
Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Circuit Theory

Master Thesis

Interpretable Lung Perfusion Imaging with
Feature-Based Modelling of EIT’s Cardiac-Related
Signal

Annamária Miheličová

Supervisor: Diogo Silva, M.Sc. (RWTH Aachen University, Germany)
Second supervisor: Ing. Jan Havlík, Ph.D.
Field of study: Medical Electronics and Bioinformatics
Subfield: Medical Instrumentation
May 2024



ii



MASTER‘S THESIS ASSIGNMENT 

I. Personal and study details 

483455 Personal ID number:  Miheličová  Annamária Student's name: 

Faculty of Electrical Engineering Faculty / Institute: 

Department / Institute:    Department of Circuit Theory 

Medical Electronics and Bioinformatics Study program: 

Medical Instrumentation Specialisation: 

II. Master’s thesis details 

Master’s thesis title in English: 

Interpretable Lung Perfusion Imaging with Feature-Based Modelling of EIT’s Cardiac-Related Signal  

Master’s thesis title in Czech: 

Interpretovatelné zobrazování perfuze plic s modelováním na základě charakteristických rysů 
souvisejících se srdečním signálem EIT  

Guidelines: 

• Implementation of extraction routines for a large number of varied relevant features 
• Feature extraction and assembly of a large feature dataset 
• Statistical analysis for the selection and interpretation of important features, and identification of feature interactions 
• Appropriate application and training of candidate data-driven models 
• Interpretation of test results and iterative refactoring of the processing pipeline 

Bibliography / sources: 

[1] S. Leonhardt and B. Lachmann, “Electrical impedance tomography: the holy grail of ventilation and perfusion monitoring?,” 
Intensive Care Med., vol. 38, no. 12, pp. 1917–1929, Dec. 2012, doi: 10.1007/s00134-012-2684-z. 
[2] C. Putensen, B. Hentze, S. Muenster, and T. Muders, “Electrical Impedance Tomography for Cardio-Pulmonary 
Monitoring,” J. Clin. Med., vol. 8, no. 8, p. 1176, Aug. 2019, doi: 10.3390/jcm8081176 
[3] J. Solà, A. Adler, A. Santos, G. Tusman, F. S. ^ Sipmann, and S. H. Bohm, “Non-invasive monitoring of central blood 
pressure by electrical impedance tomography: first experimental evidence,” Med. Biol. Eng. Comput., vol. 49, no. 4, pp. 
409–415, Apr. 2011, doi: 10.1007/s11517-011-0753-z 
[4] C. A. Grant, T. Pham, J. Hough, T. Riedel, C. Stocker, and A. Schibler, “Measurement of ventilation and cardiac related 
impedance changes with electrical impedance tomography,” Crit. Care, vol. 15, no. 1, p. R37, 2011, doi: 10.1186/cc9985. 
[5] I. Frerichs et al., “Assessment of Changes in Distribution of Lung Perfusion by Electrical Impedance Tomography,” 
Respiration, vol. 77, no. 3, pp. 282–291, 2009, doi: 10.1159/000193994. 
[6] M. Kircher et al., “Regional Lung Perfusion Analysis in Experimental ARDS by Electrical Impedance and Computed 
Tomography,” IEEE Trans. Med. Imaging, vol. 40, no. 1, pp. 251–261, Jan. 2021, doi: 10.1109/TMI.2020.3025080 

Name and workplace of master’s thesis supervisor: 

Diogo Silva, MSc.    RWTH Aachen University  

Name and workplace of second master’s thesis supervisor or consultant: 

Ing. Jan Havlík, Ph.D.    Department of Circuit Theory, FEE  

Deadline for master's thesis submission:   24.05.2024 Date of master’s thesis assignment:   31.08.2023 

Assignment valid until:   16.02.2025 

___________________________ ___________________________ ___________________________ 
prof. Mgr. Petr Páta, Ph.D. 

Dean’s signature 
doc. Ing. Radoslav Bortel, Ph.D. 

Head of department’s signature 
Diogo Silva, MSc. 
Supervisor’s signature 

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1 



III. Assignment receipt 
The student acknowledges that the master’s thesis is an individual work. The student must produce her thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1 



Acknowledgements
I would like to express my gratitude to
all those who supported me during my
double-degree studies at CTU in Prague
and RWTH Aachen. Specifically, I am
thankful to my supervisor, M.Sc. Diogo
Silva, for his guidance, support, and feed-
back throughout the entire process of writ-
ing this thesis. I extend my appreciation
to my CTU supervisor, Ing. Jan Havlík,
Ph.D., for his continuous support not only
during the thesis but also throughout my
entire master’s studies. Most importantly,
I want to express deep gratitude to my
family and boyfriend for their unwavering
love and support in my life.

Some computational resources were
provided by the e-INFRA CZ project
(ID:90254), supported by the Ministry of
Education, Youth and Sports of the Czech
Republic. Thank you.

Declaration
I declare that the presented work was
developed independently and that I
have listed all sources of information
used within it in accordance with the
methodical instructions for observing the
ethical principles in the preparation of
university theses.

In Prague, on 24.5.2024

....................................
Annamária Miheličová

v



Abstract
Obtaining the lung perfusion distribu-
tion in a continuous, non-invasive way
is considered a promising method, as
the current gold standard, traditional
radiation-based imaging method, repre-
sents an invasive and potentially harmful
solution. The aim of this thesis is to de-
velop a data-driven statistical model capa-
ble of assessing perfusion in real-time and
non-invasively by focusing on leveraging
the cardiac component of the electrical
impedance tomography signal and utiliz-
ing extracted features from the signal.

The thesis employs two main statistical
tasks: regression to quantify lung per-
fusion and classification to assess lung
blockages. Models are trained on real
animal data with varying perfusion insuf-
ficiencies, with the flow derived from the
enhanced signal after saline contrast in-
jection, as a reference. Cross-validation
techniques are used for unbiased evalu-
ation of results, revealing variability in
data among animals that affects model
performance. Interpretable models, rang-
ing from simple logistic regression to vari-
ants of the generalized additive model are
implemented to provide a solution and
are compared with black-box models like
Random Forests and XGBoost.

Although black-box models generally
slightly outperform interpretable ones, in-
terpretable models show promising results
in both regression and classification tasks
compared to a single-feature linear model
comparable to the state-of-the-art, termed
as a baseline model.

This thesis successfully investigates the
cardiac-related signal in the context of
lung perfusion evaluation, highlighting its
capabilities and limitations. The results
and future investigations may lead to the
development of a non-invasive and real-
time approach to assess lung perfusion.

Keywords: electrical impedance
tomography, cardiac-related signal,
interpretable models, lung perfusion

Abstrakt
Získanie distribúcie perfúzie pľúc konti-
nuálnym, neinvazívnym spôsobom sa po-
važuje za sľubnú metódu, keďže súčasný
zlatý štandard, tradičná zobrazovacia me-
tóda založená na žiarení, predstavuje in-
vazívne a potenciálne škodlivé riešenie.
Cieľom tejto práce je vyvinúť štatistický
model založený na údajoch, ktorý dokáže
posúdiť perfúziu neinvazívne a v reálnom
čase, pričom sa zameriava na využitie srd-
covej zložky signálu z elektrickej impe-
dančnej tomografie a využitie extrahova-
ných znakov zo signálu.

V práci sa využívajú dve hlavné šta-
tistické úlohy: regresia na kvantifikáciu
perfúzie pľúc a klasifikácia na posúdenie
ich blokády. Modely sa trénujú na sku-
točných údajoch zvierat s rôznou mierou
perfúzie, pričom ako referencia slúži prie-
tok odvodený zo signálu po podaní kon-
trastného roztoku. Pre objektívne vyhod-
notenie výsledkov sa používajú techniky
krížovej validácie, ktoré odhaľujú variabi-
litu dat medzi zvieratami, ktorá ovplyv-
ňuje kvalitu modelov. Interpretovateľné
modely, od jednoduchej logistickej regre-
sie až po zovšeobecnené aditívne modely
sú implementované s cieľom poskytnúť
riešenie a porovnávajú sa s black-box mo-
delmi, ako napríklad Random Forests a
XGBoost.

Hoci black-box modely všeobecne
mierne prekonávajú interpretovateľné mo-
dely, aj oni vykazujú sľubné výsledky v
regresii a klasifikácii v porovnaní s jed-
nopríznakovým lineárnym modelom po-
rovnateľným so state-of-the-art modelom,
označeným ako baseline model.

Táto práca úspešne skúma signál súvi-
siaci so srdcom v kontexte perfúzie pľúc,
pričom poukazuje na jeho možnosti a li-
mity. Výsledky a budúce výskumy môžu
viesť k vývoju neinvazívneho prístupu na
určenie perfúzie pľúc v reálnom čase.

Kľúčové slová: elektrická impedančná
tomografia, signál súvisiaci so srdcom,
interpretovateľné modely, pľúcna perfúzia
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Chapter 1
Introduction

The human respiratory system is essential for exchanging oxygen and carbon dioxide, and
any disruption can have serious, life-threatening consequences. Measuring lung perfusion can
be a useful way to identify the right treatment.

Electrical impedance tomography (EIT) is a radiation-free imaging technique that allows for
the assessment of electrical impedance within the thoracic cavity, providing insight into lung
dynamics, blood flow distribution, and the transmission of cardiac-related signals through
lung tissue [1]. This modality has several advantages, such as being non-invasive and having
no fatal effect on the patient being examined. Additionally, it is cost-effective and provides
real-time results, meaning that any changes in function can be detected immediately [2].

In order to acquire EIT images, electrodes are placed evenly around the chest. A small
current is then injected into the body and the voltage that is produced is measured [1]. The
alterations in impedance caused by breathing can be detected in the area of the heart and lungs.

There are two techniques for measuring lung perfusion in both areas. The invasive ap-
proach involves injecting a contrast agent into the bloodstream. The difference in conductivity
between the agent and the blood allows tracking of changes in impedance, which are related
to perfusion [3]. Unfortunately, this method is not suitable for continuous monitoring due to
its invasive nature.

In comparison to the invasive approach, the non-invasive is based on the electrical activity of
the heart, which leads to alterations in the impedance of the heart and lungs. This is because
blood has a higher conductivity than tissue, which results in a lower impedance measurement.
Changes are caused by blood flow through the organs [1]. Although the effect of the cardiac
signal on lung perfusion is still being studied, a recent study [4] provided clear evidence of a
link between the two.

This thesis investigates the connection between the above mentioned organs by concen-
trating on discovering suitable features that can be used to interpret the lung perfusion
from the cardiac signal based on EIT measurement. Firstly, a dataset of extracted features
from the recorded data is created. The dataset is then visualized to identify the features
that are relevant for further processing. Subsequently, a statistical methods are chosen and
implemented for the selection of significant features and evaluation of the results. Finally, the
results of the statistical test are validated.
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1. Introduction .............................................
1.1 Structure of the thesis

This thesis is structured into five chapters. Chapter 2 explains the theoretical principles
necessary for a comprehensive understanding of the topic. It covers the EIT method, IBS as
the current gold standard method used as a reference, and the origin of CRS. Additionally, the
statistical methods and models used are explained in the conclusion of this chapter. Chapter 3
focuses on explaining the methods and implementation of extraction routines for a large
number of relevant features and an appropriate application and training of candidate data-
driven models. The results are presented and evaluated in chapter 4, where the interpretation
of test results and iterative refactoring of the processing pipeline is also discussed. Chapter 5
concludes the thesis, providing an overview of the entire process and providing insights for
future directions.

2



Chapter 2
Theoretical Background

This chapter gives a brief overview of the fundamental theoretical concepts employed in the
diploma thesis. Initially, electrical impedance tomography (EIT) is explored by explaining
its measurement principle and related components. Subsequently, image reconstruction
techniques utilizing both forward and inverse methods are described.

Following this, the chapter explains the monitoring of lung perfusion and the use of the
cardiac component of the recordings (CRS). It also examines the indicator bolus signal (IBS)
method, analyzing its advantages and disadvantages together with comparison to the EIT.
Additionally, it describes the process of extracting ground-truth signals for comparative
analysis purposes.

In the final section of the chapter, the fundamental principles of statistical analysis are
presented. Initially, the distinction between regression and classification tasks are described.
Then, the principles underlying the implemented statistical models for each task are explained.
Lastly, the chapter discusses various evaluation metrics.

2.1 Electrical Impedance Tomography

Electrical impedance tomography (EIT) is a radiation-free two-dimensional imaging method
utilized to determine electrical conductivity within the heart and thoracic region [5]. Its
hardware components are relatively simple, making it a cost-effective alternative to other
imaging modalities. Moreover, its non-invasive nature permits prolonged bedside monitoring.
EIT generates images through the placement of 16 surface electrodes around the thorax, using
the varying conductivity of blood and tissues during systole and diastole. This fluctuation
in conductivity, attributed to the heart pumping action and the transition from diastole to
systole, produces a measurable voltage across the electrodes [6, 5].

Despite its high temporal resolution (13-50 frames/s), this method suffers from poor spatial
resolution [7]. In EIT, a small electrical current of 5 mA is applied at a frequency of 100 kHz
to a pair of electrodes, while the voltage is measured on the remaining electrodes, as illustrated
in Figure 2.1. The system then calculates both the amplitude and phase simultaneously [6].
Further details of EIT’s measurement principle will be provided in the subsequent sections.

2.1.1 Bioimpedance

Bioimpedance refers to the electrical impedance, denoted by Z, present in biological tissues.
Typically, it is assessed using the four-electrode method, where a small alternating current
is applied to a pair of electrodes, while the voltage is measured on the remaining two. The
impedance magnitude |Z| and the phase angle Φ are determined by the current frequency, as
outlined in Equations 2.2 and 2.3 [8].

3



2. Theoretical Background ........................................

Figure 2.1: Overview of the steps in EIT image generation and interpretation [6].

Mathematically the electrical impedance is expressed by following equations

Z = R + jXC , (2.1)

|Z| =
√

R2 + X2
C , (2.2)

Φ = tan−1
(

XC

R

)
. (2.3)

Equation 2.1 shows that this quantity is complex, comprising both resistance (R) and
reactance (XC). It offers valuable insights into biological systems, particularly in the context
of EIT, where it helps measure intrathoracic bioimpedance [1].

2.1.2 Adjacent Driven Configuration

The adjacent driven configuration is the most commonly used method for EIT measurement.
It involves placing 16 electrodes in a belt configuration around the patient’s chest, typically
utilizing biocompatible materials that are washable for reuse. Typically, saline solutions
are applied to improve contact between the electrode and the skin, with monitoring usually
conducted in the fourth and sixth intercostal spaces for lung evaluation.

In this principle, a small alternating current (AC) is injected into one electrode pair
(electrode 1 and electrode 2) at time t, as depicted in Figure 2.2, while the voltages are
measured in all other electrodes. This results in N − 3 = 13 combinations [6, 7]. After
the initial measurement, the injection current is transferred to another pair of electrodes
(electrodes 2 and 3) at time t + ∆t, and the voltages are measured again. To construct a
complete EIT image, this process of rotating the injection and measurement electrodes around
the thorax is repeated.

