
Czech Technical University in Prague
Faculty of Electrical Engineering
Department of Computer Science

Master’s Thesis

OPTIMIZATION OF TUNING PLANS FOR A PASSIVE
SURVEILLANCE SYSTEM

by

Bc. JAN PIKMAN

Study programme: Open Informatics
Specialization: Artificial Intelligence

Prague, May 2024

Supervisor:
doc. Ing. PŘEMYSL ŠŮCHA, Ph.D.
Department of Control Engineering
Faculty of Electrical Engineering
Czech Technical University in Prague
Karlovo náměst́ı 13
120 00, Prague 2
Czech Republic

Copyright © 2024 Bc. JAN PIKMAN

ii

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

492098 Personal ID number: Pikman Jan Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Computer Science

Open Informatics Study program:

Artificial Intelligence Specialisation:

II. Master’s thesis details

Master’s thesis title in English:

Optimization of Tuning Plans for a Passive Surveillance System

Master’s thesis title in Czech:

Optimalizace tvorby ladicího plánu pro pasivní sledovací systém

Guidelines:

This thesis deals with the design of an algorithm for automatic tuning of a passive surveillance system. The algorithm has
to find a tuning plan for specific frequency bands, so that it can search for new targets and then track their position. The
goal is to achieve an efficient use of the receivers so that the system can track as many targets as possible while detecting
new targets quickly enough.
1) Conduct a literature review in areas of scheduling for radars and the set cover problem.
2) Learn the principle of receivers tuning and target tracking in passive surveillance systems.
3) Analyze the computational complexity of the tuning plan generation problem and try to find connections with existing
optimization problems.
4) Propose an algorithm for determining for each target how often should be tuned, designing receiver tuning setups, and
creating a tuning plan.
5) Implement the proposed algorithm in Python, test it using simulation and evaluate the quality of the proposed solution.

Bibliography / sources:

Skolnik, M. An introduction and overview of radar. Radar Handbook, volume 3, 2008: pp. 1–1.
Kulmon, P. Bayesian Deghosting Algorithm for Multiple Target Tracking. In 2020 IEEE International Conference on
Multisensor Fusion and Integration for Intelligent Systems (MFI), 2020, pp. 367–372, doi:10.1109/MFI49285.2020.9235215.
Kulmon, P. Suja, J. and Benko, M. Scheduling of Multi-Function Sensor, in IEEE Transactions on Radar Systems, vol. 1,
pp. 729-739, 2023, doi: 10.1109/TRS.2023.3335208.
Sun, J.; Yi, W.; Varshney, P. K.; et al. Resource Scheduling for Multi-Target Tracking in Multi-Radar Systems With Imperfect
Detection. IEEE Transactions on Signal Processing, volume 70, 2022: pp. 3878–3893, doi:10.1109/TSP.2022.3191800.
Briheche, Y.; Barbaresco, F.; Bennis, F.; et al. Theoretical complexity of grid cover problems used in radar applications.
Journal of Optimization Theory and Applications, volume 179, no. 3, 2018: pp. 1086–1106.
Caprara, A.; Toth, P.; Fischetti, M. Algorithms for the set covering problem. Annals of Operations Research, volume 98,
no. 1-4, 2000: pp. 353–371.
Butman, A.; Hermelin, D.; Lewenstein, M.; et al. Optimization problems in multiple-interval graphs. ACM Transactions on
Algorithms (TALG), volume 6, no. 2, 2010: pp. 1–18.

© ČVUT v Praze, Design: ČVUT v Praze, VIC Page 1 from 2 CVUT-CZ-ZDP-2015.1

Name and workplace of master’s thesis supervisor:

doc. Ing. Přemysl Šůcha, Ph.D. Department of Control Engineering FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 24.05.2024 Date of master’s thesis assignment: 25.01.2024

Assignment valid until: 21.09.2025

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature

Head of department’s signature doc. Ing. Přemysl Šůcha, Ph.D.
Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC Page 2 from 2 CVUT-CZ-ZDP-2015.1

Acknowledgements

First of all, I would like to express my utmost gratitude to my supervisor Associate Pro-
fessor Přemysl Š̊ucha for his advice, feedback, knowledge, and enthusiasm without which
this thesis would not be the same. My thanks also go to Professor Zdeněk Hanzálek for
introducing me to the field of combinatorial optimization and for an opportunity to work
in cooperation with ERA a.s. on a fascinating topic of optimization of passive radars.

