures executed synchronously every switching period
during the highest priority ADC interrupt routine after the conversion of injected channels is finished.
It collects necessary information about the angle and speed and performs the main control loop.

Low-frequency task

The low-frequency task is based on the SysTick timer and executes a speed regulation loop and auxil-
iary functions with lower priority or lower execution frequency requirements.

27

5.7 Main control loop

start = 1

STATE_IDLE

bootstrap capacitor
charging time expired

STATE_BOOTSTRAP

alignment time
expired

STATE_ALIGNMENT

startup time
expired

STATE_STARTUP

synchronization
conditions met

STATE_SYNCHRO

stop = 1Error

STATE_RUN

STATE_ERROR

Initial
state

Figure 19: Program state machine

5.7 Main control loop

The main control loop follows a standard field-oriented control scheme, the diagram of which is shown
in Figure 20. The id current component is controlled to zero, and a speed PI controller controls the
iq component. The implementation relies on optimized CMSIS DSP functions for computing the sine
and cosine of an angle, Clarke and Park transformations, and PID controller.

First, the arm_sin_cos_f32() function is utilized to calculate the sine and cosine of the cur-
rent electric angle of the motor, which is used for the Park and inverse Park transformations. Then,
the three-phase current is first transformed to the αβ system by the Clarke transform and then to the
dq system by the Park transform (arm_clarke_f32(), arm_park_f32()).

28

5.7 Main control loop

Acquired direct and quadrature-axis currents are fed into two PI controllers to obtain the control
voltages. PI controllers are based on the CMSIS DSP PID implementation (arm_pid_f32()),
which is very simple but, for the sake of simplicity, does not include any saturation of the output or
integral anti-windup technique. These features were implemented to keep the regulator simple by
inspecting the control output value and limiting it and the PID’s internal sum variable.

M

Inverter

ModulatorInverse Park
Transform

d,q → α,β

Inverse Clarke
Transform

α,β → a,b,c

DQ limiter

PI controller

PI controller

+

Clarke
Transform

α,β ← a,b,c

Park
Transform

d,q ← α,β

+

-

-

MRAS
observer

Figure 20: Block diagram of the field-oriented control

To avoid the distortion of current waveforms when using duty cycles close to zero or to the max-
imum counter value, where the inverter cannot produce the desired voltage due to the dead-time or
a switching element unable to switch with sufficient speed, a mechanism to limit control dq voltages
is employed. The magnitude of the resulting voltage vector is compared against a configurable limit
value derived from the supply voltage. If it exceeds the maximum, dq voltages are saturated with
prioritization on the d-axis voltage. In equations:

mag =
√
u2d + u2q (65)

When mag > umax:

u sat
d =

umax, if ud ≥ umax

ud , if − umax < ud < umax

−umax, if ud ≤ −umax

(66)

usat
q =

{√
u2max − (usat

d)2 · sign(uq), if |uq| ≥
√
u2max − (usat

d)2

uq, if |uq| <
√
u2max − (usat

d)2
(67)

29

5.8 MRAS observer

When mag ≤ umax:

u sat
d = ud (68)

u sat
q = uq (69)

where umax is the saturation voltage.

Afterward, the saturated control voltages are transformed back to the αβ system by the inverse
Park transform (arm_inv_park_f32()) and eventually to the abc coordinate system by the in-
verse Clarke transform (arm_inv_clarke_f32()). Finally, with respect to the maximum counter
value, the control voltages are converted to values that are set in the timer capture/compare register.

5.8 MRAS observer

The observer implementation follows the block diagram of the implementation in the simulation en-
vironment in Figure 10. That means the adjustable model is implemented in the αβ reference frame
using equations 52 and 53, and the current outputs are eventually transformed into the dq reference
frame. The only difference from schematics in Figures 10 and 20 is the reference frame of accepted
input voltages. The voltage inputs for the MRAS are the same as those for the modulator, which are
initially from PI controllers of field-oriented control in the dq reference frame and are consecutively
transformed back to the abc reference frame. The MRAS subsystem accepts input voltages in the
αβ reference frame instead of the abc reference frame to save one inverse and one forward Clark
transform.

The angle and speed estimation based on the MRAS observer is implemented using the equations
derived in section 3.2. Implementing differential equations directly in the program is impossible; it
is mandatory to utilize numerical methods. The control software offers two methods to choose from
depending on the desired accuracy or speed of calculation.