The AC current employed in this method is non-invasive, posing no harm to the human body
as it is applied to the surface. Nonetheless, caution is advised when conducting measurements
on patients with implanted electrical devices, such as cardiac pacemakers or defibrillators [1].

2.1.3 Image Reconstruction

Electrical Impedance Tomography (EIT) images are generated using image reconstruction
techniques on the recorded frames. This approach relies on determining the distribution
of electrical voltages within the thoracic cavity. Although the principle of rendering EIT
images shares similarities with two-dimensional Computed Tomography (CT) scans, there
are distinctions in the projection region. CT images are presented in slices, whereas EIT
images are represented in regions, with the sensitivity region influenced by factors such as

4



................................... 2.1. Electrical Impedance Tomography

Figure 2.2: Adjacent driven configuration used in EIT measurement [7].

the size and shape of the thorax, the injected current, and the measured voltages [9]. This
chapter explains the image reconstruction methods utilized in contemporary EIT practices.
In contrast, CT imaging uses X-rays to produce a cross-sectional body image, a method
considered more invasive than EIT.

Forward Problem

The forward problem involves the propagation of an injected current through the body and the
distribution of measured voltages given the electrical properties. The finite element method
(FEM) stands out as the most widely used approach to solve this problem. However, this
method requires the Laplace equation and the boundary conditions, which are often unknown,
to obtain an accurate approximation for FEM [6, 10]. This is expressed by Equation 2.4.

K ·Φ = J, (2.4)
where K represents the conductivity matrix of global coordinates of the mesh at a particular
distribution, Φ denotes the potential matrix corresponding to each applied current pattern,
and J signifies linearly independent patterns.

The solution of Equation 2.4 is known as an observation model, defined by Equation 2.5 as

Φ = f(ρ), (2.5)

where Φ denotes the calculated voltages with the observation model, and ρ defines the state
in which the observation occurs (which refers to the impedance distribution). This model
neglects discretization errors, as the mesh is considered to be highly precise, as reported
in [10].

Inverse Problem

The inverse problem involves determining the internal impedance distribution that best fits
the measured voltages, essentially reconstructing the EIT measurement. Equation 2.6 defines
this as

ρ = f−1(Φ), (2.6)
which is commonly referred to as an ill-posed problem. Image reconstruction can only provide
an estimation of the internal distribution ρ.

5



2. Theoretical Background ........................................
The task of image reconstruction has significant difficulties, especially when interpreting lung

EIT data [6]. Consequently, standardization efforts have led to the development of the GREIT
(Graz consensus Reconstruction algorithm for EIT) algorithm, which currently represents the
state-of-the-art method for EIT image reconstruction. GREIT is a mathematically defined
and standardized technique for 2D EIT lung reconstruction, utilized in both clinical and
research settings. It is expressed by the linear equation 2.7 as

x̂ = Ry, (2.7)

where y represents a vector of EIT voltage differences, x̂ denotes a reconstructed voxel image,
and R stands for the EIT reconstruction algorithm matrix [11].

Time-difference Imagining

Time-difference imaging serves as a valuable tool to show conductivity changes in reconstructed
EIT images. This technique compares impedance alterations with a baseline, allowing
monitoring of dynamic processes such as lung perfusion, heartbeat, or real-time ventilation.
Although the color-coding scheme for comparing organ stages lacks standardization, the
rainbow-color scheme, depicted on the left side of Figure 2.3, is widely utilized. On the other
hand, the black-blue-white scheme, shown on the right side of the same figure, is used to
depict impedance changes, particularly encoding lung ventilation or perfusion. In addition,
there are various other reconstruction modes, including absolute EIT, functional EIT, and
EIT waveform analysis [12].

Figure 2.3: Color-coding used for representation of EIT images. Mostly, the red color represents
the highest relative impedance during inspiration and the blue represents the lowest one during
expiration. In the second case, black means that there is no impedance change, and white represents
a strong impedance change [1].

2.2 Perfusion Monitoring

Gas exchange is one of the essential functions of the lungs, occurring primarily in structures
called alveoli. Effective gas exchange is based on the ventilation and perfusion of these alveoli,
making it a crucial aspect of lung function [13]. Consequently, measuring lung perfusion can
help in diagnosing of various lung diseases.

However, finding a suitable method to address this challenge remains a subject of ongoing
research. Functional imaging techniques such as CT, MRI, SPECT, and PET offer some
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insights into ventilation distribution or perfusion, but do not allow frequent and continuous
monitoring of lung perfusion. Furthermore, this problem predominantly affects patients who
are often in bedside care [5]. Therefore, the development of appropriate portable and real-time
imaging techniques and subsequent data analysis could be beneficial in their treatment.

To date, two potential solutions for measuring lung perfusion that meet the aforementioned
requirements have been identified. The first involves an invasive approach known as the
indicator bolus signal method (IBS), while the second utilizes a non-invasive monitoring
method based on the measurement of cardiac activity (CRS) [1]. The working principles, its
applications and limitations are described in this chapter.

2.2.1 Indicator Bolus Signal

The most common thermodilution technique used to monitor lung perfusion along with
electrical impedance tomography (EIT) measurements is the indicator bolus signal (IBS).
This method involves injecting a hypertonic saline solution, often referred to as a bolus (e.g.,
10 ml of 5% NaCl) [6], into a central vein via a central venous catheter (CVC) and the bolus
travels from the right heart to the lungs and subsequently returns to the left heart [14]. The
dilution follows the gamma-variate course explained by Thompson et al. [15].

Traceability is possible by impedance variations resulting from the differing conductivities
of the bolus and the blood. Brown et al. [16] proved that conductivity signals can be used for
blood flow measurements. Based on this, in [14] the authors developed a method to directly
calculate regional lung perfusion from the obtained EIT images.

A disadvantage of this method is its invasive nature, which requires the placement of a
CVC for injection of bolus solution or regulation of blood pressure [6]. Moreover, it does not
allow continuous monitoring. However, in the future, if an appropriate amount of contrast
agent is found to be harmless for human use, the application of the IBS method may become
feasible [1]. In the thesis, the method [14] is used as a state-of-the-art approach (IBS flow
method) and is utilized as a reference for the evaluation of obtained results.

2.2.2 Cardiac Related Signal

The measurement of cardiac signal (CRS) can help with non-invasive monitoring of lung
perfusion as during EIT measurements, it is possible to monitor cardiac activity not only
within the heart but also in the lungs. In the heart region, the impedance increases during
systole and decreases during diastole, affecting the lungs with a corresponding but delayed
effect. In contrast, in the lungs, impedance decreases during systole and increases during
diastole [17]. When impedance decreases, the conductivity increases, this process is shown in
Figure 2.4.
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2. Theoretical Background ........................................

Figure 2.4: Conductivity change in lungs and heart during systole and diastole.

Apart from the origin in lung perfusion, the changes of regional impedance can be attributed
to other factors. In [18] authors divided them into three categories: mechanical activity of
the heart, such as changes in blood volume of the heart chambers, propagation of pressure
pulses along blood vessels, for instance displacement of large arteries, and other sources such
as cardiosynchronous movement of body.

There are two possible ways to obtain the CRS signal, however, both are challenging.
The first extracts the CRS signal from the mixed EIT signal, where the second component
represents the ventilation-related signal (VRS) that is approximately one order of magnitude
higher than the CRS [7]. Moreover, the spectra of the CRS and VRS signals overlap and
the application of traditional frequency filtration methods is not effective [1]. The other
method obtains the CRS signal from the measurement during short apnea. The EIT signal is
measured when the breathing is stopped, so it contains only the CRS signal. It is considered
to be a more promising method, since the signal is clearer [1], however, according to [6] there
are still some small ventilation-related artifacts and heart-lung coupling effects are absent.
The signal used in this thesis was obtained by this method.

The main benefit of the CRS signal over IBS flow for monitoring of lung perfusion is its
non-invasivity and the possibility of harmless continuous monitoring. The drawback of this
method is in long-term monitoring, as there is a need for CRS separation. Apnea is possible
only for a short time and reliable real-time filtration of the CRS and VRS components that
would allow long-term monitoring is in ongoing research. Still this approach to obtaining the
CRS signal during short-term apnea is adopted in this thesis. By extracting the signal features
of different nature and implementation of statistical models, the regional lung perfusion can
be investigated in real-time and noninvasively.

2.3 Statistical Methods

Statistical methods comprise the entire process, from formulating a hypothesis to either
accepting or rejecting it. To establish this connection, it is essential to identify the data
features that are relevant to explain the reference value. For finding this connection, it is
necessary to find data features that are relevant to explain the reference quantity. Correlation
tests are employed for this purpose. Once the relevant features are selected, an appropriate
statistical model must be chosen to link them to the reference value. This is a process of
supervised learning in which a reference variable is utilized in the model learning process. To
evaluate the performance of the model, correct evaluation metrics are necessary (described in
Chapter 2.5.1). Subsequent chapters will introduce the entire pipeline, from correlation tests
to evaluation metrics.
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2.3.1 Correlation Tests

Correlation tests are fundamental tools in statistics that are used to measure the strength and
direction of the relationship between two variables. In the thesis, these two correlation tests
are used: the Pearson correlation coefficient and the Spearman rank correlation coefficient.

Pearson’s Correlation Test

Pearson’s correlation is a statistical measure based on covariance that quantifies the strength
and direction of a linear relationship between two continuous variables. Pearson’s coefficient
(r) obtains values in the range from -1 to 1 and is defined by Equation 2.8 as

r =
∑n

i=1(Xi − X̄)(Yi − Ȳ )√∑n
i=1(Xi − X̄)2 ·

∑n
i=1(Yi − Ȳ )2

, (2.8)

where r is the Pearson’s coefficient, Xi and Yi are individual data points, X and Y are the
means of variables X and Y . Based on the resulting correlation coefficient, the correlation
strength is classified according to table 2.1 [19, 20].

Pearson’s correlation coefficient (r) value Strength Direction
Greater than 0.8 Strong Positive

Between 0.6 and 0.79 Moderately strong Positive
Between 0.3 and 0.59 Fair Positive

Less than 0.3 Poor Positive
0 No correlation None

Less than –0.3 Poor Negative
Between –0.3 and -0.59 Fair Negative
Between -0.6 and -0.79 Moderately strong Negative

Grater than -0.8 Strong Negative

Table 2.1: General correlation strength table for Pearson’s correlation test. The table may vary
between disciplines.

Spearman’s Correlation Test

Spearman’s correlation test is a nonparametric test and, in comparison with Pearson’s
correlation test, is more suitable for data that have violated normal distribution character.
The Spearman’s coefficient (ρ), defined by Equation 2.9 as

ρ = 1− 6
∑n

i=1 d2
i

n(n2 − 1) , (2.9)

expresses the strength of the correlation and direction of the monotonic relationship between
two variables and is therefore more suitable for variables that do not have a clear linear
pattern [19, 21]. In Equation 2.9 ρ is the Spearman’s correlation coefficient, di represents the
difference between the ranks of the corresponding pairs of observations and n is the number
of pairs of observations.

2.3.2 Supervised Learning

Supervised learning is a form of learning in which the algorithm is trained to make predictions
using labeled data. At the beginning, the algorithm receives a dataset of input features
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2. Theoretical Background ........................................
along with the corresponding reference outputs. The learning process involves comparing
the predicted results with the actual ones and adjusting based on the errors between the
referenced and predicted values. The primary objective is to develop a model capable of
predicting the output values based on a given set of features [22]. The complete supervised
learning workflow is depicted in Figure 2.5.

Figure 2.5: Supervised Learning Process [23].

This thesis addresses two tasks of supervised learning: classification and regression. Both
approaches involve the construction of prediction models from the data [24]. The main
difference between these two methods lies in their handling of values: regression deals with
continuous or discrete values and predicts continuous numerical values, whereas classification
aims to categorize each data point into specific categories or classes, resulting in categorical
results [24, 25]. As shown in Figure 2.6, classification attempts to find a separation line that
divides different types of values, while regression tries to find a line that minimizes the error
of each point based on the squared difference between the predicted and measured values.

Figure 2.6: Illustration of regression and classification difference [25].

Regression analysis is a statistical method that explains the relationship between a dependent
variable Y (target) and one or more independent variables X (predictors), as defined by
Equation 2.10 as

yi = f(xi, β) + ϵ, (2.10)

where β represents the coefficients for each explanatory variable, denotes the error distribution
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with a zero mean, also known as residuals. yi signifies dependant variable and xi represents
explanatory variable [26]. The coefficients β are unknown. To obtain the most accurate
coefficient results, the least squares criterion is commonly employed. This approach estimates
β̂ to minimize Residual Sum of Square (RSS) defined by Equation 2.11 as

RSS = e2
1 + e2

2 + ... + e2
m =

m∑
i=1

(yi − f(xi, β̂))2. (2.11)

Regression analysis allows an understanding of the correlations between variables and helps in
predicting the results based on one or more independent variables. When employing regression,
highly correlated independent variables (also referred to as features) should be removed from
the dataset to mitigate the potential multicollinearity. Additionally, in regression, problems
such as overfitting or underfitting may occur. Overfitting means that implemented algorithm
performs well on training data, but has difficulties with testing data. However, underfitting
occurs when the model is too simplistic and does not learn from the training data, resulting
in poor model performance [27].

In classification, prediction involves accurately assigning the correct class to unknown data
points, relying on the patterns learned from the training dataset. The objective is to develop
a model that effectively accomplishes this task [28].

2.4 Regression and Classification Models

Statistical models enable data analysis, help to understand the relationship among the
data, and provide insight into making conclusions from measurements. They give the
possibility to model real problems and find a possible solution and can be categorized into
interpretable and non-interpretable types. However, there is no exact mathematical definition
of interpretability in machine learning. The concept is often described in terms of how
well humans can understand the reasons behind a decision. For instance, according to [29],
interpretability is the degree in which humans can understand the decision-making process. In
this thesis, prioritizing highly interpretable methods is crucial due to the need to understand
the feature selection process, especially in applications related to human health [30]. In
addition, interpretable models are often taken to the real world and must be safe and
tested [31]. However, non-interpretable models are also included for comparison purposes, as
they often perform better than interpretable models, as demonstrated in Figure 2.7.

2.4.1 Generalized Additive Model

Generalized Additive Models or GAMs is an extension of the linear model introduced by [33].
This model allows generalizing of the Generalized Linear Model (GLM) including additivity
of non-linear functions of the variables. It allows complex operations beyond linearity. The
model is generally defined by equation 2.12 as

g(E(y)) = β + f1(x1) + f2(x2) + ... + fm(xm), (2.12)

where g(E(Y )) is the link function that links the expected value to the predictor variables
x1, x2, . . . , xm, β is an intercept and f1(x1), f2(x2), ..., fm(xm) are smooth functions of the
predictor variables x1, x2, . . . , xm. The advantage of the model is its possibility of including
multiple non-linear or smooth functions of selected level of smoothness, also called splines [34].
This approach is known as backfitting. The method fits a model using multiple predictors,
iteratively updating the fit for each predictor while keeping the others fixed [28].