Hlavně bych chtěl poděkovat svým rodič̊um za jejich neutuchaj́ıćı lásku a podporu. Rád
bych také vyjádřil vděčnost své sestře, spolubydĺıćım a všem ostatńım, kteř́ı mi zlepšovali
náladu a podporovali mě během studia.

Declaration

I declare that the presented work was developed independently and that I have listed all
sources of information used within it in accordance with the methodical instructions for
observing the ethical principles in the preparation of university theses.

In Prague, .
Bc. Jan Pikman

v

Abstract

Passive radar systems are used for covert detection and tracking of transmitting objects over
hundreds of kilometers. Unfortunately, these systems have a limited amount of receivers
and therefore can simultaneously monitor only a fraction of frequencies of interest. This
master’s thesis proposes an algorithm for fast construction of optimized schedules, called
tuning plans, that determine which frequencies will be observed by each receiver at a given
time. An essential part of the algorithm is the optimization of receiver configurations using
a newly formulated multiple-interval containment problem (MICntP) which is similar to
the set cover problem over interval-like objects. We also study the theoretical complexity
of different MICntPs based on imposed constraints. Finally, we analyze the dependence
of the algorithm’s run-time on properties and the number of randomly generated input
requests during a simplified scenario.

Keywords:

optimization, passive radar, VERA-NG, scheduling, optimization of observed frequencies,
multiple-intervals, set cover problem, multiple-interval containment problem.

Abstrakt

Pasivńı radarové systémy se použ́ıvaj́ı k detekci a sledováńı vyśılaj́ıćıch objekt̊u na vzdále-
nost stovek kilometr̊u. Tyto systémy maj́ı bohužel omezený počet přij́ımač̊u, a proto mohou
současně sledovat pouze zlomek požadovaných frekvenćı. Tato magisterská práce se zabývá
návrhem algoritmu pro rychlou konstrukci optimalizovaných rozvrh̊u, tzv. ladićıch plán̊u,
určuj́ıćıch, které frekvence budou v daném čase sledovány jednotlivými přij́ımači. Pod-
statnou část́ı algoritmu je optimalizace konfiguraćı přij́ımač̊u pomoćı nově formulovaného
problému obsažeńı v́ıcenásobných interval̊u (MICntP), který se podobá set cover problému
s objekty připomı́naj́ıćı intervaly. Také zkoumáme teoretickou složitost r̊uzných MICntP
na základě zavedených omezeńı. Nakonec analyzujeme závislost doby běhu algoritmu na
vlastnostech a počtu náhodně generovaných vstupńıch požadavk̊u.

Kĺıčová slova:

optimalizace, pasivńı radar, VERA-NG, rozvrhováńı, optimalizace monitorovaných frek-
venćı, v́ıcenásobné intervaly, set cover problém, problém obsažeńı v́ıcenásobných interval̊u.

vii

Contents

List of Figures xi

List of Algorithms xiii

List of Abbreviations and Symbols xv

1 Introduction 1

2 Background and State-of-the-Art 3
2.1 Introduction to Radar . 3

2.1.1 VERA-NG . 6
2.2 Literature Review on Optimization of Radar Systems 7
2.3 Set Cover Problem and Its Variants . 13

3 Problem Statement 19

4 Methodology 25
4.1 Computing Track Measurement Frequencies 26
4.2 Generation of Blocks . 28
4.3 Multiple-Interval Containment Problem . 32

4.3.1 No Containment . 33
4.3.2 Cover Cost . 35
4.3.3 Target Demand . 38
4.3.4 Target Separability . 40

4.4 Computing Block Measurement Frequencies 40
4.5 Construction of Tuning Plan . 42
4.6 Update of Sub-surveys . 44

5 Experimental Results 49
5.1 Number of Track Requests . 50

ix

Contents

5.2 Number of Emitters per Track Request . 53
5.3 Probability of Emitter Configuration Size 53
5.4 Complete Survey Request . 56

6 Conclusions 61

Bibliography 63

x

List of Figures

2.1 Chain Home radar system . 5
2.2 Weather radar . 6
2.3 Main working principles of VERA-NG system 7
2.4 Comparison of scheduling by EST and RSST-EST methods 9
2.5 Transformation of radar types into grid cover problems 10
2.6 Multi-radar system for multi-target tracking 12

