
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Software engineering and technology

Prototype of the new information system
of the CTU dormitory rental

Dastan Sadyraliyev

Supervisor: Ing. Karel Frajták, Ph.D.
Field of study: Software engineering and technology
Subfield: Enterprise systems
May 2024

ii

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

497919 Personal ID number: Sadyraliyev Dastan Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Computer Science

Software Engineering and Technology Study program:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Prototype of the new information system of the CTU dormitory rental

Bachelor’s thesis title in Czech:

Prototyp nového informačního systému půjčovny kolejí ČVUT

Guidelines:

The rental of CTU dormitories is no longer sufficient to meet the needs of students, new students are often facing the
problem of discovering where and how to reserve a certain item or who to contact. The rental office has no information
system, everything is handled manually in the old-fashioned way.
The IS will cover a number of areas and a system built on microservices seems like a modern solution.
Gather the requirements on new IS with an emphasis on extensibility, performance, reliability, ease of use and scalability.
Create detailed wireframes for the new solution and validate the models.
Implement the core microservices and test the prototype.

Bibliography / sources:

ABGAZ, Yalemisew, et al. Decomposition of Monolith Applications Into Microservices Architectures: A Systematic Review.
IEEE Transactions on Software Engineering, 2023.
VELEPUCHA, Victor; FLORES, Pamela. A survey on microservices architecture: Principles, patterns and migration
challenges. IEEE Access, 2023.
LI, Shanshan, et al. Understanding and addressing quality attributes of microservices architecture: A Systematic literature
review. Information and software technology, 2021, 131: 106449.

Name and workplace of bachelor’s thesis supervisor:

Ing. Karel Frajták, Ph.D. System Testing IntelLigent Lab FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 24.05.2024 Date of bachelor’s thesis assignment: 01.02.2024

Assignment valid until: 21.09.2025

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature

Head of department’s signature Ing. Karel Frajták, Ph.D.
Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1

iv

Acknowledgements
I would like to express special gratitude
to the supervisor of the bachelor’s project
Ing. Karel Frajták, Ph.D. for his desire
and help throughout the project.

And I would like to thank the semester
project supervisor Ing. Václav Smítka.

I would also like to express my gratitude
to my entire family for their great support,
and to my friends who took part in testing
wireframes. Thank you for your time and
for providing me with feedback.

Declaration
I declare that I have prepared the submit-
ted work independently and that I have
listed all the information sources used in
accordance with the methodological guide-
lines on compliance with the principles
in the preparation of University theses.
Prague. 05 March 2024.

v

Abstract
The bachelor’s thesis is devoted to the
design of an information system for the
equipment rental system in the Strahov
dormitory. The information system is
called Rentopia. Its main task is to fa-
cilitate the rental of necessary equipment
by users through a user-friendly interface.
This work includes analysis of interviews
and comparison of Eureka models and al-
ternatives, design and implementation of
the system prototypes and finally, testing
the achieved results.

Keywords: Information system,
Prototypes, Detailed Wireframes,
Microservices, Service discovery, Eureka

Supervisor: Ing. Karel Frajták, Ph.D.

Abstrakt
Bakalářská práce je věnována návrhu in-
formačního systému pro systém půjčovny
vybavení na koleji Strahov. Informační
systém se nazývá Rentopia. Jeho hlavním
úkolem je usnadnit uživatelům pronájem
potřebného vybavení prostřednictvím uži-
vatelsky přívětivého rozhraní. Tato práce
zahrnuje analýzu rozhovorů a porovnání
modelů a alternativ Eureka, návrh a im-
plementaci prototypů systému a nakonec
testování dosažených výsledků.

Klíčová slova: Informační systém,
Prototypy, Detailní drátové modely,
Mikroslužby, Service discovery, Eureka

Překlad názvu: Prototyp nového
informačního systému půjčovny kolejí
ČVUT.

vi

Contents
1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 1
2 Analysis of the current state and
definition of requirements for new
solutions 3
2.1 Analysis of current state 3

2.1.1 Analysis of existing web-service 3
2.1.2 Analysis of current rental

system . 4
2.1.3 Conclusion 5

2.2 AS-IS diagram 6
2.3 Requirements definition 6

2.3.1 Functional requirements 6
2.3.2 Non-functional requirements . . 7

2.4 Prioritization 7
2.4.1 Definition of stakeholders 7
2.4.2 Functional requirements 8
2.4.3 Non-functional requirements . . 9
2.4.4 Conclusion 10

2.5 Back-end . 10
2.6 Data tier . 11
3 Creating a detailed wireframes
for a new solution 13
3.1 Definition of “Rentopia” scope . . 13
3.2 To-Be diagram 13
3.3 UML class diagram 14
3.4 Use-Case diagram. 15
3.5 Wireframing tool selection 19

3.5.1 Conclusion 19
3.6 Annotation of wireframe 20
4 Verification of the quality of the
wireframes 27
4.1 Feedback . 27
4.2 Documentation 28
4.3 Review . 28
5 Microservices architecture 29
5.1 Introduction to microservices . . . 29
5.2 Patterns for microservices 29
5.3 Challenges 30
5.4 Visualizing microservice

architecture . 31
6 Service discovery 33
6.1 Understanding service discovery 33

6.1.1 The benefits of service
discovery . 33

6.2 Define of evaluation criterias . . . 34
6.3 Eureka . 34
6.4 Comparative Analysis 36
6.5 Decision . 37
7 Implementation of prototypes 39
7.1 Structure of project 39
7.2 Critical functionality 40
7.3 Sequence diagram. 41
7.4 Graphical prototypes 42
7.5 Showcase interactions 43
7.6 Testing . 45

7.6.1 JUnit tests of the services . . . 46
7.6.2 Eureka service discovery

testing . 46
7.6.3 API Gateway testing 47
7.6.4 Manual API testing with

postman . 47
7.6.5 Examples of requests 48
7.6.6 Responses 49

7.7 Review . 50
7.8 Future developments 50
8 Conclusion 51

A List of abbreviations 53

B List of links 55

C Bibliography 57

vii

Figures
2.1 Grill center web-service. 3
2.2 Grill center reservation page. . . . 4
2.3 AS-IS diagram. 6

3.1 To-Be diagram. 13
3.2 UML class diagram. 14
3.3 Use-Case diagram. 15
3.4 Wireframe 3.4. Registration

form. 20
3.5 Wireframe 3.5. Authorization

form. 21
3.6 Wireframe 3.6. Equipment view. 22
3.7 Wireframe 3.8. Equipment

management. 23
3.8 Wireframe 3.8. Equipment

management. 24
3.9 Wireframe 3.9. Equipment

reservation for users. 25

5.1 Microservice Architecture. 31

7.1 Structure of project. 40
7.2 Structure of project (part 2) . . . 40
7.3 Structure of project (part 3) . . . 40
7.4 Sequence diagram: Equipment

reservation. 41
7.5 Eureka technology. 42
7.6 First scenario prototype. 43
7.7 Second scenario prototype. 44
7.8 Successful eureka client

registration output. 46
7.9 Eureka dashboard: Registered

instances. 46
7.10 Eureka dashboard: One of the

instances is DOWN. 47
7.11 API gateway routing. 47
7.12 Account-management-service

response. 49
7.13 Equipment-management-service

response. 49
7.14 Equipment-reservation-service

response. 49

Tables
6.1 Score voting results. 36

viii

Chapter 1
Introduction

1.1 Motivation

Strahov dormitories are currently facing significant difficulties in managing
the rental service. The main reason for this is the lack of a centralized,
efficient and transparent system that allows users, new and old residents of
dormitories, to navigate the rental service. The lack of an information system
leads to high inefficiency. This inefficiency not only leads to confusion and
frustration among students, but also hinders the effective management of
dormitory resources. The growing field of microservices architecture represents
a promising solution to such problems. Using modern technological advances,
it is possible to change the dormitory rental system, making it more accessible,
responsive and convenient for both students and the administration.

