
Czech Technical University in Prague

Faculty of Electrical Engineering
Department of Control Engineering

Nonsmooth Analysis
and the Maximum Principle

Karolína Sehnalová

Master’s thesis

Supervisor:
doc. RNDr. Martin Bohata, Ph.D.

Field of study:
Cybernetics and Robotics

May 2024





MASTER‘S THESIS ASSIGNMENT 

I. Personal and study details 

491904 Personal ID number:  Sehnalová  Karolína Student's name: 

Faculty of Electrical Engineering Faculty / Institute: 

Department / Institute:    Department of Control Engineering 

Cybernetics and Robotics Study program: 

II. Master’s thesis details 

Master’s thesis title in English: 

Nonsmooth Analysis and the Maximum Principle  

Master’s thesis title in Czech: 

Nehladká analýza a princip maxima  

Guidelines: 

The main goal of the thesis is to discuss the maximum principle in the framework of nonsmooth analysis. The first part of 
the work should contain an overview of essential parts of nonsmooth analysis used in necessary conditions for optimal 
control problems. This should be followed by a formulation of the extended maximum principle and a discussion of its 
consequences (more specifically, various “standard” versions of the maximum principle). The second part of the thesis 
should be focused on examples illustrating applications of the maximum principle. These examples should include fixed 
time problems as well as free end-time problems. 

Bibliography / sources: 

[1] F. Clarke: Functional Analysis, Calculus of Variations and Optimal Control, Springer, London, 2013. 
[2] M. Mesterton-Gibbons: A Primer on the Calculus of Variations and Optimal Control Theory, American Mathematical 
Society, Providence, 2009. 

Name and workplace of master’s thesis supervisor: 

doc. RNDr. Martin Bohata, Ph.D.    Department of Mathematics  FEE 

Name and workplace of second master’s thesis supervisor or consultant: 

   

Deadline for master's thesis submission:   24.05.2024 Date of master’s thesis assignment:   23.01.2024 

Assignment valid until:   21.09.2025 

___________________________ ___________________________ ___________________________ 
prof. Mgr. Petr Páta, Ph.D. 

Dean’s signature 
prof. Ing. Michael Šebek, DrSc. 

Head of department’s signature 
doc. RNDr. Martin Bohata, Ph.D. 

Supervisor’s signature 

III. Assignment receipt 
The student acknowledges that the master’s thesis is an individual work. The student must produce her thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1 





0Acknowledgments

First of all, I wish to express genuine gratitude to my supervisor doc. RNDr. Martin

Bohata, Ph.D. for his continuous support throughout the past two semesters. His

remarks, feedback, guidance and most importantly, the time he dedicated to our

consultations have been immensely valuable.

Furthermore, I would like to express special thanks to my family, particularly

my father, mother, and brother, for their enduring support over the years. I am also

deeply grateful to my dear J, whose encouragement has been a constant source of

motivation. I also wish to thank to my friends from and outside of CTU, especially

those, who helped me with polishing of the text.

v



0Declaration
I declare that I have written and implemented this thesis by myself and that I have

listed all used sources according to the Guideline no. 2/2024 for adhering to ethical

principles when elaborating an academic final thesis.

This thesis has also not been submitted for any degree in any university previ-

ously.

In Prague,

date Karolína Sehnalová

vi



0Abstract
This thesis elaborates on the problematics and applications of the nonsmooth ver-

sion of Pontryagin maximum principle in control theory. Firstly, basic concepts of

nonsmooth analysis are introduced. In particular, definitions of generalized gradi-

ents and generalized normal cones are given. This is followed with the formulation

of the extended maximum principle and its consequences, including the hybrid

principle, variable-time principle and fixed-time principle. The rest of the thesis is

focused on application of these principles to selected problems. The first discussed

problem is the steering boat in a flowing water to a specific target set, which covers

dealing with pure state constraints and time-dependent target set. The second prob-

lem concerns the optimal treatment of HIV, where situations with time-dependent

control set as well as optimization of treatment turn-off time are discussed. The

main results of this thesis include found optimal trajectories for various versions

of the boat steering problem and found optimal control for different cases of HIV

treatment and a possible approach to STI (structured treatment interruptions) HIV

treatment with the usage of the hybrid principle.
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0Abstrakt
Tato práce se zabývá problematikou a aplikacemi nehladké verze Pontryaginova

principu maxima v teorii řízení. Nejprve jsou rozebrány základní koncepty ne-

hladké analýzy, jako jsou zobecněné gradienty a zobecněné normálové kužely. Dále

následuje formulace rozšířeného principu maxima a jeho různé důsledky, mezi

nimiž je hybridní princip, princip s proměnným časem a s fixním časem. Dále

se práce věnuje aplikacím těchto principů na vybrané úlohy. První rozebíranou

úlohou je řízení loďky pohybující se v proudící vodě do cílové množiny. Tento

problém zahrnuje čistě stavová omezení a také časově závislou cílovou množinu.

Druhá úloha rozebírá optimální léčbu HIV. Je diskutována situace s časově proměn-

nou množinou přípustných řízení a také optimalizace času vypnutí léčby. Hlavní

výsledky této práce zahrnují nalezené optimální trajektorie pro různé verze úlohy

řízení loďky a nalezené optimální řízení pro různé případy léčby HIV a návrh mož-

ného přístupu k řešení STI léčby HIV (strukturovaná přerušení léčby) s použitím

hybridního principu.
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1 Introduction

1.1 History of optimal control and calculus of
variations

The origins of optimal control can be traced back to the birth of calculus of varia-

tions in the 17
th
century. Some of the first problems (see [Bry96]) of the calculus of

variations were inspired by physics— the Fermat’s principle, the brachystochrone

or the shape of a heavy chain hanging between two points. According to [SW97],

it is the solution to the brachystone problem by Johan Bernoulli that marks the

birth of optimal control. Later, Euler came with the necessary condition of opti-

mality for the basic problem of calculus of variations, which is now known as the

Euler-Lagrange equation. The development of this field continued and Legendre

came with additional (second order) necessary condition. Hamilton offered a new

perspective when he introduced a new formalism to tackle problems of the calculus

of variations. Then, Weierstrass contributed to the theory with a new necessary

condition, which resembles the first occurrence of the maximum principle, when

written in the Hamiltonian formalism (which was done by Carathéodory according

to [PP09]).

The classical theory works with differential equations without a control function,

which is crucial in the control theory. It was sufficient for the problems that emerged

in physics and mechanics, so there was no need to generalize it to incorporate the

control. In [SW97] the generalization is said to be straightforward and not that

complicated. However, the generalization came not before 1962, when Pontryagin

presented the first rigorous version of the maximum principle in [Pon+87], although

some versions of the maximum principle were proven by his research group in 1950s

(see [Gam19]). The Pontryagin maximum principle (PMP) encapsulates necessary

conditions of Euler, Lagrange, Legendre and Weierstrass in an elegant way using

the generalized Hamiltonian formalism, which incorporates the control function.

After that, many extensions andmodern versions of the principle were formulated

and proven. In this thesis, we will devote ourselves to Clarke’s work in [Cla13],

where he presents the nonsmooth version of the maximum principle. There are

numerous reasons to work in a framework of nonsmooth analysis even when all

the data are smooth. The simplest example of the necessity of the nonsmooth

1



Chapter 1 Introduction

analysis is the occurrence of discontinuous control, which is frequently used in

control theory. Others involve the Hamilton-Jacobi equation or Lyapunov analysis,

as stated in [Cla01].

1.2 The aim and structure of this thesis
The main goal of this thesis is to discuss the maximum principle in the frame-

work of nonsmooth analysis. Clarke’s extended principle is formulated with its

consequences in the form of various standard versions of the maximum principle

(fixed-time principle, variable-time principle) and the hybrid principle. Then these

principles are applied to selected problems (which include both fixed-time and

free-end-time problems).

The first part of the thesis contains mathematical theory of optimal control. The

second chapter is devoted to establishing basic concepts, definitions and theorems

of nonsmooth analysis, which will later be observed in the extended principle. In

particular, some generalizations of gradients and normal vectors are discussed.

The third chapter contains the formulation of the extended principle, followed by

various standard versions of the maximum principle, which are indeed specific

instances of the extended principle. The second part of the thesis is dedicated

to solving specific examples. The fourth chapter contains the application of the

variable-time principle for a minimum time problem of steering a boat in a vector

field. We consider diverse types of the problem including, among other things,

steering the boat to a time-dependent set of final states and pure state constraints.

The last chapter focuses on the optimal treatment of HIV. Besides a basic version

of the problem, we discuss the situation with a time-dependent control set. In

particular, an important case with treatment interruptions is investigated by means

of the hybrid principle.

2
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2 Nonsmooth analysis

Classical calculus cannot be applied when working with nonsmooth functions

and sets that can appear in control theory. Generalizing classical calculus starts

with generalizing gradients and based on that we establish the basic concepts of

nonsmooth analysis. Everything will be developed on normed spaces ℝ𝑛
because

our state variable is a member of ℝ𝑛
. This theory is presented according to Clarke’s

books [Cla13] and [Cla+98].

2.1 Subdifferentials and generalized gradients

In this section, we introduce various subdifferentials and generalized gradient.

Definitions and theorems are taken from [Cla13]. Nonsmooth functions do not

have a differential at some point. This can happen when working for example with

piecewise smooth functions, which often appear in control theory.

We shall use the following notation:

• ℝ∞ := ℝ ∪ {+∞};

• if 𝑓 : ℝ𝑛 → ℝ∞, then we denote dom𝑓 := { 𝑥 ∈ ℝ𝑛 | 𝑓 (𝑥) < +∞ };

• ⟨𝑥,𝑦⟩ :=
∑𝑛
𝑖=1
𝑥𝑖𝑦𝑖 is the (Euclidean) scalar product of 𝑥 = (𝑥1, ..., 𝑥𝑛) ∈ ℝ𝑛

,

𝑦 = (𝑦1, ..., 𝑦𝑛) ∈ ℝ𝑛
;

• 0 is the zero vector;

• |𝑥 | :=
√︁
⟨𝑥, 𝑥⟩ is the (Euclidean) norm of 𝑥 ∈ ℝ𝑛

;

• co{𝑀} is the convex hull of𝑀 ⊆ ℝ𝑛
(i.e., the intersection of all convex subsets

of ℝ𝑛
containing𝑀);

• 𝐵(𝑥0, 𝑟 ) := { 𝑥 ∈ ℝ𝑛 | |𝑥 − 𝑥0 | ≤ 𝑟 }.

In this text, we treat row vectors and column vectors interchangeably.

5



Chapter 2 Nonsmooth analysis

▶ Definition 2.1.
Subgradient of a convex function 𝑓 : ℝ𝑛 → ℝ∞ at 𝑥 ∈ dom𝑓 is any vector 𝜁 ∈ ℝ𝑛

satisfying

𝑓 (𝑦) − 𝑓 (𝑥) ≥ ⟨𝜁 , 𝑦 − 𝑥⟩

for all y ∈ ℝ𝑛
.

Furthermore, the set

𝜕𝑓 (𝑥) := { 𝜁 | 𝑓 (𝑦) − 𝑓 (𝑥) ≥ ⟨𝜁 , 𝑦 − 𝑥⟩ }

is called the subdifferential of 𝑓 at 𝑥 . ◀

We can rewrite subgradient inequality as follows:

𝑓 (𝑦) ≥ 𝑓 (𝑥) + ⟨𝜁 , 𝑦 − 𝑥⟩ = (𝑓 (𝑥) − ⟨𝜁 , 𝑥⟩) + ⟨𝜁 , 𝑦⟩,

which implies that the graph of 𝑓 lies above the graph of an affine function

ℎ : 𝑦 ↦→ (𝑓 (𝑥) − ⟨𝜁 , 𝑥⟩) + ⟨𝜁 , 𝑦⟩.

The graph of ℎ is called a supporting hyperplane of 𝑓 at 𝑥 because the inequality

holds with equality at 𝑥 . We can notice that if a (convex) function 𝑓 is continuously

differentiable at 𝑥 , the concept of subgradient reduces to classical gradient and

subdifferential is a singleton containing the gradient, i.e., 𝜕𝑓 (𝑥) = {∇𝑓 (𝑥)}. We

illustrate this concept in the following example.

▶ Example 2.2.
Let 𝑓 (𝑥) = |𝑥 |, 𝑥 ∈ ℝ. This function is indeed convex and it is not differentiable at

𝑥 = 0. Let us compute its subdifferential at 0. It follows from Definition 2.1 that

𝜁 ∈ 𝜕𝑓 (0) if and only if

𝜁𝑦 ≤ |𝑦 | (2.1)

for all 𝑦 ∈ ℝ. If 𝜁 ∈ ⟨−1, 1⟩, then

𝜁𝑦 ≤ |𝜁𝑦 | = |𝜁 | |𝑦 | ≤ |𝑦 |.

6



Subdifferentials and generalized gradients Section 2.1

Thus ⟨−1, 1⟩ ⊆ 𝜕𝑓 (0). Now assume that |𝜁 | > 1. Take 𝑦 =
𝜁

|𝜁 | . Then,

𝜁𝑦 = |𝜁 | > 1 = |𝑦 |.

Therefore, equation (2.1) is not satisfied in this case. This shows that

𝜕𝑓 (0) = ⟨−1, 1⟩.

◀

The use of convex functions can be quite restrictive. In order to generalize the

subgradient of convex functions, we consider the following characterization.

▶ Theorem 2.3.
Let 𝑓 : ℝ𝑛 → ℝ∞ be a convex function, 𝑥 ∈ dom𝑓 , 𝜁 ∈ ℝ𝑛

. Then 𝜁 ∈ 𝜕𝑓 (𝑥) if and
only if there exist a neighbourhood𝑈 (𝑥) of 𝑥 and 𝜎 ≥ 0 such that

𝑓 (𝑦) − 𝑓 (𝑥) + 𝜎 |𝑦 − 𝑥 |2 ≥ ⟨𝜁 ,𝑦 − 𝑥⟩ for all 𝑦 ∈ 𝑈 (𝑥).

◀

Proof. ⇒ Follows immediately from Definition 2.1.

⇐ Suppose that 𝜁 ∈ ℝ𝑛
is such that there are a neigbourhood 𝑈 (𝑥) of 𝑥 and

𝜎 ≥ 0 safisfying 𝑓 (𝑦) − 𝑓 (𝑥) + 𝜎 |𝑦 − 𝑥 |2 ≥ ⟨𝜁 ,𝑦 − 𝑥⟩ for all 𝑦 ∈ 𝑈 (𝑥). Given
𝑦 ∈ ℝ𝑛

, 𝑡𝑦 ∈ 𝑈 (𝑥) for each 𝑡 ∈ (0, 1⟩ sufficiently small. Using the convexity

of 𝑓 and linearity of the scalar product, we conclude

𝑓 (𝑦) − 𝑓 (𝑥) = 1

𝑡
[𝑡 𝑓 (𝑦) + (1 − 𝑡) 𝑓 (𝑥) − 𝑓 (𝑥)] ≥ 1

𝑡
[𝑓 (𝑡𝑦 + (1 − 𝑡)𝑥) − 𝑓 (𝑥)]

≥ 1

𝑡

[
⟨𝜁 , 𝑡𝑦 + (1 − 𝑡)𝑥 − 𝑥⟩ − 𝜎 |𝑡𝑦 + (1 − 𝑡)𝑥 − 𝑥 |2

]
≥ 1

𝑡

[
𝑡 ⟨𝜁 ,𝑦 − 𝑥⟩ − 𝑡2𝜎 |𝑦 − 𝑥 |2

]
≥ ⟨𝜁 ,𝑦 − 𝑥⟩ − 𝑡𝜎 |𝑦 − 𝑥 |2.

By taking the limit as 𝑡 → 0
+
, we obtain

𝑓 (𝑦) − 𝑓 (𝑥) ≥ ⟨𝜁 ,𝑦 − 𝑥⟩,

which is the desirable subgradient inequality from Definition 2.1.

■

7



Chapter 2 Nonsmooth analysis

This characterization enables us to generalize subgradient by adding the term

𝜎 |𝑦 − 𝑥 |2 to the subgradient inequality.

▶ Definition 2.4.
Proximal subgradient of 𝑓 : ℝ𝑛 → ℝ∞ at 𝑥 ∈ dom𝑓 is any vector 𝜁 ∈ ℝ𝑛

such that

there exist 𝜎 ≥ 0 and a neighbourhood𝑈 (𝑥) of 𝑥 satisfying

𝑓 (𝑦) − 𝑓 (𝑥) + 𝜎 |𝑦 − 𝑥 |2 ≥ ⟨𝜁 , 𝑦 − 𝑥⟩

for all 𝑦 ∈ 𝑈 (𝑥).
Furthermore, the set

𝜕𝑃 𝑓 (𝑥) :=
{
𝜁

�� 𝑓 (𝑦) − 𝑓 (𝑥) + 𝜎 |𝑦 − 𝑥 |2 ≥ ⟨𝜁 , 𝑦 − 𝑥⟩ }
is called a proximal subdifferential of 𝑓 at 𝑥 . ◀

We can see that there is an additional non-negative term on the left-hand side

of the proximal subgradient inequality which weakens the previously mentioned

subgradient inequality. The geometrical interpretation of proximal subgradient in

a scalar case is that we look for locally supporting parabolas instead of supporting

hyperplanes. This is clear when we rewrite the inequality in the same manner as

we did with subgradient inequality

𝑓 (𝑦) ≥ 𝑓 (𝑥) + ⟨𝜁 , 𝑦 − 𝑥⟩ − 𝜎 |𝑦 − 𝑥 |2 = (𝑓 (𝑥) − ⟨𝜁 , 𝑥⟩) + ⟨𝜁 , 𝑦⟩ − 𝜎 |𝑦 − 𝑥 |2,

where the quadratic term (defining a downward opening parabola for scalar case)

appears. Important property of locally supporting parabolas of a function 𝑓 at

𝑥 is that they lie below the graph of 𝑓 and touch the graph at 𝑓 at (𝑥, 𝑓 (𝑥)).
A continuously differentiable scalar function 𝑓 has only one locally supporting

parabola and its slope at 𝑥 is the same as 𝑓 ′(𝑥). Geometrical interpretation for

functions of more than one variable is analogical - we have locally supporting graphs

of polynomials of degree at most two instead of locally supporting parabolas.

The following example shows the computation of proximal subgradient.

▶ Example 2.5.
Let

𝑓 (𝑥) =
{
−|𝑥 | 32 if 𝑥 < 0,

𝑥 if 𝑥 ≥ 0.

8



Subdifferentials and generalized gradients Section 2.1

The function 𝑓 is nonconvex, as can be seen in the Figure 2.1.

x

y

f(x)f(x)

Figure 2.1: The graph of the function 𝑓 from Example 2.5

We compute the proximal subgradient of 𝑓 at 𝑥 = 0, where the function 𝑓 is not

differentiable.

Let 𝑦 > 0. Then, for sufficiently small 𝑦, we have

𝑦 + 𝜎𝑦2 ≥ 𝜁𝑦 ⇐⇒ 𝜎𝑦 ≥ 𝜁 − 1 ⇐⇒ 𝜁 ≤ 1.

Let 𝑦 < 0. Then, we have the proximal subgradient inequality

−|𝑦 | 32 + 𝜎𝑦2 ≥ 𝜁𝑦 ⇐⇒ |𝑦 | 12 − 𝜎 |𝑦 | ≤ 𝜁 ⇐⇒ |𝑦 | 12 (1 − 𝜎 |𝑦 | 12 ) ≤ 𝜁 .

Thus, 𝜁 > 0. Note that 𝜁 cannot be 0, because whenever 𝜎 ≥ 0 and 𝑦 < 0 is

sufficiently small (recall that we need one constant 𝜎 for every𝑦 in a neighbourhood

of 0), we have 1−𝜎 |𝑦 | 12 > 0, which means |𝑦 | 12 (1−𝜎 |𝑦 | 12 ) > 0 and hence, 0 ∉ 𝜕𝑃 𝑓 (0).
Finally, we conclude that

𝜕𝑃 𝑓 (0) = (0, 1⟩.

◀

Note that 𝜕𝑃 𝑓 (𝑥) may not be closed, as in Example 2.5, and for that reason, we

now proceed to the definition of limiting subdifferential.

9



Chapter 2 Nonsmooth analysis

▶ Definition 2.6.
The limiting subdifferential of 𝑓 at 𝑥 is defined as

𝜕𝐿 𝑓 (𝑥) =
{
𝜁 = lim

𝑖→∞
𝜁𝑖

��� 𝜁𝑖 ∈ 𝜕𝑃 𝑓 (𝑥𝑖), 𝑥𝑖 → 𝑥, 𝑓 (𝑥𝑖) → 𝑓 (𝑥)
}
.

◀

From the construction of limiting subdifferential, we can easily see that whenever

𝜁 ∈ 𝜕𝑃 𝑓 (𝑥), it holds that 𝜁 ∈ 𝜕𝐿 𝑓 (𝑥) and therefore, it follows that 𝜕𝑃 𝑓 (𝑥) ⊆ 𝜕𝐿 𝑓 (𝑥).
Computation of limiting subdifferential is illustrated in the following example.

▶ Example 2.7.
We take the same function as in Example 2.5, that is,

𝑓 (𝑥) =
{
−|𝑥 | 32 if 𝑥 < 0,

𝑥 if 𝑥 ≥ 0,

and compute 𝜕𝐿 𝑓 (0). We have seen that 𝜕𝑃 𝑓 (0) = (0, 1⟩. As 𝑓 is continuously

differentiable at every point 𝑥 ∈ ℝ \ {0}, we have

𝜕𝑃 𝑓 (𝑥) =
{ {

3

2
|𝑥 | 12

}
if 𝑥 < 0,

{1} if 𝑥 ≥ 0.

Hence, when we add the limits from Definition 2.6, we conclude that

𝜕𝐿 𝑓 (0) = ⟨0, 1⟩.

◀

To proceed further, we need to define Lipschitz property.

▶ Definition 2.8.
We say the function 𝑓 : ℝ𝑛 → ℝ∞ is

(i) Lipschitz on𝑀 ⊆ dom𝑓 , if there exists a constant 𝐾 > 0 such that

|𝑓 (𝑥) − 𝑓 (𝑦) | ≤ 𝐾 |𝑥 − 𝑦 | for all 𝑥,𝑦 ∈ 𝑀,

(ii) Lipschitz, if it is Lipschitz on ℝ𝑛
;

10
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(iii) Lipschitz near 𝑥 , if there exist a neigbourhood 𝑈 (𝑥) of 𝑥 , such that 𝑓 is

Lipschitz on a set𝑈 (𝑥) ∩ dom𝑓 ;

(iv) locally Lipschitz on an open set 𝑀 ⊆ ℝ𝑛
, if it is Lipschitz near 𝑥 for each

𝑥 ∈ 𝑀 ;

(v) locally Lipschitz, if it is locally Lipschitz on ℝ𝑛
.

◀

Observe that if 𝑓 is (locally) Lipschitz, then dom𝑓 = ℝ𝑛
.

Now we introduce a generalized gradient. Let us restrict our attention to lo-

cally Lipschitz functions 𝑓 : ℝ𝑛 → ℝ∞. According to a corollary of the famous

Rademacher’s theorem presented in [CMN19, p. 196], any locally Lipschitz function

𝑓 : ℝ𝑛 → ℝ∞ is differentiable almost everywhere. The restriction to locally Lips-

chitz functions allows us to use an alternative definition of generalized gradient

compared to what Clarke presents in [Cla13, p. 196]. In our special case, the deriva-

tive of 𝑓 is used to generate generalized gradient, whereas Clarke uses generalized

directional derivative.

▶ Definition 2.9.
Let 𝑓 : ℝ𝑛 → ℝ∞ be a locally Lipschitz function and let 𝐸 𝑓 be a set of all points in

ℝ𝑛
, where 𝑓 is not differentiable. The generalized gradient of 𝑓 at 𝑥 is a set

𝜕𝐶 𝑓 (𝑥) = co

{
lim

𝑖→∞
∇𝑓 (𝑥𝑖)

��� 𝑥𝑖 → 𝑥, 𝑥𝑖 ∈ ℝ𝑛 \ 𝐸 𝑓
}
.

◀

This definition is nothing but a Theorem 10.27 in [Cla13, p. 208] (Gradient for-

mula) for the specific case, where the set of points at which 𝑓 fails to be differentiable

has zero measure. Consequently, if 𝑓 is continuously differentiable at 𝑥 , it is evident

that 𝜕𝐶 𝑓 (𝑥) = {∇𝑓 (𝑥)}, because all sequences in the definition converge to ∇𝑓 (𝑥).
Moreover, if the function 𝑓 is continuously differentiable at 𝑥 , we have

𝜕𝑃 𝑓 (𝑥) = 𝜕𝐿 𝑓 (𝑥) = 𝜕𝐶 𝑓 (𝑥) = {∇𝑓 (𝑥)}.

It can be proved that if 𝑓 is locally Lipschitz, then it holds that

𝜕𝐶 𝑓 (𝑥) = co𝜕𝐿 𝑓 (𝑥). (2.2)

A construction of generalized gradient is shown in the following example.

11



Chapter 2 Nonsmooth analysis

▶ Example 2.10.
We consider the same function as in Examples 2.5 and 2.7, that is,

𝑓 (𝑥) =
{
−|𝑥 | 32 if 𝑥 < 0,

𝑥 if 𝑥 ≥ 0,

which, indeed, is locally Lipschitz. Clearly, the set of points, where 𝑓 fails to be

differentiable, is 𝐸 𝑓 = {0}. From Definition 2.9, we have

𝜕𝐶 𝑓 (0) = co{0, 1} = ⟨0, 1⟩.

