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Abstract

Automated testing processes are integral to modern project workflows. In this thesis,
we present the design and implementation of a mobile testing robot suitable for
various scenarios, with an emphasis on use in the automotive industry. The robot is
based on the Jackal platform and uses the Robot Operating System (ROS) for inter-
node communication and integration of packages. A graphical application, developed
using C# and Avalonia UI, facilitates remote operation of the robot via Wi-Fi,
employing Protocol Buffers (protobuf) for efficient data exchange. Controller Area
Network (CAN) is utilised to monitor the system under test. Finally, we outline
several methods used to verify the correctness of the developed system and conduct
real-world experiments to assess its performance and reliability.

Keywords Robot, Test Automation, Robot Operating System, Controller Area
Network, .NET
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Abstrakt

Automatické testováńı proces̊u je ned́ılnou součást́ı práce na moderńıch projek-
tech. V této práci představ́ıme design a implementaci mobilńıho testovaćıho robota
vhodného pro r̊uzné scénáře s d̊urazem na využit́ı v automobilovém pr̊umyslu. Robot
je vytvořen na platformě Jackal a využ́ıvá Robot Operating System (ROS) pro ko-
munikaci mezi nody a integraci baĺıčk̊u. Grafická aplikace vyvinutá v C# a Avalonia
UI zprostředkovává vzdálené ovládáńı robota přes Wi-Fi, využ́ıvaje Protocol Buffers
(protobuf) pro efektivńı výměnu dat. Controller Area Network (CAN) je využit pro
monitorováńı testovaného systému. Nakonec nast́ıńıme metody použité k ověřeńı
správnosti vyvinutého systému a provedeme reálné experimenty pro vyhodnoceńı
jeho výkonnosti a spolehlivosti.

Kĺıčová slova Robot, Automatizace Testováńı, Robot Operating System, Con-
troller Area Network, .NET
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Chapter 1

Introduction

A robot is an autonomous system that performs specific actions in the real world. A
testing robot is a particular use of a robot whose actions interact with another system, called
the System Under Test (SUT). The effect of the robot’s actions on the SUT is observed to
determine whether the SUT functions as intended. A mobile testing robot is further capable
of movement in the real world.

In this thesis, the testing robot will be a four-wheeled ground vehicle. Several peripherals
will be attached to the testing robot, consisting of motors and Light-Emitting Diodes (LEDs).
The motors allow the robot to interact with the SUT, while the LEDs signalise the current
state of the robot to the user (i.e., the human operator running the test). Additionally, a
computer running specialised software will be directly connected to the SUT to observe the
changes induced by the robot’s actions. Based on these observations, the computer will use a
wireless connection to guide the robot through the test.

The testing robot’s motion-planning capabilities do not need to be overly complex, as
the area in which the robot moves should be free of obstacles; however, since a person could
enter the testing area, the robot is expected to stop to prevent a collision if a person or another
object is detected in its path. For details about more advanced approaches to motion- and
trajectory-planning, see [1], [2], [3], [4], and [5].

The general idea of the test scenario discussed in this thesis will consist of a static object
positioned in the centre of a two-dimensional coordinate system and another object carried
by the testing robot. The SUT will be the combination of the static object, the object carried
by the robot, and the interaction between these two objects, where the interaction can be the
result of an autonomous operation of the static object and the carried object, or triggered
by the robot’s motors’ actions on the carried object. The testing robot approaches the static
object from various positions to determine how the distance and angle between the static
object and the carried object influence the interaction.

The test result will be a list of positions at which the interaction has been deemed to
function correctly and reliably. The data obtained from the test can be used by the manufac-
turer of the SUT to discover system flaws, improve its performance, and verify the correctness
of the system before shipping to customers.

To illustrate the use of the proposed testing robot, this thesis will focus on a specific
application of the testing robot to test the communication between a remote car key and
its receiver located inside the car. Chapter 2 presents the application in more detail. Other
possible applications, which will not be discussed further in this thesis, include

• testing object recognition for a fixed object from different angles and distances,
• testing sound distribution around a speaker, or

CTU in Prague Department of Control Engineering



2/56 1.1. DEFINITIONS

• testing wireless communication over specific technologies, e.g. Bluetooth1 or Wi-Fi2.

1.1 Definitions

Several terms are defined and used in this thesis to avoid ambiguity. The complete list
of such terms is in Table 1.1. The terms are always written with the first letter capitalised.

Robot the presented mobile testing robot
Remote key the remote car key that is a part of the SUT
Receiver the receiver (or multiple receivers) inside the car that is a part of the SUT
Operating software the software running on the computer directly connected to the SUT
Operator the human operator running the test
Car the car that is a part of the SUT

Table 1.1: List of terms defined and used in this thesis

1https://en.wikipedia.org/wiki/Bluetooth
2https://en.wikipedia.org/wiki/IEEE 802.11

CTU in Prague Department of Control Engineering
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Chapter 2

Application

The application discussed in this thesis serves as an example of possible real-world use
of the mobile testing robot and the Operating software. The general idea of the application
is to find the limit range at which communication between the Car and the Remote key
functions reliably. The Remote key is tested from various positions around the Car as the
communication might be affected by the angle between the transmitter and the receiver and
by obstacles in the path of the sent signals, most notably by the metal body of the Car itself.

Nowadays, apart from a remote key that opens a car when a button is pressed, some
cars also support keys that do not require a button press from the car’s user to unlock the
car; see [6]. Instead, the car is unlocked automatically when the remote key is located in the
car’s vicinity, and then the car locks itself once the remote key is removed.

To showcase how the Robot and the Operating software can be used in different sce-
narios, the designed system supports both types of keys. The scenario in which the Car’s
locks react automatically to the presence of the Remote key is called the Autolock scenario
in this thesis and is described in Section 2.1. The second test scenario in which the Remote
key requires a button press to unlock the Car is called the Key press scenario and is further
detailed in Section 2.2.

As mentioned in Chapter 1, a test scenario consists of a static object positioned in
the centre of the coordinate system and another object that the Robot carries. In both test
scenarios, we assume the static object to be the Car and the carried object to be the Remote
key. The Robot moves around the Car and attempts to lock/unlock the Car. At the same
time, the Operating software expects to receive a signal from the Receiver indicating whether
the lock/unlock has been successful. The lock/unlock attempt is repeated at various positions
so that the Operator can better understand the limits in the communication between the
Remote key and the Receiver.

2.1 Autolock scenario

The Autolock scenario tests the Car’s ability to unlock and lock itself when the Remote
key enters and leaves a small area around it. The test output is a set of points approximating
the area’s border.

It might seem sufficient to measure only the points at which the Car either locks or
unlocks itself; however, generally, the locking/unlocking mechanism could be composed of
two separate areas. When the Remote key enters the first area closer to the Car, the Car is
unlocked. Then, once the Remote key leaves the second area, further from the Car, the Car
becomes locked.

CTU in Prague Department of Control Engineering
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If only one area was to be used, the behaviour when the Remote key was located at
the area’s border would be indeterminate and might confuse the Car’s user. For this reason,
using the two areas mentioned above may be preferable as it improves the system’s stability.

Therefore, the Autolock test scenario measures both the points that lock and unlock
the Car. Note that if the Car internally only used one area, measuring the two separate areas
would not devalue the final results, as it is a more general approach.

In the Autolock test scenario, the unlock/lock points are measured with the Robot
moving to/from each side and corner of the Car. For each side of the Car, the axis orthogonal
to the side’s centre is tested, as well as every axis that is parallel to the centre axis and
is located k · dmes from the centre axis, for each k ∈ N while the axis does not exceed the
boundaries of the Car, and for a dmes ∈ R+, which is a parameter of the test.

The Robot starts a measurement on an axis at the maximum distance dmax. The Robot
then approaches the Car and waits for the Car to unlock. Once the Car unlocks, the measure-
ment of the unlock area is marked as successful, and the distance of the Robot from the Car
is saved in diunl, where i is the number of the axis. Thus, the point at which the Car unlocked
is identified by the position of the i-th axis and the corresponding measured distance diunl. If
the Car fails to unlock before the Robot reaches the minimum distance from the Car dmin,
the measurement of the unlock area on the i-th axis is marked as unsuccessful.

Once the measurement of the unlock area on the i-th axis is complete, either successfully
or unsuccessfully, the Robot retreats from the Car and waits for the Car to lock. Once the Car
locks, the measurement of the lock area is marked as successful, and the distance of the Robot
from the Car is saved in diloc. Similarly to the previous measurement, the point at which the
Car locked is thus identified by the position of the i-th axis and the measured distance diloc.
If the Car fails to lock before the Robot reaches the maximum distance from the Car dmax,
the measurement of the lock area on the i-th axis is marked as unsuccessful.

When both measurements on the i-th axis are complete, the Robot moves to the next
axis. A visualisation of the described flow is in Fig. 2.1.

The values dmin ∈ R+
0 , dmax ∈ (dmin,+∞), and dmes ∈ (0,+∞) are the parameters of

the Autolock test scenario.

2.2 Key press scenario

In the Key press test scenario, the Robot presses a button on the Remote key while
the Operating software expects the Receiver to receive and process the signal. The Robot
repeats the button press at various angles around the Car to measure how the angle affects
the maximum distance at which the communication between the Remote key and the Receiver
operates as intended.

The two-dimensional coordinate system in which the test is conducted is a polar co-
ordinate system. The reference point (i.e., the origin) is identical to the Car’s centre. The
reference direction matches the front of the Car, and the rotation φ increases in clockwise
orientation. The coordinate system is depicted in Fig. 2.2.

The Robot starts the test at an angle φ0 = 0 and a predetermined distance dmax, which
should be beyond the expected range of the Remote key. The Robot then presses a button
on the Remote key. If the Receiver does not register the button press, the communication
between the Remote key and the Receiver is considered unreliable, and the Robot approaches

CTU in Prague Department of Control Engineering
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(a) Tested sides and corners of the Car.

dmin

dmes

dmax

(b) The Robot moves toward the Car.

d
i

unl

dmax

(c) The Robot retreats from the Car.

d
i

loc

dmax

(d) The Robot moves to the next axis.

Figure 2.1: A visual description of the Autolock test scenario. In Fig. 2.1a, the tested sides
(brown) and corners (magenta) of the Car are visualised. Fig. 2.1b shows a detailed view
of the axes on the right side of the Car. The centre axis is included in the test, as well as
all axes distanced k · dmes from the centre axis, for all k ∈ N while the axes are within the
boundaries of the Car. The test does not include the top- and bottom-most dashed axes,
as they exceed the Car’s boundaries. The Robot starts the measurement on an axis at the
maximum distance dmax from the Car. Then, the Robot approaches the Car until either the
Car unlocks or the minimum distance dmin is reached. Fig. 2.1c visualises a situation in which
the Car had unlocked when the Robot (and thus, the Remote key) was distanced diunl from
the Car, where diunl is the measured distance of the unlock area from the Car on the i-th axis.
The robot then began to retreat from the car until the car locked or the maximum distance
dmax was reached. Fig. 2.1d shows that the Car had successfully locked when the Robot was
distanced diloc from the Car, where diloc is the measured distance of the lock area from the Car
on the i-th axis. The Robot then moved to the next axis at the maximum distance dmax.

CTU in Prague Department of Control Engineering
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0

π

2

π

3π

2

ϕ

Figure 2.2: Depiction of the coordinate system used in the Key press test scenario. The Car
is positioned in the centre of the coordinate system, with the front of the Car coloured red
and the back of the Car blue. The Robot carries the Remote key, shown in green, and the
Robot’s front side, in orange, is rotated toward the Car. The angle φ is depicted in magenta.

the Receiver by dapp. When a button press has been successfully registered, or when a button
press at the minimum distance dmin has not been successfully registered, the Robot retreats
to the predetermined distance dmax at the next angle φt+1 = φt +φoff , as shown in Fig. 2.3.

