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Počet stran: 168
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Abstrakt

Tato disertačńı práce shrnuje př́ıspěvek autora v oboru speciálńıch funkćı a poly-
nomů afinńıch Weylových grup a př́ıslušných Fourierových metod. Obsažený výzkum
byl vypracován během autorova doktorského studia. Vı́ceproměnné (anti)symetrické
diskrétńı sinové transformace jsou odvozeny společně s př́ıslušnými interpolačńımi vzor-
ci, kubaturńımi vzorci a novými tř́ıdami v́ıcerozměrných polynomů Chebyshevova typu.
Vı́ceproměnné (anti)symetrické sinové funkce potřebné pro odvozeńı transformaćı jsou
př́ıkladem speciálńıch funkćı spř́ızněných s afinńı Weylovou grupou. Propojeńı zmı́ně-
ných transformaćı s Weylovou grupou se objevuje ve formě vztahu k specifické tř́ıdě
duálńıch kořenových Fourier–Weylových transformaćı. Paralela mezi těmito dvěma
př́ıstupy přináš́ı výhody pro oba formalismy. Dále se disertačńı práce věnuje aplikaćım
teorie duálńıch kořenových a duálńıch váhových Fourier–Weylových transformaćı a posky-
tuje nové tř́ıdy model̊u kvantových částic na mř́ıž́ıch indukovaných Weylovou grupou.
Čtyři články publikované v impaktovaných časopisech prezentované v této práci shrnuj́ı
studovanou problematiku a obsahuj́ı autor̊uv originálńı př́ınos do př́ıslušného oboru.

Abstract

This thesis summarizes the contribution of the author to the field of special func-
tions and polynomials of affine Weyl groups and corresponding Fourier methods. The
included research was performed during the author’s doctoral study. The multivariate
(anti)symmetric discrete sine transforms, together with associated interpolation for-
mulas, cubature formulas and new classes of multivariate Chebyshev-like polynomials,
are developed. The multivariate (anti)symmetric sine functions necessary to derive the
transforms are an example of special functions related to an affine Weyl group. The con-
nection of these transforms to the Weyl group emerges by a one-to-one correspondence
to specific class of dual root lattice Fourier–Weyl transforms. The parallel between these
two approaches yields benefits for both formalisms. Further, the thesis focuses on the
applications of the dual root and dual weight lattice Fourier–Weyl transforms theory
and provides new classes of quantum particle models on Weyl group induced lattices.
The 4 articles published in impacted journals presented in this thesis summarize the
studied topic and include original contributions of the author to the related field.
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Introduction

The classical univariate sine and cosine functions can be generalized in the form of
(anti)symmetric multivariate trigonometric functions [42, 46, 60]. This straightforward
generalization allows to reexamine various classical mathematical methods to multivari-
ate settings, e.g. discrete sine and cosine transforms (DSTs and DCTs) [8,96]. The DSTs
and DCTs are associated with effective integer approximations and various numeric
methods, with a notable advantage being the existence of fast algorithms to perform
these transforms. With the multivariate generalizations of sine and cosine functions,
similar suitable properties could be studied for the (anti)symmetric multivariate dis-
crete sine and cosine transforms (AMDSTs, SMDSTs, AMDCTs and SMDCTs). These
multivariate transforms are deduced from remarkable properties of the (anti)symmetric
sine and cosine functions and the univariate DSTs and DCTs. The DCTs are general-
ized to the multivariate settings in [37], obtaining eight AMDCTs and eight SMDCTs.
For the sine cases, only the generalizations of the DST-I is done in [60]. The remaining
seven AMDSTs and seven SMDSTs are developed in [A1]. Furthermore, the antisym-
metric sine and cosine transforms can be viewed as a special case of Fourier transforms
of the generalized Schur polynomials [23].

Another well studied topic related to the univariate sine and cosine functions are
the Chebyshev polynomials [31, 89]. This particular case of orthogonal polynomials of
single variable [15] is connected to effective numerical methods for approximation and
integration [11, 14, 16, 68, 69]. The univariate trigonometric definition of these classical
orthogonal polynomials serves as a starting point to generalize the Chebyshev poly-
nomials to the multivariate orthogonal polynomial setting [15, 19, 22, 25, 65, 88]. The
multivariate Chebyshev-like polynomials related to the cosine functions and their ap-
plication are studied in [37]. The generalizations of Chebyshev polynomials associated
to the sine functions were previously not studied and are introduced and investigated
in [A1].

The combination of the (anti)symmetric multivariate discrete sine and cosine trans-
forms, together with the corresponding Chebyshev-like polynomials, yields associated
cubature formulas [17,32,43,84,85,94]. Cubature formulas allow to replace integration
over specific domain by finite summing of polynomial values evaluated on specific point
set. These formulas hold exactly for polynomials which do not exceed a maximum
degree, known as a degree of precision. The cubature formulas, associated with the
multivariate Chebyshev-like polynomials of the first and third kind, are studied in [37],
obtaining four cubature formulas for each generalized Chebyshev-like polynomial. Fur-
thermore, for each class of polynomials one of these formulas is the optimal Gaussian
formula [4], which for given polynomial degree requires the minimum amount of points to
be evaluated at. Similar approach is followed for the multivariate Chebyshev-like poly-
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nomials related to the (anti)symmetric multivariate sine functions in [A1]. Moreover,
the above mentioned topics analyzed in [A1] are further studied for the two dimensional
cases in [9], providing exact form of the polynomial recurrence formulas and listing first
few polynomials for each class of the bivariate Chebyshev-like polynomials related to
the bivariate (anti)symmetric sine functions.

The (anti)symmetric multivariate sine and cosine functions are multivariate special
functions [5,33,46,49,57–59,62,86], with another closely connected class of special func-
tions being the Weyl orbit functions [34,47,48,50,51,63,64] arising from the Weyl group
theory [54], which is associated to the Lie groups and algebras [6,7,53,98]. These func-
tions have many remarkable properties, from which many are based on the symmetries
of the Weyl group. Moreover, in the case of the Lie algebra Cn, the Weyl orbit functions
coincide with the (anti)symmetric multivariate sine and cosine functions [40]. For each
Weyl group, there exist up to four classes of Weyl orbit functions, based on the sign
homomorphisms on the Weyl group.

Each of the Weyl orbit functions induces discrete Fourier–Weyl transforms [18,20,38,
45,70] on the closure of the Weyl alcove, a simplex in the Euclidean space representing
a conveniently selected fundamental domain of the affine Weyl group. The dual root
lattice Fourier–Weyl transforms use the Weyl orbit functions as kernels of the transforms
and the point sets are given by rescaled admissibly shifted dual root lattices intersected
with the signed fundamental domains of the affine Weyl group [18]. The dual weight
lattice Fourier–Weyl transforms use as kernels the Weyl orbit functions and the point
sets are given by the intersection of the signed fundamental domains of the affine Weyl
group and rescaled admissibly shifted dual weight lattices [18].

The comparison of the dual root lattice Fourier–Weyl transforms of the algebras
A1 and Cn and the (anti)symmetric multivariate sine and cosine transforms of the
corresponding dimensions is based on the up-to constant correspondence between the
Weyl orbit functions and the (anti)symmetric multivariate sine and cosine functions [40].
The exact parallel concerning the point and label sets as well as the normalization
and weight factors of these transforms leads to the up-to constant coincidence of the
corresponding unitary matrices that are explicitly given in [A2].

One of the applications of the generalized discrete Fourier–Weyl transforms is to
describe a special class of the discrete quantum billiard systems [29,52,55,56,75,80,81,
91,95], where the boundary conditions [2,73,74] are controlled via specific Neumann and
Dirichlet walls. These boundary conditions are induced by the sign homomorphisms and
admissible shifts of the dual root or dual weight lattice Fourier–Weyl transforms. The
quantum particle propagates inside the closure of Weyl alcove on the rescaled and shifted
dual root or dual weight lattice and the boundaries are presented by Neumann walls as
perfect mirrors and Dirichlet walls as ideal barriers. The orthonormal position bases of
the finite dimensional Hilbert space are given by ordered point sets of the dual root or
dual weight lattice Fourier–Weyl transforms. The amplitudes of the quantum particle
propagation on the rescaled and shifted dual root or dual weight lattice are provided by
complex-valued hopping function. The hopping operators on the particle Hilbert space
are then constructed using the non-zero dominant values of the hopping function. The
hopping operator matrix elements incorporate the effect of the boundary walls using
the symmetrization of the χ-function, thus modifying the amplitudes of possible jumps
inside the Weyl alcove. The summation over all hopping operators provides the Hückel-
type Hamiltonian [72, 77] of resulting model. Furthermore, the hopping functions are
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constrained to be Hermitian to assure the hermiticity of the discrete Hamiltonian.
The stationary states of the described model are provided by the time-independent

Schrödinger equation [27,28] and are acquired by inverse of the dual root or dual weight
lattice Fourier–Weyl transforms [20,38] of the orthonormal position bases. The eigenen-
ergies of the quantum particle systems are fully determined as a linear combinations
of the Weyl orbit functions [64]. Classes of discrete quantum models of a free non-
relativistic quantum particle on the dual root lattice in Weyl alcove, together with the
corresponding Fourier–Weyl transforms theory summarization, are described in [A3].
The dual weight lattice models produce similarly different classes of discrete quantum
models. The models induced by the dual weight lattice Fourier–Weyl transforms are in-
tently stated in [A4]. The dual root and dual weight approaches are further summarized
in [10].

The ambition of this work is to summarize the contributions of the author to the
special functions and polynomials of affine Weyl groups and corresponding Fourier meth-
ods, and provide an consolidation text for the articles [A1–A4]. The aim of these articles
is to:

� develop (anti)symmetric multivariate discrete sine transforms and corresponding
interpolation methods based on multivariate trigonometric functions

� generalize the classical Chebyshev polynomials of second and fourth kind into
multivariate Chebyshev-like polynomials with use of multivariate trigonometric
functions

� obtain cubature formulas from combination of the (anti)symmetric multivariate
discrete sine transforms and multivariate Chebyshev-like polynomials

� establish connection between the (anti)symmetric multivariate discrete sine trans-
forms and dual root Fourier-Weyl transforms

� develop a family of discrete quantum models describing a non-relativistic quantum
particle propagating on a rescaled and shifted dual root or weight lattices based
on the theory of Fourier-Weyl transforms.

The contribution of the author of the thesis to the original results, contained in the
included articles [A1–A4], ranges from theoretical research to concept and reviews of the
manuscripts [A1–A4], preparation of figures and visualizations [A1–A4] and numerical
computations [A1–A4]. The most significant results, which were obtained with the
essential contribution of the author, encompass

� derivation of the (anti)symmetric multivariate discrete sine transforms [A1, §3]

� formulating recurrence relations for the multivariate Chebyshev-like polynomials
of the second and fourth kind [A1, §4]

� obtaining cubature formulas related to multivariate Chebyshev-like polynomials
of second and fourth kind [A1, Theorems 1-5]

� verifying the relations between the weight functions of (anti)symmetric multi-
variate discrete sine and cosine transforms and dual root lattice Fourier–Weyl
transforms [A2, Theorem 4]
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� verifying and mathematical modeling of the dual root lattice model of C2 in Wol-
fram Mathematica [A3, §4.2]

� visualization of the examples [A3, §4]

� verifying and mathematical modeling of the dual weight lattice model of C2 in
Wolfram Mathematica [A4, §4.1]

� visualization of the examples [A4, §4].