3.1 Single interval and multiple-interval . 20
3.2 The example of an assumed Passive Radar System 21
3.3 Track request realization by various receiver configurations 23

4.1 Linear extrapolation of information gain . 27
4.2 Split of a survey request into sub-surveys . 29
4.3 Heuristic block construction . 30
4.4 Counterexample to one-sided generation of blocks 31
4.5 Illustrative instance of the MICntP . 33
4.6 Equivalence of 2-multi-shift MC problem to the MICntP 38

5.1 Number of tracks vs execution time . 51
5.2 Number of tracks vs number of blocks . 52
5.3 Number of emitters per track vs execution time 54
5.4 Number of emitters per track vs number of blocks 55
5.5 Probability of emitter configuration size vs execution time 56
5.6 Probability of emitter configuration size vs number of blocks 57
5.7 Number of tracks vs execution time during complete survey 58
5.8 Number of tracks vs number of blocks during complete survey 59

xi

List of Algorithms

4.1 Planner . 26

4.2 Computing track measurement frequencies 28

4.3 Generation of blocks . 31

4.4 Tuning plan construction . 45

4.5 InsertBlock . 46

4.6 FillEmptySlots . 46

4.7 Sub-surveys update . 47

xiii

List of Abbreviations and Symbols

Number Sets

N Natural numbers set
R Real numbers set
R≥0 Non-negative real numbers set

Radar Terminology

ELINT Electronic intelligence
ESM Electronic support measure
LPI Low probability of intercept
MRS Multi-radar system
MTT Multi-target tracking
PARN Phased array radar network
PCL Passive coherent location
PCR Passive covert radar
PESA Passive phased array
TDOA Time difference of arrival

Problems

DHSP Demand hitting set problem
GSCP Geometric set cover problem
HSP Hitting set problem

xv

List of Abbreviations and Symbols

MICntP Multiple-Interval containment problem
MC Multicover problem
R3-SAT Boolean satisfiability problem in which each variable appears exactly

three times
SAT Boolean satisfiability problem
SCP Set cover problem
WDHSP Weighted demand hitting set problem
WSCP Weighted set cover problem

Algorithms

B&B Branch and Bound
ED Earliest deadline
EST Earliest start time
GA Genetic algorithm
ILP Integer linear programming
JRAPS Joint radar assignment and power scheduling
LP Linear programming
NSGA-II Non-dominated sorting genetic algorithm II
RSST-EST Random shifted start time - earliest start time
ZMFD Zoutendijk method of feasible directions

Intervals and Interval Sets

l(i) Left endpoint of single interval i
r(i) Right endpoint of single interval i
|i| Size of single interval i, equal to r(i)− l(i)
I Set of unions of any number of single intervals
1-I Set of single intervals
t-I Set of unions of up to t single intervals

Passive Radar System

SN Collection of the system’s sensor nodes
SNi i-th system’s sensor node, SNi ∈ SN
Ri Collection of receivers belonging to the i-th sensor node
Ri,j j-th receiver belonging to the i-th sensor node, Ri,j ∈ Ri

Ci,j Configuration of receiver Ri,j

xvi

f(Ci,j) Multiple-Interval that describes which frequencies are monitored by
the configuration Ci,j

Ci,j Set of all possible configurations of receiver Ri,j

fi,j Single interval that describes all frequencies which can be monitored
by receiver Ri,j

RT Collection of system’s receiver types
RT(Ri,j) Receiver type of receiver Ri,j

RTi i-th system’s receiver type, RTi ∈ RT
C(RTi) Set of all possible configurations of receiver type RTi

f(RTi) Single interval that describes all frequencies which can be monitored
by receiver type RTi

Requests

R Set of all requests
n Number of all requests

Rtrack Set of track requests
ntrack Number of track requests
rtrack Track request
E(rtrack) Set of emitters which belong to track request rtrack
e Emitter
f(e) Single interval that describes at which frequencies emitter e broadcasts
bmax(e) Upper bound on the size of receiver configurations that can measure

emitter e
P (bmax) Probability that the randomly generated emitters have finite bmax(e)

