
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

Diffusion models for path planning

Petr Zahradník

Supervisor: Ing. Vojtěch Vonásek, Ph.D.
Field of study: Open informatics
May 2024

ii

Declaration
I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the method-
ical instructions for observing the ethical
principles in the preparation of university
theses.

Prague, date 24. May 2024

Signature

Prohlášení
Prohlašuji, že jsem předloženou práci vy-
pracoval samostatně a že jsem uvedl veš-
keré použité zdroje v souladu s Metodic-
kým pokynem o dodržování etických prin-
cipů při přípravě vysokoškolských závě-
rečných prací.

V Praze dne 24. May 2024

podpis autora práce

iii

Abstract
The Denoising Diffusion Probabilistic
Model (DDPM) is a recent generative
neural network framework. We describe
its application to feasible path plan-
ning. We analyze the current open-source
implementations and their shortcomings
blocking wider adoptation. We propose
significant improvements to one of them
and build a neural network architecture
using our implementation. We evaluate
the performance of the model on a vari-
ety of tasks and compare it to other state-
of-the-art methods achieving success even
in previously unseen environments. Fur-
thermore, we propose methods to com-
bine DDPMs with other path-planning al-
gorithms to improve their performance.

Keywords: generative AI, diffusion,
neural networks, path planning

Supervisor: Ing. Vojtěch Vonásek,
Ph.D.

Abstrakt
Odšumovací difúzní probabilistický mo-
del (DDPM) je nedávno objevený způ-
sob učení generativních neuronových sí-
tí. V této práci popisujeme jeho aplika-
ci pro hledání průchozích cest pro ro-
boty. Analyzujeme existující, veřejně do-
stupné implementace a jejich nedostatky
znemožňující širší použití. Na základě ná-
mi navržených změn stavíme vylepšenou
architekturu neuronové sítě. Dále testu-
jeme model na různých úlohách a porov-
náváme jej s jinými známými metodami.
Náš přístup dosahuje úspěšných výsledků
i v prostředích, která nebyla součástí tré-
novací množiny. V neposlední řadě navr-
hujeme, jak zkombinovat DDPM s jinými
algoritmy pro plánování cest a dosáhnout
ještě lepších výsledků.

Klíčová slova: generativní UI, difúze,
neuronové sítě, plánování cesty

Překlad názvu: Difúzní modely pro
robotické plánování

iv

Contents
Thesis Assignment 1

List of Notations 3

List of Abbreviations 4

1 Introduction 5

2 Related work 7

2.1 General planning 7

2.2 Sampling-based planning 7

2.3 Planning for robots 9

2.4 Transformer models 9

2.5 Denoising Diffusion Probabilistic
Models . 10

2.6 Path planning using neural
networks . 10

3 Diffusion models 13

3.1 Forward diffusion 13

3.2 Reverse diffusion 14

3.3 Training . 14

3.4 Inference . 17

3.4.1 Inpainting 19

3.4.2 Steering 19

4 Analysis of existing
implementations 21

4.1 The Diffuser architecture 21

4.2 State of the implementation 22

4.3 Our contribution to the Diffusers 24

5 Diffuser Architecture 29

5.1 Neural network architecture 29

5.2 Diffuser as denoiser 31

6 Results 35

6.1 Simple shapes 35

6.1.1 Circles dataset 35

6.1.2 3D Spirals dataset 37

6.2 Navigation problems 38

6.2.1 Easy Maze dataset 41

6.2.2 Medium Maze dataset 43

6.2.3 Hard Maze dataset 43

6.3 Noise schedule 46

6.4 Comparison with other planners 47

6.5 Summary . 47

7 Conclusion 51

7.1 Conclusion 51

7.2 Future work 52

A List of attachements 53

B Bibliography 55

v

Figures
2.1 Comaprison of discrete and
continuous planning 8

2.2 The unCLIP inference diagram . 10

2.3 The VQ-MPT diagram 11

3.1 Forward and reverse diffusion . . 15

3.2 DDPM training diagram 17

3.3 DDPM inference diagram 18

3.4 Inpainting example 19

4.1 Architecture diagram
of the original U-Net 22

4.2 Diagram of the class composition
in the Diffusers library 25

4.3 Diagram of the class composition
after rewrite 26

5.1 Architecture diagram
of the diffuser neural network 30

5.2 Diagrams of the U-Net blocks . . 31

5.3 Diagram of ResnetBlock1D 32

5.4 Diagram of Positional
Embedding . 33

6.1 Circles dataset 36

6.2 Training on Circles dataset 37

6.3 Generated Circles 37

6.4 Generated 3D Spirals 38

6.5 3D Spirals reverse diffusion 39

6.6 Easy Maze dataset 40

6.7 DDPM batch size scaling 41

6.8 Model in Hard Maze environment 42

6.9 Model in Medium Maze
environment 44

6.10 Model in Hard Maze
environment 45

6.11 Collision rate for various
inference schedules 46

6.12 Path length rate for different
inference schedules 46

6.13 Feasible path time comparison
with OMPL planners 48

6.14 Collision rate comparison with
OMPL planners 49

vi

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

492286 Personal ID number: Zahradník Petr Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Computer Science

Open Informatics Study program:

Artificial Intelligence Specialisation:

II. Master’s thesis details

Master’s thesis title in English:

Diffusion models for path planning

Master’s thesis title in Czech:

Difúzní modely pro robotické plánování

Guidelines:

1. Get familiar with denoising diffusion models [1,2]. Get familiar with path planning [5], and latent path planning.
2. Implement a path denoising diffusion model following [3,4]. Consider at least 3D configuration space. Design suitable
environments and robots.
3. Investigate the ability to steer path according to a given value function [3]. The goal is generate feasible (collision-free)
path between two configurations.
4. Train the diffusion model on a selected training dataset and experimentally verify its abilities on a set of simple problems,
e.g. 2D path in maze, robotic manipulator.
5. Compare the diffusion model with other path planning algorithms e.g. RRT, RRT*, grid-based Q-learning. Use OMPL
framework [6] for the comparison.

Bibliography / sources:

1. J. Ho, A. Jain, and P. Abbeel. Denoising Diffusion Probabilistic Models. 2020-12- doi:
10.48550/arXiv.2006.11239
2. A. Nichol and P. Dhariwal. Improved Denoising Diffusion Probabilistic Models.
2021-02-18. doi: 10.48550/arXiv.2102.09672
3. Jänner, M., Du, Y., Tenenbaum, J. B., & Levine, S. (2022). Planning with Diffusion for Flexible
Bevavior Synthesis. arXiv (Cornell University). doi: 10.48550/arxiv.2205.09991
4. Carvalho, J. F., Le, A. T., Baierl, M., Koert, D., & Peters, J. (2023). Motion Planning
Diffusion: Learning and Planning of Robot Motions with Diffusion Models. arXiv (Cornell University).
doi: 10.48550/arxiv.2308.01557
5. S. M. LaValle, Planning algorithms, 2006, Cambridge press
6. Mark Moll, Ioan A. Șucan, Lydia E. Kavraki, Benchmarking Motion Planning Algorithms: An Extensible
Infrastructure for Analysis and Visualization, IEEE Robotics & Automation Magazine, 22(3):96–102,
September 2015.

© ČVUT v Praze, Design: ČVUT v Praze, VIC Page 1 from 2 CVUT-CZ-ZDP-2015.1

Name and workplace of master’s thesis supervisor:

Ing. Vojtěch Vonásek, Ph.D. Multi-robot Systems FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: __________ Date of master’s thesis assignment: 14.02.2024

Assignment valid until: 21.09.2025

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature

Head of department’s signature Ing. Vojtěch Vonásek, Ph.D.
Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC Page 2 from 2 CVUT-CZ-ZDP-2015.1

List of Notations

Symbol Meaning
∥v∥ L2-Norm of vector v
[a; b) Interval {x ∈ R | a ≤ x < b}
0 Zero vector
I Identity matrix
vi i-th element of v
t Diffusion step, also known as diffusion time
xt Diffusion state after t diffusion steps
S State space
Sobstacle Obstacle state space
Sfree Free state space
p(x) Probability density function of a random variable x
p(x | y) Conditional probability density function of random

variable x given y
µθ Mean of a normal distribution parameterized by θ
Σθ Covariance matrix of a normal distribution

parameterized by θ
x ∼ N (µ,Σ) Sample x is drawn from a normal distribution with

mean µ and covariance Σ
p(x) = N (x;µ,Σ) Probability density function of a normal distribution

with mean µ and covariance Σ evaluated at x
DKL(p ∥ q) Kullback-Leibler divergence between probability

distributions p and q
Ex∼p[f(x)] Expectation of function f with respect to x drawn

from distribution p

3

List of Abbreviations

Abbreviation Meaning
A* A-star, search algorithm
Adam Adaptive Moment Estimation, optimization algorithm
DDPM Denoising Diffusion Probabilistic Model, neural

network training framework
ELBO Evidence Lower Bound, also known as Variational

Lower Bound, VAE loss
GAN Generative adversarial network, neural network

training framework
GELU Gaussian Error Linear Unit, activation function
GPT Generative Pre-trained Transformer, neural network

architecture
GPU Graphics Processing Unit, hardware accelerator for

parallel numeric computation
GroupNorm Group Normalization, normalization technique
LBKPIECE1 Lazy Bi-directional KPIECE with one level

of discretization, planning algorithm
LoRA Low-Rank Adaptation, approximation method
OMPL Open Motion Planning Library, motion planning

library
PRM Probabilistic Roadmap, planning algorithm
ReLU Rectified Linear Unit, activation function
ResNet Residual Network, neural network architecture
RRT Rapidly-exploring Random Tree, planning algorithm
VAE Variational Auto-Encoder, neural network architecture
VQ-MPT Vector Quantized-Motion Planning Transformer, neural

network training framework

4

Chapter 1

Introduction

In this work, we will be solving the path planning problem using Denoising
Diffusion Probabilistic Model (DDPM). Path planning is essential for mo-
bile robots [1], robotic manipulators [2], navigation of drone swarms [3] and
many more. Planning a path for a robot around obstacles (also known as
the generalized mover’s problem) is known to be PSPACE-hard [4].

Many algorithms can solve different instances of the path planning problem,
such as Rapidly-exploring Random Trees (RRT) [5]. Still, the problem is
challenging in general, and many instances are hard or unsolvable in practice.
For example, the kinematics of the robot put constraints on the turning
radius of the path, or the path is required to pass through a narrow passage,
whose location is not known.

Path planning usually searches for a feasible, short or smooth path, or a col-
lection of diverse paths. In this work, we will be showing a very general
way of path planning, which can be used for all these purposes at the same
time. Our method of choice is the Denoising Diffusion Probabilistic Model
(DDPM) [6], which was only recently introduced to robotics.

We build upon the few works that have already used DDPM for path planning
and bring a concise overview of the implementation of such a model.

In Chapter 2 we give a brief overview of methods and algorithms related
to solving the path planning problem and mention several key works that
influenced the development of DDPMs.

Chapter 3 contains a detailed explanation of the DDPM framework, its com-
ponents, and the training process. To our knowledge, this is the first time
the DDPM framework has been explained in such detail in one place. Dur-
ing the writing of this work, we wished for a similar resource, but we could
not find one. The implementation details should be helpful for anyone who
wants to understand DDPMs and use them in their work.

The core of this work is in Chapter 4 where we discuss the state of the open

5

1. Introduction ...
source DDPM implementation and explain the troubles we encountered try-
ing to use them. We present significant changes we made to one of the imple-
mentations fixing many errors and adding essential features needed for path
planning. We give the improved implementation to the community in the
hope that it will be useful for others.

In Chapter 5 we give a detailed overview of the neural network architec-
ture we used for the DDPM. We explain in detail the building blocks and
the choices we made during the design process.

Our last contribution is a series of experiments in Chapter 6 where we show
the performance of the DDPM in many different task settings. We designed
a series of experiments to show the ability to transfer learned knowledge
to previously unseen environments. We compare our DDPM implementa-
tion to several baseline algorithms and discuss the strengths and weaknesses
of the DDPM. We also suggest, how the DDPM could be used together with
other algorithms to improve its performance.

