
Bachelor’s Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Science

An application for healthcare taxonomy
translation

Lukáš Kaufmann

Supervisor: Ing. Petr Křemen, Ph.D.
Field of study: Software engineering
May 2024

ii

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

510649 Personal ID number: Kaufmann Lukáš Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Computer Science

Software Engineering and Technology Study program:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

An application for healthcare taxonomy translation

Bachelor’s thesis title in Czech:

Aplikace pro překlad taxonomie v oblasti zdravotní péče

Guidelines:

Goal of the thesis is to design and implement a prototype for community-driven translation of the international healthcare
classification SNOMED-CT to czech. The tool should support the work of the translator (e.g. by offering automated
translations), allow collaboration on the translations and release the final and approved terminology in the format compatible
with the SNOMED-CT standard.
1. Familiarize yourself with SNOMED-CT, the RF2 format and related technologies and tools
2. Design a system that will support translators (as described above)
3. Implement the prototype as a web application (preferably Java - backend, ReactJS - frontend)
4. Design automated unit and integration tests and test the functionality with prospective users.

Bibliography / sources:

1. SNOMED-CT, https://www.snomed.org/
2. Chang E, Mostafa J. The use of SNOMED CT, 2013-2020: a literature review. J Am Med Inform Assoc. 2021 Aug
13;28(9):2017-2026. doi: 10.1093/jamia/ocab084. PMID: 34151978; PMCID:
PMC8363812.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8363812/
3. Arcan, Mihael; Dragoni, Mauro; Buitelaar, Paul. ESSOT: an expert supporting system for ontology translation, 2016.
https://aran.library.nuigalway.ie/bitstream/handle/10379/14884/NLDB2016OTTO.pdf?sequence=1

Name and workplace of bachelor’s thesis supervisor:

Ing. Petr Křemen, Ph.D. Knowledge-based Software Systems FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 24.05.2024 Date of bachelor’s thesis assignment: 07.02.2024

Assignment valid until: 21.09.2025

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature

Head of department’s signature Ing. Petr Křemen, Ph.D.
Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1

iv

Acknowledgements
I would like to thank my supervisor Ing.
Petr Křemen, Ph.D. for his guidance
and assistance in completing this thesis.
Thanks to my friends who helped me test
the application. Also, thanks to my par-
ents for their support and understanding.

Declaration
I hereby declare that this work is my own
and that I have cited all the sources used.
For some boilerplate parts of the code, I
have used the AI tool GitHub Copilot.

Lukáš Kaufmann
Prague, 24th of May 2024

Prohlašuji, že jsem předloženou práci
vypracoval samostatně, a že jsem uvedl
veškerou použitou literaturu. Pro určité
základové a opakující se prvky kódu jsem
využil UI nástroj GitHub Copilot.

Lukáš Kaufmann
V Praze, 24. května 2024

v

Abstract
This thesis aims to build a tool that can
be used to translate the medical taxon-
omy SNOMED-CT. It walks the reader
through the process from analysis to test-
ing and can also help the reader get a
rough idea about the software develop-
ment process. Alongside the development
process, a short discussion and description
of GraphQL can be used to gather a rough
idea about it. The result is an applica-
tion which has undergone automated and
manual testing. From which the back end
key components are almost fully covered
and the front has been rated by testers as
usable but occasionally slow.

Keywords: translation, ReactJS, Java,
cooperation, ontology, SNOMED-CT,
GraphQL, Spring Boot

Supervisor: Ing. Petr Křemen, Ph.D.

Abstrakt
Tato práce si stanoví za cíl vytvořit ná-
stroj pro překlad medicínské taxonomie
SNOMED-CT. Na cestě za slpněním to-
hoto cíle představí proces vytvoření ta-
kové aplikace od analýzy po testování.
Představí použité technologie, hlavně pře-
staví GraphQL jako API technologii. Po-
pisuje terstování jak automatizované, tak
manuální včetně diskuze na vásledky. Vý-
sledkem je aplikace, která plní většinu
požadovaných funkcionalit a byla ohod-
nocena testery jako použitelná, ale místy
pomalá.

Klíčová slova: překlad, ReactJS, Java,
spolupráce, ontologie, SNOMED-CT,
GraphQL, Spring Boot

Překlad názvu: Aplikace pro překlad
taxonomie v oblasti zdravotní péče

vi

Contents
1 Introduction 1
2 Goals 5
2.1 Technical aspects 5
3 SNOMED-CT 7
3.1 Clinical terminology 7
3.2 Translation 8

3.2.1 Existing tools 8
4 Analysis 11
4.1 Functionalities 11
4.2 User roles . 12
4.3 Functional requirements 15
4.4 Domain model 16
4.5 States . 19
5 Design 21
5.1 Architecture 21
5.2 Technologies used 23

5.2.1 ReactJS 23
5.2.2 GraphQL 23
5.2.3 Spring Boot 25
5.2.4 MariaDB 26

5.3 Database . 26
5.4 Back end . 27
5.5 Front end . 29
5.6 Security . 31
6 Testing 33
6.1 Methodology 33
6.2 Realisation 33
6.3 Results . 34

6.3.1 Unit testing 34
6.3.2 Import performance 35
6.3.3 User testing 36

7 Conclusion 37
7.1 Testing . 37
7.2 Retrospective 37
Acronyms 39
Acronyms 39
Bibliography 41
A Contents of the attachment 45
B Supporting scenrios for user
testing 47
B.1 Login . 47
B.2 Logout . 47

B.3 Update personal details 47
C User testing scenarios 49
C.1 Create translation set 49
C.2 Create translation 50
C.3 Modify set metadata 50
C.4 Rate translation 51
C.5 Review translation 51
C.6 Register as a new user 52
D System Usability Scale
questionnaire 53

vii

Figures
1.1 Members of SNOMED [4] 2
1.2 Comparison of different national

editions . 3

2.1 Areas of expertise 6

3.1 Concept example [8] 7
3.2 Descriptions in US English of

concept 131148009 [8] 8
3.3 Relationship of the concept of

Bleeding (Finding) [8] 8

4.1 Initial idea workflow 11
4.2 Administrator use cases 13
4.3 Translation use cases 14
4.4 Domain model of the translation

space (only metadata for Translation
shown) . 16

4.5 Domain model of the translation
set space . 17

4.6 Domain model of the import job
and translation set relation 17

4.7 Domain model of the translation
platform . 18

4.8 States of a translation set 19
4.9 States of an import job 20

5.1 System context 21
5.2 Tiers of the platform 22
5.3 Expertise to roles 22
5.4 Database diagram 26
5.5 Components of the back end . . . 28
5.6 FE Components 29
5.7 Administrator view of sets 30
5.8 User view of sets 30
5.9 View inside the set 31

Tables
6.1 Overall unit test coverage 34
6.2 Unit test coverage per service . . 35

viii

Chapter 1
Introduction

In the world of modern medicine, much of the paperwork is either written
on paper or is a creative work of each medical practitioner describing the
same things but each in their own words. So there are a lot of plans to go
digital and move to Electronic health records (EHR). One such system is
being implemented in the UK by the NHS [1, 2].

But with such a move come many questions. The major of which is how
to describe diseases, symptoms, and other clinical terms. Using just text
will make it very hard to search for relevant information and make it almost
impossible to reliably transfer information between doctors and correctly
interpret complex patient cases, including their medical histories. It is even
harder to translate medical records if your doctor is in another country and
does not speak the language.