The faster available method is a simple Euler method, also called the forward Euler method. The
Euler method is a first-order method and, therefore, the most straightforward technique to solve dif-
ferential equations with initial conditions numerically. At each step, the function is approximated by
the tangent, assuming that the error will be small if the step size is small. Due to this fact, this ap-
proach is the fastest, but the error increases with larger step sizes and more fluctuating waveforms and
accumulates over time. Equations after application of the simple Euler method have form

îα[n+ 1] = îα[n] + h ·
(
−R

L
îα[n] +

1

L
keω̂m[n] sin

(
θ̂e[n]

)
+

1

L
uα[n]

)
(70)

îβ[n+ 1] = îβ[n] + h ·
(
−R

L
îβ[n] +

1

L
keω̂m[n] cos

(
θ̂e[n]

)
+

1

L
uβ[n]

)
, (71)

where h = 1
fsw

is a time step given by the switching frequency of the motor.

The more accurate method is a modified Euler method, also known as Heun’s method or explicit
trapezoidal rule. It is a two-stage, second-order procedure to solve differential equations. It uses
a simple Euler method as a foundation. First, the intermediate approximation of the slope at ti is
computed, and then the slope at the next step ti+1 = ti + h with recently calculated intermediate.
Finally, both slopes are averaged to find a better solution approximation at the end of the time step.

30

5.9 Startup procedure

Equations after application of the modified Euler method have form

îα,1 = −R

L
îα[n] +

1

L
keω̂m[n] sin

(
θ̂e[n]

)
+

1

L
uα[n] (72)

îβ,1 = −R

L
îβ[n] +

1

L
keω̂m[n] cos

(
θ̂e[n]

)
+

1

L
uβ[n] (73)

îα,pred = îα[n] + h · îα,1 (74)

îβ,pred = îβ[n] + h · îβ,1 (75)

îα,2 = −R

L
îα,pred +

1

L
keω̂m[n] sin

(
θ̂e[n]

)
+

1

L
uα[n] (76)

îβ,2 = −R

L
îβ,pred +

1

L
keω̂m[n] cos

(
θ̂e[n]

)
+

1

L
uβ[n] (77)

îα[n+ 1] = îα[n] +
h

2
·
(
îα,1 + îα,2

)
(78)

îβ[n+ 1] = îβ[n] +
h

2
·
(
îβ,1 + îβ,2

)
, (79)

where h = 1
fsw

is a time step given by the switching frequency of the motor, and îα/β,1/2, îα/β,pred are
intermediate values.

After acquiring the estimated currents from the model, they are processed using the adaptation law
equation 51, and the resulting error is fed to the PI controller to get the estimated speed. According to
the equation 50, the angle is obtained by integration of the speed. The numerical integration is realized
using the forward Euler method, which approximates the integral by

θ̂e =

∫ t+τ

t
ω̂e dτ → θ̂e[n+ 1] = θ̂e[n] + τ · ω̂e[n] , (80)

where τ = 1
fsw

is a time step given by the switching frequency of the motor.

5.9 Startup procedure

Sensorless algorithms generally suffer when it comes to low-speed operation and motor startup. De-
pending on the particular algorithm, this may happen due to, e.g., the low back-EMF, low current, or
inaccurate motor parameters. In order to smoothly bring the motor to operation from zero speed, the
control software adapts an open-loop startup procedure with closed-loop current control based on the
I-f startup method in [7]. The method utilizes current controllers from the field-oriented control and
operates the motor with a predefined current, thus preventing the risk of an overcurrent condition. The
procedure can be divided into several phases: alignment phase, open-loop startup, and synchronization
phase. An illustration of the startup procedure is in Figure 21.

In the alignment phase, a current vector with a preconfigured angle and amplitude is applied to the
motor, forcing the rotor flux to align with the generated stator flux, which is achieved by requesting
a d-axis current that is sufficiently large to overcome the load and inertia. The alignment current is
ramped up from zero by a linear ramp to prevent oscillations or unwanted twitches caused by sudden
current application. After the end of the alignment phase duration, it is assumed that the rotor electrical
angle corresponds to the demanded alignment angle, and the procedure advances to the next phase.