11



2. Theoretical Background ........................................

In
te

rp
re

ta
bi

lit
y

Predictive performance

Generalized linear models

Generalized additive models

Support Vector Machine

XGBoost

Neural Networks

Decision Trees

Random Forest

Figure 2.7: Interpretability vs. performance trade-off by statistical models, adopted from [32].

Moreover, the GAMs works with various distributions for the response variable that can
be set. The method involves link functions to measure the impact of predictor variables on
dependent regressors [28]. There are several distributions, such as the normal, gamma, or
Poisson distribution. The term distribution expresses the type of error distribution. Among
available link functions belong [35, 34]:

. Log link: f(z) = log(z)

. Inverse link: f(z) = 1
z. Identity link: f(z) = z

. Logit link: f(z) = log( z
1−z )

2.4.2 Logistic Regression

Logistic regression is an appropriate solution for classification and is considered as an inter-
pretable model. Although the structure of this model is simple, it performs well, especially
when the relation between predicted and target variables is relatively linear. The logistic
regression model employs a logistic function, also referred to as the sigmoid function, which
is shown in Figure 2.8. This function squeezes the output of the linear equation within the
range of 0 to 1 as demonstrated by [31] and expressed by Equation 2.13 as

log
(

p(X)
1− p(X)

)
= β0 + β1X. (2.13)

The left side of the equation 2.13 is called a logistic function and has a linear relationship
with X. In contrast to linear regression, the change in X does not correspond to the change
in p(x), but the logarithmic odds change by a multiple of β1. β0 represents the intercept [28].
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Figure 2.9: Graphical representation of Decision Tree [31].

Figure 2.8: The logistic function. It outputs numbers between 0 and 1. At input 0, it outputs 0.5
[31].

Logistic models provide several benefits. They offer the probability of a data point belonging
to a particular class based on the observed data. Logistic models are also resilient to outliers,
restricting the output to values between 0 and 1. Furthermore, logistic regression is effective
for handling imbalanced data, making it suitable for classification tasks [31].

2.4.3 Decision Tree Method

Decision tree models, like the methods mentioned above, are highly interpretable. Their key
advantage is in addressing the nonlinear relationship between features and output, as well
as interactions among features. These models have a hierarchical structure, as shown in the
Firgure 2.9 where the starting point is called the root node, which then branches out into
subsets (subtrees). The terminal subset is called the leaf node [31]. The root is whole dataset,
branches introduce the decision rules and the leaf node is an outcome.

Classification trees are typically divided into two categories: Regression and classification
trees. More often, they are used for classification problems. The classification tree algorithm
not only provides the predicted class, but also the associated probability of belonging to that
class [28]. As each method used for data processing, the basic classification tree algorithm
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2. Theoretical Background ........................................
has its limitations. To overcome limitations such as overfitting or instability, the Random
Forests or Gradient Boosting could be used.

Boosting and Bagging

Boosting is also a method of improving the prediction resulting from the decision tree.
The algorithm creates multiple training sets of the original training dataset using bootstrap
aggregation (also called bagging). On each of these sets, one boosting tree is grown sequentially.
This means that each tree grows according to acquired information from previous trees. It is
called the iterative method and a new model is influenced by the performance of previous
models that were created before [28, 36].

2.4.4 Random Forests

Random Forest is a machine learning algorithm considered as a supervised learning method.
It is used for both regression and classification problems and is based on the decision tree
method. The higher the number of trees, the higher the accuracy and the lower the probability
of overfitting [37]. In Random Forest, each sample m is randomly chosen from the p predictors.
Typically, around m ≈ √p predictors predictors are taken in each split, as shown in Figure 2.10.
This means that the algorithm does not consider all possible predictors. Consequently, when
a very strong predictor occurs in the data, the algorithm compensates by only considering a
subset of predictors in each split. On average, (p−m) /p of the very strong predictor is not
considered, allowing other predictors to contribute. The most important difference between
bagging and Random Forest lies in the appropriate size chosen for m [28].

Figure 2.10: It describes the prediction of sample from dataset. At first, there is a train dataset.
Then the trees are built associated with numbers of subsets. After that, the number of decision
trees is chosen. In the figure Tree 1, Tree 2, ..., Tree n. These steps are repeated several times.
Finally, for a new data point, the predictor of each tree (the last red leaf) is found. In regression,
the predictor is chosen based on the mean, in classification based on majority votes.

2.4.5 Extreme Gradient Boosting

Extreme Gradient Boosting or XGBoost is an algorithm based on parallel tree boosting. The
method was developed and specified in [38] with the idea of pushing the computing limits of
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the boost algorithm to make it more robust. XGBoost creates new models that can predict
the residuals of previous models. This means that new models learn from the difference
between the observed and predicted data values. After the prediction of all residuals, the final
prediction model is created [39]. The challenge of this algorithm is to choose the parameters
for optimal performance as there are many of them. In this thesis, the set of parameters is
found using the Grid Search algorithm.

The advantage of this method is its high speed and efficiency. Moreover, using in-build
Lasso and Ridge regularization prevents overfitting and provides feature importance score
to allow users to prioritize features that are more important for building the model. The
disadvantage is the low interpretability of the model [39].

Grid Search Algorithm

Grid Search algorithm is a method to find the best suitable hyperparameters when tuning
the model. The input is a set of values of different parameters. The algorithm calculates
all possible possibilities and chooses the set of hyperparameters and their values that give
the best results for the model after training. The disadvantage of the Grid Search algorithm
is that it is time consuming and expensive. However, in a time-consuming and complexity
trade-off, this method is the most suitable for the thesis according to the comparison in [40].

2.5 Model Evaluation Metrics

Evaluation methods are crucial to compare the predictive capabilities of models, fine-tuning
model parameters, and assessing the ability of the statistical model to predict variables. This
chapter introduces the evaluation metrics used to measure the performance of the models.
Throughout the model training process, these metrics were calculated in the testing fold in
each iteration of the cross-validation and averaged at the end to obtain the overall performance
of the trained model.

2.5.1 Metrics for Regression

This section presents the evaluation metrics employed to assess the performance of regression
models. These metrics provide insight into how well the models predict continuous variables.

R-squared

R-square method is a useful measure of the fitting quality for the regression models from the
exponential family, which include, for example, logit, probit, Poisson or linear models [41]. It
is defined as the proportion of variance in the dependent variable that is explained by the
independent variables in a regression model, and mathematically it is expressed by equation
2.14.

R2 = 1− SSE

SST
, (2.14)

where SSE means squared sum of the error defined by equation 2.15 as

SSE =
n∑

i=1
(yi − ŷi)2 (2.15)

and SST is the squared sum of the data variance defined by equation 2.16 as

SST =
n∑

i=1
(yi − yi)2 (2.16)
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and yi is the observed value of the dependent variable for data point i, ŷi is the predicted
value of the dependent variable for data point i obtained from the regression model, yi is the
mean of the observed values of the dependent variable and n is the number of data points
[31].

If R2 = 0 the model does not explain any of the variability in the dependent variable, if
R2 = 1 indicates that the model perfectly explains the variability in the dependent variable.
However, the optimal R2 results differ depending on the type of data and give any information
about the significance of the variable. Therefore, it must be interpreted with other evaluation
metrics.

Root Mean Squared Error

Root mean squared error or RMSE is a metric for evaluating the accuracy of the predictive
model and provides an overall value of the error distribution. It expresses the average
magnitude of the differences between predicted and observed values, providing a measure
of how well the model predictions align with the actual data. This metric is defined by the
equation 2.17 [42].

RMSE =

√√√√ 1
n

n∑
i=1

(yi − ŷi)2, (2.17)

where the meaning of used variables is the same as by equations in Chapter 2.5.1. The best
result is if RMSE = 0, which means perfect predictions.

Mean Absolute Error

Mean absolute error (MAE) is another accuracy evaluation metric for regression analysis.
It represents the average absolute difference between the predicted and observed values,
providing a measure of the model performance [42] and it is expressed with the equation 2.18
as

MAE = 1
n

n∑
i=1
|yi − ŷi|. (2.18)

The meaning of used variables is the same as by equations in Chapter 2.5.1.

Effective Degrees of Freedom

Effective Degrees of Freedom or effective DoF is a measure that expresses flexibility and
complexity of the model. It is useful for understanding the trade-off between model complexity
and overfitting. This metric is present as the in-build criterion of the GAM summary table.
The general rule is that the higher the effective DoF, the more flexible the model is to handle
complex data, and there is a higher probability that the model will correctly fit the data and
prevent overfitting [43].

2.5.2 Metrics for Classification

In this section, we present the metrics used to evaluate the performance of classification models.
The evaluation metrics employed in this thesis are generalized for multi-class classification
and are derived from the confusion matrix [44], as further described in this chapter. In binary
classification, simplification involves excluding the variable k from the equations.
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Confusion Matrix

The confusion matrix provides a useful visualization of a model performance. Typically, as
shown in Figure 2.11, the x-axis represents the predicted classes of the classification model,
while the y-axis displays the actual classification classes. From this table, all classification
accuracy metrics can be derived. The variables in the matrix have the following meanings:
TP denotes true positives, indicating the number of correctly predicted target instances; TN
represents true negatives, indicating correctly predicted instances different from target ones.
On the other hand, FP indicates the number of instances that were predicted as target class
but actually belong to the other class, while FN represents instances that should have been
predicted as target class but were instead assigned a different one [45]. Additionally, in the
equations below, the variable K is utilized to represent the total number of values in the
confusion matrix.

Metrics for Multi-Class Classification: an Overview A WHITE PAPER

importance), while in the multi-class case we consider all the classes one by one and, as a consequence, all the entries
of the confusion matrix.

To give some intuition about the F1-Score behaviour, we review the effect of the harmonic mean on the final score.
It has been observed from previous studies that it gives large weight to smaller classes and it mostly rewards models
that have similar Precision and Recall values. As an example, we consider Model A with Precision equal to Recall
(80%), and Model B whose precision is 60% and recall is 100%. Arithmetically, the mean of the precision and recall is
the same for both models, but using the harmonic mean, i.e. computing the F1-Score, Model A obtains a score of 80%,
while Model B has only a score 75% [12].

Moreover, Precision and Recall take values in the range [0;1] and when one of them assumes values close to 0, the final
F1-Score suffers a huge drop. In fact the harmonic mean tends to give more weight to lower values.

4.1 F1-Score Binary case

Referring to confusion matrix in Figure 2, since Precision and Recall do not consider the True Negative elements, we
calculate the binary F1-Score as follows:

Precision =
20

30
= 0.66 Recall =

20

25
= 0.80 (10)

F1-Score = 2 ·
�

0.66 · 0.80
0.66 + 0.80

�
= 0.72 (11)

The F1-Score for the binary case takes into account both Precision and Recall. Thanks to these metrics, we can be quite
confident that F1-Score will spot weak points of the prediction algorithm, if any of those points exists.
In our example a score of 0.72 demonstrates a quite good model ability in predicting the correct class.

4.2 F1-Score Multi-class case

When it comes to multi-class cases, F1-Score should involve all the classes. To do so, we require a multi-class measure
of Precision and Recall to be inserted into the harmonic mean. Such metrics may have two different specifications,
giving rise to two different metrics: Micro F1-Score and Macro F1-Score [9].

4.2.1 Macro F1-Score

In order to obtain Macro F1-Score, we need to compute Macro-Precision and Macro-Recall before. They are respectively
calculated by taking the average precision for each predicted class and the average recall for each actual class. Hence,
the Macro approach considers all the classes as basic elements of the calculation: each class has the same weight in the
average, so that there is no distinction between highly and poorly populated classes.

Figure 4: Macro-Precision and Macro-Recall
Class b is the reference and we show how to compute its Precision and Recall

For the required computations, we will use the Confusion Matrix focusing on one class at a time and labelling the tiles
accordingly. In particular, we consider True Positive (TP) as the only correctly classified units for our class, whereas

6

Figure 2.11: Confusion matrix for for multi-class classification. This matrix helps with under-
standing of evaluation techniques as all metrics are shown. In the figure, b is the target class [46].

Accuracy

Accuracy measures the proportion of correctly classified instances divided by total number of
instances in dataset.

Accuracy =
∑n

k=1 TPk

K
(2.19)

Precision

Precision measures the proportion of true positive predictions divided by all instances predicted
as positive by the model. Indicates the model’s ability to avoid false positives.

Precisionk = TPk

TPk + FPk
(2.20)

Recall

Recall measures the proportion of true positive predictions over all ground truth positive
instances in the dataset. Indicates the model’s ability to correctly identify all positive
instances.

Recallk = TPk

TPk + FNk
(2.21)
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F-1 Score

The F1-score is the harmonic mean of precision and recall and provides a balanced measure of
the performance of a model. It is particularly useful when dealing with inbalanced datasets.

F1k = 2 · Precisionk ·Recallk
Precisionk + Recallk

(2.22)
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Chapter 3
Methods and Implementation

The implementation of selected methods has a pipeline that is shown in Figure 3.1. In the
first step, feature engineering is performed where all implemented features are extracted
from the measured EIT signal. After that, the clearing of created dataset is done followed
by normalization after outlier detection. The next step keeps only the features that have a
mutual correlation less than 85 %, and then they were eliminated based on their importance
to the reference bolus signal. From these features, polynomial relationships of the second and
third degree are found and ranked again according to their importance relative to the bolus
signal. After the whole described process is completed, the final feature subset is created, and
this is the input dataset for the implementation of statistical models.

Stage 1 Stage 3

Stage 2 Stage 4Feature Engineering

feature extraction
masking
normalization

Dataset clearing

NaN removal
non-informative feature
removal
outlier detection

Normalization
dataset normalization
after clearing

Feature correlation

Pearson's correlation
test for finding redundant
features

Stage 5 Stage 7

Stage 6 Stage 8Tree-based models

Random forest, XGBoost
feature elimination
feature importance

Polynomial
discovery

2nd and 3rd degree
its correlation

Feature subset

dataset containing
chosen features as input
for statistical model

Implementation of
statistical models

Figure 3.1: Implementation pipeline from dataset creation until inputs for statistical models.
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3. Methods and Implementation......................................
3.1 Dataset Creation

This thesis utilizes recordings of EIT measurements of the field of view shown in Figure 3.2,
which were initially processed using Matlab. To ensure accurate assessment of the lungs and
heart, regions of interest (ROI) were extracted from CT measurements. The IBS flow served
as a reference for the analysis.

Figure 3.2: The placement of an EIT belt and field of view on real animal.

The dataset comprises measurements of 11 animals, recorded in multiple stages according
to the blockage distance. The measurement of one stage takes approximately 18 minutes and
was divided into several phases as shown in Figure 3.3. The first phase begins with apnea,
during which respiration is paused, followed by bolus injection and measurement of IBS flow,
labeled IBS 1. This entire phase lasts for one minute. The subsequent phase involves the EIT
measurement, denoted CRS 1, conducted during the next half-minute. Afterwards, CT data
is collected over 15 minutes. Finally, IBS 2 and CRS 2 are acquired again to complete the
measurement of the entire stage. These procedures were followed to obtain all recordings.

Apnea + 
Bolus

Apnea P-CT
Apnea
+ Bolus

Apnea

1 min. 0.5 min. 0.5 min.1 min.15 min.

iCCO

IBS 1 CRS 1 IBS 2 CRS 2

Figure 3.3: The process of data acquisition.