M̂(rtrack) Maximal measurement frequency of track request rtrack
m̂(rtrack) Goal measurement frequency of track request rtrack
IG(rtrack) Information gain function of track request rtrack
IG ′(rtrack) Predicted future information gain of track request rtrack
IG−(rtrack) Last change in information gain of track request rtrack when it was

measured
IG+(rtrack) Last change in information gain of track request rtrack when it was

not measured

Rsurvey Set of survey requests
nsurvey Number of survey requests
rsurvey Survey request
f(rsurvey) Single interval that describes which frequencies should be surveyed

according to the request rsurvey
m̂(rsurvey) Goal measurement frequency of survey request rsurvey

xvii

List of Abbreviations and Symbols

S(rsurvey) Set of sub-surveys of survey request rsurvey

sr Sub-survey (request)
f(sr) Single interval that describes which frequencies belong to sub-survey sr
m̂(sr) Goal measurement frequency of sub-survey sr
mhist(sr) Historical measurement frequency of sub-survey sr

Ruser Set of user requests
nuser Number of user requests
ruser User request
C(ruser) Configuration of user request ruser
SN (ruser) Set of sensor nodes of user request ruser
τ(ruser) Starting measurement interval of user request ruser
τ(ruser) Ending measurement interval of user request ruser

Rnoise Set of noise requests
nnoise Number of noise requests
rnoise Noise request
f(rnoise) Single interval that describes which frequencies cannot be observed

according to the request rnoise

Construction of Tuning Plan

l Size of the tuning plan, its duration in measurement intervals
L Tuning plan
H Collection of previous tuning plans

s Number of prediction steps during the computation of track measurement
frequencies

s− Number of prediction steps during which the target is measured
s+ Number of prediction steps during which the target is not measured

ÎG Goal information gain for each target during the computation of track
measurement frequencies

B Set of all blocks
B Block
C(B) Configuration of block B
RT (B) Receiver type of block B
SNN (B) Sensor node need of block B
m̂(B) Goal measurement frequency of block B

xviii

m(L,B) Realized measurement frequency of block B by tuning plan L
γ Discount factor
P Set of positions
P Position

Multiple-Interval Containment Problem

C Set of covers
c Multiple-interval cover
cost(c) Cost of cover c
type(c) Type of cover c
Tcover Set of all cover types

T Set of targets
t Multiple-interval target
demand(t) Demand of target t
size(t′) Cover size limit of single interval t′ from target t
type(t) Type of target t
Ttarget Set of all target types

Miscellaneous Abbreviations

BCRLB Bayesian Cramér-Rao lower bound
BD-AI Bayesian detector and amplitude information
DAG Directed acyclic graph
PC-CRLB Predicted conditional Cramér-Rao lower bound
PCRLB Posterior Cramér-Rao lower bound
TU Totally unimodular

xix

Chapter 1

Introduction

The Passive ESM Tracker VERA-NG is a passive radar used for detection, localization,
tracking, and identification of air, ground, and naval objects traditionally called targets.
To achieve all this, the system must use its receivers to observe the frequencies of interest,
where targets might broadcast. Unfortunately, the total size of simultaneously monitored
frequencies is relatively small due to receiver limitations and their extremely high price.
Therefore, it is essential to configure them so that as many of the demanded frequencies
as possible are observed and all the system-specific constraints hold. The receiver config-
urations during different time intervals are determined by a schedule called a tuning plan.
The goal of this thesis is to propose an algorithm for the construction of optimized tuning
plans. Throughout the system’s runtime, frequencies of interest and constraints frequently
change, hence tuning plans cannot be reused and the following tuning plan must be created
during the execution of the previous one. Consequently, the proposed algorithm must be
fast enough to accomplish this.

Practically all existing literature about the optimization of radar systems focuses on regular
non-passive radars whose characteristics are, unfortunately, significantly different from
passive radars. One of the few exceptions is the paper by Kulmon et al. [1] which even
considered the same system as we. The main contribution of this work to the field of passive
radars is the optimization of receiver configurations via the newly introduced multiple-
interval containment problem (MICntP). This problem could be described as a well-known
set cover problem (SCP) over interval-like subsets which in our case represent monitored
frequencies.

