
Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Measurement

Master’s Thesis

Pog: A portable package manager for Windows

Matěj Kafka

kafkamat@fel.cvut.cz
https://github.com/MatejKafka/Pog

Supervisor: Ing. Miroslav Prágl, MBA

Study programme: Open Informatics

Branch of study: Computer Engineering

May 2024

https://github.com/MatejKafka/Pog

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

483777 Personal ID number: Kafka Matěj Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Measurement

Open Informatics Study program:

Computer Engineering Specialisation:

II. Master’s thesis details

Master’s thesis title in English:

Pog – a portable package manager for Windows

Master’s thesis title in Czech:

Pog – správce přenosných balíčků pro Windows

Guidelines:

Many applications for Windows provide a portable version, storing application data in the same directory as the application
itself, with minimal alterations to the system. The student will implement a package manager for portable applications.
1. Compare and contrast standard systemwide package installation with portable applications.
2. Analyze popular package managers, both for Windows and other platforms, describe the problems solved, the
shortcomings and the features that are typically expected by users.
3. Analyze existing portable applications, describe features required of a package manager to install them.
4. Design and implement a package manager for portable applications, which:
a) accesses an online repository of available portable applications
b) automatically downloads an application and makes it available to the user, behaving similarly to a natively installed
application
c) supports uninstalling applications
d) ensures installed applications work correctly when moved to a different machine
5. Document available features of the package manager, including both the user UI and the APIs available to package
authors.

Bibliography / sources:

[1] Hisham Muhammad, Lucas C. Villa Real, and Michael Homer. 2019. Taxonomy of Package Management in Programming
Languages and Operating Systems. In Proceedings of the 10th Workshop on Programming Languages and Operating
Systems (PLOS '19). Association for Computing Machinery, New York, NY, USA, 60–66.
https://doi.org/10.1145/3365137.3365402.
[2] Eelco Dolstra, Merijn de Jonge, and Eelco Visser. 2004. Nix: A Safe and Policy-Free System for Software Deployment.
In Proceedings of the 18th USENIX conference on System administration (LISA '04). USENIX Association, USA, 79–92.
https://dl.acm.org/doi/10.5555/1052676.1052686.
[3] Microsoft. Microsoft/winget-CLI: Windows Package Manager CLI (Aka Winget). Microsoft,
https://github.com/microsoft/winget-cli.
[4] Chocolatey - the Package Manager for Windows, https://chocolatey.org/.
[5] Scoop, https://scoop.sh/.
[6] Portableapps.com - Portable Software for USB, Portable, and Cloud Drives, https://portableapps.com/.

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1

Name and workplace of master’s thesis supervisor:

Ing. Miroslav Prágl, MBA Department of Computer Systems FIT

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 24.05.2024 Date of master’s thesis assignment: 08.02.2024

Assignment valid until:
by the end of summer semester 2024/2025

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature

Head of department’s signature Ing. Miroslav Prágl, MBA
Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1

Abstract
The traditional approach of installing Windows applications system-wide using exe-
cutable installers leads to inconsistencies, automation issues, and lack of transparency
and hinders the implementation of features desired by the developer community. Portable
applications avoid many of these issues at the cost of convenience and system integration.

This thesis presents Pog, a new command-line package manager for Windows that fully
encapsulates applications in a portable directory, preserving system integration while en-
abling unprivileged installation, migration between machines, and side-by-side installa-
tion of multiple versions. Compared to existing alternatives, Pog also provides significant
performance benefits for most common operations.

Abstrakt (CZ)
Tradiční postup instalace aplikací pro Windows do systémových složek, jenž využívá in-
stalačních programů, způsobuje nekonzistence, problémy s automatizací, netransparent-
nost procesu instalace a brání implementaci funkcí požadovaných vývojářskou komuni-
tou. U přenosných aplikací se většina těchto problémů nevyskytuje, jsou však uživatelsky
nepohodlné a neintegrují se do systému.

Tato práce představuje Pog, nový správce balíčků pro Windows, který aplikace plně
enkapsuluje v jednom adresáři, zachovává integraci se systémem a zároveň umožňuje
neprivilegovanou instalaci, přesouvání mezi systémy a paralelní instalaci více verzí. Ve
srovnání s alternativami je Pog také výrazně rychlejší pro většinu obvyklých operací.

Acknowledgement
I would like to thank my supervisor for tak-
ing on this thesis and my colleagues Jakub
Dupák, Jáchym Herynek, Max Hollmann,
and Vojtěch Štěpančík for all of our discus-
sions, mental support, and our shared drive
to always do better. Without you, I would
not be half the engineer I am today.

I also express heartfelt thanks to Aga, my
girlfriend, for her unwavering support dur-
ing all the hardships in my studies and life
outside academia.

Declaration
I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the method-
ical instructions for observing the ethical
principles in the preparation of university
theses.

In Prague, 24. 05. 2024

...

Contents
1 Introduction 1

2 Background 3
2.1 Linux package management . 4
2.2 macOS package management . 6
2.3 Windows package management . 6

3 Design goals for Pog 12
3.1 Encapsulation and portability . 12
3.2 Minimal external dependencies . 13
3.3 Transparent installation . 13
3.4 Accessibility . 13
3.5 Packaging experience . 14

4 Making applications portable 15
4.1 Environment variables . 15
4.2 Command line arguments . 16
4.3 Configuration files . 16
4.4 Sandboxing . 17

5 The Pog package manager 19

6 Package installation process 20
6.1 Importing a package . 20
6.2 Installation . 21
6.3 Package configuration . 22
6.4 Exporting a package . 26
6.5 Uninstallation . 27

7 Package repositories 28
7.1 Local repositories . 28
7.2 Remote repositories . 29
7.3 Manifest generators . 29

8 Application launchers 31
8.1 Shim executables . 32
8.2 Pog shim executable implementation . 33
8.3 Shim executable initialization . 34

9 Evaluation 35
9.1 Encapsulation and portability . 35
9.2 Minimal external dependencies . 36
9.3 Transparent installation & Accessibility . 36
9.4 Packaging experience . 37
9.5 Performance evaluation . 37

10 Future work 42

11 Conclusion 44

Bibliography 45

Appendix A: Pog scripting 47

Appendix B: Pog manifest example 49

Appendix C: Scoop manifest example 50

Appendix D: WinGet manifest example 52

Section 1

Introduction

Linux and other operating systems of the UNIX heritage have a long tradition of using
package managers to install and uninstall applications. Package managers simplify many
aspects of application distribution, especially due to automatic dependency management
and a unified interface for users to discover and install applications. Most Linux package
managers are specific to a single distribution, or a family of related distributions, and are
a major aspect of what sets them apart. Installation of a package by the package manager
primarily consists of extracting a static archive, with limited support for dynamic script-
ing during the installation.

In comparison, Windows historically did not have a package manager, and most software
is still distributed using installers directly from the vendor. This model is more flexible
than the one typical for Linux package managers, at the cost of higher complexity and
inconsistency both for the developer and the end user. Additionally, since the system can-
not reliably track all resources affected by an installer, clean uninstallation of a package
is non-trivial. Third-party package managers are available on Windows, such as Choco-
latey¹ and Scoop², but unlike on Linux, they were not commonly used until recently, when

¹https://chocolatey.org/
²https://scoop.sh/

WinGet³, an official package manager from Microsoft was introduced. Both Chocolatey
and WinGet utilize existing installers.

³https://github.com/microsoft/winget-cli

Most Linux package managers install packages system-wide and require root access, and
similarly, most Windows installers require administrator rights and install software to the
Program Files system-wide folder. As an alternative for Windows, there is a tradition of
so-called portable applications, which do not require installation and store user data and
configuration files in the same directory as the program binary. For the end user, however,
the current experience of using portable apps is subpar, as the apps do not provide Start
menu shortcuts, file association support, PATH integration for command line programs,
and other features users have come to expect. The PortableApps.com⁴ project attempts to

⁴https://portableapps.com/

remedy some of these issues, but it focuses only on GUI applications, has complex wrap-
per configuration format, opaque launchers, and no command-line interface.

Pog is an in-development package manager, which attempts to build upon portable appli-
cations, providing better system integration and a simple way for developers to author
packages and for users to install applications and keep them up-to-date. It is built using
a combination of C# and Windows PowerShell 5, with a first-class interactive command-
line interface, including full auto-complete. Pog explicitly disallows binary installers, and
only supports installation from plain archives and installers that can be extracted without
executing any embedded code. For install-time configuration, Pog provides package au-
thors with a comprehensive library of idempotent PowerShell functions to configure the

1

https://chocolatey.org/
https://scoop.sh/
https://github.com/microsoft/winget-cli
https://portableapps.com/

installed program and export entry points, including Start menu shortcuts and commands
in PATH. Pog also supports wrapping non-portable applications, as long as they provide a
way to configure paths where user data is stored, by creating shim executables that invoke
the original binary with modified arguments and environment.

The remainder of this thesis is is organized as follows. Section 2 reviews the history and
current state of package management on the three major platforms, with Section 3 estab-
lishing the resulting design goals. Section 4 follows with description of options to make
existing applications portable. Section 5 gives a high-level overview of Pog, with the fol-
lowing three sections detailing specific parts of the implementation. In Section 9, Pog is
shown to meet the specified design goals, followed by a sketch of possible future improve-
ments and a conclusion.

2

Section 2

Background

There are two common types of package managers, used in different parts of the soft-
ware distribution process. System package managers are a tool for end users to manage
installed applications and their dependencies, and tend to be specific to a single platform.
In comparison, language package managers are typically cross-platform tools, designed
to manage build-time dependencies, which are generally private to a single project. For
historical reasons, system package managers on Linux are also used as language package
managers for C and C++ projects, while some language package managers, such as pip, are
also misused as system package managers. The rest of the thesis focuses on system pack-
age managers, explicitly ignoring build-time dependencies. I will only call them “package
managers” here-on-forth.

Package managers provide a unified user interface for installing and uninstalling applica-
tions and their dependencies, ensuring that the system is in a consistent state where all
packages have their dependencies installed. During installation, many package managers
track the installed files, so that the package may be cleanly removed during uninstallation,
and to catch collisions between packages, where multiple packages attempt to write to
the same file. Most package managers also support updates, allowing the user to query
for new versions of installed packages and install them.

Package managers also aid software discovery, allowing the user to find relevant pack-
ages for their use case based on name, tags or description. Most package managers have
maintainers who actively adapt and curate the available software, removing malware
and abandonware and enforcing consistent conventions around installation locations and
package quality and providing a central point of support for users.

The feature set of different package managers varies widely. Some package managers re-
quire specifically built packages from the source, while others adapt package-independent
archives or binaries. Some install packages system-wide, requiring administrative privi-
lege, while others install packages privately for a single user. Some use a custom directory
structure; others follow the platform conventions. Some allow packages to script arbitrary
changes to the system; others only extract a static archive. Some can build and manage ar-
bitrary dependencies; others only install self-contained packages. Some support installing
many versions of a package, while others offer multiple versions in a repository while
only supporting the installation of a single version at a time, yet others only provide the
latest version of each package. Some only offer a command line interface, while others
also provide a graphical interface.

The following section summarizes the history and current state of package management
on the three major contemporary desktop platforms and discuss how the platform influ-
ences the above trade-offs.

3

2.1 Linux package management
Before the advent of build tools, software on UNIX-like systems was distributed in the
form of source code with compile scripts. After Make was developed in 1976, a large frac-
tion of existing software converged on Make, built and installed by invoking make && make
install. However, UNIX systems varied widely, and each project had to check compati-
bility with various targets. To ease the burden, GNU Autoconf⁵ was released in 1991 as

⁵https://www.gnu.org/software/autoconf/

a tool for generating a platform-specific Makefile based on a series of feature tests. How-
ever, this still required the user to build all installed software locally.

In 1993, Slackware’s pkgtools were released as the first popular package installer, where
the end user did not have to build the software. Instead, a package maintainer built the
packaged software and packed the output as a tarball, which was distributed to the users.
The end user could either unpack the tarball to the root of the filesystem manually, or use
pkgtools, which unpacked the tarball and stored a list of the unpacked files, which was
used to later cleanly remove the package.

In the following years, other package managers for new Linux distributions, such as De-
bian’s dpkg and pms from Bogus Linux added package metadata to the tarballs, including
a list of dependencies, and warned the user when they installed a package with unmet
dependencies, resulting in the modern concept of a package. The packaging aspect of the
issue was mostly solved, but packages still had to be discovered and downloaded man-
ually.

Meanwhile, FreeBSD was also released in 1993, taking a different approach with ports
trees. A ports tree was a directory hierarchy of available packages, called ports, where each
package directory only contained a Makefile and optionally a set of patches. The Makefile
could automatically download the source archives, apply patches, build the software and
install it. Since the ports tree was tiny compared to the actual source archives, it could be
reasonably stored locally and kept up-to-date. To install a port, the user ran make install
inside the port directory. This was likely the first well-known package installer system
using a package repository.

The two branches converged over the following years, with various Linux distributions
implementing support for package repositories by expanding upon existing local package
installers, and FreeBSD starting to use binary packages. A notable early example is the
dselect tool for Debian, implemented as a dpkg front-end, with support for remote pack-
age repositories added in 1997, and the well-known apt-get package manager, also for
Debian, released in 1998.

2.1.1 Contemporary package managers
Today, there are six major families of desktop package managers, listed in Table 1. All
major desktop Linux distributions use a package manager to service most installed soft-
ware, including the kernel and other core components. Packages are installed system-wide
to standard directories and root privileges are required to manage them. Software must
be packaged for a specific package manager and typically built from source by the pack-

4

https://www.gnu.org/software/autoconf/

age maintainer, instead of repackaging existing binary releases. Since packages use fixed
paths, only a single version of a package may be installed at a time, and package main-
tainers typically depend on the latest version of each dependency. In cases where multiple
versions of a package are needed, such as for major versions with breaking changes, a
separate package is kept for each version. Local copies of package listings are kept for
each package repository to speed up operations and must be manually updated by the
user.