Some recordings show scenarios without blockage, while others capture instances of blockage,
classified as central, medial, or peripheral, and marked as unhealthy. Central and medial
blockages are similar as they both involve obstructing an artery from the heart to the lung,
leading to reduced blood flow to the lung. Typically, central blockage occurs slightly before
medial blockage. However, peripheral blockage occurs when the capillaries are obstructed,
causing prolonged blood flow to the lungs before blockage. Blockage methods include
catheterization and microsphere administration, with catheterization mainly resulting in
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.......................................... 3.1. Dataset Creation

central or medial blockages, while microsphere administration leads solely to peripheral
blockages.

3.1.1 Pre-processing

The dataset creation process begins with filtration in Matlab, where the cardiac signal was
extracted from the overall signal using zero-phase digital filtering as proposed by Gustafs-
son [47]. Subsequently, the filtered data were processed in Python for subsequent statistical
analysis.

Moreover, the CT signal played a crucial role in accurately determining the Regions of
Interest (ROIs) for the lungs and heart. These ROIs were used in the model learning process,
helping to mitigate the influence of perfusion not related to the lungs. Specifically, the ROIs
were designed to precisely specify areas where lung signals occur, avoiding the middle part of
the thorax, where signals from the heart and lungs are mixed, making it difficult to distinguish
the organ responsible for the EIT signal. Individual components are depicted in Figure 3.4.

Figure 3.4: ROI importance map.

3.1.2 Label Extraction

In supervised learning, labels are a crucial part of the statistical learning process. They
are references for models on which its predictions are evaluated, and models try to improve
its performance in the next iteration. Correct label extraction helps statistical models in
the learning process and significantly contributes to the training, evaluation, and prediction
process. In regression task, the labels represent continuous values that the models try to
predict based on given input features. The aim is to learn the relationship between input
features and the corresponding labels to predict new data. However, for regression, no special
algorithm for label extraction was developed.

In classification, labels represent distinct classes or categories. During the learning process,
the model attempts to classify new data points based on input features and reference class
labels. In this thesis, a binary classification is performed between healthy and unhealthy data
points. Subsequently, this classification is extended to four classes, where the healthy and
different types of unhealthy classes (central, medial and peripheral) are distinguished. The
process of label extraction is shown in Algorithm 1.

Before starting the algorithm, masks for each lung (maskRL and maskLL) were established
by selecting values from the signal in ROIs above a predefined threshold, Lungthres, which
was set at 50% of the ROI signal for each lung. The IBSthres parameter was used to identify
regions where the IBS flow reached at least 50% of its maximum amplitude. Within the
algorithm, healthy or unhealthy labels were assigned to each pixel. During the healthy stage,
the healthy label was assigned to both lungs. In unhealthy stages, the label was assigned
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3. Methods and Implementation......................................
Algorithm 1: LabelExtraction

Input: maskRL, maskLL, IBSthres, stages
Output: labels

1 labels = ∅;
2 for s ∈ stages do
3 if s is unhealthy then
4 sh = find corresponding healthy stage to s;
5 if isRightLung then
6 IBSmaxRL ← max from right healthy lung in sh;
7 labelss[maskRLs and IBS < IBSmaxRL · IBSthres] = unhealthy;
8 labelss[(maskRLs and IBS >= IBSmaxRL · IBSthres) or maskLLs] = healthy;
9 else

10 IBSmaxLL ← max from left healthy lung in sh;
11 labelss[maskLLs and IBS < IBSmaxLL · IBSthres] = unhealthy;
12 labelss[(maskLLs and IBS >= IBSmaxLL · IBSthres) or maskRLs] = healthy;

13 else
14 labelss[maskRLs] = healthy;
15 labelss[maskLLs] = healthy;

based on the side, to the region where the IBS flow was low relative to the maximal flow in
the corresponding healthy lung. Other pixels were designated as healthy since they remained
unaffected by blockage. For the multi-class classification task, various types of unhealthy
labels based on the stage were assigned to pixels. Details of both classification task labels are
provided in Table 3.1.

Task Label Meaning Abbreviation
Binary
classification

0 Healthy H
1 Unhealthy U

Multi-class
classification

0 Healthy H
1 Central blockage C
2 Medial blockage M
3 Peripheral blockage P

Table 3.1: Labels for both binary and classification tasks.

3.1.3 Feature Engineering

Following the pre-processing stage, feature extraction was performed on the acquired data.
Pixel-wise features were extracted from the EIT measurements for each animal and stage
over time, forming the dataset. Specifically, a pixel in the center of the heart is taken as a
reference for signal delay computation and to align the reference pixel with other pixels to
obtain the systolic and diastolic parts of the recording. In total, 107 features were created
and extracted to support both the regression and classification tasks. More details on these
features are provided in Table 3.2, with each feature being extracted for every pixel over time.
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Group Feature Description

Spectral

harmPeakX

harmIntX

harmDelX

harmPeakRatX

harmIntRatX

harmDelRatX

All of the spectral features are computed based on FFT
spectrum of EIT recording over time. X represents the
harmonics of the corresponding feature. harmPeakX is the
amplitude of the Xth peak in the spectrum which is higher
than 0.25 of maximum amplitude of the reference pixel
over time spectrum. harmIntX sums up neighborhood
amplitudes around the Xth peak in the spectrum.
harmDelX is the spectral phase of the Xth peak. All
Rat are ratios of the respective features to the total sum
of those features over the whole EIT recording.

Optical

optDiastPha
optSystPha
optDiastR
optSystR

average Farnebäck optical flow [48] of Diastolic or Systolic
part of EIT signal of each pixel in time transformed to
polar coordinates (radius R and phase Pha)

Model-
based

gaussXAY
gaussXmuY
gaussXsigmaY

sum of X = 2 or X = 3 Gaussians is fit to the EIT
signal of each pixel in time and the sorted amplitudes A,
means mu and standard deviations sigma of each
Gaussian Y is one feature

Statistics

statsCumQX
quantile (corresponding percentiles X are 1 −→ 2.5%,
2 −→ 25%, 3 −→ 50%, 4 −→ 75%, 5 −→ 97.5%) of the EIT
signal of each pixel in time

statsCumdQX quantile differences divided by percentile difference q2−q1
p2−p1

statsMin minimum of the EIT signal of each pixel in time
statsMax maximum of the EIT signal of each pixel in time

Temporal tempLag
temporal lag with respect to the reference pixel
calculated using searching for maximum correlation
with the reference pixel

tempEnergy sum of squared EIT signal values of each pixel in time

Second-
order

diffMin minimal discrete difference between consecutive values
of the EIT signal of each pixel in time

diffSTD standard deviation of the discrete difference of the EIT
signal of each pixel in time

diffXMin time of the minimal discrete difference between conse-
cutive values of the EIT signal of each pixel in time

diffMedian median discrete difference between consecutive values
of the EIT signal of each pixel in time

diffCentroid centroid of discrete difference between consecutive values
of the EIT signal of each pixel in time

Others distToHeart distance to the reference pixel of each pixel

Table 3.2: Examples of extracted EIT features for both regression and classification tasks.

Final Dataset

Before finalizing the dataset, standardization is applied. This process, also known as feature
scaling, involves normalizing the range of features in a dataset. Features often have varying
ranges due to differences in measurement quantities, thus standardization ensures consistency
for statistical models to interpret them effectively. With normalization, each feature influences
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3. Methods and Implementation......................................

Figure 3.5: Visualization of the structure of the final dataset that is used for training and testing
of statistical model.

the model equally, which is also crucial for linear models to maintain interpretability, ensuring
that all features hold the same relative importance. In this thesis, the Min-Max scaling was
used, as it transforms the data into the same [0,1] range [49] and is expressed as

Xscaled = X −min(X)
max(X)−min(X) , (3.1)

where Xscaled represents the scaled value of the feature X, X is the original value, Xmin is
the minimum value and Xmax is the maximum value [50] .

Once the standardization is completed, the final dataset can be visualized as a table referring
to Figure 3.5 where each column belongs to the recordings, features, or IBS signal. Each row
represents a single data point that represents a pixel of the EIT image. The final dataset was
created for both the regression and classification tasks in a unified file.

3.1.4 Dataset Clearing

Data clearing is one of the most essential procedure in handling extensive datasets. It involves
the elimination of incomplete, inaccurate, or irrelevant data from the dataset to improve
its quality. It helps to eliminate erroneous data that could potentially mislead a model and
ensures the creation of a high quality dataset [51].

In the initial step of this process, NaN values were removed, as they contain any value,
to ensure the integrity of the dataset and to prevent potential issues during the training
of statistical models. Furthermore, certain models cannot process datasets containing NaN
values. These problematic data points were eliminated from both the EIT and the reference
(IBS flow) datasets. Initially, NaN values were identified within the IBS signal. Subsequently,
any rows containing NaN values were removed, not only from the IBS data itself but also
from the corresponding EIT data, to ensure the same sizes of the data. This process was then
repeated for the EIT data containing NaN features. As a result, the dataset was reduced by
approximately 27.5%, as the images have a rectangular shape and include areas outside the
field of view that do not contain the desired data.

The next step involves removing all features that have a non-informative character, see
Figure 3.6a, or were saturated to one value, see Figure 3.6b, and do not contain relevant
information for training process. Elimination was performed using histograms, and, based on
the data distribution on the plot, non-informative and saturated data were removed.
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(a) : Non-informative feature (b) : Empty feature

Figure 3.6: Example of non-informative features. The frequency describes the number of pixels
with the same value that is normalized in the range from 0 to 1.

Outlier Detection

The final but important step in the clearning process of the dataset is the detection of outliers.
It is an important part in improving the reliability of statistical analysis, preventing biased
decisions, and crucial for preservation of the robustness of statistical models. According to
the comparison [52] of anomaly detection algorithms in 2D datasets, outlier detection was
performed using the isolation forest algorithm [53]. This method is effective in high-dimensional
data and for large datasets.

The isolation forest, an outlier detection algorithm, was introduced in [53] and is based
on random forests. The method randomly selects a subset of features and splits the data.
Samples that traverse deeper into the tree are considered as those where outliers do not occur,
as more cuts are needed to isolate them. Conversely, samples that are removed early on
are deemed outliers as they are easier to separate. Recursive separation is determined by a
tree structure, where the number of splits required to isolate the feature is indicated by the
length from the root node to the terminating node. The advantage of this method is that it
requires only a small number of trees and a small subsampling size to achieve high detection
performance [53, 52]. To tune the algorithm, the values shown in Table 3.3 were set.

n_estimators contaminationn max_samples
Isolation Forest 100 0.1 auto

Table 3.3: The best parameters for Isolation Forest algorithm.

Where contamination presents a number of anomalies over the total number of points.
The isolation forest with the parameters mentioned above has the best performance for the
purpose of this thesis. Data reduction decreased approximately 15. 6% in regression data and
11.8% for classification data.

3.1.5 Feature Correlation

The next step in data preparation for the statistical model is to remove features with high
mutual correlation and also to find the most correlated features with the IBS signal, which is
necessary for proper usage of linear models.

The phenomenon that occurs due to linearly correlated features used by training statistical
model is called multicollinearity. It results in a situation where two or more independent
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variables in a regression model are highly correlated, making it challenging for the model
to separate and estimate the individual effects of each variable on the dependent variable.
Avoiding this problem is an important part for creating and training reliable and interpretable
regression models.

Initially, the problem of high mutual correlation among features was not addressed, features
were used only based on Pearson’s correlations with IBS flow, described in Chapter 4.1.1.
Due to the discovery of multicollinearity, it was necessary to develop a new method that
reflects this issue. The proposed method, detailed in Algorithm 2, incorporates both mutual
correlations among features and the importance of these features to the IBS flow. Importances
were computed using two methods: the XGBoost regressor and the Spearman correlation
coefficient. The Spearman method proved to be more effective in feature selection, as discussed
in Chapter 4.1.2, and also had a lower computational time compared to the XGBoost approach.

Algorithm 2: FeatureCorrelation
1 0.9

Input: features, corrthres, IBS flow
Output: remaining features

2 P ← compute pair-wise feature Pearson’s corr;
3 for f ∈ features do
4 imp← find importances to IBS flow;
5 maxcorr = max(P );
6 i, j ← indices of maxcorr features ; // i ̸= j
7 if maxcorr > corrthres then
8 if imp[i] < imp[j] then
9 remove feature i ; // also from P

10 else
11 remove feature j ; // also from P

12 else
13 break;

3.2 Regression Task

Regression models estimate the relationship between a dependent variable (or outcome) and
one or more independent variables, also known as features or inputs. These models play a
crucial role in understanding data trends and modeling various scenarios. The goal of the
regression problem is to estimate lung perfusion using a selected subset of features. The
model is trained on this feature subset together with the reference IBS flow data, in order to
accurately predict lung perfusion based on the features extracted from the EIT signal.

Following the completion of all steps outlined in the pipeline shown in Figure 3.1, regression
models have been implemented. Due to the huge variety of statistical regression models,
the task was to implement a small selection of them and compare their results. Figure 2.7
illustrates the trade-off between interpretability and performance among these models, where
higher interpretability often corresponds to lower predictive performance and vice versa. As
discussed in Calvaresi et al. [32], interpretability is a crucial aspect for humans to understand
the results of statistical models.

There is a wide range of regression models available, with linear regression being the most
common technique, serving as the baseline model against which the outcomes of more complex
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models are compared. Generalized Additive Models (GAMs) and Extreme Gradient Boosting
(XGBoost) models were chosen and implemented, alongside a Random Forest regression
model for testing purposes. The mathematical background of these methods is detailed in
Chapter 2.4. Here, only the implementation of these model is described.

The performance of predictive statistical models was evaluated using the cross-validation
method, as described in detail in the following subchapter. The results of each model were
evaluated using metrics such as R-squared, root mean squared error (RMSE), and mean
absolute error (MAE), with explanations provided in Chapter 2.5.1.

3.2.1 Recursive Feature Elimination for Regression

Recursive Feature Elimination (RFE) is an algorithm designed to select the most relevant
features from a training dataset to predict the target variable. It operates iteratively, initially
training the estimator with all features and then ranking them based on their importance as
described in Chapter 3.2.2. With each iteration, the algorithm eliminates the least important
feature until the desired subset is achieved. This approach helps improve the performance of
the model and prevent overfitting [54, 55].

In the initial stage, the features identified from Algorithm 2 were fed into the RFE algorithm
to determine the most appropriate ones. The algorithm assigns weights to the features to
achieve the desired number of selected features. These weights are determined by the estimator,
a hyperparameter of the algorithm [56]. In this case, the estimator employed was the Random
Forest Regressor with default parameters, with the objective of retaining 10 features.

3.2.2 Feature Importance

Following this, the features were ranked based on their significance to the IBS signal. The
feature importance, represented as a real number, helps to determine which features contribute
more significantly to the prediction process. One approach to reach the feature importances
is through the random forest method. This method computes the overall importance of
a feature by considering all tree splits where the feature is utilized, measured by reduced
variance. It offers a multivariate feature importance score that is computationally efficient
and applicable to multidimensional data [57, 58]. The total importances are scaled to 100,
ensuring that each importance value reflects the fraction of the overall importance of the
model [31]. Consequently, the relevant subset of features from the dataset is identified. The
regression feature subset is plotted on the visualization grid, shown in Chapter 4.1.4.