6

Chapter 2

Related work

2.1 General planning

Planning is the problem of finding a sequence of steps required to get from
a given start state to a given goal state. States are elements from a configura-
tion space S, a set of all configurations or states of the system. For example,
we might want to find the movements to solve a Rubik’s cube, escape a maze
or guide a robotic hand to lift a cup of coffee. Historically, planning has been
studied extensively, and many different algorithms exist for many problem
settings.

For planning in a discrete configuration space, an exhaustive search can be
used (e.g., Breadth-first search), but it scales poorly with the number of pos-
sible states; for large domains, a search guided towards the goal (informed
search, search with heuristics) is a better choice (e.g., A* [7], see the Fig-
ure 2.1a). The discrete-space planning is well-studied and contemporary
research focuses mainly on improving the heuristics.

In continuous planning, we are interested in finding a path (for example for
a robot’s body) in a continuous configuration space. The problem is more
challenging because the space contains infinite states. Usually, the space
S is partitioned into two sets; obstacles Sobstacle ⊂ S and the free space
Sfree = S \ Sobstacle. We are trying to find a path that connects the start
state to the goal state which is feasible (included in Sfree) or robustly feasible
(included in the free space with some clearance δ > 0).

2.2 Sampling-based planning

For the continuous domains, sampling-based planning is a common choice [8].
Random points are sampled and connected into a roadmap (PRM, Probabilis-

7

2. Related work...
tic Roadmap [9], see the Figure 2.1) or a tree (RRT, Rapidly exploring Ran-
dom Trees [5]). For continuous asymptotically optimal planning, informed
variants of sampling-based algorithms were developed, such as PRM* and
RRT* [10].

(a) : A discrete planning problem
solved by A* algorithm.

(b) : A continuous planning task
solved using Probabilistic roadmap
(PRM) algorithm.

Figure 2.1: Comparison of discrete and continuous planning. A discrete plan-
ning algorithm searches an 8-connected grid. A continuous planning algorithm
samples points in the free space and connects them to form a roadmap.

RRT* incrementally builds a tree through the free space. Random points
are sampled iteratively and connected to the nearest point in the tree. After
each extension of the tree, nearby points are reconnected to shorten the tree
branches. See the Algorithm 1.

Algorithm 1: RRT*
Require: xstart ∈ Sfree starting point, K > 0 step count, δ > 0 step size
1: procedure RRT*(xstart,K, δ)
2: AddVertex(T, xstart)
3: for k = 1 to K do
4: xrand ← RandomState()
5: xnear ← NearestNeighbor(T, xrand)
6: u← SelectInput(xrand, xnear)
7: xnew ← NewState(xnear, u, δ)
8: AddVertex(T, xnew)
9: Xnear ← NearVertices(T, xnew)

10: xmin ← ChooseParent(xnew, Xnear)
11: Rewire(T, xmin, xnew, Xnear)

return T

It was proven that RRT* finds a robustly feasible path in a Euclidean space if
some robustly feasible path exists in the limit of infinite samples (probabilis-

8

..................................... 2.3. Planning for robots

tic completeness) and that the path is optimal (asymptotic optimality) [10].
We will be using RRT* for generating some of our training datasets.

All the above-mentioned algorithms are general and require fine-tuning for
the problem domain. For example, moving a robotic arm with multiple joints
constrained by kinematics does not allow for uniform sampling and does
not have a simple metric to be used in the RRT algorithm, thus violating
the assumptions of the algorithm.

On the other hand, sampling-based planning algorithms can be used in spaces
that would be impossible to efficiently discretize, for example, if the configura-
tion space has a high dimensionality or is non-Euclidean. Also, non-uniform
sampling can be used to guide the search toward the goal [8], around obsta-
cles [11] or otherwise steer the search according to the user’s needs.

Combining multiple planning algorithms for better initialization, faster con-
vergence, or optimality is not unusual. For an overview of the sampling-based
planning algorithms, see the survey [12].

2.3 Planning for robots

In this work, we are mainly concerned with planning for robots. Robots are
generally specified by their physical model, and the generated plan is required
to respect the robot’s kinematics. Since there is no general solution to inverse
kinematics [13], we must resort to other planning methods. A sampling-
based planner is again a popular choice. For example, formulating the free
space as a manifold in the configuration space, states can be sampled with
Randomized Gradient Descend [14], by building a tangent space atlas [15] or
by many more methods developed in recent years [16].

2.4 Transformer models

Transformer neural network architecture is currently the state of the art in se-
quence prediction. Shortly after its introduction in 2017 by Google Research
team [17], Transformer models became used across many domains. Genera-
tive Pre-trained Transformer (GPT) [18] is currently the best-performing ar-
chitecture for natural text generation. OpenAI Codex [19] is the most widely
used code-completion language model. DINOv2 [20] showed that Transform-
ers can extract information from images. AlphaFold [21] is a leading protein
structure prediction model. Transformers were even shown to perform well
on a wide range of out-of-distribution tasks without explicit pre-training [22].

9

2. Related work...
2.5 Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Model (DDPM) emerged in 2015 [6] as
an alternative to Generative Adversarial Network (GAN) [23]. The general
idea is to train a denoising model on a dataset with added Gaussian noise.
The model can then generate output similar to its training dataset from pure
noise.

DDPM is a very general framework suitable for many different domains. Fol-
lowing the success of VAEs, DDPMs soon achieved state-of-the-art results
in image generation (DALL-E [24], DALL-E 2 [25], Stable Diffusion [26]),
audio synthesis (DiffWave [27]), and video generation (Stable Video Diffu-
sion [28], Sora [29]). See the Figure 2.2 for an example of a text-to-image
DDPM model.

Text

CLIP encoder

Text
embed.

Diffusion prior

Image
embed.

Image diffusion

Image

Figure 2.2: The unCLIP [25] inference process used in the DALL-E 2 model.
The process contains a Contrastive Language-Image Pre-training (CLIP, [22])
embedding and two Denoising Diffusion models.

2.6 Path planning using neural networks

Recently, artificial neural networks have been successful in solving Reinforce-
ment Learning (RL) tasks (robotic hand dexterity [30], Atari games [31],
real-time multi-player game [32]). Furthermore, neural networks can be used
to initialize, guide or even replace traditional planning algorithms [33].

Searchformer [34] is a Transformer network trained to imitate the steps
of the A* algorithm and output a solution plan. Furthermore, the same
network is used to bootstrap more training data, improving the plan length
until achieving superior accuracy on 30× 30 Sokoban mazes.

Vector Quantized-Motion Planning Transformers [35] use Vector Quantized
model [36] to split the configuration space into discrete areas. A transformer
model then guides a sampling algorithm (e.g., RRT) by selecting relevant
areas and reconstructing them as probability distributions in the robot’s
configuration space, see the Figure 2.3.

Transformer models can also be trained to predict the following action given
the past path. Janner et al. [37] provide a novel view on planning as a step-
by-step prediction task.

10

.............................. 2.6. Path planning using neural networks

Point
cloud

Feature extractor

Path
states

Cross-Attention

Latent
vectors

Self-Attention

Sampling
distribu-
tions

Figure 2.3: The Vector Qunatized-Motion Planning Transformer [35] use two
Transformer models to suggest ideal sampling distribution from a dictionary
of pre-trained areas.

Planning using neural networks is still a very active research area with many
open questions. In this work, we will be working with one of the few neural
network models that can generate a full plan from scratch and we will show
different ways to use it for planning in continuous space.

11

12

Chapter 3

Diffusion models

In this section, we will explain the key points of Denoising Diffusion Proba-
bilistic Models, mostly following definitions by Nichol [38].

The DDPM framework consists of two steps that achieve the opposite goals—
forward diffusion and reverse diffusion. The forward diffusion step randomly
adds noise to the data, while the reverse diffusion step tries to predict
the noise and recover the original sample.

3.1 Forward diffusion

Forward diffusion is the process of taking a sample from the input distribution
x0 ∼ q(x) and performing T diffusion steps to obtain the output distribution

q(x1:T) = q(x0)

T∏
t=1

q(xt | xt−1). (3.1)

Note that x can be a multidimensional tensor (e.g., path, image); therefore,
we denote the diffusion step t (also called time or time step) using superscript
and the tensor index using subscript.

The forward diffusion step q probability function can be arbitrary, Ho et
al. [39] suggest a normal distribution

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI) (3.2)

for some constants βt ∈ (0, 1)
T
t=1, called the variance schedule. Setting αt =

1−βt and ᾱt =
∏t

i=1 α
i we can directly calculate the probability distribution

after the first t forward diffusion steps as

q(xt | x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I). (3.3)

13

3. Diffusion models
Therefore given a data point x0 and a Gaussian noise sample ϵt ∼ N (0, I)
we can calculate the output after the first t forward diffusion steps as

xt =
√
ᾱtx0 +

√
1− ᾱtϵt. (3.4)

This efficient calculation justifies the choice of the normal distribution for
the forward diffusion step. The forward diffusion can be calculated in a
closed form with no trainable parameters.

The forward diffusion step can be seen as adding a small amount of Gaussian
noise to the input data. The output after T steps for T → ∞ approaches
isotropic Gaussian distribution, effectively replacing the initial sample x with
pure noise. Under this assumption, the forward diffusion acts as an interpo-
lation between the input data and the noise distribution. See the Figure 3.1a
for an illustration.

3.2 Reverse diffusion

Knowing the forward diffusion step formula, we can build its inverse mapping
– the reverse diffusion. Again, the usual choice due to Ho et al. [39] is a normal
distribution

pθ(x
t−1 | xt) = N (xt−1;µθ(x

t, t),Σθ(x
t, t)). (3.5)

The distribution parameters µθ and Σθ cannot be calculated in closed form
and must instead be approximated by a suitable model parametrized by θ.

The reverse diffusion can be seen as removing a small amount of noise from
the input data. Given that the model is trained properly, the output af-
ter T reverse steps should resemble the training dataset distribution. See
the Figure 3.1b for an illustration.

3.3 Training

Following [38], we can view the combination of p and q as a Variational
Auto-Encoder and derive its variational lower bound (ELBO [40, 41]) as

L(x; θ) =
T∑
t=0

Lt

L0 = − log pθ(x0 | x1)
Lt−1 = DKL(q(x

t−1 | xt, x0) ∥ pθ(xt−1 | xt)) for 2 ≤ t ≤ T

LT = DKL(q(x
T | x0) ∥ p(xT)),

(3.6)

14

.. 3.3. Training

t = 1 t = 10 t = 50 t = 100 t = 300

forward

(a) : Forward diffusion starts with a training sample and adds an increasing amount
of noise until the sample resembles pure noise and does not hold any information about
the original input.

t = 1 t = 10 t = 50 t = 100 t = 300

reverse

(b) : Reverse diffusion takes pure noise as input and iteratively removes noise until
the output resembles the training dataset and does not hold any information about
the input noise.

Figure 3.1: Illustration of the forward and reverse diffusion processes.

where the posterior is

q(xt−1 | xt, x0) = N (xt−1; µ̃(xt, x0), β̃tI),

β̃t =
1− ᾱt−1

1− ᾱt
βt,

µ̃t(xt, x0) =

√
ᾱt−1βt

1− ᾱt
x0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt.

(3.7)

The term L0 can be calculated by discretizing the space as proposed by
several authors [42, 43].

Example 1: Image pixel discretization
Ho et al. [39] rescale image pixel values to [−1, 1] and discretize them
into 256 bins. The normal distribution is integrated over the selected bin

15

3. Diffusion models
in each of the D dimensions to obtain the probability product

pθ(x
0 | x1) =

D∏
i=1

∫ δ+(x0
i)

δ−(x0
i)
N (x;µ1

θ(x
1, 1)i,Σ

1
θ(x

1, 1)i) dx ,

δ−(x) =

{
−∞ if x = −1,
x− 1

255 if x > −1,

δ+(x) =

{
∞ if x = 1,

x+ 1
255 if x < 1.

(3.8)

To summarize, L0 can be calculated by discretizing the space, LT does not
depend on θ, and the rest of the terms are Kullback–Leibler divergences
between two Gaussians.