The progress achieved in [A1–A4] was obtained using analytical and numerical meth-
ods. The models were calculated numerically using Wolfram Mathematica and visual-
izations were produced using Wolfram Mathematica and LaTeX.

The thesis is organized as follows. Chapter 1 is dealing with the study of (anti)sym-
metric multivariate discrete sine transforms and corresponding background. Chapter
2 is focused on the multivariate Chebyshev-like polynomials of the second and third
kind and related cubature formulas. Chapter 3 is summarizing the Weyl group theory
and discrete Fourier–Weyl transforms needed in the following chapters. Chapter 4 is
connecting the (anti)symmetric multivariate sine and cosine transforms with the dual
root lattice Fourier–Weyl transforms. Chapter 5 is summarizing the development of dual
root and weight lattice models of quantum particle in Weyl alcove. In Conclusion, the
concluding remarks and follow up problems are presented. In the Included Publications
section, the four included articles [A1–A4] are listed.
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Chapter 1

Generalization of Discrete
Trigonometric Transforms

This section deals with the (anti)symmetric multivariate generalizations of sine and
cosine functions [60], that are employed to generalize the classical univariate discrete
trigonometric transforms [8], concentrating mainly on the progress achieved in [A1].
Section 1.1 focuses on the definition and properties of the (anti)symmetric multivariate
sine and cosine functions, Section 1.2 summarizes the essential information about the
classical discrete sine and cosine transforms and Section 1.3 is focusing on the multi-
variate development accomplished in [A1].

1.1 Multivariate Sine and Cosine Functions

The multivariate sine and cosine functions [60] are straightforward generalizations of
the classical sine and cosine functions using determinants and permanents of matrices
with univariate sine or cosine entries. For any n ∈ N the (anti)symmetric multivariate
sine and cosine functions are defined by

sin−λ (x) =det

 sin(πλ1x1) sin(πλ1x2) ··· sin(πλ1xn)
sin(πλ2x1) sin(πλ2x2) ··· sin(πλ2xn)

...
...

...
...

sin(πλnx1) sin(πλnx2) ··· sin(πλnxn)

 ,

cos−λ (x) =det

 cos(πλ1x1) cos(πλ1x2) ··· cos(πλ1xn)
cos(πλ2x1) cos(πλ2x2) ··· cos(πλ2xn)

...
...

...
...

cos(πλnx1) cos(πλnx2) ··· cos(πλnxn)

 ,

(1.1)

and

sin+
λ (x) =perm

 sin(πλ1x1) sin(πλ1x2) ··· sin(πλ1xn)
sin(πλ2x1) sin(πλ2x2) ··· sin(πλ2xn)

...
...

...
...

sin(πλnx1) sin(πλnx2) ··· sin(πλnxn)

 ,

cos+
λ (x) =perm

 cos(πλ1x1) cos(πλ1x2) ··· cos(πλ1xn)
cos(πλ2x1) cos(πλ2x2) ··· cos(πλ2xn)

...
...

...
...

cos(πλnx1) cos(πλnx2) ··· cos(πλnxn)

 ,

(1.2)

where the variable x = (x1, x2, . . . , xn) and parameter λ = (λ1, λ2, . . . , λn).
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Properties of Multivariate Trigonometric Functions

The multivariate (anti)symmetric sine and cosine functions have the following ex-
plicit form:

sin−λ (x) =
∑
σ∈Sn

sgn(σ) sin(πλσ(1)x1) sin(πλσ(2)x2) · · · sin(πλσ(n)xn),

cos−λ (x) =
∑
σ∈Sn

sgn(σ) cos(πλσ(1)x1) cos(πλσ(2)x2) · · · cos(πλσ(n)xn),
(1.3)

for the antisymmetric case and

sin+
λ (x) =

∑
σ∈Sn

sin(πλσ(1)x1) sin(πλσ(2)x2) · · · sin(πλσ(n)xn),

cos+
λ (x) =

∑
σ∈Sn

cos(πλσ(1)x1) cos(πλσ(2)x2) · · · cos(πλσ(n)xn),
(1.4)

for the symmetric case, where Sn denotes the permutation group and sgn is the sign
homomorphism on Sn.

These functions inherit many remarkable properties from the one dimensional trigono-
metric functions and from the properties of determinants and permanents of matri-
ces [A1, §2.1].

For further study of these functions, integer sets P±1 are defined as

P+
1 = {(k1, k2, . . . , kn) ∈ Zn|k1 ≥ k2 ≥ · · · ≥ kn ≥ 1} ,
P−1 = {(k1, k2, . . . , kn) ∈ Zn|k1 > k2 > · · · > kn ≥ 1}

(1.5)

and the parameters of sin±λ (x) are restricted to λ = k or λ = k− ρ, where k ∈ P±1 and
ρ =

(
1
2
, 1

2
, . . . , 1

2

)
.

Taking into account these limitations, it is sufficient to consider the functions sin±λ (x)

on the closure of the fundamental domain F (S̃aff
n ),

F (S̃aff
n ) = {(x1, x2, . . . , xn) ∈ Rn|1 ≥ x1 ≥ x2 ≥ . . . ≥ xn ≥ 0} . (1.6)

Certain parts of the boundary of the domain F (S̃aff
n ) are further omitted for specific

cases of sin±λ (x) [A1, §2.1]. Moreover, the (anti)symmetric sine functions are pairwise
continuously orthogonal within each family, sin−k , sin

−
k−ρ, sin

+
k , sin

+
k−ρ, when integrated

over F (S̃aff
n ) [A1, §2.2].

1.2 Discrete Trigonometric Transforms

Discrete sine transforms (DSTs) and discrete cosine transforms (DCTs) emerge as
solutions of an undamped harmonic oscillator equation with various homogenous bound-
ary conditions [8]. The DSTs are obtained when Dirichlet boundary condition at start
of an interval is considered, while the DCTs arise from Neumann boundary condition.
In total, there exist eight types of DSTs and eight types of DCTs deduced from various
combination of boundary conditions applied at the grid or mid-grid points.
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For example, the DST of type VIII is derived when Dirichlet condition is applied at
mid-grid point at the start of an interval and Neumann condition is applied at the end
grid point. For any n ∈ N and any discrete function f(s) defined on the grid

s ∈

{
2
(
r + 1

2

)
2N − 1

| r = 0, 1, . . . , N − 1

}
, (1.7)

the DST-VIII has the following form:

f(s) =
N−1∑
k=0

Ak sin

(
π

(
k +

1

2

)
s

)
, (1.8)

Ak =
4ck+1

2N − 1

N−1∑
r=0

cr+1f

(
2
(
r + 1

2

)
2N − 1

)
sin

(
2π
(
k + 1

2

) (
r + 1

2

)
2N − 1

)
, (1.9)

where

cr =

{
1
2

if r = 0 or r = N,
1 otherwise.

(1.10)

The whole set of the classical one-dimensional discrete trigonometric transforms can
be found in [8, §2.6 and 2.7].

1.3 Discrete Multivariate Trigonometric Transforms

A convenient combination of properties of the multivariate sine and cosine functions
and the univariate discrete trigonometric transforms allows to generalize the discrete
trigonometric transforms to multivariate setting, obtaining eight transforms for each
case of antisymmetric and symmetric multivariate sine and cosine function. For example,
the symmetric multivariate discrete sine transform of type VI is described bellow.

For N ∈ N, N > n we consider the symmetric sine functions sin+
k (s) labeled by the

index set k ∈ D+
1,N given by

D+
1,N ≡ {(k1, k2, . . . , kn) ∈ Zn | N ≥ k1 ≥ k2 ≥ . . . ≥ kn ≥ 1} (1.11)

and restricted to the finite set of points FVI,+
N defined by

FVI,+
N ≡

{(
2
(
r1 + 1

2

)
2N + 1

, . . . ,
2
(
rn + 1

2

)
2N + 1

)
| (r1, . . . , rn) ∈ D+

1,N

}
. (1.12)

The functions sin+
k (s) are pairwise discretely orthogonal for k, k′ ∈ D+

1,N , i.e.

∑
s∈FVI,+

N

H−1
s sin+

k (s) sin+
k′(s) =

(
2N + 1

4

)n
δkk′ , (1.13)

where Hs denotes the order of the stabilizer subgroup StabSn (s) of Sn with respect to
the point s ∈ Rn. Therefore, any function f : FVI,+

N → R is expanded in terms of
symmetric multivariate sine functions as
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f(s) =
∑

k∈D+
1,N

Ak sin+
k (s), Ak = H−1

k

(
4

2N + 1

)n ∑
s∈FVI,+

N

H−1
s f(s) sin+

k (s). (1.14)

The full set of the discrete multivariate cosine transforms is deduced in [37], the mul-
tivariate generalization of DST-I is elaborated in [60]. The entire set of (anti)symmetric
multivariate discrete sine transforms is derived in [A1, §3.1 and 3.2], resulting in 14
novel multivariate discrete transforms. Furthermore, the orthogonal matrices for the
normalized discrete sine transforms are introduced and a trivariate example is numer-
ically calculated by Wolfram Mathematica in [A1, §3.4]. One of direct applications
of the multivariate sine discrete transforms is interpolation of a real-valued function
over the fundamental domain F (S̃aff

n ). The total of 16 interpolation polynomials are
developed. For a trivariate example, the interpolation is, for various N , performed in
Wolfram Mathematica and the graph cuts of the interpolation polynomials are depicted
in [A1, Figures 6 and 7]. Moreover, the integral error estimates are numerically calcu-
lated in [A1, Table 2]. For the fixed ordering of the label sets D?,c,±

N and D?,s,±
N and

point sets F ?,c,±
N and F ?,s,±

N , the unitary transform matrices C?,±
N of the (anti)symmetric

multivariate discrete cosine transforms of types ? ∈ {I, . . . ,VIII} are given by their
entries as

(
C?,+
N

)
yx

=

√
ε?,cx

h?,cy HyHx

cos+
y (x), y ∈ D?,c,+

N , x ∈ F ?,c,+
N ,

(
C?,−
N

)
yx

=

√
ε?,cx

h?,cy
cos−y (x), y ∈ D?,c,−

N , x ∈ F ?,c,−
N .

(1.15)

The unitary transform matrices S?,±N of the (anti)symmetric multivariate discrete sine
transforms of types ? ∈ {I, . . . ,VIII} are defined by their entries as

(
S?,+N

)
yx

=

√
ε?,sx

h?,sy HyHx

sin+
y (x), y ∈ D?,s,+

N , x ∈ F ?,s,+
N ,

(
S?,−N

)
yx

=

√
ε?,sx

h?,sy
sin−y (x), y ∈ D?,s,−

N , x ∈ F ?,s,−
N .

(1.16)

The explicit form of the point sets F ?,c,±
N and F ?,s,±

N and label sets D?,c,±
N and D?,s,±

N ,? ∈
{I, . . . ,VIII}, together with the normalization functions h?,cy and h?,sy and weight func-
tions ε?,cx and ε?,sx , are listed in [A2, Table 2].