The Robot continues to perform the test while the condition φt < 2π is satisfied, i.e.,
until the Robot has circled the Car. Once the condition fails, the test is complete. Therefore,
the test ends after the Robot tests the SUT at ⌈ 2π

φoff
⌉ different angles.

The values dmin ∈ R+
0 , dmax ∈ [dmin,+∞), dapp ∈ (0,+∞), and φoff ∈ (0, 2π] are the

parameters of the Key press test scenario.

CTU in Prague Department of Control Engineering
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0

π

2

dmax

ϕt

(a) Robot at maximum distance at angle φt.

0

π

2

dapp

ϕt

(b) Robot approaches by dapp at angle φt.

0

π
2

dmax

ϕt
ϕoff

ϕt+1 = ϕt + ϕoff

(c) Robot at maximum distance at next angle φt+1.

Figure 2.3: A depiction of the flow of the Key press test scenario. In Fig. 2.3a, the Robot
is located at the maximum distance dmax at angle φt. After an unsuccessful attempt to
lock/unlock the Car, the Robot approaches the Car by dapp at the same angle φt, as shown
in Fig. 2.3b. In Fig. 2.3c, after the attempt to lock/unlock the Car has been successful, the
Robot retreats to the maximum distance dmax at the next angle φt+1.
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Chapter 3

Design

In this chapter, the general design of the proposed solution is discussed. Section 3.1
presents the basic components from which test scenarios can be composed. Section 3.2 dis-
cusses the communication between the Operating software and the Robot. Section 3.3 presents
the software and hardware architecture. Finally, the results expected to be retrieved from the
test are described in Section 3.4.

3.1 Basic actions

The implementation aims to provide a general testing framework that allows for more
possible test scenarios than the two described in this thesis. However, the solution is also
intended to be easy to use by its users, i.e., the Operator. These two paradigms often contradict
each other; in a general solution, the Operator may be required to configure the position of
each point the Robot should pass, the velocities the Robot should have at different points,
and possibly much more, which could cause several problems. Firstly, the test setup could
take the Operator longer than if the Operator performed the test without any automation.
Secondly, the Operator could get overwhelmed or confused by the configuration, resulting in
an incorrect configuration and, thus, unreliable test results. Lastly, a more qualified Operator
could be needed to set up, monitor, and evaluate the test, resulting in additional costs. All of
these arguments go against the purposes of test automation, which should lead to faster, more
reliable, easily reproducible, and less expensive tests that require fewer human resources.

We designed the solution to provide basic actions/commands that a software developer
uses to create a flow suitable for a specific test scenario. The Operator then needs to fill in
parameters created by the developer to run the test. The Robot is mostly agnostic on the
specific test scenario and only executes commands sent from the Operating software; thus,
the software developer mainly needs to alter the Operating software. The only exception is
the localisation of the Robot. As is the case for both the scenarios discussed in this thesis,
the coordinates communicated between the Operating software and the Robot are relative to
the position of the Car. Therefore, the Robot needs to recognise the Car on the map of its
surroundings, whereas, in other scenarios, recognition of a different object might be necessary.

The required basic actions are

• moving the Robot to a specific position, called waypoint,
• setting the Robot’s speed,
• setting the Robot’s direction of movement,
• stopping the Robot’s movement,
• moving the Remote key to a specific height,
• and pressing buttons on the Remote key.

CTU in Prague Department of Control Engineering



10/56 3.2. OPERATING SOFTWARE TO ROBOT COMMUNICATION

A software developer can create and adjust the flow to suit their needs by ordering, repeating,
and combining these basic components.

The Robot also informs the Operating software about its current state, i.e., its position,
heading, speed, battery level, height of the Remote key, etc. The Operating software can utilise
this information in the test’s flow.

3.2 Operating software to Robot communication

Communication between the Operating software and the Robot is carried over Wi-Fi,
which is a live standard comprising several wireless communication protocols; see [7] and [8].
In today’s world, Wi-Fi is widely used by companies and individuals, making its fundamental
usage and capabilities well known to the general public. Thus, it is expected that the Operator
or other personnel responsible for the test can set up a Wi-Fi network. Additionally, when
using Wi-Fi, the range of communication can be virtually limitless, as the Wi-Fi network’s
coverage can be expanded using range extenders, additional access points, routers, or other
devices.

However, in practical terms, the area covered by the Wi-Fi network will always be
finite; moreover, the coverage may change in time, e.g., due to noise or access point failures.
Therefore, possible communication outages must be taken into account. A simple way to
mitigate damage caused by errors in communication is to send the communicated messages
repeatedly. To allow for repeated sending, the messages should be idempotent. In our case,
this is achieved by sending commands to the Robot containing information about the desired
final state of the Robot rather than the change in the Robot’s state; thus, if a message is
received multiple times by the Robot, the outcome remains the same. The same principle also
applies to messages sent from the Robot to the Operating software.

3.3 Architecture

Both the Operating software and the Robot require an interface to communicate with
one another. The Operating software handles that in the Robot (communication) interface,
which provides an Application Programming Interface (API) for other software components
to communicate with the Robot. The main component that requires services provided by the
Robot interface is the Robot controller, which monitors the state of the Robot and sends
commands to the Robot according to the currently running test scenario.

The test scenario is selected and parameterised by the Operator in the Operating soft-
ware’s Graphical User Interface (GUI). Moreover, the GUI visualises the progress of the test
and informs the Operator about the final results.

In the test scenarios described in this thesis, the Operating software also requires data
from the Receiver to register changes in the Car’s locks. Traditionally, communication in the
automotive industry is carried over Controller Area Network (CAN) bus ([9], [10]). Therefore,
the Operating software contains the Car interface, responsible for communication with the
Car over the CAN bus.

On the Robot’s side, the component responsible for communication with the Operating
software is called the Dispatcher node, as it mainly dispatches actions to other components
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Figure 3.1: Overview of the proposed architecture.

based on commands received from the Operating software. The Dispatcher node is also re-
sponsible for transmitting information about the state of the Robot to the Operating software.

The Robot’s Peripherals control component handles communication with the peripherals
connected to the Robot, comprising the lifting mechanism, the button press mechanism, and
several LEDs.

Other components present on the Robot include

• the Drive control, which controls the Robot’s wheels,
• Motion planning, which creates a trajectory that the Robot follows to get to the target
waypoint,

• Localisation and mapping, which is used to create a map of the Robot’s surroundings
and find the position of the Robot within this map, allowing navigation and motion
planning,

• and Controller input processing, which handles signals from a manual controller that
the Operator can use to move the Robot, e.g., to position the Robot before the test or
to avoid/prevent a collision.

A high-level visualisation of the proposed architecture can be seen in Fig. 3.1. Detailed views
of the Operating software and the Robot are in Fig. 3.2 and Fig. 3.3, respectively. Of the
components shown in Fig. 3.2 and Fig. 3.3, this thesis is focused mainly on the Operating
software as a whole and the Robot’s Dispatcher node.
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Figure 3.2: A detailed view of the proposed architecture for the Operating software. The labels
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Figure 3.3: A detailed view of the proposed architecture for the Robot. The labels on some of
the connections indicate their primary traffic.
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3.4 Output

The data obtained during the test are intended to be used by the Operator to verify the
SUT. Oftentimes, whether a test has been successful is apparent from a simple visualisation of
the test results. It is, therefore, useful for the Operator to be provided with such visualisation
by the Operating software.

However, some cases require further analysis, which is impractical to implement directly
in the Operating software, as the specifics of the analysis could differ widely between each test
run. For this reason, the Operator should also be provided with a detailed output containing
the values measured during the test. Such output should be self-explanatory and easy to parse
so the Operator can use other tools and software to analyse the test results.
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Chapter 4

Implementation

This chapter focuses on the implementation of the proposed system. As designed in
Chapter 3, the implementation is divided into two parts. A description of the implementation
of the Operating software is in Section 4.1. Section 4.2 follows with the implementation of the
Robot’s hardware and software.

4.1 Operating software

The Operating software runs on the computer directly connected to the SUT, in our
case, the Car’s Receiver. Its purpose is to guide the Operator and the Robot through the test
scenario. For that, the Operating software provides a GUI where the Operator connects the
Operating software to the Robot, configures the test parameters, observes the test progress,
and gathers the test results. An introduction of the C# programming language used to develop
the Operating software is in Section 4.1.1, with the description of the Operating software
itself following in Section 4.1.2. In addition, the Operating software registers whenever the
Receiver receives a signal and uses the information to navigate the Robot, further detailed
in Section 4.1.3. Further, communication between the Operating software and the Robot is
discussed in Section 4.1.4. Lastly, communication of the Operating software with the Car is
in Section 4.1.5.

4.1.1 The C# programming language

The Operating software is written in the C# programming language1 for the .NET
platform2.

C# is a high-level, general-purpose, object-oriented programming language similar to
Java3. Code written in C# is compiled into the Common Intermediate Language (CIL). The
compiled code then runs on a virtual machine called the Common Language Runtime (CLR),
which just-in-time compiles the code in the CIL into machine instructions and executes them
on the Central Processing Unit (CPU). The CLR also provides services, such as garbage
collection, which make development easier for a software developer.

.NET is an implementation of the Common Language Infrastructure (CLI), which com-
prises the CIL and the CLR. Operating systems supported by .NET4 include Windows, ma-
cOS, several Linux distributions (e.g., Debian, Ubuntu, Fedora, openSUSE, and others), and

1https://learn.microsoft.com/en-us/dotnet/csharp/
2https://dotnet.microsoft.com/en-us/
3https://www.java.com/en/
4https://github.com/dotnet/core/blob/main/release-notes/7.0/supported-os.md
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popular mobile operating systems Android and iOS. In addition to C#, other languages sup-
ported by .NET include F#, a general-purpose functional programming language, C++/CLI,
a variant of the C++ programming language modified for the CLI, and Visual Basic, a pro-
gramming language primarily used for the development of desktop applications targeting the
Windows operating system. More information about C# and .NET can be found in [11].

Both C# and .NET have been developed by Microsoft and are currently open-source.
The versions used to develop the Operating software are C# 11 and .NET 7, the most recent
versions at the beginning of the development.

4.1.2 Graphical user interface

The GUI allows the Operator to connect the Operating software to the Robot, set
the test parameters, follow the test progress, and collect the test results. To describe the
implementation of the GUI, we first provide an introduction to User Interface (UI) frameworks
that can be used with .NET in Section 4.1.2.1. Then, the connection to the Robot is described
in Section 4.1.2.2. Lastly, the main window is described in Section 4.1.2.3.

4.1.2.1 UI frameworks for .NET

Nowadays, .NET desktop applications are often built using any of Windows Forms
(WinForms), Windows Presentation Foundation (WPF), Multi-platform App UI (MAUI), or
Avalonia UI5 frameworks.

Of these, WinForms is the oldest technology. The interface layout is constructed mainly
by drag-and-dropping predefined controls and configuring their appearance. WinForms is cur-
rently in maintenance mode, where bug fixes are provided, but new features are not be-
ing developed. As the name suggests, Windows is the only operating system supported by
WinForms.

WPF has been the most commonly used UI framework for several years, though its
development has also stalled recently. Unlike WinForms, Extensible Application Markup Lan-
guage (XAML) markup is used to define the interface layout, making it easier to version and
maintain for larger projects. As with WinForms, WPF only supports Windows.