Note that in this case, 𝜕𝐿 𝑓 (0) = 𝜕𝐶 𝑓 (0), which corresponds to equation (2.2),

because 𝜕𝐿 𝑓 (0) is a convex set (in this particular example).

◀

A good and brief overview of the terms established in this section is presented

in [Cla09].

2.2 Nonsmooth geometry

Wewould like to study geometrical aspects of sets with tools of nonsmooth analysis

taken from [Cla+98].

▶ Definition 2.11.
Let𝑀 ⊆ ℝ𝑛

be a nonempty set and 𝑥 ∈ ℝ𝑛
. The distance of the point 𝑥 from the set

𝑀 is defined as

𝑑𝑀 (𝑥) := inf

𝑦∈𝑀
|𝑥 − 𝑦 |.

The set of closest points in𝑀 to 𝑥 is defined as

𝑃𝑀 (𝑥) := {𝑦 ∈ 𝑀 | 𝑑𝑀 (𝑥) = |𝑥 − 𝑦 | }.

◀

The distance function 𝑑𝑀 plays a crucial role when developing nonsmooth ge-

ometry.

12
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▶ Remark 2.12.
If a nonempty set𝑀 ⊆ ℝ𝑛

is closed, then 𝑃𝑀 (𝑥) ≠ ∅. ◀

Proof. We distinguish two cases. If 𝑥 ∈ 𝑀 , then trivially 𝑥 ∈ 𝑃𝑀 (𝑥). Let us discuss
the case when 𝑥 ∉ 𝑀 . Since { |𝑥 − 𝑦 | | 𝑦 ∈ 𝑀 } is nonempty and bounded below,

𝑑𝑀 (𝑥) ∈ ℝ. By definition of infimum, there exists a sequence (𝑧𝑖)∞𝑖=1
, 𝑧𝑖 ∈ 𝑀 , such

that |𝑥 − 𝑧𝑛 | < 𝑑𝑀 (𝑥) + 1

𝑛
, where 𝑛 ∈ ℕ. The sequence (𝑧𝑖)∞𝑖=1

is bounded, because

we have

|𝑧𝑛 | = |𝑧𝑛 − 𝑥 + 𝑥 | ≤ |𝑧𝑛 − 𝑥 | + |𝑥 | < 𝑑𝑀 (𝑥) +
1

𝑛
+ |𝑥 | ≤ 𝑑𝑀 (𝑥) + 1 + |𝑥 |.

Therefore, the sequence (𝑧𝑖)∞𝑖=1
has a convergent subsequence and hence, without

loss of generality, we assume (𝑧𝑖)∞𝑖=1
is convergent. Let 𝑧 = lim𝑖→∞ 𝑧𝑖 . Therefore,

we have

𝑑𝑀 (𝑥) = inf

𝑧∈𝑀
|𝑥 − 𝑧 | = lim

𝑖→∞
|𝑥 − 𝑧𝑖 | = |𝑥 − lim

𝑖→∞
𝑧𝑖 | = |𝑥 − 𝑧 |.

From closeness of𝑀 we know that 𝑧 ∈ 𝑀 and therefore, 𝑧 is an element of 𝑃𝑀 (𝑥).
■

The aim of this section is to define various normal cones for sets with nonsmooth

boundary. Firstly, we define proximal normal cone.

▶ Definition 2.13.
Proximal normal of a nonempty set𝑀 ⊆ ℝ𝑛

at 𝑥 ∈ 𝑀 is any vector 𝜁 ∈ ℝ𝑛
satisfying

𝑑𝑀 (𝑥 + 𝑡𝜁 ) = 𝑡 |𝜁 |

for some 𝑡 > 0.

Furthermore, the set

𝑁 𝑃
𝑀 (𝑥) := { 𝜁 ∈ ℝ𝑛 | 𝜁 is proximal normal of𝑀 at 𝑥 }

is called a proximal normal cone of set𝑀 at 𝑥 . ◀

Proximal normals represent directions from 𝑥 ∈ 𝑀 to 𝑥 + 𝑡𝜁 ∉ 𝑀 , where 𝑥 is the

closest point in𝑀 to 𝑥 + 𝑡𝜁 . If𝑀 has nonsmooth boundary at 𝑥 , it can happen that

there exist two linearly independent vectors 𝜁1 and 𝜁2, which both belong to the

proximal normal cone of𝑀 at 𝑥 .

We can describe𝑁 𝑃
𝑀
(𝑥), using an inequality similar to proximal normal inequality

13
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in the previous section in the following proposition. This underlines the corre-

spondence of the proximal subdifferential and proximal normal cone, which will

be discussed later in this section.

▶ Proposition 2.14.
Let 𝑥 ∈ 𝑀 . A vector 𝜁 ∈ 𝑁 𝑃

𝑀
(𝑥) if and only if there exists some 𝜎 = 𝜎 (𝑥, 𝜁 ) ≥ 0

such that

⟨𝜁 ,𝑢 − 𝑥⟩ ≤ 𝜎 |𝑢 − 𝑥 |2 for all 𝑢 ∈ 𝑀. (2.3)

◀

Proof. ⇒ We know that 𝜁 ∈ 𝑁 𝑃
𝑀
(𝑥) satisfies d𝑀 (𝑥 + 𝑡𝜁 ) = 𝑡 |𝜁 | for some 𝑡 > 0.

Thus, 𝑡 |𝜁 | = inf𝑢∈𝑀 |𝑥 + 𝑡𝜁 − 𝑢 |. By the definition of infimum, the inequality

𝑡 |𝜁 | ≤|𝑥 + 𝑡𝜁 − 𝑢 |

holds for all 𝑢 ∈ 𝑀 . Therefore, for all 𝑢 ∈ 𝑀 , we have

𝑡2⟨𝜁 , 𝜁 ⟩ ≤⟨𝑥 + 𝑡𝜁 − 𝑢, 𝑥 + 𝑡𝜁 − 𝑢⟩
= ⟨𝑥 − 𝑢, 𝑥 − 𝑢⟩ + 2⟨𝑡𝜁 , 𝑥 − 𝑢⟩ + ⟨𝑡𝜁 , 𝑡𝜁 ⟩.

From this inequality, we conclude

⟨𝜁 ,𝑢 − 𝑥⟩ ≤ 1

2𝑡
|𝑢 − 𝑥 |2

for all 𝑢 ∈ 𝑀 . This shows that the inequality (2.3) is satisfied with 𝜎 := 1

2𝑡
.

⇐ We know that there is a 𝜎 ≥ 0 such that

⟨𝜁 ,𝑢 − 𝑥⟩ ≤ 𝜎 |𝑢 − 𝑥 |2 ∀𝑢 ∈ 𝑀.

We compute the (squared) distance of the point 𝑥 + 𝑡𝜁 from the set 𝑀 as

follows

d𝑀 (𝑥 + 𝑡𝜁 )2 = inf

𝑢∈𝑀
|𝑥 + 𝑡𝜁 − 𝑢 |2 = inf

𝑢∈𝑀
{⟨𝑡𝜁 , 𝑡𝜁 ⟩ + 2𝑡 ⟨𝜁 , 𝑥 − 𝑢⟩ + ⟨𝑥 − 𝑢, 𝑥 − 𝑢⟩}.

If 𝜎 = 0, then we have

d𝑀 (𝑥 + 𝑡𝜁 )2 ≥ inf

𝑢∈𝑀
{𝑡2 |𝜁 |2 + |𝑥 − 𝑢 |2} = 𝑡2 |𝜁 |2,

14
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because 𝑢 ↦→ |𝑥 − 𝑢 |2 attains minimum at 𝑢 = 𝑥 (recall that 𝑥 ∈ 𝑀). If 𝜎 > 0,

we have

d𝑀 (𝑥 + 𝑡𝜁 )2 ≥ inf

𝑢∈𝑀
{𝑡2 |𝜁 |2 − 2𝑡𝜎 |𝑥 − 𝑢 |2 + |𝑥 − 𝑢 |2}.

We choose 𝑡 := 1

2𝜎
, which gives us

d𝑀 (𝑥 + 𝑡𝜁 )2 ≥ inf

𝑢∈𝑀
𝑡2 |𝜁 |2 = 𝑡2 |𝜁 |2.

We show the opposite inequality from the definition of infimum as follows

d𝑀 (𝑥 + 𝑡𝜁 )2 = inf

𝑢∈𝑀
|𝑥 + 𝑡𝜁 − 𝑢 |2 ≤ |𝑥 + 𝑡𝜁 − 𝑢 |2 ∀𝑢 ∈ 𝑀.

Since 𝑥 ∈ 𝑀 , we have

d𝑀 (𝑥 + 𝑡𝜁 )2 ≤ 𝑡2 |𝜁 |2.

Thus, we have shown that

𝑡2 |𝜁 |2 ≤ d𝑀 (𝑥 + 𝑡𝜁 )2 ≤ 𝑡2 |𝜁 |2

and consequently,

d𝑀 (𝑥 + 𝑡𝜁 ) = 𝑡 |𝜁 |.

■

▶ Remark 2.15.
From the proof it is clear, that the inequality (2.3) holds with 𝜎 = 0 if and only if

the equation d𝑀 (𝑥 + 𝑡𝜁 ) = 𝑡 |𝜁 | holds for all 𝑡 > 0. ◀

We proceed to a definition of limiting normal cone. Observe the correspondence

of definitions of limiting subdifferential and limiting normal cone.

▶ Definition 2.16.
Limiting normal cone of a nonempty set𝑀 at 𝑥 is defined as

𝑁 𝐿
𝑀 (𝑥) =

{
𝜁 = lim

𝑖→∞
𝜁𝑖

��� 𝜁𝑖 ∈ 𝑁 𝑃
𝑀 (𝑥𝑖), 𝑥𝑖 → 𝑥, 𝑥𝑖 ∈ 𝑀

}
.

◀

15
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It is useful to notice the inclusion 𝑁 𝑃
𝑀
(𝑥) ⊆ 𝑁 𝐿

𝑀
(𝑥), which is not surprising,

because of the corresponding inclusion holds between proximal and limiting subd-

ifferential. Indeed, we shall see later, that 𝑁 𝑃
𝑀
(𝑥) and 𝑁 𝐿

𝑀
(𝑥) are, respectively, the

proximal subdifferential and the limiting subdifferential of an appropriate function.

From the definition of 𝑁 𝐿
𝑀
(𝑥), it can be seen, that 𝑁 𝐿

𝑀
(𝑥) is closed and may not

be convex and from Proposition 2.14 it is evident that 𝑁 𝑃
𝑀
(𝑥) is convex. Consider

𝜁1, 𝜁2 ∈ 𝑁 𝑃
𝑀
(𝑥). Then, we have ⟨𝜁1, 𝑢 − 𝑥⟩ ≤ 𝜎1 |𝑢 − 𝑥 |2 and ⟨𝜁2, 𝑢 − 𝑥⟩ ≤ 𝜎2 |𝑢 − 𝑥 |2

for all 𝑢 ∈ 𝑀 . Thus, for 𝑡 ∈ (0, 1), we have

⟨𝑡𝜁1 + (1 − 𝑡)𝜁2, 𝑢 − 𝑥⟩ = 𝑡 ⟨𝜁1, 𝑢 − 𝑥⟩ + (1 − 𝑡)⟨𝜁2, 𝑢 − 𝑥⟩ ≤
(𝜎1

𝑡
+ 𝜎2

1 − 𝑡

)
|𝑢 − 𝑥 |2

and hence, 𝑡𝜁1 + (1 − 𝑡)𝜁2 ∈ 𝑁 𝑃
𝑀
(𝑥). However, 𝑁 𝑃

𝑀
(𝑥) may not be closed, as we will

see later.

Now we would like to show a connection between limiting (resp. proximal)

normal cones and limiting (resp. proximal) subdifferentials, but firstly it is necessary

to define the so-called indicator function of a set.

▶ Definition 2.17.
The Indicator function 𝐼𝑀 : ℝ𝑛 → ℝ∞ of a nonempty set𝑀 ⊆ ℝ𝑛

is defined as

𝐼𝑀 (𝑥) =
{

0 if 𝑥 ∈ 𝑀,
∞ if 𝑥 ∉ 𝑀.

◀

▶ Proposition 2.18.
Let 𝑥 ∈ 𝑀 . It holds that

𝑁 𝐿
𝑀 (𝑥) = { 𝑡𝜁 | 𝑡 ≥ 0, 𝜁 ∈ 𝜕𝐿𝑑𝑀 (𝑥) } = 𝜕𝐿𝐼𝑀 (𝑥),

𝑁 𝑃
𝑀 (𝑥) = { 𝑡𝜁 | 𝑡 ≥ 0, 𝜁 ∈ 𝜕𝑃𝑑𝑀 (𝑥) } = 𝜕𝑃 𝐼𝑀 (𝑥).

◀

For the proof, we refer the reader to [Cla13]. Simply said, for a set𝑀 , limiting

(resp. proximal) normal cone of 𝑥 ∈ 𝑀 is equal to limiting (resp. proximal) sub-

differential of its indicator function 𝐼𝑀 (𝑥) at 𝑥 . This relates cones to previously

defined subdifferential in an elegant way. Observe that the limiting (resp. proximal)

normal cone consists of limiting (resp. proximal) subdifferential of the distance

function. This proposition has an intuitive geometrical interpretation. Indeed, the
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limiting (resp. proximal) subdifferential of the distance function at 𝑥 ∈ 𝑀 are all

directions, where the distance from𝑀 grows the most. These directions then form

the limiting (resp. proximal) normal cone. Let us define a lower semicontinuous

function.

▶ Definition 2.19.
Let𝑀 ⊆ ℝ𝑛

, 𝑓 : 𝑀 → ℝ∞. We say the function 𝑓 is lower semicontinuous if, for all
𝑐 ∈ ℝ, the set { 𝑥 ∈ 𝑀 | 𝑓 (𝑥) ≤ 𝑐 } is closed. ◀

Proposition 2.18 allows us to formulate optimization problem of minimizing

a function 𝑓 on a set 𝑀 as minimizing function ℎ(𝑥) := 𝑓 (𝑥) + 𝐼𝑀 (𝑥) with tools

similar to classical calculus. This is shown in the following theorem.

▶ Theorem 2.20.
Let 𝑥 be a local minimizer of the function 𝑓 : ℝ𝑛 → ℝ∞ on a nonempty closed set

𝑀 ⊂ ℝ𝑛
, where 𝑓 is Lipschitz near 𝑥 . Then it holds that

0 ∈ 𝜕𝐿 𝑓 (𝑥) + 𝑁 𝐿
𝑀 (𝑥).

◀

Proof. We will use a proximal sum rule proved in [Cla13, p. 234], which says that

𝜕𝐿 (𝑓1 + 𝑓2) (𝑥) ⊂ 𝜕𝐿 𝑓1(𝑥) + 𝜕𝐿 𝑓2(𝑥), (2.4)

whenever 𝑓1 and 𝑓2 are lower semicontinuous, 𝑥 ∈ dom𝑓1 ∩ dom𝑓2 and at least one

of the functions 𝑓1 and 𝑓2 is Lipschitz near 𝑥 .

We reformulate the optimization problem as min 𝑓 (𝑥) + 𝐼𝑀 (𝑥). We know that

limiting subdifferential exists and hence, the proximal subdifferential exists (recall

that 𝜕𝑃 𝑓 (𝑥) ⊆ 𝜕𝐿 𝑓 (𝑥)). The definition of a local minimum says that there exits a

neighbourhood𝑈 (𝑥) of 𝑥 , such that

(𝑓 (𝑥) + 𝐼𝑀 (𝑥)) (𝑥) − (𝑓 (𝑥) + 𝐼𝑀 (𝑥)) (𝑥) ≥ 0 = ⟨0, 𝑥 − 𝑥⟩ for all 𝑥 ∈ 𝑈 (𝑥)

and hence, from Definition 2.4, we immediately see that

0 ∈ 𝜕𝑃 (𝑓 + 𝐼𝑀 ) (𝑥), 0 ∈ 𝜕𝐿 (𝑓 + 𝐼𝑀 ) (𝑥).
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We can use (2.4) and Proposition 2.18 to derive

0 ∈ 𝜕𝐿 (𝑓 + 𝐼𝑀 ) (𝑥) ⊂ 𝜕𝐿 𝑓 (𝑥) + 𝜕𝐿𝐼𝑀 (𝑥) = 𝜕𝐿 𝑓 (𝑥) + 𝑁 𝐿
𝑀 (𝑥).

■

This theorem allows us to combine the geometry of a set of feasible solutions

with the objective function and use proximal calculus to solve these problems. It can

be easily seen that when𝑀 = ℝ𝑛
, then 𝑁 𝐿

ℝ𝑛 = {0} and hence, necessary conditions

of optimality for minimizing 𝑓 (𝑥) are reduced to 0 ∈ 𝜕𝐿 𝑓 (𝑥), which corresponds

to knowledge from classical calculus in the case of continuously differentiable

functions. This theorem allows us to put both constrained and unconstrained

optimization problems into one formalism.

We have already encountered a cone 𝑁 𝑃
𝑀
(𝑥), which is convex and cone 𝑁 𝐿

𝑀
(𝑥),

which is closed. We follow with the definition of the generalized normal cone,

which is both closed and convex (which can be seen directly from the definition).

▶ Definition 2.21.
Let 𝑥 ∈ 𝑀 . Then, the generalized normal cone of𝑀 at 𝑥 is defined as

𝑁𝐶
𝑀 (𝑥) = co𝑁 𝐿

𝑀 (𝑥).

◀

We state a lemma, which can be used to compute proximal normal cones.

▶ Lemma 2.22.
Let 𝑥 ∈ 𝑀 ⊆ ℝ𝑛

and 𝜁 ∈ ℝ𝑛
. If there is 𝑣 ∈ ℝ𝑛

such that 𝑥 + 𝛼𝑣 ∈ 𝑀 for all 𝛼 > 0

suffuciently small and ⟨𝜁 , 𝑣⟩ > 0, then 𝜁 ∉ 𝑁 𝑃
𝑀
(𝑥). ◀

Proof. Let 𝜁 ∈ 𝑁 𝑃
𝑀
(𝑥). It follows from Proposition 2.14, that there is 𝜎 ≥ 0 such

that

⟨𝜁 , 𝑣⟩ ≤ 𝛼𝜎 |𝑣 |2

for all 𝛼 > 0 sufficiently small. This is a contradiction with the assumption that

⟨𝜁 , 𝑣⟩ > 0 and hence, 𝜁 ∉ 𝑁 𝑃
𝑀
(𝑥). ■

The construction of all the sets is illustrated in a following example.
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▶ Example 2.23.
We consider a set

𝑀 = { (𝑥,𝑦) | 𝑥 ≤ 0 } ∪ { (𝑥,𝑦) | 𝑦 ≤ 0 }

and our task is to compute 𝑁 𝑃
𝑀
(0), 𝑁 𝐿

𝑀
(0) and 𝑁𝐶

𝑀
(0). At first, we take a look at the

proximal normal cone. From the definition of proximal normal cone we know, that

𝜁 = (𝜁𝑥 , 𝜁𝑦) ∈ ℝ2
is a proximal normal to𝑀 at 0 if and only if it holds that

d𝑀 (𝑡𝜁 ) = 𝑡 |𝜁 |

for some 𝑡 > 0. We compute

d𝑀 (𝑡𝜁 ) = inf

𝑦∈𝑀
|𝑡𝜁 − 𝑦 | =

{
0 if 𝑡𝜁 ∈ 𝑀,
𝑡 min{𝜁𝑥 , 𝜁𝑦} if 𝑡𝜁 ∉ 𝑀.

Hence, when 𝑡𝜁 ∈ 𝑀 , it holds that 0 = 𝑡 |𝜁 | and so 𝜁 = 0. Now assume 𝑡𝜁 ∉ 𝑀 .

Then 𝑡 min{𝜁𝑥 , 𝜁𝑦} = 𝑡 |𝜁 |, which can hold only for 𝜁 = (𝜁𝑥 , 0) or 𝜁 = (0, 𝜁𝑦). Both of

these elements belong to𝑀 . Since𝑀 is a cone (i.e., 𝑡 > 0 and 𝜁 ∈ 𝑀 imply 𝑡𝜁 ∈ 𝑀),

we obtain a contradiction with our assumption 𝑡𝜁 ∉ 𝑀 . Hence, there is no vector

𝑡𝜁 ∉ 𝑀 such that d𝑀 (𝑡𝜁 ) = 𝑡 |𝜁 |. Consequently,

𝑁 𝑃
𝑀 (0) = {0}.

To construct the imiting normal cone 𝑁 𝐿
𝑀
(0), we need to know 𝑁 𝑃

𝑀
(𝑥) for all

𝑥 ∈ 𝑀 . Observe that it follows from Lemma 2.22, that 𝑁 𝑃
𝑀
(𝑥) = {0} whenever 𝑥

belongs to the interior of𝑀 (set 𝑣 = 𝜁 ).

Let 𝑥 ∈ { (0, 𝑎) | 𝑎 > 0 }. From Lemma 2.22, we know that 𝜁 ∉ 𝑁 𝑃
𝑀
(𝑥) whenever

𝜁 = (𝜁𝑥 , 𝜁𝑦) be such that 𝜁𝑥 < 0. Consider 𝜁𝑥 ≥ 0. If 𝜁𝑦 > 0, then Lemma 2.22 ensures

that 𝜁 ∉ 𝑁 𝑃
𝑀
(𝑥) (take 𝑣 = (0, 1)). Similarly, 𝜁 ∉ 𝑁 𝑃

𝑀
(𝑥) if 𝜁𝑦 < 0 (take 𝑣 = (0, 1)). If

𝜁𝑦 = 0, then we have ⟨𝜁 ,𝑢 − 𝑥⟩ ≤ 0 for all 𝑢 ∈ 𝑀 . Thus, 𝑁 𝑃
𝑀
(𝑥) = { (𝑡, 0) | 𝑡 ≥ 0 }.

Analogically, we can compute that for 𝑥 ∈ { (𝑎, 0) | 𝑎 > 0 }, the proximal normal

cone is 𝑁 𝑃
𝑀
(𝑥) = { (0, 𝑡) | 𝑡 ≥ 0 }.

Let us divert our attention to 𝑁 𝐿
𝑀
(0). Let

𝐶 = { (𝑡, 0) | 𝑡 ≥ 0 } ∪ { (0, 𝑡) | 𝑡 ≥ 0 }.

It follows from the definition of limiting normal cone and the discussion given

above, that 𝐶 ⊆ 𝑁 𝐿
𝑀
(0). Let 𝜁 ∈ ℝ𝑛 \𝐶 . Then 𝜁 ∉ 𝑁 𝐿

𝑀
(0), because for all 𝑥 ∈ 𝑀 ,
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𝑁 𝑃
𝑀
(𝑥) contains only vectors with at least one zero component. Therefore,

𝑁 𝐿
𝑀 (0) = { (𝑡, 0) | 𝑡 ≥ 0 } ∪ { (0, 𝑡) | 𝑡 ≥ 0 }.

Finally, we compute generalized normal cone from Definition 2.21 as

𝑁𝐶
𝑀 (0) = co𝑁 𝐿

𝑀 (0) = { (𝑡, 𝑠) | 𝑡, 𝑠 ≥ 0 }.

The situation is illustrated in the Figure 2.2, where we can see the vector 𝜁 =

(𝜁𝑥 , 𝜁𝑦) ∉ 𝑀 (in this situation we assume 𝜁𝑥 < 𝜁𝑦) and the closest point (0, 𝜁𝑦) in
𝑀 to 𝜁 . Proximal normal cone is blue, limiting normal cone is red and generalized

normal cone is yellow.

M

𝜁
𝜁𝑥

(0, 𝜁𝑦 )

x

y

Figure 2.2: Illustration of 𝑁 𝑃
𝑀
(0), 𝑁 𝐿

𝑀
(0) and 𝑁𝐶

𝑀
(0) from Example 2.23

We can clearly see that all three cones are different and that the limiting normal

cone is not convex. ◀

Relations between all defined sets are described in the following theorem.

▶ Theorem 2.24.
Let 𝑥 ∈ 𝑀 . Then

𝑁 𝑃
𝑀 (𝑥) ⊆ 𝑁

𝐿
𝑀 (𝑥) ⊆ 𝑁

𝐶
𝑀 (𝑥). (2.5)

Moreover, if𝑀 is closed and convex, all the sets 𝑁 𝑃
𝑀
(𝑥), 𝑁 𝐿

𝑀
(𝑥) and 𝑁𝐶

𝑀
(𝑥) coincide,
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they are convex and closed and can be expressed as

𝑁 𝑃
𝑀 (𝑥) = 𝑁

𝐿
𝑀 (𝑥) = 𝑁

𝐶
𝑀 (𝑥) = { 𝜁 ∈ ℝ

𝑛 | ⟨𝜁 ,𝑢 − 𝑥⟩ ≤ 0 ∀𝑢 ∈ 𝑀 }. (2.6)

◀

Proof. The inclusion 𝑁 𝑃
𝑀
(𝑥) ⊆ 𝑁 𝐿

𝑀
(𝑥) has already been discussed. The inclusion

𝑁 𝐿
𝑀
(𝑥) ⊆ 𝑁𝐶

𝑀
(𝑥) is evident from the definitions of sets 𝑁 𝐿

𝑀
(𝑥) and 𝑁𝐶

𝑀
(𝑥). We

prove that equation (2.6) is satisfied whenever𝑀 is convex and closed.