There is a long history of creating medical classification systems. One such
system is SNOMED-CT, which dates its roots back to 1955. The College
of American Pathologists (CAP) was established to develop a nomenclature
for anatomic pathology. Ten years later, they came up with the first system
called "Systemized Nomenclature of Pathology (SNOP)" based on four key
aspects: Topography (anatomic site affected), Morphology (structural changes
associated with the disease), Etiology (the cause of the disease) and Function
(physiological alterations associated with the disease). By 1975 SNOP was
expanded with diseases and procedures and was renamed to "Systemized
Nomenclature of Medicine (SNOMED)". [3, p. 228] Finally in 1999 the CAP
worked together with National Health Service of the United Kingdom (NHS)
and merged their clinical terminologies to create SNOMED CT (Clinical
Terminologies). [3, p. 234]

In 2007, International Health Terminology Standards Development Or-
ganisation (IHTSDO) was founded by nine countries (Australia, Canada,
Denmark, Lithuania, Sweden, the Netherlands, New Zealand, the United
Kingdom, and the United States). With the founding, they also acquired the
rights to SNOMED CT to develop a global clinical terminology. Since its
inception, the project has already expanded to 48 members, as can be seen
in Figure 1.1.

1

1. Introduction

Figure 1.1: Members of SNOMED [4]

Because the system originated in the USA it is in English. That brings the
need to translate the terminology into multiple languages. The origin of all
terminologies, the base set, is referred to as the International Edition, which
is used as the starting point for all other editions, extensions and translations.

Using the example of the concept which, in the International Edition, is
referred to as "Bleeding (finding)" let us compare different national editions
in Figure 1.2. Although the Concept ID has remained the same (131148009),
the name and associated descriptions may have changed.

The aim of this thesis is to design and create an open source translation
tool to help with the transition to SNOMED-CT as the unified clinical
terminology. The existing tool from IHTSDO (described in Section 3.2.1)
works as a summary of all existing published translations and requires their
participation. The existing tool aims to provide a solution managed by the
community and a simplified way to separate the set into parts that respect
the specialities of the medical practitioners involved in the translation.

The thesis is divided into chapters. Chapter 2 describes the goals and
the technical aspects that need to be considered. Chapter 3 introduces the
SNOMED-CT landscape. Chapter 4 sets the requirements and describes the
entities in the domain of the intended application. Chapter 5 describes the
architecture and the technologies used to create the app. Chapter 6 describes
the methodology, realisation, and results of undertaken testing. The works is
concluded with Chapter 7.

2

......................................1. Introduction

(a) : International edition (b) : Belgian edition

(c) : Spanish edition (d) : Netherlands edition

Figure 1.2: Comparison of different national editions

3

4

Chapter 2
Goals

The primary goal is to provide a platform for translations that can be
adopted to meet the needs of the specific national health agency that adopts
SNOMED-CT.

Tasking one person with translating such a large set would take a long
time and might not be useful to the medical community. Because of that,
this tool should use the concept of crowd-sourcing. However, it is key to have
the right crowd, so there must be an administrative step of approving people
to be able to translate.

With a large number of contributors, it must be possible not only to suggest
translations, but also to rate existing ones and comment on them. Even
though the contributors will most likely be from the medical field, and even
with a good cause some may choose to deface the translations, as such there
must also be a process to remove translations and comments which bear no
relation to the term or topic at hand.

From such a large set of possible translations, the preferred translation
must be chosen by a group of translators qualified and responsible for the
correctness, and it must be chosen whether to use any other as synonyms.
With that, the national agency would review the translations. After the
review process, a national set could be created and submitted to SNOMED
as the official national edition.

2.1 Technical aspects

To make participation in the translation as easy as possible, the front end
of such a platform will be a website. Since three key subjects are involved
with the platform: the national health agency, the medical community of
the given country, and the IT professionals who manage the platform; it is
imperative to have a role-based access model, as shown in Figure 2.1.

The back end operating the platform is designed as a multi-tier service-
orientated monolith application. The service-orientated structure makes a
clear distinction between the areas of responsibility between the parts of the
business logic behaviour handling. Packing the app as a monolith makes it
slightly easier to develop, thanks to having direct access between parts of
the code. The major benefit of monolith is ease of deployment, one server

5

2. Goals ..
running Java is needed to run the app, or a container with the app makes
it even easier. Unlike a microservice application, where multiple servers, a
load balancing solution, and a communication channel would need to be
established and maintained.

Using a relational database to store interim information about translations,
comments, reviews, etc. To house the reference clinical terminology that
is being translated, a SnowStorm [5] server with the desired version of the
clinical terminology.

To make sure the platform works as intended, a plethora of tests should
verify the functionality. The elementary functions should be covered by unit
tests. For key functionalities integration tests will be used. To also verify
complete end-to-end functionality, test scenarios tested manually will be used.

Areas of access
Areas of access

Medical professional

Health agency

IT professional

Manage and ad-
minister system

Review
translations

Provide, rate
and comment

on translations

Figure 2.1: Areas of expertise

6

Chapter 3
SNOMED-CT

"SNOMED CT or SNOMED Clinical Terms is a systematically organ-
ised computer-processable collection of medical terms providing codes, terms,
synonyms and definitions used in clinical documentation and reporting." [6]

3.1 Clinical terminology

The terminology consists of three essential parts: Concepts, Relation-
ships and Descriptions. [7]

Concepts carry the essential clinical meaning. Every concept has its specific
identifier that is unique and independent of the human-readable form, which
might be in a different language. An example of a concept is shown in Figure
3.1, the unique identifier being marked as "SCTID" and for the finding of
bleeding is 131148009.

Figure 3.1: Concept example [8]

Descriptions are linked to concepts and provide a human-acceptable de-
scriptor for concepts. Each concept has at least one Fully Specified Name
(FSN) [9], which must represent the concept regardless of context and be
unique. Along FSN there might exist any number of synonyms, which might
not be unique, but in every language version of SNOMED-CT must be one
preferred synonym. For concept 131148009 from Figure 3.1 we can look at
all the descriptions in US English in Figure 3.2. Marked with the letter F

7

3. SNOMED-CT
at the beginning is the FSN, synonyms are marked with the letter S and of
these one is marked as preferred.

Figure 3.2: Descriptions in US English of concept 131148009 [8]

Relationships create a network of concepts and enable categorisation of
them. Every concept has at least one relationship of the type "is a". Using
the concept from Figure 3.1, Figure 3.3 shows that it has two relationships,
one of type "is a" and another of type "Associated morphology".

Figure 3.3: Relationship of the concept of Bleeding (Finding) [8]

For hosting and working with the SNOMED-CT, International Health
Terminology Standards Development Organisation (IHTSDO) developed a
server, built on top of ElasticSearch, to host and serve the SNOMED-CT
data set. [5]

3.2 Translation

Translating clinical terminology has its specifics, as it is key to ensure
that translations follow the guidelines of SNOMED-CT: understandability,
reproducibility and usefulness [10]. To cover understandability and repro-
ducibility, it is key to gather feedback from other medical professionals. The
usefulness must be evaluated by the health agency and other members of the
medical community to verify that "the concept has a practical value for users
that is self-evident or can be easily explained" [10, Section 1.1.1].

The existing tools can solve the same use case, but from rough User Interface
(UI) evaluation of the two tools with available public-facing information [11,
12] those applications are primarily aimed at people knowledgeable about the
SNOMED-CT structure, while this application aims to gather translations
from those who use SNOMED-CT terms.

3.2.1 Existing tools

SNOMED itself provides a list of tools usable to translate [11]. Of those,
only two provide some information publicly. The tools from Rhapsody
(formerly CareCom) and termSpace have no publicly available information,
the only option being to request a demo.

8

..................................... 3.2. Translation

Reference Set and Translation Tool

SNOMED itself provides a tool for translating and collaborating. From my
research, this tool is primarily optimised for translations of whole data sets
or their sub-sections. Concerning a tool planned in the scope of this project
and the following thesis, this tool looks like a helpful step after translating
concepts and packaging them in an extension or a translation of the reference
set.

Snow Owl B2i

B2i Healthcare is a for-profit company, however, information about their
platform [13] is not only for SNOMED-CT but also for other healthcare
terminology. In addition, there is a large amount of public information about
their platform which presents its features.