For the univariate case, the antisymmetric and symmetric cases coincide and corre-
spond to the matrix transforms of DCTs and DSTs.
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Chapter 2

Multivariate Chebyshev-like
Polynomials of the (Anti)symmetric
Multivariate Sine Functions

The orthogonal polynomials [15] are widely used in mathematics and physics, with
one of their main applications being numerical methods for approximation and inte-
gration. This section is mostly describing the development and application of the
multivariate Chebyshev-like polynomials of the (anti)symmetric sine functions done
in [A1, Chapter 4]. Replacing the trigonometric functions in the defining relations
of the classical Chebyshev polynomials by their multivariate generalizations leads to
the multivariate Chebyshev-like polynomials. These multivariate generalizations in-
herit many exceptional properties from the classical Chebyshev polynomials, and thus,
deserve observation.

2.1 Classical Chebyshev Polynomials

The Chebyshev polynomials [31,89] are well known class of orthogonal polynomials
defined via trigonometric functions. The first and third kind are connected to the cosine
function, the second and fourth kind are related to the sine function. The standard form
of these polynomials for variable x = cos (θ), x ∈ [−1, 1] follows:

P I
n(x) = Tn(x) = cos (nθ) , P III

n (x) = Vn(x) =
cos
((
n+ 1

2

)
θ
)

cos
(

1
2
θ
) ,

P II
n (x) = Un(x) =

sin ((n+ 1) θ)

sin (θ)
, P IV

n (x) = Wn(x) =
sin
((
n+ 1

2

)
θ
)

sin
(

1
2
θ
) .

(2.1)

Properties of the Chebyshev Polynomials of the Second Kind

The main properties of the polynomials follow directly from trigonometric identities
and are presented for the case of Chebyshev polynomials of the second kind. The
continuous orthogonality of the Chebyshev polynomials of the second kind come from
their trigonometric definition in the form:
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∫ π

0

sin ((n+ 1) θ) sin ((m+ 1) θ) dθ = 0, n 6= m, (2.2)

which is rewritten for the variable x as∫ 1

−1

Un(x)Um(x)
(
1− x2

) 1
2 dx = 0, n 6= m. (2.3)

Additionally, the trigonometric definition yields directly the following expressions for
the first two polynomials,

U1(x) = 1, U2(x) = 2 cos (θ) = 2x. (2.4)

For every univariate class of orthogonal polynomials, there exists a recurrence relation
connecting any three successive polynomials. In the case of the Chebyshev polynomials
of the second kind, the following trigonometric identity,

sin ((n+ 1)θ) + sin ((n− 1)θ) = 2 cos (θ) sin (nθ) , (2.5)

results into the recurrence formula for polynomials Un(x):

Un(x) = 2xUn−1(x)− Un−2(x), n = 2, 3, . . . . (2.6)

Formula (2.6), together with the first two polynomials (2.4), provides a method for
generating any Chebyshev polynomial of the second kind. Similar relations are obtained
for the remaining three classes of the Chebyshev polynomials in [31].

2.2 Multivariate Chebyshev-like Polynomials

For the multivariate Chebyshev-like polynomials, the functions X1, X2, . . . , Xn, given
by

X1 = cos+
(1,0,...,0), X2 = cos+

(1,1,...,0), . . . , Xn = cos+
(1,1,...,1), (2.7)

are viewed as variables of the multivariate Chebyshev-like polynomials.
Introducing the following parameters

ρ−1 = (n− 1, n− 2, . . . , 0) ,

ρ−2 = (n, n− 1, . . . , 1) ,

ρ+
2 = (1, 1, . . . , 1) ,

ρ−4 =

(
n− 1

2
, n− 3

2
, . . . ,

1

2

)
,

ρ+
4 =ρ =

(
1

2
,
1

2
, . . . ,

1

2

)
,

(2.8)

the multivariate Chebyshev-like polynomials are defined for k ∈ P+

P+ = {(k1, k2, . . . , kn) ∈ Zn|k1 ≥ k2 ≥ · · · ≥ kn ≥ 0} , (2.9)
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as

PI,+
k (X1 (x) , . . . , Xn (x)) = cos+

k (x) , PI,−
k (X1 (x) , . . . , Xn (x)) =

cos−
k+ρ−1

(x)

cos−
ρ−1

(x)
,

PII,+
k (X1 (x) , . . . , Xn (x)) =

sin+

k+ρ+
2

(x)

sin+

ρ+
2

(x)
, PII,−

k (X1 (x) , . . . , Xn (x)) =
sin−

k+ρ−2
(x)

sin−
ρ−2

(x)
,

PIII,+
k (X1 (x) , . . . , Xn (x)) =

cos−
k+ρ+

4

(x)

cos−
ρ+

4

(x)
, PIII,−

k (X1 (x) , . . . , Xn (x)) =
cos−

k+ρ−4
(x)

cos−
ρ−4

(x)
,

PIV,+
k (X1 (x) , . . . , Xn (x)) =

sin+

k+ρ+
4

(x)

sin+

ρ+
4

(x)
, PIV,−

k (X1 (x) , . . . , Xn (x)) =
sin−

k+ρ−4
(x)

sin−
ρ−4

(x)
.

(2.10)

The generalizations of the Chebyshev-like polynomials corresponding to the cosine func-
tions together with their properties are developed in [37]. The polynomials related to
the sine functions are novel and established in [A1, Chapter 4]. These rational functions

are well-defined on the interior of F (S̃aff
n ) [A1, Corollary 1]. Furthermore, each set of

the polynomials is totally ordered by the lexicographic ordering > on P+.

2.3 Recurrence Relations

As in the classical case, the Chebyshev-like polynomials connected to the (anti)-
symmetric sine functions are constructed recursively from a generalized trigonometric
product-to-sum identity,

sin±λ (x) cos+
µ (x) =

1

2n

∑
σ∈Sn

∑
{
ai=−1,1
i=1,...,n

} sin±
(λ1+a1µσ(1),...,λn+anµσ(n))

(x), (2.11)

valid for any λ, µ ∈ Rn. Furthermore, the functions P II,±
k ,P IV,±

k , k ∈ P+ are polynomials
of degree k1 in variables X1, X2, . . . , Xn [A1, Prop.2]. The proposition further implies

that the domain of these functions can be further extended to the whole F (S̃aff
n ) [A1,

Remark 3]. The recursive algorithm described in [A1, §4.1] is based on (2.11) and the
set of lower trivariate polynomials, together with the explicit form of the recurrence
relations, is provided in [A1, Example 4]. Furthermore, the first ten polynomials with
degree at most two are listed for all four kinds of Chebyshev-like polynomials of the
(anti)symmetric sine functions in [A1, Tables 3-6]. Moreover, the bivariate case of these
polynomials is further comprehensively studied in [9].

2.4 Cubature Formulas

One of the most useful applications of classical Chebyshev polynomials are quadra-
ture formulas, replacing integration by finite summing, thus, playing significant role in
numerical analysis. In multidimensional setting, such formulas are known as cubature
formulas. The cubature formulas equate a weighted integral of polynomial functions
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with a linear combination of polynomial values in specific points as long as the polyno-
mials do not exceed certain degree. The maximum degree of polynomials for which the
formula holds exactly is called degree of precision. The fundamental property to de-
rive the cubature formulas related to the Chebyshev-like polynomials is the continuous
orthogonality of the polynomials (2.10).

Weight Functions

The transform ϕ : Rn → R
n, defined by

ϕ (x1, x2, . . . , xn) = (X1(x), X2(x), . . . , Xn(x)) , (2.12)

maps the domain F (S̃aff
n ) to the integration domain F(S̃aff

n ). The Jacobian of this trans-
form is, in absolute value, given by

|J(x1, . . . , xn)| = πn
(

1

2

)n(n−1)
2

(
n∏
i=1

(n− i)!i!

)∣∣∣sin−
ρ−2

(x1, x2, . . . , xn)
∣∣∣ . (2.13)

The absolute value |J(x1, . . . , xn)| is expressed as a function J in the polynomial
variables (X1, X2, . . . , Xn) (see [37, §4.13]),

J (X1, . . . , Xn) = |J(x1, . . . , xn)| . (2.14)

Introducing the functions J II,± and J IV,± by

J II,− (X1(x), . . . , Xn(x)) = sin−
ρ+

2

(x) sin−
ρ+

2

(x),

J II,+ (X1(x), . . . , Xn(x)) = sin+

ρ+
2

(x) sin+

ρ+
2

(x),

J IV,− (X1(x), . . . , Xn(x)) = sin−
ρ−4

(x) sin−
ρ−4

(x),

J IV,+ (X1(x), . . . , Xn(x)) = sin+

ρ+
4

(x) sin+

ρ+
4

(x),

(2.15)

the four weight functions related to the Chebyshev-like polynomials are defined by

wII,± =
J II,±

J
, wIV,± =

J IV,±

J
. (2.16)

Continuous Orthogonality

The continuous orthogonality relations for the Chebyshev-like polynomials of the
(anti)symmetric sine functions are given by∫

F(S̃aff
n )

P II,−
k (X)P II,−

k′ (X)wII,−(X) dX = 2−nδkk′ ,∫
F(S̃aff

n )

P II,+
k (X)P II,+

k′ (X)wII,+(X) dX = 2−nHkδkk′ ,∫
F(S̃aff

n )

P IV,−
k (X)P IV,−

k′ (X)wIV,−(X) dX = 2−nδkk′ ,∫
F(S̃aff

n )

P IV,+
k (X)P IV,+

k′ (X)wIV,+(X) dX = 2−nHkδkk′ .

(2.17)

Furthermore, the explicit formulas of the weight functions for the trivariate case are
given in [A1, Example 5].
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Cubature Formulas

The continuous orthogonality relations and the properties of the AMDSTs and SMD-
STs yield the cubature formulas.

The ϕ-images of the point sets F ∗,±N of multivariate discrete sine transforms, explicitly
given in [A1, Table 1], are denoted as F∗,±N , i.e.

F∗,±N =
{
ϕ(a) ∈ F(S̃aff

n )|a ∈ F ∗,±N
}
. (2.18)

Four cubature formulas related to the polynomials P II,−
k are derived as:∫

F(S̃aff
n )

f(Y )wII,−(Y ) dY =

(
1

N + 1

)n ∑
Y ∈FI,−

N

f(Y )J II,−(Y ),

∫
F(S̃aff

n )

f(Y )wII,−(Y ) dY =

(
1

N

)n ∑
Y ∈FII,−

N

f(Y )J II,−(Y ),

∫
F(S̃aff

n )

f(Y )wII,−(Y ) dY =

(
2

2N + 1

)n ∑
Y ∈FV,−

N

f(Y )J II,−(Y ),

∫
F(S̃aff

n )

f(Y )wII,−(Y ) dY =

(
2

2N + 1

)n ∑
Y ∈FVI,−

N

f(Y )J II,−(Y ).

(2.19)

The formulas for the remaining polynomials P II,+
k and P IV,±

k as well as the degrees
of precision of the formulas are formulated in [A1, Theorems 1-4]. Furthermore, each
class of the cubature formulas contains an optimal Gaussian cubature formula, which
requires minimal number of points to be evaluated at [A1, Theorem 5]. In the bivariate
case, the cubature formulas, together with the explicit form of the weight functions, are
deduced in [9].
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Chapter 3

Discrete Fourier–Weyl Transforms

Discrete Fourier–Weyl transforms [20] are closely connected to the multivariate
(anti)symmetric discrete sine and cosine transforms. These transforms are defined by
finite groups of geometrical symmetries known as Weyl groups and associated with
semisimple Lie algebras and their Coxeter-Dynkin diagrams [53, 54]. The aim of this
section is to describe the notation used in the articles [A2–A4]. The notation is estab-
lished in [20,38,44,47], expanding the theory from [53,54].