The thesis is divided into six chapters if the current one is included. The second chapter
contains a brief introduction to radar principles and the VERA-NG system. We also
provide a literature overview of current research in the field of radar systems optimization.
Then the SCP, closely connected to radar optimization, is formulated with its solution
methods. We also present the existing work discussing the SCP and other related problems

1

1. Introduction

over interval-like objects.

In the subsequent chapter, we first define the terminology used to describe intervals which
significantly simplifies the text. Then, the chapter describes a theoretical model of a passive
radar system that is considered during the algorithm’s construction. It also introduces four
request types using which the user and radar subsystems communicate their demands to
the algorithm and are later used to formulate the criterion.

The fourth chapter finally presents the proposed algorithm for the construction of tuning
plans which is separated into five steps. Each of these steps is described in detail in
a separate subchapter. A standalone chapter is also dedicated to the MICntP where
the problem is introduced together with various constraints influencing its character and
difficulty. We then derive the complexity of differently constrained MICntPs and propose
methods for solving them.

In the fifth chapter, we analyze the dependence between input requests and the algorithm’s
run time in a simplified scenario. Throughout the experiments, input requests are randomly
generated and either their number or some of their characteristics is used as an independent
variable.

The final chapter summarizes the work presented in this thesis, reiterates our contribution
to the optimization of radar systems, and lists possible directions for future research.

2

Chapter 2

Background and State-of-the-Art

Them bats is smart. They use radar!

— David Letterman

This chapter serves as an introduction to the current research topics, methods, and prob-
lems on which we will build in the following chapters. The first subchapter provides a quick
introduction to radars and radar systems which includes their basic principles, abilities,
history, and applications. It then briefly focuses on a special radar type called passive
radar and one of its representatives named VERA-NG. The following subchapter describes
the problems in the field of radar system optimization by summarizing some of the recently
published research papers. Finally, in the last chapter, we introduce the SCP, other related
problems, and their contemporary solution methods. All of which are closely related to
the optimization of radar systems.

2.1 Introduction to Radar

The radar can be defined as an electromagnetic sensor for the detection and localization
of reflecting objects [2]. The basic work of the radar can be described in several steps.
Firstly, the radar’s transmitter antenna emits electromagnetic pulses in given directions.
These pulses propagate through the atmosphere and some of them are intercepted by a
reflecting object, which is called the target. Part of the intercepted energy is absorbed by
the target and the other part is scattered in many directions including the radar’s receiver
antenna. The received signal is amplified and processed to distinguish between noise and
target echo from which can then be computed target location and other information.

For the calculation of the target location, the radar determines the distance to the ob-
served object according to the round-trip time of the produced electromagnetic pulse. The
azimuth and elevation angle correspond to the angular direction of the radar’s antenna

3

2. Background and State-of-the-Art

where the magnitude of the echo signal is maximal [3]. These three values form spherical
coordinates centered at the radar position which can be transformed to obtain the target’s
absolute location. Some radars can also obtain the target’s radial velocity (speed toward
the radar), by measuring the frequency shift caused by the Doppler effect, or identify its
shape and type [2].

The first principles of radar were formulated and experimentally confirmed at the end of
the 19th century by James Maxwell and Heinrich Hertz. At the beginning of the 20th
century, several scientists proposed to use these principles for ship navigation to avoid
collisions [4]. With the fast development of aviation following the First World War, British
scientist Robert Watson-Watt came up with an idea to detect military aircraft using radar.
In 1939 the first radar system called Chain Home was constructed along the southern and
eastern coast of Great Britain, as can be seen in Figure 2.1, to provide early warning
against enemy air raids. This system played an essential role in the British victory in the
Battle of Britain at the beginning of the Second World War [5]. During the war, almost
all of the major nations used and experimented with radars for various tasks ranging
from submarine detection to bomber navigation. Around this time, the term radar was
introduced by the United States Navy as an acronym derived from RAdio Detection And
Ranging [8]. In the 1950s, radars started using the Doppler effect to measure the speed of
detected objects which found its use not only in military applications but also in radar speed
guns, navigation, and in meteorology to compute the movement of precipitation. Another
important development was the introduction of passive phased array (PESA) antennas
allowing for the tracking of several objects at once due to its ability to quickly switch the
radar direction. The radar development swiftly continued throughout the entire Cold War
hand in hand with the development of electronics, signal filtering, data processing, and
computer technology [4].