The open-loop startup further leverages the effect of stator and rotor flux alignment. Startup is ac-
complished by creating a virtual position sensor. The motor speed is linearly ramped up, and the angle

31

5.10 Code structure

of the virtual position sensor is computed according to the actual speed until the speed reaches the
configured startup speed. Acceleration rate is defined by startup time and desired startup speed. The
angle of the virtual position sensor is the input to the field-oriented control, generating accelerating
rotating stator flux with preconfigured amplitude. The current amplitude should be, once more, suffi-
ciently large to overcome the load and inertia and ensure the startup is successful. After the open-loop
ramp duration ends, the procedure advances to the final phase.

alignment open-loop synchronization run

STARTUP_SPEED

STARTUP_TIMEALIGNMENT_TIME t

ALIGNMENT_CURRENT

STARTUP_CURRENT

synchronization
conditions met

Figure 21: Startup procedure illustration

The synchronization phase ensures a smooth transition from the open-loop control to the closed-
loop sensorless control. The virtual position sensor phase is still used in this phase to keep the motor
in open-loop operation at a constant speed. Constant speed and decreasing of the q-axis current are
to ensure better convergence of the observer. After the synchronization conditions are fulfilled (the
difference between the startup angle and the estimated angle and the synchronization speed and the
estimated speed), the control is entirely handed over to the sensorless algorithm. If the conditions are
not met before the synchronization phase is over, the motor is stopped, and the control program enters
the idle state.

5.10 Code structure

The control software was implemented as a library with a set of header and source files.

32

5.11 Configuration and usage

FOC MRAS

Inc

foc motorcontrol.h

settings.h

typedefs.h

foc functions.h

foc handlers.h

foc periodic.h

foc tools.h

swo debug.h

Src

foc functions.c

foc handlers.c

foc periodic.c

foc tools.c

swo debug.c

STSPIN32G4

stspin32g4.h

stspin32g4.c

main header file
library settings and motor parameters

A library for interfacing with the internal gate driver is in folder STSPIN32G4. It contains all reg-
ister definitions and necessary functions to configure the gate driver, implemented according to the
datasheet [33].

All control software settings, e.g., motor parameters, duration of particular startup phases, or
special library configurations, are in the header file settings.h.

5.11 Configuration and usage

From the user’s perspective, the library has two important files: settings.h and typedefs.h.

All control software settings can be found in the settings.h file, as already mentioned in Sec-
tion 5.6. The settings.h file contains settings as constants that cannot be changed during runtime
and one helper macro to convert the back-EMF constant from rpmV−1 to SI units V s rad−1 funda-
mental for the PMSM model. There, the user configures parameters such as the switching frequency,
dead-time length, motor inductance, resistance and back-EMF constant, duration and current ampli-
tudes of particular startup phases, and settings of PI controllers. In addition, there are constants with
resistance values of voltage dividers, resistors used in the current sensing network, and shunt resistors
in the event of hardware customization.

Because it was necessary to implement the processing of the incremental encoder to allow com-
parison of the estimated values with reference values, the control software can be switched to sensor
mode and run the motor with the position feedback from the encoder. Besides sensor mode, it is also
possible to configure the library to use only the simple Euler method to solve PMSM equations in
MRAS observer and disable the open-loop startup. Especially in sensor mode, the open-loop startup

33

5.11 Configuration and usage

with the associated synchronization phase may be omitted.

To operate the control software, the board needs to be connected to a computer, and the software
launched in debug mode. Afterward, the software is controlled using two variables and a control
structure. For that purpose, the STM32CubeIDE live variable watch feature can be used to inspect and
set the variables during runtime. Figure 22 shows the live variable watch feature example. Setting
variable start to 1 runs the motor, setting variable stop to 1 obviously stops the motor.

The variable evspin is an extensive control structure with variables used throughout the control
software. The file typedefs.h defines all control structure members and types. From the user’s
perspective, inside the control structure are a couple of mentionable variables and substructures that
are positioned at the top of the structure.

The first member variable state is an enum type used in the state machine holding the current
program execution state.

The second member variable, base, is a structure that provides slightly more information about
the execution state of the program than the state variable. It contains boolean flags representing each
state, plus flags indicating whether the DQ limiter or the speed ramp is active.

The third member variable run is used to control the speed in the run phase after successful
synchronization. It offers information about the actual speed and speed target and contains vari-
ables to set and execute a linear speed ramp. To set the new target speed, enter the value to variable
ramp_final, desired duration of the speed change to ramp_duration, and execute the ramp by
setting the variable activate_ramp to true.

In the fourth member variable foc, we can find variables essential for field-oriented control,
especially currents in all three reference frames.

Substructure adc contains everything related to the ADC, most notably variables vbus and vdda
hold information about the power supply.

The rest of the control structure consists of substructures with mostly uninteresting variables es-
sential for various parts of the algorithm execution.

The thesis includes a complete project in STM32CubeIDE with all the necessary settings to build
the library and launch files to run a debug session to control the software on the fly. The project is also
available on GitHub1.