This information is a great resource for understanding the basics of trans-
lating and working with medical terminologies.

9

10

Chapter 4
Analysis

4.1 Functionalities

To help visualise and explore the functionalities needed, a basic workflow
will help. It provides an overview of the rudimentary functionalities needed
for this software.

Import terms

Initiate translation

Keep suggested translations

Comment and rate translations

Approval of acceptable translations

Exported translated terms

Figure 4.1: Initial idea workflow

The workflow in Figure 4.1 gives an overview from which a list of function-
alities can be built.
Functionality 1 (Set preparation). The first two steps in Figure 4.1 create
the need to prepare a translation set. Import all terms relevant to the set,
create a structure of Translation Manager(s) and Moderator(s) if need be,
and onboard Translators to the set.
Functionality 2 (Get translation). Gather suggestions, ratings, and comments
from the translators.
Functionality 3 (Review translations). Lock the suggestions to not be modified
during the review. Review the suggestions and, if acceptable, mark them as
an approved translation. If there are terms that are unacceptable, those can
be returned to the translators and allow for the gathering of more suggestions.
Functionality 4 (Set export). Package the whole set to be published as either
an extension or an edition.

11

4. Analysis
4.2 User roles

To be able to design the platform, an expansion of the high-level function-
ality from Section 4.1 is needed. The initial breakdown step is to define use
cases.

To be able to define the use cases, we need to define roles that can interact
with the platform.

User Role 1. A system administrator is an IT specialist managing the
technical aspects of the platform, such as the export and import of the terms
to be translated.

User Role 2. The translation manager role should be filled by a person
knowledgeable of the scope of the translation, most likely appointed by the
national health agency to supervise the translation process.

User Role 3. When the scope and/or the number of users contributing grows
sufficiently large, a moderator role might be needed to help moderate the
ratings of translation suggestions. A moderator will be assigned to a specific
translation set.

The actions of the moderator, User Role 3, will include the removal of a
comment if it is not relevant, aggressive, or other conduct not helpful with
translations; If the user proves to be unreliable or damaging to the effort, his
ratings could be removed to clean up the data.

12

...................................... 4.2. User roles

Administrator area
Administrator area

≪include≫ ≪include≫

System admin

Translation manager

Moderator

Export
translated

terms

Import
terms

Define set
of terms to
translate

Moderate
ratings

Remove
comment

Remove
rating

Figure 4.2: Administrator use cases

13

4. Analysis
User Role 4. The translator is the elementary participant as their role is the
key to creating translations. They will be able to suggest translations, rate
what others have suggested, and crucially comment on the suggestions that
spark a helpful debate.

User Role 5. To properly verify the translations when the set of terms is
being reviewed, the translation manager may employ verifiers who will go
through the suggestions and approve the translations that make sense, but
those that are unrelated or non-sensical will be removed.

The approved translations will then be packaged into an approved set and
given to a professional review board of the national health agency, and if it
passes that review, it will be packaged as an extension or a localised edition
of SNOMED-CT.

Translations
Translations

Translator

Verifier

Create new
translation
suggestion

Rate translation
suggestion

Comment on
translation
suggestion

Approve
translation

Remove
translation

Figure 4.3: Translation use cases

14

................................4.3. Functional requirements

4.3 Functional requirements

From Figures 4.2 and 4.3 we can build a list of requirements:

Functional Requirement 1 (Terms definition). The platform shall allow the
administrator to define which terms are available for translation.

Functional Requirement 2 (Export a set). The platform shall allow the
administrator to export a set of translated terms.

Functional Requirement 3 (Create set). The platform shall allow the trans-
lation manager to create a set of terms to be translated.

Functional Requirement 4 (Moderate). The platform shall allow the transla-
tion manager and moderator to moderate comments and ratings.

Functional Requirement 5 (New translation suggestion). The platform shall
allow the user to create new translation suggestions.

Functional Requirement 6 (Rate translation suggestion). The platform shall
allow the user to rate existing suggestions.

Functional Requirement 7 (Comment on translation suggestion). The platform
shall allow the user to comment on existing suggestions.

Functional Requirement 8 (Approve translation). The platform shall allow
the verifier to approve a suggestion.

Functional Requirement 9 (Remove translation). The platform shall allow
the verifier to remove a suggestion.

Non-Functional Requirement 1 (RBAC). The platform follows a role-based
access control (RBAC) model.

15

4. Analysis
4.4 Domain model

Since all parts of the terminology are concepts that have terms associated
with them, Term is the keystone to translating concepts.

The translations themselves are relatively simple in terms of their domain.
All that is needed is a translation, its rating, and comments as shown in the
part of the model in Figure 4.4.

Translations

0..*

0..*

10..*
Translation

fsn
synonym
preferred

Comment Rating

Term

Figure 4.4: Domain model of the translation space (only metadata for Translation
shown)

The complexity could increase when building the final set. However, to build
the set, a SnowStorm server should be used. Despite that to allow for saving
some terms but returning others to gather more feedback or better translation
suggestions, we need to save some metadata with those translations. Such
metadata will be part of the translation entity in Figure 4.4.

The properties in the model of the Translation entity are all Boolean flags
to represent various metadata: fsn, synonym, and preferred are metadata
relating directly to SNOMED-CT as explained in Section 3.1.

Building a set of terms to translate, the translation manager, who is just a
type of user, will mark those concepts as part of the translation set, with the
need to store the original wording to have a starting point for the translations.
The terms store the concept ID from SNOMED-CT to prevent duplication
and allow linking, however, the FSN is also stored to reduce the number of
API calls. Those entities and their relations are shown in Figure 4.5.

16

.................................... 4.4. Domain model

Translation sets

0..*

0..*

0..*

0..*

Translation set

TranslationUser

Term

Figure 4.5: Domain model of the translation set space

To get the terms from the SnowStorm server into the application, an import
has to take place. Due to expected longer execution times and possible errors,
it is better to keep track of the import job and track its state and times of
start and end, to allow for evaluation of the time taken. The target refset is
stored as the ID of the refset in the SnowStorm server.

Import Jobs

1 0..1
Translation set

Import job

- branch: string
- import_status: ImportStatus
- refset: string
- created_at: Date
- finished_at: Date

≪enum≫
ImportStatus

NEW
IN_PROGRESS
FINISHED
FAILED

Figure 4.6: Domain model of the import job and translation set relation

From Figures 4.4, 4.5 and 4.6 we can build a complete domain model
that encompasses all the essentials of the platform. This model is shown in
Figure 4.7. All fields on all the entities are mandatory with the exception
of: finished_at on Import Job which only gets filled after a job finished;
definition on Term only if found; and flags on Translation (FSN, synonym
and preferred) are optional and only get set in the review process.

17

4. Analysis
Translation platform

1

0..*

0..*

10..*

0..*
0..*

0..*

1

0..*
1

0..*

1

0..*

1

0..1

≪enum≫
ImportStatus

NEW
IN_PROGRESS
FINISHED
FAILED

≪enum≫
Role

USER
MODERATOR
SYSTEM_ADMIN
TRANSLATION_ADMIN
VERIFIER

Import job

- branch: string
- refset: string
- created_at: Date
- finished_at: Date

Translation

- text: string
- creationDate: Date
- fsn: boolean
- synonym: boolean
- preferred: boolean

Comment

- text: string
- date: Date

Rating

- value: int
- date: date

Term

- name: string
- definition: string
- conceptId: string

Translation set

- name: string

User

- username: string
- email: string
- password: string

Figure 4.7: Domain model of the translation platform

18

....................................... 4.5. States

4.5 States

To allow tracking of the entities as they move through the workflow, a set
of states for each entity is used. In some cases, the states are linked between
the entities.

The diagram in Figure 4.8 defines the possible states of a set being trans-
lated.