Instead of predicting the µ̃t(xt, x0) directly, we instead predict the noise
ϵθ(x

t, t) from the following step xt and subtract it from the noisy data. Using
the Equation 3.4 we can rewrite the mean

µt
θ(x

t, t) =
1√
αt

(
xt − 1− αt

√
1− ᾱt

ϵθ(x
t, t)

)
(3.9)

and use it to predict the previous step

xt−1 ∼ N (xt−1;µt
θ(x

t, t),Σθ(x
T , t)). (3.10)

Following [39] for best results we fix Σθ(x
T , t) = βtI and ignore any additive

and multiplicative constants to derive the simplified training loss

Lt
simple = Et,x0,ϵt

[
||ϵt − ϵθ(x

t, t)||2
]

= Et,x0,ϵt

[∥∥∥ϵt − ϵθ(
√
ᾱtx0 +

√
1 + ᾱtϵt, t)

∥∥∥2] , (3.11)

where 1 ≤ t ≤ T is a sampled time step.

Therefore the only model we need is a predictor of the noise ϵθ(x
t, t) from

the noisy data xt and the time step t. We will be using a neural network
model to predict the noise in this work.

The complete training loop is as follows. Sample x0 from the training set,
sample t uniformly, sample ϵt ∼ N (0, I), calculate xt, predict ϵθ(x

t, t), and
take a gradient descend step with respect to Lt

simple from the Equation 3.11.
See the complete training algorithm in the Algorithm 2 and a diagram
in the Figure 3.2.

The training can be parallelized by sampling multiple training examples,
multiple time steps and multiple noise samples at once. The gradient step can
then be performed with stochastic gradient descent or replaced by any other
optimization algorithm which decreases the model’s loss. We use the Adam
optimizer [44] in our experiments.

16

..3.4. Inference

Algorithm 2: Diffuser training
Require: DDPM ϵθ parametrized by θ, T training set, T ∈ N diffusion

length, (ᾱt)Tt=1 variance schedule
1: procedure Train(ϵθ, T , T, (ᾱt)Tt=1)
2: repeat
3: x0 ∼ T ▷ Sample from the training set
4: t ∼ Uniform(1, . . . , T) ▷ Sample a diffusion time
5: ϵt ∼ N (0, I) ▷ Sample noise
6: xt ←

√
ᾱtx0 +

√
1− ᾱtϵt ▷ Add noise to the data, Equation 3.4

7: ϵ̂t ← ϵθ(x
t, t) ▷ Predict the noise from the noisy data

8: Take a gradient step on ∇θ

∥∥ϵt − ϵ̂t
∥∥2 ▷ Update the model

9: until convergence
10: return θ

Gaussian noise

Training data Model

xt ϵθ(x
t, t)

Lt
simple

t

∇θ

Figure 3.2: DDPM training diagram showing the relationship between the train-
ing data, noise and diffusion time as inputs, and predicted noise as output.

3.4 Inference

Having a trained noise predictor ϵθ, we can generate new data generalizing
the training set. The inference formula cannot be calculated in a closed form
and instead must be performed by T denoising steps.

Initialize the inference with a pure noise sample xT ∼ N (0, I) and then
for t = T, . . . , 2 sample additional noise zt ∼ N (0, I). Rewriting the Equa-
tion 3.5 in terms of sampled data using the formulas for the forward diffusion,

17

3. Diffusion models
we calculate the previous sample

xt−1 =
1√
αt

(
xt − 1− αt

√
1− ᾱt

ϵθ(x
t, t)

)
+
√
βtzt. (3.12)

After the last iteration, we make a final step with t = 1 and z1 = 0 and return
the output as the denoised sample. See the complete inference algorithm
in the Algorithm 3 and a diagram in the Figure 3.3.

Algorithm 3: Diffuser inference
Require: DDPM ϵθ, T ∈ N diffusion length, (αt)Tt=1 and (ᾱt)Tt=1 variance

schedule
1: procedure Generate(ϵθ, (αt)Tt=1, (ᾱ

t)Tt=1)
2: xT ∼ N (0, I) ▷ Sample noise
3: for t = T, . . . , 2 do
4: zt ∼ N (0, I) ▷ Sample noise
5: xt−1 ← 1√

αt

(
xt − 1−αt

√
1−ᾱt ϵθ(x

t, t)
)
+
√
βtzt ▷ Equation 3.12

6: x0 ← 1√
α1

(
x1 − 1−α1

√
1−ᾱ1

ϵθ(x
1, 1)

)
▷ Final denoising step

7: return x0

Gaussian noise

xT

xt−1

Model

xt ϵθ(x
t, t)

Steering,
inpainting

t

x0

Figure 3.3: DDPM inference diagram showing the denoising loop iteratively
removing noise until a final sample is returned.

Note that inference can also be parallelized by sampling multiple noise sam-
ples at once and calculating the denoising step for all of them in parallel. This
method produces a batch of generated samples and is suitable for modern
GPU architectures.

18

..3.4. Inference

3.4.1 Inpainting

Inpainting is the process of filling in the missing parts of an image. The idea
was first introduced by Pathak et al. [45] long before DDPMs. At that
time, GANs with special layer architecture were used to capture the context
of the image and fill in the damaged parts of photos with a realistic texture.

The first DDPM-based inpainting without any special architecture or train-
ing changes is RePaint [46]. They proposed to denoise the fixed and unknown
parts of the image separately. The unknown parts follow the standard DDPM
inference, while the fixed parts contain a noisy inpainting mask with a fixed
schedule

xt−1
fixed =

√
ᾱtxmask + (1− ᾱt)z. (3.13)

This ensures that the fixed parts of the image converge to the intended mask
at the end of the diffusion process. The image is obtained by combining
the fixed and unknown parts after each denoising step.

A similar approach can be used for constraining the generated path in our set-
ting. For example, we want to fix the start and goal points and let the model
generate the path between them. Janner [47] proposed to set the desired
points to the mask value after each denoising step; see an example in the Fig-
ure 3.4. In our experiments, this worked well.

xt−1

Mask

M

Inpaint(xt−1,M)

Figure 3.4: Inpainting example on 2D color gradient. Outer pixels are fixed
in the mask M and reset using the Mask function. The pixels in the middle
are taken from the model output.

3.4.2 Steering

Another important aspect of generative models is the ability to control
the generated samples. For example, Choi et al. [48] propose a latent vari-
able method that allows influencing the resulting image including a style

19

3. Diffusion models
specification, image interpolation and converting paintings into photorealis-
tic images.

We use a method called steering inspired by Carvalho et al. [49]. A steering
function is a differentiable function that predicts the score of a sample. After
each denoising step, we apply the steering function and take a gradient step
to maximize the score. This way, we can guide the final output towards
the desired direction.

Combining DDPMs with a steering function is a powerful tool since it al-
lows us to generate samples that are both realistic and fulfill user-defined
constraints. It can act as an optimization tool that optimizes both locally
and globally. See the complete inference algorithm with steering in the Al-
gorithm 4.

Algorithm 4: Diffuser inference with steering and inpainting
Require: DDPM ϵθ, T ∈ N diffusion length, (αt)Tt=1 and (ᾱt)Tt=1 variance

schedule, Steer steering function, M inpainting mask
1: procedure Generate(ϵθ, (αt)Tt=1, (ᾱt)Tt=1, Steer, M)
2: xT ∼ N (0, I)
3: for t = T, . . . , 2 do
4: zt ∼ N (0, I)

5: xt−1 ← 1√
αt

(
xt − 1−αt

√
1−ᾱt ϵθ(x

t, t)
)
+
√
βtzt

6: xt−1 ← Steer(xt−1)
7: xt−1 ← Inpaint(xt−1,M)

8: x0 = 1√
α1

(
x1 − 1−α1

√
1−ᾱ1

ϵθ(x
1, 1)

)
9: x0 ← Steer(x0)

10: x0 ← Inpaint(x0,M)
11: return x0

20

Chapter 4

Analysis of existing implementations

In this chapter, we will analyze the existing implementations of the Diffuser
architecture, their shortcomings, and the reasons for rewriting the Diffusers
library. We will also describe the changes we made to the library and the new
features we added.

4.1 The Diffuser architecture

The noise predictor ϵθ(x
t, t) from the Algorithm 2 is usually chosen to be

a neural network. A usual architecture is the U-Net, first introduced by
Ronneberger [50]. U-Net is a residual convolutional neural network com-
posed of down-scaling blocks, followed by a bottleneck (middle block) and
up-scaling blocks. The output of each down-scaling block is added to the in-
put of the respective up-scaling block, forming residual connections. Fur-
thermore, the blocks themselves can contain residual connections allowing
efficient state propagation through the network during the early training
stages. See the diagram in the Figure 4.1.

The U-Net architecture was shown by its authors to improve learning in im-
age segmentation tasks but can be adapted to other domains. It is important
for our work that the U-Net is fully convolutional, meaning that the input
and output shapes can vary, and the network can be applied to any input
size. It is also symmetric in the sense that the input and output shapes are
the same.

We will follow the architecture by Janner called the Diffuser [47]. In their
work, the main building block is the Residual Temporal Block consisting
of four convolution layers with Mish [51] activation function, residual con-
nections [52] and group normalizations [53]. The diffusion time t is embedded
into 64 dimensions and added between the convolutional layers. The Down-
scaling Block consists of two Residual Temporal Blocks followed by a Con-
volution layer. The Middle Block consists of two Residual Temporal Blocks

21

4. Analysis of existing implementations...............................

do
w
n-
sc
al
e

do
w
n-
sc
al
e

do
w
n-
sc
al
e

do
w
n-
sc
al
e

up
-s
ca
le up
-s
ca
le up
-s
ca
le up
-s
ca
le

Figure 4.1: Simplified architecture diagram of the original U-Net. The input is
passed through down-scaling blocks and then up-scaled back to the original size.
The output of each down-scaling block is also added to the input of the respective
up-scaling block, forming residual connections.

only. The Up-scaling Block consists of two Residual Temporal Blocks and
a transpose convolution layer mirroring the convolution layer in the Down-
scaling Block.

The whole architecture is a fully convolutional 1D network. 1D means that
the intended output is a path with convolutions along the path length as
opposed to the usual use in images, which are convolved along two axes.
If the path is in a multi-dimensional space, the dimensions are represented
as convolution channels. This representation allows, for example, to model
a robotic manipulator with six degrees of freedom for a 32-step horizon as
a path of shape 6 × 32. In our experiments, we will be mainly interested
in path planning for a point robot in a 2D space, so the path will be of shape
2× 32.

4.2 State of the implementation

At the time of writing this work, there were two publicly available implemen-
tations of the Diffuser.

First, a code from the paper’s authors is available on GitHub1. It, how-
ever, contains many errors and software bugs and depends on old versions

1https://github.com/jannerm/diffuser

22

https://github.com/jannerm/diffuser

................................. 4.2. State of the implementation

of libraries (namely mujoco2, gym3, d4rl4). Despite several complaints in the
issue tracker, the authors have not updated the project for the last two years.
The architecture is only briefly touched on in Appendix A [47], not mention-
ing details regarding the precise layer composition, settings, and dimensions.
Many of them are also unassigned variables in the file. We did not find
the implementation complete enough to recreate a full training setup.

Second, the project was adapted by Diffusers following the success of the con-
ference talk about the Diffuser. Diffusers5 [60] by Hugging Face is an Apache-
licensed implementation of many different diffusion models in a unified frame-
work. In 2022, Lambert adapted6 Janner’s work and added it to Diffusers
with a pre-trained model. Again, this implementation did not catch up with
the fast-paced ecosystem evolution and is neither complete nor easily repro-
ducible. Lambert’s adaptation closely followed the original code, resulting
in a convoluted implementation that does not fit the rest of the Diffusers
project well. It does not share much of its code with 2D and 3D diffusion ar-
chitectures that form most of the Diffusers’ core and are much more advanced
regarding the number of features and hyper-parameters supported.

We decided to base our work on the second option, the Diffusers library.
During initial testing with dummy datasets, we were struggling with dimen-
sionality errors. The correct shape of the input and output data was not ap-
parent, and we could not modify the size or remove layers. We never achieved
a proof of concept run. After thoroughly inspecting the code, we found that
instead of adapting the existing 2D Residual Blocks, a minimal handwrit-
ten implementation is used with hard-coded layers, hyper-parameters, and
dimensions.