1https://github.com/lunakiller/EVSPIN32G4_FOC

34

https://github.com/lunakiller/EVSPIN32G4_FOC

5.11 Configuration and usage

Figure 22: Example of the live variable watch feature

35

Chapter 6

Results

6.1 Experimental setup

Figure 23 shows the experimental setup. Except for the EVSPIN32G4 board and Maxon EC-i 40
motor, the setup consists of a Tektronix MSO58B oscilloscope, TTI EX354T triple power supply, and
a laptop running STM32CubeIDE and the control software in debug mode. Phase current waveforms
were measured using Tektronix TCP0030A current probes. Measurements of other quantities were
realized using voltage probes connected to the DAC outputs and one GPIO pin.

Figure 23: Experimental setup

The parameters of the motor used for experiments correspond to the datasheet parameters already
presented in Table 2. Only the supply voltage was chosen to be 34V, mainly due to the power supply
limitation.

Control software settings are in Table 3.

As in the simulation, all PI constants were also obtained by the trial and error method. Although
the controller implementation is a complete three-term PID controller, the derivative control is not
used, and in all cases, the D constant is kept at zero. With the assistance of an oscilloscope, the
constants were tuned until current waveforms were pure sinusoidal.

36

6.2 dq current PI controller

Table 3: Settings of the control software

Setting Value

Switching frequency 30 kHz

Dead-time 300 ns

Bootstrap phase duration 250ms

Alignment phase duration 1000ms

Alignment phase id 1500mA

Alignment angle 60 deg

Open-loop startup duration 300ms

Open-loop startup iq 1200mA

Open-loop startup final speed 750 rpm

Max synchronization phase duration 2000ms

6.2 dq current PI controller

Figure 24 shows the step response and behavior of d-axis current controller on significantly changing
setpoints. Small current oscillations after application of 1A id are caused by the rotor oscillations due
to the sudden application of the current.

Figure 24: id current PI controller response

Current PI controller constants are the same for both d- and q-axis currents; therefore, the q-axis
current controller shares the same dynamics.

37

6.3 No load start

6.3 No load start

The first test the proposed sensorless algorithm underwent was a simple start of the motor with no
load. The motor accelerated from a standstill to 750 rpm using the I-f startup method explained in
Section 5.9. During tests, the estimated angle and speed were compared with the reference angle and
speed from the encoder.

Due to only two available DAC output channels, it was not possible to compare both estimated
values with the reference values simultaneously. Instead, the tests had to be performed one at a time.
This fact further confirms the functionality of the method and its repeatability.

Figure 25 shows a comparison of the estimated angle and angle from the encoder. Angles are
electrical angles in range [−pp180

◦; pp180
◦]. Channels 6 and 7 of the oscilloscope are DAC outputs,

channel 8 is used concurrently as a trigger and as an indicator of the synchronization phase, which
begins with the rising edge and ends with the falling edge. The math channel shows the difference and
converts it from the voltage back to the original values that were input to the DAC. Therefore, in this
case, the math channel corresponds to the difference between the estimated value and the value from
the encoder in degrees.

Figure 25: Angle comparison

The figure shows that the rotor position difference oscillates as a result of open-loop startup. How-
ever, after the synchronization phase, when the control is completely handed over to the sensorless
algorithm, the angular difference remains close to zero. Peaks in the angle difference caused by the
angle wrap-around at different moments were mostly filtered out.

38

6.4 Run under load

Figure 26: Speed comparison

Figure 26 displays the speed comparison. In this test, the math channel corresponds to the differ-
ence between the estimated value and the value from the encoder in rotations per minute. The speed
also oscillates during the startup, and the error is small after synchronization. Also, fluctuations in
the speed signal from the encoder after the synchronization can be noticed, and the speed estimate is
much more stable.

An important aspect to consider when inspecting the results is the low resolution of the used
encoder (only 10-bit), whose output has to be filtered to be usable. It is highly likely that the poor res-
olution of the encoder and filtering is the cause of the difference between the estimated and reference
value and that the actual error is close to zero.

6.4 Run under load

Consequent figures demonstrate the motor operation under load. The motor was loaded with approx-
imately 136mNm load torque, resulting in q-axis current iq

.
= 1000mA. Figure 27 shows operation

at 750 rpm and Figure 28 shows operation at 1500 rpm.

39

6.4 Run under load

Figure 27: Run under load, ωm = 750 rpm

Figure 28: Run under load, ωm = 1500 rpm

In both cases, we can see sinusoidal current waveforms that are undistorted by higher harmonics.

