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Abstract
This bachelor thesis compares the archi-
tectures of Neural Networks for heuristic
functions in general planning problems.
It explores various methods for encoding
planning problems and utilizing Graph
Neural Networks. Additionally, it pro-
poses several optimizations to enhance
learning speed and discusses the advan-
tages and disadvantages of the introduced
architectures. A significant portion of the
work is dedicated to the implementation
of these architectures and their optimiza-
tions.
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Abstrakt
Tato bakalářská práce porovnává archi-
tektury neuronových sítí pro heuristické
funkce v obecných plánovacích problé-
mech. Zkoumá různé metody kódování
plánovacích problémů a využití grafových
neuronových sítí. Dále navrhuje několik
optimalizací pro zrychlení učení a disku-
tuje výhody a nevýhody zavedených archi-
tektur. Významná část práce je věnována
implementaci těchto architektur a jejich
optimalizací.

Klíčová slova: plánovací problémy,
umělá inteligence, grafové neuronové sítě,
architektury, optimalizace

Překlad názvu: Architektury
neuronových sítí pro heuristické funkce v
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Chapter 1
Introduction

Solving planning problems has become another field where artificial intelli-
gence find use. The heuristic function is one of the main concepts for effective
solving of planning problems. Graph neural networks are able to learn this
function when provided a set of solved planning problems. They can be then
used as a function to provide heuristic value for states for search algorithms.
However, it is not clear how to encode a PDDL state into graph structure. The
focus of this thesis is on how a PDDL state can be encoded and comparison
of such encodings. We want to see the strengths and weaknesses of different
encodings and find out on what makes an encoding great. To achieve this,
we add implementations of encodings to the NeuroPlanner.jl [1] Julia library
using structures from Mill.jl [2] Julia library. For qualitative results we will
use problems provided from the International Planning Competition from the
International Conference on Automated Planning and Scheduling, where the
most revered researchers cooperate and present their ideas about planning
and scheduling.
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Chapter 2
Background

2.1 Classical planning

In this section we would like to introduce a classical planning and core features
for definition of planning problems and plans. Furthermore we will take a
look at learning how to clear a planning problem.

2.2 Planning languages

Through out the years of development of artificial intelligence there has been
several languages for defining classical planning tasks. In this section we
would like to introduce some of them.

In the beginning the first planning tasks were introduced using the STRIPS
language. Planner using Stanford Research Institute Problem Solver (STRIPS)
language gave Shakey [3], the robot, the ability to execute commands and
follow given plan. STRIPS language was then used as a base language for
most languages used to describe planning problems.

One of the advancements of STRIPS language is Action Description Lan-
guage (ADL). ADL schema consists of action name, an optional parameter list,
and four optional groups of clauses labeled PRECOND, ADD, DELETE, and
UPDATE. With this advancement of STRIPS language the ADL overcomes
the limited expressiveness and semantic difficulties of the STRIPS language
[4].

Another advancement and the one we will be using in this thesis is called
Planning Domain Definition Language (PDDL) released in 1998 [5]. PDDL
has since its release become a community standard for the representation of
planning domains and problems [6]. PDDL was an attempt to standardise
planning languages and is used as a standard on many intenational planning
competitions.

2.3 PDDL formulas

An object is a component used to define the entities that exist, they are
specific instances of types. There can be multiple types of objects and multiple

3



2. Background .....................................
instances of one type of object.

A predicate is a tuple of types of variables. Each predicate can have its
variables bounded by objects and therefore describe a part of the state of
the world. An atom over a set of objects O is an expression of the form
P (o1, . . . , on) where P is an n-ary predicate symbol and each oi ∈ O.

Consider a set of predicate symbols P and a set of objects O. A state
S = ⟨O, ⟨P S | P ∈ R⟩⟩ where P S ⊆ On is the interpretation of the n-ary
predicate symbol P ∈ R.

The atom P (o1, . . . , on) holds in state S iff ⟨o1, . . . , on⟩ ∈ P S .
A domain represents a world structure, defines types of objects and their

connections and actions for state transitions. Domain is defined as a tuple
D = (N, R, A, T ) where N denotes the domain name. R is a finite set of
predicate symbols P with possibly different arity n. A represents a set of
actions.

An action in PDDL is a tuple:

a = ⟨: name, : parameters, : precondition, : effect⟩

An action defines a transition from state S to state S′. The : parameters
define a list of variables upon which the particular action operates. The
: precondition is a list of atoms that must hold in S for the action to be
applicable. The : effect describes the transition from S to S′. All variables
must be bound for an action to be applicable [5]. A transition function f
maps state S using action a to state S′.

S′ = f(S, a)

A domain definition of sokoban looks like this:
(define (domain sokoban)
(:requirements :typing)
(:types location direction box)

(:constants down up left right - direction)

(:predicates
(at-robot ?l - location)
(at ?o - box ?l - location)
(adjacent ?l1 - location ?l2 - location

?d - direction)
(clear ?l - location)

)

(:action move
:parameters (?from - location ?to - location

?dir - direction)
:precondition (and (clear ?to) (at-robot ?from)

(adjacent ?from ?to ?dir))

4



................................2.4. Solving PDDL problems

:effect (and (at-robot ?to) (not (at-robot ?from)))
)

(:action push
:parameters (?rloc - location ?bloc - location

?floc - location ?dir - direction ?b - box)
:precondition (and (at-robot ?rloc) (at ?b ?bloc)

(clear ?floc) (adjacent ?rloc ?bloc ?dir)
(adjacent ?bloc ?floc ?dir))

:effect (and (at-robot ?bloc) (at ?b ?floc)
(clear ?bloc) (not (at-robot ?rloc))
(not (at ?b ?bloc)) (not (clear ?floc)))

)
)

In this domain there are three types of objects - a location, a direction and a
box. There are already defined objects, instances of type direction. There
are 4 predicates that define a state of the world. We can see 2 actions, move
and push, that define a transition from one state to another.

Problem is a tuple P = ⟨D, O, I, G⟩ where.D is a problem domain. O is a set of objects. I is an initial state.G is a goal state

A plan ⟨a1, . . . , an⟩ is a tuple of n actions, that defines a transition from
state S to state S′.

f(S, a1) = S1

Si+1 = f(Si, ai)

Sn = S′

An optimal plan is a tuple with minimal number of actions, that define a
transition from state S to S′.

2.4 Solving PDDL problems

Solving PDDL problems is a task that many researchers cooperate in. The
main goal of a researcher is to implement a planner that solves as many
problems as it can in the least amount of time. Planners optimized by neural
network firstly learn the domain architecture and train on already solved
problems.

5



2. Background .....................................
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Figure 2.1: Graphs

A PDDL problem is solved if there is a plan that makes a transition from
an initial state to a goal state. There are two types of planners, ones that
satisfy the goal state and try to find a solution in the least amount of time.
And the others optimizing planners that search to find the optimal plan.

A heuristic function is a mapping of states into real valued numbers, called
heuristic values. This mapping is used for finding a path to the goal state. A
heuristic value of a given state represents an approximation of the cost to
the goal state from the given state. This means that the lower the heuristic
value of a state is that much closer to the goal state it is. However this is
only an approximation and not necessarily correct. On the other hand this
gives planners a valuable information and helps them reach the goal state in
shorter amount of time.