3.1 Weyl Groups and Root Systems

Each simple Lie algebra belongs to one of the four series An (n ≥ 1) , Bn (n ≥ 3) , Cn
(n ≥ 2) , Dn (n ≥ 4) or one of the exceptional cases E6, E7, E8, F4, G2 and is associated
with the set of the simple roots ∆ = {α1, α2, . . . , αn}. For the simple Lie algebras which
have two different root-lengths (cases Bn, Cn, F4, G2), the set of simple roots is disjointly
divided into the set of short simple roots ∆s and set of long simple roots ∆l, i.e.

∆ = ∆s ∪∆l, ∆s ∩∆l = ∅. (3.1)

The vector set ∆ forms a basis for an Euclidean space Rn equipped with the standard
scalar product 〈·, ·〉. To each simple root αi ∈ ∆ corresponds a reflection ri given by
formula:

ria = a− 2
〈a, αi〉
〈αi, αi〉

αi, a ∈ Rn. (3.2)

The set of reflections {r1, r2, ..., rn} corresponding to the simple root set ∆ generates
the Weyl group W which produces the entire root system Π of the Lie algebra by

Π = W∆. (3.3)

Dual simple root α∨i is connected to the simple root αi ∈ ∆ by the following relation:

α∨i =
2αi
〈αi, αi〉

. (3.4)

The set of dual simple roots ∆∨ = {α∨1 , α∨2 , . . . , α∨n} is also associated with a Lie algebra
which is dual to the Lie algebra linked to the simple root set ∆. Furthermore, the Weyl
group generated from dual simple roots ∆∨ contains the same reflections as the Weyl
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group obtained from the simple roots ∆. The Weyl group applied on the dual simple
root system ∆∨ spans the entire dual root system Π∨ of the corresponding dual Lie
algebra, i.e.

Π∨ = W∆∨. (3.5)

There exist a unique highest root ξ ∈ Π and highest dual root η ∈ Π∨ given by

ξ = m1α1 +m2α2 + · · ·+mnαn, (3.6)

η = m∨1α
∨
1 +m∨2α

∨
2 + · · ·+m∨nα

∨
n , (3.7)

where the marksm1,m2, ...,mn and dual marksm∨1 ,m
∨
2 , ...,m

∨
n can be found in [47, Table

1] for each simple Lie algebra.
For each Lie algebra, the fundamental weights ωi and dual fundamental weights ω∨i

are given by 〈
ωi, α

∨
j

〉
= δij,

〈ω∨i , αj〉 = δij.
(3.8)

Weyl Group Invariant Lattices

Each Weyl group leads to four Weyl group invariant lattices. The root lattice Q is
given as a Z-span of the simple roots ∆ and the dual weight lattice P∨ is defined as
Z-dual of the root lattice, i.e

Q =Zα1 + Zα2 + · · ·+ Zαn,
P∨ =Zω∨1 + Zω∨2 + · · ·+ Zω∨n .

(3.9)

Furthermore, the cone of positive dual weights is given by

P∨+ = Z
≥0ω∨1 + Z≥0ω∨2 + · · ·+ Z≥0ω∨n . (3.10)

Analogously, the dual root lattice Q∨ is the Z-span of the dual simple roots ∆∨ and the
weight lattice P is Z-dual to the dual root lattice Q∨, giving the lattices in the form:

Q∨ =Zα∨1 + Zα∨2 + · · ·+ Zα∨n ,
P =Zω1 + Zω2 + · · ·+ Zωn.

(3.11)

The order of the quotient groups P/Q and P∨/Q∨ as well as the index of connection
of the root system Π are given by the determinant of Cartan matrix Cij =

〈
αi, α

∨
j

〉
,

c = detC = |P/Q| = |P∨/Q∨| . (3.12)

Admissible Shifts of the Weyl Group Invariant Lattices

Shift by a vector % ∈ Rn which satisfies the invariance condition

W (%+ P ) = %+ P (3.13)

is called an admissible shift of the weight lattice. Equivalently, a shift by a vector
ν∨ ∈ Rn which satisfies similar condition for the dual root lattice:

W (ν∨ +Q∨) = ν∨ +Q∨ (3.14)
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represents an admissible shift of the dual root lattice. Correspondingly, a shift by a
vector ρ∨ ∈ Rn satisfying

W (ρ∨ + P∨) = ρ∨ + P∨ (3.15)

is called an admissible shift of the dual weight lattice. The admissible shifts which lead
to the same lattice are said to be equivalent. All possible shifts of dual root lattice are
listed in [20, Table 1].

Sign Homomorphisms

Any homomorphism σ : W → U2 from the Weyl group W to the multiplicative
group U2 = {±1} is called a sign homomorphism [44]. There exist up to four types of
sign homomorphisms on the Weyl group. The identity 1 and determinant σe exist on
any Weyl group W and are given on the reflections which generate the Weyl group as
follows:

1 (ri) =1,

σe (ri) =− 1.
(3.16)

For the Lie algebras with two lengths of the roots, the short σs and long σl sign ho-
momorphisms are additionally defined on the set of the short ∆s and long ∆l roots
as:

σs(ri) =

{
−1, αi ∈ ∆s,
1, αi ∈ ∆l,

(3.17)

σl(ri) =

{
1, αi ∈ ∆s,
−1, αi ∈ ∆l.

(3.18)

3.2 Affine and Dual Affine Weyl Groups

Notation in this section summarizes the notation used in [A3].

Affine Weyl Group

A semidirect product of the Weyl group W and the group of translations Q∨ is called
an affine Weyl group:

W aff = Q∨ oW. (3.19)

Any element z = T (q∨)w ∈ W aff of the affine Weyl group, where w ∈ W and
q∨ ∈ Q∨, acts canonically on a ∈ Rn as

z · a = wa+ q∨. (3.20)

The fundamental domain F ⊂ Rn of W aff is given explicitly as

F = {a1w
∨
1 + . . .+ anw

∨
n |a0 +m1a1 + . . .+mnan = 1, ai ≥ 0, i = 0, . . . , n} . (3.21)

The mapping τ : W aff → Q∨ and retraction homomorphism ψ : W aff → W are defined
by

τ (z) = q∨, ψ (z) = w. (3.22)
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The dual shift homomorphism θ% : W aff → U2 is, for any admissible shift % of the
weight lattice P , induced in [20] by the mapping τ

θ% (z) = e2πi〈τ(z),%〉. (3.23)

For any sign homomorphism σ and any admissible shift % of the weight lattice, the
homomorphism γσ% : W aff → U2 is determined for z ∈ W aff as:

γσ% (z) = θ% (z) [σ ◦ ψ (z)] . (3.24)

The stabilizer StabW aff(a) is formed by the elements of W aff that stabilize a ∈ Rn,
and the associated ε-function ε : Rn → N is defined by

ε(a) =
|W |

|StabW aff (a)|
. (3.25)

For any a ∈ Rn, there exist precisely one point a′ ∈ F and z[a] ∈ W aff such that

a = z[a] · a′. (3.26)

The function χσ% : Rn → {−1, 0, 1} is defined for any a ∈ Rn as:

χσ%(a) =

{
γσ% (z[a]) , γσ% (StabW aff (a)) = 1,

0, γσ% (StabW aff (a)) = U2.
(3.27)

For each sign homomorphism σ and admissible shift % of the weight lattice, there
exists a signed fundamental domain F σ(%) ⊂ F given by

F σ(%) =
{
a ∈ F | χσ%(a) = 1

}
. (3.28)

Two subsets Hσ(%) and Bσ(%) of the boundary ∂F are defined by

Hσ(%) =
{
a ∈ ∂F | χσ%(a) = 0

}
, (3.29)

Bσ(%) =
{
a ∈ ∂F | χσ%(a) = 1

}
, (3.30)

which allows to decompose the fundamental domain F and its boundary ∂F [20, Prop.
2.7] as follows:

F =F σ(%) ∪Hσ(%),

∂F =Bσ(%) ∪Hσ(%).
(3.31)

Dual Affine Weyl Group

The dual affine Weyl group W aff
Q is a semidirect product of the Weyl group W and

group of shifts from the root lattice Q,

W aff
Q = QoW. (3.32)

The dual affine Weyl group W aff
Q is denoted as Ŵ aff in [A4].
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For any translation q ∈ Q and any w ∈ W , the element y = T (q)w ∈ W aff
Q of the

dual affine Weyl group acts canonically on b ∈ Rn by formula:

y · b = wb+ q, b ∈ Rn. (3.33)

The dual fundamental domain FQ ⊂ Rn of W aff
Q is given by

FQ = {b1w1 + . . .+ bnwn|b0 +m∨1 b1 + . . .+m∨nbn = 1, bi ≥ 0, i = 0, . . . , n} . (3.34)

The subgroup of W aff
Q that consists of elements which stabilize b ∈ Rn is denoted by

StabW aff
Q

(b) and the associated discrete function hQ,M : Rn → N is given by

hQ,M(b) =

∣∣∣∣StabW aff
Q

(
b

M

)∣∣∣∣ . (3.35)

The mapping τ̂ : W aff → Q and dual retraction homomorphism ψ̂ : W aff
Q → W are

defined as follows,

τ̂ (z) = q, ψ̂ (z) = w. (3.36)

As in the case of the affine Weyl group, the mapping τ̂ induces, for any admissible
shift %∨ of the dual weight lattice P∨, a shift homomorphism θ̂% : W aff

Q → U2 defined
in [20] as

θ̂%∨ (y) = e2πi〈τ̂(y),%∨〉. (3.37)

For any sign homomorphism σ and admissible shift %∨ of the dual weight lattice
P∨, the homomorphism γ̂σ%∨ : W aff

Q → U2 is constructed for y ∈ W aff
Q as the following

product:

γ̂σ%∨(y) = θ̂%∨ (y)
[
σ ◦ ψ̂ (y)

]
. (3.38)

The associated signed dual fundamental domain F σ
Q (%∨) ⊂ FQ is given by

F σ
Q (%∨) =

{
b ∈ FQ | γ̂σ%∨(StabW aff

Q
(b)) = 1

}
. (3.39)

Extended Dual Affine Weyl Group

The extended dual affine Weyl group is a semidirect product of the Weyl group W
and shifts from the weight lattice P given by:

W aff
P = P oW. (3.40)

For any translation p ∈ P and any w ∈ W , the element y = T (p)w ∈ W aff
P of the

extended dual affine Weyl group acts canonically on b ∈ Rn by formula:

y · b = wb+ p. (3.41)

To each b from the dual fundamental domain FQ are assigned its Kac coordinates
[b0, . . . , bn] obtained from the defining relation (3.34). Lexicographical ordering is intro-
duced for any b, b′ ∈ FQ as b >lex b

′, if for the first bi 6= b′i holds bi > b′i.
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The extended dual affine Weyl group W aff
P is expressed as a semidirect product of the

dual affine Weyl group W aff
Q and the finite abelian subgroup Γ that consists of elements

which leave the dual fundamental domain FQ invariant,

Γ =
{
y ∈ W aff

P | y · FQ = FQ
}
. (3.42)

The fundamental domain FP ⊂ FQ of W aff
P is defined as a set containing the lexico-

graphically highest point from each Γ-orbit of FQ, i.e.