MAUI is the most recent of the mentioned UI frameworks, having been first released
in May 2022. Similarly to WPF, MAUI uses XAML to define the user interface. Having been
developed from Xamarin.Forms6, MAUI supports mobile operating systems iOS and Android
as well as desktop operating systems macOS and Windows7.

Avalonia UI is a UI framework that takes great inspiration from WPF but is still
under intense development and supports cross-platform applications. To date, the operating
systems supported by Avalonia UI8 include Windows, macOS, and several Linux distributions
(Debian, Ubuntu, Fedora, and possibly others9), as well as mobile operating systems iOS and
Android. Web applications are also supported using WebAssembly. Of all the mentioned UI
frameworks, Avalonia UI is the only one not directly developed by Microsoft; instead, it is a
community-driven project developed by individual developers and contributors.

5https://avaloniaui.net/
6https://dotnet.microsoft.com/en-us/apps/xamarin/xamarin-forms
7https://learn.microsoft.com/en-us/dotnet/maui/supported-platforms?view=net-maui-8.0
8https://avaloniaui.net/Platforms
9https://docs.avaloniaui.net/docs/0.10.x/faq#what-linux-distros-are-supported
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For the implementation of the GUI for the Operating software, we decided to use Aval-
onia UI, version 11, as it provides support for all major desktop operating systems and, due
to its similarity to the popular WPF UI framework, an excellent documentation.

4.1.2.2 Connection window

The Operating software connects to the Robot via Transmission Control Protocol
(TCP), which provides a reliable bidirectional connection and ensures that messages are re-
ceived in the correct order and without errors. On the contrary, these features of TCP also
cause some problems in implementation. As described in Chapter 3, the Robot periodically
sends status information to the Operating software, containing the Robot’s position, heading,
battery level, and more. Because the communication is wireless and over relatively long dis-
tances, the TCP connection can break frequently, causing timeout errors for both the Robot
and the Operating software. To seamlessly address the issue without the need to implement
additional error handling and connection re-establishment, we decided to use the open-source
messaging library ZeroMQ10, whose publisher-subscriber communication model solved the
problem. More information about the ZeroMQ library can be found in [12]. However, to en-
able the publisher-subscriber pattern, the ZeroMQ library requires two TCP ports to facilitate
communication between the Robot and the Operating software.

When the Operating software is launched, a window is shown where the Operator is
expected to input the IP address of the Robot and the Operating software’s subscriber and
publisher ports. The connection window is shown in Fig. 4.1.

To briefly introduce how UI is defined using Avalonia UI, the Avalonia XAML (AXAML)
code for the Connection window is presented in Listing 4.1. The general structure of the
markup should be familiar to anyone who has worked with XAML or Extensible Markup
Language (XML).

The first eight lines define a new window, specifying the general properties of the win-
dow. Line 5 specifies the width and height of the window, as well as whether the window is
resizable, meaning whether the user can change the width and height of the window. Line 6
sets the name of the generated underlying class, using which the window is accessible from
both AXAML and C# files. Line 7 specifies the startup location of the window, meaning
where the window should initially render on the user’s screen. Line 8 sets the window’s title,
that is, the text at the very top of the window.

Lines 9 through 11 import a style (i.e., visual definitions) from another file. The imported
style defines the appearance of the button.

Line 13 contains a definition of a grid. A grid is a collection of visual elements in which
each element is located in a particular row and column of the grid, defined by the Grid.Row
and Grid.Column attributes on the contained elements. The values of the attributes Grid.Row
and Grid.Column are indexed from zero. If the attribute is omitted, an implicit value of zero is
assumed. The grid defined in line 13 has one (implicit) column and six rows, as written in the
RowDefinitions attribute of the grid. Each value in the RowDefinitions attribute specifies a
row’s height. The value Auto means that the height is inferred from the height of the elements
contained in the row, and the value * references the remaining height of the grid, i.e., the
total height of the grid minus the sum of the height of all other rows.

10https://zeromq.org/
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Lines 14 to 27 define the label and the input text box for the IP address, the subscriber
port, and the publisher port, respectively. Each element is defined as a grid with three columns
and one row.

The label in the first column displays the text specified in the Content attribute. The
attribute Target takes the name of an element that should become focused when the Operator
clicks on the label.

The second column is purposely omitted. As the second column of the grid is defined
with a width set to *, it will occupy all the remaining space, resulting in the first column
being aligned to the left side of the row and the third column to the right side of the row,
leaving space in the middle.

The text box in the third column creates an input element in which the Operator can
write the desired value. The attribute Name specifies the name of the element, which is used
by the label in the first column to set focus on the text box when clicked.

The Text attribute references the text in the text box. The shown value of the Text
attribute specifies that the text in the text box is bound to a specific property in the view
model.Mode=TwoWay means that changes written to the text box by the Operator are stored
in the bound property and, conversely, that changes to the bound property are written in the
text box. The reason for the second way, from the bound property to the text box, is that
after the connection to the Robot has been successfully established, the Operating software
saves the IP address and TCP ports to a file, from where the values are retrieved the next
time the Operating software is launched. The values are then used to pre-fill the text boxes
in the Connection window.

The text blocks in lines 29 and 30 define the validation messages shown when the attempt
to connect to the robot fails. The messages’ IsVisible attributes are bound to properties on
the view model, making the messages visible only when needed. As the modes of the bindings
of the IsVisible attributes are unspecified, an implicit Mode=OneWay is assumed, causing
the element to react to changes in the view model, but not the other way around.

The first message is shown when the values entered by the Operator are not in a valid
format, e.g., when the TCP ports are outside the range 0− 65535.

The second message is shown when an attempt to connect with the Robot fails. As
described earlier in this thesis, the ZeroMQ library is used to communicate between the
Operating software and the Robot, making it easier to handle errors when the communication
is broken. However, such behaviour of the ZeroMQ library is undesirable when establishing the
connection because the Operator could have specified incorrect connection parameters, which
the library would hide from the Operator, making it difficult to spot errors. Therefore, before
establishing the connection using ZeroMQ, an attempt is made to establish the connection
over standard TCP, resulting in an error if the Robot is unavailable. The error is then handled
by the Connection window, and the second error message is shown to the Operator. The code
to establish the connection is in Listing 4.2.

Line 32 in the Connection window ’s code in Listing 4.1 defines the Connect button,
whose Command attribute specifies the method called when the button is clicked.

Although the top-level grid of the Connection window has been defined as having six
rows, only five have been specified, with the fourth row missing. Similarly to the design of the
columns of the inner grid described earlier, the fourth row with a height set to * creates a
space between the input text boxes and the Connect button with the validation messages.
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1 <Window xmlns="https://github.com/avaloniaui"
2 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
3 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
4 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
5 Width="300" Height="180" CanResize="False"
6 x:Class="Prazak.Diploma.Gui.Views.ConnectionWindow"
7 WindowStartupLocation="CenterScreen"
8 Title="Connection">
9 <Window.Styles>

10 <StyleInclude Source="/Views/Styles/CommonStyles.axaml"/>
11 </Window.Styles>
12
13 <Grid RowDefinitions="Auto,Auto, Auto,*, Auto,Auto" Margin="10">
14 <Grid ColumnDefinitions="Auto,*,Auto" Margin="0 0 0 4">
15 <Label Content="IP address:" Target="IpAddressTextBox"/>
16 <TextBox Name="IpAddressTextBox" Grid.Column="2" Width="150" Text="{Binding IpAddress,

Mode=TwoWay}"/>
17 </Grid>
18
19 <Grid Grid.Row="1" ColumnDefinitions="Auto,*,Auto" Margin="0 0 0 4">
20 <Label Content="Subscriber port:" Target="SubscriberPortTextBox"/>
21 <TextBox Name="SubscriberPortTextBox" Grid.Column="2" Width="150" Text="{Binding

SubscriberPort, Mode=TwoWay}"/>
22 </Grid>
23
24 <Grid Grid.Row="2" ColumnDefinitions="Auto,*,Auto">
25 <Label Content="Publisher port:" Target="PublisherPortTextBox"/>
26 <TextBox Name="PublisherPortTextBox" Grid.Column="2" Width="150" Text="{Binding

PublisherPort, Mode=TwoWay}"/>
27 </Grid>
28
29 <TextBlock Grid.Row="4" Text="The IP address or port provided is invalid." Margin="0 0 0 2"

TextAlignment="Left" Foreground="Red" IsVisible="{Binding ShowFormatInvalidMessage}"/>
30 <TextBlock Grid.Row="4" Text="Connection failed, check the parameters." Margin="0 0 0 2"

TextAlignment="Left" Foreground="Red" IsVisible="{Binding
ShowConnectionFailedMessage}"/>

31
32 <Button Name="ConnectButton" Command="{Binding ConnectButtonClickCommand}" Width="280"

Grid.Row="5" HorizontalAlignment="Center" Content="Connect" Classes="BigButton"/>
33 </Grid>
34 </Window>

Listing 4.1: AXAML code defining the Connection window.
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Figure 4.1: A screenshot of the connection window of the Operating software. The Subscriber
and Publisher ports are named from the Operating software’s point of view, whereas the
Internet Protocol (IP) address is of the Robot.

1 public void Connect(string ipAddress, int subscriberPort, int publisherPort)
2 {
3 using (var tcpClient = new TcpClient())
4 {
5 var task = Task.Run(() => tcpClient.Connect(IPAddress.Parse(ipAddress),

subscriberPort));
6 if (!task.Wait(_configuration.ConnectionAttemptTimeout))
7 throw new TimeoutException($"Connection attempt to {ipAddress}:{subscriberPort}

timed out after {_configuration.ConnectionAttemptTimeout} ms.");
8 }
9

10 using (var tcpClient = new TcpClient())
11 {
12 var task = Task.Run(() => tcpClient.Connect(IPAddress.Parse(ipAddress),

publisherPort));
13 if (!task.Wait(_configuration.ConnectionAttemptTimeout))
14 throw new TimeoutException($"Connection attempt to {ipAddress}:{publisherPort}

timed out after {_configuration.ConnectionAttemptTimeout} ms.");
15 }
16
17 _zmqSubscriber.Connect($"tcp://{ipAddress}:{subscriberPort}");
18 _zmqSubscriber.SubscribeToAnyTopic();
19
20 _zmqPublisher.Connect($"tcp://{ipAddress}:{publisherPort}");
21
22 _ = HandleReceivedMessages();
23
24 IsConnected = true;
25 }

Listing 4.2: C# code handling the connection attempt to the Robot.
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1 <Window xmlns="https://github.com/avaloniaui"
2 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
3 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
4 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
5 xmlns:controls="using:Prazak.Diploma.Gui.Views"
6 MinWidth="900" MinHeight="550" Width="900" Height="550"
7 x:Class="Prazak.Diploma.Gui.Views.MainWindow"
8 Title="Application">
9 <Grid RowDefinitions="Auto, *">

10 <controls:HeaderBar BorderBrush="Black" BorderThickness="0 0 0 2"/>
11 <controls:MainScreen Grid.Row="1"/>
12 </Grid>
13 </Window>

Listing 4.3: AXAML code defining the Main window.

4.1.2.3 Main window

Once the connection to the robot has been established, the Main window is shown. The
Main window consists of a Header bar at the top and the Main screen filling the rest of the
window, as can be seen in Listing 4.3. The fifth line in the Listing 4.3 allows using elements
from the namespace Prazak.Diploma.Gui.Views using the prefix controls, as shown in lines 10
and 11.

Header bar

The Header bar, see Fig. 4.2, visualises the progress through the test in terms of indi-
vidual screens, which follow in the sequence of the Welcome screen, the Measurement type
selection screen, the Measurement screen, and the Protocol screen.

Furthermore, a battery icon showing the status of the Robot’s battery is present, as
well as a button to open the settings window, described later in the text.