We decided that this implementation is insufficient for our experiments and
needs updating. We started with planning the rewrite in the form of a Pull
Request on GitHub7, but Diffusers’ maintainers quickly stopped us. Their
project vision is to collect popular diffusion models, and a large refactor did
not bring any value for them, only the burden of reviewing and maintaining
our changes.

We do not share their view; in our opinion, the code could be much simpler
but also more powerful, modular, and almost identical to the existing 2D
diffusion implementation. A rewrite would make both the code review and

2MuJoCo [54] was heavily updated by Google’s Deep Mind team and is difficult to install
considering compatibility between system library and Python bindings. https://mujoco.org

3Gym [55] library by OpenAI is deprecated in favor of Gymnasium [56] by Farama
Foundation. Both projects currently co-exist and maintain only partial compatibility. https:
//www.gymlibrary.dev, https://gymnasium.farama.org

4D4RL [57] by Farama Foundation was an experimental reinforcement learning bench-
mark library, now replaced by Gymnasium-Robotics [58] and Minari [59]. https://github.
com/Farama-Foundation/D4RL, https://robotics.farama.org, https://minari.farama.org.

5https://huggingface.co/docs/diffusers
6https://github.com/huggingface/diffusers/pull/105
7https://github.com/huggingface/diffusers/pull/5482

23

https://mujoco.org
https://www.gymlibrary.dev
https://www.gymlibrary.dev
https://gymnasium.farama.org
https://github.com/Farama-Foundation/D4RL
https://github.com/Farama-Foundation/D4RL
https://robotics.farama.org
https://minari.farama.org
https://huggingface.co/docs/diffusers
https://github.com/huggingface/diffusers/pull/105
https://github.com/huggingface/diffusers/pull/5482

4. Analysis of existing implementations...............................
further expansions easier. However, we respected their viewpoint and contin-
ued our work in a separate repository. We forked the library on December
17th, 2023, at the commit 9cef078 in Diffusers version 0.24.0. When this
work was published, more diffusion models had been added to the Diffusers
library, and several rounds of refactoring had already taken place in the 1D
code. However, most of the functionality is still in the state described above.

4.3 Our contribution to the Diffusers

The main reason to rewrite the Diffusers library was to address the lack
of hyper-parameter tuning (e.g., the number of group normalization groups
was hard-coded) and the removal of hand-written blocks where standardized
implementations exist.

The Diffusers library contained the following classes for the 1D diffusion
model:. UNet1DModel: the main class representing a U-Net model. It takes the con-

figuration of the other blocks as parameters.. DownResnetBlock1D, UpResnetBlock1D: containers for a sequence of Residual
Temporal Blocks with some additional layers.. UNetMidBock1D: a special block for the middle of the U-Net containing
optional attention.. ResidualTemporalBlock1D: a contained block with two convolutions, group
normalization, and activation.. ResConvBlock: a special block for the middle of the U-Net.

First, we made sure that all primary building blocks existed. Notably,
a LoRA-compatible 1D convolution layer was missing as opposed to the 2D
diffusion module. Low-Rank Adaptation (LoRA) [61] is a technique to speed
up model fine-tuning by replacing layers with their respective low-rank ap-
proximation with much fewer parameters. Hugging Face ecosystem has
a package called PEFT [62] for automatic LoRA usage, but a manual compat-
ibility layer is still present for potential usage without PEFT. We split the ex-
isting class LoRACompatibleConv into LoRACompatibleConv2d and LoRACompatibleConv1d,
each providing the LoRA convolution layer of their respective type. The Dif-
fusers library is heavily tested, so we added unit tests for both layers.

Having LoRA-compatible convolution layers, we updated both Upsample1D and
Downsample1D layers to match their 2D counterparts. The existing behavior was
retained and compatibility with LoRA and configurable padding was added.

Next, we found that while 2D models used a generic ResnetBlock2D, the 1D
model used a much simpler ResConvBlock with hard-coded layers, GELU acti-
vation function, kernel sizes, and padding. See the diagram in the Figure 4.2.

8https://github.com/huggingface/diffusers/tree/9cef07da5a1f28ddfeadd232ede9a815c7945aec

24

https://github.com/huggingface/diffusers/tree/9cef07da5a1f28ddfeadd232ede9a815c7945aec

............................... 4.3. Our contribution to the Diffusers

The most problematic part was the omnipresent assumption of the network
architecture. There were specific branches for the first and last blocks in the
U-Net with fixed input and output shapes. Changing the shape or the num-
ber of layers in the ResConvBlock was impossible.

UNet1DModel

UpResnetBlock1DDownResnetBlock1D UNetMidBlock1D

ResidualTemporalBlock1D ResConvBlock SelfAttention1d

nn.Conv1Dnn.GroupNorm nn.GELU

Replaceable

Fixed

Figure 4.2: Simplified diagram of the original class composition in Diffusers
library. Note that several blocks, such as ResidualTemporalBlock1D and ResConvBlock,
are similar but not identical and used in different contexts. Also note that
most of the depicted blocks contain additional convolutions, activation, and
normalization layers, which cannot be configured from the outside.

We, therefore, created a new ResnetBlock1D mirroring the parameters and
usage of the 2D variant, allowing more flexible and concise usage. A univer-
sal Resnet block allowed us to improve the up- and down-blocks. Initially,
the implementation contained several customized block types following Jan-
ner’s code. Convoluted block architecture does not scale well if the shape
of the data is not known beforehand. Taking the library as-is, we could not
run a single forward with any shape different from the one provided in the
example without a runtime error. We instead refactored the code to contain
a single UpBlock1D and a single DownBlock1D modeled after the 2D implemen-
tation in Diffusers. The tensor shapes are now calculated dynamically, and
the blocks can be used in any order.

Previously, only the number of input and output channels was settable via
constructor parameters. After our refactor, one could specify temporal em-
bedding channels, number of Resnet Blocks, custom activation function,
dropout rate, number of normalization groups, output rescaling, up-/down-
sampling, and padding. Most of the code again was borrowed from the 2D
implementation and reused with only minor changes. We did not need some
advanced and dimension-sensitive 2D features (e.g., interpolation kernels),

25

4. Analysis of existing implementations...............................
so we did not port them to the 1D implementation; see Figure 4.3 for an up-
dated architecture diagram.

UNet1DModel

UpResnetBlock1DDownResnetBlock1D UNetMidBlock1D

ResnetBlock1D SelfAttention1d

LoRACompatibleConv1dgroup norm activation

Replaceable

Fixed

Figure 4.3: Simplified diagram of the class composition in Diffusers library after
our rewrite. All residual blocks were merged into a parametric ResnetBlock1D. Also
note that there are no more hard-coded layers; convolutions, activation, and
normalizations are configurable in each block and ultimately shared throughout
the whole network.

Citing Janner [47], the horizon of the path is not bounded by the model
architecture because the model is fully convolutional. Still, their model and
the code of Diffusers can optionally use Attention in their layers. Atten-
tion [63] is a central layer to the Transformer architecture [17] as well as many
U-Net inspired architectures [64]. We do not aim to use Attention in our ex-
periments as we want a model with a dynamic horizon, but the refactoring
was also easy enough to add proper Attention support.

Finally, the public class UNet1DModel was updated to properly support middle
and output block configurations, layer counting, dropout, group normaliza-
tion, Attention, and scale shifting. Correctly passing all the parameters
to all the layers greatly simplified the code and removed many previously
hard-coded constants. The updated 1D model is comparable to a 2D diffu-
sion model regarding features and API; see the Table 4.1. The only parts
lacking proper support are interpolation kernels and some Attention variants
irrelevant to our research.

The full source code of the Diffusers including our changes is available in the at-
tachment and on GitHub9.

9https://github.com/petrzjunior/diffusers

26

https://github.com/petrzjunior/diffusers

............................... 4.3. Our contribution to the Diffusers

Feature Original
TemporalResnetBlock

Original
ResnetBlock2D

Our rewritten
ResnetBlock1D

input channels ✓ ✓ ✓
output channels ✓ ✓ ✓
temporal channels ✓ ✓ ✓
GroupNorm groups ✓ ✓
GroupNorm epsilon ✓ ✓ ✓
dropout ✓ ✓
activation function ✓ ✓
time embedding
normalization ✓ ✓

Self-Attention ✓ ✓
Cross-Attention ✓
output scaling ✓ ✓
skip-connection ✓ ✓
skip-conn. bias ✓ ✓
upsampling ✓ ✓
downsampling ✓ ✓
interpolation ✓

Table 4.1: Comparison of features configurable in the original
TemporalResnetBlock (1D) versus the original ResnetBlock2D. Our rewritten
ResnetBlock1D takes inspiration from ResnetBlock2D and supports nearly all major
features.

27

28

Chapter 5

Diffuser Architecture

This chapter explains the architecture of the neural network trained to de-
noise paths. We described the building blocks used in the Diffusers library
and our modifications. to our knowledge, this is the most complete publicly
accessible description of a diffuser model architecture.

5.1 Neural network architecture

The final architecture chosen for this work follows a one-dimensional U-Net
as described previously. It consists of three down-scaling blocks, a middle
block, three up-scaling blocks, and an output block, connected with skip
connections in a symmetrical shape; see the diagram in the Figure 5.1.

We found experimentally that three blocks are enough for our experiments,
and adding more blocks does not improve the accuracy. Instead, the per-
formance increases with the number of parallel channels and the quality
of the training dataset.

The down-scaling part of the U-Net is implemented using DownBlock1D fol-
lowed by a stridden convolution, which halves the path length; see the Fig-
ure 5.2a. The up-scaling part of the U-Net is built using DownBlock1D followed
by a stridden transpose convolution, which doubles the path length; see
the Figure 5.2b. The middle block UNetMidBlock1D does not change the tensor
shape as it contains only three ResNet blocks with no additional convolutions;
see the Figure 5.2c. This block can optionally include an Attention layer be-
tween each ResNet block, but we did not use Attention for experiments in this
work. The output block consists of two convolutions to reshape the output
state into the same shape as the network input; see the Figure 5.2d.

The skip connections copy the output of the ResNet down-blocks and concate-
nate them before the corresponding ResNet up-block. In Janner’s original
architecture, there was also a skip connection after each downscaling block

29

5. Diffuser Architecture

C
on

v1
D

D
ow

nB
lo
ck
1D

D
ow

nB
lo
ck
1D

D
ow

nB
lo
ck
1D

U
N
et
M
id
Bl
oc
k1

D

U
pB

lo
ck
1D

U
pB

lo
ck
1D

U
pB

lo
ck
1D

O
ut
C
on

v1
D
Bl
oc
k

Po
sit

io
na

l
Em

be
dd

in
g

2
×
32

1
6
×
32

1
6
×
16

3
2
×
8

6
4
×
8

6
4
×
8 3
2
×

8 1
6
×
16

1
6
×
32

2
×
32

16× 16

32× 8

64× 8

1
×
1

6
4
×

1

Figure 5.1: High-level architecture diagram of the diffuser neural network.
The diagram shows the configuration with three down- and three up-blocks used
in this work. Skip connections are depicted with double arrows. Connections
are annotated with tensor sizes for a two-channel input of length 32 and a single
diffusion timestep t. The denoised output has the same shape as the input.

connected to an additional ResNet up-block. We found this detail to com-
plicate the implementation and break the network symmetry. We removed
the extra block and the skip connection and observed insignificant accuracy
loss.

The ResnetBlock1D block is a typical ResNet block [52]. The block contains
Group Normalization, Mish activation, and Convolutional layer. Then, the in-
put time embedding is transformed with a single Linear layer and added
to the output. Another Mish activation layer, optional Dropout, and the fi-
nal Convolutional layer follow this. Finally, a shortcut with a single convolu-
tion is added to the output of the last Convolutional layer. See the detailed
diagram in the Figure 5.3.

In the Diffusers library, after our rewrite, we can choose the activation func-
tion, the Group Normalization parameters, the Dropout rate, and the Atten-
tion layers; the mentioned configuration follows the choices we made for our
experiments. We chose not to use Attention and instead made the model
fully convolutional to remove the dependence on the path length during
training. However, we usually fix the path length during training to allow
efficient batching. Still, it is not fixed in the model, and we can generate
paths of different lengths during the inference phase.