1.2 Objectives..1. Analysis of the current state and definition of requirements for new
solutions...2. Creating a detailed wireframes for a new solution with an emphasis on
responsiveness and transparency...3. Verification of the quality of the wireframes..4. Analysis of Eureka with alternatives in order to identify the best choice
in the context of the information system. You can consider criteria such
as performance, reliability, ease of use and scalability...5. Prototyping microservices...6. Prototype testing.

1

2

Chapter 2
Analysis of the current state and
definition of requirements for new
solutions

2.1 Analysis of current state

In this section, I want to analyze the current situation related to the equipment
rental system at the Strahov dormitory. The analysis includes analysis of the
web service and the rental service itself.

2.1.1 Analysis of existing web-service

On one of the 11 subsites of the dorm’s main website user can find link to the
service Grill Center. With the help of this service, users have the opportunity
to reserve a portable grill and a grill area on the territory of the dorm.

Figure 2.1: Grill center web-service.

3

2. Analysis of the current state and definition of requirements for new solutions

Figure 2.2: Grill center reservation page.

This web service provides only a basic web page for viewing existing
reservations and creating your own reservation. But the user interface is
not user-friendly and does not provide the necessary information. I want to
provide more detailed information about the disadvantages of this service as
one of the quotes from the administrator.

Administrator’s feedback.

”The current web service of the grill center only includes booking a
mobile grill. There is no information system for the rental system
in our dormitory. We would be glad to have a modern information
system with a user-friendly interface. The information system should
simplify the rental of equipment for residents and administrators.
The main thing is that the system must meet all the requirements
of the residents of the Strahov dormitory.”[1]

2.1.2 Analysis of current rental system

One of the 11 subsites of the dorm’s main website is where the information
about the rental system is found. According to the information that is
currently available, or more accurately the official web–page of the dorm, the
system for the Strahov rental system appears to be primarily manual and
minimal in scope.[2]

This is how the situation is currently described:..1. Restricted Online Data. Only the most basic details about the rental
service are available on the dorm’s official website. It gives informa-
tion regarding the rental procedure and notes that rental equipment is
available on the third level south...2. Manual Process. The renting procedure appears to be primarily
manual. Renting equipment in person need residents or students to come

4

..................................2.1. Analysis of current state

to the third floor south location. The website does not include an online
reservation mechanism...3. Equipment Types. The information mentions that different types of
equipment are available for rent. For example: tools, sports equipment,
and other equipment. However, the details about the range of available
equipment, kinds, quantities, status and conditions are not provided...4. Return Conditions. It is mentioned that rented equipment must be
returned in the same condition as when borrowed and that any defects
should be reported to the administrator. However, there is no information
about how these returns and reports are processed, which indicates the
potential loss of a formalized system...5. Recording Borrowed Items. There is a reference to recording the
”agreed return time” in a notebook. This suggests that the tracking
of borrowed items rely on manual recording, which could be reason to
errors...6. Bans. Information about penalties for failure to return rented items is
also available here. Vacuum cleaners have a 7-day ban period, drills, and
grills have a 5-day ban period, while all other items have a 3-day ban
period. This information is recorded manually, which can lead to errors
and issues in the rental management system. There is no information
about fines for damage to rented items, which leaves students unsure of
the potential consequences...7. Communication with administrators. Information about the ad-
ministrators and their e-mails for the rental room is available on the
web-page, but there are no other kinds of communication. In other words,
if a student urgently needs any rented equipment, he will not be able
to contact the administrators quickly, the only way is to knock on their
door, but there is a risk that the administrator will not be in his room.
The chance that a student will be able to rent the equipment he needs
at a certain hour is 50 percent. At the same time, he will have to spend
time and effort searching for an available administrator. This leads to a
decrease in the desire to use this service among students.

2.1.3 Conclusion

In general, the current state of the information system of the dormitory
rental service seems does not correspond to digitalization and automation.
It is based on manual processes, and there is a limited amount of online
information available to students or residents to access and manage equipment
rentals. There is potential for improvement through the introduction of a
more organized and efficient equipment rental information system, inventory
tracking and ensuring better interaction with users through a convenient
online platform. This is an improvement I want to provide. My solution is

5

2. Analysis of the current state and definition of requirements for new solutions
an information system for a rental room. Name of information system is
”Rentopia”.

2.2 AS-IS diagram

Figure 2.3: AS-IS diagram.

This AS-IS diagram represents the current state of the process: Equipment
Rental. This diagram shows that the current process is filled with different
conditions, which with a 50 percent chance(based on the statistics) lead to
failure and to an undesirable result for users.

2.3 Requirements definition

This section will be devoted to defining functional and non-functional require-
ments based on a questionnaire. In the attachments you can view the results
of the survey in an Excel table.

2.3.1 Functional requirements..1. Allow user registration...2. Support equipment reservation...3. Display equipment availability and status...4. Enable users to contact administrators.

6

.......................................2.4. Prioritization..5. Provide overall information about the room and its rules...6. Offer of new equipments for the rental room...7. Implement CRUD 1 operations for equipment management, including
the ability to add, edit, and delete equipment...8. Allow administrators to contact with users...9. Add time for meeting with user for their reservation....10. Implement a system of imposing fines on users with conditions and
consequences.

2.3.2 Non-functional requirements..1. Data security (encryption, secure access)...2. Speed and performance (fast application response)...3. Accessibility (responsive design, accessibility for users with special needs
and user-friendly interface)...4. Scalability (expandable for more users)...5. Testing and debugging (easy testing and error detection).

2.4 Prioritization

This section includes the definition of stakeholders and functional ones; non-
functional requirements.

2.4.1 Definition of stakeholders.Administrator responsible for Rental Room - This stakeholder is likely
concerned with the effective management of the rental process, inventory,
and overall system administration. Their input may be crucial for
defining system features related to rental operations, rules, and fines.. Students and Non-students (End-users) - End-users are a critical stake-
holder group, because they directly interact with the system. In my
scenario, this applies to both students and non-students who use the
equipment rental service. Collecting their requirements and feedback is
necessary to create an user-friendly and efficient system.

1CRUD: ”Create, Read, Update, and Delete (CRUD) are the four basic functions that
models of database should be able to do, at most.”

7

2. Analysis of the current state and definition of requirements for new solutions
.Developers (In this case, myself) - My understanding of the technical

aspects, limitations, and opportunities is crucial. Additionally, as the de-
veloper, I’ll have insights into the system’s architecture, design decisions,
and implementation challenges.

To categorize requirements I am going to use MoSCoW method.

“MoSCoW prioritization, also known as the MoSCoW method or
MoSCoW analysis, is a popular prioritization technique for managing
requirements. The acronym MoSCoW represents four categories of
initiatives: must-have, should-have, could-have, and won’t-have, or
will not have right now.”[3]
MoSCoW method to categorize requirements:.Must-haves (M): Requirement, which must be have for suc-

cessful application.. Should-haves (S): Important requirement, but are not as
needed as core (M) requirements.Could-haves (C): Requirements, which will have a small
impact if left out..Won’t-haves (W): Requirement that are not high priority
for this specific time.