A planner is a traversal algorithm that is used to find a path in a space of
states from the initial state to the goal state. For example a BFS algorithm
searches the whole space from the initial point in all direction at the same
time, it finds the optimal solution, however might take a lot of time. A∗ on
the other hand uses heuristic function to traverse state space around the least
heuristic value of the states, it prefers states that are based on the heuristic
function closer to the goal state [7]. PDDL problems are usually NP hard
and we use heuristic function to help us solve them.

2.5 Graphs

Graph G is a pair G = ⟨V, E⟩ where V is a set of vertices (nodes) and E is
a set of unordered pairs {u, v} called edges. If there exists an edge between
vertices u and v we say that they are connected.

A directed graph G is a pair G = ⟨V, E⟩ where V is a set of vertices and E
is a set of ordered pairs of distinct vertices. We say that this ordered pair
(u, v) is a directed edge going from u to v. If an edge is allowed to connect
the same vertex to itself we call this edge a loop.

A multigraph is a generalization, that allows multiple edges between two

6
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Figure 2.2: Hypergraph

nodes. We can see an example of a multigraph in Figure 2.1(a).
Hypergraph G is a generalization that allows to have edges connecting

multiple nodes, we call these edges hyperedges. Hypergraph is defined as
a pair G = ⟨V, E1, . . . , En⟩ where V is a set of vertices and Ei is a set of i
vertices of V . A hypergraph is shown in Figure 2.2

Bipartite graph G is a tuple G = ⟨U, V, E⟩ where vertices are divided into
two disjoint and independent sets U and V , every edge in E connects one
vertex in U to one in V . Every hypergraph GH can be transformed into
bipartite graph and vice versa. An example of a bipartite graph is shown
in Figure 2.1(b). An example of a hypergraph and its equivalent bipartite
graphs is shown in Figure 2.3.
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2. Background .....................................
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(b) Bipartite graph

Figure 2.3: A hypergraph and its equivalent bipartite graph. Nodes of hyper-
graph are nodes on the left of the bipartite graph, and hyperedges are represented
as nodes on the right side of the bipartite graph. Node v is connected to the node
e in the bipartite graph if node v occurs in the hyperedge e in the hypergraph.
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Chapter 3
Introduction to Graph Neural Networks

In this section we will briefly introduce artificial neural networks. They
are the core method in deep learning for classification, regression, pattern
recognition, data mining, voice recognition and many others. This section
will introduce Feed Forward Neural Networks and then further Graph Neural
Networks (GNNs), which the advanced methods are build upon.

3.1 Feed Forward Neural Networks

Feed Forward Neural Network is an Artificial Neural Network, which is an
affine projection from Rd to Rs. It is an attempt to recreate biological neural
connections in human brain. All the computation human brain conducts lies
within its network of neurons. Human brain has approximately 100 billion
neurons [8, 9]. Some of them are connected resulting in passing of signals.
When one neuron receives a signal it modifies it and sends it to all other
neurons that are connected to the neurons end. This way the human brain
can receive signals from receptive fields transform them and based on results
create assumptions. Through the connected study of biological neurons and
machine learning an artificial neural network was introduced [10].

3.1.1 Artificial Neuron

The perceptron became first artificial neuron mimicking work of a biological
neuron [11]. Multi-layer perceptron soon became the core concept of artificial
neural networks.

An artificial neuron consists of two parts affine and non-linear. The
affine projection consists of multiplication and summation and the non-linear
part consists of applying any non-linear function on the result of the affine
projection. The importance of the non-linearity will be described in the
following sections.

Neuron definition:

f(x) = σ(wT · x + b)

where:

9



3. Introduction to Graph Neural Networks .........................
. x is a vector from Rd

.w is a vector from Rd

. b is the bias from R, that shifts the result from the origin. σ is an activation function

Most commonly used activation functions are:. Binary Step Function

σ(x) =
{

0 x < 0
1 x ≥ 0

. Sigmoid

σ(x) = 1
1 + e−x

. Rectified Linear Unit (ReLU)

σ(x) = max(x, 0)

. Hyperbolic tangent
σ(x) = tanh(x)

3.1.2 Layer

One layer in neural network is a multitude of neurons. All neurons in one layer
are the same, their weights are of the same dimension and their activation
functions are the same as well. The number of neurons in a layer defines its
output dimension.

We can then define a layer as follows:

f(x) = σ(W · x + b)

where:.W is a matrix of weights from Rs×d, where i-th row represents weights
for the i-th neuron. b is a vector of biases from Rs

. σ is an activation function taking in a vector of values and applying
element-wise σ activation function

The result of this function is a vector from Rs.

10



............................. 3.1. Feed Forward Neural Networks

3.1.3 Neural Network Architecture

Neural network is an oredered set of layers, where they are connected to
each other. One type of neural network is a multi-layer perceptron, which
is defined as a multitude of layers where each layer is fully-connected to the
next one, one neuron takes input from all neurons of the previous layer and
send its output to all the neurons of the next layer.

All layers in neural network are divided into three groups, the first layer,
hidden layers and the last layer.

The first layer is called the input layer. It takes the input of dimension d
and transforms it to dimension h.

The last layer is called the output layer. It defines the output dimension
of the whole neural network. This layer does not necessarily comply with
the non-linear activation function condition. The activation function of the
last layer depends on the task. If the task is of regression type the activation
function can be identity, which is linear. If the task is of classification type
the activation function is commonly softmax, which takes in the output of a
whole layer without the inner activation functions as a vector and outputs a
normalized vector of the same dimension, generating a distribution.

Advanced neural networks have one or more hidden layers. We call neural
networks with many layers deep and with only few layers shallow. Both deep
and shallow networks find their usage.

Shallow neural networks have relatively small number of hidden layers or
none at all. On one hand they have many advantages they can be trained in
a short amount of time, with a small number of training samples and perform
really well. On the other hand they can not learn complex data structures.
If the task given to the neural network is too hard for its architecture given
small number of layers it will not perform well.

Deep neural networks have been in the past years the most researched and
used in machine learning. They can learn very complex data structures and
complete tasks with nearly perfect accuracy. However they can have billions
of hyperparameters to be trained and their training needs large number of
training samples. The training takes a lot of time and many optimization
methods need to be used to train such network.

3.1.4 Non-linear activation functions

The main concept of non-linear activation functions is scalability with layers.
If all activation functions were linear the whole neural network could be
reduced into one matrix multiplication and addition of the bias term, with
learning only a few of hyperparameters. However with the activation functions
being non-linear the network is impossible to be reduced. Therefore the whole
neural network has many trainable parameters, such as weights and biases.

11



3. Introduction to Graph Neural Networks .........................
3.2 Graph Neural Networks

In the real world data do often have a more complex structure that cannot
be defined by a single vector. Such data structures can be represented as
graphs. Because there is no common way to represent graphs as vectors and
therefore cannot be passed through normal neural networks Graph Neural
Networks (GNNs) have been introduced.

One of the common complex structures that are used machine learning are
molecules. They consist of atoms of elements together create a molecule, with
each atom having different features and each edge having different features
as well. GNN models often work on molecules and predict their features.
Planning problems can be represented as graphs and GNN models can be
learnt to predict paths. Another graph-like structure comes from social
networks. Where people are connected to other people by being friends,
sharing the same hobby and more. Furthermore a movie recommender is
based on GNN models as well, if a person watched only action movies the
model will predict that other movies labeled action will be of interest to this
person. A sentence can also be defined as a directed graph and therefore
GNN models can make prediction on the whole sentence and or on its words.