Firstly, we show that 𝜁 ∈ 𝑁 𝑃
𝑀
(𝑥) ⇐⇒ ⟨𝜁 ,𝑢 − 𝑥⟩ ≤ 0 ∀𝑢 ∈ 𝑀 .

⇐ If ⟨𝜁 ,𝑢 −𝑥⟩ ≤ 0 for all 𝑢 ∈ 𝑀 , then we immediately see from Proposition 2.14

that 𝜁 ∈ 𝑁 𝑃
𝑀
(𝑥).

⇒ Let 𝑥 ∈ 𝑀 . Let 𝜁 ∈ 𝑁 𝑃
𝑀
(𝑥). From Proposition 2.14, there is 𝜎 ≥ 0 such that

⟨𝜁 ,𝑢 − 𝑥⟩ ≤ 𝜎 |𝑢 − 𝑥 |2 for all 𝑢 ∈ 𝑀.

Hence, for all 𝑢 ∈ 𝑀 and for all 𝑡 ∈ (0, 1⟩, we have

⟨𝜁 ,𝑢 − 𝑥⟩ = 1

𝑡
⟨𝜁 , 𝑡 (𝑢 − 𝑥)⟩ = 1

𝑡
⟨𝜁 , 𝑡𝑢 + (1 − 𝑡)𝑥
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

:= 𝑣 ∈ 𝑀

−𝑥⟩

≤ 1

𝑡
𝜎 |𝑣 − 𝑥 |2 = 1

𝑡
𝜎 |𝑡𝑢 + (1 − 𝑡)𝑥 − 𝑥 |2

=
1

𝑡
𝜎 |𝑡 (𝑢 − 𝑥) |2 = 𝑡𝜎 |𝑢 − 𝑥 |2.

We take the limit 𝑡 → 0
+
, which gives us

⟨𝜁 ,𝑢 − 𝑥⟩ ≤ 0 for all 𝑢 ∈ 𝑀.

Therefore,

𝑁 𝑃
𝑀 (𝑥) = { 𝜁 ∈ ℝ

𝑛 | ⟨𝜁 ,𝑢 − 𝑥⟩ ≤ 0 ∀𝑢 ∈ 𝑀 }.

Now we would like to show that 𝑁 𝐿
𝑀
(𝑥) ⊆ 𝑁 𝑃

𝑀
(𝑥). Let 𝜁 ∈ 𝑁 𝐿

𝑀
(𝑥). By Def-

inition 2.16, there exist sequences (𝑥𝑖)∞𝑖=1
and (𝜁𝑖)∞𝑖=1

such that 𝑥𝑖 ∈ 𝑀 , 𝑥𝑖 → 𝑥 ,

𝜁𝑖 ∈ 𝑁 𝑃
𝑀
(𝑥𝑖), 𝜁𝑖 → 𝜁 . Using what we have proved above, we know that

⟨𝜁𝑖, 𝑢 − 𝑥𝑖⟩ ≤ 0 for all 𝑢 ∈ 𝑀.
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By taking the limit 𝑖 →∞, we obtain

⟨𝜁 ,𝑢 − 𝑥⟩ ≤ 0

and so 𝜁 ∈ 𝑁 𝑃
𝑀
(𝑥) and thus, 𝑁 𝐿

𝑀
(𝑥) ⊆ 𝑁 𝑃

𝑀
(𝑥). Recall that 𝑁 𝑃

𝑀
(𝑥) is convex, 𝑁 𝐿

𝑀
(𝑥)

is closed and we have just shown that 𝑁 𝑃
𝑀
(𝑥) = 𝑁 𝐿

𝑀
(𝑥). Thus,

𝑁𝐶
𝑀 (𝑥) = co𝑁 𝐿

𝑀 (𝑥) = 𝑁
𝐿
𝑀 (𝑥) = 𝑁

𝑃
𝑀 (𝑥) = { 𝜁 ∈ ℝ

𝑛 | ⟨𝜁 ,𝑢 − 𝑥⟩ ≤ 0 ∀𝑢 ∈ 𝑀 },

which is our desired conclusion. ■

Finally, we state one more proposition, that helps with the computation of

proximal normal cones in some particular situations.

▶ Proposition 2.25.
Let 𝑔 : ℝ𝑛 → ℝ be a continuously differentiable convex function. Assume that

𝑀 = { 𝑥 ∈ ℝ𝑛 | 𝑔(𝑥) ≤ 0 },

𝑦 ∈ ℝ𝑛
belongs to the boundary of𝑀 and ∇𝑔(𝑦) ≠ 0. Then,

𝑁 𝑃
𝑀 (𝑦) = { 𝛼∇𝑔(𝑦) | 𝛼 ≥ 0 }.

◀

Proof. Firstly, we show that 𝑀 is closed. If we have a sequence (𝑥𝑖)∞𝑖=1
, 𝑥𝑖 ∈ 𝑀 ,

𝑥𝑖 → 𝑥 ∈ ℝ𝑛
, then 𝑔(𝑥) = lim𝑖→∞ 𝑔(𝑥𝑖) ≤ 0 (by continuity of 𝑔) and therefore,

𝑥 ∈ 𝑀 and hence,𝑀 is closed. Moreover,𝑀 is convex, because

𝑔(𝑡𝑥 + (1 − 𝑡)𝑦) ≤ 𝑡𝑔(𝑥) + (1 − 𝑡)𝑔(𝑦) ≤ 0,

whenever 𝑥,𝑦 ∈ 𝑀 and 𝑡 ∈ ⟨0, 1⟩.
Let 𝑦 be a boundary point of 𝑀 . We know that 𝑦 ∈ 𝑀 . It follows from Theo-

rem 2.24, that 𝜁 ∈ 𝑁 𝑃
𝑀
(𝑦) if and only if

⟨𝜁 , 𝑥 − 𝑦⟩ = ⟨𝜁 , 𝑥⟩ − ⟨𝜁 ,𝑦⟩ ≤ 0 for all 𝑥 ∈ 𝑀.

In other words, 𝜁 ∈ 𝑁 𝑃
𝑀
(𝑦) if and only if 𝑦 is a minimizer of the function 𝑓𝜁 (𝑥) =

⟨𝜁 , 𝑥⟩ on the set𝑀 .

By KKT conditions (see [AEP20]), 𝑦 minimizes 𝑓𝜁 on𝑀 if and only if there exists
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𝛼 ≥ 0 such that

−∇𝑓𝜁 (𝑦) + 𝛼∇𝑔(𝑦) = 0.

Note that ∇𝑓𝜁 (𝑦) = 𝜁 , which gives us 𝜁 ∈ 𝑁 𝑃
𝑀
(𝑦) if and only if 𝜁 = 𝛼∇𝑔(𝑦) for some

𝛼 ≥ 0. That is,

𝑁 𝑃
𝑀 (𝑦) = { 𝛼∇𝑔(𝑦) | 𝛼 ≥ 0 }.

■
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3 Pontryagin maximum principle

In this chapter, we formulate an optimal control problem and then follow with

Clarke’s formulation of Pontryagin maximum principle (the extended principle)

stated in [Cla13, p. 465], which provides necessary conditions of optimality for

optimal control problem. Then, we explain various standard versions of maximum

principles used in optimal control theory (standard fixed-time principle, standard

variable-time principle and hybrid principle). Finally, we briefly elaborate on the

problematics of mixed constraints in optimal control.

3.1 Basic concepts
We begin with the introduction of some well-known concepts. Firstly, we make

a few definitions (taken from [Cla13] and [Cla90]), which are necessary in the

formulation of the maximum principle and we introduce the reader to optimal

control problems.

▶ Definition 3.1.
Let ⟨𝑎, 𝑏⟩ ⊂ ℝ be an interval. We say a function 𝑓 : ⟨𝑎, 𝑏⟩ → ℝ is absolutely
continuous, if there exists a (Lebesgue) measurable function 𝑔 : ⟨𝑎, 𝑏⟩ → ℝ such

that

𝑓 (𝑥) = 𝑓 (𝑎) +
∫ 𝑥

𝑎

𝑔(𝑡)𝑑𝑡

for all 𝑥 ∈ ⟨𝑎, 𝑏⟩.
Additionally, we say the vector function 𝑓 : ⟨𝑎, 𝑏⟩ → ℝ𝑛

is an arc if all its
components are absolutely continuous functions. ◀

It follows that if 𝑓 : ⟨𝑎, 𝑏⟩ → ℝ is absolutely continuous, it is continuous on

⟨𝑎, 𝑏⟩ and differentiable for almost all 𝑡 ∈ ⟨𝑎, 𝑏⟩. Furthermore, we need to define a

supremum norm of a function.
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▶ Definition 3.2.
We define the supremum norm of a bounded function 𝑓 : ⟨𝑎, 𝑏⟩ → ℝ𝑛

as

∥ 𝑓 ∥∞ := sup

𝑡∈⟨𝑎,𝑏⟩
{|𝑓 (𝑡) |}.

◀

The controlled differential equation is

𝑥′(𝑡) = 𝑓 (𝑡, 𝑥 (𝑡), 𝑢 (𝑡)), 𝑢 (𝑡) ∈ 𝑈 for all 𝑡 ∈ ⟨𝑎, 𝑏⟩, (3.1)

where 𝑓 : ⟨𝑎, 𝑏⟩ ×ℝ𝑛 ×ℝ𝑚 → ℝ𝑛
is a dynamics function,𝑈 ⊂ ℝ𝑚 is the control set

(later, we use time dependent control set), 𝑢 : ⟨𝑎, 𝑏⟩ → ℝ𝑚 is a measurable function,

the solution 𝑥 ∈ ℝ𝑛
of (3.1) for a given initial condition 𝑥 (𝑎) = 𝑥0 ∈ ℝ𝑛

is the state,
𝑡 ∈ ℝ is the time variable, the couple (𝑥, 𝑓 ,𝑈 ) is refered to as a control system and

𝑛 is the order of the system. The equation (3.1) is also commonly referred to as

the state equation. If the function 𝑓 is independent of time, we say the system is

autonomous. Let us clarify what we mean by the solution of (3.1). In an usual way

(see [LR14]), we consider 𝑥 is a solution of (3.1) with an initial condition 𝑥 (𝑎) = 𝑥0,

if it satisfies

𝑥 (𝑡) = 𝑥0 +
∫ 𝑡

𝑎

𝑓 (𝜏, 𝑥 (𝜏), 𝑢 (𝜏))𝑑𝜏 for all 𝑡 ∈ ⟨𝑎, 𝑏⟩. (3.2)

From the definition of an arc we immediately see that 𝑥 is an arc.

We typically want to enforce some specific behaviour of the control system

(𝑥, 𝑓 ,𝑈 ) and we achieve it by choosing an appropriate control 𝑢 (𝑡). The procedure
of choosing the appropriate 𝑢 (𝑡) can be referred to as a control problem. Control

problem can have many different solutions. If we want to select only "the best"

solution for our problem, we encounter an optimal control problem, where we

want to find control 𝑢 (and the state 𝑥 ) such that it minimizes a cost functional

𝐽 (𝑥,𝑢) := 𝑙 (𝑥 (𝑎), 𝑥 (𝑏)) +
∫ 𝑏

𝑎

𝐿(𝑡, 𝑥 (𝑡), 𝑢 (𝑡))𝑑𝑡, (3.3)

where 𝐿 : ⟨𝑎, 𝑏⟩ ×ℝ𝑛×ℝ𝑚 → ℝ is a running cost and 𝑙 : ℝ𝑛×ℝ𝑛 → ℝ is a boundary
cost. Running cost penalizes the system’s behaviour during time interval ⟨𝑎, 𝑏⟩.
Boundary cost penalizes state at initial time and final time specifically. The function

𝐿 is also commonly referred to as a Lagrangian. The couple (𝑥,𝑢) is referred to as a
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process of the control system (𝑥, 𝑓 ,𝑈 ). When both the dynamics function and the

Lagrangian are independent of 𝑡 (and later also the set𝑈 is independent of 𝑡 ), we

say the problem is autonomous. To proceed, it is necessary to define Hamiltonian.

▶ Definition 3.3.
The Hamiltonian function 𝐻𝜂

: ⟨𝑎, 𝑏⟩ × ℝ𝑛 × ℝ𝑛 × ℝ𝑚 → ℝ associated to the

optimal control problem is

𝐻𝜂 (𝑡, 𝑥, 𝑝,𝑢) = ⟨𝑝, 𝑓 (𝑡, 𝑥,𝑢)⟩ − 𝜂𝐿(𝑡, 𝑥,𝑢),

where 𝜂 ∈ {0, 1} is a parameter, based on which we distinguish between normal

(𝜂 = 1) and abnormal (𝜂 = 0) cases and 𝑝 : ⟨𝑎, 𝑏⟩ → ℝ𝑛
is a function. ◀

The function 𝑝 is commonly referred to as a costate. It appears in the optimal

control problem due to the fact that we want to minimize (3.3) while the state

equation (3.1) holds. Hence, we encounter constrained optimization problem, where

𝑝 plays a role of a multiplier enforcing the process satisfies the state equation. We

can notice it holds that:

∇𝑝𝐻𝜂 = 𝑓 (𝑡, 𝑥,𝑢) = 𝑥′.

When we divert our attention to examples, we will use symbol 𝐻 for the Hamil-

tonian. In the theory, we use the symbol 𝐻𝜂
to emphasise the dependence on 𝜂,

even though we do not put 𝜂 into the arguments of 𝐻𝜂
. We will later encounter

another type of Hamiltonian, when we study the presence of mixed constraints in

optimal control, but it will be clear from the context, which Hamiltonian is referred

to by 𝐻 .

3.2 Extended maximum principle

The extended maximum principle is the most general maximum principle we pro-

vide in this chapter, because it allows more general problem formulation compared

to standard versions of maximum principles presented in literature (which will be

discussed later in this chapter). It is formulated for a fixed-time optimal control
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problem (i.e., we consider a time interval of fixed length ⟨𝑎, 𝑏⟩)

min 𝐽 (𝑥,𝑢) = 𝑙 (𝑥 (𝑎), 𝑥 (𝑏)) +
∫ 𝑏

𝑎

𝐿(𝑡, 𝑥 (𝑡), 𝑢 (𝑡))𝑑𝑡

s.t.: 𝑥′(𝑡) = 𝑓 (𝑡, 𝑥 (𝑡), 𝑢 (𝑡)), for almost all 𝑡 ∈ ⟨𝑎, 𝑏⟩,
𝑢 (𝑡) ∈ 𝑈 (𝑡), for almost all 𝑡 ∈ ⟨𝑎, 𝑏⟩,
(𝑥 (𝑎), 𝑥 (𝑏)) ∈ 𝐸,

(EP)

where 𝐸 is the set of desired states at initial and final time, 𝐽 (𝑥,𝑢) is the cost

functional, which measures the quality of our solution. Note that instead of a

traditional approach of defined initial condition, we assume an initial condition

belongs to a set. Thereafter, when the initial condition belongs to a set, we refer to

this as a generalized initial condition. This may be helpful for example in trajectory

planning, when we may want to find an optimal initial condition from a set of all

possible initial conditions.

We assume the following:

• The functions 𝑓 (𝑡, 𝑥,𝑢) and 𝐿(𝑡, 𝑥,𝑢) are 𝑓 , 𝐿 are lower semicontinuous in

(𝑡,𝑢) for each 𝑥 ;

• the graph gr𝑈 = { (𝑡,𝑢) ∈ ⟨𝑎, 𝑏⟩ ×ℝ𝑚 | 𝑢 ∈ 𝑈 (𝑡) } is a Borel set;

• The set 𝐸 ⊂ ℝ𝑛 ×ℝ𝑛
is closed, and 𝑙 is locally Lipschitz.

Note that every closed set is Borel. For background information on Borel sets, we

refer the interested reader to [Axl20, p. 136]. Our assumptions are sterner compared

to what Clarke assumes in [Cla13].

A process (𝑥,𝑢) is admissible for (EP) if all the constraints are satisfied and 𝐽 (𝑥,𝑢)
is well-defined and finite. We must state what we refer to by minimizing 𝐽 (𝑥,𝑢). We

say a process (𝑥∗, 𝑢∗) is a local minimizer if and only if for some 𝜀 > 0 and for every

admissible process (𝑥,𝑢) satisfying ∥𝑥 − 𝑥∗∥∞ < 𝜀, we have 𝐽 (𝑥∗, 𝑢∗) ≤ 𝐽 (𝑥,𝑢).
As an additional assumption for the extended principle, we consider a hypothesis,

which is basically local Lipschitz property in state, admittting different constant

for each time and control.

▶ Hypothesis 3.4.
There exists an lower semicontinuous function 𝑘 (𝑡,𝑢) : gr𝑈 → ℝ, (𝑡,𝑢) ↦→ 𝑘 (𝑡,𝑢)
such that, for almost every 𝑡 ∈ ⟨𝑎, 𝑏⟩, we have

𝑥,𝑦 ∈ 𝐵(𝑥∗(𝑡), 𝜀), 𝑢 ∈ 𝑈 (𝑡) =⇒
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| 𝑓 (𝑡, 𝑥,𝑢) − 𝑓 (𝑡, 𝑦,𝑢) | + | 𝐿(𝑡, 𝑥,𝑢) − 𝐿(𝑡, 𝑦,𝑢) |≤ 𝑘 (𝑡,𝑢) | 𝑥 − 𝑦 |

and such that 𝑡 ↦→ 𝑘 (𝑡,𝑢∗(𝑡)) is integrable. ◀

Now we formulate the extended principle, proved in [Cla13, p. 514].

▶ Theorem 3.5 (Clarke).
Let (𝑥∗, 𝑢∗) be a local minimizer for (EP), where Hypothesis 3.4 holds. Then there

exist an arc 𝑝 : ⟨𝑎, 𝑏⟩ → ℝ𝑛
together with a scalar 𝜂 equal to 0 or 1 satisfying the

nontriviality condition

(𝜂, 𝑝 (𝑡)) ≠ 0 for all 𝑡 ∈ ⟨𝑎, 𝑏⟩, (3.4)

the transversality condition

(𝑝 (𝑎),−𝑝 (𝑏)) ∈ 𝜂𝜕𝐿𝑙 (𝑥∗(𝑎), 𝑥∗(𝑏)) + 𝑁 𝐿
𝐸 (𝑥

∗(𝑎), 𝑥∗(𝑏)), (3.5)

the adjoint inclusion for almost every 𝑡 :

−𝑝′(𝑡) ∈ 𝜕𝐶𝐻𝜂 (𝑡, •, 𝑝 (𝑡), 𝑢∗(𝑡)) (𝑥∗(𝑡)), (3.6)

as well as themaximum condition for almost every 𝑡 :

𝐻𝜂 (𝑡, 𝑥∗(𝑡), 𝑝 (𝑡), 𝑢∗(𝑡)) = sup

𝑢∈𝑈 (𝑡)
𝐻𝜂 (𝑡, 𝑥∗(𝑡), 𝑝 (𝑡), 𝑢). (3.7)

If the problem is autonomous, then onemay add to these conclusions the constancy
of the Hamiltonian: for some constant ℎ, we have

𝐻𝜂 (𝑡, 𝑥∗(𝑡), 𝑝 (𝑡), 𝑢∗(𝑡)) = ℎ a.e.

◀

3.2.1 A commentary on the extended principle

Note that the maximum principle is a very complex multiplier rule. Indeed, (𝜂, 𝑝)
are multipliers. Multiplier 𝜂 distinguishes between two cases. When 𝜂 = 0, we

encounter a degenerate case, when the constraints itself determine the optimal

solution regardless of the cost functional. In this case, we can see that the necessary

conditions provided by the extended principle do not take the cost functional into
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account. We say the problem is normal, whenever 𝜂 = 1. Then, the minimization

of the cost functional verily happens.

Multiplier 𝑝 ensures, that the state equation is fulfilled at almost every time, i.e.,

the state trajectory is admissible for the system. The state equation is a differential

equation and therefore, it is logical that the maximum principle provides us with

a differetial equation, which the costate 𝑝 must satisfy. However, the expression

(3.6) is not a differential equation, it is called a differential inclusion. The general-
ized gradient 𝜕𝐶𝐻

𝜂 (𝑡, •, 𝑝 (𝑡), 𝑢∗(𝑡)) (𝑥∗(𝑡)) is a set, which, in general, can contain

multiple elements. Therefore, we say, that the time derivative of 𝑝 lies in this set

for almost every 𝑡 . If the set 𝜕𝐶𝐻
𝜂 (𝑡, •, 𝑝 (𝑡), 𝑢∗(𝑡)) (𝑥∗(𝑡)) is a singleton for all 𝑡 ,

the differential inclusion is reduced to a standard differential equation, as stated in

[Cla+98] or [Cla90]. Anything less complex than differential inclusion (equation)

would not be sufficient to enforce the state equation is satisfied.

Furthermore, we can see that the transversality condition is linking together the

knowledge of the state and costate at the final (resp. initial) time. When the final

(resp. initial) condition is prescribed (for the state), the limiting normal cone of the

set 𝐸 does not give any restriction on the final (resp. initial) value of the costate

(i.e., this value can be arbitrary). This is caused by the fact that when we need

to reach a pre-defined value of the state at the final (resp. initial) time, we need

the freedom in costates to do so. Conversely, when we have freedom in choosing

the final (resp. initial) destination of state, we restrict the final (resp. initial) set

of admissible costates based on the boundary cost 𝑙 , which leads to choosing the

appropriate final (resp. initial) value of the state to minimize the cost functional.

When the set 𝐸 is defined by functional relations (equalities and inequalities), the

transversality condition can be expressed by additional multipliers (for further

information, see [Cla13]), which corresponds to the explanation above.

Observe that for the Hamiltonian function it holds that

−𝑝′(𝑡) ∈ 𝜕𝐶𝐻𝜂 (𝑡, •, 𝑝 (𝑡), 𝑢∗(𝑡)) (𝑥∗(𝑡)),
𝑥′ = ∇𝑝𝐻𝜂,

we call them the Hamiltonian canonical equations. When 𝐻𝜂
is differentiable with

respect to 𝑥 , it reduces to

−𝑝′ = ∇𝑥𝐻𝜂,

𝑥′ = ∇𝑝𝐻𝜂,

which is a well-known concept.
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3.2.2 Standard fixed-time maximum principle as a special
case of the extended principle

In this section we consider a simpler (fixed-time) optimal control problem with

sterner assumptions (compared to the assumptions given for the extended principle),

which are often sufficient in applications. A standard form of maximum principle,

which is indeed a specific instance of the extended principle, will be presented. We

consider a problem

min 𝐽 (𝑥,𝑢) = 𝑙 (𝑥 (𝑏)) +
∫ 𝑏

𝑎

𝐿(𝑡, 𝑥 (𝑡), 𝑢 (𝑡))𝑑𝑡

s.t.: 𝑥′(𝑡) = 𝑓 (𝑡, 𝑥 (𝑡), 𝑢 (𝑡)), for almost all 𝑡 ∈ ⟨𝑎, 𝑏⟩,
𝑢 (𝑡) ∈ 𝑈 , for almost all 𝑡 ∈ ⟨𝑎, 𝑏⟩,
𝑥 (𝑎) = 𝑥0, 𝑥 (𝑏) ∈ 𝐸,

(SP)

where the meaning of symbols stays the same as in previous section with some

exceptions, which we emphasise. A control set 𝑈 is not time dependent and 𝑈

is assumed to be compact. We consider a standard initial condition instead of

the generalized initial condition and consequently, the boundary cost 𝑙 becomes

function of the final state solely, i.e., 𝑙 : ℝ𝑛 → ℝ and we call it a terminal cost. We

limit ourselves to differentiable functions.

We consider the following hypothesis.

▶ Hypothesis 3.6.
The function 𝑙 is continuously differentiable. Functions 𝑓 and 𝐿 are continuous, and

admit derivatives ∇𝑥 𝑓 (𝑡, 𝑥,𝑢) and ∇𝑥𝐿(𝑡, 𝑥,𝑢) relative to 𝑥 which are themselves

continuous in all variables (𝑡, 𝑥,𝑢). ◀

Since this is a special case of the extended principle from the previous section,

we assume the local minimizer for (SP) is defined in the same way as the local

minimizer for (EP).

Now we formulate a standard version of the maximum principle.

▶ Theorem 3.7.
Let the process (𝑥∗, 𝑢∗) be a local minimizer for the problem (SP) under Hypothesis

3.6, and where𝑈 is bounded. Then there exists an arc 𝑝 : ⟨𝑎, 𝑏⟩ → ℝ𝑛
and a scalar

𝜂 equal to 0 or 1 satisfying the nontriviality condition

(𝜂, 𝑝 (𝑡)) ≠ 0 for all 𝑡 ∈ ⟨𝑎, 𝑏⟩,
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the transversality condition

−𝑝 (𝑏) ∈ 𝜂∇𝑙 (𝑥∗(𝑏)) + 𝑁 𝐿
𝐸 (𝑥

∗(𝑏)),

the adjoint equation for almost every t:

−𝑝′(𝑡) = ∇𝑥𝐻𝜂 (𝑡, 𝑥∗(𝑡), 𝑝 (𝑡), 𝑢∗(𝑡)),

as well as themaximum condition for almost every t:

𝐻𝜂 (𝑡, 𝑥∗(𝑡), 𝑝 (𝑡), 𝑢∗(𝑡)) = sup

𝑢∈𝑈
𝐻𝜂 (𝑡, 𝑥∗(𝑡), 𝑝 (𝑡), 𝑢).