2.4.2 Functional requirements..1. Facilitate user registration (M):..a. This requirement marked as a ”Must-have” since user registration
is fundamental for user engagement and use of the system...2. Support equipment reservation (M):..a. Marking this as a ”Must-have” aligns with the core functionality of
the system, ensuring that users can efficiently reserve equipment...3. Display equipment availability and status (M):..a. This is correctly categorized as a ”Must-have” to provide users with
important information for making reservations...4. Enable users to contact administrators (S):..a. Marking this as a ”Should-have” suggests that while it’s important
for users to contact administrators, it may not be as critical as the
core functionalities...5. Provide comprehensive information about the room and its rules (S or

C):

8

.......................................2.4. Prioritization..a. Depending on the specifics and priorities , this could be categorized
either a ”Should-have” or a ”Could-have.” If it’s deemed crucial for
user understanding and compliance, it might be a ”Should-have.”..6. Offer of new equipment for the rental room(W):..a. Marking this as a “Won’t-haves” indicates that for current time this
is not a necessary technology, but it may be added in the future...7. Define and implement CRUD operations for equipment Management

(M):..a. Marking this as a ”Must-have” is fitting since it forms the basis
of equipment management, ensuring necessary functionalities for
system operation...8. Allow administrators to initiate contact with users (C):..a. Marking this as a ”Could-have” indicates that while it would be
desirable for administrators to contact users, it’s not necessary for
the initial system release...9. Add time for meeting with user for their reservation (S):..a. Marking this as a ”Should-haves” indicates that adding this function
will be good decision, but can be automatically by the system or
manually by admins....10. Define and implement a system for imposing fines on users (C):..a. Categorizing this as a ”Could-have” aligns with the idea that while
it adds value to the system, it’s not a critical component for the
initial system release.

2.4.3 Non-functional requirements..1. Data security (Encryption, Secure access)(M):..a. Positive aspects:
(i) Identifies the need for encryption and secure access...b. Considerations:
(i) Specify encryption standards and secure access mechanisms...2. Speed and performance(S):..a. Positive aspects:
(i) Clearly create the expectation for a responsive application...b. Considerations:
(i) Define specific performance metrics or response time targets.

9

2. Analysis of the current state and definition of requirements for new solutions3. Accessibility(M):..a. Positive Aspects:

(i) Recognizes the importance of an accessible design and user-
friendly interface...b. Considerations:

(i) Specify accessibility standards to be followed...4. Scalability(C):..a. Positive aspects:

(i) Acknowledges the need for scalability in terms of technology
and user base...b. Considerations:

(i) Detail how the application will adapt to new technologies...5. Testing and debugging(M):..a. Positive aspects:

(i) Highlights the need for a test and quick resolution of problems...b. Considerations:

(i) Specify the testing methodologies to be employed (e.g., unit
testing, integration testing).

2.4.4 Conclusion

These functional and non-functional requirements provide a solid foundation
for developing a reliable and user-friendly application.

2.5 Back-end

Java is a multi-platform object-oriented programming language. It sup-
ports web applications, smartphone operating systems and many well-known
programs. Java is currently the most popular programming language for
application developers. In my opinion, Java is the best choice for creat-
ing the Rentopia information system, because it includes all the necessary
technologies and there are a huge number of useful frameworks.[4]

Spring Boot is an open source Java-based framework. It is developed by
Pivotal Team and is used to build stand-alone and production ready spring
applications.[5]

My preference goes to Java and Spring Boot, because I have much more
experience working with the Java language and Spring framework.

10

.. 2.6. Data tier

2.6 Data tier

Data-tier will be based on relational database PostgreSQL and non-relational
database MongoDB.

PostgreSQL is a powerful, open source object-relational database system
that uses and extends the SQL 2 language combined with many features that
safely store and scale the most complicated data workloads.[6]

MongoDB is a non-relational document database that provides support
for JSON 3 -like storage. In my case, for my Rentopia app, MongoDB will be
used to store data about equipment. Thanks to the JSON format, it will be
easy and convenient to work with data that describes the equipment.[7]

I prefer PostgreSQL and MongoDB because I have a lot of experience with
PostgreSQL and as I mentioned earlier, the JSON format in MongoDB will
be very convenient for storing hardware information.

2SQL: ”Structured Query Language”
3JSON: ”JavaScript Object Notation”

11

12

Chapter 3
Creating a detailed wireframes for a new
solution

3.1 Definition of “Rentopia” scope

The main goal of my work is to simplify and improve the use of the equipment
rent service in dormitories. My solution is an information system that will
include all the functions and requirements identified through an analysis of
a user questionnaire diagrams. The basis of the “Rentopia” application is
a user-friendly interface that will be designed for any type of user and will
separate functions for administrators and users.

3.2 To-Be diagram

Figure 3.1: To-Be diagram.

This TO-BE diagram represents the future state of the process using the
Rentopia information system: Equipment Rental. The chance of achieving

13

3. Creating a detailed wireframes for a new solution
the desired result compared to the AS-IS schedule is 95 percent.

3.3 UML class diagram

Figure 3.2: UML class diagram.

This diagram is a UML class diagram that describes the entities of the future
Rentopia system and the relationships between them.

14

.................................... 3.4. Use-Case diagram

3.4 Use-Case diagram

Figure 3.3: Use-Case diagram.

Scenario 1: Registration in the System.

Actors:. User. System

Flow of Events:

Step 1: User: The user requests the registration function from the information
system.

Step 2: System: The system provides the user with a registration form.

Step 3: User: The user fills out the form and registers in the system.

Step 4: System: The system provides comprehensive information to the user,
offering an overview of its features, rules, functionalities, and navbar.

Scenario 2: Log in and reservation equipment.

Actors:

15

3. Creating a detailed wireframes for a new solution
. User. System

Flow of Events:

Step 1: User: The user logs in.

Step 2: System: Upon successful verification, system provides an interface,
presenting the relevant functionalities and information based on the roles
and permissions of the logged-in user.

Step 3: User: The user requests for page with real-time status and availability
of equipment through the system interface.

Step 4: System: The system provides page with equipment.

Step 5: User: The user selects equipment.

Step 6: System: The system provides page with equipment reservation.

Step 7: User: The user selects reservation window and reserves equipment.

Step 8: System: The system processes the reservation, updating the status of
the reserved equipment.

Step 9: User: The user checks created reservation.

Scenario 3: Equipment management.

Actors:.Admin. System

Flow of Events:

Step 1: Admin: The admin registers in the system and logs in.

Step 2: System: The system provides comprehensive information to the admin,
offering an overview of its features, rules, functionalities and navbar.

Step 3: Admin: The admin requests for page with equipment management.

Step 4: System: The system provides information and an interface for equipment
management.

Step 5: Admin: The admin adds, removes equipment and updates information
status and availability of equipment.

Step 6: System: The system processes administrator requests for equipment
management.

16

.................................... 3.4. Use-Case diagram

Scenario 4: Imposing fines on users.

Actors:.Admin. User. System

Flow of Events for Admin:

Step 1: Admin: The admin logs in.

Step 2: System: The system provides comprehensive information to the admin,
offering an overview of its features, rules, functionalities and navbar.

Step 3: Admin: The admin requests FineSystem.

Step 4: System: The system provides interface for imposing fines on users.

Step 5: Admin: The admin imposes fines on users.

Step 6: System: The system processes administrator requests for imposing fines
on users.

Flow of Events for User:

Step 7: User: The user logs in.

Step 8: System: The system provides comprehensive information to the user,
offering an overview of its features, rules, functionalities and navbar.

Step 9: User: The user requests information about his account.

Step 10: System: The system provides interface with information about user’s
account.

Step 11: User: The user gets information about fines.

Scenario 5: Getting contact information.

Actors:.Admin. User. System

Flow of Events for Admin:

Step 1: Admin: The admin logs in.

17

3. Creating a detailed wireframes for a new solution
Step 2: System: The system provides comprehensive information to the admin,

offering an overview of its features, rules, functionalities and navbar.

Step 3: Admin: The admin requests contact information of users.

Step 4: System: The system provides interface with contact information of
users.