40

6.5 Startup with erroneous parameters

6.5 Startup with erroneous parameters

Experiments were also conducted to demonstrate the robustness of the control method to erroneous
or changing motor parameters. For example, the parameters can change during motor runtime due
to increasing temperature. Besides, the measurement of motor parameters tends to be a problematic
task, and it is often the case that the parameters measured by the LCR meter do not fully correspond
to datasheet parameters, regardless of the measurement frequency set on the LCR meter.

Because motor parameters are defined in the program as constants, it was not possible to change
the inductance and resistance values on the fly without interfering with the control library. Instead, it
was tested during the startup with wrongly configured motor parameters.

First, six start test cases were run: half the resistance value, half the inductance value, half the value
of both, and then the same but with twice the resistance and inductance values. All other parameters
were unchanged during the tests.

Table 4: Results of average angle differences

Configuration Average difference

0.5 ·R 0.5◦

0.5 · L 10.2◦

0.5 ·R, 0.5 · L 3.22◦

2 ·R −1.6◦

2 · L −4.8◦

2 ·R, 2 · L −3.7◦

Results proved that the method can start, synchronize, and run the motor without significant is-
sues. It was possible to change speed and load the motor without the loss of control. The angle during
open-loop startup oscillated more, and the synchronization phase took longer. Even though the al-
gorithm was able to synchronize, there was a steady-state error between the estimated and reference
angles, resulting in likely degraded performance and efficiency. The Table 4 contains the average an-
gle differences in the run phase of the motor. The method seems more prone to error in the inductance
parameter, which is apparent from the results.

After this observation, additional tests were conducted to verify the limits of the method’s toler-
ance limit to the significantly erroneous resistance parameter. During tests with ten times the datasheet
resistance value, the method was unable to synchronize. The synchronization failed either due to max-
imal synchronization phase duration expiration or overcurrent caused by the sudden divergence of the
sensorless observer.

Subsequently, the resistance was decreased to five times the datasheet value. Even with this high
error, the observer could converge and synchronize.

41

6.5 Startup with erroneous parameters

Figure 29: Worse startup with 5 ·R, angle comparison

Figure 29 shows one of the worse starts with five times the resistance value. The difference channel
is hidden due to the angle shift of one electrical rotation between the estimated and reference value.
It is clear that the convergence performance has deteriorated, and the overall performance has visibly
degraded.

Although the motor successfully reached the running phase, the algorithm diverged as the load was
gradually applied, the estimate suddenly changed, and the control failed due to the overcurrent. Five
times the resistance error is too high, causing the control to be unstable under dynamically changing
loads. However, the change in resistance due to temperature does not reach such values.

42

Chapter 7

Conclusion

The thesis aimed at the problematics of field-oriented control of PMSMs without using a position
sensor. Such sensors are unwanted due to increased production and maintenance costs and a greater
risk of malfunction.

In order to simulate a three-phase PMSM and corresponding control algorithms, the mathematical
model was derived, and commonly used Clarke and Park transformations were introduced to transform
the model to a form more suitable for control. Typically, the PMSM model uses flux-linkage in the
back-EMF term; however, the manufacturer often does not specify a flux-linkage parameter in its
datasheet, especially for low-cost motors. Therefore, the model uses an alternative parametrization
using the back-EMF constant and rotational speed.

Most often used sensorless algorithms were briefly introduced and compared. Based on refer-
enced resources, the control method based on MRAS was selected, as it offered the most satisfactory
performance among others, especially over a wide speed range and under varying load operation. The
method was further analyzed, and all necessary parts were explained.

First, PMSM models were verified in a simulation in MATLAB Simulink environment against the
model available in the Simscape add-on library to check the accuracy and correctness. Then, the field-
oriented control was implemented along with the MRAS observer. The developed sensorless solution
was verified in simulations, yielding very satisfactory results.

Afterward, the solution was implemented on the EVSPIN32G4 board, resulting in complete sen-
sorless software for controlling PMSM motors. The software is configurable to satisfy the usage of
motors with different parameters. The control software is interrupt-based to guarantee the execution
of individual time-critical phases at precise moments. It takes advantage of many of the hardware
features available in the STSPIN32G4, such as DMA and internal peripheral triggering, to meet strict
timing requirements and reduce the load on the processor.

Finally, the control software was tested with the Maxon EC-i 40 motor. Test results demonstrated
the capabilities and the accuracy of the method and functionality of the developed control software.
The control is stable with and without the load, and the resulting current waveforms are purely si-
nusoidal. Additionally, the method proved to be reasonably tolerant to erroneous motor parameters.
Even when the parameters were significantly wrong, the method managed to start and run the motor
without any visible impact on the accuracy and quality of the control.