Translation setTranslation set

NewNew OpenOpen Under reviewUnder review

ClosedClosed

Figure 4.8: States of a translation set

The New state is only used while the import job is not in the finished
state. The Open state allows for new comments to be added and translations
suggested. While in Under review, translations can no longer be added, only
review flags can be added. The transition between Open and Under review
can be made at any time. The Closed state sets all the information in the
translation set into read-only mode, only to be viewed.

Figure 4.9 presents the states of an Import Job. Every job starts as
New, when the process starts it becomes In progress, there are two options
from there: a successful completion and therefore state Finished, or an error
resulting in the Failed state.

19

4. Analysis

Import jobImport job

NewNew In progressIn progress FinishedFinished

FailedFailed

Figure 4.9: States of an import job

20

Chapter 5
Design

5.1 Architecture

The presentation of the architecture of the app is based on the C4 model
[14]. Provides 4 levels of abstraction to separate concerns and information
based on the intended audience. Starting with System context, it shows
the big picture of the users and systems that exist within the scope of the
application.

Decreasing the abstraction one level is the container diagram, depicting
what the system consists of and what the technologies running those containers.
It helps to show the inner working structure of a system.

Breaking down the containers are component diagrams, those present what
is inside the container and describe the inner workings and control flows
inside each container.

The final level down is platform dependent and is used to describe the
detailed implementation of the components described one level above.

The context of the application is described in Figure 5.1.

Figure 5.1: System context

As described in Figure 5.2 the platform as a whole has a multi-tier archi-
tecture. The React front end presents the data to the user and obtains user
inputs. Those are then sent to the Java Spring back end, which processes
the inputs and presents the data back. When needed, it communicates with
MariaDB to manipulate and persist the data. Also, to allow term import, it
communicates with a SnowStorm SNOMED server.

21

5. Design..

Figure 5.2: Tiers of the platform

Each user of the application falls into one of the areas of expertise, as
shown in Figure 2.1. Then those areas are broken down into roles in Figure
5.3.

The translator is a member of the medical community with knowledge of
the source and target language. Within the application itself, this role is
referred to as User.

The health agency contains three roles: the moderator, who can delete
defacing comments; translation manager responsible for a translation set and
managing its users, in the application referred to as Translation manager on
front end, Translation admin inside the code itself; verifier is responsible for
checking the translation and marking it with appropriate flags.

The system administrator role is a representation of the IT professional
expertise, with full access to the system.

Medical professional Health agency IT professional

Translator Moderator Translation manager Verifier System administrator

Figure 5.3: Expertise to roles

22

.................................. 5.2. Technologies used

5.2 Technologies used

To implement the application based on the described architecture, four
key technologies are needed: front end, API, back end, and a database. The
following sections describe the technology for each part: ReactJS for the
front end, GraphQL for API, Spring Boot for back end, and MariaDB for
the database.

5.2.1 ReactJS

The React [15] framework is used as a base for the component-based User
Interface (UI) design. To handle routing to correct pages, React Router is
used. The Apollo Client [16] provider allows easy GraphQL requests. State
management is handled with the included useState hooks; for states relating
to the GraphQL queries, the Apollo Client handles those. Along with the
states, it also keeps a cache of the results.

ReactJS was chosen based on two factors, it was suggested by the thesis
supervisor and the author had the most experience with it from existing
frameworks, despite that the experience is still limited.

5.2.2 GraphQL

The key component is a Schema consisting of Types. [17] The example in
Listing 5.1 defines a Person with 3 attributes: name which is of type string
and must be not null (denoted by !), age which is an optional integer, and
addresses which is an array that will always be an array (denoted by the
outer !) but could be of size 0 and all items in the array will be of type
Address (denoted by the inner !).

type Person {
name: String!
age: Int
addresses: [Address!]!

}

Listing 5.1: Example type

Example inspired by official documentaion. [17]
Special types are Query and Mutation. Those "define the entry point of

the GraphQL query"[18]. A Query is used to obtain the data and Mutation is
used to manipulate the data.

In traditional REST APIs it is always necessary to send a complete Data
Transfer Object (DTO), therefore often a need arises to have several DTOs
for the same entity based on the use. In a GraphQL query, the client can
declare what exactly is needed, making implementation simpler and faster.

A Mutation uses a special type called input which is used to input complex
data structures. Every mutation also has a return type, which is essentially
the same as a query of such a type.

23

5. Design..
A GraphQL API call is made as a POST request with the body being the

desired query.

query {
translationSets {

id
name
status
refsetName
refsetId
termCount
translation_manager {

id
name

}
}

}

Listing 5.2: Query for translation sets

The query in the previous Listing 5.2 sent using the Apollo Client results
in a response in the following Listing 5.3.

{"data": {
"translationSets": [

{
"id": 38,
"name": "GP Test",
"status": "OPEN",
"refsetName": "General Practice / Family ...",
"refsetId": "450970008",
"termCount": 4500,
"translation_manager": {

"id": 52,
"name": "Test Translation Admin",
"__typename": "User"

},
"__typename": "TranslationSet"

}
]

}}

Listing 5.3: Result for query from listing 5.2

Text in refsetName shortened to fit on the page.
GraphQL API was chosen because of extensive experience working with it

by the author.

24

.................................. 5.2. Technologies used

5.2.3 Spring Boot

Spring Boot [19] itself provides a strong base that can be extended with
the necessary functions. Spring version 3.2.4 on Java 21 built with Maven is
used.

Additional components that were key in development are Lombok and
MapStruct. Both allow for a smaller codebase and more streamlined develop-
ment.

Lombok [20] enables a large reduction in the amount of boilerplate code.
It uses annotation to provide functions that otherwise would be essentially
the same in most classes.

MapStruct [21] allows for mappers not to have to be implemented, only
defined as interfaces and annotated to ensure correct mappings. For simple
data types it can generate the mapping, for custom types it tries to find an
applicable method based on the source and target data types, for this it can
also look for a method matching this signature in other classes, those are
defined in the uses section.

The example in Listing 5.4 shows a typical use case. The @Mapper defines
the interface as a MapStruct mapper. The componentModel = "spring"
specifies to use the spring component model for generated code, therefore mak-
ing it a Bean that can be Autowired in spring. The uses = {ImportStatusMapper.class})
adds other classes where to look for a signature mapping, in this case it is the
ImportStatusMapper class. If the name of the source and target fields is the
same, they do not have to be defined, but when it is different, the @Mapping
is used, which specifies the source and target fields.

@Mapper(componentModel = "spring",
uses = {ImportStatusMapper.class})

public interface ImportJobMapper {

@Mapping(target = "status", source = "importStatus")
@Mapping(target = "created", source = "createdAt")
ImportJob toDto(ImportJobEntity importJobEntity);

}

Listing 5.4: MapStruct interface

To facilitate the use of GraphQL in Spring, the DGS Framework created by
Netflix was used. "The framework provides an easy-to-use annotation-based
programming model,..." [22].

The cornerstone of DGS is a datafetcher which is similar in use to a con-
troller in a REST based application. It handles calls to queries with the
annotation @DgsQuery, mutations with @DgsMutation, and calls to a type
when used as a child in another type as, for example,
@DgsData(parentType = "Translation", field = "ratings") this being
a handle for request on field ratings from within type Translation.

Another benefit provided by the DGS Framewoek is the automatic genera-
tion of DTOs used by the datafetchers from the schema.

25

5. Design..
Spring Boot was chosen based on extensive experience of the author.

5.2.4 MariaDB

MariaDB [23] was chosen mostly for convenience because the author already
had an instance running and available. There were no issues encountered
with the use and implementation of the data model within the scope of this
thesis.

MariaDB was chosen purely based on the convenience of the author already
having an instance running.

5.3 Database

The database structure is defined by the Hibernate [24] entities on the back
end using the code-first approach.

The code-first approach builds the database model from the entities defined
in the code of the back end application. The resulting database schema is
shown in Figure 5.4.