Flow of Events for User:

Step 5: User: The user logs in to the system.

Step 6: System: The system provides comprehensive information to the user,
offering an overview of its features, rules, and functionalities.

Step 7: User: The user requests contact information of admin.

Step 8: System: The system provides interface with contact information of
admins.

Scenario 6: Adding time for meeting.

Actors:.Admin. System

Flow of Events:

Step 1: Admin: The admin logs in.

Step 2: System: The system provides comprehensive information to the admin,
offering an overview of its features, rules, functionalities and navbar.

Step 3: Admin: Upon successful reservation, the admin can add time for meeting,
that will be shown for user in reservation window.

Step 4: System: The system processes request and updates interface of reserva-
tion window.

Scenario 7: Offer of new equipment.

Actors:.Admin. User. System

Flow of Events:

18

.................................3.5. Wireframing tool selection

Step 1: User: The user logs in.

Step 2: System: The system provides comprehensive information to the user,
offering an overview of its features, rules, functionalities and navbar.

Step 3: User: The user decides to offer a new equipment.

Step 4: System: The system provides interface for offering a new equipment.

Step 5: User: The user offers a new equipment.

Step 6: System: The system processes request and updates interface for admin.

Step 7: Admin: The admin checks new offered equipment in equipment man-
agement and thinks about adding new equipment.

3.5 Wireframing tool selection

Sketch.

Sketch is a vector graphics editor that must be installed locally on your
computer. It changed the design world because it was created specifically for
digital design, not for print, like Photoshop.[8]

Figma.

Why Figma? There are many design apps available on the market right
now that can be used to solve any kind of graphical ideas. But Figma is one
of many designers favorite tools and is becoming more and more popular.[9]

There are many good reasons for this.. First, Figma allows designers and other teammates to work simultane-
ously in real time which takes the collaborative workflow to a whole new
level.. Second, Figma covers about everything you need to create a complex
interface, from brainstorming and wireframing to prototyping and sharing
assets.. Finally, Figma is not only a design app but also a community and
platform for sharing ideas and solutions.

3.5.1 Conclusion

Figma and Sketch are popular user interface development platforms where
users can create user-friendly websites.

If users prefers offline working, using an extensive integration library to
create a more personalized interface, then Sketch is a good choice.

If users need a free option, flexible collaboration and flexible vector man-
agement, then Figma may be the best solution.

19

3. Creating a detailed wireframes for a new solution
In the case of creating frameworks for Rentopia, more flexible vector

management is required. The best solution would be Figma.

Create a wireframe.
My goal is to create wireframes that can visually show my idea. My idea is to
create an intuitive, efficient system with a transparent user-friendly interface.
My task is also use the scenarios and use-cases that were described in Section
3.4.

By this link, you can transfer to Rentopia Prototypes, where you can by
scenarios test prototypes. Link to Figma prototype https://shorturl.
at/talqY

3.6 Annotation of wireframe

Figure 3.4: Wireframe 3.4. Registration form.

20

https://shorturl.at/talqY
https://shorturl.at/talqY

..................................3.6. Annotation of wireframe

Annotation:
Wireframe 3.4 shows the forms for registration of both users and adminis-
trators. At this stage, users enter their data, and the system processes this
information to initiate the registration process. This wireframe meets the
functional requirements, including registration.

Figure 3.5: Wireframe 3.5. Authorization form.

Annotation:
Wireframe 3.5 shows the forms for authorization of both users and adminis-
trators. After successful registration, the system provides an authorization
process for the corresponding user or administrator. This wireframe meets
the functional requirements, including authorization.

21

3. Creating a detailed wireframes for a new solution

Figure 3.6: Wireframe 3.6. Equipment view.

Annotation:
Wireframe 3.6 serves as a comprehensive repository of information belonging
to equipment, including details about their availability and status.

22

..................................3.6. Annotation of wireframe

Logo Log-out

Rules and
info

Equipment

Reservation

Users
contact info

Telegram

Instagram

Equipment management

Offered
equipment

Description of equipment

Offered equipmentAdd new equipment

Fines system

Equipment
management

Available: true

Status

Available: false

Status: Ready

Description of equipment

Edited description

Available: true

Edited status

Description of equipment

Description of equipment

Edit

Edited name

Equipment #2

Name of equipment

Figure 3.7: Wireframe 3.8. Equipment management.

23

3. Creating a detailed wireframes for a new solution

Status of equipment

Edited status

Save

Edit equipment

Name of equipment

Edited name

Availability

Add photo

Description of equipment

Edited description

Figure 3.8: Wireframe 3.8. Equipment management.

Annotation:
On the administrative side, the Wireframe 3.8 is carefully crafted for equip-
ment management, incorporating all CRUD features in accordance with the
specified requirements.

24

..................................3.6. Annotation of wireframe

Logo Log-out

Rules and
info

Equipment

Reservation

Offer new
equipment

Admins
contact info

Telegram

Instagram

Reservation

My reservation

Reserve

Reserve

Reserve

Choose start and time duration

Select

Equipment

Equipment

Equipment

Choose start time and duration

Select

16:00-17:30

17:00-18:30

Choose start and time duration

Select

Choose time for meeting

Select

Choose time for meeting

Select

Figure 3.9: Wireframe 3.9. Equipment reservation for users.

Annotation:
Wireframe 3.9 is utilized for viewing available windows for reservation equip-
ment. Users must enter different data required for the reservation.

25

26

Chapter 4
Verification of the quality of the
wireframes

4.1 Feedback

Wireframes were shared with colleagues, friends and administrator who live
in the Strahov dormitory. They gave their feedback.

First resident’s feedback.

“The design of Reservation, Rules and Info, and Equipment pages is
user-friendly, incorporating a thoughtful and functional minimalist
approach. The use of a Single Page Application (SPA) enhances
the overall user experience. Additionally, I’m impressed by the
well-thought-out design and functionality, including easily accessible
social media links. The Equipment Management page’s commend-
able lo-fi design creates a unique and memorable visual impression.
It’s suggested to streamline functionality by consolidating the ”Not
Available” button with the ”Available” button.”[10]

Second resident’s feedback.

“I didn’t like that the time selection for reservations is done using
Options; it could have been implemented more intuitively, perhaps
with a calendar interface similar to Google Calendar. However, I
appreciate the ability to suggest personal inventory items. I would
rename ”Status” when modifying inventory. Overall, I really liked
the intuitiveness and transparency of the interface. Fine-tuning
minor details would make it an effective application that I would
use when needed.”[11]

Administrator’s feedback.

”As an administrator, I can say that the future information system
will be very convenient and will facilitate the equipment rental service
for both students and administrators. I liked the opportunity to
specify the time of the administrator’s meeting with a resident of

27

4. Verification of the quality of the wireframes
the Strahov dormitory. I would like to see filtering by status for
equipment so that future users can easily and quickly find out if the
equipment they need is available.”[1]

4.2 Documentation

My wireframes were created on the Figma platform, with additional libraries
from the Figma Community. In total, 19 screens were created. The first half
was designed for the admin side, and the second for the user side. Each screen
provides an intuitive and transparent interface, serving specific functions
based on scenarios outlined later. For detailed information on each wireframe,
you can refer to Section 3.6.

The wireframes were based on scenarios created from use cases, which
can be reviewed in Section 3.4. The scenarios encompass all data and steps
necessary for a complete understanding of how the wireframes work. Three
actors were used: System, Admin, and User.

The next step involved gathering feedback from future users of the Rentopia
application. I collected feedback from my fellow students and residents of the
Strahov dormitory. After analyzing the feedback, it can be determined that
the wireframes meet user requirements. In conclusion, the wireframes for the
Rentopia application exhibit all requisite characteristics and fully meet the
requirements set by users.