Future work could include extending the control software to operate over the entire speed range.
As with other methods based on fundamental excitation, the proposed method has degraded perfor-
mance at very low speeds, and thus, the open-loop startup method had to be employed. Although
it was possible to start the motor from a standstill and skip the open-loop start, the control in very
low-speed ranges was unreliable, especially at high loads. For this purpose, combining the proposed
method with a method based on signal injection would be beneficial in allowing proper control dur-
ing startup and low speeds. After the start-up is overcome, the control would switch to the current
solution.

43

References

[1] Ramu Krishnan. Permanent Magnet Synchronous and Brushless DC Motor Drives. CRC Press,
1st edition, 2010. doi: 10.1201/9781420014235.

[2] Implement ab to alpha-beta transformation - Simulink. [online] https://www.mathwork
s.com/help/mcb/ref/clarketransform.html. Accessed: 2024-01-21.

[3] Implement alpha-beta to dq transformation - Simulink. [online] https://www.mathwork
s.com/help/mcb/ref/parktransform.html. Accessed: 2024-01-21.

[4] Ryoji Mizutani, Takaharu Takeshita, and Nobuyuki Matsui. Current model-based sensorless
drives of salient-pole pmsm at low speed and standstill. IEEE Transactions on Industry Applica-
tions, 34(4):841–846, 1998. doi: 10.1109/28.703990.

[5] Hao Zhu, Xi Xiao, and Yongdong Li. A simplified high frequency injection method for pmsm
sensorless control. In 2009 IEEE 6th International Power Electronics and Motion Control Con-
ference, pages 401–405, 2009. doi: 10.1109/IPEMC.2009.5157420.

[6] Shinji Ichikawa, Mutuwo Tomita, Shinji Doki, and Shigeru Okuma. Sensorless control of
permanent-magnet synchronous motors using online parameter identification based on system
identification theory. IEEE Transactions on Industrial Electronics, 53(2):363–372, 2006. doi:
10.1109/TIE.2006.870875.

[7] Lei Wang, Yifan Zhang, Linhai Zhao, and Guozhu Chen. An improved 3-step startup method
based on sensorless vector control of pmsm. In 2019 IEEE PES Asia-Pacific Power and Energy
Engineering Conference (APPEEC), pages 1–5, 2019. doi: 10.1109/APPEEC45492.2019.899
4460.

[8] VESC Project. [online] https://vesc-project.com/. Accessed: 2024-05-14.

[9] Tomohiro Nimura, Shinji Doki, and Masami Fujitsuna. Position sensorless control of pmsm with
a low-frequency signal injection. In 2014 International Power Electronics Conference (IPEC-
Hiroshima 2014 - ECCE ASIA), pages 3079–3084, 2014. doi: 10.1109/IPEC.2014.6870124.

[10] Yukinori Inoue, Koji Yamada, Shigeo Morimoto, and Masayuki Sanada. Effectiveness of voltage
error compensation and parameter identification for model-based sensorless control of ipmsm.
IEEE Transactions on Industry Applications, 45(1):213–221, 2009. doi: 10.1109/TIA.2008.200
9617.

[11] Hongryel Kim, Jubum Son, and Jangmyung Lee. A high-speed sliding-mode observer for the
sensorless speed control of a pmsm. IEEE Transactions on Industrial Electronics, 58(9):4069–
4077, 2011. doi: 10.1109/TIE.2010.2098357.

[12] Ahmed Lagrioui and Hassan Mahmoudi. Speed and current control for the pmsm using a lu-
enberger observer. In 2011 International Conference on Multimedia Computing and Systems,
pages 1–6, 2011. doi: 10.1109/ICMCS.2011.5945721.

44

https://www.mathworks.com/help/mcb/ref/clarketransform.html
https://www.mathworks.com/help/mcb/ref/clarketransform.html
https://www.mathworks.com/help/mcb/ref/parktransform.html
https://www.mathworks.com/help/mcb/ref/parktransform.html
https://vesc-project.com/

[13] Mohamad Syakir Termizi, Jurifa Mat Lazi, Zulkifilie Ibrahim, Md Hairul Nizam Talib, Mohd
Junaidi Abdul Aziz, and Shahrin Md Ayob. Sensorless pmsm drives using extended kalman
filter (ekf). In 2017 IEEE Conference on Energy Conversion (CENCON), pages 145–150, 2017.
doi: 10.1109/CENCON.2017.8262474.