FP = {b ∈ FQ | b = max>lex
Γb} . (3.43)

The discrete function hP,M(b) : Rn → N is for M ∈ N defined employing the
stabilizer StabW aff

P
(b), which is a subgroup of W aff

P stabilizing b ∈ Rn, as:

hP,M(b) =

∣∣∣∣StabW aff
P

(
b

M

)∣∣∣∣ . (3.44)

The dual retraction homomorphism ψ̂ : W aff
P → W and the mapping τ̂ : W aff

P →P
are defined for any y = T (p)w ∈ W aff

P as an extension of homomorphism ψ̂ and mapping
τ̂ (3.36) to W aff

P ,

ψ̂(y) = w, τ̂(y) = p. (3.45)

The shift homomorphism θ̂ν∨ : W aff
P →Uc from the extended dual affine Weyl group to

the multiplicative group of c−th roots of unity Uc, corresponding to an admissible shift
ν∨ of the dual root lattice Q∨, is defined in [20] as:

θ̂ν∨(y) = e2πi〈τ̂(y), ν∨〉. (3.46)

The multiplicative group U∗c is introduced as:

U∗c =

{
Uc, c even,

U2c, c odd.
(3.47)

For any admissible shift ν∨ of the dual root lattice and sign homomorphism σ, the
homomorphism γ̂σν∨ : W aff

P →U∗c is induced by

γ̂σν∨(y) = θ̂ν∨(y)
[
σ ◦ ψ̂(y)

]
. (3.48)

The signed fundamental domain F σ
P (ν∨) ⊂ FP is then defined by

F σ
P (ν∨) =

{
b ∈ FP | γ̂σν∨

(
StabW aff

P
(b)
)

= 1
}
. (3.49)

3.3 Weyl Orbit Functions

Weyl orbit functions [61, 64] are a class of special functions defined as (anti)sym-
metrized sums of exponential functions, where the (anti)symmetrization is performed
with respect to the Weyl group. These functions have many remarkable properties and
are necessary for the construction of kernels for the discrete Fourier–Weyl transforms.
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The Weyl orbit functions ϕσb : Rn→C are determined for an argument a ∈ Rn and
label b ∈ Rn by the relation

ϕσb (a) =
∑
w∈W

σ(w) e2πi〈wb, a〉. (3.50)

The Weyl orbit functions satisfy the following product-to-sum decomposition formula
of the form

ϕσb (a)ϕ1
b(a
′) =

∑
w∈W

ϕσb (a+ wa′). (3.51)

For discretized labels λ ∈ % + P are the Weyl orbit functions W aff-(anti)symmetric
and the following formula holds for any a ∈ Rn and z ∈ W aff

ϕσλ(z · a) = γσ% (z)ϕσλ(a). (3.52)

Furthermore, the Weyl orbit functions ϕσλ vanish on the boundary Hσ(%),

ϕσλ(a′) = 0, a′ ∈ Hσ(%). (3.53)

For any a′ ∈ F and a ∈ W affa′, the properties (3.52) and (3.53) allow to obtain following
equation with the use of the χσ% -function

ϕσλ(a) = χσ%(a)ϕσλ(a′). (3.54)

When the summation in relation (3.50) is restricted to the Weyl orbit of the label b,
the C-functions [64] arise for the sign homomorphism 1:

Cb(a) =
∑
µ∈Wb

e2πi〈µ, a〉. (3.55)

3.4 Discretization of Weyl Orbit Functions

Based on the properties of Weyl orbit functions the dual weight and dual root lattice
Fourier–Weyl transforms are derived. The label and point sets for these transforms are
finite discrete subsets obtained as intersections of the fundamental domains F σ, F σ

Q and
F σ
P with rescaled dual root or dual weight lattices. Furthermore, the unitary matrices

of these transforms are formulated.

Dual Root Lattice Fourier–Weyl Transforms

For any sign homomorphism σ ∈
{
1, σe, σs, σl

}
, admissible shift of the weight lattice

%, admissible shift of the dual root lattice ν∨ and M ∈ N, the finite set of points
F σ
Q∨,M (%, ν∨) inside the fundamental domain F σ (%) is defined as a subset of rescaled

and shifted dual root lattice

F σ
Q∨,M(%, ν∨) = 1

M
(ν∨ +Q∨) ∩ F σ(%). (3.56)

The finite set of labels Λσ
Q∨,M (%, ν∨) of orbit functions is given as an intersection of

shifted weight lattice and rescaled fundamental domain F σ
P (ν∨)

Λσ
P,M(%, ν∨) = (%+ P ) ∩MF σ

P (ν∨). (3.57)
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The cardinalities of the label and point sets coincide [20, Theorem 2]:∣∣Λσ
P,M(%, ν∨)

∣∣ =
∣∣F σ

Q∨,M(%, ν∨)
∣∣ .

The discrete orthogonality of the Weyl orbit functions on the point set
F σ
Q∨,M (%, ν∨) holds for any labels λ, λ′ ∈ Λσ

Q∨,M (%, ν∨), [20, Theorem 4],∑
a∈Fσ

Q∨,M (%,ν∨)

ε(a)ϕσλ(a)ϕσ∗λ′ (a) = |W |MnhP,M(λ) δλ,λ′ . (3.58)

The unitary matrices IσQ∨,M(%, ν∨) of the generalized discrete dual root lattice Fourier–
Weyl transforms are, for fixed ordering of the point and label sets F σ

Q∨,M(%, ν∨) and
Λσ
P,M(%, ν∨), determined by the entries λ ∈ Λσ

P,M(%, ν∨) and a ∈ F σ
Q∨,M(%, ν∨) as follows:

IσQ∨,M(%, ν∨)λa =

√
ε(a)

|W |MnhP,M(λ)
ϕσ∗λ (a). (3.59)

Dual Weight Lattice Fourier–Weyl Transforms

For any sign homomorphism σ ∈ {1, σe, σs, σl} and admissible shifts of the weight
and dual weight lattices % and %∨, the finite set of points F σ

P∨,M(%, %∨) inside the fun-
damental domain F σ(%) contains the points from the rescaled and shifted dual weight
lattice,

F σ
P∨,M(%, %∨) = 1

M
(%∨ + P∨) ∩ F σ(%). (3.60)

The finite set of labels Λσ
Q,M(%, %∨) of Weyl orbit functions is defined by

Λσ
Q,M(%, %∨) = (%+ P ) ∩MF σ∨(%∨). (3.61)

The cardinalities of the point and label sets coincide [18, Thm. 3.4],∣∣Λσ
Q,M(%, %∨)

∣∣ =
∣∣F σ

P∨,M(%, %∨)
∣∣ . (3.62)

Restricted to the finite point sets F σ
P∨,M(%, %∨), the Weyl orbit functions with any

labels λ, λ′ ∈ Λσ
Q,M(%, %∨) are discretely orthogonal [18, Theorem 4], i.e.∑

a∈Fσ
P∨,M (%,%∨)

ε(a)ϕσλ(a)ϕσ∗λ′ (a) = c |W |Mnh∨M(λ) δλ,λ′ . (3.63)

For any points a, a′ ∈ F σ
P∨,M(%, %∨), the corresponding Plancherel formulas [18] lead to

the following complementary orthogonality relations∑
λ∈ΛσQ,M (%,%∨)

(h∨M(λ))
−1

ϕσλ(a)ϕσ∗λ (a′) = c |W |Mnε−1(a) δa,a′ . (3.64)

Assuming a fixed ordering of the label and point sets Λσ
Q,M(%, %∨) and F σ

P∨,M(%, %∨),
the unitary matrices of the dual weight lattice Fourier–Weyl transforms are determined
by the entries for λ ∈ Λσ

Q,M(%, %∨) and a ∈ F σ
P∨,M(%, %∨) as

IσP∨,M(%, %∨)λa =

√
ε(a)

c |W |Mnh∨M(λ)
ϕσ∗λ (a). (3.65)
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Chapter 4

Connecting Multivariate Sine and
Cosine Transforms to Fourier–Weyl
Transforms

The aim of this chapter is to show link between the (anti)symmetric multivariate
sine and cosine transforms and the dual root lattice Fourier–Weyl transforms defined
in Chapters 1 and 3. Since the Weyl orbit functions of A1 coincide with classical
sine and cosine functions, the connection of Fourier–Weyl transforms to the transforms
(1.15) and (1.16) is anticipated. This section is summarizing the advancements achieved
in [A2], coupling together the label and point sets as well as the normalization and
weight functions and unitary matrices of the (anti)symmetric multivariate sine and
cosine transforms and dual root lattice Fourier–Weyl transforms of algebras A1 and
Cn, n ≥ 2.

4.1 Discrete Fourier–Weyl Transforms of Cn Series

Cn Series

This section further focuses on the crystallographic root systems A1 and Cn, n ≥ 2
which are for simplicity of notation unified under the Cn, n ∈ N series:

Cn =

{
A1, n = 1,

Cn, n ≥ 2
(4.1)

and are connected to the (anti)symmetric multivariate sine and cosine transforms.
In order to simply describe the properties of the Cn series, the ordered set of indices

In, together with its extension În, is introduced as

In = {1, . . . , n},
În = {0, . . . , n}.

(4.2)

The root system of the Cn series is characterized by the lengths of the simple roots,

〈αi, αi〉 = 1, i ∈ In−1, 〈αn, αn〉 = 2, (4.3)
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and for n ≥ 2 by the relative angles between them,

〈αi, αi+1〉 = −1
2
, i ∈ In−2,

〈αn−1, αn〉 = −1,

〈αi, αj〉 = 0, |i− j| > 1, i, j ∈ In.
(4.4)

The highest root ξ and highest dual root η are for n = 1 of the form ξ = α1 and η = α∨1
and for n ≥ 2 of the form

ξ = 2α1 + · · ·+ 2αn−1 + αn,

η = α∨1 + 2α∨2 + · · ·+ 2α∨n .
(4.5)

Due to the lengths of the simple roots (4.3), the dual simple roots and fundamental
weights obey the following relations:

α∨i = 2αi, i ∈ In−1, α∨n = αn,

ω∨i = 2ωi, i ∈ In−1, ω∨n = ωn.
(4.6)

The admissible shift % of the weight lattice P (3.13) and the admissible shift ν∨ of
the dual root lattice Q∨ (3.14) are limited for the Cn series [20, Table 1]:

% ∈
{

0, 1
2
ωn
}
, ν∨ ∈ {0, ω∨n} . (4.7)

Dual Root Fourier–Weyl Transforms of the Cn Series

For describing the dual root Fourier–Weyl label sets Λσ
P,M(%, ν∨) of the Cn series, the

symbols λσ,%i are for i ∈ In−1 introduced by

λ1,%i ∈ Z≥0, λσ
e,%
i ∈ N, λσ

s,%
i ∈ N, λσ

l,%
i ∈ Z≥0 (4.8)

and λσ,%n is given by

λσ,%n ∈


Z
≥0, % = 0, σ ∈ {1, σs} ,
N, % = 0, σ ∈

{
σe, σl

}
,

1
2

+ Z≥0, % = 1
2
ωn, σ ∈

{
1, σe, σs, σl

}
.