Additionally, the header bar contains a warning triangle, which is only visible when a
notification is received from the Robot. Upon mouse hover, the triangle displays the message
received from the robot. A code snippet of the definition of the warning triangle is given in
Listing 4.4.

The style in lines 2 to 15 defines an animation played when the changed class is added
to the WarningSymbol element. The animation linearly increases the element’s scale from 1.0
to 1.2 over an interval of 200 ms, which should attract the Operator’s attention. The changed
class is added to the WarningSymbol element from the code-behind whenever a notification is
received from the Robot. The notification text is added to the ToolTips stack panel, in lines
18 to 21, making it visible when the Operator hovers with the mouse over the WarningSymbol
element.

The triangular shape of the element is achieved using the Path element, which accepts
a mini-language11 similar to Scalable Vector Graphics (SVG)12 in the Data attribute defining
its shape.

11https://learn.microsoft.com/en-us/dotnet/desktop/wpf/graphics-multimedia/path-markup-syntax
12https://developer.mozilla.org/en-US/docs/Web/SVG/Tutorial/Paths
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1 <UserControl.Styles>
2 <Style Selector="controls|WarningSymbol.changed">
3 <Style.Animations>
4 <Animation Duration="0:0:0.200">
5 <KeyFrame Cue="0%">
6 <Setter Property="ScaleTransform.ScaleX" Value="1"/>
7 <Setter Property="ScaleTransform.ScaleY" Value="1"/>
8 </KeyFrame>
9 <KeyFrame Cue="100%">

10 <Setter Property="ScaleTransform.ScaleX" Value="1.2"/>
11 <Setter Property="ScaleTransform.ScaleY" Value="1.2"/>
12 </KeyFrame>
13 </Animation>
14 </Style.Animations>
15 </Style>
16 </UserControl.Styles>
17 <Panel Background="Transparent" >
18 <ToolTip.Tip>
19 <StackPanel Name="ToolTips">
20 </StackPanel>
21 </ToolTip.Tip>
22 <Path Data="M 25 6 L 47 44 L 3 44 L 25 6"
23 Stroke="#CC0000" StrokeThickness="1"
24 StrokeLineCap="Round" StrokeJoin="Round"
25 Fill="#CC0000"/>
26 <TextBlock HorizontalAlignment="Center" VerticalAlignment="Center"
27 Margin="0 8 0 0" FontFamily="Helvetica"
28 Foreground="#E6E6E6" FontSize="22">
29 !
30 </TextBlock>
31 </Panel>

Listing 4.4: AXAML code snippet defining the warning triangle.

Figure 4.2: A screenshot of the Header bar.
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Figure 4.3: A screenshot of the Main window showing the Welcome screen.

The code for the Header bar is in Listing 4.5. The Classes attributes attached to the
HeaderItem elements create a logical group of elements with some common properties. On its
own, the attribute does not change the appearance of an element but can be selected by a
style selector, similarly to the Cascading Style Sheets (CSS) language13, which then specifies
a style for all elements within the class.

The syntax used for the Classes.Selected and Classes.Finished attributes specifies a
conditional class which binds to a Boolean variable. When the Boolean variable resolves to
true, the class (in our case, Selected or Finished) is added to the elements Classes attribute.
Otherwise, the class is absent in the Classes attribute, allowing for dynamic changes in an
element’s appearance.

Main screen

The Main screen of the Main window contains all the screens used throughout the test,
always showing only the currently active screen. A code snippet defining the Main screen is
provided in Listing 4.6.

Welcome screen

Initially, the Operating software shows the Welcome screen, in Fig. 4.3. The Welcome
screen contains three buttons, which the Operator can click to select the desired action.

13https://developer.mozilla.org/en-US/docs/Web/CSS

CTU in Prague Department of Control Engineering

https://developer.mozilla.org/en-US/docs/Web/CSS


24/56 4.1. OPERATING SOFTWARE

1 <UserControl xmlns="https://github.com/avaloniaui"
2 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
3 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
4 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
5 xmlns:controls="using:Prazak.Diploma.Gui.Views"
6 mc:Ignorable="d" d:DesignWidth="900" d:DesignHeight="50"
7 x:Class="Prazak.Diploma.Gui.Views.HeaderBar">
8 <UserControl.Styles>
9 <StyleInclude Source="/Views/Styles/HeaderStyles.axaml"/>

10 </UserControl.Styles>
11
12 <Grid ColumnDefinitions="Auto,*,Auto" Name="ProgressionGrid">
13 <StackPanel Orientation="Horizontal">
14 <controls:HeaderItemArrow Background="{DynamicResource DarkBlue}"/>
15
16 <controls:HeaderItem
17 Text="Welcome" Classes="Selected" ZIndex="-1"
18 Classes.Selected="{Binding WelcomeScreenSelected}" Classes.Finished="{Binding

WelcomeScreenFinished}"/>
19
20 <controls:HeaderItem
21 Text="Measurement type" ZIndex="-2"
22 Classes.Selected="{Binding MeasurementSelectionScreenSelected}"

Classes.Finished="{Binding MeasurementSelectionScreenFinished}"/>
23
24 <controls:HeaderItem Text="Measurement" Margin="-15 0 0 0" ZIndex="-3"
25 Classes.Selected="{Binding MeasurementScreenSelected}" Classes.Finished="{Binding

MeasurementScreenFinished}"/>
26
27 <controls:HeaderItem Text="Protocol" Margin="-15 0 0 0" ZIndex="-4"
28 Classes.Selected="{Binding ProtocolScreenSelected}"/>
29 </StackPanel>
30
31 <StackPanel Grid.Column="2" Orientation="Horizontal" Spacing="15" Margin="5 0">
32 <controls:WarningSymbol/>
33 <controls:BatteryIcon/>
34 <controls:SettingsButton/>
35 </StackPanel>
36 </Grid>
37 </UserControl>

Listing 4.5: AXAML code defining the Header bar.

1 <Grid>
2 <controls:WelcomeScreen IsVisible="{Binding WelcomeScreenSelected}"/>
3 <controls:MeasurementSettingsScreen IsVisible="{Binding SettingsScreenSelected}"/>
4 <controls:MeasurementScreen IsVisible="{Binding MeasurementScreenSelected}"/>
5 <controls:ProtocolScreen IsVisible="{Binding ProtocolScreenSelected}"/>
6 </Grid>

Listing 4.6: AXAML code snippet defining the Main screen.
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Figure 4.4: A screenshot of the Calibration window.

Clicking the New test button transitions the Operator to theMeasurement type selection
screen to choose the desired test scenario, that is, either the Autolock or theKey press scenario.
The Measurement type selection screen is discussed later in the text.

The Continue test button opens a file picker where the Operator can select a previously
saved JSON14 file. The Operating software reads the file to reconstruct a past state of the
Operating software so that the test saved in the file can be resumed. It contains information
about the parameters used to run the test, results measured during the test, and additional
values needed to recreate the internal state of the Operating software correctly. If a valid
file is selected and the state is restored successfully, the Operating software switches to the
Measurement screen, discussed later, where the Operator can continue the loaded test.

Calibration window

The Calibrate button opens the Calibration window in which the correct functioning
of the peripherals connected to the Robot can be verified. The Calibration window shows
the Operator the most up-to-date values the Operating software has received from the Robot
regarding the height of the lifting mechanism and the buttons pressed on the Remote key. The
button press strength, which determines the force used to press a button on the Remote key,
is also indicated. Additionally, the Operator can input values specifying the desired height of
the lifting mechanism, the buttons to be pressed on the Remote key, the force to be used to
press a button, and send the information from the Calibration window to the Robot to observe
if the Robot and the peripherals react correctly. A screenshot of the Calibration window is
available in Fig. 4.4.

Measurement type selection screen

The New button on the Welcome screen opens the Measurement type selection screen,
shown in Fig. 4.5. The Measurement type selection screen is visually similar to the Welcome
screen and offers the Operator the option to select the desired test scenario, either Autolock
or Key press. The general flow of both test scenarios from the Operator’s point of view is

14https://www.json.org/
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Figure 4.5: A screenshot of the Main window showing the Measurement type selection screen.

the same; however, each scenario requires different test parameters, is composed of different
commands sent to the Robot, and expects different outputs from the Receiver.

Measurement settings screen (Autolock scenario)

Clicking the Autolock button on the Measurement type selection screen shows the Mea-
surement settings screen specific for the Autolock test scenario, see Fig. 4.6. There, the Op-
erator sets the parameters of the test.

In the Autolock test scenario, the Robot carries the Remote key toward the Car until
the Car becomes unlocked, after which the Robot starts retreating from the Car until the Car
locks itself again. This measurement is performed with the Robot moving toward each corner
of the Car and toward each side of the Car.

The Robot starts each measurement at the Starting distance from the Car. Then, the
Robot moves by the Straightening distance toward the Car to allow for heading correction.
Afterwards, the Robot is commanded to move toward a position with the Minimum distance
from the Car. Once the Operating software registers that the Car has been unlocked, the Robot
is commanded to move away from the Car toward the position whose distance corresponds to
the Starting distance minus the Straightening distance. When the Car locks itself, the Robot
moves to the next axis, and the measurement is repeated.

The axes are calculated from the Measurements distance. The corners of the Car are
always included, as well as the centres of all sides (i.e., left, front, right, rear). Then, the axes
located k · Starting distance from the centre of each side are included, where k is a positive
integer that increases as long as the axis is located within the boundaries of the Car.
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Figure 4.6: A screenshot of theMain window showing theMeasurement settings screen specific
to the Autolock test scenario.

The Device height, in centimetres, specifies the height at which the Robot should carry
the Remote key. TheMaximum speed, in kilometres per hour, sets the maximum speed at which
the Robot is allowed to travel, which the Operator can use to adjust the driving properties
of the Robot for different environments, e.g., a lower speed might be desirable on an uneven
surface to prevent possible damage to the Robot’s hardware.

Measurement screen (Autolock scenario)

Pressing the Start button initiates the test, and the Measurement screen specific to the
Autolock scenario is displayed, as shown in Fig. 4.7. There, the Operator can see the current
position of the Robot relative to the Car, monitor the progress of the test, temporarily pause
the test, and save the test’s progress, to be loaded later using the Continue button on the
Welcome screen mentioned above. The progress of the test, displayed as a percentage, indicates
how many radials from the total number of radials have been completed.

Protocol screen (Autolock scenario)

When all radials have been completed, the Operating software transitions to the Protocol
screen, shown in Fig. 4.8. The Protocol screen allows the Operator to save the results as a
Comma-Separated Values (CSV) text file and a Portable Network Graphics (PNG) image.
An image generated from the Protocol screen can be seen in Fig. 4.9. The generated image is
almost identical to the Protocol screen since it reuses the same components but renders them
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Figure 4.7: A screenshot of the Main window showing the Measurement screen specific to the
Autolock test scenario.

to a bitmap rather than a screen, which is then saved to a file. The location of the generated
files is specified in the Settings window, which is described later in the text.

Measurement settings screen (Key press scenario)

On the Measurement type selection screen, in Fig. 4.5, the Key press button opens the
Measurement settings screen specific to the Key press test scenario, shown in Fig. 4.10. As
in the Autolock scenario, the Operator uses the Measurement settings screen to set the test
parameters.

The Key press test scenario is designed so that the Robot starts in front of the Car,
at the axis labelled 0°. The distance, in metres, at which the Robot starts the test is called
the Starting distance. Then, the Robot moves a few meters toward the Car to fix its heading.
This distance is called the Straightening distance. After that, the Robot is prepared to begin
the test. A button is pressed on the Remote key, and the result is read from the Receiver by
the Operating software.

On success, the Robot continues to the next radial by adding the Degree between radials
to the current angle between the Robot and the 0° radial and retreating to the Starting
distance.