The crucial aspect when implementing this algorithm is the selection of the estimator.
Initially, the random forest regressor was used. However, its use proved to be more computa-
tionally and time-intensive compared to the XGBRegressor from the gradient boosting methods
outlined in Chapter 2.4.5, with the resulting rankings being nearly identical. Consequently,
the XGBRegressor was selected for its efficiency.

3.2.3 Cross-Validation

The cross-validation (CV) method is a technique for evaluating statistical model performance,
enabling comparison, tuning, and selection of the most suitable model for specific research
purposes. In this thesis, the Leave-One-Subject-Out Cross-Validation (LOSOCV) principle
was chosen and is described below.

LOSOCV involves splitting the dataset into two parts: the validation set, consisting of
a single fold (x1, y1) representing one subject (or animal in this case), and the training set
comprising the remaining observations (x2, y2) , ..., (xn, yn). The model is then trained on
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n− 1 training folds, and a prediction ŷ1 is made for the value x1. The unbiased test error
MSE1 = (y1 − ŷ1) is calculated as a result of this single fit process [59, 28]. However, relying
only on this result for model evaluation is inadequate due to its high variability from acquiring
a score from only one observation. To address this, LOSOCV repeats the process with each
(xi, yi) pair for validation and the remaining n− 1 observations for training. By iterating this
process n times, the test mean squared error (MSE) is computed as the average of all test
errors as [28]

MSECV = 1
n

n∑
i=1

MSEi. (3.2)

As mentioned above, each observation corresponds to a single animal, and the LOSOCV
algorithm is executed 10 times to derive the final MSE. It was observed that the LOSOCV
MSE for each animal, denoted as MSEi, varied slightly. This variation can be attributed
to the uniqueness of each animal and potential differences in conditions during the EIT
measurement.

An advantage of the LOSOCV principle is that the data points of one animal do not
influence both the training and testing processes. In contrast, with a simple CV, which
randomly selects data points without considering animal dependency, the results may be
biased due to inherent similarities among data points from the same animal.

3.2.4 Implementation of GAMs

For implementation of GAMs the pygam() library was used [35]. As a first step, the Lin-
earGAM and ExpectileGAM models were imported. From [35] it is known that LinearGAM
has identity link and normal distribution, ExpectileGAM also has identity link with normal
distribution but minimizing the Least Asymmetrically Weighted Squares.

All models were examined, and their results were compared. This comparison was based
on the Grid Search results using the generalized cross-validation (GCV) score with the
parameters outlined in Table 3.4. The resulting parameters are detailed in Chapter 4.2.1. The
hyperparameter lambda controls the amount of smoothing applied to the spline basis function,
influencing the complexity of models and mitigating overfitting. Smaller lambdas afford greater
model flexibility, while larger lambdas help prevent overfitting. Splines, which are non-linear
functions, help in modeling the relationship between predictor and response variables. Unlike
lambdas, splines are specific parameters of the LinearGAM model. Expectiles, on the other
hand, do not directly impact smoothing or model complexity, but facilitate accommodating
non-normality or heteroscedasticity in the data. Lambdas are applicable across all models,
while splines are a parameter solely of the LinearGAM model, and expectiles are applied only
to the ExpectileGAM model.

Hyperparameter Values
Lambdas 0.001, 0.00464, 0.0215, 0.1, 0.464, 2.15, 10, 46.4, 215.44, 1000
Splines 4, 6, 8, 11, 13, 15, 18, 20, 22, 25

Expectiles 0.05, 0.25, 0.5, 0.75, 0.95

Table 3.4: Parameters for GAM for Grid Search method.

The output of the GCV is a summary table displaying the number of degrees of freedom
(DoF), AIC or pseudo R-squared metric. However, the last two parameters have only an
informative character for a particular model. The decision was made according to the
self-implemented LOSOCV for unbiased estimation of the model evaluation metrics.
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3.2.5 Implementation of XGBoost

The XGBoost model, which is considered a non-interpretable model, was used based on [38].
Although the theoretical foundations are outlined in Chapter 2.4, this section focuses mainly
on the practical application of this algorithm. XGBoost operates on tree-based principles,
implying that only the following parameters mentioned in Table 4.2 were used to improve
model performance, while others remained at their default settings.

The parameters have the following meanings. The max_depth parameter determines the
maximum depth of the trees in the model, influencing both the model complexity and the
computational resources; setting this value too high can lead to overfitting. The parameter
n_estimators indicates the number of trees, with increasing values generally improving
outcomes; however, similar to the maximum depth, it also carries the risk of overfitting.
A typical range for this parameter is between 100 and 1000 [60]. Gamma represents the
minimum loss reduction required to further partition the leaf node of the tree and contributes
to regularization. A higher value corresponds to stronger regularization [38].

3.3 Classification Task

Classification models are designed to identify patterns between input features and categorical
labels derived from a dataset. To address this problem, two approaches were taken. Initially,
the classification was focused on distinguishing between healthy and unhealthy states, which
was a binary classification. Once satisfactory results were achieved, the classification was
extended to include three classes of unhealthy data points based on the location of the
blockage, namely, central, medial, and peripheral.

The implementation pipeline is nearly identical as it is shown in Figure 3.1 and as it was
employed for regression. However, two alterations were made. The first is in stage 5, where
only RFE was used for feature selection. The reason is that there is no correlation between
features and numerical labels, as there is for regression between features and the IBS signal.
The correlation relationship with labels is adequately replaced by RFE. The second alternation
relates to Stage 6, which was omitted since it is not applicable to the task.

In classification tasks, as in regression, there are various techniques available to create
suitable models. Highly interpretable models such as Generalized Additive Models (GAMs)
and Linear Regression, alongside more complex ones like Random Forest and XGBoost, were
considered. The mechanisms of these models are detailed in Chapter 2.4. In the rest of this
section, only their implementation and parameter usage are discussed for the purposes of this
thesis. The implementation details of all of these models are discussed in this chapter. To
ensure independent evaluation of the classification models, cross-validation was employed.
Similarly to regression, the LOSOCV approach was used, which is explained in Chapter 3.2.3.
However, the evaluation metrics differ from those used in regression. Here, precision, recall,
F1-score, accuracy, and confusion matrix are used for model performance evaluation. The
meaning and interpretation of each metric are described in Chapter 2.5.2.

3.3.1 Recursive Feature Elimination for Classification

In the introduction to this chapter, it was mentioned that only the elimination algorithm
was adjusted to determine important features of the classification. Two estimators, namely
Random Forest and Logistic Regression, were applied in this process. The selected features,
which were chosen as the most important, were similar for both estimators. However, for
the final feature set, the features obtained from the Random Forest estimator were used to
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train the classification model, and the feature subset is shown in Chapter 4.1.4. This decision
was made because the Random Forest estimator is more general and capable of handling
non-linear relationships, whereas logistic regression only identifies linear relationships.

3.3.2 Binary Classification

Binary classification is a supervised learning technique, in which a classifier is tasked to
categorize input data into one of two categories. Each data point is assigned to a category, and
the model learns to distinguish the boundary between them to achieve an accurate separation
[31].

In this thesis, the classes are labeled as 0 for "healthy", further marked as H and 1 for
"unhealthy", further as U. The goal is to correctly classify as many unhealthy data points as
possible, as identifying blockages in the lungs is crucial.

This problem was addressed first to determine if it is possible to develop a model capable of
distinguishing between different types of unhealthy classes. Given that there are significantly
more healthy data points than unhealthy ones, see Table 3.5.

Class n. of data points percentage [%]
H 72116 81.4
U 9469 18.6

Table 3.5: The number of data points in each class for binary classification.

The assumption that dataset is imbalanced, which was detected in the label creation
described in 3.1.2, was confirmed. Further in this chapter, the implementation of weighting
and down-samplig to balance the dataset is introduced. The results of binary classification
are presented in Chapter 4.3.2.

3.3.3 Multi-class Classification

Multi-class classification, alike binary classification, is a form of supervised learning where
each instance is associated with a single class label. The goal of classification models is to
compute the probabilities of data points belonging to each class and assign them the highest
probability [44]. In this type of classification, classes can be represented by numerical values
(e.g., 0-9), sentiment categories (e.g. "positive," "ne.g.ative" or "neutral"), or object types (e.g.
car, person, tree).

The categories were represented by numerical values: 0 for "healthy" (abbreviated as H), 1
for "central blockage" (abbreviated as C), 2 for "medial blockage" (abbreviated as M), and 3
for "peripheral blockage" (abbreviated as P). Here again, the goal is to accurately classify the
majority of data points. As is known from binary classification, the dataset is imbalanced.
The distribution of data points in each category is shown in Table 3.6.

Class n. of data points percentage [%]
H 72116 81.4
C 4468 5.1
M 2521 2.8
P 9469 10.7

Table 3.6: The number of data points in each class for multi-class classification.
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Because of the significant difference in the number of data points in each class, weighting
and down-sampling techniques were utilized to address dataset imbalance and mitigate the
risk of overfitting on a single class, specifically the healthy class. The results of the multi-class
classification are elaborated in Chapter 4.3.3.

3.3.4 Weighting

Weighting is a technique that is beneficial for imbalanced datasets, particularly when one
class has a significantly larger number of samples than the others. The approach involves
assigning higher weights to the minority classes, which enables the model to focus more on
the accurate classification of these data points and helps prevent bias toward the majority
class [61]. This issue, as previously mentioned, also occurred in the dataset analyzed in this
thesis. Weights were initially applied using the formula in equation 3.3 for binary classification
and equation 3.4 for multi-class classification as

H : w0 = nsamples

2 · (nsamples − nunhealthy)

U : w1 = nsamples

2 · nunhealthy

(3.3)

H : w0 =nsamples

4 · nH

C : w1 =nsamples

4 · nC

M : w2 =nsamples

4 · nM

P : w3 =nsamples

4 · nP
.

(3.4)

More about weighting is described in Chapter 4.3 as the weights were adjusted according to
the results of model.

3.3.5 Downsampling

Another efficient technique for working with imbalanced datasets is down- or oversampling
of data. For the purpose of the thesis and preservation of the pure real dataset, only
downsampling of dataset was implemented. Moreover, by oversampling there is a high risk of
overfitting and it takes more time to train the statistical model [46].

Downsampling is the process of randomly selecting data points from the majority class to
create a subset of instances that is equivalent in size to the minority class. However, this
approach also has its drawbacks, as it can result in the loss of potentially valuable data [62].

This approach was utilized due to poor results after dataset weighting. Even though
balancing the classes through weighting was attempted, the models continued to overfit the
predominant class. In scenarios involving multi-class classification, the predominant class H
was downsampled to match the combined total of the other three classes. This decision was
made to prevent a significant loss of data points that would occur if it was downsampled to to
match the number of data points of the least M. To further balance the dataset, weighting was
implemented on the downsampled data to ensure that each class was given equal importance.
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3.3.6 Implementation of GAMs

The GAM model was applied using the pygam library [35]. In the context of classification,
the initial model tested was the Logistic model, which was imported as LogisticGAM. The
LogisticGAM uses a binomial error distribution and a logit link function. These parameters
were left unchanged. To optimize the model parameters, the Grid Search method from pygam
was employed, similar to the approach used in regression tasks. The results are presented in
Chapter 4.3.

The model was evaluated using LOSOCV. To address the imbalanced dataset, weights were
tried to incorporate. However, due to an implementation error of the library, the pygam did
not accept them, as it resulted in an error. Due to the inability to adjust the data weighting
in LogisticGAM, the results for the unhealthy class were poor, as there are significantly more
healthy data points than unhealthy ones. LogisticGAM was also applied to the downsampled
dataset without requiring dataset weighting. This is further elaborated on in the results in
Chapter 4.3.

3.3.7 Implementation of Logistic Regression

Another interpretable model used was logistic regression, implemented using the scikit-
learn library [63]. This model is appropriate for both binary and multi-class classification
tasks. Various solver types are available, some designed only for a specific classification type.
Nevertheless, there are solvers that can be used for both types, and this was utilized in the
thesis. The penalty is determined by the solver, and these two parameters are by default
linked. Although it is possible to adjust these parameters independently, not all solvers are
compatible with all types of penalties. As a next parameter, the number of iterations was
fine-tuned, which significantly impacts the model’s performance. A low number of iterations
may cause that the optimization algorithm does not reach the optimal solution, whereas
increasing the iterations could enhance performance. In contrast, an excessively high number
of iterations can result in overfitting and increased computational costs, particularly with
large datasets. Parameters that are not specified here were set to their default values. Taking
into account all described problems, the parameters shown in Table 4.6 were adjusted in the
model tuning process.

3.3.8 Implementation of Random Forests

As an alternative example of the non-interpretable category, the Random Forest classifier
was used with the scikit-learn library [64]. The reason behind selecting this model lies in its
benefits, such as achieving high accuracy, avoiding overfitting, and providing interpretability
through methods that display the impact of each feature on the model’s performance. These
characteristics make this model suitable for various classification tasks.

A Random Forest method was employed to address both binary and multi-class classification
problems, as it is suitable for both scenarios. In the thesis, two hyperparameters, the number of
estimators and the maximum depth were fine-tuned. The number of estimators corresponds to
the number of trees in the forest. It is commonly observed that a higher number of estimators
leads to better model performance. However, with an increasing number of estimators, the
computational time also increases, and not every increment necessarily results in enhanced
performance. There is also a boundary behind which it stops improving. The max depth
parameter controls the depth of the trees, preventing the model from becoming too complex.
This parameter helps to achieve a balance between the variance and bias trade-off and can also
decrease the computational efficiency. The optimal values for each parameter were determined
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using the Grid Search algorithm and are listed in Table 4.7. Other parameters of the model
were set as default since they were most suitable for the dataset used.

3.3.9 Implementation of XGBoost Classifier

The last model used for classification is the XGBoost Classifier. It works similarly to
Random Forest, but is typically less interpretable, especially when dealing with deep trees.
One distinction lies in the way how trees are constructed. While Random Forest builds
trees simultaneously, XGBoost does it sequentially, leading to increased model complexity.
Nevertheless, XGBoost is frequently considered as the state-of-the-art method in classification
tasks.

The XGB model was implemented using the XGB library [38]. This model offers parameter
tuning to optimize performance on specific datasets. In this particular implementation,
adjustments were made to the maximum depth, the number of estimators, and the learning
rate. These parameters have the same interpretation as in Random Forest, with the exception
of the learning rate, which was not defined in the Chapter 3.3.8. The eta parameter, also
known as the learning rate, controls the step size by which the weights in the optimizer are
updated. Selecting an appropriate value involves a trade-off, as a higher eta results in less
accurate updates, but requires less time, while a lower value has the opposite effect [60]. The
parameters were configured using the Grid Search algorithm and are shown in Table 4.7.
Furthermore, the model enables the utilization of weights for both binary and multi-class
classification classification.

3.4 Model Testing and Baseline Comparison

After the learning process, each model was validated and evaluated using LOSOCV to mitigate
biased results.