3.2.1 GNN input

GNN models generally take as input graphs whose vertices and possibly
edges are labeled by real-valued feature vectors. These vectors are then
processed through a series of parameterized differentiable transformations
into the output value [12].

Feature vector is a vector of constant dimension. It contains information
about features of one type of element in graph, i.e., contains information
about nodes, edges or the whole graph. Its dimension is constant for each type
of element. Nodes and edges can have feature vectors of different dimension.
We call a vector one-hot, when it contains zeros in all its entries except one,
where is a one. We call a vector multi-hot, when the number of entries with a
one is greater than one and all the others contain a zero. In this work we will
use feature vectors for nodes and edges. multigraph often uses one-hot feature
vectors for edges and normal graph often uses multi-hot feature vectors for
edges.

3.2.2 Message Passing

In this section we would like to introduce how GNN models work and how
they process input. We will define them the same way as they do in the
following work [13].

There is no simple matrix multiplication and addition that can be used
on graphs as do normal neural networks. GNN models work on a different
type of processing. It can be compared to convolutions however it is some-
thing different. GNN models are generally based on the message passing

12



................................ 3.2. Graph Neural Networks

architecture.
GNN models have layers but each layer represents one message pass. In

each message pass feature vectors of nodes are updated. The neighbourhood
of node v in a graph G is

NG(v) = {{u | ⟨v, u⟩ ∈ E}}

where NG(v) can be a multi set (denoted by {{. . . }}) containing multiple
instances of one node .

The GNN model maintains node embeddings (feature vectors) u(i)(v) ∈
Rk, ∀ v ∈ V , i = 0, . . . , L where L is a number of message passing layers
(iterations). The node embeddings u(0)(v), ∀v ∈ V are initially fixed. Message
passing layers iteratively update node embeddings with node embeddings
of nodes that are in its one-hop neighbourhood with the general message
passing equation:

u(t+1)(v) = combt(u(t)(v), aggt({{u(t)(u) | u ∈ N (v)}}))

where combination functions combt map pairs of vectors into Rk vector,
aggregation functions aggt map arbitrary number of Rk vectors into single
one. common aggregation functions are mean, max, sum.

Each aggregation function has some advantages and some disadvantages.
Mean function is invariant to the number of nodes in the one-hop neigh-
bourhood, it does not create nodes with higher values in its embeddings.
However it does create a smaller differences over many message-passing layers.
Max function is invariant to the number of nodes as well and maximizes
every embedding. Sum on the other hand does create differences between
nodes based on the number of connections it has. This create another feature
for nodes and possibly GNN models can learn something more using this
aggregation function.

Crucial is how well can agg distinguish two multi sets of features. It is
known that agg functions based on sum are more expressive than those based
on mean with max being the least expressive [14].

3.2.3 Readout Function

The final layer is called a readout layer and works similarly to the previous
layers, however it does not update node embeddings and aggregates all the
feature vectors and aggregates them into a single output value:

ro({{u(L)(v) | v ∈ V }})

where ro is the readout aggregation function.

3.2.4 Types of problems GNN solves

For graphs there are three general types of prediction: graph-level, node-
level and edge-level. Each of these prediction can be either classification or
regression and all of them can be solved by GNN models.
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3. Introduction to Graph Neural Networks .........................
Graph-level tasks are generally tasks that classify the whole graph. For

example when a new molecule is invented GNN models classify its properties
and determine whether the molecule is stable, useful and more. In planning
the classification is a little bit different, we want to predict the heuristic
function of a state in a given problem.

There are many GNN models that predict on the node-level. Node-level
tasks are focused on predicting role or type of each node in a graph. In a
sentence each word is represented by a node and can be made prediction
on them, for example what kind of parts-of-speech is each word. In social
networking GNN models can for example predict whether a person, that
newly joined a community will be happy or start with the same hobby as all
the other members do.

Edge-level tasks address predicting relationships between objects. If the
input to the GNN model is a fully-connected graph with unlabeled edges the
output can be labels for each edge. With the example of social networking
GNN models can predict whether one person will connect on some level
with another person. In biochemistry we can predict whether an atom in a
molecule will attach to another atom and with what kind of intensity and
with what type of connection.

14



Chapter 4
Representing State as a Graph

In this section we will introduce the main problem with learning heuristic
function for general planning problems. We will introduce some architectures
of planning problems.

By an encoding we understand a transformation of PDDL state into a
graph representation. It is not clear how to encode one PDDL state and
there are multiple ways. Let h denote the encoding of a state and g a GNN
model and let them compose into f = g ◦ h. Consider two states S′ and S′′

then these two states are not separated by f iff they are distinct and have
the same image under f .

S′ ̸= S′′ ∧ f(S′) = f(S′′)

The main problem is the state differentiation in neural network, this
defines the power of the representation. Neural networks can generate same
output for different input, which is problematic. The less the states that
are indistinguishable by the neural network the better. There comes in
architectures for state encodings.

Each encoding has different advantages and disadvantages. The benchmark
for encodings is the number of problems a GNN model using given encoding
can solve in given time. This makes the comparison difficult, because there
are many factors that influence the transformation of a state into graphs, i.e,
memory allocation, computational complexity, the number of indistinguishable
states and more.

Implementation of each architecture is very important, we cannot measure
two architectures where one encoding of a state is optimized and the other
encoding of a state is suboptimal. There are high demands on transforma-
tion of states into graphs. We have therefore used profiler to ensure each
architecture is well optimized.

GNN models take as input graphs. There are 3 types of information that
we need to represent: Node embeddings, edge embeddings and connectivity.
The first two are straightforward: node (edge) features will be represented by
a matrix M ∈ Rn×d where n is the number of vertices (edges) and d is the
dimension of feature vectors. Each node (edge) is assigned an index i and its
feature vector is stored as a column in M:,i. Representing connectivity can be
easy and there are many common ways to represent connectivity however, for

15



4. Representing State as a Graph .............................
our purposes suboptimal. There are several ways such as adjacency matrix or
sparse matrix. We will go into detail of this problem in the following chapters.

4.1 NeuroPlanner

All the introduced architectures and other representation formats are realized
as an extension of the NeuroPlanner.jl [1] library. It contains other architec-
tures of GNN models and realizes a way to learn GNN models provided with
a set of training problems with plans.

4.2 Representing STRIPS state as a graph for
GNN models

We define our input into GNN models as a unification of initial and goal
states. We transform both states into a graph possibly multi or hyper and
then merge them together. This way the GNN models know the initial state
and know the goal state and can learn what needs to be transformed to reach
the goal state.

Objects are commonly represented as vertices in a graph. However, in the
following chapters we will introduce an architecture that builds on representing
objects as edges between nodes representing atoms.

There are four possible representations of nullary predicates.Graph feature. Hyperedge over all nodes. Self loops over all nodes. Feature in all node embeddings

For unary predicates there are less possible representation since they need
to be bound to given object.. Self loops. Feature in node embedding for given object

Representation of predicates with greater arity is not unified. However,
they are commonly represented as either hyperedges connecting multiple
nodes or simplified and represented as edges connecting two nodes. One way
to simplify it is to create an edge between two nodes if they are both present
in the predicate. Another way without simplification is to create a hyperedge
over all the nodes that are present creating a hypergraph. Another way is to
create a bipartite graph, where all predicates are represented as nodes. This
creates two sets of nodes and edges are only between objects and predicates.