If the attempt is unsuccessful, the Robot approaches the Car by the Approach distance
and presses the Remote key button again. This behaviour is repeated until either the attempt
is successfully registered by the Operating software (and thus, the Receiver) or the Minimum
distance is reached. In both cases, the Robot continues to the next radial, as described above.
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Figure 4.8: A screenshot of the Main window showing the Protocol screen specific to the
Autolock test scenario.

Figure 4.9: An image generated by the Operating software from the Protocol screen specific
to the Autolock scenario showing measurement results.
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Figure 4.10: A screenshot of the Main window showing the Measurement settings screen
specific to the Key press test scenario.

The parameter Device height, in centimetres, specifies the height at which the Robot
should hold the Remote key. The Maximum speed, in kilometres per hour, sets the maximum
speed at which the Robot is allowed to travel.

Measurement screen (Key press scenario)

Pressing the Start button initiates the test, and the Measurement screen specific to the
Key press scenario is displayed, as shown in Fig. 4.11. The controls available to the Operator
remain the same as in the Autolock test scenario with only minor visual adjustments, most
notably, showing the axis lines. The axis lines were not present in the Autolock scenario as
their position depends on the car’s dimensions, which may be adjusted by the Robot during
the test, possibly confusing the Operator.

Protocol screen (Key press scenario)

When the test is completed, the Operating software transitions to the Protocol screen,
shown in Fig. 4.12, where the final results of the test run can be viewed. Similarly to the
Autolock test scenario, the Save button allows the Operator to save the test results. The test
results are saved as a CSV text file and a PNG image. The location of the generated files is
specified in the Settings window. An image generated from the Protocol screen can be seen in
Fig. 4.13.

CTU in Prague Department of Control Engineering



4. IMPLEMENTATION 31/56

Figure 4.11: A screenshot of the Main window showing the Measurement screen specific to
the Key press test scenario.

Figure 4.12: A screenshot of the Main window showing the Protocol screen specific to the Key
press test scenario.
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Figure 4.13: An image generated by the Operating software from the Protocol screen specific
to the Key press scenario showing measurement results.

Settings window

The Settings window is opened by clicking the cogwheel icon in the Header bar. In
addition to the location used to store the test results, the Settings window is used to set the
folder where the test progress is saved when the Operator clicks the Save progress button
on the Measurement screen. Further, the IP address and TCP ports used to connect the
Operating software to the Robot are displayed in the Settings window ; however, these values
are not editable. A screenshot of the Settings window is available in Fig. 4.14.

4.1.3 Robot navigation

The Operating software navigates the Robot through the test by sending waypoints
and commands that adjust the Robot’s state, i.e., the height of the Remote key or whether a
button is pressed.

We assume a waypoint consists of three components: X and Y coordinates and a heading
defining the final rotation of the Robot. All these values are in the Car coordinate system.
The Car coordinate system is a right-handed coordinate system that originates in the Car’s
centre and is measured in metres. The X coordinate increases when moving in front of the
Car and decreases behind the Car. The Y coordinate increases to the Car’s left and decreases
to the right. The angle is in radians and is measured from the X-axis in a counterclockwise
orientation.

The Robot informs the Operating software once a waypoint is reached. If the Robot
should be stopped before reaching the sent waypoint, which may happen when the Operator
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Figure 4.14: A screenshot of the Settings window.

presses the Stop button or when the Receiver receives the correct signal in the Autolock test
scenario, a Stop command is sent to the Robot. As a result, the Robot stops following the
waypoint and comes to a complete stop. Instead of sending a Stop command, a new waypoint
may also be sent to the Robot to command the Robot to follow the new waypoint instead of
the previous one, which is also used in the Autolock test scenario.

Pseudocodes showing waypoint generation for the Key press and Autolock test scenarios
are available in Algorithm 1 and Algorithm 2, respectively. The algorithms shown have been
simplified to highlight their primary flows.

4.1.4 Robot communication

As discussed, the Operating software communicates with the Robot using the ZeroMQ
library’s publisher-subscriber model, built on top of TCP, with messages serialised using
Protocol Buffers (protobuf). The Operating software’s outbound communication is detailed
in Section 4.1.4.1, while the inbound communication is in Section 4.1.4.2. The protobuf seri-
alisation format is further discussed in Section 4.1.4.3.

4.1.4.1 Outbound communication

The Operating software holds a reference to a Command object that contains informa-
tion about the state to which the Robot should transition, e.g., a waypoint toward which the
Robot should move, the height of the Remote key, or the speed at which the Robot should
travel.
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Algorithm 1 Key press scenario waypoint generation.

Require: dmin ∈ R+
0 , dmax ∈ [dmin,+∞), dstr ∈ [0, dmax − dmin], dapp ∈ (0,+∞),

φoff ∈ (0, 2π]
1: φ← 0
2: while |φ| < 2π do
3: vax ← (cosφ, sinφ) ▷ Axis vector of unit length
4: d← dmax

5: SendWaypoint(vax · d, φ+ π) ▷ Send waypoint (including heading) to Robot
6: WaitUntilWaypointReached() ▷ Information received from Robot
7: d← d− dstr ▷ Approach by the Straightening distance
8: SendWaypoint(vax · d, φ+ π)
9: WaitUntilWaypointReached()

10: while d ≥ dmin do
11: SendPressButtonCommand()
12: rCAN ← ReadStateFromCAN() ▷ Get the state from CAN bus.
13: if rCAN is OK then
14: break ▷ On success, finish current axis
15: end if
16: d← d− dapp
17: end while
18: φ← φ− φoff ▷ Move clockwise to the next axis
19: end while

Algorithm 2 Autolock scenario waypoint generation.

Require: dmin ∈ R+
0 , dmax ∈ (dmin,+∞), dstr ∈ [0, dmax − dmin), dmes ∈ (0,+∞)

1: while HasNextAxis() do
2: (voff , vdir)← GetNextAxis() ▷ Get a point and direction defining the axis
3: φ← atan2(vdir[1], vdir[0]) + π ▷ Calculate the required heading
4: d← dmax

5: SendWaypoint(voff + vdir · d, φ) ▷ Go to the maximum distance
6: WaitUntilWaypointReached()
7: d← dmax − dstr
8: SendWaypoint(voff + vdir · d, φ) ▷ Approach by the Straightening distance
9: WaitUntilWaypointReached()

10: d← dmin

11: SendWaypoint(voff + vdir · d, φ)
12: WaitUntilWaypointReachedOrUnlockedState() ▷ Measure the unlock area
13: d← dmax − dstr
14: SendWaypoint(voff + vdir · d, φ)
15: WaitUntilWaypointReachedOrLockedState() ▷ Measure the lock area
16: end while
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1 private async Task Send(CancellationToken cancellationToken, Action<Command>? mutationFunc)
2 {
3 if (!IsConnected)
4 {
5 throw new InvalidOperationException($"{nameof(Connect)}() must be called before

sending messages.");
6 }
7
8 await Task.Run(() =>
9 {

10 byte[] message;
11
12 lock (_command)
13 {
14 if (mutationFunc != null)
15 {
16 mutationFunc.Invoke(_command);
17 _command.Id++;
18 }
19
20 message = _command.ToByteArray();
21 }
22
23 lock (_zmqPublisher)
24 {
25 _zmqPublisher.SendFrame(message);
26 }
27 }, cancellationToken).ConfigureAwait(false);
28 }

Listing 4.7: C# code responsible for sending the Command object from the Operating software
to the Robot.

The Command object is periodically sent to the Robot, so if the TCP connection to
the Robot is lost or the Robot reboots, the Operating software needs not to be informed, and
the system continues to function as intended. The Operating software mutates the Command
object to navigate the Robot through the test scenario. Whenever the Command object is
mutated, a new unique identifier is assigned to the object, which the Robot then uses to
determine if the command has been received before. After mutating the Command, it is sent
to the Robot without waiting for the next sending period. A C# lock statement is used to
ensure that the Command object can be safely mutated from multiple threads; therefore, only
one thread can access the Command object at a time.

A code snippet showing how the Command object is sent from the Operating software
is available in Listing 4.7. In the implementation shown in the snippet, the Command object
is named command. The zmqPublisher object is an instance of the PublisherSocket class
provided by the ZeroMQ messaging library. It is also protected by a lock statement to prevent
conflicts when multiple messages are sent from the same TCP socket.

Each waypoint sent from the Operating software also contains a unique identifier, which
is then sent back from the Robot to the Operating software to confirm that the waypoint has
been reached.

When the Operating software requires the Robot to press a button on the Remote key,
an additional unique identifier is assigned to the operation so the Robot does not press the
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button multiple times. Once the Robot confirms, using the identifier, that the button has
been pressed, the Operating software removes the button-press operation from the Command
object.

4.1.4.2 Inbound communication

Information from the Robot to the Operating software is sent in a Status message. The
Status message is sent periodically by the Robot and contains data about the Robot’s state,
in addition to the confirmation identifiers mentioned in Section 4.1.4.1. The data includes the
Robot’s position relative to the Car, the Robot’s heading, height of the Remote key, buttons
pressed on the Remote key, battery charge, measured dimensions of the Car, logging messages,
and notifications that should be displayed to the Operator under the warning triangle in the
Header bar, Fig. 4.2.

Whenever a Status message is received, an event is raised, and all subscribed components
are notified. Thus, the Operating software can react accordingly by updating the UI or sending
a new command to the Robot.

4.1.4.3 Serialisation format

The two communicating parties run in different environments and are written in differ-
ent programming languages, with the Operating software in C# and the Robot’s Dispatcher
node in Python; therefore, the sent messages must be serialised into a format that both can
understand. Common text serialisation formats include JavaScript Object Notation (JSON)15

and XML, which also have the advantage of being easily readable by humans. However, the
main disadvantage of text formats is their inefficiency since they require more memory and
serialisation/deserialisation time than would be necessary for machine-to-machine communi-
cation.

Therefore, we decided to use a binary serialisation format called protobuf16, which is
developed by Google and is currently free and open source. Google also provides a code
generator that accepts a schema defined using protobuf’s description language and outputs
code in several programming languages, including C#, Python, C++, Rust, Java, JavaScript,
and many others. The generated code contains class definitions in the specific languages and
handles the serialisation/deserialisation of instances of the generated class. A snippet showing
a protobuf definition of a message that contains data about the Robot’s state is available in
Listing 4.8. For more information on protobuf and its performance, see [13] and [14].

4.1.5 Car communication

The Operating software retrieves the current state of the Car’s locks via the Car’s
CAN bus. CAN is a standard communication bus used in the automotive industry that has a
deterministic arbitration mechanism to resolve conflicts when multiple devices, called nodes,
attempt to send data simultaneously. The mechanism utilises a special wiring that ensures
that logical zero bits dominate logical one bits, meaning that when a logical zero and a logical
one are sent simultaneously, only the logical zero is preserved on the bus and read by the
receiving nodes. As each message begins with an identifier, the message with the smallest

15https://www.json.org/
16https://protobuf.dev/
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1 message RobotState {
2 optional float x = 1;
3 optional float y = 2;
4 optional float heading = 3;
5 optional float speed = 4;
6
7 optional float deviceHeight = 5;
8 repeated uint32 pressedDeviceButtons = 6;
9

10 optional int32 localizationAccuracy = 7;
11 optional uint32 batteryLevel = 8;
12
13 optional bool isMappingCar = 9;
14 }

Listing 4.8: A schema defining a protobuf message containing information about the Robot’s
state.

identifier (when interpreted as an integer) will be selected during the arbitration phase for
transmission over the CAN bus. Note that the identifier is associated with the message, not
with the node sending the message. Thus, a single node may be able to send multiple messages
with different identifiers, where the identifiers define the message’s priority on the entire bus.