Distribution Frontend Engine
Debian
Ubuntu
Mint Linux

APT dpkg

Pop!_OS
Fedora
CentOS

YUM
DNF

RHEL
SUSE Linux

rpm

Zypper
openSUSE
Arch Linux pacman
Manjaro
Gentoo Portage
NixOS Nix

Table 1: Well-known Linux distributions and their native package managers.

There are a few notable exceptions. The first one is Nix [1], [2], the native package man-
ager for NixOS, which also supports most Linux distributions and macOS. Nix attempts
to ensure reproducibility and isolation between packages by compiling packages in an
isolated environment, where only explicitly declared dependencies are present, installing
each package to a separate directory named using a hash of all sources of the package, and
using package-specific shared library paths. This allows Nix to trivially install multiple
versions of a package without conflicts and also enables non-privileged users to install
packages without affecting other users. Closed-source packages are built by repackaging
binary releases and patching library paths. To make binaries accessible to the user, Nix
creates symbolic links in a per-user directory, which the user may add to the PATH envi-
ronment variable.

Another well-known distribution-agnostic package manager is Flatpak⁶, managing self-
contained, sandboxed packages that bundle all dependencies. Flatpak packages may be

⁶https://flatpak.org/

installed by unprivileged users, however, no support for installing multiple versions of a
package is provided.

5

https://flatpak.org/

A similar design space is explored by the AppImage⁷ project. AppImage is a tool to create
self-contained portable packages, which can be directly launched without an installation

⁷https://appimage.org/

step. The package is an ELF binary, which acts as a launcher and contains an embedded
SquashFS [3] image, which is mounted by the launcher and contains the actual packaged
application. This allows the user to easily install multiple versions just by downloading
multiple AppImage binaries. Applications are not sandboxed and store data in standard
paths.

2.2 macOS package management
Author’s note: My personal experience with macOS is fairly minimal. From my research,
there are only a few aspects of application management on macOS that are potentially
relevant for the topic of this thesis, described below.

Unlike most desktop Linux distributions, macOS does not have an official package man-
ager outside of the App Store, which is not widely used. Graphical applications are
stored in the /Applications directory as subdirectories with an .app extension, which
are treated by the system user interface as a single executable file. To manually install
an application, the user downloads an archive containing the application and copies the
application to the /Applications directory; the system automatically detects the newly
added directory and registers it based on a declarative .plist configuration file stored in-
side the application directory. More complex configuration, such as registering daemons,
is typically done by the application on first launch.

To uninstall an application, the user moves the application .app directory to Trash. In
recent versions of macOS, the system attempts to automatically clean up daemons regis-
tered by the application; however, it is generally the responsibility of the application to
clean up after itself, often unfulfilled.

For power users, there are two popular third-party package managers – Homebrew and
MacPorts. MacPorts is heavily inspired by the FreeBSD ports system and focuses on build-
ing packages from source. Homebrew supports both open-source packages built from
source and closed-source software packaged from a binary release; for pre-built packages,
it operates similarly to mainstream Linux package managers described in the previous
section.

2.3 Windows package management
Similarly to macOS, Windows did not have an official package manager for most of its
history and users downloaded applications directly from the vendor. However, Windows
does not have a self-contained app format like the macOS .app bundle, making installa-
tion significantly more complex. Each feature the application supports, such as Start menu
invocations, file associations, system services and others must be configured separately, in
varying parts of the filesystem and Windows Registry. To set up the application, vendors
typically provide an installer – an executable file that installs the application in any way
the vendor sees fit.

6

https://appimage.org/

This model is very flexible, at the cost of inconsistencies in the installation process, in-
scrutability for the user, less centralized oversight over application quality and additional
work for the vendor, who must create the installer. The last point is especially problematic
since for many vendors, creating an installer is an afterthought, resulting in unwillingness
to learn and invest in the process, and subsequent low quality of the installers produced.

There are a few common approaches to building installers. The least complex option is
a self-extracting archive, an executable file that contains a static archive and a small pro-
gram that which presents a simple UI to the user and extracts the archive to a selected
location. Some formats also support other installation steps, such as creating a Start
menu shortcut or registering the application uninstaller. The archive format used, such as
ZIP, typically allows prepending extra data to the archive, meaning that a self-extracting
archive is also a valid static archive. The upside of this approach is that the installer is
very simple to create and inspect, at the cost of support for more advanced configuration
and scripting, making this approach suitable only for simple applications.

Another common option is using third-party executable installers, such as NSIS⁸ and Inno
Setup⁹, which are conceptually similar to self-extracting archives while also providing

⁸https://nsis.sourceforge.io/Main_Page
⁹https://jrsoftware.org/isinfo.php

extensive support for installing common application features and custom scripting. Many
implementations provide a simple graphical UI to create an installation package with min-
imal knowledge. However, there are multiple issues for the user. The installers tend to
be hard to inspect and modify. Automating the installation tends to be non-trivial since
the support for silent installation and configuration varies widely. If the installation is
interrupted, the application may be left in a partially installed state, and no support for
repairing an existing installation is typically provided.

2.3.1 Windows Installer
To alleviate these issues, Microsoft created Windows Installer [4], an installation service
built into Windows that operates on installation packages in the MSI format. Each pack-
age is a declarative database containing a sequence of high-level actions needed to install,
repair or uninstall the package and the resources necessary, such as the installed files,
registry entries, and shortcuts. [5] An extensive library of built-in actions is provided; a
vendor may implement custom actions if necessary, although this is generally not recom-
mended. Except for custom actions, the format is fully inspectable with commonly avail-
able tools and may be freely customized before installation using transforms. [6] Windows
Installer supports reliable silent installation, extraction of the contained files, and provides
an extensive logging system. [7]

During installation of an MSI package, Windows Installer stores a log of all changes to
the system. Coupled with the use of restore points and NTFS and registry transactions
[8], this ensures that even when the installation is interrupted, the system can roll back
to a consistent state. A database of all installed packages and their components is kept,
which allows easy auditing of installed software. In domain networks, Microsoft provides

7

https://nsis.sourceforge.io/Main_Page
https://jrsoftware.org/isinfo.php

extensive tooling for seamless centralized installation using Group Policy, including on-
demand installation of packages on first use.

The extensive feature set and consistency checks results in high complexity for vendors
and users and slower installation speed compared to alternatives. Additionally, Microsoft
does not provide any graphical tool to author MSI packages, only the XML-based WiX¹⁰

¹⁰https://wixtoolset.org/

toolset, which closely follows the internal database structure of the MSI format. Third-
party MSI tooling, such as InstallShield¹¹, is generally more complex to use and expensive

¹¹https://www.revenera.com/install/products/installshield

to license compared to executable installers. As a result, many vendors still use other in-
stallation options.

2.3.2 Universal Windows Platform
With Windows 10, Microsoft introduced the Universal Windows Platform [9] (UWP),
with sandboxed applications, a new system API and runtime, and a new fully declarative
MSIX package format, with no support for custom scripting. UWP applications are dis-
tributed primarily through the Microsoft Store, installation from other sources is disabled
by default. Applications do not have access to the filesystem unless explicitly allowed
by the user, except for application data directories. Many parts of the UWP platform are
proprietary, tied to a Microsoft account, with minimal support for tweaking and backing
up applications, and many of the isolation primitives are under-documented, or not doc-
umented at all. Due to various limitations, application vendors are generally reluctant
to use the platform and most software is still distributed using the previously described
methods.

2.3.3 Portable applications
To avoid the complexity of creating an installer, some projects instead distribute static,
self-contained archives, which the user manually unpacks to a custom directory, where
the application may also store application data. A significant upside of this approach is
that the application may be freely moved between different machines while preserving
configuration, and that multiple versions of an application may be installed side-by-side.
Support for multiple versions is especially useful for runtime environments; each popular
runtime already has a separate tool to switch between versions, such as rbenv¹² for Ruby
and nvm¹³ for Node.js, which internally use a portable version of the runtime.

¹²https://github.com/rbenv/rbenv
¹³https://github.com/coreybutler/nvm-windows

Since portable applications generally do not depend on the state of the system, they tend
to be more reliable compared to more deeply integrated applications. However, the down-
side is a significantly degraded user experience – the user must manually unpack the
archive, the application must be launched by navigating to the directory instead of using
the Start menu, and absolute paths must be used to invoke the application from the com-
mand line. Applications that register services or scheduled tasks, provide shell extensions,
or otherwise integrate with the system are hard to distribute in a portable format.

8

https://wixtoolset.org/
https://www.revenera.com/install/products/installshield
https://github.com/rbenv/rbenv
https://github.com/coreybutler/nvm-windows

Multiple projects attempt to streamline the experience of using portable applications,
most notably PortableApps.com¹⁴, which provides a packaging system and a graphical

¹⁴https://portableapps.com/

interface to install, run, and maintain portable applications. Each application is packaged
in a standalone package, which may be installed without using the graphical interface.
Each application directory contains an executable launcher generated during packaging
using a configuration file and an NSIS script. The launcher is opaque, with no support for
introspection or modifications after packaging. There is no command-line version of the
graphical interface, and no command-line applications are provided in the official repos-
itory.

2.3.4 Package managers
Unlike on Linux, where most commonly used software is open source, proprietary closed-
source software has been the norm on Windows, only slowly changing in the last few
years. This is a significant obstacle in implementing a Linux-style package manager since
closed-source software cannot be easily adapted for packaging, and most proprietary soft-
ware cannot be legally redistributed. Instead, all well-known package managers use bi-
nary releases provided directly by the vendor, and the package itself only describes how
to retrieve and install the release from a third-party server.

2.3.4.1 Chocolatey
The first popular third-party package manager for Windows was Chocolatey [10], re-
leased in 2011. Since most applications already have an installer, Chocolatey downloads
and runs the existing installer and configures some of the exposed options, requesting
silent installation. Portable applications are downloaded and unpacked by Chocolatey to
a configurable directory. Non-administrative installation mode is supported for portable
applications. To make binaries available on PATH, .NET-based executable shims (Section 8)
that invoke the application binary are placed in a single public directory.

Each package contains a PowerShell script that installs the application using a library
of high-level functions provided by the run time environment. However, since the script
must wrap an existing installer and conditionally pass various options based on package
parameters, it tends to be somewhat verbose. [11] As Chocolatey does not control the
installation process, installs packages system-wide and does not reliably disable auto-up-
date, the state of the system may somewhat easily become inconsistent with the metadata
that Chocolatey internally tracks.

Chocolatey utilizes the package and repository format of NuGet, the language package
manager for .NET, and internally uses the NuGet client to interact with repositories. Mul-
tiple versions of a package are available from the repositories; however, installing multiple
versions side-by-side is not well-supported, especially for installer-based packages and
has been deprecated in 2022. Packages may have dependencies on specific versions, but
until 2022, dependency versions conflicts were not handled, and conflicting dependencies
were silently overwritten. [12]

9

https://portableapps.com/

2.3.4.2 WinGet
In 2020, Microsoft released Windows Package Manager [13] (WinGet), strongly inspired
[14] by the since discontinued AppGet¹⁵ project. Similarly to Chocolatey, it reuses existing

¹⁵https://appget.net/

installers and supports installation of portable applications. However, it integrates well
with existing Windows infrastructure, registering even portable applications for uninstal-
lation and using the registry as a source of truth about installed applications. As a result,
applications installed by WinGet may be seamlessly managed using the built-in Windows
user interface and in turn, manually installed applications can be managed using WinGet.
Non-administrative installation is supported for most, but not all applications, depending
on the installer type.

WinGet supports installation of both Win32 applications from dedicated Git-based repos-
itories and UWP applications from Microsoft Store. The package manifests are written in
declarative YAML (see Appendix D) with no support for scripting. Multiple versions of
each package are available, but only a single one may be installed at a time. Packages may
specify dependencies, optionally setting a minimum required version; the dependency
system tends to be used for application-level dependencies, and libraries are still bundled
in most, if not all, installers.

Since its release, WinGet has achieved widespread adoption among developers as the of-
ficial Windows package manager, likely saturating the market for system-wide package
managers. However, it is still limited by its reliance on existing installers and their in-
consistencies and does not significantly change the authoring experience for software
vendors.

2.3.4.3 Scoop
Motivated by the complexity of existing installers, the Scoop [15] project, started in 2013
and officially released in 2022, takes inspiration from Linux package managers. Instead of
running an existing installer, Scoop installs applications by unpacking static archives or
installers in supported formats without executing untrusted code. By default, the pack-
ages are unpacked into a per-user directory without a need for administrator rights.
For portable applications, Scoop persists portable data directories between updates using
junctions or symbolic links. [16] Non-portable applications store data at default paths.

System integration of installed applications is limited to adding Start menu shortcuts, ex-
porting binaries to PATH using a .NET-based executable shim (see Section 8), and adding
custom subdirectories to PATH for applications which dynamically add executables at run
time, such as language package managers. Package manifests may specify a PowerShell
script that is executed after installation to further configure the application where neces-
sary. While this restricts potentially useful application features, the upside is a simpler,
faster and more transparent installation experience. Scoop uses the on-disk state of in-
stalled packages as the source of truth instead of keeping a separate database of package
metadata, sidestepping any potential consistency issues.

Scoop package repositories are Git-based and use simple declarative package manifests
written in JSON (see Appendix C). Only the latest version of each package has a manifest.

10

https://appget.net/

To install older versions, Scoop uses a built-in auto-update mechanism to heuristically
derive an older version of a manifest; in practice, the heuristics tend to fail for older pack-
age versions. Scoop installs each version into a separate subdirectory, allowing installa-
tion of multiple versions side-by-side and easy switching by redirecting a single junction.
Packages may specify application dependencies by name but not by version; library de-
pendencies are not supported. [17]

While Scoop is fully implemented in PowerShell, it does not provide integration and in-
tentionally deviates from PowerShell conventions. [18] The implementation is a collection
of shell scripts with minimal encapsulation and utilization of the object-oriented nature
of PowerShell. There are only minimal attempts at ensuring consistency in case of an in-
terrupted installation and other unusual circumstances. Nevertheless, the user experience
is surprisingly pleasant for typical use cases, both for the end user and package author.