16



......................................4.3. Definitions

Node Features. Construction of feature vectors depends on given archi-
tecture and its representation of nullary and unary predicates. Consider
an architecture where all nullary and unary predicates are represented as
features of a vector. For given state S = ⟨O, ⟨P S | P ∈ R⟩⟩ and its
graph representation G = (V, E) the feature vector u ∈ {0, 1}n of a node
u ∈ V is constructed from nullary and unary predicate symbols Pi as follows:
ui = 1 iff Pi(u) holds in S or Pi is a nullary predicate symbol [12].

Edge Features. For multi and hypergraphs edge embeddings are represented
as one-hot encodings. Each edge in graph G = (V, E) representing state
S = ⟨O, ⟨P S | P ∈ R⟩⟩ represents a predicate and after enumerating
predicates the feature vector u ∈ {0, 1}n of an edge e ∈ E is one-hot vector
where ui = 1 iff e represents predicate symbol Pi.

For normal graph each edge represents all the connection between two nodes
and thus may represent many predicates. For a state S = ⟨O, ⟨P S | P ∈ R⟩⟩
represented by a graph G = (V, E) the feature vector of u ∈ {0, 1}n of an
edge e ∈ E is constructed as follows: ui = 1 for all predicate symbols P that e
represents.

4.3 Definitions

For a tuple of objects c⃗, ci denotes its i-th element. Let B be a set of objects
and c⃗ a tuple of objects, the expression B ⊆ c⃗ denotes that all objects in B
also occur in c⃗. For two tuples b⃗, c⃗, the expression b⃗ ∩ c⃗ denotes the set of
their shared objects. Analogously, b⃗ ∪ c⃗ is the set of all objects occurring in
at least one of the tuples. Finally, b⃗△c⃗ = (⃗b ∪ c⃗) \ (⃗b ∩ c⃗) is the symmetric
difference of elements occurring in b⃗ and c⃗ [12].

4.4 Architectures

In the following sections we will present few architectures from Horcik and Sir
[12]. Each encoding converts a state S into either labeled graph, multi-graph
or bipartite (multi) graph.

As an example consider a set of predicate symbols, R = {N, A, B, U, T},
where N nullary predicate symbol, A, B are unary unary predicate symbols,
U is binary and T is ternary, a set of objects O = {a, b1, b2}. And a STRIPS
state represented as a set of atoms.

S = ⟨O = {a, b1, b2}, {N, A(a), B(b1), B(b2), U(b1, b2), T (a, b1, b2)}⟩

4.4.1 Object Binary Structure

Given a state S = ⟨O, ⟨P S | P ∈ R⟩⟩ defined in 4.4 the encoding of this state
using the object binary structure is a graph G = ⟨V, E⟩ with feature vectors
for nodes and edges.
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4. Representing State as a Graph .............................
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Figure 4.1: Encoding of the STRIPS defined in 4.4 using the Object Binary
structure

The transformation maps all objects in O into vertices V in the graph
G = ⟨V, E⟩. The feature vector u ∈ {0, 1}n of a node u ∈ V representing
an object o ∈ O is constructed from nullary and unary predicates Pi ∈ R
as follows: ui = 1 iff Pi(o) holds in S or Pi is a nullary prediacte. Nullary
predicates are shared across all vertices.

V = {v | o ∈ O}

If two objects o1, o2 jointly occur in an atom with predicate symbol R ∈ P
of arity at least 2 that holds in S we define a connection between their
respective nodes v1, v2. We say that this connection represents the predicate
R.

⟨v1, v2⟩ ∈ E iff {o1, o2} ⊆ c⃗ for some c⃗ ∈ RS

All connections are symmetric by definition, v1, v2 might occur in any
position in c⃗. If we consider an architecture using a multigraph, all relations
are separately transformed into edges with one-hot feature vectors. The
feature vector u ∈ {0, 1}n of an edge e ∈ E is one-hot vector where ui =
1 iff e represents Ri ∈ P .

The encoding of the STRIPS state defined in 4.4 using the object binary
structure is shown in Figure 4.1. The nullary and unary predicate symbols
are depicted as node feature vectors. Edge feature vector consist of predicate
symbols of arity at least 2 and are represented as a feature vector as well.
Object a occurs in atom A(a) and also a nullary atom N , likewise objects b1
and b2 both occur in atoms B(b1) and B(b2) and a nullary atom N . An edge
connecting objects b1 and b2 has features of both predicates of arity at least
two, since both objects occur in atoms T (a, b1, b2) and U(b1, b2)
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.................................... 4.4. Architectures

4.4.2 Atom Binary Structure

This next architecture is the opposite of the previous one. It transforms
state S = ⟨O, ⟨P S | P ∈ R⟩⟩ into multigraph with nodes representing atoms
that hold in S and connections between them represent their contained and
shared objects. We connect two atoms if they share common objects. We
also connect two atoms if the symmetric difference of objects occurring in
them occurs also in another atom.

We create a graph G = ⟨V, E⟩, where nodes are atoms that hold in S.

U = {u | α ∈ P S}

There exist an oriented edge e labeled by Ei,j between nodes u, v iff
u = P (⃗a), v = P ′(⃗b) and ai = bj . Also an edge e is labeled by predicate
symbol P̂ , where P̂ is constructed from predicates with arity at least 2 P ∈ R,
if the symmetric difference a⃗△b⃗ ⊆ c⃗ for some c⃗ ∈ P S .

Node feature vectors are one-hot and contain predicate symbols, where
each atom knows its predicate. Let m be the highest arity of predicate in R.
Edge feature vectors are either multi-hot or one-hot using multigraph and
are constructed from pairs of indices ⟨i, j⟩ ∈ [1, m]2 and predicate symbols of
arity at least 2. We can see that edges are symmetrical, if there is an edge
from node u to node v then there is also an edge from v to u. This is also
propagated to all the edge features of predicate symbols.

In Figure 4.2 we can see the encoding of the STRIPS state defined in
4.4 using the atom binary structure. Nodes are atoms labeled by one-hot
feature vector of predicate symbols. There are oriented edges from nodes
with labels describing the common objects and predicate symbols. There
is an edge feature vector in the top right corner describing edge features.
We can see that there is an oriented edge connecting atom T (a, b1, b2) and
U(b1, b2) labeled by E2,1, E3,2, since the second object b1 in T (a, b1, b2) is also
a first object in U(b1, b2). Likewise the third object b2 in T (a, b1, b2) is also a
second object in U(b1, b2). Note that there is a connection between N and
T (a, b1, b2) labeled by T̂ , since if we remove their common objects {}, which
is an empty set, the remaining objects {a, b1, b2} occur in atom T (a, b1, b2).

4.4.3 Object-Atom Binary Structure

The encoding of a state S = ⟨O, ⟨P S | P ∈ R⟩⟩ using the object-atom
binary structure is a bipartite graph or a hypergraph. However, there is little
difference since any hypergraph can be represented as a bipartite graph and
vice versa. The implementation depends on the preference, we will further
explain details and our implementation in the next sections. We will describe
the architecture with a bipartite graph.

Object-atom binary structure is build on both objects and atoms and is
represented by a bipartite graph G = ⟨U, V, E⟩. All objects o ∈ O are
mapped into vertices U and all atoms a ∈ P S are mapped into vertices V .
There is a connection between an object and an atom if the object occurs in
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Figure 4.2: Encoding of the STRIPS state defined in 4.4 using the Atom Binary
structure

the atom. We add two extra unary predicates C and F to distinguish objects
from atoms.