To connect the Operating software to the Car’s CAN bus, we decided to use an adapter
developed by the company PEAK-System17, which connects to the CAN bus on one end and
offers a Universal Serial Bus (USB) port on the other end. PEAK-System also provides a
.NET library18 for working with the CAN adapter.

A code snippet showing how the messages are read and processed by the Operating soft-
ware is available in Listing 4.9. The worker invokes the registered method, OnMessageAvail-
able, whenever a message becomes available in the worker ’s queue. The read message is then
passed to the ParseMessage() method, which is implemented in derived classes to make it
possible to handle different test scenarios. The parsed message is then passed to methods
subscribed to the OnMessageReceived event.

4.2 Robot

The Robot carries the Remote key and presses the buttons on the Remote key to
invoke communication between the Remote key and the Receiver. A description of the Robot’s
hardware is provided in Section 4.2.1, followed by the Robot’s software in Section 4.2.2.

4.2.1 Hardware

The Robot is a four-wheeled ground vehicle with a differential drive, based on the Jackal
platform from Clearpath Robotics19. Differential drive implies that the Robot’s wheels cannot
be steered; however, the Robot has two motors, each connected to the wheels on one side of
the Robot, which allows the wheels on the left side of the Robot to be driven independently

17https://www.peak-system.com/
18https://docs.peak-system.com/API/PCAN-Basic.Net/html/624ccd00-c8b0-4199-96df-e9413e83e6ad.htm
19https://clearpathrobotics.com/jackal-small-unmanned-ground-vehicle/
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1 private readonly object _messageLock = new();
2 protected readonly Peak.Can.Basic.Worker _worker;
3
4 public event Action<TMessage>? OnMessageReceived;
5
6 public PCanBasicWorker()
7 {
8 _worker = new(PcanChannel.Usb01, GetBitrate());
9 _worker.MessageAvailable += OnMessageAvailable;

10 }
11
12 protected abstract TMessage? ParseMessage(PcanMessage message);
13
14 private void OnMessageAvailable(object? sender, MessageAvailableEventArgs e)
15 {
16 PcanMessage? message;
17
18 lock (_messageLock)
19 {
20 if (!_worker.Dequeue(out message, out _))
21 {
22 message = null;
23 }
24 }
25
26 if (message != null)
27 {
28 var parsedMessage = ParseMessage(message);
29
30 if (parsedMessage != null)
31 {
32 OnMessageReceived?.Invoke(parsedMessage);
33 }
34 }
35 }

Listing 4.9: C# code snippet showing the retrieval of messages from the Car’s CAN bus using
the PCAN-Basic .NET library provided by PEAK-System.
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of the wheels on the right side of the Robot, rotating the Robot. For more information on
differential drive steering and kinematics, see [15] and [16].

The Robot is equipped with multiple sensors to enable autonomous operation. The
Global Positioning System (GPS) module provides the Robot with global position coordinates,
although its accuracy decreases dramatically in indoor environments, as discussed in [17] or
[18]. The Robot is further equipped with an Inertial Measurement Unit (IMU) and collects
odometry data from its wheels to improve positioning accuracy and allow indoor use. Both
the IMU and the odometry data provide localisation relative to a previously known position,
which suffers from poor performance as measurement error accumulates over long periods.
In outdoor environments, data from the GPS can correct the accumulated error. For indoor
scenarios, a Light Detection and Ranging (LiDAR) is mounted on the Robot.

A LiDAR works by shooting light rays and measuring the time it takes for the rays to
return, using the constant speed of light to calculate the distance, see [19]. Thus, LiDAR can
be used not only for localisation relative to surrounding objects but also to measure distances
from surrounding objects and to facilitate object detection, e.g. [20], [21]. As it would be
impractical for the Operator to manually provide the Robot with information about the Car’s
position, the LiDAR is further utilised to detect the Car in the Robot’s vicinity.

The Remote key is placed on top of a linear actuator, which is positioned vertically and
allows the Robot to move the Remote key up and down as per the required height of the
Remote key received from the Operating software. Alongside the Remote key are two servo-
motors used to press the lock and unlock buttons on the Remote key. Several LEDs indicate
the Robot’s state to the Operator and other personnel.

The peripherals, i.e., the linear actuator, the servomotors, and the LEDs, are not con-
nected directly to the Robot’s main computer; instead, they are connected to a dedicated
microcontroller, which communicates with the main computer over a serial port. Communi-
cation with the Operating software is facilitated by a Wi-Fi module.

4.2.2 Software

The software running on the Robot can be decomposed into several parts. In Sec-
tion 4.2.2.1, we look at the Robot Operating System (ROS), a framework on which our soft-
ware is built. Section 4.2.2.2 follows with a description of the Robot’s state machine, which
determines the Robot’s high-level behaviour. Then, communication with the Operating soft-
ware is described in Section 4.2.2.3. Lastly, interaction with the Robot’s peripherals is detailed
in Section 4.2.2.4.

4.2.2.1 Robot Operating System

The Robot’s software runs on ROS. Unlike what the name implies, ROS is rather a
framework than an operating system. ROS provides tools and services for communication
between individual application components, called nodes, and provides an infrastructure to
integrate third-party nodes.

The inter-node communication in ROS is based on the publisher-subscriber model. Each
node is allowed to publish messages on any number of topics, with each topic identified by
a unique name. Other nodes then subscribe to the published topics using the topic’s name.
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Each topic has an associated message type, so only messages of the specified type can be sent
by the publishers and thus read by the subscribers.

In addition to the many-to-many publisher-subscriber communication model via ROS
topics, ROS also provides ROS services, which allow one-to-one communication in which one
node sends a request message, and the other node responds with a reply message. The services
are also identified by unique names.

Although communication logically works via topics and services, physically, sending data
from one node to another is necessary. Therefore, a node must be able to identify the other
communicating node by the name of the topic or the service. ROS solves this by designating
one node as the ROS Master. All topics and services are registered with the Master. When a
node needs to connect to another node for communication, it first queries the Master, which
locates the corresponding node by the name of the topic or the service. The communication is
then carried out directly between the two nodes, meaning the messages are not sent through
the Master. For more information regarding ROS, see [22] and [23].

4.2.2.2 State machine

Before the Robot can start the test, it needs to localise itself, map its surroundings,
and identify the Car, as it is the centre of the coordinate system used for sending waypoints
by the Operating software. Therefore, the Operator is required to position the Robot at a
predetermined location relative to the Car. This positioning is expected to be inaccurate;
however, it should be sufficient to help the Robot identify the Car. The Car locator node then
corrects the position of the Car. If required, the Car locator node may also create a few artificial
waypoints around the Car, which the Robot follows to gather more information about the
Car’s dimensions. The Robot then uses a Simultaneous Localization And Mapping (SLAM)
algorithm to create a map of its surrounding area and to localise itself within this map.

The Robot’s state machine determines the high-level behaviour of the Robot. A state in
the state machine determines the Robot’s response to commands received from the Operating
software.

Firstly, the Robot is in the Starting state and waits for all ROS nodes to initialise. Once
the initialisation is complete, the state changes to Ready to map car, where the robot waits
for a command from the Operating software. As the mapping of the Car is an internal process
of the Robot, the Operating software does not have any specific commands to influence it.
However, the Operating software is aware of the Robot mapping the Car, as the Robot sends
this information to the Operating software.

Secondly, when a waypoint is received from the Operating software, the Robot starts
mapping the Car. The Operator can stop the Robot’s movement using the Stop button, which
sends a stop command to the Robot. When the Operator resumes the test, the waypoint is
re-sent to the Robot, and the Car mapping continues.

Lastly, once the Robot has successfully mapped the Car, it transitions to the Following
waypoint state, wherein the Robot moves toward waypoints received from the Operating
software. Similarly to when the Car was being mapped, a stop command makes the Robot
stop, whereas a new waypoint resumes the Robot’s movement. A visualisation of the Robot’s
state machine is in Fig. 4.15.
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Figure 4.15: A depiction of the Robot’s state machine.
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4.2.2.3 Operating software communication

As described in Section 4.1.4, the Robot communicates with the Operating software
through the ZeroMQ messaging library, which provides an implementation of the publisher-
subscriber communication model over TCP. The messages sent through ZeroMQ are serialised
using protobuf.

The Dispatcher node, written in Python20, handles communication with the Operat-
ing software. Python is a popular dynamically typed programming language with automatic
garbage collection often used in robotics and machine learning development due to its vast
standard library and ready-to-use software components developed by members of its commu-
nity. Applications written in Python are not compiled into machine instructions but executed
by a Python interpreter.

Whenever a command is received from the Operating software, the Dispatcher node
translates the command into actions to be performed by other ROS nodes on the Robot, e.g.,
delegates commands to the motion planner to move toward a received waypoint or instructs
the lifting mechanism to set the height of the Remote key. Additionally, the Dispatcher node
collects information, such as the position of the Robot or the state of the Robot’s battery,
from other nodes on the Robot and sends the information to the Operating software, which
can use it in the test flow or to inform the Operator about the Robot’s state.

4.2.2.4 Peripherals microcontroller

As mentioned in Section 4.2.1, the peripherals connected to the Robot are controlled
by a dedicated microcontroller instead of the Robot’s main computer. The microcontroller is
connected to the Robot’s main computer using a serial port. To integrate the microcontroller
into the ROS infrastructure, we use rosserial21.

Rosserial comprises two parts, one on the microcontroller and the other on the con-
nected computer. These two parts communicate with each other over the serial port. The part
on the computer is a ROS node, which is subscribed to all topics required by the microcon-
troller. Whenever a message on a subscribed topic is received, it is serialised and sent to the
microcontroller. Conversely, when the microcontroller needs to publish a message, it sends
the message through the serial port to the ROS node, which then publishes the message on a
ROS topic. For more information on using ROS with embedded devices, see [24].

20https://www.python.org/
21https://wiki.ros.org/rosserial
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Chapter 5

Testing and evaluation

Throughout software development, it is essential to prepare, execute and evaluate tests
that verify whether the developed system meets the specified design goals and behaves as
expected. Acceptance testing is often used to check whether a newly added feature works as
intended and, thus, can be accepted. In many situations, acceptance testing can be performed
manually, as it is limited in scale to only the new feature and, if successful, needs only to be
performed once per feature.

However, in software development, a new feature, a bug fix, or a change in the en-
vironment (e.g., an operating system update) may break a seemingly unrelated part of the
application. Catching such errors is called regression testing, and performing it manually
would require a lot of human resources, as the entire application would need to be tested
after every change in the codebase or the environment. Therefore, tests are automated by
software developers. Although the process of making an automatic test usually takes longer
than executing the test manually, once developed, the test can be run repeatedly without
human interaction.

Tests can also be distinguished by their scope. Unit tests verify the correctness of a
single unit, e.g., a function or a class. They usually perform only simple operations and are
quick to execute; therefore, many unit tests can be executed in a limited time, making them
suitable for running frequently.

When more units are put together, and their interaction and cooperation are verified, it
is called an integration test. Integration tests often take longer to execute because they work
with a larger part of the system. Note that the units part of an integration test should also
be tested independently using unit tests.

Finally, system tests evaluate the correctness of the entire system. A system test is
meant to be as close to the actual usage of the system as possible. Such tests are necessary
before deployment to end users; however, they might take a long time to run or can be costly
to execute, so they are often used sparingly.

Several testing frameworks have been developed to facilitate the development of au-
tomated tests. A programming language is often associated with a few popular unit testing
frameworks, although more may be available. In C#, MSTest, NUnit, and xUnit are the most
common; in Python, unittest is popular, while in Java, JUnit, TestNG, Cucumber, and many
others are used. Some testing frameworks support multiple languages, such as Selenium1,
which specialises in testing web applications. For more information on software testing, see
[25].