[14] Zhiqian Chen, Mutuwo Tomita, Shinji Ichikawa, Shinji Doki, and Shigeru Okuma. Sensorless
control of interior permanent magnet synchronous motor by estimation of an extended electro-
motive force. In Conference Record of the 2000 IEEE Industry Applications Conference. Thirty-
Fifth IAS Annual Meeting and World Conference on Industrial Applications of Electrical Energy
(Cat. No.00CH37129), volume 3, pages 1814–1819 vol.3, 2000. doi: 10.1109/IAS.2000.882126.

[15] Konrad Urbanski. Sensorless control of pmsm high dynamic drive at low speed range. In 2011
IEEE International Symposium on Industrial Electronics, pages 728–732, 2011. doi: 10.1109/
ISIE.2011.5984247.

[16] X-CUBE-MCSDK - STM32 Motor Control Software Development Kit (MCSDK) - STMicro-
electronics. [online] https://www.st.com/en/embedded-software/x-cube-m
csdk.html. Accessed: 2024-05-14.

[17] Nobuyuki Matsui. Sensorless pm brushless dc motor drives. IEEE Transactions on Industrial
Electronics, 43(2):300–308, 1996. doi: 10.1109/41.491354.

[18] Lennart Harnefors and Hans-Peter Nee. A general algorithm for speed and position estimation
of ac motors. IEEE Transactions on Industrial Electronics, 47(1):77–83, 2000. doi: 10.1109/41
.824128.

[19] Hassan K Khalil. Nonlinear systems; 3rd ed. Prentice-Hall, Upper Saddle River, NJ, 2002. ISBN
9780130673893.

[20] Yusheng Hu, Liyi Li, Weilin Guo, and Yan Li. Vector control of permanent magnet synchronous
motor based on new mras. In 2021 24th International Conference on Electrical Machines and
Systems (ICEMS), pages 1983–1987, 2021. doi: 10.23919/ICEMS52562.2021.9634634.

[21] Young Sam Kim, Sang Kyoon Kim, and Young Ahn Kwon. Mras based sensorless con-
trol of permanent magnet synchronous motor. In SICE 2003 Annual Conference (IEEE Cat.
No.03TH8734), volume 2, pages 1632–1637 Vol.2, 2003.

[22] Fang-Zheng Peng and Tadashi Fukao. Robust speed identification for speed-sensorless vector
control of induction motors. IEEE Transactions on Industry Applications, 30(5):1234–1240,
1994. doi: 10.1109/28.315234.

[23] Young Ahn Kwon and Dae Won Jin. A novel mras based speed sensorless control of induction
motor. In IECON’99. Conference Proceedings. 25th Annual Conference of the IEEE Industrial
Electronics Society (Cat. No.99CH37029), volume 2, pages 933–938 vol.2, 1999. doi: 10.1109/
IECON.1999.816537.

[24] Gene F. Franklin, J. David Powell, and Abbas Emami-Naeini. Feedback Control of Dynamic
Systems (8th Edition). Pearson, 8th edition, 2018. ISBN 0134685717.

[25] Colin Schauder. Adaptive speed identification for vector control of induction motors without
rotational transducers. In Conference Record of the IEEE Industry Applications Society Annual
Meeting,, pages 493–499 vol.1, 1989. doi: 10.1109/IAS.1989.96696.

[26] MATLAB. [online] https://www.mathworks.com/products/matlab.html.
Accessed: 2024-05-21.

45

https://www.st.com/en/embedded-software/x-cube-mcsdk.html
https://www.st.com/en/embedded-software/x-cube-mcsdk.html
https://www.mathworks.com/products/matlab.html

[27] Simulink - Simulation and Model-Based Design - MATLAB. [online] https://www.math
works.com/products/simulink.html, . Accessed: 2024-05-21.

[28] Simscape - MATLAB. [online] https://www.mathworks.com/products/simscap
e.html, . Accessed: 2024-05-21.

[29] Li Yujie and Cao Shaozhong. Model reference adaptive control system simulation of permanent
magnet synchronous motor. In 2015 IEEE Advanced Information Technology, Electronic and
Automation Control Conference (IAEAC), pages 498–502, 2015. doi: 10.1109/IAEAC.2015.7
428603.

[30] Maxon: EC-i 40 Catalog Page. [online] https://www.maxongroup.com/medias/sy
s_master/root/8882557943838/EN-21-276.pdf, . Accessed: 2024-01-21.

[31] STMicroelectronics. UM2850: Getting started with the EVSPIN32G4, EVSPIN32G4NH. [on-
line] https://www.st.com/resource/en/user_manual/um2850-getting-s
tarted-with-the-evspin32g4-evspin32g4nh-stmicroelectronics.pdf,
2021. Accessed: 2024-05-21.