30

..................................... 5.2. Diffuser as denoiser

R
es
ne

tB
lo
ck
1D

R
es
ne

tB
lo
ck
1D

C
on

v1
D

C
×
L

C
×
L

C
×
L

C
×

L

C
×
L

C
×
L

C
×

L

C
×

L 2

64
×
1

(a) : The DownBlock1D block with two
ResNet blocks. The down-sampling
convolution with stride two is included
in all down-blocks in the network ex-
cept the last one before mid-block.

⊕

R
es
ne

tB
lo
ck
1D

⊕

R
es
ne

tB
lo
ck
1D

C
on

vT
ra
ns
po

se
1D

C
×
L

C
×
L

2
C
×
L

C
×

L
C
×
L

C
×
L

C
×
L

C
×
2L

64
×
1

(b) : The UpBlock1D block with two
ResNet blocks. The up-sampling
transpose convolution with stride two
is included in all down-blocks in the
network except the last one before
the output layer.

R
es
ne

tB
lo
ck
1D

R
es
ne

tB
lo
ck
1D

R
es
ne

tB
lo
ck
1D

C
×
L

C
×
L

C
×
L

C
×
L

64
×
1

(c) : The UNetMidBlock1D block with
three ResNet blocks and no attention
layer.

C
on

v1
D

G
ro
up

N
or
m

M
ish

C
on

v1
D

C
×
L

C
×
L

C
×
L

C
×
L

2
×
L

(d) : The OutConv1DBlock block with
two convolutional layers. The sec-
ond convolutional layer has kernel size
one, which only reduces the number
of channels to the desired output.

Figure 5.2: Diagrams of the individual blocks of the U-Net architecture in the
configuration used for the experiments in this work. The blocks are formed by
repeated ResNet blocks followed by a convolutional layer to increase or decrease
the tensor length. The blocks receive input from the previous

5.2 Diffuser as denoiser

We take the U-Net described in the previous section and use it as a denoiser
in the DDPM framework. DDPMs usually operate on two-dimensional im-
ages or three-dimensional video. In our case, we want to generate a path
given as a tensor of concatenated point coordinates. A path with L points

31

5. Diffuser Architecture

G
ro
up

N
or
m

M
ish

C
on

v1
D

+ M
ish

D
ro
po

ut

C
on

v1
D

+

C
on

v1
D

Li
ne

ar

2
C
×
L

2
C
×
L

2
C
×
L

2
C
×
L

C
×
L

C
×
L

C
×
L

C
×
L

C
×
L

C
×
L

64
×

1

C
×

1

C
×
L

C
×
L

Figure 5.3: Diagram of the ResnetBlock1D block in the configuration used in this
work. This block contains two convolutions, two activation layers, Group Nor-
malization, optional Dropout, and a convolutional shortcut. Temporal embed-
ding is transformed with a Linear layer and added between the convolutions.

in C dimensions is represented with a tensor of shape C × L. The input
of the network is the noisy path. The network processes the noisy data us-
ing 1D convolutions along the length axis. The network output is a tensor
of the same shape C × L, representing the noise prediction. The noise is
subtracted from the noisy path following the Equation 3.12 and fed again
into the network input. This process is repeated for T steps. The diffusion
step is tracked as T ≥ t ≥ 1 and added as the second input into the network.
We transform the step using the Positional Encoding inspired by Vaswani et
al. [17] with 64 channels, as shown in the Figure 5.4. The embedded step is
then fed into all ResNet blocks in the network as depicted in the Figure 5.3.

During training, we first sample a batch of paths from the training dataset
and a random time step. Then, we add random noise to the path follow-
ing the Equation 3.4. Finally, the network predicts the noise; we calculate
the training loss according to the Equation 3.11 and take a gradient step.
This way, we train the network to predict the noise distribution and serve
as an approximation for the reverse diffusion step in the Equation 3.5.

During inference, the path is initialized with random Gaussian noise and
then iteratively denoised by the network. After the last step, the output
is returned as the denoised path. Since we trained the network to predict
the noise distribution up to a near-normal distribution, the denoised path

32

..................................... 5.2. Diffuser as denoiser

ex
po

ne
nt
ia
l co
sin

e
sin

e

⊕

1
×
1

32
×
1

32
×
1

32
×
1

32
×
1

64
×
1

Figure 5.4: The Positional Embedding block with embedding dimension 64.
Half of the outputs use the cosine function, and the other half use the sine
function. We chose the period of 10,000 as in the original Attention paper.

should be a sample from the approximated training distribution.

33

34

Chapter 6

Results

In this chapter, we experimentally demonstrate the capabilities of our im-
plementation of the DDPM. It is important to consider that DDPM is both
a novel approach in the field of robotics and a flexible model. The are no
established benchmarks or standard datasets for this model. Also, our work
is a proof of concept building the foundation for future research. There are
many possible ways to extend and improve the model, we present only a few
of them.

Images presented here were generated using the Algorithm 4 with different
inpainting and steering functions as specified further.

6.1 Simple shapes

To demonstrate that the code1 is working correctly, we first tested the ability
to learn and reproduce simple shapes in two and three dimensions. This
demonstrates that both the training and inference processes are working
correctly and the model hyperparameters are set up properly. Also, this
already shows that our rewrite of the Diffusers code is successful, it was
previously not possible to train the model on data with a different number
of dimensions than the only dataset provided by Janner et al.

All models in this section were trained for 25 epochs with a batch size of 64,
Adam optimizer [44] with a learning rate of 0.001, and a cosine learning rate
schedule with 500 warm-up steps.

6.1.1 Circles dataset

First, we generated 3,000 circles with a uniformly sampled radius r ∈ (0.25, 1)
centered at the origin and all oriented in the same direction, see the Figure 6.1.

35

6. Results ...
The first and the last points of the circle are the same and lie on the right
semi-axis.

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

Figure 6.1: Ten samples from the Circles dataset.

To improve the results, we employed the following steering strategy.

Strategy 1: Length steering
For 20 > t ≥ 0 we calculate the pairwise squared distances between neigh-
boring points of the path

dt =
N−1∑
i=1

∥∥xti − xti+1

∥∥2 (6.1)

and make a gradient descent step

x̂t = xt − α
∂dt

∂xt
(6.2)

after each denoising step. For our experiments, we selected α = 0.1.

The training loss is shown in the Figure 6.2a. For evaluation, we fitted
each output sample with a circle using least squares and calculated the R2

coefficient of determination. The results are in the Figure 6.2b.

We can see that when the steering is enabled, the R2 score is significantly
higher. Note that in the Figure 6.3 the paths are smoother and more circu-
lar. However, the paths generated with steering (Figure 6.3b) are not closed.
This is due to the steering strategy preferring shorter paths; there was no
constraint on the distance between the first and last points. Also, the convo-
lution is not cyclic, the first and last points are far apart in the autoencoder
spatial dimension.

36

..6.1. Simple shapes

0 500 1000
0.0

0.5

1.0

No steering

Length steering

(a) : Training loss (exponentially
smoothed). The training process is
identical when the steering is dis-
abled and enabled, therefore the curves
should overlap.

0 500 1000
0.0

0.5

1.0

No steering

Length steering

(b) : Evaluation coefficient of determi-
nation against least-squares fitted cir-
cle. The steering helps to generate
smoother and equidistant paths, there-
fore the score is higher.

Figure 6.2: Training metrics on the Circles dataset during the 25 epochs.

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

(a) : Inference with no steering enabled.

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

(b) : Inference with length steering for
the last 20 timesteps.

Figure 6.3: Samples generated by the model trained on the Circles dataset.

6.1.2 3D Spirals dataset

The second simple data set contains 3,000 spherical spirals in three dimen-
sions with four revolutions. The spirals are generated by the parametric
equations

x = sin(θ) cos(8θ + θ0),

y = sin(θ) sin(8θ + θ0),

z = cos(θ),
(6.3)

37

6. Results ...
where 0 ≤ θ ≤ π are 32 equally spaced points and θ0 ∈ [0, 2π) is uniformly
sampled starting angle. See the dataset in the Figure 6.4a.

For inference, we used the same steering Strategy 1 as for the Circles dataset.
We can see some generated results in the Figure 6.4b.

−1.0
−0.5

0.0
0.5

1.0

−1.0
−0.5

0.0
0.5

1.0−1.0

−0.5

0.0

0.5

1.0

(a) : Three samples from 3D Spirals
dataset.

−0.2−0.1
0.00.1

0.2

−0.2−0.10.00.10.2
−1.0

−0.5

0.0

0.5

1.0

(b) : Inference with length steering for
the last 20 timesteps.

Figure 6.4: Samples generated by the model trained on the 3D Spirals dataset.

A visualization of the reverse diffusion process is in the Figure 6.5. The pro-
cess starts with pure noise and iteratively refines the path until a relatively
smooth spiral is generated.

We see that the model can generate paths that resemble the original shape
and are smooth. We also see that without additional constraints, the model
prefers to generate spirals with one particular orientation. If a diversity
of outputs is required, a different steering function or an impainting strategy
could be used.

6.2 Navigation problems

To test the model on more complex problems, we chose a navigation task in an
environment with obstacles. Many algorithms can solve this task in different
ways as mentioned earlier. We will compare them against our diffusion model.

We generate the maze using a contour of Perlin noise, a procedural noise
generator developed by Ken Perlin [65]. We use the Python library called
perlin_noise [66] developed by Ildar Salakhiev and licensed under the MIT
license to achieve this. We generate the Perlin noise and threshold it at
a certain level to create Sobstacle, the threshold value determines the size
of the obstacles.

38

..................................... 6.2. Navigation problems

−2−1
0 1 2 3 4

−2
0

2
−1.0

−0.5

0.0

0.5

1.0

(a) : t = 300

−1
0

1

−2
−1

0
1

2
−1.0

−0.5

0.0

0.5

1.0

(b) : t = 100

−1
0

1

−1
0

1
−1.0

−0.5

0.0

0.5

1.0

(c) : t = 50

−1.0−0.5
0.0 0.5 1.0

−1.0
−0.5

0.0
0.5

1.0
−1.0

−0.5

0.0

0.5

1.0

(d) : t = 20

−0.25
0.00

0.25
−0.25

0.00
0.25

−1.0

−0.5

0.0

0.5

1.0

(e) : t = 10

−0.2−0.1
0.00.1

0.2

−0.2−0.10.00.10.2
−1.0

−0.5

0.0

0.5

1.0

(f) : t = 0

Figure 6.5: Visualization of several steps of the reverse diffusion process during
the 3D Spirals inference. Length-based steering begins at t = 19

39

6. Results ...
All models in this section were trained for 50 epochs with a batch size of 64,
Adam optimizer with a learning rate of 0.001, and a cosine learning rate
schedule with 500 warm-up steps.

To create a training dataset, 200 random start and goal configurations are
uniformly sampled in the two-dimensional free space. The start and goal con-
figurations are always at least half the maze size apart. For each start and
goal pair, we run the RRT* algorithm [10] to generate a path for a point robot.
As described in the Algorithm 1, the RRT* algorithm is a sampling-based
motion planning algorithm that incrementally builds a search tree while also
reconnecting the branches to make the paths final path shorter, see the Fig-
ure 6.6a. We resample the found path to a polygonal chain containing 32
equally spaced points. RRT* is restarted 50 times generating a total of 10,000
feasible paths. A sample from such a dataset is shown in the Figure 6.6b.

0.0 0.5 1.0
0.0

0.5

1.0

Start

Goal

(a) : Fully grown RRT* tree from start
to near goal in the Easy Maze environ-
ment.

0.0 0.5 1.0
0.0

0.5

1.0

Start

Path

Goal

Obstacle

(b) : Sixteen samples from the Easy
Maze dataset.

Figure 6.6: Easy Maze dataset consisting of RRT* paths between random con-
figurations in the free space.

Strategy 2: Obstacle steering
For 20 > t ≥ 0 we calculate a vector from each colliding point to the nearest
free configuration and from each feasible point to the nearest colliding
configuration

∆(x) =

{
−x+

(
argminp∈Sfree ∥p− x∥

)
if x ∈ Sobstacle,

x−
(
argminp∈Sobstacle ∥p− x∥

)
if x ∈ Sfree

(6.4)

using a breadth-first search on the Perlin noise grid.