1https://www.selenium.dev/
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1 [Fact(Timeout = 10_000)]
2 public void Connect_Success()
3 {
4 _robotCommunication.Connect("127.0.0.1", ZmqServerFixture.PublisherPort,

ZmqServerFixture.SubscriberPort);
5
6 Assert.True(_robotCommunication.IsConnected);
7 }

Listing 5.1: C# code used to test a successful connection attempt using the Connect method.

5.1 Unit testing

For testing the Operating software, which is written in C#, we have selected the xUnit2

testing framework. We demonstrate the usage of xUnit in a few unit tests that verify the
functioning of the Connect method, shown in Listing 4.2, used to connect to the Robot. The
Connect method establishes a connection using the ZeroMQ library, which does not let us
know if the connection has truly been established. Therefore, the Connect method first checks
if a TCP connection can be established using the specified ports. To verify the behaviour of
the Connect method, we need to check that the method fails when invalid parameters are
supplied, i.e., an IP address and TCP ports that do not have a counterparty to connect to or
that are not in the correct format, and that the method does not fail with valid parameters.

The second case is simple, as it requires us to call the Connect method using valid
parameters, of which there is only one possible combination. The IsConnected property then
lets us know if the method has been successful. The unit test implementation is in Listing 5.1.
The first line, containing the Fact attribute, informs the xUnit framework that the attached
method is a test. Furthermore, the attribute’s Timeout parameter specifies the time after
which the test should automatically be terminated by xUnit and considered as failed, which
is used to catch cases in which the Connect method’s timeout fails. Line 4 contains the call
to the Connect method with valid parameters. Finally, line 6 uses the xUnit’s Assert class to
check whether the provided variable, in our case IsConnected, resolves to true.

Verifying the first case, with invalid parameters, is more involved, as we need to check
that it fails when any of the provided parameters are incorrect. The Connect method has
three parameters, each of them can be valid, invalid, or have an incorrect format, resulting
in 33 = 27 possible combinations, of which one is valid and the rest is invalid. In addition
to the Fact attribute, xUnit also offers the Theory attribute, which indicates a test method
with parameters. Similarly to the previous situation, a Timeout parameter is present on
the attribute to catch cases where the Connect method’s timeout fails. We could then use
twenty-six InlineData attributes, each specifying a different combination of the parameters. A
different approach is to use xUnit’s MemberData attribute instead of the InlineData attribute,
which allows us to specify a field, property, or method that provides the parameters. The test
implementation is shown in Listing 5.2. Note line 32 that excludes the valid combination of
the parameters. Lines 9 through 15 catch the expected possible exceptions that the Connect
method might throw. The AggregateExceptions can be thrown as a result of an exception
raised when executing a function passed to the Task.Run method in the Connect method’s
body. Line 17 asserts that the connection has not been established.

2https://xunit.net/
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1 [Theory(Timeout = 10_000)]
2 [MemberData(nameof(Get_Connect_Fail_Combinations))]
3 public void Connect_Fail(string ipAddress, int subscriberPort, int publisherPort)
4 {
5 try
6 {
7 _robotCommunication.Connect(ipAddress, subscriberPort, publisherPort);
8 }
9 catch (TimeoutException) { }

10 catch (SocketException) { }
11 catch (AggregateException ex) when (ex.InnerExceptions.Any(x => x.GetType() ==

typeof(SocketException))) { }
12 catch (ArgumentOutOfRangeException) { }
13 catch (AggregateException ex) when (ex.InnerExceptions.Any(x => x.GetType() ==

typeof(ArgumentOutOfRangeException))) { }
14 catch (FormatException) { }
15 catch (AggregateException ex) when (ex.InnerExceptions.Any(x => x.GetType() ==

typeof(FormatException))) { }
16
17 Assert.False(_robotCommunication.IsConnected);
18 }
19
20 public static IEnumerable<object[]> Get_Connect_Fail_Combinations()
21 {
22 string[] ipAddresses = new[] { "127.0.0.1", "127.0.0.2", "256.0.0.1" };
23 int[] subscriberPorts = new[] { ZmqServerFixture.SubscriberPort,

ZmqServerFixture.SubscriberPort - 1, -1 };
24 int[] publisherPorts = new[] { ZmqServerFixture.PublisherPort,

ZmqServerFixture.PublisherPort + 1, -1 };
25
26 foreach (var ipAddress in ipAddresses)
27 {
28 foreach (var subscriberPort in subscriberPorts)
29 {
30 foreach (var publisherPort in publisherPorts)
31 {
32 if (ipAddress == ipAddresses[0] && subscriberPort == subscriberPorts[0] &&

publisherPort == publisherPorts[0])
33 continue;
34
35 yield return new object[] { ipAddress, subscriberPort, publisherPort };
36 }
37 }
38 }
39 }

Listing 5.2: C# code used to test unsuccessful connection attempts using the Connect method.
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Both presented unit tests work with a variable named robotCommunication, which
contains a reference to an instance of the RobotCommunication class responsible for handling
communication with the Robot. The instance is constructed in the constructor of the class
that contains the unit tests. The xUnit framework invokes the constructor before each test run;
thus, each unit test has its own instance of the RobotCommunication class. The constructor of
the RobotCommunication class requires three parameters - a logger, a configuration provider,
and a mapper which maps protobuf messages to internally used models. Creating an instance
of the logger and the configuration provider would require additional dependencies to be
attached to the tests. Therefore, we decided to mock them instead.

5.2 Mocking

Mocking is a programming technique used to isolate tests by replacing their depen-
dencies with fake objects, called mock objects, which simulate the behaviour of the actual
dependencies. In unit testing, mocking is often used when a unit relies on external services
not directly under the developer’s control, making it difficult to predict their state during test
runs or when the dependencies are problematic to set up. Additionally, mocking decouples
dependent units so that they can be tested in isolation, which is one of the goals of unit
testing. Mocking frameworks are often available for popular programming languages, such as
the Mockito framework for Java, unittest.mock for Python, or Moq for C#. More information
on mocking can be found in [26].

For our tests, we used the Moq3 mocking framework. In Listing 5.3, we create a mock
object for the logger and the configuration provider. Furthermore, the configuration provider is
configured to return the value 1000 when its CommandRepeatInterval property is accessed and
the value 2000 when ConnectionAttemptTimeout is accessed. These mock objects, along with
a RobotCommunicationMapper, are then passed to the RobotCommunication’s constructor to
create the instance of the RobotCommunication class that is used in the unit tests.

5.3 Connection server

So far, we have created an instance of the RobotCommunication class that we want to
test and have prepared unit tests to verify the functionality of the Connect method. One last
problem remains to be solved: we need a Robot to connect to. Or, rather, some other server
that can be launched alongside the unit tests and would act as the Robot, so we would not
need to start the Robot every time we needed to run tests on the Connect method. This server
could be launched just once at the start of the tests and then terminated once all the tests
have finished. For such purposes, xUnit allows developers to group tests into collections with
common fixture data that are initialised before the first test from the collection is run and
disposed of after the last test is executed.

The fixture used to simulate the Robot’s server is shown in Listing 5.4. The collection
must then be defined, as shown in Listing 5.5. Finally, a class containing unit tests that belong
to the defined collection must be marked using the Collection attribute, as in Listing 5.3.

3https://github.com/devlooped/moq

CTU in Prague Department of Control Engineering



5. TESTING AND EVALUATION 47/56

1 [Collection(ZmqServerCollection.Name)]
2 public class Connect : IDisposable
3 {
4 private readonly IRobotCommunication _robotCommunication;
5
6 public Connect()
7 {
8 var loggerMock = Moq.Mock.Of<ILogger>();
9

10 var configurationMock = Moq.Mock.Of<IRobotCommunicationConfiguration>(conf =>
11 conf.CommandRepeatInterval == 1000 &&
12 conf.ConnectionAttemptTimeout == 2000);
13
14 _robotCommunication = new Communication.RobotCommunication(
15 loggerMock,
16 configurationMock,
17 new RobotCommunicationMapper()
18 );
19 }
20
21 // ---- unit tests below ----
22 }

Listing 5.3: C# code used prepare an instance of the RobotCommunication class for unit
testing.

1 public class ZmqServerFixture : IDisposable
2 {
3 public const int SubscriberPort = 3333;
4
5 public const int PublisherPort = 3334;
6
7 private readonly SubscriberSocket _subscriberSocket;
8
9 private readonly PublisherSocket _publisherSocket;

10
11 public ZmqServerFixture()
12 {
13 _subscriberSocket = new SubscriberSocket($"@tcp://127.0.0.1:{SubscriberPort}");
14 _publisherSocket = new PublisherSocket($"@tcp://127.0.0.1:{PublisherPort}");
15 }
16
17 public void Dispose()
18 {
19 _subscriberSocket.Dispose();
20 _publisherSocket.Dispose();
21 }
22 }

Listing 5.4: C# code showing a data fixture used to simulate the Robot’s server for unit
testing.
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1 [CollectionDefinition(Name)]
2 public class ZmqServerCollection : ICollectionFixture<ZmqServerFixture>
3 {
4 public const string Name = "ZMQ server collection";
5 }

Listing 5.5: C# code showing the definition of a collection that uses ZmqServerFixture as its
data fixture.

5.4 Integration testing

In addition to unit tests, we used xUnit to implement integration tests verifying that
the Robot reacts appropriately to received commands. In Listing 5.6, we present the code
used to verify that the Robot can change the Remote key’s height and inform the Operating
software about such change. The AutoResetEvents, declared on lines 19 and 20, are used to
put the running thread to sleep on lines 33 and 44, respectively. When the AutoResetEvent ’s
WaitOne method returns true, it means that another thread has called the AutoResetEvent ’s
Set method. If the waiting thread is woken up otherwise, the WaitOne method returns false.
Before the thread is put to sleep, an anonymous function is subscribed to the RobotCommu-
nication’s StateChanged event, which is invoked each time the Operating software receives a
status message from the Robot. The first function, defined on lines 22 to 29, wakes the thread
waiting on line 33 once the height received from the Robot is within a 10% tolerance of the
required height. The required height is sent to the Robot on line 31. The second anonymous
function, defined on lines 35 to 42, is used to wake the thread waiting on line 44, which hap-
pens when the height received from the Robot exceeds the defined 10% tolerance threshold,
leading to a test failure. If the thread waiting on line 44 is not woken up before a 5000ms
timeout expires, the AutoResetEvent ’s WaitOne method returns false, and the test succeeds.

Note the fixture passed as a constructor argument on line 8 in the Listing 5.6. As
discussed in Section 4.1.4, a unique identifier is sent with each message. If the test method
used a new RobotCommunication instance each time it was invoked, as was the case in the
unit tests presented previously, the new instance would always use the initial identifier when
sending the command on line 31. Unless the Robot was to be restarted before each test run,
the RobotCommunication instance used must be the same for all test runs. To achieve this,
we moved the RobotCommunication instance to the test data fixture, which xUnit provides
us in the class constructor.

5.5 Tools for manual testing and development

Many parts of the Operating software require communication with the Robot. Starting
the Robot each time a developer needed to test a change in the GUI or other parts of the
application would be impractical. Moreover, if the Robot were to be used heavily throughout
the development cycle of the Operating software, it could slow down the development of the
Robot itself, as it would prevent the work on the Operating software and the Robot from
being performed in parallel. Therefore, we developed a simple simulator that can be used in
place of the Robot when developing the Operating software, further discussed in Section 5.5.1.