4.3 Review

After collecting valuable feedback from both end-users and creating compre-
hensive documentation for the Rentopia application wireframes, a thorough
review was conducted to assess the overall design and functionality.

The documentation showed that the wireframes were systematically derived
from comprehensive use cases involving three main stakeholders: System,
Administration and Users. Feedbacks from potential users, including fellow
students and residents of the Strahov dormitory were collected and evaluated.
In conclusion, it was determined that the wireframes had all the necessary
features and fully met the requirements set by the users.

28

Chapter 5
Microservices architecture

5.1 Introduction to microservices

The Rentopia project is my first experience with microservice architecture.
To point out the benefits and capabilities of this architecture, I will refer to
the monolithic architecture for comparison.

Microservices architecture is a system design approach that breaks a com-
plex system into multiple independent microservices.[14]

A microservice is an element of an application where each microservice
is developed to perform a specific business functionality rather than being
developed in logical layers like a monolithic application.[14]

These small services can be developed independently, run just like a mono-
lithic application and communicate with each other through APIs.[14]

Microservice architecture has many advantages.
Some of them are listed below:[12]. Flexible connection.. High functionality.. Strong cohesion..Accelerated scalability.. Improved fault isolation.. Data integrity.

5.2 Patterns for microservices

It is important from the beginning of development to establish correct design
patterns.

Some of the most important patterns used when designing microservices
are explained below:[14]. Domain Driver Design.

29

5. Microservices architecture
. Domain-Driven Design is a way of building software by focusing on

understanding the problem is solving really well.

. Data-Driven Design.

. Data-Driven Design is the practice of basing your design decisions
on data rather than intuition or personal preference.

. Service discovery pattern.

. Studying this design template is one of the important aspects of
my bachelor thesis. Details can be found in the Section 6.1.

5.3 Challenges

The crucial part of choosing microservices over monolithic applications is
understanding the challenges that arise.

The most relevant are detailed below: [14]

. Data duplication.

. Network overhead.

. Understanding business logic.

. Understanding the current (as-is) and future architecture (to-be).

. Understanding only the required business functionality.

During the development of prototypes of a new information system for the
rental system in the Strahov dormitory, the above challenges were processed
and decisions were made to them.

30

............................ 5.4. Visualizing microservice architecture

5.4 Visualizing microservice architecture

Figure 5.1: Microservice Architecture.

The image shows a visualization of the microservice architecture.
Architecture elements:. User..API Gateway.. 3 Microservices.. Databases.

The user submits requests that go through an API gateway, which routes
them to specific microservices based on the user’s request and the business
functionality of the individual service. The same principle was used for the
architecture in Rentopia, addition information about Eureka discovery is
available in the Section 7.5.

Eureka’s discovery service is one of the most important aspects of my
bachelor’s thesis. The next chapter provides a detailed analysis of the service
discovery pattern and Eureka.

31

32

Chapter 6
Service discovery

The purpose of this chapter is to analyze what service discovery is and
determine why it is so important. The next step is to compare Eureka
technology with alternatives in the Rentopia information system. In the
following subsections, I’m going to analyze service discovery, define evaluation
and selection criteria, describe Eureka technology, specify alternatives, and
conduct a comparative analysis with Eureka.

6.1 Understanding service discovery

When creating microservices, an API is usually used that provides the ability
to interact with the back-end. We need to know where these services are
hosted. The idea is that the services themselves are registered in an object
called Service Registry at startup. So that when need to use a service,
registered Eureka clients search for available instances in a server that stores
data about available services. Each service at startup indicates its name and
the address at which it is located.[14]

6.1.1 The benefits of service discovery

Heartbeat.
Service Registry should determine which services are still active. The heart-
beat is used for this. In addition to the initial registration of the service,
signs of life drop from time to time so that the Registrar of Services knows
that the service is still available. If any service doesn’t show signs of life, the
service registry receives information that something is wrong with this service
and assumes that it is unavailable, so all requests will be redirected to other
instances of the required service.[15]

Load Balancer.
Load balancing is a tactic of distributing incoming load, determined by
the number of requests, to a separate microservice between its numerous
instances. In this way, queries can be executed in a way that maximizes speed

33

6. Service discovery
and performance. This ensures that no service is overloaded compared to
others.[15]

6.2 Define of evaluation criterias

I am going to use Eureka for service discovery. But there is a lot of other
tools for service discovery such as Consul and Zookeeper. I want to make
comparative analysis to show, why i want to use Eureka.

The main evaluation criteria will be.. Performance. Reliability. Ease of use. Scalability

Performance in the context of my goal is to determine the speed and
efficiency of registering services and discovery processes. The chosen tool
should register services quickly and efficiently, update their data and be ready
for unexpected changes. Low-latency communication and response times
contribute to high-performance in service interactions.

Reliability is about the robustness and dependability of TROSAD 1. A
reliable tool should ensure that the registered services are consistently available
for discovery even in the challenging event of network or node failures.

Ease of use in the context of my goal is based on how easily a developer
(in the context of my thesis, this is me) will be able to integrate, configure
and manage TROSAD in the context of a microservice architecture for the
Rentopia information system.

Scalability determines TROSAD’s ability to handle a growing number of
services and customer requests.

6.3 Eureka

Eureka is an open source TROSAD tool developed by Netflix. Netflix’s Eureka
Server, integrated with Spring Boot, is used in microservices architectures to
enable service registration and discovery. The main feature of Eureka is to
help microservices to localise and communicate with each other in a dynamic
and scalable environment.[13]

So why i want to use Eureka? Because Eureka acts as the heart of mi-
croservice architecture. It allows services to register themselves and facilitates
the discovery of other services.

1TROSAD: the registry of services and discovery tools

34

... 6.3. Eureka

Benefits: [13]..1. Ease of Use:..a. Netflix Eureka offers an easy setup process with minimal configura-
tion requirements...b. Integration with Spring Cloud components improves overall devel-
opment efficiency...2. Resilience:..a. The peer-to-peer replication model, which distributes the service reg-
istry across multiple instances, is part of the Eureka sustainability-
oriented project...b. Even during network partitions or node failures, the self-preservation
mode guarantees the service registry’s stability...3. Flexibility:..a. Eureka provides flexibility in service discovery with support for
multiple modes...4. Competent Failure handling:..a. The heartbeat mechanism in Eureka provides monitoring of the
health of registered services allowing the system to retain informa-
tion about system failures and provide information about available
services...5. Customization Options:..a. Developers have the flexibility to customize registration and discov-
ery behaviors according to specific project requirements...6. Performance..a. Eureka demonstrates exceptional performance in the context of
service registration and discovery. It is characterized by the ability
to quickly register services. This emphasize that performance of
Eureka is more suitable for the needs of Rentopia information
system, which will dynamically develop in connection with the
requirements of users...7. Reliability..a. Eureka’s self-preservation mode ensures the stability of the service
registry, even during network partitions or node failures. This means
that Eureka can continue to provide service discovery functionality
even under various errors and problems...8. Scalability

35

6. Service discoverya. Eureka provides efficiently update data, adapt to changes, provides
low-latency communication and respond quickly. By this way,
Eureka can easily adapt to the growing requirements of users and
the expansion of services’ number for the information system.

6.4 Comparative Analysis

In the 6.2 section, I mentioned 4 evaluation criteria.
In addition, I want to compare various aspects that, in my opinion, will be

important for analysis.
The most popular alternatives : Consul and ZooKeeper. To summarize,

by exploring Eureka and alternatives such as Zookeeper and Consul, I came
to the idea to make Score voting.

Score voting.

Score voting is voting system where can be only one winner, voters rate
candidates on a scale. The candidate with the highest rating wins.[16]

Score voting highlights:. Extremely expressive.. No vote splitting or spoilers..Always vote honest favorite.. Results are easy to understand.