11

Section 3

Design goals for Pog

The previous section provided an overview of the current state of package management
on Windows. For users seeking to streamline the installation process of system-wide ap-
plications, WinGet is a viable, officially supported option. However, the quality and trans-
parency of the application installers used by WinGet vary widely, and installation speed
is often subpar. Additionally, creating the installer is an unnecessarily complex step for
the vendor.

Using system-wide applications raises other issues described in the previous section.
Portable applications present an alternative option, which resolves most of the issues
with system-wide installation, and dramatically simplifies the release process for vendors.
Scoop successfully explores the idea of installing applications without using an installer,
but does not attempt to encapsulate the applications and provides a limited support for
installing multiple versions or moving applications between machines.

The primary motivation behind Pog is to explore the feasibility of building a package
manager that fully encapsulates applications within a single portable directory, support-
ing unprivileged installation, migration between machines, and side-by-side installation
of multiple versions. The installation process should be fully transparent for users and
accessible for package authors, encouraging developers to use Pog even during local de-
velopment. The rest of this section details the core design goals.

3.1 Encapsulation and portability
Installed applications should not be bound to a single computer and Windows installation.
It must be possible to move the application to a different machine, or reinstall the system,
while keeping all data intact and the application correctly working. Where possible, sys-
tem should not need to know about the installed applications.

With the current model of installation on Windows, where an application is split across
multiple folders, this is hard to implement. The current model has the advantages of eas-
ier permission control, multi-user support and for domain networks, the possibility of
having binaries and data on separate network drives. However, for personal computers,
which typically only have a single user, the latter two are not very valuable in practice,
and even permission control is of limited use, typically only utilized to prevent unprivi-
leged programs from modifying the binaries of other installed applications. In practice,
since the primary target of most attacks is acquiring user data or gaining persistence, both
of which are trivial even without administrative access, the described security boundary
is not too valuable. Furthermore, an increasing number of applications installs binaries
to the AppData directory, precisely due to lower privilege requirements. Even on shared
servers, the long-term trend seems to be moving towards virtual machines and containers,
both of which typically only have a single user account.

Thus, in Pog, each package should store both application files and data in a single direc-
tory, which can be moved without breaking the application or losing data. This also pre-

12

vents file conflicts between packages, provides a single location where to look for any rel-
evant configuration for each package, and simplifies uninstallation. All packages should
have the same directory structure for application files, data files, caches, and logs to sim-
plify backup and other automated processing of the packages.

3.2 Minimal external dependencies
Expanding upon the principle of encapsulation, packages should minimize external de-
pendencies. It is the responsibility of the package author to acquire all runtimes and li-
braries required for correct functionality.

On other platforms, it is common for applications to have many dependencies, and con-
sidered a good practice to not include any third party libraries in a package directly. This
leads to smaller package sizes and faster roll out for bug fixes in libraries. The downsides
are that the package manager must implement dependency resolution, dependency ver-
sion conflicts between packages are possible (unless multiple versions of a package can
be installed, which is not the case for most package managers), higher error surface and
lower performance due to dynamic linkage.

On Windows, since there’s no shared repository of packages to depend on, most appli-
cations ship all of their dependencies. This leads to larger package sizes, but greatly sim-
plifies package management and testing. Additionally, with link-time and profile-guided
optimization added to compilers, there’s a larger performance incentive for static linkage,
which works well with this approach; this is one of the reasons why many modern pro-
gramming languages, such as Go and Rust, default to static linkage.

Another advantage of bundling dependencies is the possibility of effortlessly installing
multiple versions of a package side-by-side. This is especially desirable for runtime en-
vironments and software compilation and testing. Pog should be able to install and run
multiple versions of an application side-by-side and properly isolate data and configura-
tion used by each version.

3.3 Transparent installation
User should be able to easily check what changes will be done during package installation,
and have the freedom to modify the package. No closed-source code should execute dur-
ing package installation, and most of the functionality should be provided by the package
manager, not by an installer script. This goal specifically precludes installing a package
using an installer.

The installation process should be described in a plain-text script, with sufficiently high-
level actions to make it easily readable for curious users. The scripting language used
should be well-known and supported; learning a new language for package scripting is
not acceptable, since most users and authors do not interact with the scripts often enough
to make it worth their while.

3.4 Accessibility
Pog should be a pragmatic tool, accessible to users unwilling to invest time in in-depth
study; accessibility should be a priority over theoretically correct, but harder to use designs.

13

As much as possible, Pog should use the actual on-disk state of a package as the source
of truth, instead of keeping an internal representation of the package state. As a result, it
should be hard to introduce inconsistencies by manually modifying the package directory
and easy to restore the package to a valid state, encouraging tinkering.

Furthermore, Pog should be scriptable, providing a consistent interface to inspect pack-
age state and metadata and add custom functionality not present out-of-the-box, allowing
users to build upon Pog.

3.5 Packaging experience
Creating Pog packages should be easy, even without any prior experience or external
tooling. The package manifest should use a standard, well-known format and scripting
language. Anyone should be able to create a package, without cooperation from the orig-
inal author and access to the source code. Additionally, Pog should be useful as a tool
for local development and integrating separately downloaded programs with the system;
using a local-only package should be trivial.

Since the packaged software must be adapted to function as a portable application and
follow the package conventions, Pog should provide a straightforward and flexible way
to configure the package, with shell scripts being an obvious choice. To ease authoring of
packages, a high level library of well-tested, consistent functions should be provided; in
the author’s view, experience from other installer scripting environments shows that if
the provided configuration primitives are too low-level, package manifests become hard
to read and many minor inconsistencies between packages are introduced.

14

Section 4

Making applications portable

Windows-native software tends to store user data in AppData and ProgramData. POSIX-
native software ported to Windows often uses the user’s home folder instead. To make
an application portable, it must be configured to store user data at a custom path. A mi-
nority of applications explicitly support portable mode if configured to do so. Many other
applications have a way to override the default paths to aid testing during development,
which can also be used for implementing portable mode.

A second obstacle for managing portable applications using a package manager are au-
tomatic updates. Many end-user applications check for new updates at launch, and auto-
matically install the update. For an application managed by a package manager, this is
undesirable – the package version will not match the application version, resulting in a
confusing user experience and issues with reproducibility, while also slowing down appli-
cation start up. Additionally, a user may explicitly install an older version of a package, in
which case automatic updates would be counterproductive. Most such applications pro-
vide a way to disable automatic updates. Both the data paths and automatic updates can
be typically configured using one of the ways described in the following sections.

4.1 Environment variables
Configuration through environment variables tends to be the most convenient option for
packaging portable applications. No modification of the wrapped application is required,
and the variables are automatically propagated to child processes, which ensures that
applications spawning child processes or restarting the main process keep the desired
configuration. Additionally, unlike command line arguments, environment variables are
parsed consistently in all applications, which makes support for user overrides trivial –
if the configuration environment variable is already set by the caller, the launcher may
leave the variable untouched. However, supporting user overrides is somewhat risky in
cases where a system-wide installation of an application may also set the environment
variable globally (e.g. JAVA_HOME), resulting in the supposedly portable wrapped applica-
tion accessing user-wide data.

There are two other notable downsides, the first one is the need to use a custom launcher to
configure the environment variable before invoking the wrapped application. The second
downside is that if a standard environment variable like %USERPROFILE% is modified in the
launcher, and the wrapped application launches an application from another package or
an external application, it inherits the changed environment and may behave incorrectly.
For packaged applications, this tends to be a non-issue, as they should not access any
user-wide paths, but issues arise when invoking a non-packaged application. Fortunately,
in practice, most applications either use a custom environment variable, or do not invoke
other programs.

15

4.2 Command line arguments
Configuration through command line arguments also avoids modifying the wrapped ap-
plication. Additionally, Windows shortcut files (.lnk) support passing extra arguments,
thus it would seem no extra launcher is needed for GUI applications. However, since the
Win32 CreateProcess function cannot invoke shortcuts, Windows copies the target com-
mand line from the shortcut when a user sets up a file association using the Open with
menu or pins the shortcut to the Start menu and invokes the target directly instead of
invoking the shortcut. This becomes an issue when a subsequent package update modifies
the shortcut, and the copies become stale. For this reason, using a launcher is generally
necessary both for console and GUI applications.

Unlike with environment variables, the application must take care to explicitly forward
any relevant command line arguments when invoking child processes or restarting the
main process. The upside is that the application may safely invoke other applications
without the risk of polluting their environment variables.

Another major downside is that command line parsing is done by the application, and
there’s a considerable variance between applications in what counts as an argument sep-
arator, how are parameter names denoted (-, -- and / prefixes are all commonly used)
and how parameter values are passed (either as a next whitespace-delimited token, or
separated by = or :). As long as the launcher only needs to prepend or append arguments
to the command line, most of the complexity can be avoided. However, supporting user
overrides tends to be tricky, unless the application already supports overriding, such as
by using the last provided value for named parameter and ignoring previous duplicates.

A related issue is presented by applications with strict requirements on the command
line structure. This is most common for applications with the <command> <subcommand>
argument structure, such as Git, which often only accept some arguments before the sub-
command and other arguments after. Similar issue occurs for applications which only ac-
cept parameters configuring portable data paths for sub-commands which use them, but
not others, such as accepting <command> --cache-dir=<path> run, but not <command>
--cache-dir=<path> version. For both of these cases, the launcher has to have some
awareness of the allowed argument structure to correctly parse the provided command
line and insert arguments, significantly complicating packaging.

4.3 Configuration files
Some applications detect the presence of a configuration file or directory in the same di-
rectory as the application binaries and use it instead of the default data paths. The upside
of this approach is that configuration is trivial for users who are manually installing a
portable application, since no custom launcher is needed, making it the most common
implementation for applications that explicitly offer portable mode.

The main issue of this approach tends to be that the portable data paths are not config-
urable. This is an obstacle both to a consistent package structure and to reusing a single
binary directory between multiple configurations of the app. To force the application to
write to a specific portable directory, different from the default one usually requires us-
ing a symbolic link or a junction, the downsides of which are explored in Section 6.3.2

16

and Section 8. Some applications solve this issue by also looking for a specifically named
file containing the desired path to the data directory, and use that instead of the default
portable data path, which avoids the need for linking the directory, but still precludes
using multiple configurations with a single installation of the application.

Another somewhat common approach is using one of the previous methods to set a cus-
tom main configuration file path, which contains other data paths. This resolves the afore-
mentioned issue, at the cost of requiring modifications to the configuration file whenever
the application directory is moved, which requires a parser for the file format used.

4.4 Sandboxing
An alternative approach to convincing the application to voluntarily use portable data
paths is to intercept access to the filesystem and registry and redirect it to a custom lo-
cation. This is the approach taken by Microsoft for virtualized UWP apps [19] and other
parts of Windows, and by third party tools such as Sandboxie¹⁶.

¹⁶https://github.com/sandboxie-plus/Sandboxie

The upside of this approach is the seemingly minimal application-specific knowledge or
cooperation from the application required, making automated packaging possible. Unlike
the previously described approaches, redirection will not break if an application adds a
new data path in an update.

The most severe issue is the complexity of implementing a robust sandbox – it needs to
correctly redirect all possible avenues of access to the filesystem and registry, without
significantly impacting performance of sandboxed applications. This also entails track-
ing and sandboxing launched child processes, since many applications use internal sub-
processes as part of normal operation, while correctly detecting sub-processes that do
not belong to the application – as an example, a shell sub-process spawned by a termi-
nal emulator should be excluded from the sandbox, but a shell sub-process spawned to
launch a command on behalf of the application should be sandboxed. A related issue is
an application accessing resources using an out-of-process COM service, however a niche
scenario. However, if some of the requirements are relaxed, it should be feasible to author
a sandbox capturing the relevant operations for most common applications, which could
still prove a valuable packaging tool.

Another, less severe issue with this approach is that the sandbox cannot distinguish be-
tween operations done by the application while accessing the data paths, and operations
done on the behalf of a user. This could be an issue for applications such as a text editor,
where the user would not be able to access files under AppData.

There are two common implementations of sandboxing. One option is using a kernel fil-
ter driver, which will intercept system calls from the wrapped application and redirect
relevant operations. If implemented well, this approach should be resistant to tampering,
and needs to cover a much smaller API surface than the alternative. However, the need
to load a kernel driver is a major obstacle, since portable applications are often used on
machines without administrator access.

17

https://github.com/sandboxie-plus/Sandboxie

The second common implementation injects a dynamic library into the application
process, which replaces existing system library functions with wrappers, which redirect
relevant operations and call the original functions internally. [20] There are two obvious
targets – the public Win32 API, implemented primarily by kernel32.dll, or the undoc-
umented ntdll.dll library, which is internally used by all subsystem libraries and per-
forms the actual system calls. This approach is suitable for portable applications, since no
system-wide modifications are necessary. The downside is that the Win32 API has a wide
surface, and intercepting all common operations which may result in filesystem or reg-
istry access entails a lot of work. Another issue is that platforms such as .NET often access
the Win32 API dynamically using LoadLibrary and GetProcAddress, which bypass the
injected library unless it also correctly intercepts these functions.

Both approaches to implementation may be combined, by blocking all potentially prob-
lematic operations using a kernel driver, and using an injected dynamic library to se-
lectively enable some functionality by redirecting the calls to a custom driver, as imple-
mented in Sandboxie. [21]

18

Section 5

The Pog package manager

Pog is a new system package manager for Windows, running in PowerShell 5. All pack-
ages are installed by extracting a static archive without external dependencies. Installed
packages store data directly in the package directory. This ensures that packages do not
interfere with one another and the underlying operating system. Package configuration
scripts are executed in a consistent, restricted environment and use a set of idempotent
commands to configure the installed package.

Each package has a manifest, which contains the package metadata, describes where the
package contents are downloaded from and how to configure the package after installa-
tion. Available manifests are retrieved from repositories – Pog supports both local reposi-
tories and remote repositories, operating directly on the repository without any interme-
diate update steps. Packages are installed in a package root, an ordinary directory which
may be placed at a local drive, a flash drive or a network share. Multiple package roots
may be defined; for example, one package root for packages used on a single machine and
another package root on a flash drive for packages used on multiple machines.