Figure 5.4: Database diagram

The code-first approach has its benefits and drawbacks. The major benefit
being that the database is always matching the entities defined in the code

26

...................................... 5.4. Back end

and requires no work to keep up with changes in the database model. Despite
such a benefit, it has its drawbacks.

A complication that comes with this approach is the handling of enumera-
tions. Enumerations defined in the code do not get stored in the database
and will be stored directly in the row as either the numerical representation
of the enumeration or as the textual value. The textual representation makes
it harder to update when the enumeration values change. On the other
hand, the numerical representation makes the raw data in the database lack
information.

5.4 Back end

Back end takes on a key role, especially when using the code-first approach
described in the previous section. Thanks to that, it makes the database
interchangeable without having to define it using a separate Data Definition
Language (DDL) SQL file.

Following from the Code-first approach, the key aspect is the model pack-
age, which describes all the entities that exist within the application. For
communicating with the database, a set of Spring Data repositories [25] is
used. Those add a level of abstraction to allow for use of functions in a
descriptive manner, removing the need to implement them, and minimising
the size of the code base.

The back-end API layer uses GraphQL. The benefits of its usage and how
it is implemented are discussed in Sections 5.2.2 and 5.2.3

The diagram in Figure 5.5 shows the interaction of components inside the
back end. The back end entry point are the Data Fetchers which handle
GraphQL queries. To be able to present the data according to the GraphQL
schema, a set of Data Transfer Objects (DTO) is needed. To always keep
DTOs up to date with the schema, DGS allows the DTOs to be generated
from the schema. To allow for efficient mapping between the model entities
and these DTOs, MapStruct interfaces are used. MapStruct uses annotations
on interfaces to generate implementation at compile time.

27

5. Design..

Figure 5.5: Components of the back end

The back end has 8 services, each taking care of the actions in relation to
the respective entity after which the service is named.. CommentService. ImportJobService. RatingService.TermService.TranslationService.TranslationSetService. UserService. RefsetImportService

All services except for RefsetImportService operate synchronously. The
RefsetImportService utilises the built-in Spring Boot @Async [26] annota-
tion. This enables asynchronous execution of methods annotated with it.
This service handles import of concepts in a given refset from the SnowStorm
server to the database of the platform. As such import can take extended
amounts of time and does not have to be complete before the creation of a
translation set.

28

...................................... 5.5. Front end

Error handling uses the Spring built-in behaviour. An abstract class
BaseException which extends the RuntimeException is used to introduce
two pieces of information: GraphQL ErrorType [27] and custom
TranslationErrorCodes which are passed as additional information to the
exception handler and passed as a response.

5.5 Front end

Front end providing the presentation of the data is built on the React
framework. It is composed of a few pages that use reusable components to
minimise the code base size. For components that are the foundation of all,
like text boxes, buttons, check boxes, etc. Material UI’s component library
[28] has been used.

Figure 5.6: FE Components

Apollo Client [16] shown in Figure 5.6 is the key to interaction with the
back end.

Figures 5.7 and 5.8 show the differences between the system administrator
and a user. This overview shows all the sets that a user can take action on;
for administrator, it is all the sets, for user only those they are assigned to.
The administrator also has additional options for managing the set: set name,
set users who can access, and change the state of the set; and also an option
to make a new set.

29

5. Design..

Figure 5.7: Administrator view of sets

Figure 5.8: User view of sets

The following figure 5.9 shows the view inside a set open for translation.
The page consists of three key sections: left, right and middle. The left
section shows a list of all terms in the set that require translations. The list
of terms can be searched thru and ordered alphabetically. The right section
creates a space for discussion relating the translations of the given term.

The middle section shows the textual value of the concept; below is a
link to the SNOMED-CT browser to the concept to easier find the relating
concepts. The text box is followed by two buttons, the left one gives the
option to obtain a translation from a translation engine. The right one saves
the translation; after that, it will appear in the list of translations. Each
translation shows the author, their workplace, and the suggested translation.
The top star scale on the right of each translation shows current rating and
how many ratings are present. The lower scan gives the option of rating the
translation using the stars on a scale of 1 to 5.

30

.......................................5.6. Security

Figure 5.9: View inside the set

5.6 Security

To keep track of the identities of users and allow different accesses to
different users, a username password authentication system is used. Each
user has a predefined role based on which authorisation takes place.

To keep passwords safe, the BCrypt [29, sec. 5] algorithm is used. To
provide authority back to the front end, a JSON Web Token (JWT) [30] is
used to communicate a successful login and also to send the role of the user.

Role-Based Access Control (RBAC) [31] model is used to determine the
access of a given user.

31

32

Chapter 6
Testing

6.1 Methodology

The planned scope of testing consists of three levels of function tests:. Unit tests. Integration tests. User testing

Unit tests cover the smallest function units in the code. Therefore, a unit
test covers one function. A set of unit tests covers a whole class.

Integration tests validate the correctness of a flow from start to finish. An
integration will cover the correctness of a behaviour flow intended for such a
process.

User testing is a manual process that checks the accuracy when a user
interacts with the system. Those tests can also provide feedback on User
Experience (UX).

An additional testing scope that has been identified as useful are perfor-
mance tests, specifically of the refset terms import.

To judge the usability of the system, an evaluation using the System
Usability Scale [32] (SUS), can provide a rough idea of how usable the system
is. For a representative score, the testers must be from the group of intended
users, otherwise the score does not bring any benefit.

6.2 Realisation

Automated tests are divided between unit and integration tests. Unit
tests are built using the JUnit and Mockito frameworks. On analysis of the
services, since the interaction between them is minimal, integration tests
would essentially cover the same as Unit tests, therefore, they were not
realised, however, since the services all return mapped DTOs, they also test
mappers, which are generated therefore are not really testable.

For each method that was a target of the unit tests, a test was created
for a successful flow, if such flow has a branch that leads to another, but

33

6. Testing
still positive outcome, another test was added to cover that branch. After
the positive outcomes, all possible negative outcomes were considered and
a flow to each possible negative outcome was tested to ensure the expected
behaviour. Some of these tests helped to clear out incorrect exceptions used
for a given negative event.

For user testing, five scenarios were designed. Each with a specified target
users and steps to undertake such a scenario. For each of the tests, three
metrics were collected, two open-ended questions: "Were any actions unclear?"
and "Was there a step too confusing?"; and 1 metric measured on the scale of
1-10, the "Usefulness of the scenario".

The usefulness rating is the basis for a quantitative rating of the test
scenarios to ensure that they were designed to match the needs of the users.
If the scenario is found to be useful, then the two open questions provided a
qualitative analysis of the User Experience (UX). The scenarios are defined
in Appendix C.

To evaluate the usability of the system itself SUS scores will be gathered
using the questionnaire in Appendix D. The resulting score is calculated as
follows: for questions 1,3,5,7,9 score = scale − 1; for questions 2,4,6,8,10
score = 5 − scale; then sum the score from each question and multiply by
2.5.

To measure the time taken to import terms, a timestamp is stored at the
beginning and end of each ImportJob. The time taken is correlated to the
amount of terms, and whether it was the first import of the refset or if the
terms were already in the database.

6.3 Results

Results are presented per type of the test, for unit and performance testing
the data from them are presented. For user testing a discussion about the
results, implementation of remedies, and reevaluation of the cases.

6.3.1 Unit testing

Unit testing was focused exclusively on services in coverage, but even
with that due to the use of entities, DTOs, mappers, exceptions, and other
accompanying classes. The overall coverage is shown in the following table.

Table 6.1: Overall unit test coverage

Class Method Branch Line
85.7 % 70.4 % 52.2 % 67.3 %

Table 6.1 shows that the services form a major part of the system, as no
other part was targeted and the coverage is still relatively high.

Table 6.2 shows the coverage of the unit tests only inside the services
package and breaks it down per service.