[32] Maxon: Encoder 16 EASY XT Catalog Page. [online] https://www.maxongroup.com
/medias/sys_master/root/8883962478622/EN-21-466-467.pdf, . Accessed:
2024-05-21.

[33] STMicroelectronics. DS13630: STSPIN32G4 Datasheet. [online] https://www.st.com
/resource/en/datasheet/stspin32g4.pdf, 2022. Accessed: 2024-05-22.

[34] STMicroelectronics. UM2570: Description of STM32G4 HAL and low-layer drivers. [online]
https://www.st.com/resource/en/user_manual/um2570-description-o
f-stm32g4-hal-and-lowlayer-drivers--stmicroelectronics.pdf, 2020.
Accessed: 2024-05-22.

[35] CMSIS-DSP: CMSIS DSP Software Library. [online] https://arm-software.github
.io/CMSIS-DSP/latest/index.html. Accessed: 2024-05-22.

[36] STMicroelectronics. UM1718: STM32CubeMX for STM32 configuration and initialization C
code generation. [online] https://www.st.com/resource/en/user_manual/um1
718-stm32cubemx-for-stm32-configuration-and-initialization-c-c
ode-generation-stmicroelectronics.pdf, 2024. Accessed: 2024-05-22.

[37] STM32CubeIDE - Integrated Development Environment for STM32 - STMicroelectronics. [on-
line] https://www.st.com/en/development-tools/stm32cubeide.html.
Accessed: 2024-05-19.

[38] Git. [online] https://git-scm.com/. Accessed: 2024-05-22.

[39] STMicroelectronics. RM0440: STM32G4 series advanced Arm®-based 32-bit MCUs. [online]
https://www.st.com/resource/en/reference_manual/rm0440-stm32
g4-series-advanced-armbased-32bit-mcus-stmicroelectronics.pdf,
2024. Accessed: 2024-05-21.

46

https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simscape.html
https://www.mathworks.com/products/simscape.html
https://www.maxongroup.com/medias/sys_master/root/8882557943838/EN-21-276.pdf
https://www.maxongroup.com/medias/sys_master/root/8882557943838/EN-21-276.pdf
https://www.st.com/resource/en/user_manual/um2850-getting-started-with-the-evspin32g4-evspin32g4nh-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/um2850-getting-started-with-the-evspin32g4-evspin32g4nh-stmicroelectronics.pdf
https://www.maxongroup.com/medias/sys_master/root/8883962478622/EN-21-466-467.pdf
https://www.maxongroup.com/medias/sys_master/root/8883962478622/EN-21-466-467.pdf
https://www.st.com/resource/en/datasheet/stspin32g4.pdf
https://www.st.com/resource/en/datasheet/stspin32g4.pdf
https://www.st.com/resource/en/user_manual/um2570-description-of-stm32g4-hal-and-lowlayer-drivers--stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/um2570-description-of-stm32g4-hal-and-lowlayer-drivers--stmicroelectronics.pdf
https://arm-software.github.io/CMSIS-DSP/latest/index.html
https://arm-software.github.io/CMSIS-DSP/latest/index.html
https://www.st.com/resource/en/user_manual/um1718-stm32cubemx-for-stm32-configuration-and-initialization-c-code-generation-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/um1718-stm32cubemx-for-stm32-configuration-and-initialization-c-code-generation-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/um1718-stm32cubemx-for-stm32-configuration-and-initialization-c-code-generation-stmicroelectronics.pdf
https://www.st.com/en/development-tools/stm32cubeide.html
https://git-scm.com/
https://www.st.com/resource/en/reference_manual/rm0440-stm32g4-series-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/rm0440-stm32g4-series-advanced-armbased-32bit-mcus-stmicroelectronics.pdf

	1 Introduction
	2 Mathematical model
	Initial description
	Model in abc reference frame

	Clarke transformation
	Model in reference frame

	Park transformation
	Model in dq reference frame

	3 Sensorless FOC
	Overview
	Signal injection methods
	Methods using the fundamental components

	MRAS

	4 Simulation
	Environment
	PMSM model
	Control
	Simulation profile
	Simulation results

	5 Implementation
	Hardware
	Board modifications

	Software and libraries
	Peripheral configuration
	Protections
	Current sensing
	Software architecture
	Main control loop
	MRAS observer
	Startup procedure
	Code structure
	Configuration and usage

	6 Results
	Experimental setup
	dq current PI controller
	No load start
	Run under load
	Startup with erroneous parameters

	7 Conclusion
	 References