U = {u | o ∈ O}

V = {v | α ∈ P S}

Set of atoms P S
e is an enriched set with the unary atoms C and F and a

an enriched set of predicate symbols Re unifies with predicate symbols C, F .

Se = S ∪ {C(o) | o ∈ O} ∪ {α | α ∈ P S}

Re = R ∪ {C, F}

The feature vector u ∈ {0, 1}n of a node u ∈ U representing object o ∈ O is
constructed from unary predicates Pi ∈ Re as follows: ui = 1 iff Pi(o) ∈ P S

e .
The feature vector u ∈ {0, 1}n of a node v ∈ V representing atom a⃗ ∈ S is

constructed from predicates Pi ∈ P S
e as follows: ui = 1 iff a⃗ is an instance of

Pi or Pi = F .
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Figure 4.3: Encoding of the STRIPS state defined in 4.4 using the Object-Atom
Binary structure

Let m be the highest arity of a predicate in R and for each i ∈ [1, m]
sets of edges Ei representing objects occurring in the i-th position within an
atoms. There exists an edge e ∈ Ei between nodes u ∈ U and v ∈ V if the
object o represented by node u occurs in the i-th position within an atom a⃗
represented by v.

⟨u, v⟩ ∈ Ei iff o = ai

The feature vector u ∈ {0, 1}n of an edge e ∈ Ei is one-hot vector where
ui = 1. All edges are the unified into single set E =

m⋃
i=1

Ei.

The encoding of the STRIPS state defined in 4.4 using the object-atom
binary structure is a bipartite graph and is shown in Figure 4.3. The objects
(i.e., elements of O) are depicted as black boxes and the atoms (i.e., elements
of S) are depicted as black dots. The atoms are labeled by their predicates
and objects by the unary predicates from P they satisfy. Edges connect
objects and atoms in which they occur. Numbered label indicates a position
at which they occur. For instance, the object b2 is connected to B(b2) via
E1, to U(b1, b2) via E2, and to T (a, b1, b2) via E3.

Note that this structure can be represented as a hypergraph, where predi-
cates with arity at least 2 are represented as hyper edges with one-hot feature
vectors.
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4.4.4 Object-Pair Binary Structure

It is generally known that using pairs of objects increases expressiveness of
given architecture, see 4.5. Therefore object-pair binary structure builds
on 2-sets of objects. We create these 2-sets as 2-tuples whose components
are sorted by a fixed total order ≤ on the set of objects. We also consider
singletons, such as ⟨o, o⟩. State S = ⟨O, ⟨RS | R ∈ P ⟩⟩ is represented as a
graph G = ⟨V, E⟩

V = {u⃗ = ⟨o1, o2⟩ | o1, o2 ∈ O, o1 ≤ o2}

Two nodes u⃗ and v⃗ are connected by an edge e ∈ E if they share a single
object.

E = {⟨u⃗, v⃗⟩ | u⃗, v⃗ ∈ V, u⃗ ̸= v⃗, |u⃗ ∩ v⃗| = 1}

Feature vector of a node ⟨o1, o2⟩ contains three types of features and
is multi-hot. Nullary predicate symbols are in all feature vectors. Unary
predicates are separated for both object, they are denoted by subscript 1 for
o1 and 2 for o2.

Predicate symbols P ∈ R of arity at least two are represented by a one
if {o1, o2} ⊆ c⃗ for some c⃗ ∈ RS . For every unary predicate P ∈ R we
create two copies P1, P2. For unary predicate P ∈ R and an ordered pair
o⃗ = ⟨o1, o2⟩ ∈ V , we define

P1(o⃗) ∈ P S iff P (o1) ∈ P S

P2(o⃗) ∈ P S iff P (o2) ∈ P S

A node representing a pair of objects o⃗ = ⟨o1, o2⟩ has a feature of predicate
P ∈ R of arity at least two if both inner objects of o⃗ occur in an atom c⃗ ∈ P S .
Also an edge e connecting two nodes u⃗ = ⟨u1, u2⟩ and v⃗ = ⟨v1, v2⟩ is labeled
by predicate symbol P̂ , where P̂ is constructed from predicates P ∈ R with
arity at least 2 , if the symmetric difference u⃗△v⃗ ⊆ c⃗ for some c⃗ ∈ P S .

The encoding of the STRIPS state described in 4.4 using the object-pair
binary structure is shown in Figure 4.4. We ordered objects as follows:
a < b1 < b2 and therefore created ordered pairs as shown in circles as nodes.
Note that nullary atom N is shared across all ordered pairs. For ordered pair
⟨a, b1⟩ there are three valid atoms shown in feature vector, nullary atom N ,
unary atom A(a) with subscript 1 since object a is in the first position in
the ordered pair, unary atom B(b1) with subscript 2 for the second object,
and ternary atom T (a, b1, b2) since both objects occur in the atom. Note
that there is an edge between ordered pairs ⟨b1, b1⟩ and ⟨b1, b2⟩, because it
contains the same object b1, labeled with feature vector of two valid atoms Û
and T̂ . The symmetric difference of these two ordered pairs is {b1, b2} which
is a subset of elements in atom U(b1, b2) and in atom T (a, b1, b2), therefore
the feature vector for this edge contains a one in both its positions.
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Figure 4.4: Encoding of the STRIPS state defined in 4.4 using the Object-Pair
Binary structure

4.5 Expressiveness

In the previous section we introduced architectures representing states as
a data structure suitable as input for GNN models. Each architecture has
its expressive power. The expressive power of an architecture is defined by
the number of distinguishable states. The message passing computation is
theoretically similar to the Color Refinement algorithm. Color Refinement
can be used as an isomorphism test for two graphs that is as strong as
the 1-dimensional Weisfeiler-Lehman test (1-WL) [15]. 1-WL test cannot
distinguish all the non-isomorphic graphs. It can distinguish those graphs that
are not C2-equivalent [16]. Therefore it is not surprising that message-passing
GNN models have the same limitations [12]. The expressive power of GNN
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4. Representing State as a Graph .............................
model can be enhanced by mimicking higher order WL test [15]. 1-WL test
can be computed over a graph build from all k-tuples of nodes. These variants
can then distinguish graphs up to Ck-equivalence. On one hand this increases
the expressive power of an encoding and could perform better. On the other
hand building such graphs creates problems. The number of k-tuples grows
rapidly and the number of edges as well. As a result variants building on
these k-tuples were introduced [17]. However, any computations over these
graphs will need cutting-edge models of processing units.

24



Chapter 5
Implementation details

In this section we would like to discuss representation of edges in a graph
and its memory usages. We build graph structures using Mill.jl [18] library.
We propose new representation of edges based on the Compressed Sparse
Column (CSC) format [19]. This format is characterized by its efficiency
in terms of memory usage and creation time. This means it consumes less
memory, requires less time to generate and less number of memory allocations
compared to other commonly used formats, such as adjacency matrix. We do
not use vector of vectors but one flat vector, whose maximum length can be
usually estimated.

5.1 Graph Connectivity Representation

There are common representations of edges however, each representation
is suitable for different project. Using some of these is suboptimal for our
purposes. We want to use as less memory as we can and create the structure
as fast as possible.

We will use a graph G = ⟨V, E⟩ to demonstrate representation formats.
Graph G consists of 5 vertices V = (A, B, C, D, E) and 5 edges E =
({1, 5}, {2, 3}, {2, 5}, {3, 4}, {4, 5}) between them. See Figure 5.1.