We then take the total squared norm of these vectors

dt =

N∑
i=1

∥∆(x)∥2 (6.5)

40

..................................... 6.2. Navigation problems

and make a gradient descent step

x̂t = xt − α
∂dt

∂xt
(6.6)

after each denoising step. For our experiments, we selected α = 0.1 using
grid search.

For the navigation problems, we used two steering strategies, the Strategy 1
and the Strategy 2. We measured the time to generate a path for each
steering strategy and batch size. The results are shown in the Figure 6.7.
We see that generating a single path takes about 1.5 s on a single NVIDIA
Quadro RTX 4000 while generating them in batches of 1,024 is a magnitude
faster in terms of proportional time per path.

Batch size
20 25 210

S
am

pl
es

 p
er

 s
ec

on
d

0

10

20

30 No steering

Length

Obstacles

Length, obstacles

Figure 6.7: Speed scaling of the DDPM with the batch size. Total inference
time divided by the batch size is reported. The average and standard deviation
over 10 runs are shown for each steering strategy.

We also see that the performance degrades at higher batch sizes. CPU usage
dominated GPU in most of our experiments. This is due to CPU and RAM
saturation by surrounding code and collision checks. Much of the code can
potentially be optimized, for example, collision checks could be rewritten in a
compiled language with explicit memory management instead of Python.

6.2.1 Easy Maze dataset

The Easy Maze is generated by thresholding the Perlin noise at 0.3. The Per-
lin noise is shown in the Figure 6.8a and the final maze in the Figure 6.8b.

See the comparison between the steering strategies for inpainting on 5 dif-
ferent goal positions in the Figure 6.8c. The model is successful in finding
smooth and short paths for four of the five goals.

41

6. Results ...

0.0 0.5 1.0
0.0

0.5

1.0

(a) : Contour plot of the computed
Perlin noise with 7 octaves, contour
on level 0.3 is highlighted in black.

0.0 0.5 1.0
0.0

0.5

1.0

Free space

Obstacle

(b) : The Easy Maze obstacle map gen-
erated by thresholding the Perlin noise
at contour level 0.3.

No obstacle steering Obstacle steering

N
o

le
ng

th
 s

te
er

in
g

Le
ng

th
 s

te
er

in
g

Feasible path Vertex collision Line collision Free space Obstacle

(c) : Samples generated by the model in the Easy Maze environment.

Figure 6.8: Model trained on the Easy Maze dataset model performing in the
Easy Maze environment.

42

..................................... 6.2. Navigation problems

We can see that the obstacle avoidance strategy generates very bumpy paths,
but works well with the length strategy. A combination of both strategies
can be used to generate smoother paths which are better than the paths
generated by early-stopping the RRT* algorithm which were present in the
training dataset.

6.2.2 Medium Maze dataset

To test the ability to generalize to more complex environments, we took
the same model from the Easy Maze dataset and changed the evaluation
environment. The Medium Maze environment is generated by thresholding
the same Perlin noise curve as before at 0.2 therefore creating more obstacles.
The Perlin noise is shown in the Figure 6.9a and the final maze in the Fig-
ure 6.9b.

As expected, the model is much less successful in the environment which is
both more complex and different from the training dataset. The generated
paths are shown in the Figure 6.9c.

Out of the hundreds of generated paths, about 30% do not collide with
the obstacles in any vertex and only 20% are feasible along the whole path.
We see, that the model learned that some regions are present in a lot of train-
ing examples and generate paths forcing some of the points to go through
these regions despite new obstacles. On the other hand, many paths follow
the free space and are feasible even in the new environment.

6.2.3 Hard Maze dataset

We generated the Hard Maze environment by thresholding the same Perlin
noise curve as before at 0.15. The Perlin noise is shown in the Figure 6.10a
and the final maze in the Figure 6.10b. There is now a significant number
of obstacles in the way and the task is challenging for all kinds of planners.

Still, our model generated 10 feasible paths to two of the five goals. Several
other paths collide only partially with the obstacles and their parts can be
easily fixed by another algorithm, for example as initialization for the RRT*
algorithm.

For the top right goal in the Figure 6.10c, the model found three topologically
distinct paths. This is a remarkable result as planning algorithms usually
search either for the shortest path or a broad set of paths, but not for a di-
verse set of short paths. We saw this behavior appearing consistently in our
experiments.

43

6. Results ...

0.0 0.5 1.0
0.0

0.5

1.0

(a) : Contour plot of the computed
Perlin noise with 7 octaves, contour
on level 0.2 is highlighted in black.

0.0 0.5 1.0
0.0

0.5

1.0

Free space

Obstacle

(b) : The Medium Maze obstacle map
generated by thresholding the Perlin
noise at contour level 0.2.

No obstacle steering Obstacle steering

N
o

le
ng

th
 s

te
er

in
g

Le
ng

th
 s

te
er

in
g

Feasible path Vertex collision Line collision Free space Obstacle

(c) : Samples generated by the model in the Medium Maze environment.

Figure 6.9: Model trained on the Easy Maze dataset model performing in the
Medium Maze environment.

44

..................................... 6.2. Navigation problems

0.0 0.5 1.0
0.0

0.5

1.0

(a) : Contour plot of the computed
Perlin noise with 7 octaves, contour
on level 0.15 is highlighted in black.

0.0 0.5 1.0
0.0

0.5

1.0

Free space

Obstacle

(b) : The Hard Maze obstacle map gen-
erated by thresholding the Perlin noise
at contour level 0.15.

No obstacle steering Obstacle steering

N
o

le
ng

th
 s

te
er

in
g

Le
ng

th
 s

te
er

in
g

Feasible path Vertex collision Line collision Free space Obstacle

(c) : Samples generated by the model in the Hard Maze environment.

Figure 6.10: Model trained on the Easy Maze dataset model performing in the
Hard Maze environment.

45

6. Results ...
6.3 Noise schedule

We learned the model with a linear 300-step noise schedule and generated
all the above samples with the same schedule. It is, however, possible to use
a different schedule, usually with fewer steps to reduce the inference time.
For example, Sabour et al. [67] have shown that it is possible to generate
high-quality images and video with only 10 to 20 diffusion steps.

We tested the model with several different schedule lengths to compare the re-
sults. We calculate the collisions by tracing the path using Bresenham’s algo-
rithm [68]. The path is colliding if at least one point on the path is colliding.
You can see the average path collision rate in the Figure 6.11 and the aver-
age path length in the Figure 6.12. We see that skipping most of the steps
does not significantly affect the collision rate, but increases the path length
slightly. Depending on the exact implementation of the inference loop and
steering strategy, reducing the number of steps from 300 to 20 can lead to 2x
to 10x speedup.

Diffusion steps
300 100 50 30 20

C
ol

lis
io

n
ra

te

0%

25%

50%

75%

100%

Figure 6.11: Average rate of colliding paths generated by various inference
schedules. A linear schedule with different numbers of steps is used. The median
and interquartile range over 12 different Maze environments are highlighted.

Diffusion steps
300 100 50 30 20

T
ra

je
ct

or
y

le
ng

th

0.0

0.5

1.0

Figure 6.12: Average path length generated by various inference schedules.
A linear schedule with different numbers of steps is used. The environment is
a 1 by 1 square. The median and interquartile range over 12 different Maze
environments are highlighted.

46

................................ 6.4. Comparison with other planners

6.4 Comparison with other planners

To compare the performance of our model with other planners, we used
the Open Motion Planning Library (OMPL) [69] which is a widely used
motion planning library containing many planning algorithms. We compared
the performance of the RRT, RRT-connect [70], and LBKPIECE1 [71, 72]
planners with our model in the Easy, Medium, and Hard Maze environments.
The results are shown in the Figure 6.13 and Figure 6.14. All the selected
OMPL planners are sampling-based, which means they generate a path by
sampling the configuration space and connecting the samples. Therefore
their performance varies highly as we see in the figures.

The median runtime is two orders of magnitude higher for our model than
for the OMPL planners. This is expected as the OMPL planners are highly
optimized and our model is a proof of concept. However, it is a reasonable
trade-off for the ability to generate diverse and smooth paths. Note that
the runtime of the DDPM is almost constant with the Length steering strat-
egy, it does not depend on the complexity of the environment. On the other
hand, the Obstacle steering strategy slows down the model significantly in the
Hard Maze environment.

The number of collision checks is also constant (640), our model performs
a single collision for each path vertex in each of the final 20 denoising steps.
The OMPL planners perform a variable number of collision checks, depending
on the random sampling of the configuration space. The number of collision
checks is comparable between the OMPL planners and our model.

6.5 Summary

We have successfully demonstrated that the model can learn the distribution
of various shapes and paths and generate new samples from it. We described
two simple steering strategies that can be used to generate smooth and short
paths, which is a unique feature of generative models. In combination with
inpainting, it can be used to generate paths for a robot.

Despite learning in a simple environment, the model performs well in an
altered and more complex environment, proving its ability to generalize and
generate out-of-distribution samples.

The model is slower than the state-of-the-art planners, but this is a reason-
able trade-off for the ability to generate diverse and smooth paths. Also,
the runtime is almost constant with the Length steering strategy, it does
not depend on the complexity of the environment and can be improved by
optimizing the code or using a different noise schedule.

47

6. Results ...

RRT

RRT-c
on

ne
ct

LB
KPIE

CE1

Our
s,

no
 st

ee
rin

g

Our
s,

len
gt

h

Our
s,

ob
sta

cle
s

Our
s,

len
gt

h,

ob
sta

cle
s

T
im

e
pe

r
pa

th
 [s

]

0.0

0.1

0.2

0.3

(a) : Easy Maze environment.

RRT

RRT-c
on

ne
ct

LB
KPIE

CE1

Our
s,

no
 st

ee
rin

g

Our
s,

len
gt

h

Our
s,

ob
sta

cle
s

Our
s,

len
gt

h,

ob
sta

cle
s

T
im

e
pe

r
pa

th
 [s

]

0.0

0.1

0.2

0.3

(b) : Medium Maze environment.

RRT

RRT-c
on

ne
ct

LB
KPIE

CE1

Our
s,

no
 st

ee
rin

g

Our
s,

len
gt

h

Our
s,

ob
sta

cle
s

Our
s,

len
gt

h,

ob
sta

cle
s

T
im

e
pe

r
pa

th
 [s

]

0.0

0.1

0.2

(c) : Hard Maze environment.

Figure 6.13: Comparison of various OMPL planners with our DDPM in dif-
ferent Maze environments. Time to find a feasible path is reported for OMPL
planners. Inference time per one sample from the batch of 1,024 is reported for
the DDPM.

48

..6.5. Summary

RRT

RRT-c
on

ne
ct

LB
KPIE

CE1

Our
s,

no
 st

ee
rin

g

Our
s,

len
gt

h

Our
s,

ob
sta

cle
s

Our
s,

len
gt

h,

ob
sta

cle
s

C
ol

lis
io

n
ch

ec
ks

0

1000

2000

3000

4000

(a) : Easy Maze environment.

RRT

RRT-c
on

ne

ct

LB
KPIE

CE1

Our
s,

no
 st

ee
rin

g

Our
s,

len
gt

h

Our
s,

ob
sta

cle
s

Our
s,

len
gt

h,

ob
sta

cle
s

C
ol

lis
io

n
ch

ec
ks

0

500

1000

1500

(b) : Medium Maze environment.

RRT

RRT-c
on

ne

ct

LB
KPIE

CE1

Our
s,

no
 st

ee
rin

g

Our
s,

len
gt

h

Our
s,

ob
sta

cle
s

Our
s,

len
gt

h,

ob
sta

cle
s

C
ol

lis
io

n
ch

ec
ks

0

500

1000

1500

2000

(c) : Hard Maze environment.

Figure 6.14: Comparison of various OMPL planners with our DDPM in different
Maze environments. Path collision rate reported.

49

50

Chapter 7

Conclusion

7.1 Conclusion

In this work, we have presented a recent approach to the path planning
problem using Denoising Diffusion Probabilistic Model (DDPM). Denoising
diffusion neural networks are currently the state of the art in many domains
including image and video generation.