Since the introduction of radar, its most important applications and developments have
been in the military [3] where it is employed in many forms for navigation, weapon control,
missile guidance, enemy detection, and tracking of various objects on the sea, land, and
even on the ground. Being an essential part of almost every air defense system, it is used
for surveillance, target tracking, and recognition. As already mentioned, radars are used
in meteorology for weather observation and to determine wind velocity and direction at
different altitudes, as is shown in Figure 2.2. This is especially useful at the airfields, around
the runways, to warn before sudden wind changes which pose a danger to aircraft during
takeoff and landing [2]. Other types of radars stationed at the airfields are used to observe
and safely control the air traffic. Ships use radars as a safety measure to detect nearby
ships, locate navigation markers in bad weather conditions, and map nearby coastlines [4].
The ground-penetrating radar can detect subsurface structures in a non-intrusive way,
which is especially convenient for archeological imaging and mapping of buried artifacts
and objects [2].

Many radar types exist which can be categorized in many ways, we will mention some of

4

2.1. Introduction to Radar

Figure 2.1: Chain Home radar system. The left image shows the transmitter towers of
the Bawdsey Chain Home station [6] while the map describes the radar coverage of Great
Britain at the beginning of the Second World War [7].

these categories. The radars are often described as either monostatic or bistatic. Bistatic
radars have antennae for the transmitter and receiver separated by a large distance, often
many kilometers. On the other hand, the antennae of monostatic radars are positioned near
each other, possibly on the same structure, but more often the transmitter and receiver
share a single antenna [3]. Radar’s transmitter can emit two types of signal - pulsed or con-
tinuous wave. Pulsed radars switch between the transmit and receive phases which results
in an emission of a repetitive series of electromagnetic pulses, by contrast, continuous wave
radar emits a continuous sine-wave signal [11]. Furthermore, it is possible to group radars
according to the frequencies at which they operate. Radars operating at lower frequencies
are usually high-powered with large antennas which allows them to detect targets at long
ranges. In comparison, high-frequency radars have higher bandwidth and produce more
focused electromagnetic beams resulting in more precise localization of targets [2].

5

2. Background and State-of-the-Art

Figure 2.2: The left picture shows the weather radar on the top of Praha hill in Brdy
mountains [9]. It is part of the radar network of the Czech Hydrometeorological Institute.
The right figure illustrates the precipitation map produced by processing the information
collected by this network [10].

Passive radar represents a unique type of radar without a transmitter that for target
detection and tracking exploits signals already present in the environment. The sources
of such signals are called illuminators of opportunity and can include public broadcasts,
communication signals, and other radars [12]. Throughout the years many different terms
for passive radar were proposed and are still used, these include: passive coherent location
(PCL), passive covert radar (PCR), parasitic radar, and passive surveilance. The passive
radar system usually consists of multiple receivers positioned at different locations which
together with the illuminators form bistatic pairs, similar to bistatic radar, that are used for
target localization. Each receiver measures the direct signal produced by the illuminator
and the same signal echoed from the target, the Time Difference Of Arrival (TDOA) of
those two signals is then used to compute the target’s location. The difference between
the two signals can be also utilized to obtain further information about the target [13].
Because the passive radar does not emit any signals, its operation is considered to be covert
which is essential for its military applications.

2.1.1 VERA-NG

In its full English name, Passive ESM Tracker VERA-NG is a passive radar system pro-
duced by a Czech company ERA a.s. As is usual for radars, it is used for detection,
localization, tracking, and identification of air, ground, and naval targets. Furthermore,
as the name suggests, the system can work as an electronic support measure (ESM) that
gathers, processes, and evaluates electronic intelligence (ELINT) information which can be

6

2.2. Literature Review on Optimization of Radar Systems

Figure 2.3: Main working principles of VERA-NG system.

stored in a reference database of emitters for further use. The system consists of four sensor
nodes, each with several receivers that can process both pulse and continuous wave signals
which are then used for high-accuracy target localization based on the TDOA principle,
as can be seen in Figure 2.3. One of the sensor nodes is considered to be central because
it contains a central processing station that processes and evaluates all of the measured
signals. The communication between the sensor nodes is provided either by microwave link
connection or by fiber-optic cable.