To conclude the model evaluation, a comparison was made between the implemented model
and a basic model known as the baseline model. The baseline model is a straightforward linear
model fitted on a single feature. This feature is chosen based on its highest correlation or
importance with the IBS flow. The specific feature utilized varies depending on whether the
model is used for regression or classification tasks. For regression, the model is characterized
by the feature diffMin, while for classification tasks (both binary and multi-class), it is
constructed using the feature statsMin.

To ensure an unbiased comparison between the final model and the baseline model, an
initial step involved processing the thirteenth animal separately for testing purposes. From
this dataset, only NaNs were removed because the models were unable to handle data points
containing NaNs and for proper visualization of the results. However, outliers were retained,
as real-world data may indeed contain outliers. It should be noted that although the testing
dataset was not extensive, it still produced unbiased results and that the volume of data was
comparable to that of one animal in the LOSOCV evaluation. Subsequently, whenever results
are derived from this testing animal, it is noted. Visualizations are done only for this testing
animal.
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Chapter 4
Results and Discussion

This chapter presents the results of consecutive stages shown in Figure 3.1 that lead to the
final evaluation of the classification and regression tasks. The main focus is on the comparison
of algorithms and models implemented under different conditions. First, the results of the
pipeline are shown, which are necessary for creating the feature subset that serves as input
for the statistical models. Then, the results of the regression task are presented, followed by
the evaluation of the outcomes of the classification models. In addition, the training process,
preparation of the testing data and the baseline model are explained.

4.1 Feature Selection

In the feature engineering process, the mutual correlation between features and the correlation
of features with the IBS flow signal were examined. To choose the most suitable features, the
Algorithm 2 was implemented. The results are given in the following sections.

4.1.1 Pearson’s Correlation Test

To discover the correlation relationships between the IBS flow signal and the features, the
Pearson correlation test was used. In Figure 4.1 the result of this algorithm is shown. It is
necessary to mention that 107 features were implemented; some of them were removed due to
their non-informative character as described in 3.1.4. In Figure 4.1, only the features that
have more than 20% correlation with IBS flow are plotted.
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Figure 4.1: Feature correlation with IBS flow.

4.1.2 Results of Implemented Algorithm

This section presents the results of the self-implemented correlation test (Algorithm 2), which
removed highly mutually correlated features based on their importance to the IBS flow using
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4. Results and Discussion.........................................
either Spearman or XGBoost. Subsequently, the RFE method was employed to eliminate the
remaining features that are considered unimportant with respect to the IBS flow. Table 4.1
displays the best features resulting from RFE, sorted according to their importance.

Based on Table 4.1, the features derived using XGBoost as the importance estimator are
similar to those obtained using Spearman correlation coefficients as the decision-making
method in Algorithm 2. While XGBoost took approximately an hour for computation,
Spearman correlation reduced the computation time to several minutes. Therefore, Spearman
correlation was selected as the decision method in Algorithm 2.

Ranking XGBoost Spearman
1 diffMin diffMin
2 harmDel1 harmDel1
3 distToHeart distToHeart
4 optSystPha optSystPha
5 statsCumdQ2 optDiastPha
6 optDiastPha harmDel2
7 harmDel2 harmDelRat4
8 harmDelRat4 statsCumdQ5
9 harmInt5 statsCumQ3
10 harmPeakRat2 harmInt5

Table 4.1: The ranking of importances for each correlation estimator.

Subsequently, a correlation graph between the IBS flow and the features obtained from
the correlation test algorithm was generated (illustrated in Figure 4.2). Individual Pearson
correlation coefficients were calculated and ranked to compare with the ranking of all the
features shown in Figure 4.1. It became apparent that the implementation of an elimination
algorithm to select uncorrelated features was necessary. Despite the initial features appeared to
be correlated with the IBS flow (as shown in Figure 4.1), only diffMin and harmInt5 remained
significant after the feature selection process (as shown in Figure 4.2). This underscores
the importance of feature selection in identifying truly relevant features among potentially
correlated variables.
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Figure 4.2: Correlation graph between IBS flow and features resulting from self-implemented
Algorithm 2 using Pearson’s correlation as as method for importance computation.

4.1.3 Feature Elimination

Model overfitting, a common issue during model training, can result in poor performance.
It arises when a large number of features are included in the training process, making
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.......................................... 4.1. Feature Selection

it challenging to discern the relevant ones. Hence, the elimination of non-informative and
irrelevant features becomes necessary. Initially, the RFE algorithm was configured to return 10
features, based on the number of features considered important by the correlation Algorithm 2.
To address this, a graph (in Figure 4.3) depicting feature importances computed by the RFE
algorithm was generated to determine the optimal number of significant features.

Past a certain point, the curve flattened, and features beyond this threshold were excluded
from consideration for the statistical model. In this case, the cutoff occurred after the
harmDelRat4 feature, as no change in the curve was noted beyond this point. Additionally,
certain features were excluded for each task, despite their high correlation with the IBS flow
signal or significant importance. One reason for this is that some features may accurately
represent healthy lung areas, but do not adequately represent unhealthy regions. Since healthy
areas outnumber unhealthy ones, this could bias the importance results. Consequently, the
model relies heavily on these particular features, neglecting the potential contributions of
others that may better represent obstructed areas in the learning process.
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Figure 4.3: The importance curve after running the RFE algorithm before and after removing the
diffMin feature.

During the model improvement process, it was observed that the diffMin feature is too
dominant over healthy areas, causing other features to be suppressed. After removing the
diffMin feature, the curve of the RFE algorithm is shown in Figure 4.3b, and illustrates that
features beyond statsCumQ3 were cut off. Comparable plots were generated, determining a
reasonable cut-off point for each task and the subtask of regression and classification. Features
before the cut-off point were utilized in their respective tasks to train the statistical model.

4.1.4 Feature Subsets

The feature subset consists of the selected features for their respective classification or
regression task. Figures 4.4 and 4.5 visually assess whether the previously mentioned outlier
detection, feature elimination, and feature correlation algorithms effectively removed outlier
data points, non-informative features, and highly correlated features. The plots confirm the
validity of the assumptions. Notably, a 65% similarity between the statsMax and harmInt2
features in Figure 4.4 indicates their highest correlation. Despite this, these features were
retained, as both features are considered important according to the graph in Figure 4.3b.
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4. Results and Discussion.........................................
Additionally, if outliers occurred, they could be recognized from the point density below the
diagonal. On the diagonal, the distribution of feature points is shown.

Figure 4.4: Visualisation grid for regression showing mutual correlations above diagonal, features
dependency below diagonal and feature distribution density on diagonal.

4.2 Regression

This section presents an overview of the results obtained from the regression task. It begins
with a discussion on the parameters of each model, followed by an evaluation of the models
using their optimal parameters. The comparison between models is based on numerical results,
scatter plots, and visualizations. Finally, the results from the testing animal are compared
with those from the baseline model.

4.2.1 Hyperparameter Value Selection

This section shows the result of the Grid Search algorithm in Table 4.2 that is able to find
the best hyperparameter performance values out of the initial set for all regression models
implemented.

Model lambda splines expectile max_depth n_estimators gamma
LinearGAM 2.1544 25 N/A N/A N/A N/A

ExpectileGAM 0.4642 N/A 0.5 N/A N/A N/A
XGBoost regressor N/A N/A N/A 5 500 0.5

Table 4.2: The best parameters for each regression model according to the Grid Search.
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Figure 4.5: Visualisation grid for classification showing mutual correlations above diagonal,
features dependency below diagonal and feature distribution density on diagonal. This feature
subset represents chosen features for binary classification task.

4.2.2 Numerical Metrics

In this thesis, the metrics presented in Tables 4.3 and 4.4 were considered, and the results
were evaluated using LOSOCV.

Upon comparison of the results, slight differences were observed in the evaluation metrics.
Models trained without the diffMin feature exhibited slightly improved performance across
all metrics and demonstrated a lower standard deviation. Consequently, the diffMin feature
was excluded from the final set of features. However, given its significant correlation with IBS
flow, as noted earlier, the baseline model was constructed based on this feature for comparison
purposes.

According to the results presented in Table 4.3, although there are minor differences in
effective Degrees of Freedom (DoF) between LinearGAM and ExpectileGAM, the chosen
model for further evaluation and comparison is LinearGAM. The advantage of the LinearGAM
model lies in its interpretability and comprehensibility compared to ExpectileGAM [31]. The
importance of the effective DoF metric is described in Chapter 2.5.1.

Model Eff. DoF AIC Ps. R2 R2 RMSE MAE
LinearGAM 222.33 6.57 · 106 0.54 0.43±0.13 0.18±0.02 0.14±0.02
ExpectileGAM 228.51 6.57 · 106 0.54 0.41±0.13 0.18±0.02 0.15±0.02

XGBoost N/A N/A N/A 0.47±0.12 0.17±0.02 0.12±0.02
Baseline N/A N/A N/A 0.02±0.20 0.20±0.02 0.16±0.02

Table 4.3: Summary and evalution metrics for GAMs regression models without diffMin.

When comparing the results of the LinearGAM and XGBoost models, XGBoost exhibits
better performance, particularly evident in the R2 metric. This outcome was expected, given
that XGBoost is a less interpretable model, which aligns with the performance-interpretability
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Model Eff. DoF AIC Ps. R2 R2 RMSE MAE

LinearGAM 222.33 6.57 · 106 0.54 0.39±0.15 0.19±0.02 0.15±0.02
ExpectileGAM 228.51 6.57 · 106 0.54 0.40±0.15 0.19±0.02 0.15±0.02

XGBoost N/A N/A N/A 0.47±0.16 0.17±0.03 0.14±0.02
Baseline N/A N/A N/A 0.02±0.20 0.20±0.02 0.16±0.02

Table 4.4: Summary and evalution metrics for GAMs regression models with diffMin.

trade-off discussed in Chapter 2.4. However, since the objective is to find an interpretable
model, LinearGAM is selected for further evaluation metrics.

The R2 metric quantifies the proportion of variance in the dependent variable explained by
the independent variable. According to Table 4.3, this value is 43% for LinearGAM. Although
this value may not be considered high in a general context, the interpretation of what a
high value of R2 can mean varies depending on the application and the type of input data,
as this statistical measure is largely influenced by the variation in the data [65]. Therefore,
the state-of-the-art method and other evaluation metrics are needed when the R2 metric is
evaluated.

As illustrated in Table 4.3, the baseline model yields a notably low value R2. Furthermore,
the baseline model has a standard deviation of 0.2, indicating significant variability in the
model outcomes, which is consistent across all models. This variability issue was further
explored, and the metrics for each animal were visualized for LinearGAM in Figure 4.6.
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Figure 4.6: LOSOCV metrics for each animal of LinearGAM.

The graph highlights that animals 6, 7, and 9 display considerably lower R2 values compared
to others, leading to an overall lower R2 metric with a high standard deviation. Although
the standard deviation remains relatively consistent across other metrics, it is also observed
to vary depending on the animal, as depicted in Figure 4.6. This issue may arise from the
lack of calibration of individual animals during the data acquisition process, as each animal
typically has unique characteristics. As R2 decreased for certain animals, their stages were
compared to determine whether they align with the stages of other animals. It was found that
the stages are mostly similar in terms of the distribution of healthy and unhealthy stages, as
well as the presence of blockages.
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4.2.3 Regression Model Evaluation with Scatter Plots

The next type of model evaluation involves scatter plots, which helps in explaining assumptions
of the statistical model, detecting biases, heteroskedasticity, or identifying outliers. The Bland-
Altman plot, and the Q-Q plot (both displayed in Figure 4.7) and the residual histogram
(shown in Figure 4.8) were used to assess the LinearGAM model and identify the relationships
between the data points and the dependence of the animal.
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Figure 4.7: Evaluation plots: (a) represents the Q-Q plot, (b) represents the Bland-Altman plot,
and each color represents one animal.

Figure 4.7a displays the quantile-quantile graph (Q-Q plot), which helps to assess the
distributional assumption of the dataset through a comparison of data points. The theoretical
expectation is that the data follow a normal distribution, depicted by the black line. The
red points indicate how well the sampled data align with this theoretical distribution. Any
deviations from the black line signify a deviation from the assumed normal distribution.
Analysis of this plot indicates that most data points closely follow the expected normal
distribution. Examining this graph is valuable as it provides insights into the spread and
central tendency of the predicted data points. The confirmation of a normal distribution in
this case is essential for a reliable assessment of the results of the statistical model.

Figure 4.7b shows the Bland-Altman plot, which shows the difference between two measures
- prediction and reference - plotted against the average of both measurements. The black
line represents the mean difference, with deviations from this line indicating the presence of
bias. The two red lines above and below the mean line denote the limits of agreement (LoA),
signifying the range within which the difference between the two measures is expected to
lie with a certain level of confidence. A narrow LoA suggests minimal variability between
the predictions and the reference. In this plot, most of the data points cluster around the
mean line, with some outside the LoA range. This may show the presence of slight bias and
variability in the model, although there is generally good agreement between the measures.
Data points above the LoA may be caused by the above described difference in data behavior
for each animal or the need for a more robust model, potentially impacting the interpretability
of the results.

The residual plot shown in Figure 4.8 helps assess the suitability of the statistical regression
models. These residuals, which represent the difference between the observed and predicted
values, are plotted against the predicted value of the IBS flow. They are valuable for identifying
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heteroskedasticity, which can violate the assumption of the relationship between predictor
variables and the response variable, leading to reduced reliability of the model outcomes and
erroneous conclusions. In this context, it is visible that the overall distribution of residual
points in the plot follows a normal distribution. Points are randomly scattered around the
horizontal axis, representing the fitted values, suggesting that the assumptions of independence
of residuals, homoscedasticity, which means constant variance, and linearity are present.
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Figure 4.8: Residuals plot. Each colour represents one animal, the colour-coding is same as in
Figure 4.7.

However, by showing the residual plot of each animal, some of them maintain a normal
distribution, but the mean of the distribution is noticeably shifted from zero. Moreover, for
animal 6, which had the worst R2 in Figure 4.6, with the residual graph shown in Figure 4.9,
its normal distribution slightly deviated. This indicates that while the overall residual plot
satisfies all assumptions, there are certain animals that have heteroskedastic characteristics,
which impact the overall model performance. This confirms the assumption highlighted in
Figure 4.6, where numerical metrics and R2 for each model were evaluated.

4.2.4 Results of Regression Models on Testing Animal

The final evaluation technique involves visually comparing the predictions on the testing
animal. To provide a comprehensive comparison, the predictions of the baseline model are
presented in Figure 4.10 in the middle of each row. Initially, a comparison was made between
stages with M blockage (Figure 4.10b) and those without blockage (Figure 4.10a). In the
healthy stage, the intensity of IBS flow in both lungs is weaker compared to the unhealthy
stage. When comparing LinearGAM predictions, perfusion is more recognizable in the second
case, when IBS flow is also higher. Differences can also be observed when comparing the results
from the unhealthy stage of two measurements (Figures 4.10c and 4.10d). In Figure 4.10c, a
distinct peak of perfusion in the left lung is clearly visible, while in Figure 4.10d, this peak is
less evident, indicating a reduction in perfusion in the corresponding IBS flow signal, which
could potentially cause problems. The perfusion of the lung is not recognizable in this figure.
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Figure 4.9: Residuals plot for animal 6. In previous graphs this animal has black colour, however
for better visibility of individual data points the colour was changed.