(4.9)

The precise form of the label sets Λσ
P,M(%, ν∨) (3.57) of the Cn series is given for σ ∈

{1, σs} as

ΛσP,M (%, 0) = {λσ,%1 ω1 + · · ·+ λσ,%n ωn |λσ,%0 + λσ,%1 + 2λσ,%2 + · · ·+ 2λσ,%n = M, λσ,%0 ≥ λσ,%1 } ,

ΛσP,M (%, ω∨n ) = {λσ,%1 ω1 + · · ·+ λσ,%n ωn |λσ,%0 + λσ,%1 + 2λσ,%2 + · · ·+ 2λσ,%n = M, λσ,%0 > λσ,%1 }
(4.10)

and for σ ∈ {σe, σl} as

ΛσP,M (%, 0) = {λσ,%1 ω1 + · · ·+ λσ,%n ωn |λσ,%0 + λσ,%1 + 2λσ,%2 + · · ·+ 2λσ,%n = M, λσ,%0 > λσ,%1 } ,

ΛσP,M (%, ω∨n ) = {λσ,%1 ω1 + · · ·+ λσ,%n ωn |λσ,%0 + λσ,%1 + 2λσ,%2 + · · ·+ 2λσ,%n = M, λσ,%0 ≥ λσ,%1 } .
(4.11)
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The symbols sσ,%0 are introduced by

sσ,00 ∈

{
Z
≥0, σ ∈ {1, σs},
N, σ ∈

{
σe, σl

}
,

(4.12)

s
σ,

1
2
ωn

0 ∈

{
N, σ ∈ {1, σs},
Z
≥0, σ ∈

{
σe, σl

} (4.13)

and the symbols sσ,ρi , i ∈ In by

s1,%i ∈ Z≥0, i ∈ In,
sσ

e,%
i ∈ N, i ∈ In,
sσ

s,%
i ∈ N, i ∈ In−1, sσ

s,%
n ∈ Z≥0,

sσ
l,%
i ∈ Z≥0, i ∈ In−1, sσ

l,%
n ∈ N,

(4.14)

giving the dual root Fourier–Weyl point sets F σ
Q∨,M(%, ν∨) (3.56) of the Cn series in form:

FσQ∨,M (%, 0) =

{
sσ,%1

M
ω∨1 + · · ·+ sσ,%n

M
ω∨n | s

σ,%
0 + 2sσ,%1 + · · ·+ 2sσ,%n−1 + sσ,%n = M, sσ,ρn = 0 mod 2

}
,

FσQ∨,M (%, ω∨n ) =

{
sσ,%1

M
ω∨1 + · · ·+ sσ,%n

M
ω∨n | s

σ,%
0 + 2sσ,%1 + · · ·+ 2sσ,%n−1 + sσ,%n = M, sσ,%n = 1 mod 2

}
.

(4.15)

Taking into account that the order of the Weyl group |W | of the Cn series equals
2nn!, the unitary matrix of the dual root lattice Fourier–Weyl transform (3.59) is given
by its entries for λ ∈ Λσ

P,M(%, ν∨) and a ∈ F σ
Q∨,M(%, ν∨) as

(
IσQ∨,M(%, ν∨)

)
λa

=

√
ε(a)

2nn!MnhP,M(λ)
ϕσ∗λ (a). (4.16)

4.2 Connecting Transforms

The (anti)symmetric multivariate sine and cosine functions are connected to the
Weyl orbit functions of the Cn series. In univariate settings, the antisymmetric and
symmetric sine and cosine functions coincide with the classical sine and cosine functions.
For the Weyl orbit functions of C1 only the homomorphisms 1 and σe are present,
leading to the classical sine and cosine functions. The connection in the multivariate
case is examined and the relation between the (anti)symmetric multivariate discrete
trigonometric transforms and dual root lattice Fourier–Weyl transforms of the Cn series
is shown.

Expressing the Orbit Functions as (Anti)symmetric Multivariate
Trigonometric Functions

To provide the relation between the two types of functions, an orthogonal basis
F = {f1, . . . , fn} is introduced by

ωi = f1 + · · ·+ fi, i ∈ In, (4.17)
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evaluating the points and labels in the F -basis as:

a = a1f1 + · · ·+ anfn,

b = b1f1 + · · ·+ bnfn.
(4.18)

The Weyl orbit functions ϕσ, σ ∈
{
1, σe, σs, σl

}
and the (anti)symmetric multivariate

sine and cosine functions sin± and cos± are for variable (a1, . . . , an) and label (b1, . . . , bn)
connected as follows:

ϕ1
b(a) = 2n cos+

(b1,...,bn)(a1, . . . , an),

ϕσ
s

b (a) = 2n cos−(b1,...,bn)(a1, . . . , an),

ϕσ
l

b (a) = (2i)n sin+
(b1,...,bn)(a1, . . . , an),

ϕσ
e

b (a) = (2i)n sin−(b1,...,bn)(a1, . . . , an).

(4.19)

For connecting the (anti)symmetric multivariate discrete sine and cosine transforms
with the dual root lattice Fourier–Weyl transforms of the Cn series, the following rela-
tions deduced from (4.19) are further considered:

c,+ ←→ 1,

c,− ←→ σs,

s,+ ←→ σl,

s,− ←→ σe.

(4.20)

Label and Point Sets

The link between the (anti)symmetric multivariate sine and cosine label sets D?,c,±
N

and D?,s,±
N and the dual root Fourier–Weyl label sets Λσ

P,M(%, ν∨), σ ∈ {1, σs, σl, σe}
formulated in [A2, Theorem 1] is given by the expressions:

Λ1
P,M(%, ν∨) =

{
λ1f1 + · · ·+ λnfn | (λ1, . . . , λn) ∈ D?,c,+

N

}
,

Λσs

P,M(%, ν∨) =
{
λ1f1 + · · ·+ λnfn | (λ1, . . . , λn) ∈ D?,c,−

N

}
,

Λσl

P,M(%, ν∨) =
{
λ1f1 + · · ·+ λnfn | (λ1, . . . , λn) ∈ D?,s,+

N

}
,

Λσe

P,M(%, ν∨) =
{
λ1f1 + · · ·+ λnfn | (λ1, . . . , λn) ∈ D?,s,−

N

}
,

(4.21)

where the the magnifying factor M ∈ N and admissible shifts % and ν∨ are for specific
type ? ∈ {I, . . . ,VIII} and magnifying factor N ∈ N determined by [A2, Table 3].

The point sets F ?,c,±
N and F ?,s,±

N of the (anti)symmetric multivariate sine and cosine
transforms [A2, Table 2] are connected to the point sets F σ

Q∨,M(%, ν∨), σ ∈ {1, σs, σl, σe}
of the dual root lattice Fourier–Weyl transforms (3.56) by [A2, Theorem 2] as follows:

F 1
Q∨,M(%, ν∨) =

{
s1f1 + · · ·+ snfn | (s1, . . . , sn) ∈ F ?,c,+

N

}
,

F σs

Q∨,M(%, ν∨) =
{
s1f1 + · · ·+ snfn | (s1, . . . , sn) ∈ F ?,c,−

N

}
,

F σl

Q∨,M(%, ν∨) =
{
s1f1 + · · ·+ snfn | (s1, . . . , sn) ∈ F ?,s,+

N

}
,

F σe

Q∨,M(%, ν∨) =
{
s1f1 + · · ·+ snfn | (s1, . . . , sn) ∈ F ?,s,−

N

}
,

(4.22)

where the correspondence between the magnifying factor M ∈ N and admissible shifts
% and ν∨ is for specific type ? ∈ {I, . . . ,VIII} and magnifying factor N ∈ N determined
by [A2, Table 3].
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Normalization and Weight Functions

For the full correspondence of the (anti)symmetric multivariate discrete sine and
cosine transforms with the dual root lattice Fourier–Weyl transforms, the link between
the normalization and weight functions of the transforms has to be established.

The connections of the normalization functions h?,c and h?,s of the (anti)symmetric
multivariate discrete sine and cosine transforms and normalization functions hP,M of the
dual root lattice Fourier–Weyl transforms are for λ = λ1f1 + · · · + λnfn ∈ Λσ

P,M(%, ν∨)
given by [A2, Theorem 3] as:

h?,c(λ1,...,λn)H(λ1,...,λn) =
(
M
4

)n
hP,M(λ), (λ1, . . . , λn) ∈ D?,c,+

N ,

h?,c(λ1,...,λn) =
(
M
4

)n
hP,M(λ), (λ1, . . . , λn) ∈ D?,c,−

N ,

h?,s(λ1,...,λn)H(λ1,...,λn) =
(
M
4

)n
hP,M(λ), (λ1, . . . , λn) ∈ D?,s,+

N ,

h?,s(λ1,...,λn) =
(
M
4

)n
hP,M(λ), (λ1, . . . , λn) ∈ D?,s,−

N .

(4.23)

The links of the weight functions ε?,c and ε?,s of the (anti)symmetric multivariate
discrete sine and cosine transforms and weight ε−functions of the Fourier–Weyl trans-
forms are for s = s1f1 + · · · + snfn ∈ F σ

Q∨,M(%, ν∨) provided by [A2, Theorem 4] as
follows:

ε?,c(s1,...,sn)H
−1
(s1,...,sn) =

ε(s)

2nn!
, (s1, . . . , sn) ∈ F ?,c,+

N ,

ε?,c(s1,...,sn) =
ε(s)

2nn!
, (s1, . . . , sn) ∈ F ?,c,−

N ,

ε?,s(s1,...,sn)H
−1
(s1,...,sn) =

ε(s)

2nn!
, (s1, . . . , sn) ∈ F ?,s,+

N ,

ε?,s(s1,...,sn) =
ε(s)

2nn!
, (s1, . . . , sn) ∈ F ?,s,−

N .

(4.24)

In both cases, the magnifying factor M ∈ N and admissible shifts % and ν∨ are for
specific type ? ∈ {I, . . . ,VIII} and magnifying factor N ∈ N given by [A2, Table 3].

Correspondence of Unitary Matrices

The links between the functions (4.19), label and point sets (4.21) and (4.22) as well
as the connection between the normalization and weight functions (4.23) and (4.24) yield
the correspondence of the unitary matrices of the (anti)symmetric multivariate discrete
sine and cosine transforms (1.15) and (1.16) and the dual root lattice Fourier–Weyl
transforms (4.16) of the Cn series [A2, Theorem 5] as follows:

C?,+
N = I1Q∨,M(%, ν∨),

C?,−
N = IσsQ∨,M(%, ν∨),

S?,+N = in IσlQ∨,M(%, ν∨),

S?,−N = in IσeQ∨,M(%, ν∨),

(4.25)

where the connection between the magnifying factor M ∈ N and admissible shifts % and
ν∨ with type ? ∈ {I, . . . ,VIII} and magnifying factor N ∈ N is given by [A2, Table 3].
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Chapter 5

Quantum Particle on Weyl Group
Invariant Lattices in Weyl Alcove

In this section, several types of discrete quantum models of a free non-relativistic
quantum particle propagating on rescaled and shifted dual weight or dual root lattices
inside the closure of Weyl alcove are derived. The amplitude of the particle’s propaga-
tion is regulated by a Weyl group invariant, complex-valued hopping function and the
boundary conditions are enforced by Dirichlet and Neumann walls representing ideal
barriers and perfect mirrors. The propagation of the particle on the finite set of points
and interacting with Dirichlet and Neumann walls merge into a class of the discrete
quantum billiard systems [26, 82]. For this special class of quantum systems associated
with the point sets of the generalized Fourier–Weyl transforms, the explicit solution
is obtained, providing uniform methods to describe significant class of discrete quan-
tum billiard systems [26,66,82,83,90]. The section mainly focus on the topic developed
in [A3,A4], providing a brief description of the dual root and dual weight lattice models.