2.2 Literature Review on Optimization of Radar Systems

Regardless of whether it consists of a single radar or multiple transmitters and receivers,
every radar system benefits from a properly optimized algorithm that can maximize its
performance based on the available resources. This chapter will introduce some of the ex-
isting tasks and problems in the field of radar systems optimization and recently published
methods that solve them. The optimization of individual radar behavior can include: bal-
ancing between target tracking and frequency survey, scheduling of already predetermined
tasks, and the composition of various radar beam shapes. Meanwhile, the optimization
of systems with multiple radars is, for example, interested in a target-radar assignment,
target power allocation, and minimization of the power emitted by radars while keeping

7

2. Background and State-of-the-Art

the demanded tracking accuracy. For almost all of these problems, at least some of the
optimized variables are discrete, thus it is not possible to use the well-known techniques of
continuous optimization and we have to approach these problems by utilizing more com-
plex methods of combinatorial optimization. Furthermore, it has to be noted that any
algorithm suitable for deployment must be able to optimize the system’s behavior in real-
time which is by itself problematic because the duration of tasks is of the order of tens of
milliseconds.

Qu et al. [14] propose a fast radar scheduling method based on the earliest start time (EST)
algorithm enhanced by Monte Carlo sampling which is called Random Shifted Start Time
EST (RSST-EST). The problem formulation considers multiple non-preemptive tasks that
should be scheduled into a limited time window. Each task consists of five values: the
ideal start time of task execution, the dwell time - task duration, task priority, and the
earliest and latest time when the task execution can start. The goal is to minimize the
total cost which is the mean square error over the cost of individual tasks. When the task is
scheduled between the earliest and latest time, the task cost corresponds to its normalized
distance from the start time multiplied by its priority, otherwise, it is equal to its priority
multiplied by the task drop penalty. At the beginning, the algorithm creates a schedule
using the EST algorithm w.r.t. to ideal start times. Then the predetermined amount of
Monte Carlo steps are simulated, each step consists of randomly sampling the shifted start
time of each task, such that it lies between its earliest and latest time, and running EST
with these shifted start times. The cheapest schedule is returned by the algorithm as a
solution, the comparison of created schedules and their cost can be seen in Figure 2.4. The
addition of RSST resulted in a 1.4 to 9.1 times smaller cost than the simple EST method
while having low computation time requirements.

A similar problem is solved by Shaghaghi et al. [15] where they consider multiple non-
preemptive tasks which are to be scheduled on several identical channels each within a given
time window. Every task is determined by its duration, starting time after which it can be
scheduled, deadline after which it is too late for the task to be scheduled, tardiness cost, and
dropping cost. They aim to minimize the cost of a schedule which is once again equal to the
sum of the costs of individual targets. The target cost corresponds to its dropping cost when
the task is not scheduled, otherwise, it equals the tardiness cost multiplied by the difference
between the time when it is scheduled and the start time. The proposed algorithm finds the
optimal schedule using the Branch & Bound (B&B) method which constructs the optimal
sequence of tasks that can be deterministically transformed into a schedule. Then the
found solutions are compared with the results provided by the various heuristic algorithms
based on the EST and earliest deadline (ED) principles. The authors are aware that the
B&B search is too time-consuming for any possible real-world application. This problem
is addressed in the follow-up paper [16] where the obtained optimal schedules are used
as a dataset to train the neural network for evaluation of B&B search tree nodes and
consequently for its pruning which results in a significant computational speed up at the
price of solution optimality. Nevertheless, the produced solutions are close to optimum

8

2.2. Literature Review on Optimization of Radar Systems

(a)

(b)

Figure 2.4: The example of task scheduling by EST and RSST-EST methods. It consists
of 50 tasks and 1000 Monte Carlo simulation steps. (a) The comparison of the normalized
costs of the EST schedule and all schedules generated by RSST-EST. (b) Original sequence
of tasks (black), the schedule produced by EST (red), the best schedule produced by RSST-
EST (blue). [14]

and still significantly better than those produced by heuristic methods.