Comparing the results of the LinearGAM predictions with the baseline model, which
represents a state-of-the-art model, the LinearGAM model successfully identified lung perfusion
in all cases except the one depicted in Figure 4.10d. Although the baseline model detected
perfusion only in the first two described cases, it indicated a lower perfusion rate. From the
visualization, it can be further observed that in the region between both lungs, there is an
increase in amplitude 4.10a. This anomaly could be affected by the mixture of lung and heart
EIT signal in this region. Consequently, due to the influence of the heart, the signal appears
stronger, which leads the model to mistakenly predict a high rate of lung perfusion there.

The evaluation of regression on testing animal concludes numerical results obtained from
the testing animal. The evaluated models included LinearGAM, Random Forest, XGBoost,
and a baseline model. All models underwent training on animals involved in the LOSOCV
process and were subsequently tested on the testing animal to ensure unbiased results. The
results are outlined in Table 4.5. The Random Forest model outperformed the others in all
metrics (R2, RMSE, and MAE), achieving an approximately 3% higher R2 score compared to
XGBoost. However, both models are considered non-interpretable. Specifically, the decision
trees generated by Random Forest offer more interpretability than those produced by XGBoost.
Furthermore, XGBoost performed around 4% better than LinearGAM, a model known for its
high interpretability. It is noteworthy that RMSE and MAE are the same for both LinearGAM
and XGBoost. In contrast, the baseline model lags behind all models, approximately 26%
worse than LinearGAM in R2, with significantly higher RMSE and MAE. These results
underscore that the implemented models outperform the considered state-of-the-art model.

4.2.5 Regression Summary

The dataset for the regression analysis contains both data points from lung and heart ROIs.
Although the primary focus is on lung data, including perfusion measurements, heart data
points are also necessary. During attempts to improve the results, it was found that excluding
heart data leads to worse results. This is probably due to the fact that the dataset is not

43



4. Results and Discussion.........................................

Predictions Baseline model IBS flow of KAT_LII_O_N

Predictions Baseline model IBS flow of KAT_LII_O_N

Predictions Baseline model IBS flow of KAT_P_X_CA_I

Predictions Baseline model IBS flow of KAT_P_X_CA_I

Predictions Baseline model IBS flow of MIK_P_75_III

Predictions Baseline model IBS flow of MIK_P_75_III

Predictions Baseline model IBS flow of KAT_P_O_N

Predictions Baseline model IBS flow of KAT_P_O_N

Predictions Baseline model IBS flow of KAT_LI_O_N

Predictions Baseline model IBS flow of KAT_LI_O_N

Predictions Baseline model IBS flow of MIK_P_75_I

Predictions Baseline model IBS flow of MIK_P_75_I

Predictions Baseline model IBS flow of KAT_P_X_N

Predictions Baseline model IBS flow of KAT_P_X_N

Predictions Baseline model IBS flow of MIK_P_O

Predictions Baseline model IBS flow of MIK_P_O

Predictions Baseline model IBS flow of KAT_LII_X_N

Predictions Baseline model IBS flow of KAT_LII_X_N

Predictions Baseline model IBS flow of MIK_P_75_II

Predictions Baseline model IBS flow of MIK_P_75_II

Predictions Baseline model IBS flow of KAT_P_X_CA_II

Predictions Baseline model IBS flow of KAT_P_X_CA_II

Predictions Baseline model IBS flow of MIK_P_75_IV

Predictions Baseline model IBS flow of MIK_P_75_IV

Predictions Baseline model IBS flow of KAT_LI_X_N

Predictions Baseline model IBS flow of KAT_LI_X_N

(a) : Healthy stage - no central blockage.

Predictions Baseline model IBS flow of KAT_LII_O_N

Predictions Baseline model IBS flow of KAT_LII_O_N

Predictions Baseline model IBS flow of KAT_P_X_CA_I

Predictions Baseline model IBS flow of KAT_P_X_CA_I

Predictions Baseline model IBS flow of MIK_P_75_III

Predictions Baseline model IBS flow of MIK_P_75_III

Predictions Baseline model IBS flow of KAT_P_O_N

Predictions Baseline model IBS flow of KAT_P_O_N

Predictions Baseline model IBS flow of KAT_LI_O_N

Predictions Baseline model IBS flow of KAT_LI_O_N

Predictions Baseline model IBS flow of MIK_P_75_I

Predictions Baseline model IBS flow of MIK_P_75_I

Predictions Baseline model IBS flow of KAT_P_X_N

Predictions Baseline model IBS flow of KAT_P_X_N

Predictions Baseline model IBS flow of MIK_P_O

Predictions Baseline model IBS flow of MIK_P_O

Predictions Baseline model IBS flow of KAT_LII_X_N

Predictions Baseline model IBS flow of KAT_LII_X_N

Predictions Baseline model IBS flow of MIK_P_75_II

Predictions Baseline model IBS flow of MIK_P_75_II

Predictions Baseline model IBS flow of KAT_P_X_CA_II

Predictions Baseline model IBS flow of KAT_P_X_CA_II

Predictions Baseline model IBS flow of MIK_P_75_IV

Predictions Baseline model IBS flow of MIK_P_75_IV

Predictions Baseline model IBS flow of KAT_LI_X_N

Predictions Baseline model IBS flow of KAT_LI_X_N(b) : Unhealthy stage - central blockage.
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(c) : Unhealthy stage - peripheral blockage, measurement 1.
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(d) : Unhealthy stage - peripheral blockage, measurement 2.

Figure 4.10: Prediction visualization of regression results.

large enough after removing the heart data. To address this issue, heart data were included,
but their impact was reduced by applying weights to prevent the model from focusing mainly
on the peak amplitudes of these points. The weights of the heart ROIs are adjusted to half
of the original value of the importance map, and the weights of the lung ROIs are 1.2 times
higher. As depicted in Figure 4.11, this modification created the desired effect and shifted
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Model R2 RMSE MAE
LinearGAM 0.56 0.17 0.14

RandomForest 0.63 0.15 0.12
XGBoost 0.60 0.17 0.14
Baseline 0.30 0.21 0.18

Table 4.5: Summary and evaluation metrics for regression models.

the peak values from the heart region to the center of each lung, helping the regression model
to learn the perfusion patterns accurately and improve its performance.

Figure 4.11: ROIs before and after using weights in regression. On the left side is the former
importance map of the ROIs without using weights. On the right image, modified importance
map used as weight map is depicted and lung ROIs are better recognizable than on the left side.
Both images are from the same animal.

In conclusion, the regression evaluation metrics demonstrate the model’s ability to recognize
lung perfusion, as evidenced primarily in Figure 4.10. It is confirmed that less interpretable
models result in better results, as observed in the numerical results outlined in Chapter 4.2.2.
The scatter plots presented in Chapter 4.2.3 illustrate the preservation of linearity, homoscedas-
ticity, and variability, crucial for valid and reliable results. However, variability in numerical
results was observed among animals during LOSOCV, leading to poorer performance both
numerically and visually in the final model. One potential solution to this issue could be
calibrating each animal’s measurement. Another improvement strategy could involve enhanc-
ing robustness by employing alternative methods that do not predict pixel-wise; for instance,
methods that process the neighborhood of each pixel to derive its prediction.

4.3 Classification

This section presents an evaluation of the results of the second task of this thesis. Initially,
the selected parameters for each model resulting from the Grid search algorithm are displayed.
Subsequently, the numerical metrics, confusion matrices, and concluding visual representations
are discussed for both binary and all forms of multi-class classification. Lastly, a summary of
the classification results is provided.
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4. Results and Discussion.........................................
4.3.1 Hyperparameter Value Selection

This section presents the best hyperparameter performance values obtained from the Grid
Search algorithm. Table 4.6 displays the results for interpretable models, while Table 4.7
presents the results for non-interpretable models.

Using GAMs for multi-class classification is not feasible because the pygam library does not
support it, as discussed in Chapter 3.3.6. Additionally, the implementation of weights is not
possible in the classification case. Therefore, while GAM models are mentioned, they are not
compared to other models.

Model DS T lambda splines n_iters solver penalty
LogisticGAM No B 0.0215 20 N/A N/A N/A
LogisticGAM Yes B 0.0046 25 N/A N/A N/A

LogReg Yes/No B/M N/A N/A 1000 lbfgs l2

Table 4.6: The best parameters for interpretable models according to the Grid Search. The
column name T stands for the type of classification, B means binary, M means multi-class.

Model DS T n_estimators max_depth learning_rate
RF Yes/No B/M 1000 5 N/A

XGBoost Yes/No B/M 1000 3 0.1

Table 4.7: The best parameters for noninterpretable models according to the Grid Search. The
column name T stands for the type of classification, B means binary, M means multi-class.

4.3.2 Binary Classification

Firstly, the results of binary classification are presented, focusing on classifying H and U data
points. The numerical results and confusion matrices obtained from LOSOCV are initially
presented, followed by an evaluation of the results obtained on testing data.

Numerical Results and Confusion Matrix

For binary classification, the results are summarized in Table 4.8. Each model was tested with
no correction, downsampling, or weighting. Only LogisticGAM is listed for downsampling,
as the results were very poor for other cases. The best models from Table 4.8 are further
compared using the confusion matrices shown in Figure 4.12.

For each metric in Table 4.8, the two best models are highlighted. The primary metric
considered is accuracy; however, it is crucial to note that accuracy may not be reliable in
evaluating an imbalanced dataset, as consistently predicting the majority class can inflate
accuracy. Therefore, other more suitable metrics are presented here, with the final assessment
based on the F-1 score. The F-1 score combines precision and recall into a single value and is
more reliable in handling unbalanced datasets. It is evident that models with higher accuracy
tend to have poorer F-1 scores, especially those that did not utilize downsampling or weighting
techniques, indicating class imbalance in the dataset. The two models with the highest F-1
scores, both with downsampled datasets, are logistic regression (61.29%) and random forest
classifier (62.55%). The third-best model is LogisticGAM, which also showed satisfactory
performance with an F-1 score of 59.31%.

The confusion matrices for both methods are depicted in Figure 4.12. Although the RF
model exhibits better results, it is non-interpretable. Since the results of the logistic regression
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Model DS W Accuracy[%] Precision[%] Recall[%] F-1 score [%]
LogisticGAM Yes No 60.63 63.01 56.01 59.31

LogReg No No 81.93 20.8 1.22 2.29
LogReg No Yes 58.87 24.59 58.04 34.55
LogReg Yes No 62.14 62.26 60.35 61.29

RF No No 70.74 31.50 47.21 37.78
RF No Yes 65.87 29.45 56.40 38.69
RF Yes No 63.98 66.2 59.29 62.55

XGB No No 80.51 40.32 20.64 27.30
XGB No Yes 72.73 32.83 46.40 38.45
XGB Yes No 62.63 67.63 48.39 56.42

Baseline Yes No 59.08 52.56 62.95 54.61

Table 4.8: Model evaluation metrics for binary classification. DS stands for downsampling, W
stands for weighting. The metrics represent successfully indicated U class.

(a) : LogReg CM (b) : RF CM

Figure 4.12: Confusion matrices for binary classification. (a) represents the confusion matrix for
the logistic regression model, (b) represents the matrix for the RF model.

are very similar, they are utilized in the visualizations in Chapter 4.3.2. Comparing the
F-1 score of both most successful models with the baseline model, which is considered the
state-of-the-art model, LogReg performed better by 7%, and RF performed better by 8%.
This low F-1 score could be attributed to the low variability in amplitude between H and U,
removal of important data points by downsampling, or the confusion of the model with data
points at the lung edges in the H class with low amplitude, similar to the U class. However,
downsampling proved to be a more effective technique than weighting in cases of substantial
class imbalance.

Results of Classification Models on Testing Animal

From Figure 4.13, it is evident that, while there are slight variations in the numerical results
evaluated using LOSOCV, these differences are more noticeable in the prediction visualization.
When comparing healthy cases in 4.13a and 4.13c, Random Forest demonstrates a more
precise classification compared to Logistic Regression. LogReg tends to label more data points
as unhealthy. In both predictions, edge data points marked as unhealthy are visible, even if
they should be predicted as healthy. This problem is likely due to the decreased amplitude
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4. Results and Discussion.........................................
of IBS flow in the peripheries of the lung, which causes models to misclassify them. For the
unhealthy cases, RF correctly identifies the peripheral blockage almost entirely, and in healthy
lungs, it only marks a small area at the edges as unhealthy. However, LogReg struggles to
identify blockages throughout the lung and also misclassifies more unhealthy data points in
healthy lungs. When comparing both models with the baseline model, both of them still have
better visualization results on the test animal.

Analysis of Table 4.9 reveals that the better outcomes were achieved by the less interpretable
models. The better of them, XGBoost, outperformed the LogReg model by approximately 4%
in F-score and the baseline model by approximately 8%. By comparing the LogReg model
with the baseline model, the LogReg performs better about 4%.

4.3.3 4-class Classification

This section outlines the approach used to classify data points into four distinct classes: H,
C, M, and P. Initially, numerical results and confusion matrices obtained from the LOSOCV
method are presented. Subsequently, the models are evaluated on a testing animal, and the
outcomes of the methods are compared.

Model Accuracy Precision Recall F-1 score
LogReg 46.43 25.11 66.67 36.48

RandomForest 57.01 28.40 56.76 37.86
XGBoost 70.21 37.65 44.36 40.73
Baseline 45.23 22.79 57.52 32.64

Table 4.9: Model evaluation metrics for binary classification on testing animal.

Numerical Results and Confusion Matrix

In the multi-class classification, the downsampling technique has been used to enhance model
performance due to unbalanced datasets. This approach has proven to be effective not only in
binary classification but also in multi-class scenarios. Additionally, weighting has been utilized
to address the removal of many data points from the dataset, particularly those belonging to
minority classes. The results of the multiclass classification are described in Table 4.11, with
the F-1 score being an important metric for evaluating the 4-class classification due to the
imbalance in the dataset. While XGBoost is dominant for two classes, Random Forest was
chosen as the selected non-interpretable model due to its consistent performance across all
classes. Among the interpretable models, logistic regression outperformed the baseline model,
which replaces a non-existent state-of-the-art.

When comparing RF and LogReg, random forest achieved approximately a 5% higher F-1
score for healthy class and a 13% higher score for the peripheral class. However, both models
achieved similar results for the central and medial classes. Although the baseline model’s
highest F-1 score is for the H class, LogReg outperformed it by approximately 7%, while RF
outperformed it by approximately 20%.

The confusion matrices shown in Figure 4.14 provide more detailed insight into the prediction
results of both the LogReg and RF methods. These matrices confirm the previous observation
of similar outcomes for the C and M classes, as detailed in Table 4.11. Furthermore, it is
evident that the LogReg method performs better for the C and M classes, as demonstrated by
the confusion matrix in Figure 4.14a, compared to the RF method depicted in Figure 4.14b.
In contrast, the RF method has significantly better results on the healthy and peripheral
classes.
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(a) : Random Forest - healthy.
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(b) : Random Forest - peripheral blockage.
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(c) : Logistic Regression - healthy.
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(d) : Logistic regression - peripheral blockage.