5.1 Quantum Particle on Dual Root Lattice

Dual-Root Hopping Function

The dual-root hopping function controlling the amplitudes of particle propagating
on the dual root lattice is given as a discrete complex-valued function Q∨ : Q∨→C,
which is assumed to be non-zero only on the finite number of points on the dual root
lattice Q∨, i.e.

supp(Q∨) ⊂ Q∨,

|supp(Q∨)| < +∞.
(5.1)

Furthermore, the hopping function is constrained to be W -invariant and Hermitian.
Hence, for any q∨ ∈ Q∨ and w ∈ W it follows:

Q∨(wq∨) = Q∨(q∨),
Q∨(−q∨) = Q∨∗(q∨).

(5.2)

The finite set supp+(Q∨) is defined as a subset inside the cone of positive dual weights
P∨+ as

supp+(Q∨) = supp(Q∨) ∩ P∨+. (5.3)
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The properties of the dual-root hopping function guarantee that it is fully defined by its
values on the cone of positive dual weights q∨ ∈ supp+(Q∨). Moreover, the dual-root
hopping function Q∨ is for the cases A1, Bn(n ≥ 3), Cn(n ≥ 2), D2k(k ≥ 2), E7, E8, F4

and G2 real-valued [A3, §3.1].

Dual Root Point Sets

Any ordered set of points in F σ
Q∨,M(%, ν∨) determines an orthonormal basis |a〉, a ∈

F σ
Q∨,M(%, ν∨) of the finite-dimensional complex Hilbert space Hσ

Q∨,M(%, ν∨). Further-
more, there exists an orthonormal basis of |λ〉 ∈ Hσ

Q∨,M(%, ν∨) corresponding to the
label set λ ∈ Λσ

P,M(%, ν∨) and related to the |a〉-basis as

|λ〉 =
∑

a∈Fσ
Q∨,M (%,ν∨)

|a〉〈a|λ〉, (5.4)

where the amplitudes are given by the inverse of the discrete Fourier–Weyl transform
matrix IσQ∨,M(%, ν∨) (3.59) from Section 4,

〈a|λ〉 =

√
ε(a)

|W |MnhP,M(λ)
ϕσλ(a). (5.5)

The dimension of the Hilbert space Hσ
Q∨,M(%, ν∨) corresponds to the point and label

sets as follows:

dimHσ
Q∨,M(%, ν∨) =

∣∣F σ
Q∨,M(%, ν∨)

∣∣ =
∣∣Λσ

P,M(%, ν∨)
∣∣ . (5.6)

The rescaled and shifted dual root lattice Q∨l,M(ν∨) is for a length factor l ∈ R and
scaling factor M ∈ N defined by

Q∨l,M(ν∨) = l
M

(ν∨ +Q∨), (5.7)

providing the possible positions for the non-relativistic quantum particle. The jumping
of the particle between the points x, x′ ∈ Q∨l,M(ν∨) is specified by the dual-root hopping
function Q∨ with the amplitude IM(x, x′) ∈ C per unit of time given by

IM(x, x′) = i
~Q
∨ (M

l
(x′ − x)

)
. (5.8)

Dirichlet and Neumann boundaries representing the ideal barriers and perfect mirrors,
respectively, trap the quantum particle inside the rescaled fundamental domain lF ,
thus, the position of the quantum particle is limited to the dual-root dot Dσ

Q∨,l,M(%, ν∨)
defined by

Dσ
Q∨,l,M(%, ν∨) = l F σ

Q∨,M(%, ν∨). (5.9)

The particle positioned at the point la ∈ Dσ
Q∨,l,M(%, ν∨) is represented by the vector

|a〉 ∈ Hσ
Q∨,M(%, ν∨), a ∈ F σ

Q∨,M(%, ν∨).
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Dual Root Models

Each dual root from the dominant support of the dual-root hopping function q∨ ∈
supp+(Q∨) induces, for any two points a, a′ ∈ F σ

Q∨,M(%, ν∨), corresponding dual root
coupling set Nq∨,M(a, a′) as follows:

Nq∨,M(a, a′) = W affa′ ∩
(
a+

1

M
Wq∨

)
. (5.10)

The dual-root hopping operator Âσq∨,M(%, ν∨) : Hσ
Q∨,M(%, ν∨)→Hσ

Q∨,M(%, ν∨), which
takes into account the interactions with the boundary walls is given via its matrix
elements as 〈

a
∣∣ Âσq∨,M(%, ν∨)

∣∣ a′ 〉 = −ε
1
2 (a)ε−

1
2 (a′)Q∨ (q∨)

∑
Nq∨,M (a,a′)

χσ% (d) . (5.11)

The Hamiltonian Ĥσ
Q∨,M(%, ν∨) : Hσ

Q∨,M(%, ν∨)→Hσ
Q∨,M(%, ν∨) of the quantum particle

on the dot Dσ
Q∨,l,M(%, ν∨) is determined by the dual-root hopping function Q∨ as follows:

Ĥσ
Q∨,M(%, ν∨) =

∑
q∨∈ supp+(Q∨)

Âσq∨,M(%, ν∨). (5.12)

The time evolution of states |ψ(t)〉 ∈ Hσ
Q∨,M(%, ν∨) is provided by the Schrödinger

equation:

i~
d

dt
|ψ(t)〉 = Ĥσ

Q∨,M(%, ν∨)|ψ(t)〉, (5.13)

which induces the the time-independent Schrödinger equation with the eigenenergies
Eσ
Q∨,λ,M(%, ν∨):

Ĥσ
Q∨,M(%, ν∨)|λ〉 = Eσ

Q∨,λ,M(%, ν∨) |λ〉. (5.14)

The vectors of the orthonormal basis |λ〉 ∈ Hσ
Q∨,M(%, ν∨), λ ∈ Λσ

P,M(%, ν∨) (5.4) satisfy
the time-independent Schrödinger equation (5.14) and the eigenenergies Eσ

Q∨,λ,M(%, ν∨)
are fully determined by the dual-root hopping function and C-functions (3.55) in [A3,
Theorem 3.1] as

Eσ
Q∨,λ,M(%, ν∨) = −

∑
q∨∈ supp+(Q∨)

Q∨(q∨)Cq∨
(
λ
M

)
. (5.15)

The time-independent probabilities P σ,%,ν∨

Q∨,M [λ](a), λ ∈ Λσ
P,M(%, ν∨) of finding the

particle at la ∈ Dσ
Q∨,l,M(%, ν∨) are given by

P σ,%,ν∨

Q∨,M [λ](a) = |〈a|λ〉|2 =
∣∣IσQ∨,M(%, ν∨)λa

∣∣2 =
ε(a)

|W |MnhP,M(λ)
|ϕσλ(a)|2 . (5.16)

Examples of dual root lattice models of A2 and C2 for the nearest and next-to-nearest
neighbour coupling are thoroughly examined in [A3, §4], where in the case of C2 the
calculations were also performed using the (anti)symmetric multivariate discrete sine
transform formalism.
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5.2 Quantum Particle on Dual Weight Lattice

Dual-Weight Hopping Function

The amplitudes of particle propagation on the dual weight lattice are given by a
discrete complex-valued dual-weight hopping function, P∨ : P∨→C, which is considered
to be non-zero only on a finite subset of the dual weight lattice P∨:

supp(P∨) ⊂ P∨,

|supp(P∨)| < +∞.
(5.17)

The hopping function has to be Hermitian and W -invariant, hence it follows for any
p∨ ∈ P∨ and w ∈ W :

P∨(−p∨) = P∨∗(p∨),
P∨(wp∨) = P∨(p∨).

(5.18)

Furthermore, a dominant support supp+(P∨) is defined as a subset of supp(P∨) belong-
ing to the cone of positive dual weights P∨+,

supp+(P∨) = supp(P∨) ∩ P∨+. (5.19)

The properties (5.17) and (5.18) guarantee that the dual-weight hopping function is fully
described by values on a finite set of points inside the dominant support. Moreover,
for the cases A1, Bn(n ≥ 3), Cn(n ≥ 2), D2k(k ≥ 2), E7, E8, F4 and G2, conditions
(5.18) further guarantee the realness of the dual-weight hopping function P∨, and for
the remaining cases, the dual-weight hopping function satisfies additional admissibility
conditions [A4, §3.1].

Dual Weight Point Sets

Any ordered set of points from F σ
P∨,M(%, %∨) generates an orthonormal position ba-

sis |a〉, a ∈ F σ
P∨,M(%, %∨) of the finite dimensional Hilbert space Hσ

P∨,M(%, %∨). The
dimension of the Hilbert space Hσ

P∨,M(%, %∨) coincide with the cardinality of the point
F σ
P∨,M(%, %∨) and label Λσ

Q,M(%, %∨) sets:

dimHσ
P∨,M(%, %∨) =

∣∣F σ
P∨,M(%, %∨)

∣∣ =
∣∣Λσ

Q,M(%, %∨)
∣∣ . (5.20)

The possible positions of the non-relativistic particle are represented by the points of
rescaled and shifted dual weight lattice P∨l,M(%∨), which for a length factor l ∈ R and
scaling factor M ∈ N is defined by

P∨l,M(%∨) = l
M

(%∨ + P∨). (5.21)

The particle jumps between positions x, x′ ∈ P∨l,M(%∨) are given by amplitude IM(x, x′)
per unit time, which is determined by the dual-root hopping function P∨ as

IM(x, x′) = i
~P
∨ (M

l
(x′ − x)

)
. (5.22)

Since the boundary conditions are represented by the perfect mirrors and ideal barriers
on the boundary of the scaled fundamental domain lF , the position of the quantum
particle is restricted to the dual-weight dot Dσ

P∨,l,M(%, %∨),

Dσ
P∨,l,M(%, %∨) = l F σ

P∨,M(%, %∨). (5.23)
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The particle at the point la ∈ Dσ
P∨,l,M(%, %∨) is represented by the position vector |a〉 ∈

Hσ
P∨,M(%, %∨), a ∈ F σ

P∨,M(%, %∨). An orthonormal momentum basis |λ〉 ∈ Hσ
P∨,M(%, %∨)

corresponding to the label set λ ∈ Λσ
Q,M(%, %∨) is then given by

|λ〉 =
∑

a∈Fσ
P∨,M (%,%∨)

|a〉〈a|λ〉, (5.24)

where the amplitudes 〈a|λ〉 are given by the inverse of the unitary matrix IσP∨,M(%, %∨)
(3.65) of the generalized discrete dual weight lattice Fourier–Weyl transform:

〈a|λ〉 =

√
ε(a)

c |W |Mnh∨M(λ)
ϕσλ(a). (5.25)

(Note that even thought the bases |a〉 and |λ〉 in this section are produced by similar
approach as in Section 5.1, they are in general different.)