Pog is implemented as a PowerShell module. All public commands are documented us-
ing the PowerShell help system. Completions are provided for all common parameters,
including remote package names and versions. Commands operate on structured .NET
types, allowing for introspection and simple pipelining of multiple compatible commands
similarly to built-in PowerShell commands, as illustrated in Listing 1.

> Find-PogPackage aria2 -AllVersions | select -First 2 `
> | select Version, {$_.Manifest.Install.SourceUrl}
Version $_.Manifest.Install.SourceUrl
------- -----------------------------
1.37.0 https://github.com/.../aria2-1.37.0-win-64bit-build1.zip
1.36.0 https://github.com/.../aria2-1.36.0-win-64bit-build1.zip

Listing 1: Example of the Pog scripting interface.

Originally, in 2020, Pog started as a pure PowerShell Core project. However, over time, the
code base became harder to manage, and Pog needed access to low-level Win32 functions
to implement features such as atomic installation, which are non-trivial to use from Pow-
erShell, but easily accessible from C#. As a result, most of the core logic is now rewritten
as a C# library, which is internally used by the public commands.

Due to short support period for new .NET releases upon which the newer PowerShell
Core is built, Windows still ships with Windows PowerShell 5, which lacks some features
from newer PowerShell versions. Therefore, during 2023, the code base was migrated to
target PowerShell 5, which should be present by default in all supported Windows ver-
sions, unless explicitly blocked by the system administrator.

The following sections describe how Pog installs packages, how it uses package reposito-
ries and how package manifests are authored.

19

Section 6

Package installation process

The installation process of a Pog package consists of four steps. First, the package manifest
is imported by downloading it from the repository to a package directory. Next, the source
archives requested in the manifest are downloaded and installed, replacing any previously
installed version. Afterwards, the package configuration script is executed, enabling the
package, which sets up the application to run in portable mode and defines entry points
to the package, such as desktop shortcuts and console commands. As the final step, the
entry points are exported and become accessible to the user – desktop shortcuts are copied
to the Start menu, commands are exported to a directory on PATH.

To install a package available in the repository, the user invokes the pog command, which
executes all of the four steps in order. For more advanced use cases, the steps may be
invoked separately, enabling useful scenarios such as:
• Custom packages, which are not available from a repository. (install, enable, export)
• Wrapping a local project in a Pog package. This is useful for local administrative tasks

and custom applications built from source. (enable, export)
• Packages, which are only accessible by full path, without exporting the entry points;

these are useful to resolve entry point conflicts when multiple versions of a package are
installed. (import, install, enable)

Crucially, separating the install and enable steps is what allows Pog packages to work
portably from changing paths. The package is only installed once, but the enable step can
be executed whenever the package directory changes and reconfigures the application for
the new path. In the following sections, each of the four steps is described in more detail.

6.1 Importing a package
Package installation starts by retrieving the package manifest from a repository. Package
manifests are PowerShell data files [22], a JSON-like format with support for inline func-
tions, illustrated in Appendix B. This format is used to simplify embedding configuration
scripts directly into the manifest while still providing good editing experience; in com-
parison, Scoop manifests embed PowerShell fragments as JSON strings, which simplifies
tooling, at the cost of less convenient editing. Additionally, a manifest may also bundle
supplementary files, for example batch files used as launchers for the packaged applica-
tion. The retrieved manifest is placed into the package directory, where the package is
then installed.

Pog supports both local and remote repositories. Local repositories are a simple two-level
directory structure of packages and available versions of each package, containing the
package manifests as leafs. Remote repositories follow a similar structure, exposed over
HTTP from a static web server. Repositories are described in more detail in Section 7.

A package may be installed multiple times to use different versions or different configura-
tions side-by-side. To distinguish between the installations, each one must have a unique
identifier, which is used as the name of the package directory. When installing a package,

20

the identifier is configured using the -TargetName parameter. Additionally, the user may
also select a package root to install the package to using the -TargetPackageRoot para-
meter.

6.2 Installation
Next step is downloading and extracting any source archives specific in the manifest. From
here on, only the imported manifest is used and the repository is no longer referenced.

Install = @(
 @{
 Url = "https://github.com/mesonbuild/meson/.../meson-0.63.3.tar.gz"
 Hash = '519C0932...'
 Target = "meson"
 }
 @{
 # Meson needs python, install the embeddable zip version
 Url = "https://www.python.org/.../python-3.11.5-embed-amd64.zip"
 Hash = "D82391A2..."
 Target = "python"
 }
)

Listing 2: Manifest installation sources

Each package manifest references one or more source archives, which are downloaded
and extracted to an ./app subdirectory of the package. As shown in Listing 2, the manifest
contains the source URL and a SHA-256 digest of the file to ensure reproducibility and
detect tampering. It may also optionally specify a subdirectory of the retrieved archive to
extract, a target subdirectory of ./app where the archive is extracted or a script to modify
or rename the extracted files, such as in cases where the contained binaries use a version
suffix.

The archives are downloaded using the BITS [23] service, a built-in Windows download
service with good throughput and support for background transfers without impacting
interactive usage. To simplify the package structure and user interface, each imported
package only have a single version installed. However, fast version switching is desirable
for users who alternate between multiple versions of a package during software develop-
ment and testing, especially for runtimes such as Node.js or Python, and redownloading
the package each time would be wasteful.

To resolve this issue, Pog uses a concurrent download cache, where the downloaded
archives are stored, keyed by the digest specified in the manifest. Before downloading the
archive, Pog checks if the archive is already cached, in which case it uses the cached copy.
The download cache is a filesystem directory, which contains a subdirectory for each en-
try, named according to the entry key. The entry subdirectory contains the cached file,
and a metadata file in the JSON Lines [24] format, which lists all packages that used the
entry.

21

To add a new entry, the file is first placed in a temporary directory on the same partition
as the cache and the metadata file is added. Then, the directory is atomically moved [25]
to the cache directory, while holding a file lock on the entry with shared read access to
prevent concurrent deletion. When retrieving an entry, the calling package is atomically
added to the metadata file and the entry is locked for reading using a shared read file lock.
In both cases, the file lock is held while the cache entry is in use and released afterwards
to signal that the entry may now be deleted. The locking protocol ensures that the cache
may be used from multiple Pog instances concurrently, and even correctly cleared, skip-
ping entries in use.

The retrieved archives are extracted into a temporary directory inside the package. After
the new app directory is ready, it is atomically exchanged with the previous app directory,
if it exists. This ensures that even in the event of a power loss or system failure, the pack-
age is left in a consistent state.

Unlike POSIX systems, Windows have mandatory file locks, and a process holds a manda-
tory file lock over its executable and loaded shared libraries, which complicates in-place
updates, since it is not possible to replace the app directory while the application is run-
ning. Even on POSIX systems, updating application files while the application is running
may cause breakage when the old application process tries to access a data file which was
changed during the update, or when a new version of the binary is launched concurrently
with the old version.

One possible approach to resolve some of these issues, used by Scoop, is to install each
version into a separate directory and then redirect callers to the latest versions, either
using a junction or a shim executable. However, this may still result in multiple versions
of the application operating on the same data, unless the application uses a lock file to
detect the situation.

Pog uses a single unversioned app directory, and instead detects that the app directory is
in use during installation, in which case it attempts to list the processes locking files in
the directory, shows a message to the user prompting to stop the processes and waits for
confirmation before continuing.

6.3 Package configuration
After the package is installed, the application typically needs to be configured to run
in portable mode, using one of the methods described in Section 4. Additionally, entry
points to the application must be exported from the package. Since the process tends to
significantly vary between packages, the manifest provides a PowerShell script, which is
executed after installation and configures the package. This step is called “enabling” the
package.

Each package is enabled after installation, and reenabled whenever the package is moved
to a different machine or filesystem location, to reconfigure it for the new environment.
It should be safe to rerun the configuration script multiple times, the script should be
idempotent.

22

PowerShell users may customize the shell environment, defining new functions, alias-
ing existing commands or defining variables which influence how PowerShell evaluates
scripts. It is undesirable to run the manifest scripts in the original PowerShell session,
since a script may be affected by these modifications and behave differently on different
machines. Pog runs the script in a new runspace [26] in the same process, with disabled
module autoloading and only a few standard modules loaded. The container runspace en-
sures a consistent environment, while still allowing Pog to pass live .NET objects between
the user session and the runspace.

Configuration of most packages consists of only a few different operations – creating
configuration files and directories, creating symbolic links inside the package, configuring
properties of executables such as display scaling, and exposing entry points to the appli-
cation. However, all of the operations have high internal complexity, and implementing
them correctly and consistently while authoring the manifest is non-trivial. To improve
the authoring experience, Pog provides a library of commonly used functions, which are
automatically loaded to the environment where the configuration script is executed. All of
the provided functions are idempotent, and log all changes made to ensure the installation
process is more transparent to the user. Design and implementation of the functions is
described in the following subsections.

6.3.1 Creating configuration files and directories

ensure auto-update is disabled
New-File "./config/settings.json" {
 ConvertTo-Json @{"update.mode" = "none"} # default content
} {
 # VS Code JSON parser is quite liberal and accepts trailing commas
 # and comments, cannot use ConvertFrom-Json to reliably parse the file
 $old = cat -Raw $_
 $new = $old -replace '("update.mode"\s*:\s*)"([a-z][A-Z]+)"', '$1"none"'
 if ($new -ne $old) {
 Set-Content $_ $new -NoNewline
 }
}

Listing 3: Example of using New-File

The file structure of Pog packages is different from the default described in the applica-
tion documentation. To ease discovery of user-editable configuration files, Pog manifests
should create the relevant configuration files and directories, even if empty. Another mo-
tivation for creating files is for applications which require a configuration file to set data
paths or disable automatic updates.

Pog provides two commands for this use case – New-Directory, which ensures that a
provided path exists and is a directory, with an optional script argument to populate the
directory if it did not previously exist, and New-File (Listing 3), with similar functionality
for creating files. New-File has separate script arguments generating the initial content
of the file, and for updating existing content.

23

Currently, there is no built-in facility for parsing common file formats, and each manifest
must either use the PowerShell parsers for XML and JSON, or operate on raw strings,
typically using regular expressions, which is fundamentally fragile.

In the future, Pog should provide parsers and serializers for most common configuration
formats with a unified manipulation interface in New-File. There are multiple motivat-
ing factors: 1) There are only a few commonly used configuration formats. 2) PowerShell
does not provide a built-in parser for most common formats. For some formats, especially
JSON, configuration files use various language extensions (JSON comments, trailing com-
mas) not supported by the built-in parser. 3) For configuration files, it is vital to preserve
formatting and comments when modifying the file. Popular parsers for most formats only
return parsed data, where this information is lost.

6.3.2 Linking files and directories
As described in Section 4.3, some applications use a fixed portable data path inside the
application directory. Since Pog packages have a fixed directory structure, and overwrite
the application directory on update, the data paths must be moved. This can be achieved
either using symbolic links [27], or junctions and hard links [28].

The main advantage of symbolic links is the support for relative paths, which are resolved
relative to the location of the symbolic link. This is convenient for portable applications,
since the links do not need to be updated when the directory changes. However, cre-
ating symbolic links on Windows is a privileged operation – by default, users cannot
create symbolic links, unless the user is an administrator, Developer Mode is enabled
system-wide [29], [30] or an appropriate group policy is configured [31], granting the
SeCreateSymbolicLinkPrivilege privilege to the user.

Hard links and junctions do not suffer from privilege limitations; however, they do not
support relative paths. Additionally, hard links share permissions between the target and
the hard link, which makes it more difficult to prevent changes to the application direc-
tory using access control while still allowing changes to a linked data file.

To move a data file or directory from the application directory, Pog provides the New-
Symlink command. The command ensures that the target exists, either by creating an
empty file/directory or by copying an existing entry from the source path, and then cre-
ates a symbolic link from the source path to the destination.

Unless the privilege requirements for symbolic links are relaxed in a future Windows
version, Pog will eventually switch to using junctions and hard links, which avoid the
privilege issues at the cost of increased complexity of the implementation.

6.3.3 Executable metadata configuration
Each Windows executable file, using the Portable Executable (PE) format, may have asso-
ciated metadata, represented as a so-called manifest, an XML file placed either as a sepa-
rate file next to the executable, or embedded inside the executable. The manifest is, among
other options, used to specify that an executable requires elevation to run, describe how
shared libraries are loaded and declare support for display scaling. The rest of this section

24

focuses on controlling display scaling, since most of the other options are not currently
relevant for Pog.

Windows applications may declare various levels of support for display scaling. If the
application declares full support for internal scaling, the Windows graphical system does
not perform any further scaling. For older applications, which do not declare support for
internal scaling, the graphical system uses bitmap scaling when compositing the applica-
tion, which results in blurry text for most scaling ratios.

In the author’s view, the default bitmap scaling is harder to use than an unscaled appli-
cation window for commonly used scaling ratios. Thus, Pog provides a command to dis-
able display scaling for an application called Disable-DisplayScalling, which internally
alters the executable manifest to prevent bitmap scaling. If the user prefers the default
scaling behavior, he may use the built-in per-application scaling options to override the
change.

6.3.4 Exposing commands and shortcuts
Most available packages expose one or more entry points to the package. There are two
common types of entry points – shell links [32], more commonly known as shortcuts,
typically used for graphical applications, and commands, typically used for console appli-
cations. Users should not launch executables from the application directory directly and
always use the exposed entry points.

There are two main reasons for using explicit entry points. First, the application may need
to be configured to run in portable mode, as described in Section 4, which is done by
the entry points. Second, the public interface of the application is made explicit, and all
packages have a consistent interface, easing both usage and discovery for the user and
internal package management for the implementation.