Figure 4.13: Visualization of binary classification prediction. The red color represents the
unhealthy part, and the green color represents the healthy part of the lungs.

Results of Classification Models on Testing Animal

In this section, the final visualization of model predictions for multi-class classification is
performed on the test animal, depicted in Figure 4.15. This comparison focuses on the RF
and LogReg methods. In the visualization of IBS flow shown in Figures 4.15a and 4.15b, the
left lung exhibits a lower amplitude. When analyzing the prediction results from LogReg,
areas with lower amplitudes are predominantly classified as C blockages, whereas RF has
classified the areas with decreased amplitude correctly. This inaccuracy results from labels,
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Class Model Accuracy[%] Precision[%] Recall[%] F-1 Score[%]

Healthy

LogReg 38.90 69.06 41.16 51.56
RF 44.94 63.96 50.94 56.71

XGB 46.86 56.44 72.66 63.53
Baseline 26.50 58.13 36.10 44.54

Central

LogReg 38.90 17.59 31.62 22.60
RF 44.94 19.16 25.67 21.94

XGB 46.86 9.44 5.37 6.85
Baseline 26.50 1.89 0.5 0.8

Medial

LogReg 38.90 16.44 46.05 24.23
RF 44.94 23.06 28.76 25.57

XGB 46.86 8.13 5.79 6.77
Baseline 26.50 10.04 57.60 17.10

Peripheral

LogReg 38.90 32.98 27.91 30.23
RF 44.94 41.36 46.63 43.85

XGB 46.86 43.15 33.68 37.83
Baseline 26.50 12.22 9.06 10.40

Table 4.10: Model evaluation metrics for 4-class classification.

(a) : LogReg CM (b) : RF CM

Figure 4.14: Confusion matrices for 4-class classification. (a) represents the confusion matrix for
the logistic regression model and (b) represents the matrix for the RF model.

where such low amplitude values are often one type of unhealthy, possibly indicating C or
M blockages, which LogReg struggles to address. However, LogReg correctly identifies the
center of the lungs, typically associated with C or M blockages, as healthy. The problems
with incorrectly classified lung edges were discussed in Chapter 4.3.2.

Another notable observation is that both methods sometimes misclassify C blockages as
other types. LogReg, for instance, classifies M blockage as C, as shown in Figure 4.15c,
whereas RF categorizes the same blockages as P, as demonstrated in Figure 4.15d. Overall, the
random forest method achieves better visualization results. When comparing both methods
with the baseline model, it is evident that they achieve higher precision in classifying data
points.

Finally, numerical metrics for the testing animal were obtained and are presented in
Figure 4.11. In most cases, XGBoost outperforms other models, but shows the lowest F-1
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(a) : Logistic Regression - healthy.
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(c) : Logistic Regression - medial blockage.
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(d) : Random Forest - medial blockage.

Figure 4.15: Visualization of 4-class classification prediction. Blue represents the central blockage,
purple represents the medial blockage, and yellow represents the peripheral blockage of the lungs.

score in the medial class, where the baseline model achieved the best score among all considered
models. In general, the best results were observed for all methods in classifying healthy and
peripheral classes. The most significant discrepancy in model performances is seen in the
peripheral class, where the baseline model has a roughly 35% lower F-1 score than the others.

Due to the similarity and anatomical proximity of the central and peripheral classes, they
were merged into one class, aiming to enhance the models’ performance in classifying these
blockages.

51



4. Results and Discussion.........................................
Class Model Accuracy[%] Precision[%] Recall[%] F-1 Score[%]

Healthy

LogReg 45.80 87.04 45.11 59.42
RF 41.17 86.73 39.37 54.15

XGB 73.35 82.21 87.53 84.78
Baseline 34.41 75.85 39.19 51.68

Central

LogReg 45.80 14.53 60.16 23.40
RF 41.17 12.46 53.92 20.24

XGB 73.35 28.37 21.25 24.30
Baseline 34.41 5.81 6.64 6.20

Medial

LogReg 45.80 5.13 7.88 6.21
RF 41.17 4.22 6.23 5.30

XGB 73.35 0.79 0.18 0.30
Baseline 34.41 7.33 55.50 12.95

Peripheral

LogReg 45.80 30.89 61.78 41.12
RF 41.17 27.34 56.50 38.57

XGB 73.35 39.74 45.02 42.21
Baseline 34.41 7.11 6.48 6.78

Table 4.11: Model evaluation metrics for 4-class classification on testing animal.

4.3.4 3-class classification

After identifying a classification challenge between central and medial blockages, these two
categories were merged into one. This section discusses the results of the 3-class classification.

Numerical Results and Confusion Matrix

Table 4.12 presents the numerical results obtained using the LOSOCV method for an unbiased
comparison. Similarly to 4-class classification, the random forest method demonstrates
the most stable results across all classes. Although the results between random forest and
logistic regression differ by about 5%. These differences are the smallest among all previous
classification tasks between and interpretable and non-interpretable models. The baseline
model achieves the best results in the merged class but performs poorly in the peripheral
class. It can be concluded that logistic regression remains the most stable method as an
interpretable model, while random forest stands out as a non-interpretable model.

The assumptions are also proved by Figure 4.16. In the confusion matrix of LogReg shown
in Figure 4.16a, the recall on the diagonal confirms the lower ability of logistic regression
to classify C+M and P classes as they are a bit suppressed by H. However, the confusion
matrix shown in Figure 4.16a shows that merging the central and peripheral classes helps the
random forest method to obtain balanced results in all classes.

Results of Classification Models on Testing Animal

This subsection presents the evaluation results on the testing animal. First, the results of
RF and LogReg are depicted in Figure 4.17 to compare the classification results on the same
data. RF, as shown in Figure 4.17b, classifies the data points mainly on the edges of the
lung, where IBS flow decreases. On the contrary, LogReg categorizes more data points at
the bottom of both lungs as having C or M blockage, while edges are less misclassified than
for RF. As illustrated in these two figures, each method has a different prediction approach.
Therefore, finding one method capable of addressing all of the issues remains a challenge,
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............................................ 4.3. Classification

Class Model Accuracy[%] Precision[%] Recall[%] F-1 Score[%]

Healthy

LogReg 46.33 40.22 46.26 43.03
RF 50.78 47.78 48.71 48.24

XGB 37.14 37.81 78.38 51.01
Baseline 33.79 41.76 44.28 42.98

Central +
Medial

LogReg 46.33 41.35 40.11 40.72
RF 50.78 46.09 44.14 45.09

XGB 37.14 35.13 13.89 19.91
Baseline 33.79 38.57 59.46 46.79

Peripheral

LogReg 46.33 46.37 40.81 43.41
RF 50.78 47.02 48.09 47.55

XGB 37.14 48.66 25.85 33.77
Baseline 33.79 7.05 2.80 4.01

Table 4.12: Model evaluation metrics for 3-class classification.

(a) : LogReg CM (b) : RF CM

Figure 4.16: Confusion matrices for 3-class classification. (a) represents the confusion matrix for
the logistic regression model, (b) represents the matrix for the RF model.

especially in the cases of unbalanced datasets with known differences in the number of data
points for each class.

The other interesting outcomes are depicted in Figure 4.18. In this comparison, two
measurements from one stage are evaluated. In the reference result column, it is evident
that the IBS flow amplitude in the second measurement is slightly higher (highlighted in
green) than the threshold for recognizing the data points as unhealthy. Initially, in the
output in Figure 4.18ait was correctly classified as C+M blockage, although the defined
area is considerably smaller than the reference area. On the contrary, in the results shown in
Figure 4.18b, the classified blockage area is larger, but the model misclassified it as a peripheral
blockage, which is incorrect. This comparison highlights that, despite two measurements of the
same animal and stage, the reference IBS flow differs a lot as well as the EIT measurements.
The variance of the EIT measurements and respective extracted features can cause such
misclassifications. Hence, calibration may be necessary for each measurement to obtain
the most accurate data. In this particular case, the baseline model outperformed logistic
regression. However, in general, logistic regression achieves better results than the baseline
model.

Furthermore, as in the previous classification types, the 3-class classification was assessed
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(a) : Logistic Regression - healthy.
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(b) : Random Forest - healthy.

Figure 4.17: Visualization of 3-class classification prediction. Blue represents the central + medial
blockage and yellow represents the peripheral blockage of the lungs.
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(a) : Logistic regression - C+M blockage, measurement 1.
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(b) : Logistic regression - C+M blockage, measurement 2.

Figure 4.18: Visualization of 3-class classification prediction, comparison of two measurements
of the same stages. Blue represents the central + medial blockage, and yellow represents the
peripheral blockage of the lungs.

using evaluation techniques. Random Forest and logistic regression achieved the most favorable
results on unhealthy classes. For the testing animal, the baseline model also performed well,
except for the peripheral class, where its F-1 score was only 8%.

54



............................................ 4.3. Classification

Class Model Accuracy[%] Precision[%] Recall[%] F-1 Score[%]

Healthy

LogReg 54.29 89.91 52.01 65.60
RF 54.91 90.23 54.61 68.04

XGB 65.72 81.24 77.49 79.32
Baseline 40.11 75.82 38.95 51.46

Central +
Medial

LogReg 54.29 20.47 57.97 30.26
RF 54.91 23.81 41.65 30.29

XGB 65.72 23.53 26.10 24.74
Baseline 40.11 19.07 69.44 29.93

Peripheral

LogReg 54.29 37.03 67.30 47.78
RF 54.91 24.41 75.58 36.90

XGB 65.72 22.27 27.07 24.44
Baseline 40.11 7.34 8.92 8.05

Table 4.13: Model evaluation metrics for 3-class classification on testing animal.

4.3.5 Classification Summary

In the classification section, various approaches were introduced and assessed. Initially,
binary classification was employed to assess label distributions and determine a strategy for
multi-class classification. Subsequently, a 4-class classification was performed to differentiate
between all unhealthy classes. As the amount of H class was much higher, it was downsampled
to match the total of the three unhealthy labels (C, M, P), while the remaining labels were
adjusted by weighting to achieve a balanced dataset. However, this adjustment was not
effective for the 4-class scenario, due to the significantly lower occurrence of the C and M
labels compared to the other classes. Consequently, these two classes were merged into a single
class, as they are anatomically close and produce similar signal characteristics. Although this
method proved to be the most effective approach, it is important to note that achieving this
required the removal of a large number of data points.
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Chapter 5
Conclusion and Outlook

Electrical impedance tomography (EIT) offers valuable insights into regional lung perfusion,
a crucial aspect of respiratory function. The objective of this thesis is to develop a real-time
and non-invasive method for assessing lung perfusion using the cardiac component of the EIT
recordings (CRS). Currently, the state-of-the-art method for perfusion monitoring involves
utilizing the contrast signal (IBS) obtained through intravenous saline injection. However, this
method is invasive, potentially harmful, and requires offline analysis. In contrast, our proposed
method focuses on leveraging the CRS signal along with the development of statistical models
and selected signal features with physiological significance.

To address this objective, two statistical tasks were employed: regression to quantify lung
perfusion levels and classification to assess the type of lung blockage. Statistical models were
trained using data from animals with various perfusion insufficiencies, using gold standard
IBS flow as reference. The data were collected from 11 animals, each animal with several
stages of health and various types of lung injuries. One animal was exclude from training for
unbiased model evaluation, while the remaining animals were trained, validated, and tested
using leave-one-subject-out cross-validation (LOSOCV). To correctly assess the performance
of the regression and classification tasks, evaluation metrics for both were used.

Due to the application of statistical models to medical data, one of the requirements was
high degree of model interpretability. Therefore, in the regression task, the LinearGAM
model was employed for this purpose. For classification, GAM models were used for binary
classification and Logistic regression for multi-class classification. However, for a comprehensive
comparison of results, non-interpretable models such as Random Forests and XGBoost were
also implemented for all tasks. Moreover, since there is no existing state-of-the-art model for
any of the previously mentioned tasks, a baseline model was established as a replacement. It
is a linear model trained on the most significant features with respect to IBS flow, healthy /
unhealthy state, or type of blockage, depending on the task.

In the regression task, both interpretable and non-interpretable models demonstrated the
ability to recognize lung perfusion, as evidenced by metrics obtained through LOSOCV and
validation on testing animal. As expected, the less interpretable models outperformed the
interpretable ones, although the difference was not significant. Specifically, LinearGAM
achieved the R2 score of 0.43, while XGBoost achieved 0.47. However, in regression, the
difference between the baseline model and LinearGAM was substantial. Comparing the
LinearGAM with the baseline model, the baseline model was outperformed in R2 by 0.41,
while the best non-interpretable model, XGBoost, was around 0.45 in R2 score better than
the baseline model.

Subsequently, the classification problem was solved. In binary classification, models
sufficiently correct distinguished between healthy and unhealthy data points. Following this,
a multi-class classification approach was implemented. Initially, a 4-class classification was
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5. Conclusion and Outlook ........................................
used to classify healthy data and three types of blockages: central, medial, and peripheral.
However, due to the limited number of data points for central and medial blockages, a 3-class
classification that merges these two classes was introduced. Evaluation and comparison of
the models were based on the F-1 score. The Random Forest model achieved the most
stable results, with an average F-1 score of 46% for all classes, while Logistic Regression,
as an interpretable model, also had a comparable performance of 43%. The baseline model
performed nearly as well as Logistic Regression in classifying the healthy class, but struggled
in classifying blockages.

Since the results of both tasks are very promising, further improvements are possible.
During the implementation of statistical models and the evaluation of their results, variance in
model performance was observed. The evaluation metrics of each model in LOSOCV indicated
that some animals gave worse results compared to others. Given that the performance pattern
for all animals in each task was consistent, calibration of the measurements of each animal
might be necessary. As some classes are represented by more data points than others, a more
balanced dataset could potentially help models achieve better results without the need of
downsampling, which removes large amounts of data points. Lastly, a more robust approach
could be employed, such as considering a pixel with its neighborhood as one data point.

In conclusion, this thesis effectively utilized CRS signals for the identification and character-
ization of lung perfusion and injuries, while also highlighting the limitations of this approach.
Using these results and conducting additional investigations, it has the potential to develop a
non-invasive and real-time technique to provide information on lung perfusion.
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Appendix A
List of Abbreviations

Symbol Meaning

AC Alternating current
AIC Akaike information criterion
CRS Cardiac-related signal
CT Computed Tomography
CV Cross-Validation
CV C Cross venous catheter
GCV Generalized Cross-Validation
DoF Degree of Freedom
EIT Electrical Impedance Tomography
FEM Finite Element Method
GAM Generalized Additive Model
IBS Indicator Bolus Signal
LoA Limits of Agreement
LogReg Logistic Regression
LOSOCV Leave-One-Subject-Out Cross-Validation
MAE Mean absolute error
MSE Mean squared error
N/A Not applicable
NaN Not a Number
RF Random Forest
RFE Recursive Feature Elimination
ROI Region of interest
RMSE Root mean sqaured error
V RS Ventilation-related signal
XGBoost Extreme Gradient Boosting
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