5.1.1 Adjacency Matrix

Edges in a graph can be represented by a matrix A ∈ {0, 1}n×n where each
i-th column and i-th row represent a i-th vertex. The entry on i-th column
and j-th row is 1 if i-th vertex is connected to j-th vertex, otherwise zero.
This creates a symmetric matrix since edges are indirected and if i-th vertex
is connected to j-th vertex, then j-th vertex is connected to i-th vertex as
well.

Mi,j = 1 iff (i, j) ∈ E
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Figure 5.2: Adjacency matrix of the graph G defined in 5.1

5.1.2 Adjacency List

This simple representation takes all edges and forms an adjacency list. This
list consists of pairs of vertices, where each pair represents an edge connecting
two vertices. This representation can be used to represent hyper edges as
well, where the list would contain tuples of vertices connected by a hyper
edge.

The following list is an adjacency list representing graph G defined in 5.1.

[(1, 5), (2, 5), (2, 3), (3, 4), (4, 5)]

5.1.3 Scattered Bags

A structure called Scattered bags was already implemented in Mill.jl [18]. We
say that a bag is a set of indices of edges in which a vertex occurs. Scattered
bags is a vector of vectors. Edges are iteratively pushed into the inner vectors.
Each inner vector at the end contains indices of edges a given vertex occurs
in. This representation can represent hyper edges as well.
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Consider the graph G defined in 5.1. We enumerate the edges as follows:

1 − {1, 5}
2 − {2, 3}
3 − {2, 5}
4 − {3, 4}
5 − {4, 5}

The scattered bags structure for edge representation looks as follows:

((1), (2, 3), (2, 4), (4, 5), (1, 3, 5))

We can see that a vertex 5 occurs in three edges, 1, 2, and 3. On the other
hand vertex 1 occurs only in one edge, edge 1.

5.1.4 Compressed Bags

We propose a Compressed Bags format, which stores undirected edges in
an optimized way. It is friendly in memory usage and time complexity of
creation. This format optimizes all encodings and supports transformation of
states into graphs with unknown number of edges beforehand but with the
number of maximum possible edges. It also supports hyper edges connecting
arbitrary number of vertices.

This format has been derived from Compressed Sparse Column format. It
represents edges connecting an arbitrary number of vertices using two vectors.
However, one compressed bags structure can represent edges connecting a
given number of vertices. Therefore for two hyper edges connecting different
number of vertices two compressed bags structures are needed.

This format consists of two vectors. One can be sought at like connected
many vectors of possibly different size side by side. Each of these vectors
represents one vertex. These vectors contains indices of edges in whose the
given vertex occurs. The other one keeps in memory the ranges of vertices,
where their inidices of edges start and where they end. The concept is
essentially similar to the scattered bags however, it is more memory efficient.

Construction of Compressed Bags

Let n be the number of vertices in graph G, k a number of edges in G each
connecting l vertices. For construction we need to create a l × k matrix M
of integers and a c ∈ Nn and set the values of c to zero. If the number of
edges is unknown before hand we compute the maximum number of edges
for given architecture and allocate the needed amount of memory for that.
We assume that an edge e = (u1, . . . , ul) is a tuple of vertices it connects
and that E = {e1, . . . , en} is a set of edges in G. We enumerate all the
vertices and assign them their indices. We call c counts as it counts number
of observations of vertices for all edges and M indices as it it as matrix of
indices of vertices.
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For each edge ei we insert its values (indices of vertices) into the i-th

column of the matrix M , also as we iterate over the vertices in the edge we
update the number of occurrences of each vertex in c.

Consider the graph G defined in 5.1, the matrix M of indices of vertices
and a vector c of counts will look like this

M =
[
1 2 2 3 4
5 3 5 4 5

]
, c =

(
1 2 2 2 3

)
Then we compute the ranges of each bag knowing the number of occurrences

of each vertex. Knowing the starting and ending index of each bag lets us
iteratively insert the indices of edges into their respective bags. The index of
an edge is the number of a column in M in which it is stored.

ii =
(

1 2 3 2 4 4 5 1 3 5
)

bags =
(
1 : 1 2 : 3 4 : 5 6 : 7 8 : 10

)
As we can see the vector of indices ii contains indices of edges for each

vertex. We depicted the seperation of vertices as vertical lines, i.e., the first
vertex occurs in edge number 1, the penultimate occurs in edges 4 and 5 and
the last vertex occurs in edges 1, 3 and 5. The bags vector tells us where the
seperating lines are for each vertex, i.e., vertex number 1 has indices of edges
starting in position 1 and ending at position 1 as well, meaning that it occurs
in only 1 edge. Vertex number 3 has a starting position of indices at 4 and
ending at position 4, it occurs in two edges and their indices are at ii4 and
ii5. We start indexing into vector from 1, the first element in vector is ii1.
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Chapter 6
Discussion

In this section we will discuss shortcomings of and strengths of using multi
graph with one-hot feature vectors over multi-hot feature vectors. Afterwards
we will present two representations of nullary and unary predicates in graphs.
And show see if there are advantages to one representation over the other.

6.1 Edge Representation

Each representation has its advantages and disadvantages. Some are more
efficient in construction, some are more suitable for smaller graphs and some
for larger graphs.

6.1.1 Adjacency matrix

On one hand this representation is straightforward and intuitive. On the
other hand the adjacency matrix is often very sparse and keeping n×n matrix
in memory is inefficient, where n is the number of nodes. Another point is
that this adjacency matrix can represent only edges connecting two vertices,
it would need more structures to support hyper edges. And therefore it would
use more sparse matrices and require more memory capacity.

6.1.2 Adjacency list

This representation is memory friendly, takes only the needed amount of
space and can represent hyper edges connecting arbitrary number of nodes.
However, the usage for GNN models is rather unfortunate as message passes
aggregate information about vertices in the one-hop neighbourhood and an
adjacency list is not sorted and no vertex knows its neighbors.

6.1.3 Scattered Bags

This representation was already implemented in the Mill.jl library and was
initially used for the encodings. However after further inspection we found out
that a lot of time and memory allocations take place especially in the section
of forming edges and saving. The main problem was when the number of
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6. Discussion ......................................
edges exceeded the allocated space. Furthermore scattered bags is essentially
a vector of vectors and if one bag is full and we want to push another index
inside of it we need to allocate new memory, copy the contents and free the
previous chunk of memory. For big graph this could be done many times and
therefore slow down the whole process.

6.1.4 Compressed Bags

Compressed Bags representation is efficient in its construction as well as in
its memory usage. There is no problem with having a large chunk of memory
preallocated therefore this format is optimal for our uses. Furthermore it is
suitable for storing hyper edges and we can experiment with implementation
of hyper graphs.

6.2 Multi graph or edge features

Consider an architecture that encodes objects as vertices and predicates as
edges, i.e., object binary or object-pair binary structures. These structures
can be represented either by multi graphs where each edge with one-hot
feature vector representing only one predicate or by graphs where edges have
multi-hot feature vectors possibly representing multiple predicates.

Having a multi graph with each edge representing only one predicate may
possibly learn more and generalize better, however this is only a thought, it is
not based on experiments. It is supported by having multiple message passes
between nodes connected by multiple edges. Each message pass gathers data
only from edges representing one type of predicate therefore the information
is concentrated. However, it increases the number of message passes and
therefore takes more time to process one input through the GNN model. This
can possibly result in learning from less problems and even possibly solve
less problems in given times. But it might be compensated by concentrated
message passes.