If the problem is autonomous, then onemay add to these conclusions the constancy
of the Hamiltonian: for some constant ℎ, we have

𝐻𝜂 (𝑡, 𝑥∗(𝑡), 𝑝 (𝑡), 𝑢∗(𝑡)) = ℎ a.e.

◀

Note the similarity between this theorem and the extended principle. This

theorem is evidently a specific case of the extended principle. For detailed discussion

see [Cla13].

3.3 Hybrid maximum principle

In this section, we focus on an application of the maximum principle for hybrid
systems. A hybrid system is a system, which experiences different behaviour in

various so-called modes. We assume a hybrid system of a specific form

𝑥′(𝑡) = 𝑓 (𝑥 (𝑡), 𝑢 (𝑡)), 𝑢 (𝑡) ∈ 𝑈 , for almost all 𝑡 ∈ ⟨0, 𝜏⟩,
𝑦′(𝑡) = 𝑔(𝑦 (𝑡), 𝑣 (𝑡)), 𝑣 (𝑡) ∈ 𝑉 , for almost all 𝑡 ∈ ⟨𝜏,𝑇 ⟩,

where (𝑥, 𝑓 ,𝑈 ) and (𝑦,𝑔,𝑉 ) are control systems of orders 𝑛1 and 𝑛2 respectively.

We can see that this is a very special form of a hybrid system — it has only two

modes and it experiences a switch between modes only at 𝑡 = 𝜏 . We formulate a
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hybrid optimal control problem

min 𝐽 (𝑥,𝑢) = 𝑙1(𝑥 (0)) + 𝑙2(𝑦 (𝑇 )) + 𝑙0(𝜏, 𝑥 (𝜏), 𝑦 (𝜏))

+
∫ 𝜏

0

𝐿1(𝑥 (𝑡), 𝑢 (𝑡))𝑑𝑡 +
∫ 𝑇

𝜏

𝐿2(𝑦 (𝑡), 𝑣 (𝑡))𝑑𝑡

s.t.: 𝜏 ∈ ⟨0,𝑇 ⟩,
𝑥′(𝑡) = 𝑓 (𝑥 (𝑡), 𝑢 (𝑡)), 𝑢 (𝑡) ∈ 𝑈 , for almost all 𝑡 ∈ ⟨0, 𝜏⟩,
𝑦′(𝑡) = 𝑔(𝑦 (𝑡), 𝑣 (𝑡)), 𝑣 (𝑡) ∈ 𝑉 , for almost all 𝑡 ∈ ⟨𝜏,𝑇 ⟩,
𝑥 (0) ∈ 𝐸1, (𝜏, 𝑥 (𝜏), 𝑦 (𝜏)) ∈ 𝑆, 𝑦 (𝑇 ) ∈ 𝐸2,

(HP)

where 𝐸1 is the initial set, 𝐸2 is the final set (note that initial and final conditions

are imposed on the first and second systems respectively), 𝑆 ⊆ ⟨0,𝑇 ⟩ ×ℝ𝑛1 ×ℝ𝑛2
,

𝐸1 ⊆ ℝ𝑛1
, 𝐸2 ⊆ ℝ𝑛2

. We refer to (𝜏, 𝑥 (𝜏), 𝑦 (𝜏)) ∈ 𝑆 as a linking condition, whichmay

be used to impose constraints on the switching time 𝜏 , e.g., we may want to impose

constraints that the switch occurs when the state 𝑥 acquires some specific values

and we may want to choose an "initial" condition for the state 𝑦 at the switching

time 𝜏 . We assume that 𝑙1, 𝑙2, 𝑙0, 𝐿1, 𝐿2, 𝑓 , 𝑔 are locally Lipschitz, the control sets𝑈 ,𝑉

are bounded and the sets 𝐸1, 𝐸2, 𝑆 are closed. Note that the hybrid problem (HP) is

autonomous.

We consider a hybrid process (𝑥,𝑢), (𝑦, 𝑣) with a switching time 𝜏 . We consider

that 𝑥 is defined beyond 𝜏 by constancy and 𝑦 is defined prior to 𝜏 by constancy.

Then, we can clarify what we understand by minimizing the cost functional. We say

a hybrid process (𝑥∗, 𝑢∗), (𝑦∗, 𝑣∗) with a switching time 𝜏∗ admissible for (HP) is a

local minimizer for (HP) provided that, for some 𝜀 > 0 and for any admissible hybrid

process (𝑥,𝑢), (𝑦, 𝑣) with switching time 𝜏 satisfying the following: ∥𝑥 − 𝑥∗∥∞ < 𝜀,

∥𝑦 − 𝑦∗∥∞ < 𝜀, | 𝜏 − 𝜏∗ |< 𝜀, we have 𝐽 (𝑥∗, 𝑦∗, 𝜏∗) ≤ 𝐽 (𝑥,𝑦, 𝜏).
We define two Hamiltonians according to Definition 3.3: 𝐻

𝜂

1
is the Hamiltonian

for the first system with the Lagrangian 𝐿1 and costates 𝑝 and𝐻
𝜂

2
is the Hamiltonian

for the second system with the Lagrangian 𝐿2 and costates 𝑞. Now we proceed to

the formulation of the hybrid principle.

▶ Theorem 3.8.
Let (𝑥∗, 𝑢∗) and (𝑦∗, 𝑣∗), with switching time 𝜏∗ ∈ (0,𝑇 ), be a local minimizer for

the problem (HP). Then there exist arcs 𝑝 on ⟨0, 𝜏∗⟩ and 𝑞 on ⟨𝜏∗,𝑇 ⟩ and a scalar 𝜂

equal to 0 or 1 satisfying the nontriviality condition

(𝜂, 𝑝 (𝜏∗), 𝑞(𝜏∗)) ≠ 0,
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the transversality conditions

𝑝 (0) ∈ 𝜂𝜕𝐿𝑙1(𝑥∗(0)) + 𝑁 𝐿
𝐸1

(𝑥∗(0)),
−𝑞(𝑇 ) ∈ 𝜂𝜕𝐿𝑙2(𝑦∗(𝑇 )) + 𝑁 𝐿

𝐸2

(𝑦∗(𝑇 )),

the adjoint inclusions

−𝑝′(𝑡) ∈ 𝜕𝐶𝐻𝜂

1
(•, 𝑝 (𝑡), 𝑢∗(𝑡)) (𝑥∗(𝑡)), for almost all 𝑡 ∈ ⟨0, 𝜏∗⟩,

−𝑞′(𝑡) ∈ 𝜕𝐶𝐻𝜂

2
(•, 𝑞(𝑡), 𝑣∗(𝑡)) (𝑦∗(𝑡)), for almost all 𝑡 ∈ ⟨𝜏∗,𝑇 ⟩,

as well as themaximum conditions: for almost every 𝑡 ,

𝑡 ∈ ⟨0, 𝜏∗⟩ =⇒ 𝐻
𝜂

1
(𝑥∗(𝑡), 𝑝 (𝑡), 𝑢∗(𝑡)) = sup

𝑢∈𝑈
𝐻
𝜂

1
(𝑥∗(𝑡), 𝑝 (𝑡), 𝑢),

𝑡 ∈ ⟨𝜏∗,𝑇 ⟩ =⇒ 𝐻
𝜂

2
(𝑦∗(𝑡), 𝑞(𝑡), 𝑣∗(𝑡)) = sup

𝑣∈𝑉
𝐻
𝜂

2
(𝑦∗(𝑡), 𝑞(𝑡), 𝑣).

In addition, there exist constants ℎ1, ℎ2 such that the constancy conditions hold:

𝐻
𝜂

1
(𝑥∗(𝑡), 𝑝 (𝑡), 𝑢∗(𝑡)) = ℎ1, for almost all 𝑡 ∈ ⟨0, 𝜏∗⟩,

𝐻
𝜂

2
(𝑦∗(𝑡), 𝑞(𝑡), 𝑣∗(𝑡)) = ℎ2, for almost all 𝑡 ∈ ⟨𝜏∗,𝑇 ⟩,

together with the switching condition:

(ℎ1 − ℎ2,−𝑝 (𝜏∗), 𝑞(𝜏∗)) ∈ 𝜂𝜕𝐿𝑙0(𝜏∗, 𝑥∗(𝜏∗), 𝑦∗(𝜏∗)) + 𝑁 𝐿
𝑆 (𝜏
∗, 𝑥∗(𝜏∗), 𝑦∗(𝜏∗)).

◀

Note that as complicated as it may seem, this principle contains two maximum

principles (each for every system on its respective time interval), transversality

conditions for the initial condition of costate involves the first system and the

transversality condition regarding the final costates value involves the second

system. The switching condition resembles a transversality condition as well and it

indeed plays a role of the transversality condition. This is caused by the fact that

as we formulated the hybrid problem (HP), we imposed a linking condition on the

values of states at the (optimal) switching time 𝜏∗. For the first system, the linking

condition plays a role of the (generalized) final condition and for the second system,

it plays a role of the (generalized) initial condition, which defines the signs of ℎ1 and

ℎ2 in the switching condition according to the extended maximum principle. Values

ℎ1 and ℎ2 do not appear in the transversality conditions we have seen so far, but
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they appear in this switching condition due to the fact that this principle is a first

step to variable-time problem. The (optimal) switching time 𝜏∗ is chosen during the

optimization, which is why the function 𝑙0 in the linking condition may depend on

𝜏 as well as the set 𝑆 has one time dimension and naturally, this additional variable

occurs in the transversality condition (here switching condition). Note that it is

sufficient that the nontriviality condition holds only at time 𝑡 = 𝜏∗, which is a

consequence of Gronwall’s lemma, presented in [Cla13, p. 130] in the derivation of

the hybrid principle.

The hybrid principle is derived from the extended principle in [Cla13, p. 468].

The main idea of the derivation is to rewrite a hybrid problem as an augmented

problem admissible for the extended principle and derive necessary conditions for

this augmented problem.

3.4 Standard variable-time maximum principle as a
special case of the hybrid principle

In optimal control theory, the fixed-time problem is often not sufficient. We may

encounter situations, when we want to optimize the length of the time interval as

well. We formulate a variable-time problem

min 𝐽 (𝜏, 𝑥,𝑢) = 𝑙 (𝜏, 𝑥 (𝜏)) +
∫ 𝜏

0

𝐿(𝑥 (𝑡), 𝑢 (𝑡))𝑑𝑡

s.t.: 𝜏 ≥ 0,

𝑥′(𝑡) = 𝑓 (𝑡, 𝑥 (𝑡), 𝑢 (𝑡)), for almost all 𝑡 ∈ ⟨0, 𝜏⟩,
𝑢 (𝑡) ∈ 𝑈 , for almost all 𝑡 ∈ ⟨0, 𝜏⟩,
𝑥 (𝑎) = 𝑥0, (𝜏, 𝑥 (𝜏)) ∈ 𝑆,

(VP)

where we consider a variable length of the interval 𝜏 (often called a horizon). We

assume the initial condition is given and the generalized final condition also includes

the variable time 𝜏 . Notice that the cost functional as well as the terminal cost 𝑙

now in general depend on 𝜏 . Note that the problem (VP) is autonomous.

3.4.1 Derivation of the variable-time principle

We use Theorem 3.8 (hybrid principle) to derive the standard variable-time maxi-

mum principle. Let 𝑇 > 𝜏∗, 𝑔 = 0, 𝐿2 = 0, 𝑙2 = 0, 𝐸2 = ℝ𝑛
, 𝐿1 = 𝐿, 𝐸1 = {𝑥0}, 𝑙1 = 0,

𝑙0 = 𝑙 , 𝑆 = 𝑆 . We invoke necessary conditions of optimality. The nontriviality
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condition says that (𝜂, 𝑝 (𝜏∗), 𝑞(𝜏∗)) ≠ 0, but according to the derivation of the hy-

brid principle in [Cla13, p. 471], we can take the equivalent nontriviality condition

in a form

(𝜂, 𝑝 (𝑡), 𝑞(𝑡), ℎ2 − ℎ1,−ℎ2) ≠ 0 for all 𝑡 ∈ ⟨0,𝑇 ⟩. (3.8)

Then, we have a transversality conditions

𝑝 (0) ∈ {0} +ℝ𝑛 = ℝ𝑛,

−𝑞(𝑇 ) ∈ {0} + {0} = {0},

which gives us no information about the initial condition for 𝑝 , but we know that

𝑞(𝑇 ) = 0. The adjoint inclusions give us

−𝑝′(𝑡) ∈ 𝜕𝐶𝐻𝜂

1
(•, 𝑝 (𝑡), 𝑢∗(𝑡)) (𝑥∗(𝑡)), 𝑡 ∈ ⟨0, 𝜏∗⟩ a.e.,

−𝑞′(𝑡) ∈ 𝜕𝐶𝐻𝜂

2
(•, 𝑞(𝑡), 𝑣∗(𝑡)) (𝑦∗(𝑡)) = {0}, 𝑡 ∈ ⟨0, 𝜏∗⟩ a.e.,

because𝐻
𝜂

2
= ⟨𝑞,𝑔⟩ −𝜂𝐿2 = 0−𝜂 · 0 = 0. Together with the final condition 𝑞(𝑇 ) = 0,

we know that 𝑞 = 0 almost everywhere on ⟨𝜏∗,𝑇 ⟩. The maximum conditions are
reduced to maximum condition only for the first system

𝑡 ∈ ⟨0, 𝜏∗⟩ =⇒ 𝐻
𝜂

1
(𝑥∗(𝑡), 𝑝 (𝑡), 𝑢∗(𝑡)) = sup

𝑢∈𝑈
𝐻
𝜂

1
(𝑥∗(𝑡), 𝑝 (𝑡), 𝑢).

Because the second Hamiltonian 𝐻
𝜂

2
= 0, the maximum condition concerning the

second Hamiltonian does not provide us with any new information. Constancy
conditions give us ℎ2 = 0 and a condition for the first system

𝐻
𝜂

1
(𝑥∗(𝑡), 𝑝 (𝑡), 𝑢∗(𝑡)) = ℎ1, for almost all 𝑡 ∈ ⟨0, 𝜏∗⟩.

Note that 𝑙0 does not depend on 𝑦 and 𝑆 ⊂ ℝ ×ℝ𝑛
, that is, 𝑆 does not provide us

with any information about 𝑦∗(𝜏∗) and therefore, the switching condition does not

contain any information about 𝑞(𝜏∗). Recall that ℎ2 = 0. Due to that, the switching
condition is reduced to:

(ℎ1,−𝑝 (𝜏∗)) ∈ 𝜂𝜕𝐿𝑙0(𝜏∗, 𝑥∗(𝜏∗)) + 𝑁 𝐿
𝑆 (𝜏
∗, 𝑥∗(𝜏∗)) .

With knowledge provided by additional conditions of the hybrid principle, we
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return back to the nontriviality condition (3.8):

(𝜂, 𝑝 (𝑡), 𝑞(𝑡), ℎ2 − ℎ1,−ℎ2) ≠ 0 for all 𝑡 ∈ ⟨0,𝑇 ⟩ =⇒
(𝜂, 𝑝 (𝑡),−ℎ1) ≠ 0 for all 𝑡 ∈ ⟨0,𝑇 ⟩ =⇒
(𝜂, 𝑝 (𝑡)) ≠ 0 for all 𝑡 ∈ ⟨0, 𝜏∗⟩.

Let us explain the second implication (the first one follows from the fact that ℎ2 = 0).

When 𝜂 = 1, the nontriviality condition is automatically satisfied. Let 𝜂 = 0. The

Hamiltonian of the first system 𝐻
𝜂

1
= ⟨𝑝, 𝑓 ⟩ − 𝜂𝐿 = ⟨𝑝, 𝑓 ⟩ = ℎ1 is constant. When

𝑝 = 0, it must hold that ℎ1 = 0 and therefore, we may omit ℎ1 from the nontriviality

condition. Finally, we know that 𝜏∗ < 𝑇 and therefore, the condition holds on

⟨0, 𝜏∗⟩. These derived relations for the first system represent necessary conditions

for problem (VP) and will be summarized in the following section in a standard

variable-time maximum principle.

3.4.2 Formulation of the variable-time principle
By the results of the previous section, we can formulate the maximum principle for

general nonsmooth data. This nonsmooth version can be found in [Cla13, p, 460].

However, for our purposes, a smooth version is sufficient. Therefore, we restrict

our attention to this case. We assume Hypothesis 3.6 holds and we assume the

control set𝑈 is bounded.

Now we clarify what we understand by minimizing the cost functional. Let (𝑥,𝑢)
be a process admissible for problem (VP) defined on ⟨0, 𝜏⟩. We extend an arc 𝑥

beyond 𝜏 by constancy. We say a process (𝑥∗, 𝑢∗), defined on ⟨0, 𝜏∗⟩ and admissible

for problem (VP) is a local minimizer for (VP) if, for some 𝜀 > 0 and for all admissible

processes (𝑥,𝑢) defined on ⟨0, 𝜏⟩ satisfying |𝜏 −𝜏∗ | < 𝜀 and ∥𝑥 −𝑥∗∥∞ < 𝜀, we have

𝐽 (𝜏∗, 𝑥∗, 𝑢∗) ≤ 𝐽 (𝜏, 𝑥,𝑢).

▶ Theorem 3.9.
Let the process (𝑥∗, 𝑢∗) defined on the interval ⟨0, 𝜏∗⟩ (𝜏∗ > 0) be a local minimizer

for the problem (VP) under the hypotheses above. Then there exists an arc 𝑝 :

⟨0, 𝜏∗⟩ → ℝ𝑛
and a scalar 𝜂 equal to 0 or 1 satisfying the nontriviality condition

(𝜂, 𝑝 (𝑡)) ≠ 0 for all 𝑡 ∈ ⟨0, 𝜏∗⟩,

the adjoint equation for almost every 𝑡 ∈ ⟨0, 𝜏∗⟩

−𝑝′(𝑡) = ∇𝑥𝐻𝜂 (𝑥∗(𝑡), 𝑝 (𝑡), 𝑢∗(𝑡)),
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as well as themaximum condition: for almost every 𝑡 ∈ ⟨0, 𝜏∗⟩

𝐻𝜂 (𝑥∗(𝑡), 𝑝 (𝑡), 𝑢∗(𝑡)) = sup

𝑢∈𝑈
𝐻𝜂 (𝑥∗(𝑡), 𝑝 (𝑡), 𝑢),

and such that, for some constant ℎ, we have constancy of the Hamiltonian:

𝐻𝜂 (𝑥∗(𝑡), 𝑝 (𝑡), 𝑢∗(𝑡)) = ℎ a.e.,

and the transversality condition

(ℎ,−𝑝 (𝜏∗)) ∈ 𝜂∇𝑙 (𝜏∗, 𝑥∗(𝜏∗)) + 𝑁 𝐿
𝑆 (𝜏
∗, 𝑥∗(𝜏∗)).

◀

Let 𝑆 = {𝑇 } × 𝐸. Then, there is no freedom in choosing the horizon 𝜏 , but we

may still apply the variable-time principle. When the horizon is prescribed, the

transversality condition provides us with no information about ℎ and therefore,

reduces to transversality condition of Theorem 3.7. Let us emphasise that Theo-

rem 3.9 (variable-time principle) is not a generalization of Theorem 3.7, because

Theorem 3.9 holds only for autonomus problems.

Consider a special case, when the choice of the horizon is arbitrary, that is, the

set 𝑆 = ℝ+ × 𝐸 and the terminal cost 𝑙 is independent of the horizon. Then, the

transversality condition gives us ℎ = 0. Therefore, the Hamiltonian is necessarily

equal to zero along the optimal trajectory.

3.5 Constancy of the Hamiltonian for standard
fixed-time and variable-time principles

In this section, we present a proof of the constancy of the Hamiltonian for Theo-

rem 3.7 and Theorem 3.9 for the case, when the problem is autonomous. Recall that

we assume the validity of Hypothesis 3.6 for both of these theorems. Furthermore,

we assume the control set𝑈 is compact.

The proof is inspired by Liberzon, as he suggests the possible approach to proving

these theorems in [Lib12, p. 124]. In the proof, we consider variable-time principle,

but it is evident, that we can use a fixed interval ⟨𝑎, 𝑏⟩ instead of a variable interval

⟨0, 𝜏∗⟩ and prove the constancy condition of the autonomous case of standard

fixed-time principle. Recall that we discussed the possibility to use variable-time

principle for autonomous fixed-time problems in section 3.4.2, which also justifies
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our choice to prove the constancy of the Hamiltonian for the standard variable-time

problem.

Proof. Let

𝛷𝑡 (𝑡) = 𝐻𝜂 (𝑥∗(𝑡), 𝑝 (𝑡), 𝑢∗(𝑡)), where 𝑡 ∈ ⟨0, 𝜏∗⟩, (3.9)

𝛹 (𝑡) = max

𝑢∈𝑈
𝐻𝜂 (𝑥∗(𝑡), 𝑝 (𝑡), 𝑢). (3.10)

Recall that in the autonomous problem, the Hamiltonian does not depend on

𝑡 . From Hypothesis 3.6, we know that 𝑓 ,∇𝑥 𝑓 , 𝐿,∇𝑥𝐿 are continuous and hence,

the function 𝐻𝜂
is continuous in all variables (𝑥, 𝑝,𝑢) and the function 𝛷𝑡 (𝑡) is

continuously differentiable for each 𝑡 ∈ ⟨0, 𝜏∗⟩. From continuity of 𝐻𝜂
and the fact

that 𝑈 is compact, the maximum condition of Theorem 3.7 and Theorem 3.9 holds

everywhere and the supremum is reduced to maximum. The derivative of function

𝛷𝑡 (𝑡) (for a fixed 𝑡 ) at time 𝑡 is

𝛷′
𝑡
(𝑡) = ⟨∇𝑥𝐻𝜂 (𝑥∗(𝑡), 𝑝 (𝑡), 𝑢∗(𝑡)), 𝑥∗′(𝑡)⟩ + ⟨∇𝑝𝐻𝜂 (𝑥∗(𝑡), 𝑝 (𝑡), 𝑢∗(𝑡)), 𝑝′(𝑡)⟩.

We might be tempted to proclaim the derivative is equal to 0 using Hamiltonian

canonical equations, which, as a matter of fact, would be incorrect, because recall

we consider 𝑢 (𝑡) instead of 𝑢 (𝑡). This also allows us to compute the time derivative

of𝛷𝑡 without a time derivative of 𝑢, which is an essential part of the proof.

We show that the the absolute value of the derivative of𝛷𝑡 (𝑡) is bounded. We

can proceed in a following way, using the triangle inequality and Cauchy-Schwarz

inequality

| 𝛷′
𝑡
(𝑡) |≤ | ⟨∇𝑥𝐻𝜂 (𝑥∗(𝑡), 𝑝 (𝑡), 𝑢∗(𝑡)), 𝑥∗′(𝑡)⟩ |

+ | ⟨∇𝑝𝐻𝜂 (𝑥∗(𝑡), 𝑝 (𝑡), 𝑢∗(𝑡)), 𝑝′(𝑡)⟩ |
≤|∇𝑥𝐻𝜂 (𝑥∗(𝑡), 𝑝 (𝑡), 𝑢∗(𝑡)) | |𝑥∗′(𝑡) | + |∇𝑝𝐻𝜂 (𝑥∗(𝑡), 𝑝 (𝑡), 𝑢∗(𝑡)) | |𝑝′(𝑡) |.

Let

X = { 𝑥∗(𝑡) | 𝑡 ∈ ⟨0, 𝜏∗⟩ },
P = { 𝑝 (𝑡) | 𝑡 ∈ ⟨0, 𝜏∗⟩ }.

Both 𝑥∗(𝑡) and 𝑝 (𝑡) are arcs, i.e., they are necessarily continuous. Thus, the sets

X,P are compact. We can recall that the Hamiltonian is also dependent on 𝜂. We

know that 𝜂 ∈ {0, 1}, which is indeed a compact set as well. Ultimately, recall that
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we assumed 𝑈 is compact. Therefore, the function ∇𝑥𝐻 is a continuous function

on a compact set and therefore, we can bound its norm by a constant. We can

bound it by its maximum, which is attained, because its domain is a compact set.

Analogically, we can bound the norm of ∇𝑝𝐻 . We label the bounds 𝐾1 and 𝐾2

respectively. States 𝑥 and costates 𝑝 are arcs defined on a compact set ⟨0, 𝜏∗⟩ and
therefore, we may bound their norms by constants 𝐶1,𝐶2 as well. Thus, it holds

that

| 𝛷′
𝑡
(𝑡) |≤ 𝐾1𝐶1 + 𝐾2𝐶2

and hence, the derivative of 𝛷𝑡 (𝑡) for a fixed 𝑡 is bounded with a global bound

independent of both 𝑡 and 𝑡 and consequently, the function 𝑡 ↦→ 𝛷𝑡 (𝑡) is Lipschitz
for every 𝑡 .

Subsequently, we can write following inequalities

𝛷𝑡 (𝑡) −𝛷𝑡 (𝑡) ≤ 𝛹 (𝑡) −𝛹 (𝑡) ≤ 𝛷𝑡 (𝑡) −𝛷𝑡 (𝑡), (3.11)

which are an immediate consequence of definitions of𝛷𝑡 and𝛹 in equations (3.9)

and (3.10), because we know that𝛷𝑡 (𝑡) ≤ 𝛹 (𝑡). It follows from inequalities (3.11)

that𝛹 is Lipschitz. Therefore,𝛹 is differentiable almost everywhere.