Export-Shortcut "Alacritty" "./app/Alacritty.exe" `
 -Arguments @("--config-file", "./config/alacritty.yml") `
 -VcRedist

Export-Shortcut "QtRVSim" "./app/qtrvsim_gui.exe" -Environment @{
 QTRVSIM_CONFIG_FILE = "./data/qtrvsim_gui.ini"
}

Export-Command "restic" "./app/restic.exe" `
 -Arguments @("--cache-dir", "./cache")

Listing 4: Example of exporting entry points

To expose entry points, Pog provides a pair of commands: Export-Shortcut and Export-
Command. Both commands provide a similar set of parameters, which allow the author
to configure the entry point name, target path, working directory, list of additional ar-
guments to pass to the target and a table of additional environment variables to set for
the target. The author specifies relative paths inside the package, which are automatically
resolved while creating the entry point.

25

Exposed shortcuts are stored as shortcut files in the root of the package directory, exposed
commands are stored as custom executable launchers in an internal subdirectory inside
the package. Due to the constraints described in Section 4, even shortcuts internally use
launcher executables. The design and implementation of the launcher executable is de-
tailed in Section 8.

A standing issue with the current implementation is taskbar pinning – if a user pins a
running application to the taskbar, the taskbar icon references the application executable
directly, bypassing the launcher. The author is not aware of any solutions to the issue
without cooperation from the invoked application process, and to the author’s knowledge,
no other launcher implementation handles this scenario correctly. It may be possible to
work around the issue by injecting a dynamic library into the application process to con-
figure the AppUserModelID [33] properties of created graphical windows; this approach
is currently out of scope for Pog.

6.3.5 MSVC runtime libraries
C++ applications compiled using the MSVC toolchain link either statically or dynamically
to the MSVC runtime library. If the runtime is dynamically linked, the application de-
pends on a set of shared libraries, most commonly one of the versioned vcruntime*.dll
libraries. An application may either distribute a private copy of the libraries, or install a
system-wide version using the Visual C++ Redistributable installer package [34], provided
by Microsoft.

Since the runtime libraries are a very common dependency, Pog bundles an up-to-date
version of the libraries. An entry point may request that the libraries are added to PATH
using the -VcRedist switch parameter of the two commands above.

6.4 Exporting a package
In the previous steps, all changes were constrained to the package directory. However,
users expect the installed applications to be available user-wide, the same way as stan-
dard system-wide applications. For graphical applications, this typically entails adding
a shortcut to the Start menu and relevant file associations to the registry. For console
applications, public binaries should be available in a directory that is added to the PATH
environment variable, allowing the user to invoke the binary just by specifying the name
instead of a full path.

Pog internally creates a package_bin directory, which is added to the PATH environment
variable during initial setup. When shortcuts are exported for the first time, Pog also cre-
ates a subdirectory called Pog inside the user-local Start menu directory. During export, a
symbolic link is created for each of the exposed commands in the package, and all exposed
shortcuts are copied to the Start menu subdirectory.

Currently, in case of conflicting exports from multiple packages, Pog uses that last ex-
ported one, overwriting the previous exports. This is convenient for quick switching be-
tween multiple separate installations of a package, while keeping the canonical entry
point names. If the user wishes to use multiple installations of a package without name
conflicts, the exposed entry points of a package may be renamed by editing the package

26

manifest stored inside the package directory. However, if the package is later updated,
the manifest is overwritten. To avoid this issue, Pog may in the future add an option to
set a prefix or a suffix for each package, which is automatically added to the name of all
exports.

6.5 Uninstallation
Well-packaged Pog packages are fully self-contained, with the exception of the exported
entry points. This makes clean uninstallation trivial – all exports are removed, then the
package directory is deleted. Data directories may optionally be preserved for later rein-
stallation.

27

Section 7

Package repositories

Most end users are not expected to author their own packages, and use existing pack-
age repositories instead – for this use case, a fully remote repository is more convenient.
However, for packaging and development, it is preferable to use a local repository, and
later contribute the changes to an upstream remote repository.

Pog supports both local and remote repositories. Both types use a two level structure – a
repository contains a set of packages, each package contains a set of manifests for differ-
ent versions of the package.

7.1 Local repositories

aria2/.template/pog.psd1
@{
 Name = 'aria2'
 Architecture = 'x64'
 Version = '{{TEMPLATE:Version}}'

 Install = @{
 Url = "{{TEMPLATE:Url}}"
 Hash = "{{TEMPLATE:Hash}}"
 }

 Enable = { <# ... #> }
}

aria2/1.37.0.psd1
@{
 Version = '1.37.0'
 Url = 'https://github.com/aria2/aria2/releases/...'
 Hash = '67D01530...'
}

Listing 5: Example of a manifest template and a corresponding substitution file

Local directories are ordinary directory trees. For most packages, manifests for all ver-
sions are very similar, differing only in version, download URL and the checksum. To
ease maintenance, Pog supports two types of packages for local repositories: direct and
templated.

In direct packages, each version of a package is represented by a directory containing the
manifest and optional auxiliary files. During import, this directory is directly copied into
the package directory.

Templated packages contain a manifest template file, where some values are replaced with
a template string. For each version of the package, the repository contains a data file with
values that are substituted into the template when the version is imported, as shown in

28

Listing 5. To create the manifest for a new version, it is enough to add a new data file. If an
issue with an existing package is discovered, it is typically enough to update the manifest
template.

7.2 Remote repositories
Pog remote repositories are designed to be served from a static HTTP server. Pog does
not have a separate update step, where a remote repository is fully downloaded before it
can be used; instead, it operates directly on the remote repository over HTTP. The root of
the directory contains a JSON listing of all available packages and versions; for the main
repository, the listing currently takes up ~30 kB. The listing is cached locally for a short
duration to speed up successive operations in the same PowerShell session. In the future,
as the number of packages grows, the version listing may be split into multiple separate
endpoints. Each version of a package is packaged as a ZIP archive, which is unpacked into
the package directory when importing the package.

Unlike some package managers, such as Pacman, which use signatures to verify the au-
thenticity of the manifest and the downloaded sources, Pog implicitly trusts any config-
ured repository and leaves authentication up to the administrator of the repository. Most
repositories are expected to be hosted on GitHub or GitLab, which already provide a way
to authenticate users and restrict access through pull requests, simplifying the publishing
experience.

The remote repository can be generated from a local repository.he expected workflow is
that a local repository is tracked in Git and a CI script is used to automatically generate
an up-to-date remote repository. This is how the main Pog repository [35] is maintained.

7.3 Manifest generators
Keeping track of new software releases is time consuming for a package maintainer main-
taining multiple packages. To simplify the process, Pog provides support for manifest
generators – a set of scripts which check for new releases and generate package manifests
for new versions. Manifest generators are used with templated packages, since they only
need to generate the substituted data file.

Each generator consists of two scripts: ListVersions and Generate. During an update, all
versions of the packaged application are enumerated and returned by the ListVersions
script. Pog then selects versions which do not already have a manifest and calls the
Generate script, which typically retrieves the checksum for the application archive and
returns a hash table with keys matching the template strings in the manifest template.
The hash table is automatically serialized into a data file for the given version. A small set
of commands is provided for retrieving checksums for remote files, working with GitHub
releases and parsing checksum files; in the future, commands for other common platforms
may be added.

29

@{
 ListVersions = {
 Get-GitHubRelease sharkdp/hyperfine | % {
 $Asset = $_.assets | ? name -like "hyperfine-v*-..."
 if ($Asset) {
 return @{
 Version = $_.tag_name.Substring(1)
 Url = $Asset.browser_download_url
 }
 }
 }
 }

 Generate = {
 return [ordered]@{
 Version = $_.Version
 Url = $_.Url
 Hash = Get-UrlHash $_.Url
 }
 }
}

Listing 6: Example of a manifest generator. ListVersions returns a list of all available
versions, newly released versions are then passed to Generate and the returned object is

serialized to a substitution data file for the version.

30

Section 8

Application launchers

As described in Section 4 and Section 6.3.4, entry points to a package often need to modify
the command line arguments or environment variables passed to an application, which
is done by a launcher. This section discusses possible approaches to the implementation
and describes the launcher implementation used by Pog.

On POSIX-like systems, launchers are commonly implemented using shell scripts, due
to a combination of platform features. First of all, shell scripts may be invoked using an
ordinary exec system call, if the interpreter is declared using a shebang – invoking a shell
script is transparent to the caller. Additionally, since the file extension is not used to dis-
ambiguate the file type, the filename of a shell script launcher may match the target. The
exec system call may also be used by the launcher to replace its process with the target,
ensuring proper delivery of signals and all other inter-process communication. The last
relevant feature is argument passing – since arguments are passed as an array, no extra
parsing tends to be done by the shell and the arguments may be forwarded to the target
unchanged.

On Windows, there’s no direct alternative to the features mentioned above. New processes
are created using the CreateProcess and ShellExecute Win32 functions. ShellExecute
is a high-level function, which supports executing files according to file associations.
However, for executing binaries, the CreateProcess function is often used, which has
lower overhead, but only supports a few specific file types: PE binaries (.exe), COM bi-
naries (.com) and batch files. As a result, the launcher must be use one of the listed file
types, otherwise callers who assume that the target is a binary and use CreateProcess
would be unable to execute the process.

The second issue is lack of support for replacing the current process with a new executable
image, as provided by exec. Instead of letting the caller interact directly with the target,
the launcher must keep running and attempt to forward interactions between the caller
and the target, primarily the exit code of the target and any attempts to terminate the tar-
get. Forwarding more complex interactions, such as window messages is likely infeasible;
fortunately, such interactions are rare.

Last major issue lies in argument passing. As described in Section 4.2, arguments are
passed as a single command line string, parsed by the callee, resulting in inconsistencies.
This is especially gruesome for batch files, the closest analogue of Linux shell scripts on
Windows, interpreted by cmd.exe. When a batch file is executed using CreateProcess,
passing a command line of the form <batch-file-path> <args>, the actually invoked
command line is C:\WINDOWS\system32\cmd.exe /c <batch-file-path> <args>, which
results in cmd.exe attempting to parse both the path and the arguments as a batch com-
mand, causing both usability and security issues. [36] Arguments containing a pair of %
are expanded as variables. If control characters like | and & appear in an argument without
escaping, cmd assumes the following token is another command and attempts to execute

31

it. For example, when .\script.bat dir| is passed as a command line to CreateProcess,
cmd.exe shows a syntax error instead of passing the string dir| as an argument to the
script.

Additionally, when Control-C is pressed while a batch file is running, the following mes-
sage is printed: Terminate batch job (Y/N)? If the calling application assumes that it’s
invoking a native binary that exits immediately upon receiving Control-C, that can cause
the application to hang or incorrectly interpret the command output. Both of these issues
make batch files unsuitable as launchers, leaving binaries as the only option.

Launchers also have two alternative use cases: as a replacement for symbolic links, and as
a substitute for shebang support. On POSIX-like systems, symbolic links are commonly
used to provide multiple names for an executable, or redirect a well-known path to a
different executable. On Windows, many binaries depend on shared libraries distributed
alongside the binary. When the binary is executed through a symbolic link, the dynamic
linker attempts to load libraries relative to the symbolic link instead of the target, unlike on
Linux. Instead, launchers are often used to invoke the target. Similarly, since most scripts
cannot be invoked without explicitly specifying the interpreter, unless somewhat intru-
sive modifications to file associations are made and ShellExecute is used by the caller,
launchers may be used as an alternative, internally invoking the script with a specified
interpreter.

8.1 Shim executables
There are multiple existing implementations of launchers using binary executables, typi-
cally called shims. A well-known family of implementations is the Scoop shim [37], and
multiple compatible reimplementations using various approaches. The original shim is
implemented in C#, with minimal features and considerable overhead due to the startup
of the .NET runtime. The Scoop shim reads a text file with the .shim extension and base
name matching the shim binary, which specifies a path to the target and optionally an
argument string to prepend to the passed command line. The shim does not attempt to
handle signals or ensure the target is terminated with the shim process. The alternative
reimplementations are native binaries, with reasonable overhead and support most of the
required features, but only support configuring the target and the additional arguments,
and the file size of the binary is somewhat large (over 100 kB), given that the binary is
copied for every exported shim.

Recently, the Bun¹⁷ project developed a new shim, with a binary data format and a focus
on low overhead and small file size. However, it lacks support for correct termination

¹⁷https://bun.sh/

propagation, and only supports specifying the target, an interpreter and additional argu-
ments.

Pog requires the shim to support configuring environment variables, arguments and the
working directory, in addition to correct handling for termination and Control-C. To the
author’s knowledge, no existing shim implementation provides the required feature set;
therefore, Pog uses a custom shim implementation, with a custom data format. Since com-

32

https://bun.sh/

piling a new launcher each time a package is installed is not feasible, as Windows do not
provide a C compiler, a pre-compiled binary is used and patched with the information
necessary to launch the target application.

The following subsections contain a short description of Win32 PE binary properties rel-
evant for the shim executable implementation in Pog.

8.1.1 PE resources
The PE format used for both Windows executable files (.exe) and shared libraries (.dll)
supports embedding additional resources, which are either used by the program itself,
such as cursor bitmaps, GUI elements and text translations, or by the shell, such as file
icons, version data and the manifest. The resources can be inspected and modified even
after the binary is compiled, using Win32 functions [38].

8.1.2 PE subsystem
Every PE executable specifies a target subsystem as part of the PE header, indicating the
runtime environment it requires. Two subsystems in common use is the console subsys-
tem and the graphical subsystem. Console executables are always launched with an asso-
ciated console, either attaching to the parent console, or creating a new one. Graphical
executables are not attached to a console on startup, and when launched from a console
shell, the shell does not wait until the process terminates.

The subsystem of a PE binary can be changed post-compilation, but Windows do not
provide any tooling in the Win32 library. However, since the PE binary format is well-
documented, it’s feasible to manipulate the subsystem with raw file I/O functions.

8.2 Pog shim executable implementation
The Pog shim is implemented in a subset of C++20, compiled without RTTI and exception
support and linked without the standard library, resulting in a 10kB binary. The binary
is further compressed using UPX¹⁸, a packer which decompresses the binary on load, re-
sulting in a 6kB final binary.

¹⁸https://upx.github.io/

A custom binary format, designed for efficient parsing from memory, is used to configure
the shim, stored as an RCDATA [39] PE resource inside the shim binary. This ensures that
the shim can be freely copied, without dependencies on companion files. The shim data
format is documented in the project¹⁹. All paths are resolved during shim initialization.