Table 6.1: Score voting results.

Criteria Consul Eureka Zookeeper
Easy setup 3 1 2
Integration with spring-cloud 3 1 2
Health-checking 1 2 3
Web UI 2 1 2
Monitoring 1 2 3
Used Java 3 1 1
Reliability 3 1 2
Scalability 2 1 1
Performance 1 1 2
Results 19 11 18

Result of score voting.
This table is a Score voting system. I used values from 1 to 3. 1 is the
highest score and 3 is the lowest. At the end, summing up all the values of
each column, I got 3 numbers: Consul(19), Eureka(11), Zookeper(18). The
smallest number determines the winner.

36

...6.5. Decision

6.5 Decision

After conducting a detailed comparative analysis, I came to the conclusion
that I would choose Eureka. All technologies have similar characteristics that
set them apart, but given the context of my information system and my skills
and knowledge, I’m leaning towards Eureka.

Eureka serves as a reliable service registry and discovery tool that meets
Rentopia requirements and surpasses Apache ZooKeeper in most evaluation
criterias.

37

38

Chapter 7
Implementation of prototypes

This chapter will be devoted to the implementation of the prototypes of the
Rentopia information system. This includes building a core microservices
architecture, implementing graphical prototypes, and Eureka integration.

7.1 Structure of project

In this section below, you can familiarize yourself with the structure of the
project, represented as a tree.

The structure of my project is a microservices architecture with a Rentopia
root module and child modules representing services that have their own role
and tasks.

39

7. Implementation of prototypes

Figure 7.1: Structure of project.

As you can see in figures 7.1, 7.2, and 7.3, there is a reference for my
Structure of project.

7.2 Critical functionality

The critical functionality that the prototypes will be based on will be the first
scenario and the second scenario. First scenario: Registration in the system.
Second scenario: Authorization in system and reservation of equipment in
Rentopia. You can read these scenarios above in Section 3.4.

40

.................................... 7.3. Sequence diagram

7.3 Sequence diagram

The Sequence diagram on image 7.4 describes the equipment reservation
scenario.

User email validation
[User email received]

User email not found

Equipment status
[Available]

[Not Available]

Api
Gateway

Service A
Service

B
Actor

Request to create ReservationWindow

Service
C

Data

Routes request
Requests user email

User email

Request equipment details

Equipment details

Request user email

User email

Request detail

Details

Response
Reservation successSuccess response

Reservation failed
Equipment is not available

User email not found

User email not found

Insert ReservationWindow

User email not found

Figure 7.4: Sequence diagram: Equipment reservation.

After successful authorization, the user can create a reservation window.
It sends a request that passes through the API Gateway and is sent to the
service that is responsible for working with the user account.

It sends a request to the database to determine if such a user exists. The
database sends a response: If the user exists, the reservation process begins,
if not, it issues an error and offers authorization again.

The reservation process is as follows. The API Gateway routes the request to
the service responsible for equipment management and checks the availability
and status of the desired equipment.

If the equipment is available for reservation, the request is routed to the
service responsible for the reservation, where the reservation process takes
place. If the equipment is not available, the user will receive an appropriate
response.

41

7. Implementation of prototypes
7.4 Graphical prototypes

Figure 7.5: Eureka technology.

How is Eureka working?. Client Registration: Instances of microservices automatically register
themselves with Eureka Server.. Service discovery: Eureka Server maintains a registry of all client ap-
plications running on different ports and IP addresses. Eureka Server
stores metadata of microservices such as port and IP address.. Eureka Client(Microservice) sends service discovery request to Eureka
Server to get metadata of other services.. Eureka Server sends service discovery request to Eureka Client with
metadata.. Eureka Client gets needed microservice metadata.

42

................................... 7.5. Showcase interactions

Graphical representation of the Eureka functionality.

The image above contains four connectors.
The first connector depicts the microservice registration function in the

Eureka Server as the Eureka Client. The red dotted line indicates the Eureka
heart-Beating technology which periodically send periodic heartbeats to
indicate their availability.

The second connector depicts the microservice sending service discovery re-
quest. Microservices send this request to get metadata of target microservice.

The third connector depicts the Eureka Server sending Service location
response, which contains metadata of target microservice.

The two-side pointer connector includes three connectors. I decided to go
this way to ensure high understanding and ease of reading of the prototype.

7.5 Showcase interactions

Figure 7.6: First scenario prototype.

First scenario prototype...1. Microservices start-up and register in Eureka Server as Eureka Clients.
Eureka Server saves metadata, such as host and port. Microservices that
register with Eureka Server periodically sending heartbeats to indicate
their availability...2. The user fills a form and sends user’s registration request through API
Gateway, which handles security, filter and routing...3. The API Gateway sends a service discovery request to get information
about available services...4. The Eureka Server sends service discovery response.

43

7. Implementation of prototypes5. The API Gateway routes to the Account-Management service, that
should handle the user’s registration request...6. After successful registration, the API Gateway routes to the main page,
where he can get acquainted with the information and rules regarding
the Strahov dormitory rental system.

Figure 7.7: Second scenario prototype.

Second scenario prototype...1. Microservices start-up and register in Eureka Server as Eureka Clients.
Eureka Server saves metadata, such as port and host. By this host
and port will be working service discovery. Microservices that register
with Eureka Server periodically sending heartbeats to indicate their
availability...2. Rentopia provides a window with form for authorization...3. The user fills a form and sends an authorization request to the application
through API Gateway...4. The user’s authorization request is sent through API Gateway, which
handles security, filter and routing...5. The API Gateway sends a service discovery request to get information
about available services...6. The Eureka Server sends service discovery response...7. The API Gateway routes to Account-Management service, that handles
user’s authorization request...8. After successful authorization the user is transferred to the main page,
where he can get acquainted with the information and rules regarding
the Strahov dormitory rental system.

44

... 7.6. Testing..9. The user sends a request for showing information about equipment
through API Gateway, which handles security, filters and routing....10. The API Gateway sends a service discovery request to get information
about available services....11. The Eureka Server sends service discovery response....12. The API Gateway routes to Equipment-Management service, that handles
user’s request....13. The Equipment-Management service gets a request and sends a response
with required data, including equipment information....14. The user sends request for reservation equipment through API Gateway,
that handles security, filters and routing. The API Gateway determines
which microservice should handle the user’s reservation request....15. The API Gateway sends a service discovery request to get information
about available services....16. The Eureka Server sends service discovery response....17. The API Gateway routes to Equipment-Reservation service, that handles
user’s reservation request....18. The Equipment-Reservation service gets a request and processes it.
Equipment-Reservation service sends response through API Gateway to
user with required data.

7.6 Testing

The testing of the Rentopia information system prototypes includes 3 different
tests..The JUnit tests focus on the functionality and behavior of the account-

management and equipment-management services.. In the Eureka service discovery testing, two scenarios are outlined..The API Gateway testing section showcases the functionality of the API
Gateway in routing requests to the appropriate services based on their
names..Manual API testing with Postman manually showcases sending requests
via Postman to check the endpoints of controllers and ensure that the
responses match the expected results.

45

7. Implementation of prototypes
7.6.1 JUnit tests of the services

The JUnit tests focus on the functionality and behavior of the account-
management and equipment-management services. These tests verify the
correctness of the service logic and ensure that they perform as expected
under various scenarios.[17] All running tests returned the expected result,
which can be considered a success.

7.6.2 Eureka service discovery testing

The first scenario: Successful eureka client registration...1. The first step is to start the Discovery-server-service. This service is a
Eureka server. Services like Eureka clients will be registered through it...2. The second step is to start API Gateway service. Register the API
Gateway on port 8080, which will be responsible for routing requests...3. Start and register the remaining services. The order doesn’t matter...4. To determine that the registration was successful, you can use the output
and on the Eureka dashboard at localhost:8761. They can be found here:
Successful output 7.8 and Eureka dashboard 7.9.