Let 𝑡 ∈ ⟨0, 𝜏∗⟩ be such that the derivative 𝛹′(𝑡) exists. Therefore, both one-

sided derivatives exist and they are equal. We can bound the derivative𝛹′(𝑡) in a

following way

𝛹′(𝑡) = lim

𝑡→𝑡+
𝛹 (𝑡) −𝛹 (𝑡)

𝑡 − 𝑡
≥ lim

𝑡→𝑡+
𝛷𝑡 (𝑡) −𝛷𝑡 (𝑡)

𝑡 − 𝑡
= 𝛷′𝑡 (𝑡) =

⟨∇𝑥𝐻𝜂 (𝑥∗(𝑡), 𝑝 (𝑡), 𝑢∗(𝑡)), 𝑥∗′(𝑡)⟩ + ⟨∇𝑝𝐻𝜂 (𝑥∗(𝑡), 𝑝 (𝑡), 𝑢∗(𝑡)), 𝑝′(𝑡)⟩ = 0,

where we used the first inequality from (3.11) and Hamiltonian canonical equations.

Analogically, we can compute the limit from the left side, which gives us

𝛹′(𝑡) = lim

𝑡→𝑡−
𝛹 (𝑡) −𝛹 (𝑡)

𝑡 − 𝑡
≤ lim

𝑡→𝑡−
𝛷𝑡 (𝑡) −𝛷𝑡 (𝑡)

𝑡 − 𝑡
= 𝛷′𝑡 (𝑡) =

⟨∇𝑥𝐻𝜂 (𝑥∗(𝑡), 𝑝 (𝑡), 𝑢∗(𝑡)), 𝑥∗′(𝑡)⟩ + ⟨∇𝑝𝐻𝜂 (𝑥∗(𝑡), 𝑝 (𝑡), 𝑢∗(𝑡)), 𝑝′(𝑡)⟩ = 0.

Therefore, it must hold that

𝛹′(𝑡) = 𝑑

𝑑𝑡

(
max

𝑢∈𝑈
𝐻𝜂 (𝑥∗(𝑡), 𝑝 (𝑡), 𝑢)

)
= 0
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for almost all 𝑡 ∈ ⟨0, 𝜏∗⟩. As a result, we conclude that the constancy condition

holds for almost all 𝑡 ∈ ⟨0, 𝜏∗⟩.
■

3.6 Optimal control problems with mixed
constraints

In this section, we elaborate on the problematics of mixed constraints in optimal

control. That is, the presence of constraints concerning both states and controls at

the same time. We assume the geometrical form of mixed constraints expressed in

the following way:

𝜑 (𝑡, 𝑥 (𝑡), 𝑢 (𝑡)) ∈ 𝛷 for all 𝑡 ∈ ⟨𝑎, 𝑏⟩,

where 𝛷 ⊂ ℝ𝑘
for some 𝑘 ∈ ℕ. We consider the following constrained optimal

control problem

min 𝐽 (𝑥,𝑢) = 𝑙 (𝑥 (𝑎), 𝑥 (𝑏)) +
∫ 𝑏

𝑎

𝐿(𝑡, 𝑥 (𝑡), 𝑢 (𝑡))𝑑𝑡

s.t.: 𝑥′(𝑡) = 𝑓 (𝑡, 𝑥 (𝑡), 𝑢 (𝑡)), for almost all 𝑡 ∈ ⟨𝑎, 𝑏⟩,
𝑢 (𝑡) ∈ 𝑈 , for almost all 𝑡 ∈ ⟨𝑎, 𝑏⟩,
𝜑 (𝑡, 𝑥 (𝑡), 𝑢 (𝑡)) ∈ 𝛷, 𝑡 ∈ ⟨𝑎, 𝑏⟩,
(𝑥 (𝑎), 𝑥 (𝑏)) ∈ 𝐸.

(CP)

We assume the functions 𝑙, 𝑓 , 𝐿 and 𝜑 satisfy Hypothesis 3.6 and the sets𝑈 , 𝐸 and𝛷

are closed. This is a specific form of the mixed constrained optimal control problem,

for which the necessary conditions can be expressed in the form of multipliers. More

general constrained optimal control problem and theorem providing necessary

for the problem is presented in [CP10], where necessary conditions are purely

geometrical and they do not contain multipliers (additional multipliers compared

to the problems without constraints). The special case is also outlined in [CP10,

p. 8] and the theorem (necessary conditions) for a smooth case of the special case

is presented in [Cla13, p. 536].

Before we proceed to the theorem, it is necessary to introduce constraint qualifi-

cations. We require the following hypothesis to hold.
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▶ Hypothesis 3.10.
Let (𝑥∗, 𝑢∗) be a local minimizer for problem (CP) and we assume 𝑢∗ is bounded.
Then, for every 𝑡 ∈ ⟨𝑎, 𝑏⟩, we have

𝑢 ∈ 𝑈 , 𝜑 (𝑡, 𝑥∗(𝑡), 𝑢) ∈ 𝛷, 𝜆 ∈ 𝑁 𝐿
𝛷 (𝑡, 𝑥

∗(𝑡), 𝑢),
0 ∈ ∇𝑢 ⟨𝜆, 𝜑⟩(𝑡, 𝑥∗(𝑡), 𝑢) + 𝑁 𝐿

𝑈 (𝑢) =⇒ 𝜆 = 0.

◀

Note that a new variable 𝜆 appeared and later we see that this will be the multi-

plier corresponding to mixed constraints. It is necessary to define an augmented

Hamiltonian as

𝐻
𝜂
𝜑 (𝑡, 𝑥, 𝑝,𝑢, 𝜆) = 𝐻𝜂 (𝑡, 𝑥, 𝑝,𝑢) − ⟨𝜆, 𝜑⟩ = ⟨𝑝, 𝑓 (𝑡, 𝑥,𝑢)⟩ − 𝜂𝐿(𝑡, 𝑥,𝑢) − ⟨𝜆, 𝜑⟩

Now we proceed with theorem providing necessary conditions for problem (CP).

▶ Theorem 3.11.
Under the hypotheses above, there exists an arc 𝑝 : ⟨𝑎, 𝑏⟩ → ℝ𝑛

, a scalar 𝜂 equal

to 0 or 1 and a bounded measurable function 𝜆 : ⟨𝑎, 𝑏⟩ → ℝ𝑘
with

𝜆(𝑡) ∈ 𝑁 𝐿
𝛷 (𝜑 (𝑡, 𝑥

∗(𝑡), 𝑢∗)) a.e.

satisfying the nontriviality condition

(𝜂, 𝑝 (𝑡)) ≠ 0 for all 𝑡 ∈ ⟨𝑎, 𝑏⟩,

the transversality condition

(𝑝 (𝑎),−𝑝 (𝑏)) ∈ 𝜂∇𝑙 (𝑥∗(𝑎), 𝑥∗(𝑏)) + 𝑁 𝐿
𝐸 (𝑥

∗(𝑎), 𝑥∗(𝑏)),

the adjoint equation for almost every 𝑡 :

−𝑝′(𝑡) = ∇𝑥𝐻𝜂
𝜑 (𝑡, 𝑥∗(𝑡), 𝑢∗(𝑡), 𝜆)

as well as, for almost every 𝑡 , the maximum condition

𝑢 ∈ 𝑈 ,𝜑 (𝑡, 𝑥∗(𝑡), 𝑢) ∈ 𝛷 =⇒ 𝐻𝜂 (𝑡, 𝑥∗(𝑡), 𝑝 (𝑡), 𝑢) ≤ 𝐻𝜂 (𝑡, 𝑥∗(𝑡), 𝑝 (𝑡), 𝑢∗(𝑡))
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and the stationarity condition

0 ∈ ∇𝑢𝐻𝜂
𝜑 (𝑡, 𝑥∗(𝑡), 𝑝 (𝑡), 𝑢∗(𝑡), 𝜆(𝑡)) − 𝑁𝐶

𝑈 (𝑢
∗(𝑡)) .

◀

One could easily think that the stationarity condition could be omitted, since it

is the necessary condition corresponding to the maximum condition. However, it is

necessary to notice that each of these conditions concerns a different Hamiltonian

and hence, the stationarity condition provides us with additional information to

the maximum condition.

Note that the constraint qualification (Hypothesis 3.10) automatically rules out

pure state constraints. As it was mentioned at the beginning of this section, this is a

special case of a more general theorem presented in [CP10] and one might wonder,

if the general theorem allows pure state constraints. The answer is negative, pure

state constraints are ruled out by the bounded slope condition in [CP10, p. 4].

Theorem 3.11 is formulated for the fixed-time problem (CP). If we encounter a

variable-time problem and fulfill all assumptions of Theorem 3.11, we can use it

as well. Suppose 𝜏∗ is the optimal time for our variable-time problem. Then, we

can reformulate the problem to a fixed time problem with prescribed time interval

⟨0, 𝜏∗⟩, for which our optimal solution is also an optimal solution. Then, we can

use Theorem 3.11 for our augmented problem and it provides us with necessary

conditions of optimality. Note that if we consider a minimal time problem, the

augmented problem lacks the optimization, i.e., we are looking for any feasible

solution of our problem.
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Theory applied to examples





4 Navigational problem

Navigational problem (taken and modified from [Cla13, p. 546]) is a famous optimal

control problem consisting of finding time-optimal trajectories to a target for a boat

moving in (𝑥,𝑦)-plane through flowing water. The flow of water is represented by

a two-dimensional vector field. The boat can be steered in any direction, but its

speed relative to water cannot exceed given value.

4.1 Problem formulation
The problem can be formulated as follows

min 𝜏 =

∫ 𝜏

0

1𝑑𝑡

s.t.: 𝜏 ≥ 0,(
𝑥′

𝑦′

)
=

(
𝑣

𝑤

)
+

(
𝑐𝑥 (𝑥,𝑦)
𝑐𝑦 (𝑥,𝑦)

)
, (4.1)����(𝑣𝑤)���� ≤ 𝑉 ,(

𝑥 (0)
𝑦 (0)

)
=

(
𝑥0

𝑦0

)
,

(
𝑥 (𝜏)
𝑦 (𝜏)

)
∈ 𝐸 (𝜏),

where 𝑉 > 0 is the maximum speed of a boat, 𝑥0, 𝑦0 ∈ ℝ are the initial conditions,

𝑣,𝑤 are input variables (components of boat velocity relative to water), 𝑐 = (𝑐𝑥 , 𝑐𝑦)
is continuously differentiable vector field describing water flow, 𝐸 (𝜏) is the target
set (notice that it is in general time dependent). We assume (𝑥0, 𝑦0) ∈ ℝ2 \𝐸, which
ensures the problem is nontrivial. The problem will be solved for selected special

cases further in this chapter.

4.1.1 Problem analysis
We can take functions 𝐿 and 𝑙 according to notation in chapter 3 as either 𝐿 = 1

and 𝑙 = 0 or 𝐿 = 0 and 𝑙 = 𝜏 . Both of these approaches yield the same result. Let
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𝐿 = 1 and 𝑙 = 0. Then the Hamiltonian of the problem is:

𝐻 = −𝜂𝐿 + ⟨𝑝, 𝑓 ⟩ = −𝜂 + 𝑝1(𝑣 + 𝑐𝑥 (𝑥,𝑦)) + 𝑝2(𝑤 + 𝑐𝑦 (𝑥,𝑦)), (4.2)

where 𝜂 ∈ {0, 1}. From the Hamiltonian we can write down costate equations as

follows:

𝑝′ = −∇(𝑥,𝑦)𝐻 (𝑥,𝑦, 𝑝1, 𝑝2, 𝑣,𝑤) = −
(
𝑝1

𝜕𝑐𝑥
𝜕𝑥
+ 𝑝2

𝜕𝑐𝑦

𝜕𝑥

𝑝1

𝜕𝑐𝑥
𝜕𝑦
+ 𝑝2

𝜕𝑐𝑦

𝜕𝑦

)
for almost all t ∈ ⟨0, 𝜏∗⟩.

(4.3)

Now we will invoke the maximum condition of Theorem 3.9 (variable-time princi-

ple). We want to maximize (4.2) with respect to (𝑣,𝑤). More precisely, we would

like to find (𝑣∗(𝑡), 𝑤∗(𝑡)) such that it is an element of the set

argmax

| (𝑣,𝑤) |≤𝑉
𝐻 (𝑥∗(𝑡), 𝑦∗(𝑡), 𝑝1(𝑡), 𝑝2(𝑡), 𝑣,𝑤) = argmax

| (𝑣,𝑤) |≤𝑉
{𝑝1(𝑡)𝑣 + 𝑝2(𝑡)𝑤},

for almost all t ∈ ⟨0, 𝜏∗⟩. We also have the nontriviality condition

(𝜂, 𝑝1(𝑡), 𝑝2(𝑡)) ≠ 0 for all t ∈ ⟨0, 𝜏∗⟩ (4.4)

and transversality condition

(ℎ,−𝑝1(𝜏∗),−𝑝2(𝜏∗)) ∈ ∇𝑙 (𝜏∗, 𝑥 (𝜏∗), 𝑦 (𝜏∗)) + 𝑁 𝐿
𝑆 (𝜏
∗, 𝑥 (𝜏∗), 𝑦 (𝜏∗))

= {0} + {0} × 𝑁 𝐿
𝐸 (𝜏
∗, 𝑥 (𝜏∗), 𝑦 (𝜏∗)) = {0} × 𝑁 𝐿

𝐸 (𝜏
∗, 𝑥 (𝜏∗), 𝑦 (𝜏∗)),

where 𝑆 := ℝ+ × 𝐸. We can see that

𝐻 (𝑥∗, 𝑢∗, 𝑝) = ℎ = 0 𝑎.𝑒. (4.5)

The function (𝑣,𝑤) ↦→ 𝑝1𝑣 + 𝑝2𝑤 is convex on the disk

𝑀 = {(𝑣,𝑤) ∈ ℝ2 | | (𝑣,𝑤) | ≤ 𝑉 }.

Consequently, the maximum is achieved on the boundary

𝜕𝑀 = {(𝑣,𝑤) ∈ ℝ2 | | (𝑣,𝑤) | = 𝑉 }

of𝑀 . It can be easily seen that the maximizer belongs to the intersection of the circle
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𝜕𝑀 with the halfline {𝑠 (𝑝1, 𝑝2) |𝑠 ≥ 0}. The situation is illustrated by the Figure 4.1.

Dashed lines represent level sets of the objective function (𝑣,𝑤) ↦→ 𝑝1𝑣 + 𝑝2𝑤.

v

w

| (𝑣, 𝑤) | ≤ 𝑉

(p1, p2)

Figure 4.1:Maximization of Hamiltonian for navigational problem

This solution has only one degree of freedom and can be parametrized via a

steering angle 𝜃 :

𝑣 = 𝑉 cos𝜃, 𝑤 = 𝑉 sin𝜃 . (4.6)

Thus

tan𝜃 =
𝑝2

𝑝1

, (4.7)

whenever 𝑝1 ≠ 0. Alternatively, we can use Theorem 2.20 to get this result as well.

We can write our problem as

max𝑝1𝑣 + 𝑝2𝑤 − 𝐼𝑀 ,

where 𝐼𝑀 is the indicator function of𝑀 . Then we can use Theorem 2.20 to derive

necessary conditions of optimality:

0 ∈
{(
−𝑝1

−𝑝2

)}
+ 𝑁 𝐿

𝑀 (𝑢̃, 𝑣) =
{(
−𝑝1

−𝑝2

)
+ 𝐾

(
cos𝜃

sin𝜃

)����𝐾 > 0, 𝜃 ∈
〈
−𝜋

2

,
3𝜋

2

〉}
,

where (𝑢̃, 𝑣) is the boundary point of 𝑀 . From necessary conditions above, we

derive precisely equation (4.7) for 𝑝1 ≠ 0.
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When 𝑝1 = 0, we have

𝜃 =

{
𝜋/2 if 𝑝2 > 0 and 𝑝1 = 0,

−𝜋/2 if 𝑝2 < 0 and 𝑝1 = 0,

which is optimal control for certain initial conditions (depending on the vector field

and target set).

Note that (𝑝1, 𝑝2) ≠ 0 for all 𝑡 ∈ ⟨0, 𝜏∗⟩. Indeed, we know that there is 𝐾 > 0 such

that 𝑝1(𝑡) = 𝐾 cos𝜃 (𝑡) and 𝑝2(𝑡) = 𝐾 cos𝜃 (𝑡) almost everywhere on ⟨0, 𝜏∗⟩. Thus
| (𝑝1(𝑡), 𝑝2(𝑡)) | = 𝐾 ≠ 0 almost everywhere on ⟨0, 𝜏∗⟩. Moreover, by continuity

of 𝑝1 and 𝑝2, | (𝑝1(𝑡), 𝑝2(𝑡)) | is a continuous function on ⟨0, 𝜏∗⟩. This ensures that
| (𝑝1(𝑡), 𝑝2(𝑡)) | ≠ 0 everywhere on ⟨0, 𝜏∗⟩ and so (𝑝1(𝑡), 𝑝2(𝑡)) ≠ 0 everywhere on

⟨0, 𝜏∗⟩.
It follows from continuity of 𝑝1 and 𝑝2 that the function 𝜃 : ⟨0, 𝜏∗⟩ → ℝ may be

chosen such that it is continuous.

4.2 Simple linear vector field
In this section, we choose a simple vector field with components 𝑐𝑥 = −𝑦, 𝑐𝑦 = 0.

Firstly, we can write our state equation (substituting (4.6) and the form of vector

field into state equation in (4.1)) as:(
𝑥′

𝑦′

)
=

(
−𝑦 +𝑉 cos𝜃

𝑉 sin𝜃

)
, (4.8)

Now we write down the extract form of the costate equation from (4.3) as:(
𝑝′

1

𝑝′
2

)
=

(
0

𝑝1

)
,

which is a double integrator system. Therefore, its solution is

𝑝1(𝑡) = 𝐴, 𝑝2(𝑡) = 𝐴𝑡 + 𝐵,

where 𝐴, 𝐵 ∈ ℝ.
Recall that 𝑝1(𝑡) = 𝐾 cos𝜃 (𝑡) and 𝑝2(𝑡) = 𝐾 sin𝜃 (𝑡) for some 𝐾 > 0. Whenever

𝑝1(𝑡) = 𝐴 > 0, cos𝜃 (𝑡) has to be positive. Therefore, we may choose the function

𝜃 such that its range is contained in (−𝜋/2, 𝜋/2). More precisely, we may set

𝜃 (𝑡) = arctan(𝑡 + 𝐵/𝐴) because 𝑝2(𝑡)/𝑝1(𝑡) = tan𝜃 (𝑡). This situation is shown in

Figure 4.2. Similarly, if 𝐴 < 0, then we take 𝜃 (𝑡) = arctan(𝑡 + 𝐵/𝐴) + 𝜋 . If 𝐴 = 0,
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then 𝑝2(𝑡) = 𝐵 ≠ 0 and so 𝜃 may be chosen such that either 𝜃 (𝑡) = 𝜋/2 (when

𝐵 > 0) or 𝜃 (𝑡) = −𝜋/2 (when 𝐵 < 0). It is worth to note that the function 𝜃 is

continuously differentiable in all cases mentioned above. In the sequel, we restrict

our attention to the nontrivial case (i.e., 𝐴 ≠ 0).

v

w

| (𝑣, 𝑤) | = 𝑉

A

(p1, p2)

Figure 4.2: Vectors 𝑝1, 𝑝2 for boat steering when 𝐴 > 0

Let 𝐴 ≠ 0. We have seen that 𝜃 is continuously differentiable and it holds that

𝜃 ∗(𝑡) =
{

arctan

(
𝑡 + 𝐵

𝐴

)
if 𝐴 > 0,

arctan

(
𝑡 + 𝐵

𝐴

)
+ 𝜋 if 𝐴 < 0.

(4.9)

and

tan𝜃 = 𝑡 + 𝐵
𝐴
. (4.10)

Moreover, we can differentiate (4.10) to get

𝜃 ′
1

cos
2 𝜃

= 1

and from that we can express 𝜃 ′ as:

𝜃 ′ = cos
2 𝜃 . (4.11)

Note that 𝜃 grows along the optimal trajectory.
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Now we denote 𝜃𝑠𝑡𝑎𝑟𝑡 = 𝜃 (0) and 𝜃 𝑓 𝑖𝑛 = 𝜃 (𝜏∗). Inspired by [MG09], we compute

𝑑𝑦

𝑑𝜃
=
𝑦′

𝜃 ′
=
𝑉 sin𝜃

cos
2 𝜃

.

By integration, we obtain

𝑦 =
𝑉

cos𝜃
+𝐶𝑦 =

𝑉

cos𝜃
− 𝑉

cos𝜃 𝑓 𝑖𝑛
+ 𝑦𝑓 𝑖𝑛, (4.12)

where 𝑦𝑓 𝑖𝑛 := 𝑦 (𝜏∗). Now we substitute (4.12) into (4.8) to express 𝑥′. We may then

apply the same procedure for state 𝑥 and get

𝑑𝑥

𝑑𝜃
=
𝑥′

𝜃 ′
=
𝑉 cos𝜃 − 𝑉

cos𝜃
+ 𝑉

cos𝜃 𝑓 𝑖𝑛
− 𝑦𝑓 𝑖𝑛

cos
2 𝜃

. (4.13)

Hence,

𝑥 =

∫ 𝑉 cos𝜃 − 𝑉
cos𝜃
+ 𝑉

cos𝜃 𝑓 𝑖𝑛
− 𝑦𝑓 𝑖𝑛

cos
2 𝜃

𝑑𝜃 +𝐶𝑥 . (4.14)

The constant 𝐶𝑥 is then chosen to fulfill the final condition 𝑥 𝑓 𝑖𝑛 := 𝑥 (𝜏∗). We can

substitute initial conditions 𝑥0, 𝑦0 together with 𝜃𝑠𝑡𝑎𝑟𝑡 into both equations (4.12)

and (4.14) to get the relation of initial conditions and initial steering angle. If 𝐸 is a

singleton (i.e., there is no freedom in the choice of the final destination (𝑥 𝑓 𝑖𝑛, 𝑦𝑓 𝑖𝑛)
of the boat), we have these two equations for two unknowns 𝜃𝑠𝑡𝑎𝑟𝑡 and 𝜃 𝑓 𝑖𝑛 . If not,

we will see later that the transversality condition of Pontryagin maximum principle

provides us with additional equations to solve the problem even if we do not know

𝑥 𝑓 𝑖𝑛 and 𝑦𝑓 𝑖𝑛 precisely (there is freedom in the choice of the final destination).

From (4.10) we can get
𝐵
𝐴
= tan𝜃𝑠𝑡𝑎𝑟𝑡 and therefore, it holds that

𝜏∗ = tan𝜃 𝑓 𝑖𝑛 − tan𝜃𝑠𝑡𝑎𝑟𝑡 (4.15)

and hence, the optimal control is

𝜃 ∗(𝑡) =
{

arctan(𝑡 + tan𝜃𝑠𝑡𝑎𝑟𝑡 ) if |𝜃𝑠𝑡𝑎𝑟𝑡 | < 𝜋/2,
arctan(𝑡 + tan𝜃𝑠𝑡𝑎𝑟𝑡 ) + 𝜋 if |𝜃𝑠𝑡𝑎𝑟𝑡 | > 𝜋/2. (4.16)

Naturally, a question, whether the set 𝐸 is reachable from the given initial

condition arises. In general, the problem may not have a solution. For more

information on reachability, see [BP07].
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4.2.1 Steering to origin

In this section, we will solve an instance of problem (4.1) with 𝐸 = ℝ+ × 𝐸. The set
𝑆 := (ℝ+, 𝐸) and its limiting normal cone is: 𝑁 𝐿

𝑆
((𝑡, 0, 0)) = {0} ×ℝ2

for 𝑡 ∈ ⟨0, 𝜏∗⟩
and the transversality condition gives us:

(ℎ,−𝑝1(𝜏∗),−𝑝2(𝜏∗)) = ∇𝑙 (𝜏∗, 𝑥 (𝜏∗), 𝑦 (𝜏∗)) + 𝑁 𝐿
𝑆 (𝜏
∗, 𝑥 (𝜏∗), 𝑦 (𝜏∗))

= {0} + {0} ×ℝ2 = {0} ×ℝ2.

Using 𝑦𝑓 𝑖𝑛 = 0 in (4.12), we obtain

𝑦 =
𝑉

cos𝜃
− 𝑉

cos𝜃 𝑓 𝑖𝑛
.

Now we can substitute 𝑥 𝑓 𝑖𝑛 = 0 into (4.14), which gives us

0 = 𝐶𝑥 + 5 atanh

(
tan

(
𝜃 𝑓 𝑖𝑛

2

))
−

(
5 cos

(
𝜃 𝑓 𝑖𝑛

)
+ 10

)
tan

(
𝜃 𝑓 𝑖𝑛

2

)
3

+
(
5 cos

(
𝜃 𝑓 𝑖𝑛

)
− 10

)
tan

(
𝜃 𝑓 𝑖𝑛

2

)
cos

(
𝜃 𝑓 𝑖𝑛

)
tan

(
𝜃 𝑓 𝑖𝑛

2

)
4

− 2 cos

(
𝜃 𝑓 𝑖𝑛

)
tan

(
𝜃 𝑓 𝑖𝑛

2

)
2

+ cos

(
𝜃 𝑓 𝑖𝑛

) ,

which determines the value of constant 𝐶𝑥 of the expression (4.14) for 𝑥 .