We explained how to create a DDPM, how to train it and how to sample new
data from it. Our main concern was to build upon the existing work and
apply it to the path planning problem, the approach used only in a few pa-
pers so far. We reviewed the existing work and open-source implementation
of DDPMs for path planning and we identified their limitations.

Because we were unable to directly use any of the existing implementations
to reproduce the results, we decided to fix one of them. We took the Hugging
Face Diffusers library and rewrote large parts of it. Apart from fixing the im-
plementation bugs, we also added a great number of features and improve-
ments. In our version, the user can configure Group Normalization, Dropout,
activation function, time embedding, Attention, skip connections and other
features. We achieved parity with Diffusers’ two-dimensional DDPMs which
are one of the most used implementations.

After reimplementing the DDPM library, we designed a neural network ar-
chitecture for path planning. We demonstrated that the model can learn
from a dataset of paths and generate new paths in previously unseen envi-
ronments.

We also showed the flexibility of using the model together with a steering
strategy, for example smoothing the path or guiding it outside of obstacles.
We discussed that steering is a unique feature of DDPMs and that it can be
used to greatly improve the quality of the generated paths.

51

7. Conclusion..
7.2 Future work

Our works serves mainly as a learning material and a proof of concept for
using DDPM in path planning and can be extended in many ways.

We generated the training data by early stopping a path-planning algorithm
between random pairs of points. to improve the quality of the generated
paths, we could generate a more specific dataset, for example using Dubins
paths or robotic manipulator paths. For example, Liang et al. [73] propose
to generate additional data based on the generated paths.

For training the algorithm, we used a simple training loop with a cosine
learning schedule and Adam optimizer. The training procedure could be
improved by choosing different hyperparameters, using a different optimizer
or a different learning rate schedule based on recent research.

We used a relatively shallow neural network architecture. We could experi-
ment with more layers and different layer types. We did not observe overfit-
ting in our experiments, but we did not perform a proper analysis. Also, we
did not perform an ablation study of the architecture.

We saw that the steering strategy has a great impact on the quality of the gen-
erated paths. We see that using a fast but accurate steering strategy is
crucial to achieve good results. We think that combining DDPM with a suit-
able steering strategy, for example, a local sampling-based planner, could
be the key to achieving state-of-the-art results and outperforming existing
path-planning algorithms.

We see DDPM as a great addition to the path-planning toolbox, mainly as
a supporting method to use together with other path-planning algorithms.

Apart from using an existing path planning algorithm as a steering strat-
egy, we can generate a set of partially infeasible paths using the DDPM
and initialize the path planning algorithm with them. This is straightfor-
ward with sampling-based algorithms such as RRT or PRM. Also, sampling-
based algorithms can sample from a non-uniform distribution, biased towards
the DDPM-generated paths.

These are just a few ideas for future work. We are excited to see how the field
of path planning will evolve with the use of DDPMs in the same way DDPM
revolutionized image and video generation.

52

Appendix A

List of attachements

. images.zip A collection of visualization images from this work in vector
format.. sourcecode.zip Source code of the improved Diffusers library.

53

54

Appendix B

Bibliography

[1] K. M. Hasan, Abdullah-Al-Nahid, and K. J. Reza. “Path planning
algorithm development for autonomous vacuum cleaner robots.” In:
2014 International Conference on Informatics, Electronics & Vision
(ICIEV). 2014-05, pp. 1–6. doi: 10.1109/ICIEV.2014.6850799.

[2] Z. Li et al. “A Fault-Tolerant Method for Motion Planning of Indus-
trial Redundant Manipulator.” In: IEEE Transactions on Industrial
Informatics 16.12 (2020-12), pp. 7469–7478. issn: 1941-0050. doi: 10.
1109/TII.2019.2957186.

[3] Y. Zhou, B. Rao, and W. Wang. “UAV Swarm Intelligence: Recent
Advances and Future Trends.” In: IEEE Access 8 (2020), pp. 183856–
183878. issn: 2169-3536. doi: 10.1109/ACCESS.2020.3028865.

[4] J. H. Reif. “Complexity of the mover’s problem and generalizations.”
In: 20th Annual Symposium on Foundations of Computer Science (sfcs
1979). ISSN: 0272-5428. 1979-10, pp. 421–427. doi: 10.1109/SFCS.1979.
10.

[5] S. LaValle. Rapidly-exploring random trees: A new tool for path plan-
ning. 9811. Department of Computer Science: Iowa State University,
1998. url: https : / / msl . cs . illinois . edu / ~lavalle / papers / Lav98c . pdf
(visited on 03/11/2024).

[6] J. Sohl-Dickstein et al. Deep Unsupervised Learning using Nonequilib-
rium Thermodynamics. 2015-11-18. doi: 10.48550/arXiv.1503.03585.

[7] P. E. Hart, N. J. Nilsson, and B. Raphael. “A Formal Basis for the
Heuristic Determination of Minimum Cost Paths.” In: IEEE Transac-
tions on Systems Science and Cybernetics 4.2 (1968-07), pp. 100–107.
issn: 2168-2887. doi: 10.1109/TSSC.1968.300136.

[8] S. M. LaValle. Planning Algorithms. Cambridge University Press, 2006-
05-29. 1362 pp. isbn: 978-1-139-45517-6.

55

https://doi.org/10.1109/ICIEV.2014.6850799
https://doi.org/10.1109/TII.2019.2957186
https://doi.org/10.1109/TII.2019.2957186
https://doi.org/10.1109/ACCESS.2020.3028865
https://doi.org/10.1109/SFCS.1979.10
https://doi.org/10.1109/SFCS.1979.10
https://msl.cs.illinois.edu/~lavalle/papers/Lav98c.pdf
https://doi.org/10.48550/arXiv.1503.03585
https://doi.org/10.1109/TSSC.1968.300136

B. Bibliography...
[9] L. Kavraki et al. “Probabilistic roadmaps for path planning in high-

dimensional configuration spaces.” In: IEEE Transactions on Robotics
and Automation 12.4 (1996-08), pp. 566–580. issn: 2374-958X. doi:
10.1109/70.508439.

[10] S. Karaman and E. Frazzoli. Sampling-based Algorithms for Optimal
Motion Planning. 2011-05-05. doi: 10.48550/arXiv.1105.1186.

[11] Rodriguez et al. “An obstacle-based rapidly-exploring random tree.”
In: Proceedings 2006 IEEE International Conference on Robotics and
Automation. ICRA 2006. ISSN: 1050-4729. 2006-05, pp. 895–900. doi:
10.1109/ROBOT.2006.1641823.

[12] M. Elbanhawi and M. Simic. “Sampling-Based Robot Motion Planning:
A Review.” In: IEEE Access 2 (2014), pp. 56–77. issn: 2169-3536. doi:
10.1109/ACCESS.2014.2302442.

[13] D. Manocha and J. Canny. “Efficient inverse kinematics for general
6R manipulators.” In: IEEE Transactions on Robotics and Automation
10.5 (1994-10), pp. 648–657. issn: 2374-958X. doi: 10.1109/70.326569.

[14] Z. Yao and K. Gupta. “Path planning with general end-effector con-
straints: using task space to guide configuration space search.” In: 2005
IEEE/RSJ International Conference on Intelligent Robots and Systems.
2005 IEEE/RSJ International Conference on Intelligent Robots and
Systems. 2005-08, pp. 1875–1880. doi: 10.1109/IROS.2005.1545305.

[15] L. Jaillet and J. M. Porta. “Path Planning with Loop Closure Con-
straints Using an Atlas-Based RRT.” In: Robotics Research : The 15th
International Symposium ISRR. Ed. by H. I. Christensen and O. Khatib.
Springer Tracts in Advanced Robotics. Cham: Springer International
Publishing, 2017, pp. 345–362. isbn: 978-3-319-29363-9. doi: 10.1007/
978-3-319-29363-9_20.

[16] L. G. D. O. Veras, F. L. L. Medeiros, and L. N. F. Guimaraes. “Sys-
tematic Literature Review of Sampling Process in Rapidly-Exploring
Random Trees.” In: IEEE Access 7 (2019), pp. 50933–50953. issn: 2169-
3536. doi: 10.1109/ACCESS.2019.2908100.

[17] A. Vaswani et al. Attention Is All You Need. 2023-08-01. doi: 10.48550/
arXiv.1706.03762.

[18] T. B. Brown et al. Language Models are Few-Shot Learners. 2020-07-22.
doi: 10.48550/arXiv.2005.14165.

[19] M. Chen et al. Evaluating Large Language Models Trained on Code.
2021-07-14. doi: 10.48550/arXiv.2107.03374.

[20] M. Oquab et al. DINOv2: Learning Robust Visual Features without
Supervision. 2024-02-02. doi: 10.48550/arXiv.2304.07193.

56

https://doi.org/10.1109/70.508439
https://doi.org/10.48550/arXiv.1105.1186
https://doi.org/10.1109/ROBOT.2006.1641823
https://doi.org/10.1109/ACCESS.2014.2302442
https://doi.org/10.1109/70.326569
https://doi.org/10.1109/IROS.2005.1545305
https://doi.org/10.1007/978-3-319-29363-9_20
https://doi.org/10.1007/978-3-319-29363-9_20
https://doi.org/10.1109/ACCESS.2019.2908100
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.48550/arXiv.2005.14165
https://doi.org/10.48550/arXiv.2107.03374
https://doi.org/10.48550/arXiv.2304.07193

... B. Bibliography

[21] J. Jumper et al. “Highly accurate protein structure prediction with
AlphaFold.” In: Nature 596.7873 (2021-08), pp. 583–589. issn: 1476-
4687. doi: 10.1038/s41586-021-03819-2.

[22] A. Radford et al. Learning Transferable Visual Models From Natural
Language Supervision. 2021-02-26. doi: 10.48550/arXiv.2103.00020.

[23] I. J. Goodfellow et al. Generative Adversarial Networks. 2014-06-10.
doi: 10.48550/arXiv.1406.2661.

[24] A. Ramesh et al. Zero-Shot Text-to-Image Generation. 2021-02-26. doi:
10.48550/arXiv.2102.12092.

[25] A. Ramesh et al. Hierarchical Text-Conditional Image Generation with
CLIP Latents. 2022-04-12. url: http://arxiv.org/abs/2204.06125 (visited
on 01/13/2024).

[26] R. Rombach et al. High-Resolution Image Synthesis with Latent Diffu-
sion Models. 2022-04-13. doi: 10.48550/arXiv.2112.10752.

[27] Z. Kong et al. DiffWave: A Versatile Diffusion Model for Audio Syn-
thesis. 2021-03-30. doi: 10.48550/arXiv.2009.09761.

[28] A. Blattmann et al. Stable Video Diffusion: Scaling Latent Video Dif-
fusion Models to Large Datasets. 2023-11-25. doi: 10.48550/arXiv.2311.
15127.

[29] T. Brooks et al. “Video generation models as world simulators.” In:
(2024). url: https://openai.com/research/video- generation- models- as-
world-simulators (visited on 03/11/2024).

[30] OpenAI et al. Learning Dexterous In-Hand Manipulation. 2019-01-18.
doi: 10.48550/arXiv.1808.00177.

[31] L. Kaiser et al. Model-Based Reinforcement Learning for Atari. 2020-
02-19. doi: 10.48550/arXiv.1903.00374.

[32] OpenAI et al. Dota 2 with Large Scale Deep Reinforcement Learning.
2019-12-13. doi: 10.48550/arXiv.1912.06680.

[33] Z. Wang, J. J. Hunt, and M. Zhou. Diffusion Policies as an Expressive
Policy Class for Offline Reinforcement Learning. 2023-08-25. doi: 10.
48550/arXiv.2208.06193.

[34] L. Lehnert et al. Beyond A*: Better Planning with Transformers via
Search Dynamics Bootstrapping. 2024-02-21. url: http://arxiv.org/abs/
2402.14083 (visited on 02/25/2024).

[35] J. J. Johnson, A. H. Qureshi, and M. Yip. Learning Sampling Dic-
tionaries for Efficient and Generalizable Robot Motion Planning with
Transformers. 2023-09-26. doi: 10.48550/arXiv.2306.00851.