34

....................................... 6.3. Results

Table 6.2: Unit test coverage per service

Service Method Branch Line
CommentService 100% (13/13) 100% (29/29)
ImportJobService 100% (5/5) 100% (27/27)
RatingService 100% (6/6) 100% (12/12)
RefsetImportService 36.4% (4/11) 0% (0/6) 10.8% (10/93)
TermService 100% (5/5) 100% (5/5)
TranslationService 100% (14/14) 100% (6/6) 100% (29/29)
TranslationSetService 100% (30/30) 100% (18/18) 100% (70/70)
UserService 100% (12/12) 100% (2/2) 100% (29/29)
Total 92.7 % 81.2 % 71.8 %

Coverage is shown in percentages, followed by the true number of covered/-
total cases. Blank entries mean no branches present to test.

The breakdown of coverage in Table 6.2 shows one outlier that is
RefsetImportService, which is due to the special nature of this service. It
interacts with an external API, making it difficult to mock. The testing
uncovered the need to handle cases of broken imports by user input. This
resulted in modifications being made to the front end of the application.
Furthermore, an error was discovered when reaching the offset of 10000,
which is needed for some refsets larger than that. This limitation is part of
the SnowStorm API used by the application to obtain terms in a refset with
the message "Maximum unsorted offset + page size is 10,000.".

6.3.2 Import performance

For each refset the first run was measured and 5 runs after that. First run
imports the term text into the databse, while consecutive runs only map the
terms to the set.

General Practice / Family Practice reference set first run took 298.93
seconds, while the next five took on average 220 seconds with a standard
deviation of 18.43; 4500 terms were imported, resulting in approximately
20.45 terms per second.

Anatomy structure and part association reference set first run took 11.45
seconds, while the next five took on average 12.34 seconds with a standard
deviation of 0.48; 325 terms were imported, resulting in approximately 26.33
terms per second.

PARTIALLY EQUIVALENT TO association reference set first run took
89.75 seconds, while the next five took on average 94.17 seconds with a stan-
dard deviation of 2.89; 2225 terms were imported, resulting in approximately
23.63 terms per second.

On the largest set evaluated, the first run was the longest and all consecutive
were faster, but in terms of the speed of import, it is the slowest. From the
evaluated sets, we can conclude that the smaller the set, the faster the import.
However, for smaller sets, the first import is the fastest.

35

6. Testing
6.3.3 User testing

The limited time frame and delayed development mean that user testing
has been limited to a small group of testers, consisting of 3 people working in
IT. The author gave them a quick introduction into the field of intended use
cases.

For an initial round of tests each tester had 4 scenarios to complete with
specified targets, after completing those a period of freeroam testing; access
to the site with the target to break it, while being supervised by the author.

The scenarios that yielded implementation issues being discovered are C.5
and C.6.

Scenario C.5 identified an error in the front end implementation, when
unchecked boxes were treated as undefined values, therefore breaking the
store request and persisting information.

Scenario C.6 identified a major issue in user registration, while the back
end uses BCrypt as described in Section 5.6, the registration process was
overlooked and the password was stored directly in plain text, therefore the
login broke, as the plain text password is not in BCrypt format. Correction
was made to encode the password correctly.

Scenario C.4 provided feedback on the UX as it was not clear to the tester
which stars are meant to give the rating. A discussion of the scenario with
the tester proved that it was not clear, especially since the test account used
already rated the translation. When tested again on another translation
where a rating was not yet given, it was clearer to the tester.

Freeroam testing mostly revealed UI and possible UX issues. The major of
which is the slow response of the UI to some user actions. Investigation of
the issue uncovered no clear cause or way to remedy this.

Alongside those, an issue with the profile page was also discovered. Where
the change of the email directly broke the application. The back end logs
directed towards issues with authentication. Since the JWT uses email as
an identifier when the email was changed, the email in the JWT is no longer
found in the database and therefore cannot authenticate the user. This issue
has been remedied by updating the JWT on a change of email.

An extended discussion with another tester concerning their UI/UX feed-
back, resulted in minor changes to the visual side to make segments of the app
easier to navigate and understand. Those changes mostly consisted of clearer
styling to keep consistency. A larger and function-orientated improvement
was more and clear options how to cancel an action or navigate out of an
action screen.

The second round of testing after improvements were made based on the
feedback of the testers verified that the improvements rectified the issues the
testers identified.

The SUS was not used because the testers were not the intended users,
therefore the final score would not provide a reasonable result.

36

Chapter 7
Conclusion

The primary objective of this thesis was to build a platform that can be
modified and adapted to the needs of the specific agency.

The main goal that has been achieved successfully is a complete chain from
taking a refset from SNOMED-CT into the platform and allowing selected
users to suggest translations, rate other translations, and have a discussion
in the comments about the translations, all the way to adding review flags: if
the translation is to be used as FSN, synonym and whether it is preferred.

The main focus has been on a robust back end that is extensible and usable
for any agency. The front end has been built as a Proof of Concept that it
can work and be used by people. However, due to the time constraints of the
thesis, the moderating functions were omitted. Export functionality has been
investigated, due to the complex nature of the file format to transfer data
and especially the lack of documentation of the official tooling for such use,
resulting in the omission of it.

The completed work is a solid foundation on which to build a working
solution to translate medical taxonomies.

7.1 Testing

Despite the issue initially identified by the testers, they rated the application
as usable with difficulties. After remedies were made to functional problems
and a set of UI improvements implemented, the final rating was usable, but
with minor issues. Those minor issues that remain are the result of slow
response to user actions.

7.2 Retrospective

After completion of the work, a few issues became clear.
The code-first approach to database design is great if the application can

do a full CRUD cycle for every entity; if it does not, and access directly to
the database is needed for clean-up or some level of alterations, especially on
enumerated fields, it adds unnecessary difficulty.

37

7. Conclusion......................................
Becoming familiar with ReactJS took the author a significant time, but

especially attempts to optimise and speed up the responsiveness have taken a
lot of time, while yielding little to no measurable difference.

Spring Boot has again proven to be a helpful and great resource. The DGS
Framework was very helpful in the completion of the work, but it also brought
an issue when the behaviour of the implementation of it differs between the
Gradle and Maven versions. This is most likely based on the fact that the
Gradle version is official and the Maven version is community-made. As the
author had experience with the Maven version but prefers the Gradle build
tool, initially the application was meant to be developed using Gradle, but
upon encountering the difference in behaviour, a switch was made to Maven.

The process itself brought a lot of great experience in the process of
designing an application in a field the author is not overly familiar. Key
feedback for future projects is to do a deeper dive prior to starting development,
as it makes it easier to understand and plan for the needed functionalities
and especially for edge cases.

38

Acronyms

CAP College of American Pathologists. 1

DDL Data Definition Language. 27

DTO Data Transfer Object. 23, 25, 27, 33

EHR Electronic health records. 1

FSN Fully Specified Name. 7, 8, 16, 17, 37

IHTSDO International Health Terminology Standards Development Organ-
isation. 1, 2, 8

JWT JSON Web Token. 31, 36

NHS National Health Service of the United Kingdom. 1

RBAC Role-Based Access Control. 31

SNOMED Systemized Nomenclature of Medicine. 1, 5, 21

SNOP Systemized Nomenclature of Pathology. 1

SUS System Usability Scale [32]. 33, 34, 36

UI User Interface. 8, 23, 36, 37

UX User Experience. 33, 34, 36

39

40

Bibliography

1. Purpose of the GP electronic health record [online]. 2023. [visited on
2023-12-18]. Available from: https://www.england.nhs.uk/long-
read/purpose-of-the-gp-electronic-health-record/.

2. SNOMED CT NHS [online]. [visited on 2024-01-03]. Available from:
https://digital.nhs.uk/services/terminology-and-classifications/
snomed-ct.