With the knowledge of𝐶𝑥 , we have 𝑥 and 𝑦 both expressed as functions of 𝜃 and

𝜃 𝑓 𝑖𝑛 . Consequently, if we evaluate these functions at 𝑡 = 0, we obtain two nonlinear

equations for two unknowns 𝜃𝑠𝑡𝑎𝑟𝑡 and 𝜃 𝑓 𝑖𝑛 . We solve them numerically using

𝑣𝑝𝑎𝑠𝑜𝑙𝑣𝑒 function of Symbolic Math Toolbox in Matlab to get 𝜃𝑠𝑡𝑎𝑟𝑡 and 𝜃 𝑓 𝑖𝑛 for a

given initial value. After that, the optimal time 𝜏∗ and the optimal control 𝜃 ∗(𝑡) are
immediately determined by (4.15) and (4.16). Optimal trajectories for different initial

conditions andmaximal speed𝑉 = 16 are shown in the Figure 4.3 (a) and trajectories

from (𝑥0, 𝑦0) = (−15,−8) for different maximal values of speed (𝑉 = 15 and 𝑉 = 5)

are shown in the Figure 4.3 (b). Trajectories for different values of maximal speed

look similar, but the one with smaller maximal speed is more influenced by flowing

water and the optimal times vary greatly. Optimal time for 𝑉 = 20 is 0.72 and

optimal time for 𝑉 = 5 is 2.05 (expressed in suitable units).
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Steering to origin from different initial conditions

(a) Steering boat to origin from different initial
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(b) Steering boat to origin with different

maximal velocities

Figure 4.3: Simulations for steering boat to origin

4.2.2 Steering to right half-plane

Now we consider a different target set 𝐸 =
{
(𝑥,𝑦) ∈ ℝ2

�� 𝑥 ≥ 0

}
. At 𝑡 = 0, we as-

sume the boat is located at left half-plane. Hamiltonian, state and costate equations

are all the same. The difference occurs in the transversality condition

(ℎ,−𝑝 (𝜏∗)) ∈ ∇𝑙 (𝜏∗, 𝑥 (𝜏∗), 𝑦 (𝜏∗)) + 𝑁 𝐿
𝑆 (𝜏
∗, 𝑥 (𝜏∗), 𝑦 (𝜏∗))

= {0} + {(0,−𝑟, 0) |𝑟 > 0}
= {(0,−𝑟, 0) |𝑟 > 0},

which gives us final condition for 𝑝 in the form

−
(

𝐴

𝐴𝜏∗ + 𝐵

)
=

(
−𝑟
0

)
(4.17)

for some 𝑟 > 0. That automatically excludes the option of 𝜃 = 𝜋/2 along the

trajectory. It follows from (4.17) that 𝐴 = 𝑟 > 0 and 𝜏∗ = −𝐵/𝐴. Using (4.9) with

(4.17) and the fact that 𝐴 > 0 =⇒ 𝜃 (𝑡) ∈ (−𝜋/2, 𝜋/2) for all 𝑡 ∈ ⟨0, 𝜏∗⟩, we see
that

𝜃 𝑓 𝑖𝑛 = 0.

We now follow the exact same procedure as in section 4.2. More concretely, we

compute
𝑑𝑦

𝑑𝜃
and then integrate to fulfill the final condition (in this case 𝜃 𝑓 𝑖𝑛 = 0) to
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obtain

𝑦 =
𝑉

cos𝜃
+ 𝑦𝑓 𝑖𝑛 −𝑉 , (4.18)

where 𝑦𝑓 𝑖𝑛 ∈ ℝ is not determined in this case. Then we substitute (4.18) into the

state equation (4.8) and compute
𝑑𝑥
𝑑𝜃
. Then we can integrate this expression to fulfill

the final condition. After that, we can substitute initial conditions into expressions

for 𝑥 and 𝑦 and solve this system of nonlinear equations numerically to get 𝑦𝑓 𝑖𝑛,

𝜃 𝑓 𝑖𝑛 and 𝜃𝑠𝑡𝑎𝑟𝑡 . We can see that the transversality condition provided us with a third

equation 𝜃 𝑓 𝑖𝑛 = 0, but we have one more unknown variable 𝑦𝑓 𝑖𝑛 . Hence, we have

a set of three nonlinear equations for three variables. Eventually, we get optimal

time and optimal control from equations (4.15) and (4.16). Optimal trajectories for

different initial conditions and maximal speed𝑉 = 16 are shown in the Figure 4.3 (a)

and trajectories from (𝑥0, 𝑦0) = (−10, 10) for different maximal speeds 𝑉 = 8 and

𝑉 = 16 are shown in the Figure 4.3 (b). Smaller maximal velocity causes a longer

trajectory which is more influenced by water flow. Compared to the problem of

steering to origin, the difference between these two trajectories is more significant,

because different maximal speed causes different end point of the trajectory (there

is freedom in finding the optimal 𝑦𝑓 𝑖𝑛).
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Figure 4.4: Simulations for steering boat to right half-plane
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4.2.3 Steering to an ellipse

Now we solve problem (4.1) with the same linear vector field as in previous sections,

but with more complicated target set 𝐸 =

{
(𝑥,𝑦) ∈ ℝ2

��� 𝑥2

𝑎2
+ 𝑦2

𝑏2
− 1 ≤ 0

}
for given

𝑎, 𝑏 > 0, which is an ellipse. We need to compute 𝑁 𝐿
𝐸
(𝑥), which is reduced to

proximal normal cone according to Theorem 2.24. Then, we can use Theorem 2.25

to compute 𝑁 𝑃
𝐸
(𝑥). We differentiate function ℎ(𝑥,𝑦) = 𝑥2

𝑎2
+ 𝑦

2

𝑏2
−1. By differentiation

we get ∇ℎ =

(
2𝑥
𝑎2
,

2𝑦

𝑏2

)
. Note that a parametrization of 𝐸 is

𝑥 (𝛼) = 𝑎 cos𝛼, 𝑦 (𝛼) = 𝑏 sin𝛼, 𝛼 ∈ (−𝜋, 𝜋⟩.

The gradient of ℎ can be then written as ∇ℎ(𝑥 (𝛼), 𝑦 (𝛼)) =
(

2 cos𝛼
𝑎
, 2 sin𝛼

𝑏

)
. The

cone 𝑁 𝐿
𝐸
(𝑥 (𝛼), 𝑦 (𝛼)) consists of all vectors of the form 𝐾̃∇ℎ(𝑥 (𝛼), 𝑦 (𝛼)) for some

positive constant 𝐾̃ . The transversality condition says that

(ℎ,−𝑝 (𝜏∗)) ∈ ∇𝑙 (𝜏∗, 𝑥 (𝜏∗), 𝑦 (𝜏∗)) + 𝑁 𝐿
𝑆 (𝜏
∗, 𝑥 (𝜏∗), 𝑦 (𝜏∗))

=

{(
0, 𝐾̃

2 cos𝛼

𝑎
, 𝐾̃

2 sin𝛼

𝑏

)����𝐾̃ > 0

}
=

{(
0, 𝐾

cos𝛼

𝑎
, 𝐾

sin𝛼

𝑏

)����𝐾 > 0

}
,

which gives us the final condition for 𝑝 as:

−
(

𝐴

𝐴𝜏∗ + 𝐵

)
= 𝐾

(
cos𝛼
𝑎

sin𝛼
𝑏

)
. (4.19)

Using (4.19) and (4.9), we get relation between 𝛼 𝑓 𝑖𝑛 (position on ellipse) and 𝜃 𝑓 𝑖𝑛
(steering angle at 𝑡 = 𝜏∗)

tan𝜃 𝑓 𝑖𝑛 =
𝑎

𝑏
tan𝛼 𝑓 𝑖𝑛, (4.20)

where 𝛼 𝑓 𝑖𝑛 defines the point on ellipse where the boat reaches the ellipse. This

equation itself has four solutions for values 𝜃 𝑓 𝑖𝑛 and 𝛼 𝑓 𝑖𝑛 and we must choose the

correct one. From the geometrical nature of the problem, the directional vector of

the boat at the final time 𝑣𝑏𝑜𝑎𝑡 and the normal vector 𝑛 of the ellipse at the point,

where the boat reaches the ellipse form an obtuse angle, that is,

⟨𝑛, 𝑣𝑏𝑜𝑎𝑡 ⟩ =
〈(

cos𝛼 𝑓 𝑖𝑛

𝑎
sin𝛼 𝑓 𝑖𝑛

𝑏

)
,

(
𝑉 cos𝜃 𝑓 𝑖𝑛 − 𝑦𝑓 𝑖𝑛

𝑉 sin𝜃 𝑓 𝑖𝑛

)〉
< 0.
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This condition eliminates two solutions. Then, we would be able to choose between

the remaining two solutions had we known the value of 𝐴. However, we do not

have the exact value of 𝐴 (recall that we deliberately chose not to look for the

exact time development of costates at the beginning of the chapter) and therefore,

we may make an apriori assumption either |𝜃 𝑓 𝑖𝑛 | < 𝜋/2 or |𝜃 𝑓 𝑖𝑛 | > 𝜋/2, which
distinguishes between the two branches of inverse tangent. If our apriori guess is

incorrect (we do not get a solution), we try the second option. Needless to say, it

could also happen that |𝜃 𝑓 𝑖𝑛 | = 𝜋/2. This can indeed be a valid solution, which is

constant. However, we solve this problem numerically and our solution is only an

approximation of the real solution. With numerical methods, we may leave out the

option of |𝜃 𝑓 𝑖𝑛 | = 𝜋/2 and settle with a numerical approximation of this solution,

which falls into one of the categories |𝜃 𝑓 𝑖𝑛 | < 𝜋/2 or |𝜃 𝑓 𝑖𝑛 | > 𝜋/2.
We can apply the same procedure once again to obtain an expression for 𝑦 and 𝑥

from equations (4.12) and (4.14), which contain unknown variables 𝑦𝑓 𝑖𝑛 and 𝑥 𝑓 𝑖𝑛.

Evaluations of these expressions at 𝑡 = 0 leads to the first two equations for five

unknowns 𝜃 𝑓 𝑖𝑛, 𝛼 𝑓 𝑖𝑛, 𝜃𝑠𝑡𝑎𝑟𝑡 , 𝑥 𝑓 𝑖𝑛, 𝑦𝑓 𝑖𝑛. The remaining three needed equations are

𝑥 𝑓 𝑖𝑛 = 𝑎 cos𝛼 𝑓 𝑖𝑛, 𝑦𝑓 𝑖𝑛 = 𝑏 cos𝛼 𝑓 𝑖𝑛 and (4.20). We solve this system of equations

numerically. We get optimal time and optimal control again from equations (4.15)

and (4.16). Simulations for different initial conditions, maximal speed 𝑉 = 16 and

semi-axes 𝑎 = 1, 𝑏 = 2 are shown in Figure 4.5.
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Figure 4.5: Steering boat to an ellipse from different initial conditions
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4.2.4 Steering to a point drifted by currents
In this subtask, we solve the problem (4.1) with vector field (4.2) and a time depen-

dent target set 𝐸. We assume we must steer a boat to a point drifted by currents.

We assume that the coordinates 𝑥𝑝 and 𝑦𝑝 of that point at time 𝑡 = 0 are known.

Therefore, we know the exact position of the point at any time, which gives us the

time dependent target set

𝐸 (𝜏) =
{(
𝑥𝑝 − 𝜏𝑦𝑝
𝑦𝑝

)}
,

where 𝜏 is the final time. Due to the fact that at optimal final time 𝜏∗, the boat must

reach 𝐸, we have time dependent final constraints

𝑥 𝑓 𝑖𝑛 = 𝑥𝑝 − 𝜏∗𝑦𝑝, 𝑦𝑓 𝑖𝑛 = 𝑦𝑝,

which can be substituted directly into (4.12) and used to obtain corresponding

integration constant from (4.14). The transversality condition does not provide

us with any relevant information (analogy with steering to origin, the target set

is a singleton). Then we have 𝑥 and 𝑦 expressed as functions of 𝜃𝑠𝑡𝑎𝑟𝑡 , 𝜃 𝑓 𝑖𝑛, 𝑡 and

𝜏∗. By evaluation of these equations at 𝑡 = 0, we get two nonlinear equations for

three unknown variables. When we add equation (4.15), we have three nonlinear

equations for three unknowns 𝜃𝑠𝑡𝑎𝑟𝑡 , 𝜃 𝑓 𝑖𝑛 and 𝜏
∗
, which can be solved numerically.

We solved the problem for different initial conditions. Simulations for a starting

position of the moving point (𝑥𝑝, 𝑦𝑝) = (−2, 5) from various initial conditions of

the boat and maximal boat speed 𝑉 = 15 are shown in the Figure 4.6.

The trajectories of the boat are blue and the trajectory of the point is black. Note

that when the boat starts in various initial positions, it reaches the point at different

times and positions.
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Figure 4.6: Steering boat to a point drifted by currents from different initial conditions

4.2.5 Steering to a moving ellipse

Now we consider a problem of steering boat to an ellipse moving with a constant

speed𝑈 along a straight line. The ellipse is determined by its center (𝑥𝑒, 𝑦𝑒), semi-

axes 𝑎, 𝑏 and angle 𝜑 between axis 𝑥 and semi-axis 𝑎. Ellipse is moving along a line

𝑦 = 𝑥 tan𝜑 + 𝑐 . Parametrization of an ellipse for 𝜑 = 0 and center at the origin is

𝑥 = 𝑎 cos𝛼, 𝑦 = 𝑏 sin𝛼, 𝛼 ∈ (−𝜋, 𝜋⟩.

Limiting normal cone for 𝜑 = 0 is 𝑁 𝐿
𝐸
(𝑥 (𝛼), 𝑦 (𝛼)) =

{(
𝐾 cos𝛼

𝑎
, 𝐾 sin𝛼

𝑏

) ��𝐾 > 0

}
as it

was shown earlier. To obtain limiting normal cone𝑁 𝐿
𝐸𝜑
(𝑥 (𝛼), 𝑦 (𝛼)) and parametriza-

tion of a rotated ellipse (with a center in the origin), one has to transform it by a

rotation matrix

𝑅𝜑 =

(
cos𝜑 − sin𝜑

sin𝜑 cos𝜑

)
as

𝑁 𝐿
𝐸𝜑
(𝑥 (𝛼), 𝑦 (𝛼)) =

{
𝑅𝜑𝜁

��𝜁 ∈ 𝑁 𝐿
𝐸 (𝑥 (𝛼), 𝑦 (𝛼))

}
=

{
𝐾

(
1

𝑎
cos𝛼 cos𝜑 − 1

𝑏
sin𝛼 sin𝜑

1

𝑎
cos𝛼 sin𝜑 + 1

𝑏
sin𝛼 cos𝜑

)����𝐾 > 0

}
,(

𝑥 (𝛼)
𝑦 (𝛼)

)
= 𝑅𝜑

(
𝑎 cos𝛼

𝑏 sin𝛼

)
=

(
𝑎 cos𝛼 cos𝜑 − 𝑏 sin𝛼 sin𝜑

𝑎 cos𝛼 sin𝜑 + 𝑏 sin𝛼 cos𝜑

)
.

59



Chapter 4 Navigational problem

Now we proceed to the motion model of the center (𝑥𝑒, 𝑦𝑒) of the ellipse

𝑥′𝑒 = 𝑈 cos𝜑, 𝑦′𝑒 = 𝑈 sin𝜑,

which gives us time development of the center of the ellipse

𝑥𝑒 (𝑡) = 𝑡𝑈 cos𝜑 + 𝑥𝑒0, 𝑦𝑒 (𝑡) = 𝑡𝑈 sin𝜑 + 𝑦𝑒0,

where (𝑥𝑒0, 𝑦𝑒0) is the known center of the ellipse at time 𝑡 = 0. Therefore, for the

optimal time 𝑡 = 𝜏∗ it must hold that

𝑥𝑒1 = 𝜏
∗𝑈 cos𝜑 + 𝑥𝑒0, 𝑦𝑒1 = 𝜏

∗𝑈 sin𝜑 + 𝑦𝑒0,

where (𝑥𝑒1, 𝑦𝑒1) is the unknown center of an ellipse at time 𝑡 = 𝜏∗. We know that at

𝑡 = 𝜏∗, the boat must reach the ellipse, hence

𝑥 𝑓 𝑖𝑛 = 𝑎 cos𝛼 cos𝜑 − 𝑏 sin𝛼 sin𝜑 + 𝜏∗𝑈 cos𝜑 + 𝑥𝑒0, (4.21)

𝑦𝑓 𝑖𝑛 = 𝑎 cos𝛼 sin𝜑 + 𝑏 sin𝛼 cos𝜑 + 𝜏∗𝑈 sin𝜑 + 𝑦𝑒0. (4.22)

From the transversality condition (using the rotated limiting normal cone) we get

−
(

𝐴

𝐴𝜏∗ + 𝐵

)
= 𝐾

(
1

𝑎
cos𝛼 cos𝜑 − 1

𝑏
sin𝛼 sin𝜑

1

𝑎
cos𝛼 sin𝜑 + 1

𝑏
sin𝛼 cos𝜑

)
.

We use transversality condition in (4.10) and evaluate at 𝑡 = 𝜏∗ to obtain

tan𝜃 𝑓 𝑖𝑛 =

1

𝑎
cos𝛼 𝑓 𝑖𝑛 sin𝜑 + 1

𝑏
sin𝛼 𝑓 𝑖𝑛 cos𝜑

1

𝑎
cos𝛼 𝑓 𝑖𝑛 cos𝜑 − 1

𝑏
sin𝛼 𝑓 𝑖𝑛 sin𝜑

,

where 𝛼 𝑓 𝑖𝑛 determines the position on the ellipse where the boat reaches the ellipse.

This equation admits four solutions for values 𝛼 𝑓 𝑖𝑛 and 𝜃 𝑓 𝑖𝑛 and therewith, we use

the same approach as in equation (4.20) to select the correct one.

From (4.15) we get

𝜏∗ =
1

𝑎
cos𝛼 𝑓 𝑖𝑛 sin𝜑 + 1

𝑏
sin𝛼 𝑓 𝑖𝑛 cos𝜑

1

𝑎
cos𝛼 𝑓 𝑖𝑛 cos𝜑 − 1

𝑏
sin𝛼 𝑓 𝑖𝑛 sin𝜑

− tan𝜃𝑠𝑡𝑎𝑟𝑡 . (4.23)

We follow the already well known procedure to obtain expressions for both 𝑦 and 𝑥

from (4.12) and (4.14), which depend on unknowns 𝑦𝑓 𝑖𝑛 and 𝑥 𝑓 𝑖𝑛 . Then we evaluate

these expressions at time 𝑡 = 0 and use them together with (4.21), (4.22) and (4.23)
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to solve a system of five nonlinear equations for five unknowns 𝑥 𝑓 𝑖𝑛, 𝑦𝑓 𝑖𝑛, 𝜃𝑠𝑡𝑎𝑟𝑡 ,

𝛼 𝑓 𝑖𝑛 and 𝜏
∗
numerically. Optimal time and control are determined by (4.15) and

(4.16).

Simulations illustrating three scenarios are shown in the Figure 4.7 for the ellipse

speed 𝑈 = 2 and boat speed 𝑉 = 4. Ellipses at their starting position are gray and

ellipses as 𝑡 = 𝜏∗ are black. Trajectories are blue and yellow. The yellow trajectory

is especially interesting, because we can see the boat reaches the ellipse almost

tangentially. Notice, that at the final time 𝑡 = 𝜏∗, the ellipse is subject to very strong
current relative to its speed. The steering angle at the final time 𝑡 = 𝜏∗ is indeed a

normal vector of the ellipse at the point of intersection. It is the strength of these

currents that causes the final angle of the boat in (𝑥,𝑦)−plane and the steering

angle at 𝑡 = 𝜏∗ to differ significantly.
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Figure 4.7: Steering boat to an ellipse moving with a constant speed along a straight line

4.3 Quadratic vector field

The vector field used in previous examples is rather simple. Let us analyze and

solve problem (4.1) with the vector field with components 𝑐𝑥 = −𝑦 (𝑦−1) and 𝑐𝑦 = 0,

which give us the state equations(
𝑥′

𝑦′

)
=

(
−𝑦 (𝑦 − 1) +𝑉 cos𝜃

𝑉 sin𝜃

)
. (4.24)
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The motivation for considering this particular vector field comes from a model

of the water flow in a straight river with banks defined by lines 𝑦 = 0 and 𝑦 = 1.

Naturally, this makes the problem more complex, because we impose a pure state

constraint 0 ≤ 𝑦 ≤ 1. Let us ignore this state constraint for now. Later, we will

say a few words about the case where the state constraint 0 ≤ 𝑦 ≤ 1 necessarily

appears.

Costate equations for our problem are(
𝑝′

1

𝑝′
2

)
=

(
0

−𝑝1(1 − 2𝑦)

)
.

We immediately see that the first costate is constant

𝑝1 = 𝐴, (4.25)

where 𝐴 ∈ ℝ. We again distinguish two cases. Let 𝐴 = 0. Then we have constant

optimal control 𝜃 ∗(𝑡) = ±𝜋/2. If𝐴 ≠ 0, then equation (4.7) holds. With justification

from the beginning of this chapter, we can differentiate (4.7) to obtain:

𝜃 ′ = (2𝑦 − 1) cos
2 𝜃 . (4.26)

Note that this differential equation holds for the specific case when 𝜃 = ±𝜋/2 as

well. We could have proceeded the same way as in the case of the linear vector

field to obtain equations for the development of 𝑥 and 𝑦, but the integral for 𝑥

coordinate development in time has no analytical formula. Therefore, we have to

employ numerical integration to solve a specific instance of the problem.

4.3.1 Steering to an opposite river bank

Firstly, the problemwill be solved for 𝑥0 ∈ ℝ,𝑦0 = 0 (a defined point at the first bank

of the river) and 𝐸 (𝜏) =
{
(𝑥 𝑓 , 1)

�� 𝑥 𝑓 ∈ ℝ }
(we steer to any point at the second

bank). The limiting normal cone of set 𝐸 is 𝑁 𝐿
𝐸
(𝑥, 1) = { (0, 𝑟 ) | 𝑟 ∈ ℝ }, which

makes the transversality condtion

(ℎ,−𝑝 (𝜏∗)) ∈ ∇𝑙 (𝜏∗, 𝑥 (𝜏∗), 𝑦 (𝜏∗)) + 𝑁 𝐿
𝑆 (𝜏
∗, 𝑥 (𝜏∗), 𝑦 (𝜏∗)) = {(0, 0, 𝑟 ) |𝑟 ∈ ℝ}.

This transversality condition itself provides us with the optimal solution, because

from (4.25) we know that 𝑝1 = 0 on ⟨0, 𝜏∗⟩ and therefore, 𝜃 ∗ = ±𝜋/2 on ⟨0, 𝜏∗⟩.
Note that we can rule out the solution 𝜃 ∗ = −𝜋/2 because the boat must reach the

destination from the river and not from the shore.
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We compute the point on the bank 𝑦 = 1, where the boat reaches the bank. It is

the solution of the initial value problem

𝑥′ = −𝑦 (𝑦 − 1),
𝑦′ = 𝑉 ,

𝑥 (0) = 𝑥0, 𝑦 (0) = 0.

We can solve it analytically to obtain

𝑦 (𝑡) = 𝑉𝑡,

𝑥 (𝑡) = −𝑉
2

3

𝑡3 + 𝑉
2

𝑡2 + 𝑥0,

from which we can compute the optimal time 𝜏∗ = 1/𝑉 , which can be substituted

into the expression for 𝑥 time development to get the final value 𝑥 𝑓 𝑖𝑛 = 𝑥0 + 1

6𝑉
.

4.3.2 Steering to a specific point on the opposite bank
Now we consider the problem for 𝑥0 ∈ ℝ, 𝑦0 = 0, 𝐸 = {(𝑥1, 1)} (two prescribed

points at opposite river banks). Its solution is not so simple because we need to

incorporate state constraints, which is challenging with the usage of Pontryagin

maximum principle. As it was stated in chapter 3, according to [Cla13], The-

orem 3.11 is a multiplier rule for mixed constraints. However, our pure state

constraints can never fulfill the required constraint qualifications (Hypothesis 3.10),

because the derivative with respect to 𝑢 is always zero for pure state constraints.

This problematics is explained in [BPV16].

At first we can try to solve the problem relaxation without these constraints.

Therefore, we can use derivation of steering angle dynamics (4.26), which was

presented above. This is a boundary value problem, which can be solved using

collocation method (explained in appendix B) or a Matlab function bvp4c. The
results are shown in Figure 4.8.

The blue trajectory represents boat steering from starting point (−5, 0) to end
point (0, 1) and the yellow trajectory represents boat steering from starting point

(0, 0) to end point (−5, 1). We can see that the blue trajectory satisfies the constraints

and therefore, we can state that the blue trajectory is indeed a solution of the original

problem. However, the yellow trajectory evidently does not fulfill constraints and

due to that, it cannot be a solution of the original problem. The yellow trajectory

crosses the borders because in the river, the boat has to go against the stream and
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Figure 4.8: Steering boat to a point on the opposite river bank - relaxed problem with no

constraints

the vector field outside of the river changes sign and therefore, it actually helps

the boat move towards its target. The shape of the trajectory is determined by

differential equation (4.26).