¹⁹https://github.com/MatejKafka/Pog/blob/main/app/Pog/lib_compiled/Pog/src/Shim/ShimDataEncod
er.cs

Arguments are passed as a single serialized command line string. Environment variables
are configured using a pre-processed template string, which allows the shim to build vari-
able values using a combination of static strings and references to other environment
variables.

After parsing, the shim builds the target command-line by taking the current command-
line and inserting the extra launcher arguments between the stub name and the remaining
arguments. Environment variables are configured on the current process and inherited
by the target. The target process is spawned using CreateProcess(...) and assigned to

33

https://upx.github.io/
https://github.com/MatejKafka/Pog/blob/main/app/Pog/lib_compiled/Pog/src/Shim/ShimDataEncoder.cs
https://github.com/MatejKafka/Pog/blob/main/app/Pog/lib_compiled/Pog/src/Shim/ShimDataEncoder.cs

a Win32 job object [40] – this ensures that the target process is terminated with the shim.
The shim waits for the child process to finish and exits, forwarding the exit code.

8.3 Shim executable initialization
The shim is initialized and updated from a C# library, which uses P/Invoke [41] to call the
raw Win32 PE resource manipulation functions. Pog ships a pre-compiled shim binary.
When a new shim is required, the binary is copied, and the library serializes the shim
parameters into the RCDATA resource. When updating an existing shim, Pog first verifies
that the configuration or the target binary resources changed, otherwise the shim is left
unmodified. This speeds up reenabling packages, as the Win32 functions for updating the
shim tend to be somewhat slow (~30 ms per updated file on the author’s laptop).

Additionally, the target executable is analyzed, the PE subsystem of the shim is updated
to match the target (this ensures that shim behaves the same as the target when invoked)
and relevant resources (icons, version data) are copied to the shim. The resulting shim has
the same subsystem, icon and version as the target.

34

Section 9

Evaluation

In this section, Pog is evaluated based on the design goals introduced in Section 3 and
its performance is compared to the other three package managers discussed in previous
sections.

9.1 Encapsulation and portability
The first design goal, Encapsulation and portability, has been satisfied for most packages
by storing all application data inside the package directory and separating the installation
and configuration of a package. The separation allows the user to install an application
once and reconfigure it every time it is moved to a new machine, as shown in Listing 7.
While this presents more friction for the user than automatically configuring the package
on each invocation, it significantly speeds up the application startup.

PS E:\> irm "https://pog.matejkafka.com/install.ps1" | iex # install Pog
...
PS E:\> pog tealdeer # install tealdeer
PS E:\> tldr --show-paths
Config dir: E:\tealdeer\config\ (env variable)
Config path: E:\tealdeer\config\config.toml
...

PS F:\> .\Pog\setup.ps1 # setup Pog for the new system
...
PS F:\> # enable and export all installed packages
 >> Get-PogPackage | Enable-Pog -PassThru | Export-Pog
WARNING: Overwriting existing command '7z'...
WARNING: Overwriting existing shortcut 'OpenedFilesView'...
WARNING: Overwriting existing command 'OpenedFilesView'...
WARNING: Overwriting existing command 'tealdeer'...
WARNING: Overwriting existing command 'tldr'...
PS F:\> tldr --show-paths
Config dir: F:\tealdeer\config\ (env variable)
Config path: F:\tealdeer\config\config.toml
...

Listing 7: Example of moving an installed package between machines. The package used,
tealdeer, supports listing the data paths used by passing the --show-paths flag. In the

first listing, Pog is installed on a USB flash drive and used to install tealdear. Afterwards,
the flash drive is moved to another computer, Pog is reactivated and then used to

reconfigure tealdear to run on the new system, shown in the second listing.

Some compromises in encapsulation had to be made to achieve compatibility with com-
monly used software. The most problematic group are applications with internal support
for installing packages, such as IDEs and language package managers. Unless the appli-
cation provides an interface for querying data paths and enforces its use, the internally

35

installed packages tend to use non-portable data paths. Pog cannot effectively redirect
these paths without some form of sandboxing.

A related group are badly-behaved applications, where data important to end users can
be stored portably, but other ephemeral data, such as crash logs or caches, are stored user-
wide. Many vendors implement portable mode due to requests from the community but
do not actively use it, resulting in common issues in various edge cases.

Finally, many applications currently do not support any form of portable mode and, there-
fore, cannot be packaged for Pog. This is especially common for games and applications
that integrate deeply with the system. Fortunately, for developer tooling, the area most
relevant for the author and the target audience, some form of support for portable mode
is usual.

9.2 Minimal external dependencies
The second design goal, Minimal external dependencies, is also satisfied. Existing packages
do not have any external dependencies, with the exception of MSVC runtime libraries,
which are a such a frequent dependency that Pog bundles the latest version and makes it
available to any package that requests it. For applications which do not bundle all depen-
dencies in their binary releases, multiple source archives may be requested in the package
manifest. Multiple versions of a package may be installed side-by-side using different tar-
get names, as shown in Listing 8.

PS D:\> pog Node.js 21.0.0 -TargetName node-21
PS D:\> pog Node.js 22.0.0 -TargetName node-22
WARNING: Overwriting existing command 'node'...
WARNING: Overwriting existing command 'npm'...
WARNING: Overwriting existing command 'npx'...
PS D:\> node -v
v22.0.0
PS D:\> Export-Pog node-21
WARNING: Overwriting existing command 'node'...
WARNING: Overwriting existing command 'npm'...
WARNING: Overwriting existing command 'npx'...
PS D:\> node -v
v21.0.0
PS D:\>

Listing 8: Example of installing multiple versions of a package using different
target names and switching between them.

9.3 Transparent installation & Accessibility
The goal of transparent installation is achieved by avoiding the use of closed-source in-
stallers, and by using PowerShell, a well-known scripting language in the Windows en-
vironment, as the public interface and the package manifest format for Pog. Since the
package manifest is placed into the package directory when imported, the user is free to
modify the installation and configuration process as they see fit.

36

The terminology and model of installation is deliberately kept simple, with the minimal
level of abstraction necessary to ensure a consistent user experience. By utilizing the
PowerShell platform, Pog provides easily scriptable native PowerShell commands, includ-
ing completions for all common parameters and a .NET object-oriented API for more ad-
vanced scripting needs. For a practical demonstration of the interface, see Appendix A.

9.4 Packaging experience
The use of the PowerShell data file format ensures that Pog package manifests are likely
familiar to many Windows developers. Unlike the more common formats used by other
package managers, such as JSON and YAML, Pog manifests support comments, compact
whitespace-based notation for arrays and tables, and inline scripts with correct syntax
highlighting in many popular text editors. For comparison, manifests for the Go program-
ming language package for Pog, Scoop and WinGet are shown in Appendix B, Appendix C
and Appendix D, respectively.

Since Pog packages use binary releases, new packages may be authored by anyone, with-
out requiring access to the original source code. No repackaging is necessary, as Pog pro-
vides a library of functions to adapt software to work well as a portable package during
package installation. To keep packages up-to-date, maintainers can use manifest genera-
tors, which automatically generate manifests for newly released versions of the upstream
package without any manual work. To avoid duplication, a manifest may be specified us-
ing a template and corresponding substitution files for each version.

At least for the author, Pog has also proven to be a useful tool for local development.
When building a project from source, the user can create a new package directory inside
a registered package root, build the project inside the ./app directory and then provide a
package manifest to integrate it with Pog. Since Pog does not keep a separate database of
installed packages, locally-added packages behave exactly the same as packages installed
from the repository.

9.5 Performance evaluation
While performance was not explicitly stated as one of the design goals, it is highly rel-
evant for practical use. Since disk and network usage tend to be similar for all package
managers and memory usage is not a limiting factor, the primary metric for most users is
likely the speed of a few common operations – installation of a new package, update of
an existing package, searching for packages in a repository and listing installed packages.

I do not see a fair way to compare the search and listing speed, since Pog has an order
of magnitude fewer packages than the better established alternatives. However, since Pog
can operate directly on the remote repository, and caches the package listing in memory
between operations, I do believe it should be competitive, especially as it avoids the startup
penalty by using the already-loaded PowerShell runtime. This seems to be confirmed by
my limited manual testing.

9.5.1 Package installation speed
There are two relevant metrics for installation speed – the time taken to install a single
package and to install multiple packages. However, none of the four tested package man-

37

agers currently support parallel installation of multiple packages; therefore, it is sufficient
to focus on the speed of installing a single package.

Since the relative installation speed may depend on the size of the downloaded files, the
number of files accessed during the installation and the complexity of the installer or
the corresponding installation script, multiple different packages were tested, noted in
Table 2, including the size of the downloaded archive, used by Scoop and Pog, and the
installer, used by Chocolatey and WinGet. The tested package managers were Pog v0.8.1,
Scoop v0.4.2, Chocolatey v2.2.2 and WinGet v1.7.11261.

Package Version Archive size Installer size Description
Alacritty 0.12.3 5 MB 2.2 MB (MSI) A simple terminal emulator
go-lang 1.22.3 73 MB 60 MB (MSI) Go programming language
Firefox 126.0 N/A 62 MB (7zip*) Mozilla Firefox
CMake 3.29.3 43.6 32.5 MB (MSI) CMake build system

Sublime Text 4169 22.1 MB 16 MB (Inno) Text editor
ccache* 4.9.1 1.57 MB N/A Compiler cache
Typst* 0.11.1 13.9 MB N/A Typst typesetting system

Table 2: A table of all tested packages, specifying the versions and download sizes. The
Firefox installer is a self-extracting 7zip archive. For the installation test, the first six

packages were used. For the remaining tests, ccache was replaced by Typst.

Each package manager was installed into a clean Windows Sandbox instance, running on
Windows 10 2004, on a laptop with Intel i5-8350u, 16 GB of RAM, a recent NVMe drive
and a 300 Mbps network connection. All tests were executed from a clean PowerShell
instance. To warm up each package manager and update the package repositories, two
packages (7zip and Git) were installed. Additionally, MSVC runtime libraries required by
some of the packages were installed. For Scoop, the extras repository containing graph-
ical applications was added.

Following the warmup, the tested packages were downloaded in random order, measur-
ing the total time from the invocation of the installation command to its completion. The
whole process was repeated 32 times for each package manager, each time creating a new
Windows Sandbox instance. Since the measurements were done on a desktop Windows
system with many active background services, significant outliers (2–3 for each package
manager) were removed.

Figure 1 shows the total time taken to install all packages in each iteration. Both Scoop and
Pog, installing from archives, are significantly faster than both installer-based package
managers, confirming the hypothesis that installation speed can be significantly improved
by avoiding installers.

The total installation time is strongly dependent on the performance of installing the
larger packages; to illustrate the differences depending on package size, Figure 2 shows
mean installation times separately for each package. Both Scoop and Pog are consistently

38

Figure 1: Time taken to install the first 6 packages from Table 2. Packages were installed
in random order, each package manager was warmed up by installing two medium-sized
packages. Since the tests were ran on a desktop system, any significant outliers (2-3 for

each package managers) were removed.

Figure 2: Time taken to install each of the first 6 packages from Table 2 separately.
The plot shows the arithmetic mean and standard deviation from all iterations.

faster than the remaining two, with Scoop being slightly faster for smaller packages and
Pog taking the lead for larger packages.

The significant discrepancy in installation time for Alacritty is likely caused by the Pog
package requesting both the application binary and a default configuration file, while
Scoop only downloads the binary.

Another notable difference is between the go-lang and Firefox packages, which can be
explained by the number of unpacked files – although the archive size is similar, the ex-

39

tracted Firefox package contains 61 files, while the go-lang package has 12882 files. Since
both Scoop and Pog install the packages from the same archives, the difference indicates
that Pog is faster at handling archives with many files.

9.5.2 Package uninstallation speed

Figure 3: Time taken to uninstall each of the tested packages. The plot shows the
arithmetic mean and standard deviation from all iterations. Crosses indicate invalid

measurements due to technical issues.

To measure the speed of uninstalling a package, a similar setup was used, installing fixed
versions of all tested packages. Following, the packages were uninstalled one-by-one,
measuring the time until the invoked command completed. Instead of ccache, this test
and the update test below use Typst, as WinGet does not provide older versions of ccache,
which were needed to test update performance.

The mean uninstallation times for each package are shown in Figure 3; for Firefox, the
measurements for WinGet and Chocolatey are not included since WinGet cannot uninstall
it automatically and just shows the graphical installer dialog, while Chocolatey prompts
for interactive confirmation before uninstalling the package that the author could not
suppress. The figure shows an order-of-magnitude difference in performance between the
installer-based and archive-based package managers.

9.5.3 Package update speed
To measure the speed of updating a package, an older version of all tested packages was
installed. Then, the packages were updated to a fixed newer version one-by-one, while
measuring the time taken until the invoked command completed. The mean time for each
application is again shown in Figure 4. Again, both archive-based package managers are
significantly faster, primarily due to faster uninstallation of the previous package version.
Notably, none of the installers used by WinGet and Chocolatey seem to use differential
updates, where only the changed files are updated, as the update time matches the sum
of installation and uninstallation times.

40

Chocolatey does not have the required older versions of CMake and Sublime Text in
its repositories; selecting package versions available from all tested package managers
proved to be surprisingly problematic. Therefore, the measurements for these two pack-
ages are missing.

Another issue affecting the results is that Scoop does not seem to support updating a
package to a specific version, only to the latest one. To avoid this issue, the old package
version was first uninstalled and then the updated version was installed instead of updat-
ing directly. This matches what Scoop does during an update, but there might be a slight
overhead from the two separate command invocations and the unnecessary setup of the
application directory.

Figure 4: Time taken to update each of the tested packages. The plot shows the arithmetic
mean and standard deviation from all iterations. Crosses indicate invalid measurements

due to technical issues.

41

Section 10

Future work

After almost four years of development, Pog is nearing a public release. In its current state,
it is entirely usable for most of its stated use cases, and the author has been using it as the
primary package manager on their Windows system for the past two years.