3. BENSON, Tim. Principles of Health Interoperability HL7 and SNOMED.
2nd. Springer-Verlag London, 2012. isbn 978-1-4471-2800-7.

4. Snomed Members [online]. [visited on 2023-11-27]. Available from: https:
//www.snomed.org/members.

5. SnowStorm [online]. [visited on 2023-11-19]. Available from: https:
//github.com/IHTSDO/snowstorm.

6. SNOMED-CT Wikipedia [online]. San Francisco (CA): Wikimedia Foun-
dation, 2001- [visited on 2023-11-19]. Available from: https://en.
wikipedia.org/wiki/SNOMED_CT.

7. 5-Step briefing [online]. [visited on 2023-11-19]. Available from: https:
//www.snomed.org/five-step-briefing.

8. SNOMED CT Browser [online]. [visited on 2023-12-03]. Available from:
https://browser.ihtsdotools.org/.

9. Fully Specified Name [online]. [visited on 2023-11-19]. Available from:
https://confluence.ihtsdotools.org/display/DOCGLOSS/fully+
specified+name.

10. Guidelines for Translation of SNOMED CT [online]. 2022. [visited on
2023-11-17]. Available from: https://confluence.ihtsdotools.org/
display/DOCTRANSLATE/Guidelines+for+Translation+of+SNOMED+
CT.

11. Translation tools [online]. [visited on 2024-05-20]. Available from: https:
//www.implementation.snomed.org/translation-tools.

12. SNOMED CT Concept Editor [online]. [visited on 2024-05-20]. Available
from: https://docs.b2ihealthcare.com/snow- owl- authoring-
platform/editing-and-authoring/snomed-ct-concept-editor.

41

https://www.england.nhs.uk/long-read/purpose-of-the-gp-electronic-health-record/
https://www.england.nhs.uk/long-read/purpose-of-the-gp-electronic-health-record/
https://digital.nhs.uk/services/terminology-and-classifications/snomed-ct
https://digital.nhs.uk/services/terminology-and-classifications/snomed-ct
https://www.snomed.org/members
https://www.snomed.org/members
https://github.com/IHTSDO/snowstorm
https://github.com/IHTSDO/snowstorm
https://en.wikipedia.org/wiki/SNOMED_CT
https://en.wikipedia.org/wiki/SNOMED_CT
https://www.snomed.org/five-step-briefing
https://www.snomed.org/five-step-briefing
https://browser.ihtsdotools.org/
https://confluence.ihtsdotools.org/display/DOCGLOSS/fully+specified+name
https://confluence.ihtsdotools.org/display/DOCGLOSS/fully+specified+name
https://confluence.ihtsdotools.org/display/DOCTRANSLATE/Guidelines+for+Translation+of+SNOMED+CT
https://confluence.ihtsdotools.org/display/DOCTRANSLATE/Guidelines+for+Translation+of+SNOMED+CT
https://confluence.ihtsdotools.org/display/DOCTRANSLATE/Guidelines+for+Translation+of+SNOMED+CT
https://www.implementation.snomed.org/translation-tools
https://www.implementation.snomed.org/translation-tools
https://docs.b2ihealthcare.com/snow-owl-authoring-platform/editing-and-authoring/snomed-ct-concept-editor
https://docs.b2ihealthcare.com/snow-owl-authoring-platform/editing-and-authoring/snomed-ct-concept-editor

7. Conclusion......................................
13. Snow Owl®Authoring Platform [online]. [visited on 2024-05-21]. Available

from: https://b2ihealthcare.com/products/%5C#authoring.
14. SIMON, BROWN. The C4 model for visualising software architecture

[online]. [visited on 2024-05-13]. Available from: https://c4model.com/.
15. React [online]. [visited on 2024-05-21]. Available from: https://react.

dev/.
16. Introduction to Apollo Client [online]. 2024. [visited on 2024-05-12].

Available from: https://www.apollographql.com/docs/react/.
17. Object types and fields [online]. 2024. [visited on 2024-05-09]. Available

from: https://graphql.org/learn/schema/%5C#object-types-and-
fields.

18. The Query and Mutation types [online]. 2024. [visited on 2024-05-09].
Available from: https://graphql.org/learn/schema/#the-query-
and-mutation-types.

19. Spring Boot [online]. [visited on 2024-05-21]. Available from: https:
//spring.io/projects/spring-boot.

20. Project Lombok [online]. [visited on 2024-05-21]. Available from: https:
//projectlombok.org/.

21. MapStruct [online]. [visited on 2024-05-21]. Available from: https://
mapstruct.org/.

22. DGS Framework [online]. 2020. [visited on 2024-05-04]. Available from:
https://netflix.github.io/dgs/.

23. MariaDB [online]. [visited on 2024-05-21]. Available from: https://
mariadb.org/.

24. Hibernate ORM [online]. [visited on 2024-05-21]. Available from: https:
//hibernate.org/orm/.

25. Working with Spring Data Repositories [online]. [visited on 2024-05-
21]. Available from: https://docs.spring.io/spring-data/data-
commons/docs/1.6.1.RELEASE/reference/html/repositories.
html.

26. The @Async annotation [online]. [visited on 2024-05-21]. Available
from: https://docs.spring.io/spring- framework/reference/
integration/scheduling.html%5C#scheduling-annotation-support-
async.

27. Enum ErrorType [online]. [visited on 2024-05-13]. Available from: https:
//javadoc.io/doc/com.netflix.graphql.dgs/graphql- error-
types/3.5.2/index.html.

28. Material UI [online]. [visited on 2024-05-21]. Available from: https:
//mui.com/material-ui/.

42

https://b2ihealthcare.com/products/%5C#authoring
https://c4model.com/
https://react.dev/
https://react.dev/
https://www.apollographql.com/docs/react/
https://graphql.org/learn/schema/%5C#object-types-and-fields
https://graphql.org/learn/schema/%5C#object-types-and-fields
https://graphql.org/learn/schema/#the-query-and-mutation-types
https://graphql.org/learn/schema/#the-query-and-mutation-types
https://spring.io/projects/spring-boot
https://spring.io/projects/spring-boot
https://projectlombok.org/
https://projectlombok.org/
https://mapstruct.org/
https://mapstruct.org/
https://netflix.github.io/dgs/
https://mariadb.org/
https://mariadb.org/
https://hibernate.org/orm/
https://hibernate.org/orm/
https://docs.spring.io/spring-data/data-commons/docs/1.6.1.RELEASE/reference/html/repositories.html
https://docs.spring.io/spring-data/data-commons/docs/1.6.1.RELEASE/reference/html/repositories.html
https://docs.spring.io/spring-data/data-commons/docs/1.6.1.RELEASE/reference/html/repositories.html
https://docs.spring.io/spring-framework/reference/integration/scheduling.html%5C#scheduling-annotation-support-async
https://docs.spring.io/spring-framework/reference/integration/scheduling.html%5C#scheduling-annotation-support-async
https://docs.spring.io/spring-framework/reference/integration/scheduling.html%5C#scheduling-annotation-support-async
https://javadoc.io/doc/com.netflix.graphql.dgs/graphql-error-types/3.5.2/index.html
https://javadoc.io/doc/com.netflix.graphql.dgs/graphql-error-types/3.5.2/index.html
https://javadoc.io/doc/com.netflix.graphql.dgs/graphql-error-types/3.5.2/index.html
https://mui.com/material-ui/
https://mui.com/material-ui/

.................................... 7.2. Retrospective

29. PROVOS, Niels; MAZIERES, David. A future-adaptable password
scheme. In: USENIX Annual Technical Conference, FREENIX Track.
1999, vol. 1999, pp. 81–91. Available also from: https://www.usenix.
org/legacy/events/usenix99/provos/provos.pdf.