Now we focus only on the problem of steering against the stream. There are

two possible ways to approach it. We can incorporate state constraints into our

solution of the problem or we could use nonsmooth vector field with components

𝑐𝑥 =

{
−𝑦 (𝑦 − 1) if 0 ≤ 𝑦 ≤ 1,

0 otherwise,

𝑐𝑦 = 0,

without constraints, which is an equivalent formulation of our problem. Suppose

it is not equivalent, i.e., there exist an optimal solution (𝑥,𝑦) crossing river bank
for the problem with nonsmooth field. Let the trajectory leave the river at 𝑡 = 𝑡0.

Without loss of generality, suppose it crosses the bank 𝑦 = 1. Therefore, from

continuity of the solution and the fact that the final destination lies on the bank of

the river, it is outside of the river for a nontrivial time interval 𝑡 ∈ (𝑡0, 𝑡1), where
𝑡1 is the time when the trajectory enters the river back. We can take a different

solution and replace the trajectory on (𝑡0, 𝑡1) with (𝑥,𝑦) := (𝑥, 1). We can see that
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Quadratic vector field Section 4.3

trajectory (𝑥,𝑦) is faster and therefore, (𝑥,𝑦) is not an optimal solution of the

problem with nonsmooth vector field.

Pure state constraints and PMP

There are many forms of theorems for various optimal control problems with pure

state constraints. A theorem providing necessary conditions of optimality in the

presence of a scalar state inequality 𝑔(𝑥 (𝑡), 𝑡) ≤ 0, where 𝑔 : ℝ𝑛 × ℝ → ℝ is

presented in [KP19] for a fixed time problem. Function 𝑔 is assumed to be twice

continuously differentiable. A new function is introduced:

𝛤 (𝑥,𝑢, 𝑡) := ⟨∇𝑥𝑔(𝑥, 𝑡), 𝑓 (𝑥,𝑢, 𝑡)⟩ + ∇𝑡𝑔(𝑥, 𝑡).

If we consider a controlled dynamical system in a standard form:

𝑥′(𝑡) = 𝑓 (𝑥 (𝑡), 𝑢 (𝑡), 𝑡)

and substitute it into 𝛤 , we can notice that 𝛤 is the derivative of 𝑔 with respect to

the system’s trajectory. Then we use augmented Hamiltonian:

𝐻 (𝑥, 𝑝,𝑢, 𝜇, 𝜂) := ⟨𝑝, 𝑓 (𝑥,𝑢, 𝑡)⟩ − 𝜇𝛤 (𝑥,𝑢, 𝑡) − 𝜂𝐿(𝑥,𝑢, 𝑡)

and necessary conditions are derived from this augmented Hamiltonian. There is a

new multiplier 𝜇 (𝑡), which has interesting properties:

• 𝜇 (𝑡) is nonincreasing;

• 𝜇 (𝑡) is constant whenever 𝑔(𝑥∗(𝑡), 𝑡) < 0, e.g., whenever the trajectory lies

in the interior of a set { (𝑥, 𝑡) | 𝑔(𝑥 (𝑡), 𝑡) ≤ 0 }.

For a rigorous formulation we refer the interested reader to [KP19]. This theorem

is used in a variable time navigational problem in [Che+18]. A useful insight into

𝛤 function construction can be found in [MG09, p. 196].

The function 𝛤 appears also in the transversality condition (together with the

multiplier 𝜇), as it is stated in [Aru12], where we can construct a function 𝑔 to

describe our state constraints such that it is regular (in the sense described in the

article) and the theorem provided in this article can be used in our case. This

theorem also allows vector function 𝑔.

Another extremely useful theorem, which is already formulated for a variable

time navigational problem - our problem specifically, is presented in [CKP20]. The

function 𝛤 and augmented Hamiltonian 𝐻 are defined in the same way. We return
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to our notation and denote the state as (𝑥,𝑦). The state contraint is defined with a

usage of absolute value as |𝑦 − 1/2| ≤ 0 (in our case, state constraints in the article

were −1 ≤ 𝑥 ≤ 1 and the theorem is formulated according to that). The theorem

then imposes multiplier 𝜇 (𝑡), which has the following properties:

• 𝜇 (𝑡) is constant whenever |𝑦 − 1/2| < 0;

• 𝜇 (𝑡) is increasing on the time intervals { 𝑡 ∈ ⟨0, 𝜏∗⟩ | 𝑦∗(𝑡) = 0 };

• 𝜇 (𝑡) is decreasing on the time intervals { 𝑡 ∈ ⟨0, 𝜏∗⟩ | 𝑦∗(𝑡) = 1 }.

This theorem resembles the one in [KP19], but extended to incorporate two state

constraints, where both are merged to only one multiplier 𝜇. It is possible due to

the specific form of our state constraints.

It is unimportant which theorem we use, the derivative of 𝑔 with respect to

the trajectory is zero at the boundary points of state constraints. That means

𝛤 (𝑥∗, 𝑢∗, 𝑡) = 0 whenever 𝑔(𝑥∗, 𝑡) = 0.

We can choose for example 𝑔 := 𝑦 (𝑦 − 1), then we have 𝛤 = (2𝑦 − 1)𝑉 sin𝜃 .

Boundary points of our state constraints are 𝑦 = 1 and 𝑦 = 0. After we substitute

them to 𝛤 and set it equal to zero, we get two equations:

0 = −𝑉 sin𝜃 ∗ for 𝑦 = 0,

0 = 𝑉 sin𝜃 ∗ for 𝑦 = 1.

We are interested only in situation when the boat has to go upstream and as a

consequence of that, we choose 𝜃 ∗ = 𝜋 . When we are in the interior of

{ (𝑥, 𝑡) | 𝑔(𝑥 (𝑡), 𝑡) ≤ 0 },

necessary conditions are not affected by the presence of state constraints.

Application of Clarke’s multiplier rule for mixed constraints

Now we can invoke Clarke’s necessary conditions for mixed constraints, i.e., The-

orem 3.11, despite we know that constraint qualifications are not met. We will

see later on that these provide us with optimal solution regardless of the fact that

constraint qualifications are not met.

We have a geometrical constraint 𝜑 (𝑡, 𝑥,𝑢) ∈ 𝛷 - in our case 𝜑 (𝑡, 𝑥,𝑢) = 𝑦 and

𝛷 = ⟨0, 1⟩. Then we invoke necessary conditions provided by Theorem 3.11. The
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(augmented) Hamiltonian is:

𝐻 = −𝜂 + 𝑝1(𝑣 − 𝑦 (𝑦 − 1)) + 𝑝2𝑤 − 𝜆𝑦,

where a measurable function 𝜆 : ⟨0, 𝜏∗⟩ → ℝ is a multiplier. Note, that the absence

of control in function 𝜑 results in no need to distinguish between the augmented

Hamiltonian and the standard Hamiltonian in the necessary conditions. The costate

equations are then:

𝑝′
1
= 0

𝑝′
2
= 𝑝1(2𝑦 − 1) + 𝜆(𝑡),

𝑝1 = 𝐴 is a constant and we can differentiate (4.7) to get:

𝜃 ′ = cos
2 𝜃

(
2𝑦 − 1 + 𝜆(𝑡)

𝐴

)
. (4.27)

We know that:

𝜆(𝑡) ∈ 𝑁𝐶
𝛷 (𝜑 (𝑡, 𝑥

∗(𝑡), 𝑢∗(𝑡))) =

𝑟 if 𝑦 = 1,

0 if 𝑦 ∈ (0, 1),
−𝑠 if 𝑦 = 0,

for some 𝑟, 𝑠 > 0. From the theorem we know that this holds almost everywhere,

but we can continuously extend the function 𝜆. From the previous approach we

know that for 𝑦 ∈ {0, 1}, 𝜃 ∗ = 𝜋 and therefore, 𝜃 ′ = 0. We can calculate 𝑟 and

𝑠 from (4.27) as 𝑟 = −𝐴, 𝑠 = −𝐴. Since we are steering upstream, we know that

𝐴 < 0. We do not need the exact value 𝐴 for our solution, we may look for a

multiplier
˜𝜆(𝑡) = 𝜆(𝑡)

𝐴
. Consequently, we can see that despite the fact that constraint

qualifications are not satisfied, Clarke’s theorem also provides us with the same

solution as the methods above, for which all assumptions are satisfied.

The trajectories shown in Figure 4.9 were found using collocation method for

two boat velocities.

The yellow trajectories are for 𝑉 = 1 and the blue trajectories are for 𝑉 = 5.

The start of these trajectories is on the bank where 𝑦 = 0 and the end of these

trajectories is on the bank where 𝑦 = 1. We can see that state constraints are

satisfied.
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Figure 4.9: Steering boat to a point on the opposite river bank - incorporating state

constraints

4.3.3 Steering to a line segment on the opposite bank
We consider a final set 𝐸 (𝜏) = { (𝑠, 1) | 𝑠 ∈ ⟨𝑎, 𝑏⟩ }, which is a line segment on the

bank 𝑦 = 1. From the transversality condition we get

(ℎ,−𝑝 (𝜏∗)) ∈∇𝑙 (𝜏∗, 𝑥 (𝜏∗), 𝑦 (𝜏∗)) + 𝑁 𝐿
𝑆 (𝜏
∗, 𝑥 (𝜏∗), 𝑦 (𝜏∗))

=


{ (0, 0, 𝑟 ) | 𝑟 ∈ ℝ } for 𝑥 (𝜏∗) ∈ (𝑎, 𝑏),{
(0, 𝑟 cos𝜑, 𝑟 sin𝜑)

�� 𝜑 ∈ 〈
𝜋
2
, 3𝜋

2

〉
, 𝑟 ≥ 0

}
for 𝑥 (𝜏∗) = 𝑎,{

(0, 𝑟 cos𝜑, 𝑟 sin𝜑)
�� 𝜑 ∈ 〈

−𝜋
2
, 𝜋

2

〉
, 𝑟 ≥ 0

}
for 𝑥 (𝜏∗) = 𝑏.

We know that the optimal solution is 𝜃 ∗ = 𝜋/2, whenever the final destination
provided by this solution belongs to the set 𝐸, that is, whenever 𝑥0 + 1

6𝑉
∈ ⟨𝑎, 𝑏⟩

(recall the solution from section 4.3.1). If this is not the case, the optimal solution

cannot be chosen 𝜃 ∗ = 𝜋/2 and therefore, the boat must reach the set 𝐸 in one

of the points (𝑎, 1) or (𝑏, 1), because the transversality condition does not allow

otherwise.

If this is the case, the solution is reduced to steering boat to a specific point

on the opposite river bank, discussed in detail in section 4.3.2. We know that

𝑥0 + 1

6𝑉
∉ ⟨𝑎, 𝑏⟩. Therefore, the line segment ⟨𝑎, 𝑏⟩ lies on the left-hand side or the

right-hand side from the point 𝑥0 + 1

6𝑉
. Therefore, we may choose the point 𝑎 or

𝑏, which is closer to 𝑥0 + 1

6𝑉
. Alternatively, this follows from the transversality
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condition as well. That is, we choose a point that belongs to the set

argmin

𝑧∈{𝑎,𝑏}

����𝑧 − 𝑥0 −
1

6𝑉

����.
Then we solve the problem of steering boat to a specific point on the opposite bank

with a final value for the state 𝑥 𝑓 𝑖𝑛 ∈ argmin𝑧∈{𝑎,𝑏}
��𝑧 − 𝑥0 − 1

6𝑉

��
.

4.4 Laminar flow around a circle

Now we take problem (4.1) with a uniform flow around a disk

𝐷𝑅 =
{
(𝑥,𝑦) ∈ ℝ2

�� 𝑥2 + 𝑦2 ≤ 𝑅2
}
.

We assume an ideal liquid with no circulation. The potential is:

𝜑 (𝑥,𝑦) = 𝑉𝑓 𝑥
(
1 + 𝑅2

𝑥2 + 𝑦2

)
for (𝑥,𝑦) ∈ ℝ2 \ 𝐷𝑅,

from which we can obtain the vector field as:(
𝑐𝑥
𝑐𝑦

)
= ∇𝜑 =

©­«
1 + 𝑅2 (𝑦2−𝑥2)

(𝑥2+𝑦2)2

− 2𝑥𝑦𝑉𝑓 𝑅
2

(𝑥2+𝑦2)2

ª®¬.
The target set is the circle 𝐸 = 𝐷𝑅 . The costate equations are(

𝑝′
1

𝑝′
2

)
=

©­«
𝑝1

(
6𝑅2𝑉𝑓 𝑥

(𝑥2+𝑦2)2 −
8𝑅2𝑉𝑓 𝑥

3

(𝑥2+𝑦2)3
)
+ 𝑝2

(
2𝑅2𝑉𝑓 𝑦

(𝑥2+𝑦2)2 −
8𝑅2𝑉𝑓 𝑥

2 𝑦

(𝑥2+𝑦2)3
)

𝑝2

(
2𝑅2𝑉𝑓 𝑥

(𝑥2+𝑦2)2 −
8𝑅2𝑉𝑓 𝑥 𝑦

2

(𝑥2+𝑦2)3
)
+ 𝑝1

(
2𝑅2𝑉𝑓 𝑦

(𝑥2+𝑦2)2 −
8𝑅2𝑉𝑓 𝑥

2 𝑦

(𝑥2+𝑦2)3
)ª®¬.

From now on we assume unit disk (𝑅 = 1). We can take a parametrization of 𝜕𝐷𝑅 as

𝑥 = cos𝛼 , 𝑦 = sin𝛼 , 𝛼 ∈ (−𝜋, 𝜋⟩. Then, from the transversality condition, we get

(ℎ,−𝑝1(𝜏∗),−𝑝2(𝜏∗)) = (0, 𝐾 cos𝛼, 𝐾 sin𝛼) for some 𝐾 > 0.

For 𝛼 ≠ 𝑘𝜋/2, 𝑘 ∈ ℤ, we can rewrite the final condition imposed on costates as

tan𝛼 =
𝑝2(𝜏∗)
𝑝1(𝜏∗)

.
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From the circle parametrization we also have final constraints on the states 𝑥 𝑓 𝑖𝑛 =

cos𝛼 and 𝑦𝑓 𝑖𝑛 = sin𝛼 . We assume initial conditions (𝑥0, 𝑦0) ∉ 𝐷𝑅 .
This problem was solved using collocation method for different initial conditions

and two ratios of 𝑉 and 𝑉𝑓 . Trajectories for a slow flow 𝑉 = 2𝑉𝑓 and for a faster

flow 𝑉 = 𝑉𝑓 /2 are shown in Figures 4.10 (a) and 4.10 (b) respectively. Blue lines

represent trajectories and yellow dashed lines shows the shortest path to the disk

in terms of Euclidean distance.
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(a) Steering boat to a unit circle with 𝑉 = 2𝑉𝑓
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(b) Steering boat to a unit circle with 𝑉 = 𝑉𝑓 /2

Figure 4.10: Simulations for steering boat to unit circle with laminar flow
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In this chapter, we encounter a problem of optimal HIV (human immunodeficiency

virus) treatment proposed in [LW07, p. 124].

5.1 Insights into HIV treatment

The emergence of the first cases of HIV in 1981 marked the onset of the notorious

HIV epidemic. Initial stages of HIV infection are characterized by a notable peak

in viral load, as documented by [CR18]. The virus targets 𝐶𝐷4
+𝑇 cells, commonly

referred to as T-helper cells, which play a pivotal role in the immune system.

Originating in the bone marrow and maturing in the thymus, these cells are integral

to activate human innate immune system, as elucidated by [Luc+12]. As outlined in

[GG23], the virus infiltrates and replicates within these cells, resulting in a depletion

of 𝐶𝐷4
+𝑇 cell counts, which weakens the body’s immune system as the disease

progresses. When untreated, the progression of the disease often culminates in

acquired immune deficiency syndrome (AIDS), a condition invariably fatal. The

concentration of 𝐶𝐷4
+𝑇 cells can be detected from blood and it is a significant

indicator of the stage of the disease.

HIV can be treated with antiretroviral treatment, which can ensure a long and

healthy life for an infected individual. When the medicine is taken correctly

according to prescription, it is possible to supress the disease to have an undetectable

load of virus, i.e., its concentration can not be detected by a standard blood test.

According to [GG23], it is important that patients still undergo preventive blood

tests. It can indicate when the treatment is ineffective. Individuals achieving an

undetectable viral load are not HIV carriers.

Despite ongoing advancements in medicine, HIV treatment remains a lifelong

commitment, which means patients need continual medication for the rest of their

lives. Nevertheless, we consider a treatment lasting only 20 days, as the problem

is formulated in [LW07]. This example is only illustrative. Longer treatment with

two different medicines is presented in [Ada+04] or [ARK21]. However, there is

another reason, why consider a short-term treatment, mentioned in [ARK21]. With

ongoing treatment, the virus can develop drug resistance and in addition, the virus

can mutate, which may alter the model or its parameters. Furthermore, according
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to [Hug+14], individuals, who achieve low virus load are often advised by their

doctors to stop or delay the treatmet to relieve the body of the side-effects of the

treatment.

5.2 Optimal control problem formulation
We suppose an optimal control problem of a form:

max

∫ 𝑡𝑓 𝑖𝑛

0

𝐴𝑇 (𝑡) − (1 − 𝑢 (𝑡))2𝑑𝑡

𝑠.𝑡 . : 𝑇 ′(𝑡) = 𝑠

1 +𝑉 (𝑡) −𝑚1𝑇 (𝑡) + 𝑟𝑇 (𝑡)
[
1 − 𝑇 (𝑡) +𝑇𝑖 (𝑡)

𝑇𝑚𝑎𝑥

]
− 𝑢 (𝑡)𝑘𝑉 (𝑡)𝑇 (𝑡),

𝑇 ′𝑖 (𝑡) = 𝑢 (𝑡)𝑘𝑉 (𝑡)𝑇 (𝑡) −𝑚2𝑇𝑖 (𝑡), (5.1)

𝑉 ′(𝑡) = 𝑁𝑚2𝑇𝑖 (𝑡) −𝑚3𝑉 (𝑡),
𝑇 (0) = 𝑇0 > 0, 𝑇𝑖 (0) = 𝑇𝑖0 > 0, 𝑉 (0) = 𝑉0 > 0,

0 ≤ 𝑢 (𝑡) ≤ 1 for all 𝑡 ∈ ⟨0, 𝑡 𝑓 𝑖𝑛⟩,

where 𝐴 > 0 is a constant, 𝑉 (𝑡) is the concentration of free virus particles, 𝑇 (𝑡) is
the concentration of uninfected 𝐶𝐷4

+𝑇 cells, 𝑇𝑖 (𝑡) is the concentration of infected

𝐶𝐷4
+𝑇 cells, 𝑟 is the growth rate of 𝑇 cells per day, 𝑇𝑚𝑎𝑥 is assumed maximal con-

centration of𝐶𝐷4
+𝑇 cells in a logistic growth model,𝑚1,𝑚2 and𝑚3 are the natural

death rates of uninfected 𝐶𝐷4
+𝑇 cells, infected 𝐶𝐷4

+𝑇 cells and virus particles

respectively, the rate that free virus particles infect 𝐶𝐷4
+𝑇 cells is proportional to

constant 𝑘 , 𝑁 is an average number of free virus particles produced after an infec-

tion of𝑇 cell, 𝑠 represents the creation of new𝐶𝐷4
+𝑇 cells in thymus. The function

𝑢 (𝑡) represents the strenght of chemotherapy, where 𝑢 = 1 means zero treatment

strength and 𝑢 = 0 signifies the strongest treatment. The function 𝑢 ↦→ 1−𝑢 seems

more intuitive, because then the strongest treatment corresponds to function value

1 and no treatment corresponds to value 0. Note that the problem is autonomous.

Constants corresponding to a good working model are provided in [LW07].

5.2.1 Necessary conditions
When we rewrite maximization as a minimization (by changing the sign of the

Lagrangian), we can use Theorem 3.5 (the extended maximum principle). From

(5.1) we have Hamiltonian in a form:

𝐻 = 𝐴𝑇 − 𝑝3 (𝑚3𝑉 − 𝑁 𝑚2𝑇𝑖) − (𝑢 − 1)2 − 𝑝2 (𝑚2𝑇𝑖 − 𝑘 𝑢𝑇 𝑉 ) (5.2)
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− 𝑝1

[
𝑚1𝑇 −

𝑠

𝑉 + 1

+ 𝑟 𝑇
(
𝑇 +𝑇𝑖
𝑇𝑚𝑎𝑥

− 1

)
+ 𝑘 𝑢𝑇 𝑉

]
,

which may look complicated, but it is a concave quadratic function in 𝑢, which

attains global maximum at:

𝑢∗ =
1

2

𝑘𝑇𝑉 (𝑝2 − 𝑝1) + 1

and a maximum on the set𝑈 = {𝑢 ∈ ℝ | 0 ≤ 𝑢 ≤ 1 } is being attained at:

𝑢∗ =


0 if

1

2
𝑘𝑇𝑉 (𝑝2 − 𝑝1) + 1 < 0,

1 if
1

2
𝑘𝑇𝑉 (𝑝2 − 𝑝1) + 1 > 1,

1

2
𝑘𝑇𝑉 (𝑝2 − 𝑝1) + 1 otherwise.

We can derive costate equations as:

𝑝′
1
= 𝑝1

[
𝑚1 + 𝑟

(
𝑇 +𝑇𝑖
𝑇𝑚𝑎𝑥

− 1

)
+ 𝑟𝑇

𝑇𝑚𝑎𝑥
+ 𝑘𝑢𝑉

]
−𝐴 − 𝑝2𝑘𝑢𝑉 ,

𝑝′
2
=𝑚2 𝑝2 − 𝑁 𝑚2 𝑝3 +

𝑝1 𝑟 𝑇

𝑇𝑚𝑎𝑥
,

𝑝′
3
=𝑚3 𝑝3 + 𝑝1

(
𝑠

(𝑉 + 1)2
+ 𝑘 𝑢𝑇

)
− 𝑝2 𝑘 𝑢𝑇 .

From the trasversality condition we get:

−𝑝 (𝑡 𝑓 𝑖𝑛) ∈ ∇𝑙 (𝑇 ∗(𝑡 𝑓 𝑖𝑛),𝑇 ∗𝑖 (𝑡 𝑓 𝑖𝑛),𝑉 ∗(𝑡 𝑓 𝑖𝑛)) + 𝑁 𝐿
𝐸 (𝑇

∗(𝑡 𝑓 𝑖𝑛),𝑇 ∗𝑖 (𝑡 𝑓 𝑖𝑛),𝑉 ∗(𝑡 𝑓 𝑖𝑛)) = {0},

which is essentially a final condition for costates.

5.2.2 Simulations
We can use forward-backward sweep method, described in appendix A, to solve

this system of nonlinear differential equations. The optimal treatment strength 1 -𝑢

(yellow), the time development of virus particles and both infected and uninfected

cells concentration (blue) are shown in Figure 5.1. Constants used for this simulation

are taken from [LW07]:

𝑠 = 10, 𝑚1 = 0.02, 𝑚2 = 0.5, 𝑚3 = 4.4, 𝑟 = 0.03,

𝑇𝑚𝑎𝑥 = 1500, 𝑘 = 0.000024, 𝑁 = 300,
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units can be found in [BKL98], initial conditions are:

𝑇0 = 800, 𝑇𝑖0 = 0.4, 𝑉0 = 1.5,

the cost is 𝐴 = 0.05 and the end time for optimization is 𝑡 𝑓 𝑖𝑛 = 20.
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Figure 5.1: Optimal HIV treatment for 𝐴 = 0.05

We can see that this treatment is very efficient - the concentration of uninfected

𝐶𝐷4
+𝑇 cells grows and the concentration of virus particles goes to zero. It is worth

to mention that in this scenario, the presence of HIV was caught extremely early.

The final cells concentrations are𝑇 (𝑡 𝑓 𝑖𝑛) = 837.198,𝑇𝑖 (𝑡 𝑓 𝑖𝑛) = 0.005,𝑉 (𝑡 𝑓 𝑖𝑛) = 0.170.

In this scenario, we see that the virus is almost entirely eliminated within a short

amount of time and therefore, we might alter our cost functional to put a higher

weight on reducing the side effects of treatment, hence, use smaller constant

𝐴 = 0.018. Optimal treatment strategy and time development of cells is shown in

Figure 5.2. Final state values are 𝑇 (𝑡 𝑓 𝑖𝑛) = 823.317,𝑇𝑖 (𝑡 𝑓 𝑖𝑛) = 0.015,𝑉 (𝑡 𝑓 𝑖𝑛) = 0.479.

We can see that the virus elimination is still good and the strongest treatment is

utilized for shorter time interval, which reduces its side effects.
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Figure 5.2: Optimal HIV treatment for 𝐴 = 0.018

5.3 Time dependent constraints on the strength of
treatment

In this section, we modify problem (5.1) to allow more complex constraints on 𝑢.