Figure 7.8: Successful eureka client registration output.

Figure 7.9: Eureka dashboard: Registered instances.

The second scenario: One of the two instances is down...1. The first step is to start the Discovery-server-service. This service is a
Eureka server. Services like Eureka clients will be registered through it...2. The second step is to start API Gateway service. Register the API
Gateway on port 8080, which will be responsible for routing requests...3. Start and register the remaining services. The order doesn’t matter.

46

... 7.6. Testing..4. For this test, I conducted a simulation when two instances of the
same equipment-management service are running and one of them is
DOWN(not available)...5. On the Eureka dashboard, you can track the status of service instances.
Eureka dashboard 7.10..6. I sent a request and received the expected response. Thanks to the API
Gateway service, which identified an unavailable instance and thanks to
Load Balancer, selected an available instance.

Figure 7.10: Eureka dashboard: One of the instances is DOWN.

7.6.3 API Gateway testing

API-Gateway testing was conducted during the life of Rentopia. I have set
up routes for all services. For showing, that routing is working, i added image
with output of API-Gateway service 7.11.

The API gateway functionality was clearly tested during sending request
for reservation equipment in equipment-reservation service. This request
includes the provision of information about user and equipment from other
services.

The API Gateway is also registered as a Eureka client. Thanks to Eureka’s
integration with the API gateway, the gateway can dynamically search for
the location of services based on their names, rather than hard-coding specific
URLs. This provides flexibility and scalability, as services can be added and
removed without the need to manually update the API Gateway configuration.

Figure 7.11: API gateway routing.

7.6.4 Manual API testing with postman

This type of tests was created to test the operation of controllers in microser-
vices. Success can be defined by returning the expected responses. Below are
examples of requests and endpoints.

47

7. Implementation of prototypes
Also, as you can see, the localhost port 8080 is indicated everywhere,

although the services run on different ports. This was achieved thanks to API
Gateway and Eureka. Also below 7.6.6 are testing of requests and expected
responses.

For this test was used Postman.

Postman.

”Postman is an API platform for building and using APIs. Postman
simplifies each step of the API lifecycle and streamlines collaboration
so you can create better APIs—faster.”[18]

7.6.5 Examples of requests

Registration request:
Endpoint: localhost:8080/api/client/register

” emai l ” : ” dos777@gmail . com” ,
”name ” : ”Dastan ” ,
” surname ” : ” Sadyra l iyev ” ,
”nickName ” : ” sadyrdas ” ,
”phoneNumber ” : ”777−777−777−777”,
” password ” : ” boss ”

Adding new equipment request
Endpoint: localhost:8080/api/equipment/management/newEquipment

” s t a tu s ” : ”IMMACULATE” ,
” t i t l e ” : ” vacuumcleaner ”

Adding description to equipment request
Endpoint: localhost:8080/api/equipment/management/descriptionToEquip-

ment

” t i t l e ” : ” vacuumcleaner ” ,
” d e s c r i p t i o n ” : ”New vacuumcleaner , that you can
use to c l ean your rooms”

Create reservation window request
Endpoint: localhost:8080/api/reservationWindow/createReservationWin-

dow

” durat ion ” : 1 ,
” t i t l e ” : ”VacuumCleanerForDastan ” ,
” s tar tDate ” : ”2024−06−22 12 :30” ,
” equipmentTit le ” : ” vacuumcleaner ” ,
” c l i en tEma i l ” : ” dos777@gmail . com”

48

... 7.6. Testing

7.6.6 Responses

Figure 7.12: Account-management-service response.

Figure 7.13: Equipment-management-service response.

Figure 7.14: Equipment-reservation-service response.

49

7. Implementation of prototypes
7.7 Review

By covering unit tests for service functionality, Eureka service discovery
testing for dynamic service registration and management, and API Gateway
testing for request routing, the system’s scalability, performance, ease of use
and reliability are thoroughly evaluated.

Ease of use is achieved thanks to the user-friendly Web UI that displays
the Eureka dashboard. Eureka dashboard provides valuable information
about registered Eureka clients(services), including their status and network
location.

Scalability and reliability are achieved thanks to combination of Eureka
and API Gateway. Using Eureka, the API Gateway can request the locations
of necessary services in the Discovery server. This simplifies service discovery
and provides dynamic routing of requests within the Rentopia architecture
even in situations, when instance of service is not available.

Overall, this testing section provides a clear overview of the testing strategies
employed to validate and ensure the quality and performance of the Rentopia
information system prototypes.

7.8 Future developments

In this section, ideas are written that were invented, but are not implemented
within the The Bachelor’s thesis and belong to the future extension of the
application.. Implementation of the mobile version..Adding the remaining functional requirements..Web-UI implementation.. Implementation of the auth-service for authentication and authorization.

I couldn’t implement this service because I wanted to integrate the Silicon
Hill database, but the administration couldn’t give me access. I wanted
to add the Silicon Hill Club member Id to the registration in order to
compare it with the Id from the Silicon Hill database. In the same way,
it was possible to provide exclusive access to the Rentopia system for
residents of the Strahov hostel..Add a language change feature so that foreign residents do not have
problems using Rentopia.. Containing services using Docker and deploying them to a selected cloud
service platform (for example, AWS, Google Cloud, Azure) to ensure
convenient application management and scaling.

50

Chapter 8
Conclusion

The purpose of this work was to design and create prototypes of an information
system for the rental system at the Strahov hostel. The main task is to
optimize and increase the accessibility, responsiveness and convenience of
the rental system for both students and administration in using the rental
system.

The information system is called Rentopia. I want to say that this work
achieved its goals. The analytical part was devoted to analyze the existing
system , which is a grill-only rental system. It was discovered that there was
no information system for the rental system. The analytical part also was
devoted to defining the problem and collecting the requirements and wishes
of future users: Strahov dormitory residents and administrators. The design
part lists all functional and non-functional requirements.

The next stage of the bachelor’s work was the creation of detailed wireframes
based on the requirements, which represented the appearance of the future
Rentopia system. I shared them with future users and received feedback,
which included both positive feedback and wishes and instructions from the
administrator.

Also, the second part of the analysis was an analysis of the microservice
architecture and, in particular, the Eureka tool discovery service.

Having carried out this analysis, the stage of implementation of proto-
types of the future system began. Since this was my first experience with
microservice architecture, some difficulties arose, which I successfully dealt
with.

Prototypes testing included 4 stages:.The JUnit tests of the services. Eureka service discovery testing.The API Gateway testing.Manual API testing with Postman

Having conducted these tests, I can indicate that Rentopia will be able to
meet the expected requirements.

Due to the high volume of work, the requirements were divided into those
implemented within the framework of the bachelor’s thesis and those that

51

8. Conclusion..
provide the opportunity to improve and expand the system in the future.
As part of further expansion and development, priority will be given to the
implementation of these future goals. The system is written in such a way
that it can be expanded with additional functionality, which is indicated in
the chapter on future development.

To sum it up, I would like to say that Rentopia has got its start, and in
the future it can become an integral part of life in the Strahov dorm.

52

Appendix A
List of abbreviations

. JSON: ”JavaScript Object Notation”..API: ”Application Programming Interface”.. BANY: ”This is a system of punishment for late return and damage to
equipment. Prohibition of use for late return: vacuum cleaners - 7 days,
grill - 5 days, everything else - 3 days”..TROSAD: ”The registry of services and discovery tools”.. PostgreSQL: ”Postgres Structured Query Language”..MongoDB: ”Humongous DataBase”.. CRUD: ”Create, Read, Update, and Delete (CRUD) are the four basic
functions that models of database should be able to do, at most”.. JUnit: ”A unit testing framework for the Java programming language”.