Additionally, both test scenarios presented in this thesis depend on communication
between the Operating software and the Car. Section 5.5.2 discusses a basic substitute for the
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1 [Collection(RobotCommunicationCollection.Name)]
2 public class SetHeight
3 {
4 private readonly IRobotCommunication _robotCommunication;
5
6 private const float AllowedDeviation = 0.1f;
7
8 public SetHeight(RobotCommunicationFixture fixture)
9 {

10 _robotCommunication = fixture.RobotCommunication;
11 }
12
13 [Theory(Timeout = 15_000)]
14 [InlineData(70)]
15 [InlineData(102.4)]
16 [InlineData(150)]
17 public async Task SetHeight_Success(float height)
18 {
19 AutoResetEvent heightSetEvent = new(false);
20 AutoResetEvent heightBrokenEvent = new(false);
21
22 _robotCommunication.StateChanged += state =>
23 {
24 if (state.DeviceHeight.HasValue
25 && Math.Abs(state.DeviceHeight.Value - height) < AllowedDeviation * height)
26 {
27 heightSetEvent.Set();
28 }
29 };
30
31 await _robotCommunication.SetDeviceHeight(height);
32
33 Assert.True(heightSetEvent.WaitOne());
34
35 _robotCommunication.StateChanged += state =>
36 {
37 if (state.DeviceHeight.HasValue
38 && Math.Abs(state.DeviceHeight.Value - height) > AllowedDeviation * height)
39 {
40 heightBrokenEvent.Set();
41 }
42 };
43
44 Assert.False(heightBrokenEvent.WaitOne(5_000));
45 }
46 }

Listing 5.6: C# code testing the Robot’s ability to change the height of the Remote key.
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Car, removing the need for an actual car during development.

Further, developing the Robot’s software, such as the Dispatcher node and others, can
also be performed without requiring the physical robot. To simulate the physics of the Robot,
we use the Gazebo simulator4, which is more detailed in Section 5.5.3.

Finally, a visualisation tool used in the ROS framework, called RViz, is discussed in
Section 5.5.4.

5.5.1 Robot substitution

To substitute the Robot when developing the Operating software, an extension of the
ZeroMQ server, presented in Listing 5.4, that serves as a simulator of the Robot’s behaviour
has been developed.

The simulator opens communication ports for the Operating software to connect to,
much as the Robot would. Once connected, the simulator waits for messages from the Op-
erating software. The messages are then deserialised from the protobuf format, and their
execution is simulated. The simulator keeps track of the virtual state of the Robot and, when
a waypoint is received, updates the Robot’s virtual position based on the set speed to imitate
its movement. Periodically, the simulator sends status messages to the Operating software to
inform it of the Robot’s position and other properties, such as the Robot’s heading or the
height of the Remote key.

Execution of other commands, such as the command to stop the Robot or to set the
height of the Remote key, are simulated similarly by changing the state of the virtual Robot
and sending periodic updates to the Operating software.

5.5.2 Car substitution

The Operating software requires a connection to the Car’s CAN bus, making develop-
ment more complicated and time-consuming. Therefore, we created a simple component that
mimics the communication with the Car. The component implements the same interface as
the actual CAN bus connection implementation, so the rest of the Operating software does
not need to be altered to use it. The interface consists of methods that allow connecting/dis-
connecting to/from the CAN bus and an event that is raised whenever a relevant message is
read on the bus.

Implemented as a timer-based mechanism, the substitute component initiates or sus-
pends periodic callbacks upon invocation of the connection or disconnection methods. Dur-
ing active intervals, a callback function generates a random number, which is subsequently
compared against a predefined threshold. Based on the comparison, the event on the CAN
interface is either raised or suppressed. This design gives developers flexibility in adjusting
the likelihood of the event being raised by modifying the threshold parameter.

5.5.3 Gazebo

In robotics development, it is essential to thoroughly test and validate the behaviour of
a robot and its interaction with the surrounding environment before deploying it in real-world

4https://gazebosim.org/
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scenarios. Such pre-deployment testing is crucial in the iterative development of the robot, as
it facilitates the identification of potential flaws and ensures the safety and reliability of the
robot’s operation.

Real-world experiments that involve previously untested hardware or software compo-
nents carry inherent risks. The complexity of robotic systems, coupled with the unpredictabil-
ity of real-world environments, amplifies the likelihood of errors or malfunctions. These errors
pose risks not only to the robot itself but also to the surrounding environment and individuals
nearby. Using realistic simulation environments, such as Gazebo, developers can proactively
address these risks, minimising the possibility of a severe error in real-world deployments.

The Gazebo simulator is a platform for creating realistic simulations of robots and their
surrounding environments. It can be seamlessly integrated into ROS-based projects using
dedicated ROS packages, which simplify the setup and enable data exchange between Gazebo
simulations and ROS nodes, further improving and streamlining its capabilities in robotics
development. For more information on Gazebo and its usage, see [27], [28], and [29].

5.5.4 RViz

RViz is a 3D visualisation tool designed for the ROS ecosystem. It allows users to
visualise various information in a three-dimensional space. Since RViz was designed specifically
for ROS, it integrates simply by subscribing to published ROS topics.

Therefore, apart from visualising the positions of objects and robots, one can also vi-
sualise virtual objects, such as waypoints or collision boundaries. Moreover, RViz can also
publish to ROS topics and interact with ROS nodes through ROS services, allowing users
to, for example, operate the robot from its visual UI. Additional information on RViz can be
found in [30].

5.6 Real-world experiments

Despite the advancements made in simulation technologies such as Gazebo and the
convenience of virtual environments for testing, the transition to real-world scenarios remains
vital for validating the developed systems. While simulations offer a controlled and repeatable
environment, the complexity and unpredictability of the real world often introduce unforeseen
challenges and edge cases that may not have been accounted for during testing in virtual
environments.

In our real-world experiments, particular emphasis was put on assessing the system’s
long-term stability to ensure that it maintains performance without accumulating excessive
error over extended durations. Moreover, these experiments tested the performance and re-
silience of the proposed system in environments with imperfect communication channels,
introducing delays and message failures between the Operating software and the Robot.

Additionally, the real-world experiments allowed us to validate the system’s functionality
when connected to a real car’s CAN bus. This integration enabled us to verify the operation
of the Operating software’s CAN bus interface.
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5.7 Evaluation

The implementation of automated regression testing methods helped us focus on new
features and on iteratively improving the proposed system by providing safeguards that pre-
vented us from accidentally breaking existing components. The writing of unit tests and
integration tests proved crucial in the development of the system. Throughout development,
the automated tests’ effectiveness increased as the whole system’s complexity increased.

The Robot simulator, discussed in Section 5.5.1, played a vital role in developing the
Operating software. Especially in the early development phase, the Operating software ex-
panded quicker than the Robot, making relying on their mutual interaction impossible. Using
the simulator, we could decouple the development of the Operating software from the de-
velopment of the Robot so that each could move forward at its own pace. However, once it
became possible to connect the two parts, some aspects of the communication and interaction
needed to be revised as a result of the independent development. Nevertheless, the required
adjustments were of only minor complexity, and the overall contribution of the developed
simulator greatly outweighed these disadvantages.

When developing the Robot, the Gazebo simulator proved effective in providing a re-
alistic environment for testing various aspects of the system. New features could be quickly
tested without deploying the Robot in real-world scenarios, which might take a long time to
set up and risk damage to the physical hardware. Furthermore, using the RViz visualisation
tool helped us debug errors in the Robot’s software; for example, by visualising the currently
followed waypoint, we managed to identify a problem where the Robot failed to switch to a
newer waypoint if received before the first waypoint was reached.

On the other hand, while simulation environments offer fast and convenient testing
conditions, they cannot accurately replicate certain real-world phenomena, such as sensor
noise and environmental variability. Recognising these limitations, we conducted a series of
real-world experiments focused on improving the system’s robustness and resilience in actual
operating conditions. Throughout these experiments, we encountered unforeseen challenges
that would have remained undetected in simulation environments alone.

One notable issue that came to light during the deployment of the Robot was the failure
of its Wi-Fi hotspot to initialise. This unexpected setback signified the importance of real-
world testing, even as simulators become more advanced and realistic. By solving these new
challenges, we iteratively refined the system to improve its reliability in real-world scenarios.

Regarding the system’s performance, we deemed the design to be able to operate without
substantial issues. Even at more considerable distances, when the connection between the
Robot and the Operating software became error-prone, unstable, or broken, it was quickly
re-established, and the system could seamlessly resume its operation. However, due to the
significant weight and height of the linear actuator attached to the Robot, the Robot’s centre
of gravity shifted upward. To prevent the Robot from toppling when making rapid movements,
we needed to enforce limits on the Robot’s linear and angular accelerations.

All in all, the logistics and costs associated with real-world experiments posed challenges
in terms of scalability and repeatability. Nonetheless, the experiments allowed us to observe
the complete system in its final environment, successfully validating its possible use in the
scenarios discussed in this thesis.
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Chapter 6

Conclusion

In conclusion, this thesis presented the design, implementation, and possible applications
of a mobile testing robot. A detailed explanation of the tools and technologies used in the
development has been provided, along with sample code snippets showing their utilisation.

Several different systems, platforms, and frameworks have been explored to create the
solution. The development of the Robot presented challenges in terms of its hardware and
software, as we aimed for a general design that allowed for different possible scenarios. For
implementing the Robot’s software, we chose the ROS framework, which is widely used in
robotics development. Thus, we could rely on ROS’s extensive documentation and third-party
packages to help us make the Robot. Additionally, thanks to the infrastructure provided by
ROS, we could easily separate the Robot’s logical components into individual nodes and use
ROS’s communication techniques to exchange data among them, allowing for a clean and
maintainable codebase. The created Dispatcher node served as a gateway between the ROS
ecosystem running on the Robot and the Operating software running on a separate personal
computer.

We designed a few basic actions that the Robot needed to execute. The actions were
then combined in the Operating software to create the flow of a test scenario and sent to the
Robot as commands over a wireless network. Using this approach, we could limit the scope
of the Robot’s need to be aware of the specific test scenario.

To make the system accessible and easily adoptable by the Operator, we created a
simplistic GUI that allows the Operator to interact with the Operating software, set its pa-
rameters, monitor the progress of the test, and gather the results. The GUI was built using
Avalonia UI, which is a modern UI framework that enables the development of cross-platform
UI applications using .NET. Although we sometimes found Avalonia UI’s documentation lack-
ing, its similarity to the well-established WPF framework allowed us to overcome any obstacles
we faced. By continuously consulting the UI with its potential users, we avoided unnecessary
design changes in later development phases.

Finally, to improve the quality and reliability of the developed system, we utilised various
tools and techniques, including automated unit and integration testing, that helped us ensure
the correctness of the system throughout development. Using the Gazebo simulator, we could
realistically verify both the Robot and the Operating software without having to deploy the
Robot in real-world situations, which would be both costly and time-consuming.

However, no simulation is perfect, so it is always necessary to perform real-world exper-
iments. Further, as we performed the experiments relatively late in the development process,
we discovered that some real-world tests should be performed as early as possible, without
compromising safety, to allow for a better understanding of the difference between simulated
and real-world behaviour of the system, which can prevent certain misconceptions about the
qualities of the system that might seem promising in simulations but fail in the real world. For
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example, the node responsible for motion planning had to be rewritten several times as we
discovered that the Robot had problems performing some motions on certain surfaces, such
as asphalt concrete, which could have been prevented had we run some experiments sooner.

The journey from conceptualisation to realisation of the mobile testing robot has been
both challenging and rewarding, offering numerous learning opportunities and insights into the
practical aspects of robotics development. As technology continues to advance, the potential
applications for such robots are vast and varied, ranging across many present and future
industries.
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