57

https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.48550/arXiv.2103.00020
https://doi.org/10.48550/arXiv.1406.2661
https://doi.org/10.48550/arXiv.2102.12092
http://arxiv.org/abs/2204.06125
https://doi.org/10.48550/arXiv.2112.10752
https://doi.org/10.48550/arXiv.2009.09761
https://doi.org/10.48550/arXiv.2311.15127
https://doi.org/10.48550/arXiv.2311.15127
https://openai.com/research/video-generation-models-as-world-simulators
https://openai.com/research/video-generation-models-as-world-simulators
https://doi.org/10.48550/arXiv.1808.00177
https://doi.org/10.48550/arXiv.1903.00374
https://doi.org/10.48550/arXiv.1912.06680
https://doi.org/10.48550/arXiv.2208.06193
https://doi.org/10.48550/arXiv.2208.06193
http://arxiv.org/abs/2402.14083
http://arxiv.org/abs/2402.14083
https://doi.org/10.48550/arXiv.2306.00851

B. Bibliography...
[36] A. v. d. Oord, O. Vinyals, and K. Kavukcuoglu. Neural Discrete Rep-

resentation Learning. 2018-05-30. url: http://arxiv.org/abs/1711.00937
(visited on 03/11/2024).

[37] M. Janner, Q. Li, and S. Levine. Offline Reinforcement Learning as
One Big Sequence Modeling Problem. 2021-11-28. doi: 10.48550/arXiv.
2106.02039.

[38] A. Nichol and P. Dhariwal. Improved Denoising Diffusion Probabilistic
Models. 2021-02-18. doi: 10.48550/arXiv.2102.09672.

[39] J. Ho, A. Jain, and P. Abbeel. Denoising Diffusion Probabilistic Models.
2020-12-16. doi: 10.48550/arXiv.2006.11239.

[40] D. P. Kingma and M. Welling. Auto-Encoding Variational Bayes. 2013-
12-20. doi: 10.48550/arXiv.1312.6114.

[41] A. Shekhovtsov, D. Schlesinger, and B. Flach. VAE Approximation
Error: ELBO and Exponential Families. 2022-04-11. doi: 10 . 48550 /
arXiv.2102.09310.

[42] D. P. Kingma et al. Improving Variational Inference with Inverse Au-
toregressive Flow. 2017-01-30. doi: 10.48550/arXiv.1606.04934.

[43] T. Salimans et al. PixelCNN++: Improving the PixelCNN with Dis-
cretized Logistic Mixture Likelihood and Other Modifications. 2017-01-
19. doi: 10.48550/arXiv.1701.05517.

[44] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization.
2017-01-29. doi: 10.48550/arXiv.1412.6980.

[45] D. Pathak et al. Context Encoders: Feature Learning by Inpainting.
2016-11-21. doi: 10.48550/arXiv.1604.07379.

[46] A. Lugmayr et al. RePaint: Inpainting using Denoising Diffusion Prob-
abilistic Models. 2022-08-31. doi: 10.48550/arXiv.2201.09865.

[47] M. Janner et al. Planning with Diffusion for Flexible Behavior Synthe-
sis. 2022-12-20. doi: 10.48550/arXiv.2205.09991.

[48] J. Choi et al. ILVR: Conditioning Method for Denoising Diffusion
Probabilistic Models. 2021-09-15. doi: 10.48550/arXiv.2108.02938.

[49] J. Carvalho et al. Motion Planning Diffusion: Learning and Planning
of Robot Motions with Diffusion Models. 2023-08-03. doi: 10. 48550/
arXiv.2308.01557.

[50] O. Ronneberger, P. Fischer, and T. Brox. U-Net: Convolutional Net-
works for Biomedical Image Segmentation. 2015-05-18. url: http://
arxiv.org/abs/1505.04597 (visited on 01/14/2024).

[51] D. Misra. Mish: A Self Regularized Non-Monotonic Activation Func-
tion. 2020-08-13. doi: 10.48550/arXiv.1908.08681.

58

http://arxiv.org/abs/1711.00937
https://doi.org/10.48550/arXiv.2106.02039
https://doi.org/10.48550/arXiv.2106.02039
https://doi.org/10.48550/arXiv.2102.09672
https://doi.org/10.48550/arXiv.2006.11239
https://doi.org/10.48550/arXiv.1312.6114
https://doi.org/10.48550/arXiv.2102.09310
https://doi.org/10.48550/arXiv.2102.09310
https://doi.org/10.48550/arXiv.1606.04934
https://doi.org/10.48550/arXiv.1701.05517
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.1604.07379
https://doi.org/10.48550/arXiv.2201.09865
https://doi.org/10.48550/arXiv.2205.09991
https://doi.org/10.48550/arXiv.2108.02938
https://doi.org/10.48550/arXiv.2308.01557
https://doi.org/10.48550/arXiv.2308.01557
http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1505.04597
https://doi.org/10.48550/arXiv.1908.08681

... B. Bibliography

[52] K. He et al. Deep Residual Learning for Image Recognition. 2015-12-10.
doi: 10.48550/arXiv.1512.03385.

[53] Y. Wu and K. He. Group Normalization. 2018-06-11. doi: 10.48550/
arXiv.1803.08494.

[54] E. Todorov, T. Erez, and Y. Tassa. “MuJoCo: A physics engine for
model-based control.” In: 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2012). IEEE, 2012-10, pp. 5026–
5033. isbn: 978-1-4673-1736-8. doi: 10.1109/IROS.2012.6386109.

[55] G. Brockman et al. OpenAI Gym. 2016-06-05. doi: 10.48550/arXiv.1606.
01540.

[56] M. Towers et al. Gymnasium. 2024-03-25. doi: 10.5281/zenodo.8127026.

[57] Farama-Foundation/D4RL. 2024-03-25. url: https://github.com/Farama-
Foundation/D4RL (visited on 03/25/2024).

[58] Gymnasium-Robotics Contributors. Gymnasium-Robotics: A a collec-
tion of robotics simulation environments for Reinforcement Learning.
2022-01. url: https://github.com/Farama-Foundation/Gymnasium-Robotics
(visited on 03/25/2024).

[59] Minari Contributors. Minari: A dataset API for Offline Reinforcement
Learning. 2023-05. url: https://github.com/Farama- Foundation/Minari
(visited on 03/25/2024).

[60] P. v. Platen et al. Diffusers: State-of-the-art diffusion models. Ver-
sion 0.12.1. 2024-01-14. url: https://github.com/huggingface/diffusers
(visited on 01/14/2024).

[61] E. J. Hu et al. LoRA: Low-Rank Adaptation of Large Language Models.
2021-10-16. doi: 10.48550/arXiv.2106.09685.

[62] huggingface/peft. 2024-03-25. url: https://github.com/huggingface/peft
(visited on 03/25/2024).

[63] D. Bahdanau, K. Cho, and Y. Bengio. Neural Machine Translation
by Jointly Learning to Align and Translate. 2016-05-19. doi: 10.48550/
arXiv.1409.0473.

[64] O. Oktay et al. Attention U-Net: Learning Where to Look for the Pan-
creas. 2018-05-20. doi: 10.48550/arXiv.1804.03999.

[65] K. Perlin. “An image synthesizer.” In: ACM SIGGRAPH Computer
Graphics 19.3 (1985), pp. 287–296. issn: 0097-8930. doi: 10.1145/325165.
325247.

[66] I. SALAKHIEV. salaxieb/perlin_noise. original-date: 2020-10-01T15:36:24Z.
2024-04-19. url: https://github.com/salaxieb/perlin_noise (visited on
05/05/2024).

59

https://doi.org/10.48550/arXiv.1512.03385
https://doi.org/10.48550/arXiv.1803.08494
https://doi.org/10.48550/arXiv.1803.08494
https://doi.org/10.1109/IROS.2012.6386109
https://doi.org/10.48550/arXiv.1606.01540
https://doi.org/10.48550/arXiv.1606.01540
https://doi.org/10.5281/zenodo.8127026
https://github.com/Farama-Foundation/D4RL
https://github.com/Farama-Foundation/D4RL
https://github.com/Farama-Foundation/Gymnasium-Robotics
https://github.com/Farama-Foundation/Minari
https://github.com/huggingface/diffusers
https://doi.org/10.48550/arXiv.2106.09685
https://github.com/huggingface/peft
https://doi.org/10.48550/arXiv.1409.0473
https://doi.org/10.48550/arXiv.1409.0473
https://doi.org/10.48550/arXiv.1804.03999
https://doi.org/10.1145/325165.325247
https://doi.org/10.1145/325165.325247
https://github.com/salaxieb/perlin_noise

B. Bibliography...
[67] A. Sabour, S. Fidler, and K. Kreis. Align Your Steps: Optimizing Sam-

pling Schedules in Diffusion Models. 2024-04-22. doi: 10.48550/arXiv.
2404.14507.

[68] J. E. Bresenham. “Algorithm for computer control of a digital plotter.”
In: IBM Systems Journal 4.1 (1965), pp. 25–30. issn: 0018-8670. doi:
10.1147/sj.41.0025.

[69] I. A. Sucan, M. Moll, and L. E. Kavraki. “The Open Motion Planning
Library.” In: IEEE Robotics & Automation Magazine 19.4 (2012-12),
pp. 72–82. issn: 1558-223X. doi: 10.1109/MRA.2012.2205651.

[70] J. Kuffner and S. LaValle. “RRT-connect: An efficient approach to
single-query path planning.” In: Proceedings 2000 ICRA. IEEE Inter-
national Conference on Robotics and Automation. Vol. 2. ISSN: 1050-
4729. 2000-04, 995–1001 vol.2. doi: 10.1109/ROBOT.2000.844730.

[71] I. A. Şucan and L. E. Kavraki. “Kinodynamic Motion Planning by
Interior-Exterior Cell Exploration.” In: Algorithmic Foundation of Robotics
VIII. Ed. by G. S. Chirikjian et al. Red. by B. Siciliano, O. Khatib, and
F. Groen. Vol. 57. Series Title: Springer Tracts in Advanced Robotics.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 449–464. isbn:
978-3-642-00311-0 978-3-642-00312-7. doi: 10.1007/978- 3- 642- 00312-
7_28.

[72] R. Bohlin and L. Kavraki. “Path planning using lazy PRM.” In: Pro-
ceedings 2000 ICRA. IEEE International Conference on Robotics and
Automation. Vol. 1. ISSN: 1050-4729. 2000-04, 521–528 vol.1. doi: 10.
1109/ROBOT.2000.844107.

[73] Z. Liang et al.AdaptDiffuser: Diffusion Models as Adaptive Self-evolving
Planners. 2023-05-12. doi: 10.48550/arXiv.2302.01877.

60

https://doi.org/10.48550/arXiv.2404.14507
https://doi.org/10.48550/arXiv.2404.14507
https://doi.org/10.1147/sj.41.0025
https://doi.org/10.1109/MRA.2012.2205651
https://doi.org/10.1109/ROBOT.2000.844730
https://doi.org/10.1007/978-3-642-00312-7_28
https://doi.org/10.1007/978-3-642-00312-7_28
https://doi.org/10.1109/ROBOT.2000.844107
https://doi.org/10.1109/ROBOT.2000.844107
https://doi.org/10.48550/arXiv.2302.01877

	Thesis Assignment
	List of Notations
	List of Abbreviations
	Introduction
	Related work
	General planning
	Sampling-based planning
	Planning for robots
	Transformer models
	Denoising Diffusion Probabilistic Models
	Path planning using neural networks

	Diffusion models
	Forward diffusion
	Reverse diffusion
	Training
	Inference
	Inpainting
	Steering

	Analysis of existing implementations
	The Diffuser architecture
	State of the implementation
	Our contribution to the Diffusers

	Diffuser Architecture
	Neural network architecture
	Diffuser as denoiser

	Results
	Simple shapes
	Circles dataset
	3D Spirals dataset

	Navigation problems
	Easy Maze dataset
	Medium Maze dataset
	Hard Maze dataset

	Noise schedule
	Comparison with other planners
	Summary

	Conclusion
	Conclusion
	Future work

	List of attachements
	Bibliography