30. Introduction to JSON Web Tokens [online]. [visited on 2024-05-21].
Available from: https://jwt.io/introduction.

31. FERRAIOLO, David; CUGINI, Janet; KUHN, D Richard, et al. Role-
based access control (RBAC): Features and motivations. In: Proceedings
of 11th annual computer security application conference. 1995, pp. 241–
48.

32. BROOKE, John. SUS – a quick and dirty usability scale. In: 1996,
pp. 189–194.

33. CALISTO, Francisco Maria; NASCIMENTO, Jacinto C. SUS Survey.
ResearchGate, 2018. Available from doi: 10.13140/rg.2.2.25301.
06883.

34. CALISTO, Francisco Maria. MIMBCD-UI/sus: v1.0.0-alpha. 2018. Avail-
able from doi: 10.5281/zenodo.1435044.

43

https://www.usenix.org/legacy/events/usenix99/provos/provos.pdf
https://www.usenix.org/legacy/events/usenix99/provos/provos.pdf
https://jwt.io/introduction
https://doi.org/10.13140/rg.2.2.25301.06883
https://doi.org/10.13140/rg.2.2.25301.06883
https://doi.org/10.5281/zenodo.1435044

44

Appendix A
Contents of the attachment

/
be Source code for the back end

src
main

java...Source files
resources

application.example.yaml.Example configuration file
schema

schema.graphql
test..Test source files

testReport.........................Report of the test coverage
Dockerfile
pom.xml
README.md..................... Includes how to run this module

fe Source code for the front end
src

modules...............................Reusable components
pages......................................Pages of the app
main.jsx Entry point, router definitions

Dockerfile
package.json
README.md..................... Includes how to run this module

testing
performance................Source data for performance results
scenarios

general.........................Scenarios as in Appendix C
supporting......................Scenarios as in Appendix B
templates................Templates to use to give to testers

used....................Scenarios that were used for tests
README.md

Only key parts shown and described. Supporting files have been omitted in
the listing of the contents.

45

46

Appendix B
Supporting scenrios for user testing

Scenarios that themselves do not bring direct benefit, but are necessary for
the use of the application.

B.1 Login

Steps:..1. Open provided URL..2. Fill in the provided username..3. Fill in the provided password..4. Click on "Přihlásit se"

URL, username and password are provided to the testers directly based on the
scenario to test

B.2 Logout

Steps:..1. Click on the three line icon in top right corner..2. Click on "Odhlásit se"

B.3 Update personal details

Steps:..1. Click on the three line icon in top right corner..2. Click on your name (the first option)..3. Change fields to intended values..4. Click on "Uložit změny"

47

48

Appendix C
User testing scenarios

C.1 Create translation set

Intended users:. System Administrators

.Translation Managers

Preconditions: User is logged in and on /translation-sets page
Task: Create a translation set named Testing Subset with translation manager
Test Admin and refset General Practice / Family Practice reference set.
Steps to complete the task:..1. Click on "Vytvořit novou sadu"..2. Fill in the name..3. Set the translation manager for the set..4. Select a refset to translate from available refsets..5. Click on "Vytvořit" to create the set

Evaluation:.Was the task clear and understandable? Yes/No (Please describe your
issues)

. On scale from 1 (not useful) to 5 (very useful), how would you rate the
usefulness of this task?

. On scale from 1 (hard) to 5 (easy), how easy was it complete this task?

49

C. User testing scenarios
C.2 Create translation

Intended users:.Translators.Translation Managers
Preconditions: User is logged in and on in an open set
Task: Add a translation suggestion to any term inside the set
Steps to complete the task:..1. Select a term on the left side..2. Enter a translation suggestion in the middle..3. Click on "Uložit" to save the suggestion
Evaluation:.Was the task clear and understandable? Yes/No (Please describe your

issues). On scale from 1 (not useful) to 5 (very useful), how would you rate the
usefulness of this task?. On scale from 1 (hard) to 5 (easy), how easy was it complete this task?

C.3 Modify set metadata

Intended users:. System Administrators.Translation Managers
Preconditions: User is logged in and on edit site for any set
Task: Change the name of the set to Běžné lékařství and add any available
user to the set
Steps to complete the task:..1. Modify the options required. Change name.Modify users that act as translators..2. Click on "Uložit" to save the changes
Evaluation:.Was the task clear and understandable? Yes/No (Please describe your

issues). On scale from 1 (not useful) to 5 (very useful), how would you rate the
usefulness of this task?. On scale from 1 (hard) to 5 (easy), how easy was it complete this task?

50

................................... C.4. Rate translation

C.4 Rate translation

Intended users:.Any user with access to the transtlation set

Preconditions: User is logged in and on in an open set
Task: Add a 2 star rating to any translation
Steps to complete the task:..1. Rate a translation using the star system

Evaluation:.Was the task clear and understandable? Yes/No (Please describe your
issues). On scale from 1 (not useful) to 5 (very useful), how would you rate the
usefulness of this task?. On scale from 1 (hard) to 5 (easy), how easy was it complete this task?

C.5 Review translation

Intended users:.Translation manager. System Admin.Translation verifier

Preconditions: User is logged in and on a set which is under review
Task: Mark a translation as a FSN
Steps to complete the task:..1. Apply FSN flag to a translation..2. Click on "Potrvrdit označení"

Evaluation:.Was the task clear and understandable? Yes/No (Please describe your
issues). On scale from 1 (not useful) to 5 (very useful), how would you rate the
usefulness of this task?. On scale from 1 (hard) to 5 (easy), how easy was it complete this task?

51

C. User testing scenarios
C.6 Register as a new user

Intended users:.Any user

Preconditions: User does not already have an account
Task: Create a user account and login
Steps to complete the task:..1. Click on "Nemáte účet? Zaregistrujte se"..2. Fill in email and password..3. Click on "Pokračovat"..4. Fill in full name, workplace and qualifications..5. Click on "Pokračovat"..6. Verify correctness of entered values..7. Click on "Zaregistrovat" to finish registering..8. Enter email and password..9. Click on "Přihlásit se"

Evaluation:.Was the task clear and understandable? Yes/No (Please describe your
issues). On scale from 1 (not useful) to 5 (very useful), how would you rate the
usefulness of this task?. On scale from 1 (hard) to 5 (easy), how easy was it complete this task?

52

Appendix D
System Usability Scale questionnaire

Strongly Strongly
Disagree Agree..1. I think that I would like to use this

system frequently
1 2 3 4 5..2. I found the system unnecessarily com-

plex
1 2 3 4 5..3. I thought the system was easy to use 1 2 3 4 5..4. I think that I would need the support

of a technical person to be able to use
this system

1 2 3 4 5..5. I found the various functions in this
system were well integrated

1 2 3 4 5..6. I thought there was too much inconsis-
tency in this system

1 2 3 4 5..7. I would imagine that most people
would learn to use this system very
quickly

1 2 3 4 5..8. I found the system very cumbersome
to use

1 2 3 4 5..9. I felt very confident using the system 1 2 3 4 5...10. I needed to learn a lot of things before
I could get going with this system

1 2 3 4 5

This form has been created using parts of the source code from the MIMBCD-
UI project. [33, 34]

53

	Introduction
	Goals
	Technical aspects

	SNOMED-CT
	Clinical terminology
	Translation
	Existing tools

	Analysis
	Functionalities
	User roles
	Functional requirements
	Domain model
	States

	Design
	Architecture
	Technologies used
	ReactJS
	GraphQL
	Spring Boot
	MariaDB

	Database
	Back end
	Front end
	Security

	Testing
	Methodology
	Realisation
	Results
	Unit testing
	Import performance
	User testing

	Conclusion
	Testing
	Retrospective

	Acronyms
	Acronyms
	Bibliography
	Contents of the attachment
	Supporting scenrios for user testing
	Login
	Logout
	Update personal details

	User testing scenarios
	Create translation set
	Create translation
	Modify set metadata
	Rate translation
	Review translation
	Register as a new user

	System Usability Scale questionnaire