Creating a graph with less edges comes in with the advantage of less
memory usage. Since there are less feature vectors since there are less edges.
This is very great for large graphs. Furthermore there is less message passes
and the messages are more concentrated combining information using all the
predicates.

6.3 Nullary and Unary Predicates

Consider the same architecture with objects as nodes and predicates as edges.
There are essentially two ways to represent nullary and unary predicates.

One way is to represent them as multi-hot feature vectors. Nullary predi-
cates are shared among all nodes. And unary predicates are relevant only
in the nodes whose objects occur in atoms. This representation is straight-
forward and initializes feature vectors based on the state of the world. It

30



............................. 6.3. Nullary and Unary Predicates
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Figure 6.1: Graphs encoding two types of edge feature vectors

is initially set and afterwards iteratively updated through message passes.
There is one question that might arise. Are the nullary and unary predicates
relevant after many message passes, do they not lose importance? After many
message passes the feature vectors will look completely different. And the
initial nullary or unary predicates might hold little to none importance.

The other representation transforms nullary and unary predicates into
edges. Nullary predicates might be represented as hyper edges over all the
nodes, or as loops. Unary predicates are then represented as loops as well.
Node feature vectors need to be initialized from single element vectors of
ones. On one hand there is a big advantage of representing nullary and
unary predicates as edges. Each message pass uses all edges and therefore all
predicates. This can create a big advantage with many message passes as in
every message pass nullary and unary predicates have the same amount of
importance as predicates with arity at least 2 since these have been used in
every message pass. On the other hand each object is represented essentially
by a single element vector, a scalar. This can decrease variety of feature
vectors and multiple objects can be represented by the same values.

There might arise the same problem as in the previous section, where more
edges mean more message passes and therefore mean spending more time in
updating feature vectors.
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6. Discussion ......................................
6.4 Architectures

Each introduced architecture is different. However, there are two that share
a common problem, object-pair binary and atom binary. Graphs transformed
from PDDL states using object-pair binary encoding contain n2

2 + n
2 nodes

and at least that amount of edges, where n is the number of objects in a given
problem. Atom binary encoding does not have that amount of nodes but
it has a quadratic amount of edges with respect to the atoms. This creates
very large graphs. One advantage of it is the expressiveness however, the
computational cost and memory needs are massive. These two encodings
might have a problem on training on large domains such as sokoban or rovers.
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Chapter 7
Experimental section

In this section we would like show results of our experimental part. We
implemented introduced architectures and then tested their performance on
problems from International Planning Competition (IPC) 2023.

7.1 Preliminary experiment

Initially we conducted a preliminary experiment on simpler problems. With
this experiment we wanted to find out whether nullary and unary predicates
should be implemented as features of nodes or whether it would be better to
implement them as another layer of edges. We implemented 2 architectures
where nodes represent objects and hyperedges represent atoms. Feature
object-atom represents nullary and unary predicates as features of nodes and
predicate object-atom represents them as hyperedges.

This experiment was conducted over a set hyper parameters. The searched
for hyperparameters were a number of message passing layers, 1, 2 and 3, a
dimension of dense layers, 4, 8 and 16, and the usage of a residual layer or a
linear combination of its input and output, total number of combinations is 18.
This was conducted three times with different seed. In the table 7.1 we can
see the number of finished training and testing experiments. An experiment
with a set of hyperparameters was finished if it did not exceed the allocated
amount of memory or the given time. We can see that the amount of finished
experiments did not much change over the different initializations with seeds.

In the next table 7.2 we can see the results of testing trained models on
given problems. We can see that both of these encodings solved nearly all
of the testing problems but there are some differences. Feature object-atom
solved overall more problems and looked more stable on all the problems.
However, this might differ on other encodings, a more complex experiment on
many more encodings would need to be conducted to create a clear conclusion
on which implementation is better. Unless stated otherwise we mean feature
object-atom, because it worked better in this experiment
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7. Experimental section .................................
problem Predicate Object-Atom Feature Object-Atom
blocks 11/12/12 17/18/17
elevators 17/17/16 16/17/13
ferry 16/16/18 17/18/18
npuzzle 18/18/18 18/18/18
spanner 18/18/18 18/18/18

Table 7.1: Finished number of combinations over the different seeds

problem Predicate Object-Atom Feature Object-Atom
blocks 0.98 0.99
elevators 0.98 1.00
ferry 0.88 0.91
npuzzle 0.89 0.89
spanner 0.99 0.99

Table 7.2: The proportion of solved problems

7.2 Optimizations

Firstly we would like to show the optimizations of formats for storing edges.
We initially stored edges as a vector of vectors. Then we implemented
Compressed bag format using a vector, as decsribed in the previous section.
And afterwards we implemented the format using a matrix.

We will show this on the transformation of a state into a graph using object
binary and atom binary encodings and all the problem domains. The table
7.3 shows the initial implementation using scattered bags format for edge
representations (SBags). We computed the mean value of transforming a
state into its graph representation over all the training problems for each
domain in microseconds. We can see that especially sokoban and rovers
domain take a substantial amount of time. On the other hand domains such
as ferry or blocksworld take little to none time. This is caused by the number
of objects and predicates in the problems. Sokoban has generally tens to
hundreds of objects and atoms in one problem however, blocksworld problems
have generally up to 12 objects and similar amount of atoms.

We then implemented the compressed bags format for edge representation
using vector for construction. The results can be seen in Table 7.3 (CBags).
This substantially decreased the amount of time it took to transform a state
into its graph representation. In many domains it decreased the time by half,
for example rovers or childsnack domain and overall it decresead the time on
all domains. However, some domains such as sokoban and rovers especially
using the atom binary encoding take a lot of time to compute.

We further optimized the compressed bags format using a matrix for more
cache hits. As can be seen in the Table 7.3 (CBagsMat) it helped and sped up
the transformation nearly on all domains. The biggest difference can be seen
in the domains of big problems, such as rovers or sokoban. However, even on
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..................................... 7.3. Preparation

ObjectBinary AtomBinary
problem SBags CBags CBMat SBags CBags CBMat
ferry 18.0 12.9 10.6 94.4 49.9 53.8
rovers 207.8 108.4 108.7 8110.4 4906.9 4812.0
blocksworld 22.9 14.7 14.5 179.2 89.4 89.8
floortile 96.6 55.4 52.7 1344.5 888.5 806.6
satellite 72.8 40.3 38.6 770.5 538.5 496.4
spanner 38.2 25.5 24.4 190.8 98.2 93.3
childsnack 33.4 21.0 154.2 68.1 93.3 74.9
miconic 81.3 51.6 50.4 2725.0 1725.5 1679.7
sokoban 223.3 119.8 116.3 12285.1 10670.8 10611.4
transport 54.7 28.9 28.7 445.7 213.4 213.0

Table 7.3: Average time in µs of transforming a state of given problem into
a graph using scattered bags format (SBags), compressed bags format using a
vector (CBags) and compressed bags format using a matrix (CBMat)

the small ones, such as spanner, we managed to push the amount down as
well. On the other small problems such as ferry or childsnack it took a little
more time using the atom binary encoding. This might occur because of the
allocation of big matrix for small number of elements and then its access.