However, there are still a few important missing pieces. First, the installation process may
leave the package in a somewhat inconsistent state if the installation fails. While each of
the four installation phases leaves the relevant parts of the package in a valid state, the
package as a whole may not be consistent.

As an example, when a package is updated to a new version, if the import of the new
manifest succeeds, but then the installation fails while downloading an archive, the pack-
age will have the new manifest, but the actual installed version of the application will
be left unchanged. Similarly, if the configuration script fails, the package may misbehave
when invoked through an entry point.

Most inconsistent states can be resolved by re-running the installation command after
fixing the original issue. However, for an uninitiated user, the current behavior may be
confusing. A perfect solution is likely infeasible while allowing arbitrary configuration
scripts. However, for other phases of the installation process, technologies such as Trans-
actional NTFS may be used to roll back changes on failure. As an additional measure, the
exported entry points may be hidden while operating on the package to prevent the user
from using the package. In case of an error, the user will be forced to get the package
back to a consistent state before using it again, preventing them from using a potentially
misbehaving package.

Another missing piece is support for the ARM architecture. With the major performance
improvements in the last few years, ARM-based computers are becoming increasingly
popular. Currently, Pog and all published packages only support x64; while adding ARM
support to Pog itself should be easy, architecting support for packages of different archi-
tectures while moving the installation between machines may prove tricky.

As already discussed, many applications do not support portable mode. Since a user will
likely need some of these applications, they must currently use another package manager
to acquire them. One option for Pog would be to provide a separate repository of packages
still managed by Pog but using the default non-portable data paths. The effort to imple-
ment this should be fairly minimal, while still providing many of the benefits of Pog.

Non-portable applications could also be supported using some form of user-space sand-
boxing that would transparently redirect access to specific paths, as described in Sec-
tion 4.4. It should be possible to extend the current executable shim to inject a dynamic
library to the target process and implement the sandbox by hijacking relevant Windows
API calls.

42

Finally, what is still missing are the packages. The main Pog repository currently contains
174 packages, an order of magnitude fewer than Scoop and other alternatives. While Pog
is unlikely to ever have a similar number of packages due to its hard requirement of porta-
bility, there is still a lot of room for growth, both by adding new packages and convincing
vendors and especially open-source projects to implement support for portable mode.

43

Section 11

Conclusion

In this thesis, I presented Pog²⁰, a portable package manager for Windows. The project
proves the feasibility of building a package manager that fully encapsulates applications

²⁰https://pog.matejkafka.com/

and shows that useful features and significant performance improvements are gained in
doing so.

I believe this thesis presents the most comprehensive overview of package management
on Windows available today, analyzing both inherent and avoidable issues with packaging
on the platform, discussing effective solutions for most and contrasting the approaches
taken by existing alternatives.

Pog is not purely a research project, but also a practical, robust, open-source tool, intended
to simplify application management for power users from around the world. After a long
development, Pog is nearing an official public release. Hopefully, it finds its place in the
Windows community.

44

https://pog.matejkafka.com/

Bibliography
[1] E. Dolstra, M. de Jonge, and E. Visser, “Nix: A

Safe and Policy-Free System for Software
Deployment,” in Proceedings of the 18th
USENIX Conference on System Administration,
in LISA '04. Atlanta, GA: USENIX
Association, 2004, pp. 79–92.

[2] NixOS Foundation et al., “Nix & NixOS |
Declarative builds and
deployments.” [Online]. Available: https://
nixos.org/

[3] The kernel development community,
“Squashfs 4.0 Filesystem — The Linux Kernel
documentation.” [Online]. Available: https://
www.kernel.org/doc/html/latest/filesystems/
squashfs.html

[4] Microsoft, “Windows Installer - Win32 apps |
Microsoft Learn.” [Online]. Available: https://
learn.microsoft.com/en-us/windows/win32/
msi/windows-installer-portal

[5] Microsoft, “Standard Actions - Win32 apps |
Microsoft Learn.” [Online]. Available: https://
learn.microsoft.com/en-us/windows/win32/
msi/standard-actions

[6] Microsoft, “About Transforms - Win32 apps |
Microsoft Learn.” [Online]. Available: https://
learn.microsoft.com/en-us/windows/win32/
msi/about-transforms

[7] S. Asmul, “The corporate benefits of using
MSI files - Server Fault.” [Online]. Available:
https://serverfault.com/questions/11670/the-
corporate-benefits-of-using-msi-files/274609#
274609

[8] Microsoft, “Windows Installer - Win32 apps |
Microsoft Learn.” [Online]. Available: https://
learn.microsoft.com/en-us/windows/win32/
msi/windows-installer-portal

[9] Microsoft, “Universal Windows Platform
documentation.” [Online]. Available: https://
learn.microsoft.com/en-us/windows/uwp/

[10] Chocolatey Software, Inc., “Chocolatey - The
Package Manager for Windows.” [Online].
Available: https://chocolatey.org/

[11] “Chocolatey Software | powershell-core
(Install) 7.5.0-preview02.” [Online]. Available:
https://community.chocolatey.org/packages/
powershell-core#files

[12] “NuGet does not deal with blocking version
conflicts from existing installed packages ·

Issue #116 · chocolatey/choco ·
GitHub.” [Online]. Available: https://github.
com/chocolatey/choco/issues/116

[13] Microsoft, “Microsoft/Winget-CLI: Windows
Package manager CLI (aka Winget).” [Online].
Available: https://github.com/microsoft/
winget-cli

[14] K. Beigi, “The Day AppGet Died..” [Online].
Available: https://keivan.io/the-day-appget-
died/

[15] “Scoop.” [Online]. Available: https://scoop.sh/

[16] “Persistent data · ScoopInstaller/Scoop Wiki ·
GitHub.” [Online]. Available: https://github.
com/ScoopInstaller/Scoop/wiki/Persistent-
data

[17] “Dependencies · ScoopInstaller/Scoop Wiki ·
GitHub.” [Online]. Available: https://github.
com/ScoopInstaller/Scoop/wiki/Dependencies

[18] “Why PowerShell · ScoopInstaller/Scoop Wiki
· GitHub.” [Online]. Available: https://github.
com/ScoopInstaller/scoop/wiki/Why-
PowerShell

[19] Microsoft, “Understanding how packaged
desktop apps run on Windows - MSIX |
Microsoft Learn.” [Online]. Available: https://
learn.microsoft.com/en-us/windows/msix/
desktop/desktop-to-uwp-behind-the-scenes

[20] A. Ustynov, “Light-Weight Sandbox for
Installers,” 2022. [Online]. Available: https://
dspace.cvut.cz/handle/10467/101140

[21] “Isolation Mechanism | Sandboxie
Documentation.” [Online]. Available: https://
sandboxie-plus.github.io/sandboxie-docs/
Content/IsolationMechanism.html

[22] Microsoft, “about Data Files -
PowerShell.” [Online]. Available: https://learn.
microsoft.com/en-us/powershell/module/
microsoft.powershell.core/about/about_data_
files?view=powershell-7.3

[23] Microsoft, “Background Intelligent Transfer
Service - Win32 apps | Microsoft
Learn.” [Online]. Available: https://learn.
microsoft.com/en-us/windows/win32/bits/
background-intelligent-transfer-service-portal

[24] “JSON Lines.” [Online]. Available: https://
jsonlines.org/

45

https://nixos.org/
https://nixos.org/
https://www.kernel.org/doc/html/latest/filesystems/squashfs.html
https://www.kernel.org/doc/html/latest/filesystems/squashfs.html
https://www.kernel.org/doc/html/latest/filesystems/squashfs.html
https://learn.microsoft.com/en-us/windows/win32/msi/windows-installer-portal
https://learn.microsoft.com/en-us/windows/win32/msi/windows-installer-portal
https://learn.microsoft.com/en-us/windows/win32/msi/windows-installer-portal
https://learn.microsoft.com/en-us/windows/win32/msi/standard-actions
https://learn.microsoft.com/en-us/windows/win32/msi/standard-actions
https://learn.microsoft.com/en-us/windows/win32/msi/standard-actions
https://learn.microsoft.com/en-us/windows/win32/msi/about-transforms
https://learn.microsoft.com/en-us/windows/win32/msi/about-transforms
https://learn.microsoft.com/en-us/windows/win32/msi/about-transforms
https://serverfault.com/questions/11670/the-corporate-benefits-of-using-msi-files/274609#274609
https://serverfault.com/questions/11670/the-corporate-benefits-of-using-msi-files/274609#274609
https://serverfault.com/questions/11670/the-corporate-benefits-of-using-msi-files/274609#274609
https://learn.microsoft.com/en-us/windows/win32/msi/windows-installer-portal
https://learn.microsoft.com/en-us/windows/win32/msi/windows-installer-portal
https://learn.microsoft.com/en-us/windows/win32/msi/windows-installer-portal
https://learn.microsoft.com/en-us/windows/uwp/
https://learn.microsoft.com/en-us/windows/uwp/
https://chocolatey.org/
https://community.chocolatey.org/packages/powershell-core#files
https://community.chocolatey.org/packages/powershell-core#files
https://github.com/chocolatey/choco/issues/116
https://github.com/chocolatey/choco/issues/116
https://github.com/microsoft/winget-cli
https://github.com/microsoft/winget-cli
https://keivan.io/the-day-appget-died/
https://keivan.io/the-day-appget-died/
https://scoop.sh/
https://github.com/ScoopInstaller/Scoop/wiki/Persistent-data
https://github.com/ScoopInstaller/Scoop/wiki/Persistent-data
https://github.com/ScoopInstaller/Scoop/wiki/Persistent-data
https://github.com/ScoopInstaller/Scoop/wiki/Dependencies
https://github.com/ScoopInstaller/Scoop/wiki/Dependencies
https://github.com/ScoopInstaller/scoop/wiki/Why-PowerShell
https://github.com/ScoopInstaller/scoop/wiki/Why-PowerShell
https://github.com/ScoopInstaller/scoop/wiki/Why-PowerShell
https://learn.microsoft.com/en-us/windows/msix/desktop/desktop-to-uwp-behind-the-scenes
https://learn.microsoft.com/en-us/windows/msix/desktop/desktop-to-uwp-behind-the-scenes
https://learn.microsoft.com/en-us/windows/msix/desktop/desktop-to-uwp-behind-the-scenes
https://dspace.cvut.cz/handle/10467/101140
https://dspace.cvut.cz/handle/10467/101140
https://sandboxie-plus.github.io/sandboxie-docs/Content/IsolationMechanism.html
https://sandboxie-plus.github.io/sandboxie-docs/Content/IsolationMechanism.html
https://sandboxie-plus.github.io/sandboxie-docs/Content/IsolationMechanism.html
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_data_files?view=powershell-7.3
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_data_files?view=powershell-7.3
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_data_files?view=powershell-7.3
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_data_files?view=powershell-7.3
https://learn.microsoft.com/en-us/windows/win32/bits/background-intelligent-transfer-service-portal
https://learn.microsoft.com/en-us/windows/win32/bits/background-intelligent-transfer-service-portal
https://learn.microsoft.com/en-us/windows/win32/bits/background-intelligent-transfer-service-portal
https://jsonlines.org/
https://jsonlines.org/

[25] Microsoft, “SetFileInformationByHandle
function (fileapi.h) - Win32 apps | Microsoft
Learn.” [Online]. Available: https://learn.
microsoft.com/en-us/windows/win32/api/
fileapi/nf-fileapi-setfileinformationbyhandle

[26] Microsoft, “Creating Runspaces - PowerShell |
Microsoft Learn.” [Online]. Available: https://
learn.microsoft.com/en-us/powershell/
scripting/developer/hosting/creating-
runspaces

[27] Microsoft, “Creating Symbolic Links - Win32
apps | Microsoft Learn.” [Online]. Available:
https://learn.microsoft.com/en-us/windows/
win32/fileio/creating-symbolic-links

[28] Microsoft, “Hard links and junctions - Win32
apps | Microsoft Learn.” [Online]. Available:
https://learn.microsoft.com/en-us/windows/
win32/fileio/hard-links-and-junctions

[29] Microsoft, “CreateSymbolicLinkW function
(winbase.h) - Win32 apps | Microsoft
Learn.” [Online]. Available: https://learn.
microsoft.com/en-us/windows/win32/api/
winbase/nf-winbase-createsymboliclinkw

[30] “Symlinks in Windows 10! - Windows
Developer Blog.” [Online]. Available: https://
blogs.windows.com/windowsdeveloper/2016/
12/02/symlinks-windows-10/

[31] Microsoft, “Create symbolic links - Windows
10 | Microsoft Learn.” [Online]. Available:
https://learn.microsoft.com/en-us/previous-
versions/windows/it-pro/windows-10/
security/threat-protection/security-policy-
settings/create-symbolic-links

[32] Microsoft, “Shell Links - Win32 apps |
Microsoft Learn.” [Online]. Available: https://
learn.microsoft.com/en-us/windows/win32/
shell/links

[33] Microsoft, “Application User Model IDs
(AppUserModelIDs) - Win32 apps | Microsoft
Learn.” [Online]. Available: https://learn.
microsoft.com/en-us/windows/win32/shell/
appids

[34] Microsoft, “Latest supported Visual C++
Redistributable downloads | Microsoft
Learn.” [Online]. Available: https://learn.
microsoft.com/en-us/cpp/windows/latest-
supported-vc-redist

[35] “GitHub - MatejKafka/PogPackages: Package
manifests for the Pog package manager
(https://github.com/MatejKafka/

Pog)..” [Online]. Available: https://github.com/
MatejKafka/PogPackages

[36] “BatBadBut: You can't securely execute
commands on Windows - Flatt Security
Research.” [Online]. Available: https://flatt.
tech/research/posts/batbadbut-you-cant-
securely-execute-commands-on-windows/

[37] “GitHub - ScoopInstaller/Shim: A Scoop
helper program for shimming
executables.” [Online]. Available: https://
github.com/ScoopInstaller/Shim

[38] Microsoft, “Using Resources - Win32 apps |
Microsoft Learn.” [Online]. Available: https://
learn.microsoft.com/en-us/windows/win32/
menurc/using-resources