53

54

Appendix B
List of links

.GitHub: https://github.com/sadyrdas/Rentopia. GitLab: https://gitlab.fel.cvut.cz/sadyrdas/bachelor-projekt.Wireframes Figma: https://shorturl.at/talqY.Questionnaire: https://forms.office.com/r/SruqYyG5Bq

55

https://github.com/sadyrdas/Rentopia
https://gitlab.fel.cvut.cz/sadyrdas/bachelor-projekt
https://shorturl.at/talqY
https://forms.office.com/r/SruqYyG5Bq

56

Appendix C
Bibliography

[1] Asel Kalibaeva one of the administrator of Silicon Hill organization and
resident of Strahov Dormitory.

[2] Silicon Hill web-page. “Current state of rental service”. Accessed on March
3 2024. Retrieved from https://wiki.sh.cvut.cz/kolej/bloky/blok_
6

[3] ProductPlan. “What is MoSCoW prioizitation?”. Accessed on March
6 2024. Retrieved from https://www.productplan.com/glossary/
moscow-prioritization/

[4] Microsoft Azure. “What is Java?”. Accessed on March
15 2024. Retrieved from https://azure.microsoft.
com/en-us/resources/cloud-computing-dictionary/
what-is-java-programming-language

[5] Tutorialspoint. ”What is Spring Boot?”. Accessed on March 15
2024. Retrieved from https://www.tutorialspoint.com/spring_boot/
spring_boot_introduction.htm

[6] PostgreSQL official web-page. ”What is PostgreSQL?”. Accessed on March
15 2024. Retrieved from https://www.postgresql.org/about/

[7] AWS Amazon. ”What is MongoDB?”. Accessed on March 15
2024. Retrieved from https://aws.amazon.com/ru/documentdb/
what-is-mongodb/#:~:text=MongoDBisanon-relational,
withrichandintuitiveAPIs.

[8] Medium. ”What is Sketch?”. Accessed on March 22 2024. Date of Publi-
cation: 20 February 2024. Retrieved from https://shorturl.at/kPnX2

[9] Author: Staiano,F. (2022). ”Designing and prototyping interfaces with
Figma : Learn essential UX/UI design principles by creating interactive
prototypes for mobile, tablet, and desktop. Date of publication: February
2022. Retrieved from https://shorturl.at/Akzeo

[10] Arlan Nurkhozhin 3rd year student of the CTU FEL SIT and resident
of Strahov Dormitory.

57

https://wiki.sh.cvut.cz/kolej/bloky/blok_6
https://wiki.sh.cvut.cz/kolej/bloky/blok_6
https://www.productplan.com/glossary/moscow-prioritization/
https://www.productplan.com/glossary/moscow-prioritization/
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-java-programming-language
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-java-programming-language
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-java-programming-language
https://www.tutorialspoint.com/spring_boot/spring_boot_introduction.htm
https://www.tutorialspoint.com/spring_boot/spring_boot_introduction.htm
https://www.postgresql.org/about/
https://aws.amazon.com/ru/documentdb/what-is-mongodb/#:~:text=MongoDB is a non-relational,with rich and intuitive APIs.
https://aws.amazon.com/ru/documentdb/what-is-mongodb/#:~:text=MongoDB is a non-relational,with rich and intuitive APIs.
https://aws.amazon.com/ru/documentdb/what-is-mongodb/#:~:text=MongoDB is a non-relational,with rich and intuitive APIs.
https://shorturl.at/kPnX2
https://shorturl.at/Akzeo

C. Bibliography.......................................
[11] Vyacheslav Tsay a 3rd year student of the CTU FEL SIT and resident

of Strahov Dormitory

[12] ATLASSIAN. ”Benefits of microservices”. Accessed on April 15
2024. Retrieved from https://www.atlassian.com/microservices/
cloud-computing/advantages-of-microservices

[13] GeeksForGeeks. “What is Eureka?”. Accessed on April
18 2024 Retrieved from https://www.geeksforgeeks.org/
spring-boot-eureka-server/?ref=header_search

[14] IEEE Xplore. Title: A survey on microservices architecture: Principles,
patterns and migration challenges. Authors: Victor Velepucha, Pamela
Flores atd. Date of Publication: 15 August 2023. Retrieved from https:
//ieeexplore.ieee.org/abstract/document/10220070

[15] Science Direct. Title: Understanding and addressing quality attributes
of microservices architecture: A Systematic literature review. Authors:
Shanshan Li, He Zhang atd. Date of Publication: March 2021. Re-
trieved from https://www.sciencedirect.com/science/article/pii/
S0950584920301993#sec0001

[16] Election Science. ”What is Score Voting?”. Accessed on April 23 2024. Re-
trieved from https://electionscience.org/library/score-voting/

[17] Medium. ”JUnit testing with spring boot”. Accessed on
May 5 2024. Date of publication: 25 March 2023. Re-
trieved from https://medium.com/@AlexanderObregon/
mastering-spring-boot-testing-with-junit-and-mockito-8bec9b4911fc

[18] Postman’s official website. ”What is Postman?”. Accessed on
May 15 2024. Retrieved from https://www.postman.com/product/
what-is-postman/

58

https://www.atlassian.com/microservices/cloud-computing/advantages-of-microservices
https://www.atlassian.com/microservices/cloud-computing/advantages-of-microservices
https://www.geeksforgeeks.org/spring-boot-eureka-server/?ref=header_search
https://www.geeksforgeeks.org/spring-boot-eureka-server/?ref=header_search
https://ieeexplore.ieee.org/abstract/document/10220070
https://ieeexplore.ieee.org/abstract/document/10220070
https://www.sciencedirect.com/science/article/pii/S0950584920301993#sec0001
https://www.sciencedirect.com/science/article/pii/S0950584920301993#sec0001
https://electionscience.org/library/score-voting/
https://medium.com/@AlexanderObregon/mastering-spring-boot-testing-with-junit-and-mockito-8bec9b4911fc
https://medium.com/@AlexanderObregon/mastering-spring-boot-testing-with-junit-and-mockito-8bec9b4911fc
https://www.postman.com/product/what-is-postman/
https://www.postman.com/product/what-is-postman/

	Introduction
	Motivation
	Objectives

	Analysis of the current state and definition of requirements for new solutions
	Analysis of current state
	Analysis of existing web-service
	Analysis of current rental system
	Conclusion

	AS-IS diagram
	Requirements definition
	Functional requirements
	Non-functional requirements

	Prioritization
	Definition of stakeholders
	Functional requirements
	Non-functional requirements
	Conclusion

	Back-end
	Data tier

	Creating a detailed wireframes for a new solution
	Definition of “Rentopia” scope
	To-Be diagram
	UML class diagram
	Use-Case diagram
	Wireframing tool selection
	Conclusion

	Annotation of wireframe

	Verification of the quality of the wireframes
	Feedback
	Documentation
	Review

	Microservices architecture
	Introduction to microservices
	Patterns for microservices
	Challenges
	Visualizing microservice architecture

	Service discovery
	Understanding service discovery
	The benefits of service discovery

	Define of evaluation criterias
	Eureka
	Comparative Analysis
	Decision

	Implementation of prototypes
	Structure of project
	Critical functionality
	Sequence diagram
	Graphical prototypes
	Showcase interactions
	Testing
	JUnit tests of the services
	Eureka service discovery testing
	API Gateway testing
	Manual API testing with postman
	Examples of requests
	Responses

	Review
	Future developments

	Conclusion
	List of abbreviations
	List of links
	Bibliography