7.3 Preparation

7.3.1 Architecture implementations

With respect to our input format into the GNN models we implemented
object atom structure as a hypergraph. On one hand the bipartite graph
creates interesting representation. However, the unification of the two graphs,
one for the initial state and the other for the goal state, is not intuitive. We
would need to create new nodes for atoms in the goal state and restructure the
whole representation, which would essentially only take more time. Therefore
we decided to go with the implementation of hypergraph, where stacking
hypergraphs is easy since the nodes are the same and edges can be easily
added to the structure. Other encodings of states were implemented as
multigraphs, edges having one-hot feature vectors. As was found in the
preliminary experiment we decided to implement all the introduced encodings
using implementation of nullary and unary predicates as features of nodes.

GNN models for each domain and architecture were created using Mill.jl
[18] library. This library is able to create a GNN model based on one encoding
and few variables, such as number of layers, dimension of dense layer and
either usage of residual layer or linear combination of output of residual
layer and its input. Afterwards this model can accept any state in the same
representation as the initial state and be trained.
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7. Experimental section .................................
7.3.2 Used Cluster

We trained and evaluated GNN models on a cluster AMD EPYC 7543 which
is a part of AMD’s EPYC 7003 series. This particular model has 32 cores
and 64 threads. It has a base clock speed of 2.8 GHz and 256MB of L3 Cache.
We used only 8 cores with 64 GB of RAM.

7.3.3 Search for hyper parmeters

As said in the previous section each GNN model can be initialized with
different values. We used a grid search over a number of hyperparameters,
such as a number of message passing layers, a dimension if hidden layers and
an initial seed. Our values for the number of message passing layers was
chosen to be small, for we think that the model does not need many layers to
learn the features of a state, exactly speaking we chose between 1, 2 and 3
layers. For the dimension of hidden layers we chose from 4, 16, 32 and 64.
Each of these combinations was experimented on three times with different
initialization using a seed, 1, 2 or 3.

7.3.4 Dataset

Our dataset consists of multiple classical PDDL domain problems from IPC
2023, to name a few sokoban, blocksworld, ferry. Each domain consists of
roughly 50 problems with plans for training and about 90 problems for testing.

7.3.5 Planner

Since we want to learn a heuristic function using GNN models, we used the
A∗ and Greedy planners for all the testing.

7.4 Results

As predicted in the previous chapter, object pair encoding does have a
problem even with small problems. We tried to train GNN model using
this architecture however, it did run out of memory and or out of the given
amount of time on many tries. Even on the cluster this was impossible to
compute with our limited time and resources. Therefore we did not compute
the statistics for this encoding.

We conducted experiments of training and testing GNN models using atom
binary, object atom and object binary encodings over a set of hyperparameters.
We trained each GNN model for 100 epochs and then tested its performance
on the testing dataset.

Each experiment of training and testing one architecture on one domain
was given 3 days of time. If the experiment ran out of memory or given
time, the experiment was not finished and we continued on another. Each
combination of hyperparameters was given 3 hours of time, considering that
the total number of combinations was 24. We optimized each GNN model
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....................................... 7.4. Results

problem AtomBinary ObjectAtom ObjectBinary
blocksworld 18/18/18 17/18/17 24/24/23
ferry 16/17/16 18/18/17 24/24/23
floortile 5/4/2 18/17/18 24/24/23
miconic — 17/18/17 24/24/22
rovers — 7/8/8 12/12/11
satellite 0/3/1 17/16/17 24/23/22
sokoban — 13/12/13 22/22/22
spanner 18/18/18 17/18/18 24/24/23
transport — 17/16/18 23/23/24

Table 7.4: Number of finished training and testing of GNN models using different
combinations of hyperparameters

problem AtomBinary ObjectAtom ObjectBinary
blocksworld 0.22 0.33 0.33
ferry 0.53 0.56 0.56
floortile 0.28 0.43 0.43
miconic — 0.61 0.64
rovers — 0.43 0.46
satellite 0.19 0.25 0.25
sokoban — 0.28 0.30
spanner 0.41 0.52 0.51
transport — 0.09 0.10

Table 7.5: The proportion of solved problems in given time

using the L∗ loss function [20]. In the table 7.4 we can see the number of
finished training and testing of GNN models using atom binary, object atom
and object binary encodings over different combinations of hyper parameters.
The experiments were conducted three times for three different initializations.
We can see that the object binary architecture finished nearly all of the
experiments besides the rovers domain. Object atom architecture completed
two thirds of the experiments and also had problems with the rovers domain.
Atom binary architecture however, did not complete 4 out of the 9 domains,
depicted by —, and on satellite and floortile did poorly.

We also computed the proportion of solved problems for each domain
and architecture. Object binary encoding, on the other hand, solved about
half of the problems on few domains and fewer on others. The object atom
encoding solved the same amount as object binary or slightly fewer. In the
Spanner domain the object atom encoding solved few more problems. With
respect to the amount of finished experiments it is clear that the atom binary
architecture also did not solve any problems in the miconic, rovers, sokoban
and transport domains and solved less problems in all other domains. The
only relevant and similar to the other encodings is the ferry domain.
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Chapter 8
Conclusion

Graph neural networks provide an effective method for understanding the
complexities of graphs. Generalizations of graphs are useful since they provide
formats for encoding complex structured data. GNN models also provide
great scalability since the only restriction for the input is the structure of
the graph, not its number of nodes or vertices. However, understanding
details of general planning problems and generalizing over complex and large
hyper graphs is complicated. It is not clear how to encode states of planning
problems. The main goal of this thesis was to implement the introduced
architectures and experimentally compare their effectiveness.

We showed that one section of graph neural networks learn using the mes-
sage passing algorithm. Afterwards we introduced multiple transformations
of planning problems into generalizations of graphs, such as hypergraphs
or multigraphs. We implemented these encodings using the Julia program-
ming language as an extension of the NeuroPlanner.jl library, leveraging the
structures provided by the Mill.jl library. Furthermore, we optimized the
structures in the Mill.jl library for enhanced performance and efficiency in
our implementations. Each implementation of architectures was optimized to
the point of all being on the same level for qualitative experimental results.

We conducted an experiment to see whether the implementation of nullary
and unary predicates as feature vectors of nodes is better than their imple-
mentation as edges and loops. With this knowledge we implemented specific
sections of the architectures so that they are optimal for our purposes. Af-
terwards an experiment of comparing the architectures was conducted using
problems from International Planning Competition.

GNN model of each encoding was trained on specific domains and then
tested on provided problems. Object binary encoding solved the most prob-
lems, followed closely by object-atom binary. These seemingly simple archi-
tectures generated the best results. Atom binary architecture, potentially
strong encoding in terms of expressive power, produced regrettable results.
The computations were demanding and the results were not as satisfactory
as we thought they would be. It solved substantially less problems than
the previous two architectures. The Object-pair binary architecture proved
to be more computationally demanding than our current capabilities could
handle. With the increase in expressive power of an encoding, its computa-
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8. Conclusion......................................
tional demands also grow. Thus, we conclude that the expressive power of
an encoding is less crucial for satisficing planning compared to factors like
straightforward implementation and computational ease. Therefore encodings
with low computational cost such as object binary are more suitable for
satisficing planning rather than the more expressive with high computational
cost such as atom binary.
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Appendix A
Attached files

The attached file is a compressed file of the whole NeuroPlanner.jl [1] reposi-
tory as of 5. 23. 2024. The simple unpacking of the file and instantiating
of the NeuroPlanner module should provide the user all the implemented
features such as encodings, compressed bags and more. However the library
will be updated and further optimized over time so we suggest the reader to
clone the github repository [1].
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