[39] Microsoft, “RCDATA resource - Win32 apps |
Microsoft Learn.” [Online]. Available: https://
learn.microsoft.com/en-us/windows/win32/
menurc/rcdata-resource

[40] Microsoft, “Job Objects - Win32 apps |
Microsoft Learn.” [Online]. Available: https://
learn.microsoft.com/en-us/windows/win32/
procthread/job-objects

[41] Microsoft, “Platform Invoke (P/Invoke) |
Microsoft Learn.” [Online]. Available: https://
learn.microsoft.com/en-us/dotnet/standard/
native-interop/pinvoke

46

https://learn.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-setfileinformationbyhandle
https://learn.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-setfileinformationbyhandle
https://learn.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-setfileinformationbyhandle
https://learn.microsoft.com/en-us/powershell/scripting/developer/hosting/creating-runspaces
https://learn.microsoft.com/en-us/powershell/scripting/developer/hosting/creating-runspaces
https://learn.microsoft.com/en-us/powershell/scripting/developer/hosting/creating-runspaces
https://learn.microsoft.com/en-us/powershell/scripting/developer/hosting/creating-runspaces
https://learn.microsoft.com/en-us/windows/win32/fileio/creating-symbolic-links
https://learn.microsoft.com/en-us/windows/win32/fileio/creating-symbolic-links
https://learn.microsoft.com/en-us/windows/win32/fileio/hard-links-and-junctions
https://learn.microsoft.com/en-us/windows/win32/fileio/hard-links-and-junctions
https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createsymboliclinkw
https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createsymboliclinkw
https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createsymboliclinkw
https://blogs.windows.com/windowsdeveloper/2016/12/02/symlinks-windows-10/
https://blogs.windows.com/windowsdeveloper/2016/12/02/symlinks-windows-10/
https://blogs.windows.com/windowsdeveloper/2016/12/02/symlinks-windows-10/
https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-10/security/threat-protection/security-policy-settings/create-symbolic-links
https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-10/security/threat-protection/security-policy-settings/create-symbolic-links
https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-10/security/threat-protection/security-policy-settings/create-symbolic-links
https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-10/security/threat-protection/security-policy-settings/create-symbolic-links
https://learn.microsoft.com/en-us/windows/win32/shell/links
https://learn.microsoft.com/en-us/windows/win32/shell/links
https://learn.microsoft.com/en-us/windows/win32/shell/links
https://learn.microsoft.com/en-us/windows/win32/shell/appids
https://learn.microsoft.com/en-us/windows/win32/shell/appids
https://learn.microsoft.com/en-us/windows/win32/shell/appids
https://learn.microsoft.com/en-us/cpp/windows/latest-supported-vc-redist
https://learn.microsoft.com/en-us/cpp/windows/latest-supported-vc-redist
https://learn.microsoft.com/en-us/cpp/windows/latest-supported-vc-redist
https://github.com/MatejKafka/PogPackages
https://github.com/MatejKafka/PogPackages
https://flatt.tech/research/posts/batbadbut-you-cant-securely-execute-commands-on-windows/
https://flatt.tech/research/posts/batbadbut-you-cant-securely-execute-commands-on-windows/
https://flatt.tech/research/posts/batbadbut-you-cant-securely-execute-commands-on-windows/
https://github.com/ScoopInstaller/Shim
https://github.com/ScoopInstaller/Shim
https://learn.microsoft.com/en-us/windows/win32/menurc/using-resources
https://learn.microsoft.com/en-us/windows/win32/menurc/using-resources
https://learn.microsoft.com/en-us/windows/win32/menurc/using-resources
https://learn.microsoft.com/en-us/windows/win32/menurc/rcdata-resource
https://learn.microsoft.com/en-us/windows/win32/menurc/rcdata-resource
https://learn.microsoft.com/en-us/windows/win32/menurc/rcdata-resource
https://learn.microsoft.com/en-us/windows/win32/procthread/job-objects
https://learn.microsoft.com/en-us/windows/win32/procthread/job-objects
https://learn.microsoft.com/en-us/windows/win32/procthread/job-objects
https://learn.microsoft.com/en-us/dotnet/standard/native-interop/pinvoke
https://learn.microsoft.com/en-us/dotnet/standard/native-interop/pinvoke
https://learn.microsoft.com/en-us/dotnet/standard/native-interop/pinvoke

Appendix A

Pog scripting

The following listings illustrate the PowerShell interface provided by Pog, focusing on
examples of interactive scripting.

Completion of available versions when installing a package:

> pog Node.js 22.<Ctrl+Space>
22.2.0 22.1.0 22.0.0

Show basic information about installed packages:

> Get-PogPackage Alacritty, Firefox, Chromium

 Package Root: D:_

PackageName Version
----------- -------
Alacritty 0.12.3
Firefox 127.0b3

 Package Root: D:_custom

PackageName Version
----------- -------
Chromium 116.0.5845.97

List shortcuts exposed by a specific package:

> (Get-PogPackage Firefox).ExportedShortcuts

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 2023-09-05 16:33 1140 Firefox Private Browsing.lnk
-a--- 2023-09-05 16:33 1001 Firefox.lnk

Find a specific package version in the repository and list the source URLs:

> (Find-PogPackage Alacritty 0.11.0).Manifest.Install.SourceUrl
https://github.com/alacritty/.../v0.11.0/Alacritty-v0.11.0-portable.exe
https://github.com/alacritty/.../v0.11.0/alacritty.yml

47

Manually list outdated packages:

> foreach ($p in Get-PogPackage) {
> # find the latest version of the corresponding repository package
> $r = try {Find-PogPackage $p.ManifestName} catch {continue}
> if ($r.Version -gt $p.Version) {
> $p | select PackageName, Version, {$r.Version}
> }
> }
PackageName Version $r.Version
----------- ------- ----------
cURL 8.7.1_9 8.8.0_1
Firefox 127.0b3 127.0b5
Syncthing 1.27.7 1.27.8-rc.1
Thunderbird 127.0b1 127.0b2

48

Appendix B

Pog manifest example

Source:
https://github.com/MatejKafka/PogPackages/blob/main/go-lang/.template/pog.psd1

@{
 Name = "go-lang"
 Architecture = "x64"
 Version = '1.22.3'

 Install = @{
 Url = {"https://go.dev/dl/go$($this.Version).windows-amd64.zip"}
 Hash =
'CAB2AF6951A6E2115824263F6DF13FF069C47270F5788714FA1D776F7F60CB39'
 }

 Enable = {
 New-Directory "./config"
 New-Directory "./cache/build-cache"
 New-Directory "./cache/mod-cache"
 New-Directory "./data/go-bin"
 New-Directory "./data/packages"

 Export-Command "go" "./app/bin/go.exe" -Environment @{
 GOROOT = "./app"
 GOBIN = "./data/go-bin"
 GOENV = "./config/goenv"
 GOCACHE = "./cache/build-cache"
 GOMODCACHE = "./cache/mod-cache"
 GOPATH = "%GOPATH%", "./data/packages"
 }
 }
}

49

https://github.com/MatejKafka/PogPackages/blob/main/go-lang/.template/pog.psd1

Appendix C

Scoop manifest example

Source: https://github.com/ScoopInstaller/Main/blob/master/bucket/go.json

Note that the Scoop manifest also includes metadata necessary to automatically update
it when a new version is released. Both Pog and WinGet use a separate mechanism for
manifest updates.

{
 "version": "1.22.3",
 "description": "An open source programming language that makes it easy
to build simple, reliable, and efficient software.",
 "homepage": "https://golang.org",
 "license": "BSD-3-Clause",
 "architecture": {
 "64bit": {
 "url": "https://dl.google.com/go/go1.22.3.windows-amd64.zip",
 "hash":
"cab2af6951a6e2115824263f6df13ff069c47270f5788714fa1d776f7f60cb39"
 },
 "32bit": {
 "url": "https://dl.google.com/go/go1.22.3.windows-386.zip",
 "hash":
"f60f63b8a0885e0d924f39fd284aee5438fe87d8c3d8545a312adf43e0d9edac"
 },
 "arm64": {
 "url": "https://dl.google.com/go/go1.22.3.windows-arm64.zip",
 "hash":
"59b76ee22b9b1c3afbf7f50e3cb4edb954d6c0d25e5e029ab5483a6804d61e71"
 }
 },
 "extract_dir": "go",
 "installer": {
 "script": [
 "$envgopath = \"$env:USERPROFILE\\go\"",
 "if ($env:GOPATH) { $envgopath = $env:GOPATH }",
 "info \"Adding '$envgopath\\bin' to PATH...\"",
 "Add-Path -Path \"$envgopath\\bin\" -Global:$global -Force"
]
 },
 "uninstaller": {
 "script": [
 "$envgopath = \"$env:USERPROFILE\\go\"",
 "if ($env:GOPATH) { $envgopath = $env:GOPATH }",
 "info \"Removing '$envgopath\\bin' from PATH...\"",
 "Remove-Path -Path \"$envgopath\\bin\" -Global:$global"
]
 },

50

https://github.com/ScoopInstaller/Main/blob/master/bucket/go.json

 "bin": [
 "bin\\go.exe",
 "bin\\gofmt.exe"
],
 "checkver": {
 "url": "https://golang.org/dl/",
 "regex": "go([\\d.]+)\\.windows-"
 },
 "autoupdate": {
 "architecture": {
 "64bit": {
 "url": "https://dl.google.com/go/go$version.windows-amd64.
zip"
 },
 "32bit": {
 "url": "https://dl.google.com/go/go$version.windows-386.
zip"
 },
 "arm64": {
 "url": "https://dl.google.com/go/go$version.windows-arm64.
zip"
 }
 },
 "hash": {
 "url": "$url.sha256"
 }
 }
}

51

Appendix D

WinGet manifest example

Source: https://github.com/microsoft/winget-pkgs/blob/master/manifests/g/GoLang/
Go/1.22.3/GoLang.Go.yaml

PackageIdentifier: GoLang.Go
PackageVersion: 1.22.3
DefaultLocale: en-US
ManifestType: version
ManifestVersion: 1.6.0

Source: https://github.com/microsoft/winget-pkgs/blob/master/manifests/g/GoLang/
Go/1.22.3/GoLang.Go.installer.yaml

PackageIdentifier: GoLang.Go
PackageVersion: 1.22.3
InstallerLocale: en-US
InstallerType: wix
Scope: machine
InstallModes:
- interactive
- silent
- silentWithProgress
UpgradeBehavior: install
Commands:
- go
FileExtensions:
- go
- gohtml
ReleaseDate: 2024-05-07
Installers:
- Architecture: x86
 InstallerUrl: https://go.dev/dl/go1.22.3.windows-386.msi
 InstallerSha256:
589FA5DE9F7A2AFFFB4D98535E7DA5E1B21E8367ABBAE35168CA52FD71DB6A4F
 ProductCode: '{AF6F03B4-000D-4131-8A13-88F4C0106CA8}'
 AppsAndFeaturesEntries:
 - DisplayName: Go Programming Language 386 go1.22.3
 UpgradeCode: '{1C3114EA-08C3-11E1-9095-7FCA4824019B}'
- Architecture: x64
 InstallerUrl: https://go.dev/dl/go1.22.3.windows-amd64.msi
 InstallerSha256:
11F1A4A65C90088E942CEF4CBF286E07FD5E04F0A3E677646459415DAAFA0F4B
 ProductCode: '{3F816537-9FDB-4FE7-86E3-BBEEDFD4038E}'
 AppsAndFeaturesEntries:
 - DisplayName: Go Programming Language amd64 go1.22.3
 UpgradeCode: '{22EA7650-4AC6-4001-BF29-F4B8775DB1C0}'

52

https://github.com/microsoft/winget-pkgs/blob/master/manifests/g/GoLang/Go/1.22.3/GoLang.Go.yaml
https://github.com/microsoft/winget-pkgs/blob/master/manifests/g/GoLang/Go/1.22.3/GoLang.Go.yaml
https://github.com/microsoft/winget-pkgs/blob/master/manifests/g/GoLang/Go/1.22.3/GoLang.Go.installer.yaml
https://github.com/microsoft/winget-pkgs/blob/master/manifests/g/GoLang/Go/1.22.3/GoLang.Go.installer.yaml

- Architecture: arm64
 InstallerUrl: https://go.dev/dl/go1.22.3.windows-arm64.msi
 InstallerSha256:
DC65B6E08281A50791BB86898CE96DB299BF3D27967A32F3EA1F8078E2C37B94
 ProductCode: '{C265D735-7314-4CD2-A7AC-C96DF4F9FCED}'
 AppsAndFeaturesEntries:
 - DisplayName: Go Programming Language arm64 go1.22.3
 UpgradeCode: '{21ADE9A3-3FDD-4BA6-BEA6-C85ABADC9488}'
ManifestType: installer
ManifestVersion: 1.6.0

53

	Introduction
	Background
	Linux package management
	Contemporary package managers

	macOS package management
	Windows package management
	Windows Installer
	Universal Windows Platform
	Portable applications
	Package managers
	Chocolatey
	WinGet
	Scoop

	Design goals for Pog
	Encapsulation and portability
	Minimal external dependencies
	Transparent installation
	Accessibility
	Packaging experience

	Making applications portable
	Environment variables
	Command line arguments
	Configuration files
	Sandboxing

	The Pog package manager
	Package installation process
	Importing a package
	Installation
	Package configuration
	Creating configuration files and directories
	Linking files and directories
	Executable metadata configuration
	Exposing commands and shortcuts
	MSVC runtime libraries

	Exporting a package
	Uninstallation

	Package repositories
	Local repositories
	Remote repositories
	Manifest generators

	Application launchers
	Shim executables
	PE resources
	PE subsystem

	Pog shim executable implementation
	Shim executable initialization

	Evaluation
	Encapsulation and portability
	Minimal external dependencies
	Transparent installation & Accessibility
	Packaging experience
	Performance evaluation
	Package installation speed
	Package uninstallation speed
	Package update speed

	Future work
	Conclusion
	Bibliography
	Pog scripting
	Pog manifest example
	Scoop manifest example
	WinGet manifest example