Dual Weight Models

Dual weights from the dominant support of the dual-weight hopping function p∨ ∈
supp+(P∨) induce, for any two points a, a′ ∈ F σ

P∨,M(%, %∨), a dual weight coupling set
Np∨,M(a, a′) given by

Np∨,M(a, a′) = W affa′ ∩
(
a+

1

M
Wp∨

)
. (5.26)

The dual-weight hopping operator Âσp∨,M(%, %∨) : Hσ
P∨,M(%, %∨)→Hσ

P∨,M(%, %∨), due to
the interaction of the particle with the boundary walls via the χ-functions and summing
over the coupling set Np∨,M(a, a′), is determined by its matrix elements in the position
basis as〈

a
∣∣ Âσp∨,M(%, %∨)

∣∣ a′ 〉 = −ε
1
2 (a)ε−

1
2 (a′)P∨ (p∨)

∑
d∈Np∨,M (a,a′)

χσ% (d) . (5.27)

The Hamiltonian Ĥσ
P∨,M(%, %∨) : Hσ

P∨,M(%, %∨)→Hσ
P∨,M(%, %∨) of the quantum par-

ticle propagating on the dual-weight dot Dσ
P∨,l,M(%, %∨) is then given as the sum of all

dual-weight hopping operators,

Ĥσ
P∨,M(%, %∨) =

∑
p∨∈ supp+(P∨)

Âσp∨,M(%, %∨). (5.28)

The time evolution of the state vectors |ψ(t)〉 ∈ Hσ
P∨,M(%, %∨) is controlled by the

standard Schrödinger equation

i~
d

dt
|ψ(t)〉 = Ĥσ

P∨,M(%, %∨)|ψ(t)〉, (5.29)

which leads to the time-independent Schrödinger equation:

Ĥσ
P∨,M(%, %∨)|λ〉 = Eσ

P∨,λ,M(%, %∨)|λ〉, (5.30)
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where the Eσ
P∨,λ,M(%, %∨) are the eigenenergies of the Hamiltonian Ĥσ

P∨,M(%, %∨) and are
real-valued and fully determined for any dual-weight hopping function P∨ by summing
the C-functions (3.55) over the dominant support supp+ (P∨) as

Eσ
P∨,λ,M(%, %∨) = −

∑
p∨∈ supp+(P∨)

P∨(p∨)Cp∨
(
λ
M

)
. (5.31)

Furthermore, the orthonormal basis |λ〉 ∈ Hσ
P∨,M(%, %∨), λ ∈ Λσ

Q,M(%, %∨) corresponds

to the eigenvectors of the Hamiltonian Ĥσ
P∨,M(%, %∨) [A4, Theorem 1]. The time-

independent probability P σ,%,%∨

P∨,M [λ](a) of finding the particle at position la ∈ Dσ
P∨,l,M(%, %∨)

is provided by the amplitude (5.25) as:

P σ,%,%∨

P∨,M [λ](a) = |〈a|λ〉|2 =
∣∣IσP∨,M(%, %∨)λa

∣∣2 =
ε(a)

c |W |Mnh∨M(λ)
|ϕσλ(a)|2 . (5.32)

The examples of dual root models of C2 and G2 are in-depth examined for the next
and next-to-nearest neighbour interactions in [A4, §4], providing the exact listing of
point and label sets, as well as matrices of the dual-weight hopping operators and its
eigenenergies calculated in Wolfram Mathematica.
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Conclusion

The sixteen (anti)symmetric multivariate discrete sine transforms are developed and
further studied in [A1]. With the discrete transforms provided, the inherited inter-
polation methods are formulated. Furthermore, examples of such interpolations and
corresponding integral errors are calculated using Wolfram Mathematica and a ma-
trix form examples for some of the transforms are computed. Using the definition of
multivariate sine functions, the classical Chebyshev polynomials are generalized to the
multivariate Chebyshev-like polynomials of the second and fourth kind. The recurrence
formulas for these polynomials are explicitly calculated for a three-dimensional case. In
the three dimensional setting, the first few polynomials are explicitly given for all four
Chebyshev-like polynomials connected to the multivariate sine functions. The continu-
ous orthogonality relations of the polynomials and their inherent weight functions are
presented. The combination of the continuous orthogonality of the polynomials and the
discrete orthogonality of the (anti)symmetric multivariate discrete sine functions yields
sixteen cubature rules, including four Gaussian rules, presented in [A1].

The bivariate case of the (anti)symmetric multivariate discrete sine transforms and
the related bivariate Chebyshev-like polynomials are further studied in [9]. Based on
trigonometric identities, the first three polynomials and the recurrence relations are
explicitly deduced for all four classes of the Chebyshev-like polynomials, providing a
method to compute any Chebyshev-like polynomial related to the bivariate sine func-
tions. Furthermore, the bivariate cubature formulas are explicitly computed and the
corresponding weight functions are specified.

The connection between the (anti)symmetric multivariate discrete transforms and
the dual root lattice Fourier–Weyl transforms of the crystallographic Cn series presented
in [A2] conveniently contributes to further advancements and method transfer between
the two formalisms. The analogy of the point sets, label sets as well as the weight
and normalization functions which utilize the Coxeter-Dynkin diagrams [A2, Theorems
1-4] and the connection of the transform unitary matrices [A2, Theorem 5] provide an
analogue to the dual root lattice Fourier–Weyl transforms of Cn series independent on
Lie theory. The possibility of existence of such analogues to other crystallographic series
requires further study.

The set of 32 cubature formulas are developed in [37] and [A1]. Eight of the formulas
are Gaussian rules, which provide the highest precisions. Using the functional substi-
tution, together with weight function and Chebyshev node conversion, yields cubature
formulas in the Lie theoretical background. Such straightforward comparison suggests
an existence of similar Gaussian rules connected to the remaining crystallographic series
and poses an open problem.

Similarly to the (anti)symmetric multivariate trigonometric functions, the multivari-
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ate (anti)symmetric exponential functions serve as variants of special functions induced
by the permutation group Sn. A similar form of the point and label sets of the discrete
Fourier transforms associated with the (anti)symmetric multivariate exponential func-
tions [58] to the presented dual root lattice Fourier Weyl transforms of the Cn series
indicates the possibility of existence of novel types of orbit functions and induced discrete
Fourier transforms connected to the Fourier–Weyl transforms of all crystallographic sys-
tems. Based on the good convergence of 3D and 2D numerical interpolation tests in both
(anti)symmetric trigonometric [9, A1] and (anti)symmetric exponential [5, 46] cases, a
further study in this direction could provide new effective interpolation methods.

The dual root and dual weight single particle quantum systems detailed in [A3,A4]
and summarized in Chapter 5 describe a non-relativistic particle propagating on the
dual root Dσ

Q∨,l,M(%, ν∨) or dual weight Dσ
P∨,l,M(%, %∨) dots, which are composed as finite

point sets of the shifted and rescaled dual root or dual weight lattice inside the closure of
the Weyl alcove lF ∈ Rn. The Weyl alcove is bounded by the Neumann and Dirichlet
walls lBσ(%) and lHσ(%), which represent perfect mirrors and ideal barriers trapping
the quantum particle inside the Weyl alcove. The predetermined hopping function,
which incorporates the amplitudes of propagation to the neighboring positions, then via
the corresponding Fourier–Weyl transforms explicitly provides the eigenenergies (5.15)
and (5.31) of the quantum billiard systems. The solutions of the time-independent
Schrödinger equations (5.14) and (5.30) are further given as vectors of the orthonormal
momentum basis |λ〉 ∈ Hσ

Q∨,M(%, ν∨), λ ∈ Λσ
P,M(%, ν∨) or |λ〉 ∈ Hσ

P∨,M(%, %∨), λ ∈
Λσ
Q,M(%, %∨), which are determined independently on the hopping function.

The Weyl group symmetries and hermiticity of hopping functions induce Hermi-
tian Hamiltonian [75] with real-valued eigenenergies (5.15) and (5.31). For the cases
An(n ≥ 2), D2k+1(k ≥ 2) and E6, the hopping function may have non-zero imaginary
parts, which in case of An leads to the energy degeneracy of the stationary states, which
is similar to the degeneracy of energy of one-particle quantum systems produced on equi-
lateral triangle [28, 29, 39, 56, 90]. Thus, the complex hopping function deserves further
consideration. Moreover, the hopping functions in the presented models require finite
support, considering an infinite support requires formulating convergence criterion for
the sums (5.15) and (5.31) compatible with the proofs in [A3,A4] and hence additional
study is required.

One of the applications of the quantum particle models is electron propagation in a
crystal lattice, providing a novel class of tight binding models [77], where the electron is
propagated between atoms positioned at the points of the dual root (5.9) or dual weight
(5.23) dots. The hopping function values can be fine-tuned from experimental data
or derived via theoretical considerations leading to the hopping integrals [30] related
to the coupled neighboring atoms. Both the dual root and dual weight lattice models
correspond to the inductively developed electron propagation in a crystal lattice [27],
however the dual root and dual weight lattice Fourier–Weyl transforms lead to boundary-
dependent alternatives to periodic exponential solutions [27].

The possible physical applications of the studied cubature formulas in [A1] incorpo-
rate calculations in micromagnetic simulations [14], quantum dynamics [67], laser op-
tics [21], stochastic dynamics [99], liquid crystal colloids [97], porous materials [78, 79]
and electromagnetic wave propagation [92]. Important application of the approach
of [A3, A4] is to modify the models to describe honeycomb lattices [12, 35, 36, 41], thus
providing models for study of graphene [24,30,39,82]. Furthermore, the presented trans-
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forms and models could find a potential application in solid state physics [3], electric
properties of 2D and 3D materials [1, 87], image processing [13, 93], data hiding [71],
face recognition [76].
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[9] A. Brus, J. Hrivnák and L. Motlochová, Discretization of Generalized Chebyshev
Polynomials of (Anti)symmetric Multivariate Sine Functions, J. Phys.: Conf. Ser.
1416 (2019), 012007.

[10] A. Brus, J. Hrivnák and L. Motlochová, Quantum Particle on Lattices in Weyl
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scars: surviving in an open discrete billiard, New J. Phys. 16 (2014), 035005.

[27] R. P. Feynman, R. B. Leighton and M. Sand, The Feynman Lectures on Physics:
Volume III, Basic Books, New York (2010).

[28] W. Gaddah, A Lie group approach to the Schrödinger equation for a particle in an
equilateral triangular infinite well, Eur. J. Phys. 34 (2013), 1175.

[29] W. Gaddah, Exact solutions to the Dirac equation for equilateral triangular billiard
systems, J. Phys. A: Math. Theor. 51 (2018), 385304.
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[34] J. Hrivnák and M. Juránek, On E-Discretization of Tori of Compact Simple Lie
Groups. II, J. Math. Phys. 58 (2017), 103504.
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[42] J. Hrivnák, L. Motlochová and J. Patera, Two dimensional symmetric and anti-
symmetric generalization of sine functions, J. Math. Phys. 51 (2010), 073509.
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