Instead of requiring 0 ≤ 𝑢 (𝑡) ≤ 1 on ⟨0, 𝑡 𝑓 𝑖𝑛⟩, we assume

0 ≤ 𝑢𝑙 (𝑡) ≤ 𝑢 (𝑡) ≤ 𝑢𝑢 (𝑡) ≤ 1 for all 𝑡 ∈ ⟨0, 𝑡 𝑓 𝑖𝑛⟩,

where 𝑢𝑙 : ⟨0, 𝑡 𝑓 𝑖𝑛⟩ → ℝ is the lower bound on treatment strength and 𝑢𝑢 :

⟨0, 𝑡 𝑓 𝑖𝑛⟩ → ℝ is the upper bound on treatment strength. Observe that the only

difference in finding the optimal tretment compared to derivation in section 5.2.1

appears in the maximization of Hamiltonian (5.2). In this case, the Hamiltonian is

maximized on a time varying set𝑀 (𝑡) := {𝑢̃ ∈ ℝ|𝑢𝑙 (𝑡) ≤ 𝑢̃ ≤ 𝑢𝑢 (𝑡)}, which leads

to maximization for every 𝑡 on ⟨0, 𝑡 𝑓 𝑖𝑛⟩. This gives us optimal treatment

𝑢∗(𝑡) =

𝑢𝑙 (𝑡) if 𝑢̃𝑡 < 𝑢𝑙 (𝑡),
𝑢𝑢 (𝑡) if 𝑢̃𝑡 > 𝑢𝑢 (𝑡),
𝑢̃𝑡 otherwise,
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where

𝑢̃𝑡 :=
1

2

𝑘𝑇 (𝑡)𝑉 (𝑡) (𝑝2(𝑡) − 𝑝1(𝑡)) + 1.

We can also see that the problem is not autonomous, because the set 𝑈 is not

independent of time. Hence, the Hamiltonian is not constant, although in the

previous section, it was.

5.3.1 Simulations

We used forward-backward sweep method to solve these problems.

Delayed beginning of treatment

We set 𝑢𝑢 (𝑡) = 1 on ⟨0, 𝑡 𝑓 𝑖𝑛⟩ and

𝑢𝑙 (𝑡) =
{

1 if 𝑡 ∈
〈
0, 𝑡 𝑓 𝑖𝑛/4

)
,

0 if 𝑡 ∈
〈
𝑡 𝑓 𝑖𝑛/4, 𝑡 𝑓 𝑖𝑛

〉
,

which corresponds to starting a treatment at 𝑡 = 𝑡 𝑓 𝑖𝑛/4. We used the same con-

stants as in previous section. The simulation is shown in Figure 5.3. The con-

stant 𝐴 had to be significantly increased to 𝐴 = 5 to achieve reasonable treat-

ment. Delayed treatment alo results in much worse final cells concentrations

𝑇 (𝑡 𝑓 𝑖𝑛) = 776.881,𝑇𝑖 (𝑡 𝑓 𝑖𝑛) = 0.001,𝑉 (𝑡 𝑓 𝑖𝑛) = 0.032, where we can see, despite in-

creased weight 𝐴, the concentration of𝐶𝐷4
+𝑇 cells at final time is lower than their

concentration at the beginning.

Treatment stopped early

We set 𝑢𝑢 (𝑡) = 1 on ⟨0, 𝑡 𝑓 𝑖𝑛⟩ and

𝑢𝑙 (𝑡) =
{

0 if 𝑡 ∈
〈
0, 𝑡 𝑓 𝑖𝑛/2

〉
,

1 if 𝑡 ∈
(
𝑡 𝑓 𝑖𝑛/2, 𝑡 𝑓 𝑖𝑛

〉
,

which corresponds to the situation that treatment stopped at 𝑡 = 𝑡 𝑓 𝑖𝑛/2. The

simulation is shown in Figure 5.4. In this case, we can use 𝐴 = 0.05 as before. Final

values of states are 𝑇 (𝑡 𝑓 𝑖𝑛) = 830.227,𝑇𝑖 (𝑡 𝑓 𝑖𝑛) = 0.012,𝑉 (𝑡 𝑓 𝑖𝑛) = 0.405. We can

see a predictive behaviour when we compare this situation with basic situation in

Figure 5.1. Because it was apriori known that the treatment stops at 𝑡 = 𝑡 𝑓 𝑖𝑛/2, the
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Figure 5.3: Delayed beginning of treatment

strongest treatment is being kept for a longer time interval. Also we can see that

while there is no treatment, the virus concentration grows.

0 2 4 6 8 10 12 14 16 18 20

t [days]

0

0.5

1

1
 -

 u
 [
-]

Treatment strength

0 2 4 6 8 10 12 14 16 18 20

t [days]

700

800

900

1000

T
 [
c
e
lls

/m
l] Uninfected CD4

+
T cells

0 2 4 6 8 10 12 14 16 18 20

t [days]

0

0.2

0.4

T
i [

c
e
lls

/m
l] Infected CD4

+
T cells

0 2 4 6 8 10 12 14 16 18 20

t [days]

0

5

10

V
 [
c
e
lls

/m
l] Virus particles

Figure 5.4: Treatment stopping early
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Discontinuous treatment

Now we model a situation when the treatment is being received only for six days

of a week. This situation may show what happens with the immune system, when

the treatment is intermitted. Therefore, we set 𝑢𝑢 (𝑡) = 1 on ⟨0, 𝑡 𝑓 𝑖𝑛⟩ and

𝑢𝑙 (𝑡) =
{

1 if 𝑡 ∈ (6, 7) ∪ (13, 14),
0 otherwise.

The simulation is shown in Figure 5.5 for𝐴 = 0.05. We can see that the treatment

is still efficient. One might be misled by the shape of the graph and assume the differ-

ence compared to situation in Figure 5.1 is not significant, but there is difference in

final state values, which in this case are𝑇 (𝑡 𝑓 𝑖𝑛) = 831.451,𝑇𝑖 (𝑡 𝑓 𝑖𝑛) = 0.007,𝑉 (𝑡 𝑓 𝑖𝑛) =
0.220. In the figure we can clearly see the impact of the first treatment turn-off.

0 2 4 6 8 10 12 14 16 18 20

t [days]

0

0.5

1

1
 -

 u
 [
-]

Treatment strength

0 2 4 6 8 10 12 14 16 18 20

t [days]

700

800

900

1000

T
 [
c
e
lls

/m
l] Uninfected CD4

+
T cells

0 2 4 6 8 10 12 14 16 18 20

t [days]

0

0.2

0.4

T
i [

c
e
lls

/m
l] Infected CD4

+
T cells

0 2 4 6 8 10 12 14 16 18 20

t [days]

0

5

10

V
 [
c
e
lls

/m
l] Virus particles

Figure 5.5: Treatment switching cycle starting on the seventh day

The fact that the first turn-off occured at seventh day from the beginning of the

treatment is crucial. We can look at the situation, when the first turn-off happens

on the second day of the week in the Figure 5.6. Final values of state variables

are 𝑇 (𝑡 𝑓 𝑖𝑛) = 820.396,𝑇𝑖 (𝑡 𝑓 𝑖𝑛) = 0.008,𝑉 (𝑡 𝑓 𝑖𝑛) = 0.256, which is apparently worse

than in the previous case. One could argue that the change is caused by the fact

that in this case, there is one more interval, where there is no treatment, but that

is not entirely true. Clearly, the third interval worsens the situation a bit, but
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what causes the most significant difference is the fact, that at early stage of the

treatment (more precisely, on the second day of the treatment), the virus is given

an opportunity to grow and its growth is faster, because its concentration has not

been reduced enough during the first day of treatment. For completeness, if we

omit the third interval, when there is no treatment, we get final values of states

𝑇 (𝑡 𝑓 𝑖𝑛) = 824.085,𝑇𝑖 (𝑡 𝑓 𝑖𝑛) = 0.007,𝑉 (𝑡 𝑓 𝑖𝑛) = 0.242, which indicates that the cause

of the difference between these two situations is indeed identified correctly.
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Figure 5.6: Treatment switching cycle starting on the second day

5.3.2 Discussion
In many cases, the patients must interrupt the treatment due to developed drug

resistance, high toxicity of the medication or developed intercurrent conditions,

which make the treatment continuation impossible, as stated in [MHH05]. This was

the beginning of structured treatment interruptions, where the long-term treatment

is divided into intervals of continued treatment and intervals, when the patient

does not receive any treatment. However, this treatment is experimental, since

it is still not proved nor disproved if it is beneficial. A study providing outcome

(after 10 years) of 18 patients after several dozens of weeks (it varied from patient

to patient) of structured treatment interruptions in one hospital is presented in

[HPH20], which says that there were no significant differences between the𝐶𝐷4
+𝑇

cells concentration before and after structured treatment interruptions.
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According to a study [Hug+14], concerning HIV positive population of United

States of America, 1 in every 20 infected individuals has experienced discontinued

treatment. This study presents various reasons for intermitting the treatment and

says that in 51% of all treatment discontinuations, the reason is the doctor’s advice.

Simulations with discontinuous treatment can provide more information for

making decision, whether treatment interruption is beneficial for the infected

individual or not and it may help schedule the periods with and without treatment.

Structural treatment interruptions solutions with optimization are presented in

[Ada+04] or [AT17], where the control is assumed to be bang-bang and subject to

the optimization are the intervals for switching the treatment. However, we had

not found any allusions of usage of PMP in structured treatment interruptions.

Our approach allows us to optimize the control itself in a pre-defined interval

scheme (thanks to Clarke’s general formulation of PMP), which can be used in cases

of enforced treatment interruption apart from the structured treatment interruption.

The task could also be extended to optimize times of switches with the use of

hybrid principle (we consider one mode with continuous control and second mode

completely without control and the linking condition would be the continuity of

states), where the optimal times of switches would be the optimal times to stop

(resp. begin) the treatment. This situation is discussed in the following section,

where we find optimal solution for one treatment turn-off with the usage of hybrid

principle, although the principle could be used for more turn-off intervals.

5.4 Optimization of treatment turn-off time
We formulate our problem as a hybrid system with two modes. In the first mode, we

assume there is a continuous control 0 ≤ 𝑢 ≤ 1 and in the second mode, we consider

no control at all (no treatment). We label the state variables of the second mode 𝑅

(concentration of healthy 𝐶𝐷4
+𝑇 cells), 𝑅𝑖 (concentration of infected 𝐶𝐷4

+𝑇 cells)

and𝑊 (virus particles). We formulate a hybrid optimal control problem as follows

max

∫ 𝜏

0

𝐴𝑇 (𝑡) − (1 − 𝑢 (𝑡))2𝑑𝑡 +
∫ 𝑡𝑓 𝑖𝑛

𝜏

𝐴𝑅(𝑡)𝑑𝑡 −𝐶𝜏

s. t.:

1
st
mode


𝑇 ′(𝑡) = 𝑠

1+𝑉 (𝑡) −𝑚1𝑇 (𝑡) + 𝑟𝑇 (𝑡)
[
1 − 𝑇 (𝑡)+𝑇𝑖 (𝑡)

𝑇𝑚𝑎𝑥

]
− 𝑢 (𝑡)𝑘𝑉 (𝑡)𝑇 (𝑡),

𝑇 ′𝑖 (𝑡) = 𝑢 (𝑡)𝑘𝑉 (𝑡)𝑇 (𝑡) −𝑚2𝑇𝑖 (𝑡),
𝑉 ′(𝑡) = 𝑁𝑚2𝑇𝑖 (𝑡) −𝑚3𝑉 (𝑡),
for all 𝑡 ∈ ⟨0, 𝜏⟩,
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2
nd

mode


𝑅′(𝑡) = 𝑠

1+𝑊 (𝑡) −𝑚1𝑅(𝑡) + 𝑟𝑅(𝑡)
[
1 − 𝑅(𝑡)+𝑅𝑖 (𝑡)

𝑇𝑚𝑎𝑥

]
− 𝑘𝑊 (𝑡)𝑅(𝑡),

𝑅′𝑖 (𝑡) = 𝑘𝑊 (𝑡)𝑅(𝑡) −𝑚2𝑅𝑖 (𝑡),
𝑊 ′(𝑡) = 𝑁𝑚2𝑅𝑖 (𝑡) −𝑚3𝑊 (𝑡),
for all 𝑡 ∈ ⟨𝜏,𝑇𝑓 𝑖𝑛⟩,

𝑇 (0) = 𝑇0 > 0, 𝑇𝑖 (0) = 𝑇𝑖0 > 0, 𝑉 (0) = 𝑉0 > 0,

0 ≤ 𝑢 (𝑡) ≤ 1 for all 𝑡 ∈ ⟨0, 𝜏⟩,
(𝑇 (𝜏),𝑇𝑖 (𝜏),𝑉 (𝜏)) = (𝑅(𝜏), 𝑅𝑖 (𝜏),𝑊 (𝜏)),

where the meaning of symbols is the same as stated at the beginning of this chapter.

The linking condition in this optimal control problem is the continuity of state

variables in both modes.

Notice that our running costs for both modes remain the same as in previous

sections, but we have added the term −𝐶𝜏 to the cost functional. Note that solution
with control turn-off is admissible for the problem solved in the previous sections

and hence, control turn-off would not occur in the optimal solution to this hybrid

problem, had we not modified the cost functional. We wanted to reward treatment

turn-off at time 𝜏 and hence, we added the term −𝐶𝜏 .
We use Theorem 3.8 (hybrid principle). From the transversality condition, we

get that

𝑝 (0) ∈ ℝ3, 𝑞(𝑡 𝑓 𝑖𝑛) ∈ {0},

where 𝑝 = (𝑝1, 𝑝2, 𝑝3) are costates for the first mode and 𝑞 = (𝑞1, 𝑞2, 𝑞3) are costates
for the second mode. For the first mode, we get the same adjoint equations as in

previous sections and for the second mode we get the same adjoint equations as

in previous sections expressed for 𝑢 = 1. Hamiltonian 𝐻1 for the first mode is the

same Hamiltonian as in previous sections and Hamiltonian 𝐻2 for the second mode

is 𝐻1 expressed for 𝑢 = 1.

Let 𝜏∗ be the optimal switching time. We label the state values at 𝜏∗ as T ∗ :=

(𝑇 (𝜏∗),𝑇𝑖 (𝜏∗),𝑉 (𝜏∗)) and R∗ := (𝑅(𝜏∗), 𝑅𝑖 (𝜏∗),𝑊 (𝜏∗)). The switching condition

gives us

(ℎ1 − ℎ2,−𝑝 (𝜏∗), 𝑞(𝜏∗)) ∈ 𝜕𝐿𝑙 (𝜏∗,T ∗,R∗) + 𝑁 𝐿
𝑆 (𝜏
∗,T ∗,R∗) =

{
(𝐶,−𝑧, 𝑧)

�� 𝑧 ∈ ℝ3
}
,

where 𝑆 = { (𝜏, 𝑥,𝑦) | 𝜏 ∈ ℝ, 𝑥,𝑦 ∈ ℝ𝑛, 𝑥 = 𝑦 } is the set used in linking condition

(which, in our case, is the continuity of states). The switching condition implies

that ℎ1 − ℎ2 = 𝐶 and that costates are continuous, i.e., 𝑝 (𝜏∗) = 𝑞(𝜏∗) (observe that
in general, the switching condition ensures that costates are continuous whenever
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states are continuous). We have

𝐶 = ℎ1 − ℎ2 = 𝐻1(𝜏∗) − 𝐻2(𝜏∗) (5.3)

= −(𝑢 (𝜏∗) − 1)2 + (𝑢 (𝜏∗) − 1)𝑘𝑇 (𝜏∗)𝑉 (𝜏∗) (𝑝2(𝜏∗) − 𝑝1(𝜏∗)),

because from the continuity of both states and costates, all the terms that do not

contain 𝑢 in the Hamiltonians are canceled during the subtraction. When the

condition (5.3) is satisfied, the system switches from the first mode to the second

mode and the treatment is stopped.

The problem was solved using forward-backward sweep method and the result

is shown in the Figure 5.7. States for the second mode are plotted as an extension

of the states of the first mode and labeled 𝑇,𝑇𝑖 and 𝑉 , as in the first mode. This is

logical, because the system itself is not hybrid, we just chose to model the situation

as a hybrid problem for convenience.
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Figure 5.7: Optimal HIV treatment turn-off for 𝐴 = 0.05, 𝐶 = 0.6

The optimal switching time was found as 𝜏∗ = 12.327 and the final state values

are𝑇 (𝑡 𝑓 𝑖𝑛) = 835.878,𝑇𝑖 (𝑡 𝑓 𝑖𝑛) = 0.008,𝑉 (𝑡 𝑓 𝑖𝑛) = 0.249, which is slightly worse that

what we achieved without switching the treatment off completely in section 5.2.2,

as expected. Nevertheless, the treatment turn-off might be beneficial for reasons

discussed above.
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6 Conclusions & Outlook

6.1 Achievements
In this thesis, nonsmooth analysis was introduced in order to formulate the extended

maximum principle. Various specific instances of this extended maximum principle

were presented and then used in applications, which include steering boat in a vector

field to a target set and optimal HIV treatment. Therefore, I consider the assignment

of the thesis fulfilled in its full extent. As some of the greatest contributions of this

thesis I consider:

• optimal trajectories for steering boat to the moving ellipse;

• found optimal HIV treatment in pre-defined intervals;

• found optimal treatment turn-off and suggested approach to STI HIV treat-

ment optimization.

6.2 Future work
Some of the straightforward improvements in terms of the mathematical theory are

the exploration of sufficient conditions of optimality and analysis of the existence

of the solution in the optimal HIV treatment (although the latter was done in many

articles for our system). Further development in the part of applied mathematics

could include more types of vector fields in the problem of boat steering, deeper

exploration and understanding of theorems for pure state constraints or more

complicated target set, which could involve even randomness in the position of the

target set. Improvements in the optimal HIV treatment could cover optimal STI

treatment with more intervals of treatment turn-off. A more complicated model of

HIV could be used, which could incorporate more types of treatment. Future work

could also be done in the field of numerical mathematics, which was discussed in

this thesis only briefly. Advanced numerical methods could be used to solve the

STI HIV treatment for more treatment turn-offs covering a longer time interval.
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A Forward-Backward
Sweep Method

Forward-backward sweepmethod, implemented according to in [LW07] and [SBS21],

is a numerical method used to solve fixed-time (we assume time interval ⟨𝑎, 𝑏⟩)
and free endpoint problems. In these problems, the maximum principle provides

us with a final condition for costates 𝑝 (𝑏) = 𝑝 𝑓 𝑖𝑛 and we assume the initial con-

dition 𝑥 (𝑎) = 𝑥0. We discretize the system at 𝑁 points with a sampling period

ℎ. It is necessary we provide the algorithm with an initial guess of the optimal

control 𝑢𝑔𝑢𝑒𝑠𝑠 , again discretized at 𝑁 points with sampling period ℎ. It is crucial

that 𝑢𝑔𝑢𝑒𝑠𝑠 [𝑘] ∈ 𝑈 (𝑎 + 𝑘 · ℎ), that is, 𝑢𝑔𝑢𝑒𝑠𝑠 is an admissible control for the optimal

control problem. Our main variables 𝑥 , 𝑝 and 𝑢 are matrices of the states, costates

and controls (respectively) in discrete times with dimensions 𝑛 × 𝑁 , 𝑛 × 𝑁 and

𝑚 × 𝑁 respectively, where 𝑛 is the order of the system and 𝑚 is the number of

controls. Forward-backward sweep method is explained in Algorithm 1.

Algorithm 1: Forward-Backward Sweep Method

Data: 𝑢𝑔𝑢𝑒𝑠𝑠, 𝑥0, 𝑝 𝑓 𝑖𝑛, 𝑁 , ℎ, 𝜔, 𝑎

Result: 𝑥, 𝑝,𝑢
1 𝑢 ← 𝑢𝑔𝑢𝑒𝑠𝑠 ;

2 𝑥 [0] ← 𝑥0;

3 𝑝 [𝑁 − 1] ← 𝑝 𝑓 𝑖𝑛;

4 while not converged do
5 𝑢𝑜𝑙𝑑 ← 𝑢;

6 𝑥𝑜𝑙𝑑 ← 𝑥 ;

7 𝑝𝑜𝑙𝑑 ← 𝑝;

8 𝑥 ← F_RK4(𝑥𝑜𝑙𝑑 [0], 𝑢𝑜𝑙𝑑 , ℎ);
9 𝑝 ← B_RK4(𝑝𝑜𝑙𝑑 [𝑁 − 1], 𝑥,𝑢𝑜𝑙𝑑 , ℎ);

10 𝑢 [𝑘ℎ] ← 𝑔(𝑎 + 𝑘ℎ, 𝑥 [𝑘ℎ], 𝑝 [𝑘ℎ]) for all 𝑘 = 0, ..., 𝑁 − 1;

11 𝑢 ← (1 − 𝜔)𝑢 + 𝜔𝑢𝑜𝑙𝑑 ;
12 test convergence of 𝑢, 𝑝, 𝑥 ;

The algorithm itself consists of three steps, which are repeated until convergence.

These steps are: forward integration (denoted F_RK4 in the algorithm), backward

integration (denoted B_RK4 in the algorithm) and control update. Firstly, we
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approximate the solution of the state equation by forward run of Runge-Kutta

method (in our implementation, we use the classical (explicit) Runge-Kutta method

of the fourth order, descibed in [HW15]). It is necessary to choose sufficiently small

sampling period ℎ. Then, we approximate the solution of the costate equation by

backwards run of Runge-Kutta method (we use state values from the forward run).

Afterwards, we have approximate solutions for both states and costates, which we

use to find the optimal control 𝑢. Reacll that we have the expression for optimal

control 𝑢 from the maximum principle in the form 𝑢 (𝑡) = 𝑔(𝑡, 𝑥 (𝑡), 𝑝 (𝑡)) for some

function 𝑔 : ℝ×ℝ𝑛 ×ℝ𝑛 → ℝ𝑚 . Then, we update 𝑢 as 𝑢 ← (1−𝜔)𝑢 +𝜔𝑢𝑜𝑙𝑑 , where
𝜔 ∈ (0, 1) is a parameter (we used 𝜔 = 0.4), 𝑢 is the newly found optimal control

and 𝑢𝑜𝑙𝑑 is the control from previous step. Lastly, we check for convergence of the

algorithm by a convergence test presented in [LW07, p. 51] imposed on all vectors

(or matrices, where we impose the convergence test on each row of the matrix)

𝑥, 𝑝,𝑢. We use relative error to determine, if the current solution, namely, vectors

(or matrices) 𝑥, 𝑝,𝑢, is sufficiently close to the previous one. When the criterion

∥𝑧 − 𝑧𝑜𝑙𝑑 ∥1
∥𝑧∥1

< 𝛿,

where 𝑧 is a vector for which we test the convergence, is satisfied for some small

𝛿 > 0, we stop the algorithm. The criterion can be rewritten to a form

𝛿 ∥𝑧∥1 − ∥𝑧 − 𝑧𝑜𝑙𝑑 ∥1 > 0,

which is used in the algorithm. We use the 1-norm of a vector and 𝛿 = 10
−4
.
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B Collocation Method

Collocation method, explained in [Rao10], is a standard numerical method for

solving optimal control problems. We discretize the system at 𝑁 points with a

sampling periodℎ, which divides the time interval ⟨𝑎, 𝑏⟩ into𝑁 −1 intervals ⟨𝑡𝑖, 𝑡𝑖+1⟩.
The essence of this method lies in approximating the state equation by polynomials

of order 𝑙 on each interval. We require these polynomials match the value of

the function at the beginning of each interval, i.e., 𝑥 (𝑡𝑖) = 𝑥 (𝑡𝑖), where 𝑥 is the

polynomial and 𝑥 is the state. This also enforces the initial condition. Then, to

enforce the dynamics of the approximated solution is an approximation of the

system’s dynamics, we divide each subinterval ⟨𝑡𝑖, 𝑡𝑖+1⟩ into 𝑙 points 𝑡 𝑗 ( 𝑗 = 1, ..., 𝑙 )

and ensure the derivative of the polynomial at each point 𝑡 𝑗 corresponds to the

state equation (for every interval ⟨𝑡𝑖, 𝑡𝑖+1⟩), i.e.,

𝑥′(𝑡 𝑗 ) = 𝑓 (𝑡 𝑗 , 𝑥 (𝑡 𝑗 ), 𝑢 (𝑡 𝑗 )) for 𝑗 = 1, ..., 𝑙 . (B.1)

Runge-Kutta methods belong to the category of collocation methods. Therefore,

we can use them to force the validity of equation (B.1). We used a Runge-Kutta

method of the fourth order (𝑙 = 4), which is explained in [Rao10] and [HW15]. We

assume an autonomous system. Then, we can formulate a nonlinear program as

follows

min 𝐽 (𝑥,𝑢)
s.t.: 𝑥 [𝑖 + 1] − 𝑥 [𝑖] − ℎ(𝑘1/6 + 𝑘2/3 + 𝑘3/3 + 𝑘4/6) = 0 for 𝑖 = 1, ..., 𝑁 − 1

where

𝑘1 = 𝑓 (𝑥 [𝑖], 𝑢 [𝑖]),
𝑘2 = 𝑓 (𝑥 [𝑖] + ℎ𝑘1/2, 𝑢 [𝑖]),
𝑘3 = 𝑓 (𝑥 [𝑖] + ℎ𝑘2/2, 𝑢 [𝑖]),
𝑘4 = 𝑓 (𝑥 [𝑖] + ℎ𝑘3, 𝑢 [𝑖 + 1])

are different constants for each time interval.

Then, we add additional constraints specific to our problem, e.g., initial condition,
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final condition, state constraints, control constraints. If we encounter a variable-

time problem, we are forced to discretize the system at 𝑁 points with an unknown

sampling period ℎ and hence, we do not have the sampling period under control

and we have to pay extra attention to adjusting 𝑁 . We used CasADi [And+18]

tool for solving the nonlinear program with an IPOPT solver, which, according to

[Rao10], uses second derivatives and therefore, provides us with faster convergence

near the optimal solution.
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