Briheche et al. [17] study a completely different issue - the theoretical complexity of grid
cover problems in radar applications. The goal is to cover the surveillance space discretized
into a grid by various rectangular beams that can be formed by radar while minimizing the
cost of used beams. Therefore, this problem can be formulated as a weighted geometric
set cover problem. The paper considers different radar models and splits them according
to the character of their surveillance grid into three groups: line cover problems, circle
cover problems, and rectangular grid cover problems. This is shown in Figure 2.5. The
optimal solution of the unweighted line cover problem can be quickly found by a greedy
algorithm while the unweighted version is shown to be solvable in polynomial time by
dynamic programming or eventually by linear programming (LP). A similar dynamic pro-
gramming method can be used to solve the circle cover problem while the authors provide

9

2. Background and State-of-the-Art

Figure 2.5: Different radar types and how they translate into the grid cover problems
according to the beams they can form. Furthermore, the unidimensional cover problem
(lower left) splits into the line cover problem and circle cover problem depending on whether
the radar has full or limited azimuthal range. [17]

a counterexample demonstrating that LP cannot find the solution. On the other hand, it
is shown that the dynamic programming approach to the rectangular grid cover problem
has exponential time complexity and thus it is impractical to use. Furthermore, the vertex
cover is proven to be polynomially reducible to this problem, and as a consequence, the
rectangular grid cover is said to be NP-hard and log-APX -complete in most cases.

The above-mentioned optimization problems and their solutions are very similar to the
traditional methods present in the combinatorial optimization literature, specifically in
scheduling and SCP. In contrast, the following papers approach the optimization of radar
systems from a different angle. They skip the abstraction layer based on tasks and directly
optimize the schedule according to the expected measurement results. Consequently, they
put greater detail on the proper formulation of the criterion functions and constraints that
directly correspond to the target behavior and estimated outcomes of scheduled measure-
ments.

From our point of view, Kulmon et al. [1] published a very interesting paper because it is
concerned with scheduling for the same system as our work - VERA-NG. Their goal is to
produce an optimized schedule that successfully maximizes and balances the tracking of
existing targets (track) and the survey of frequencies for new targets (survey). The track
criterion corresponds to the approximation of the expected value of the information gained
when the targets are measured. The survey is equal to the Kullback-Leibler divergence
of the estimated stationary distribution of surveyed frequency spectra by the constructed
schedule and the stationary distribution of the optimal discrete-time Markov chain. For
experiments, the paper uses the simplified problem model with a single receiver and limited-
time schedule with equidistant time steps during which one of the predetermined frequency
bands is tuned. First, the authors inspect the schedules produced by the NSGA-II genetic

10

2.2. Literature Review on Optimization of Radar Systems

algorithm [18] for which the problem is formulated as multi-criteria. They conclude that
the track and survey criteria conflict - the track prioritizes bands with targets while the
survey attempts to reproduce the desired distribution. Then the problem is redefined as
ϵ-constrained where the survey is minimized while the track is constrained. This problem
is solved using a genetic algorithm (GA) similar to the previous one. Finally, two different
rolling horizon techniques are compared, one with full and the other with partial control
period. The rolling horizon is used when it is not possible to construct one schedule because
the executed commands change the future schedules and therefore the schedules must be
constructed repeatedly. The full control period means that the entire constructed schedule
is executed. In contrast, the partial control period signifies that only a part of the schedule
is carried out before the next construction. It is said that the partial control period is more
stable and provides significantly better results at the cost of time-consuming computation.

Sun et al. [19] focus on multi-target tracking (MTT) in multi-radar systems (MRS) with
imperfect detection and propose an algorithm called joint radar assignment and power
scheduling (JRAPS). The problem model consists of several monostatic radars spread
around the surveillance area, and different amounts of targets at various time intervals,
with each target having its tracking accuracy requirement. Furthermore, every radar can
track multiple targets at once with different power allocations that influence measurement
accuracy, as can be seen in Figure 2.6. The authors derive the posterior Cramér-Rao
lower bound (PCRLB) with imperfect detection and use it as a track performance metric.
Next, they formulate the optimization problem with a criterion based on this metric and
constraints corresponding to the system’s properties. Optimized variables are the binary
target-to-radar assignment matrix and real-valued power allocation matrix. The three-step
algorithm is proposed to solve the aforementioned task. During the first step, the power
is uniformly allocated and the target-to-radar matrix is filled by a greedy optimization
strategy. In the following step, the target-to-radar matrix is fixed while the power alloc-
ation is optimized by the Zoutendijk method of feasible directions (ZMFD). In the end,
the iterative elimination of target-to-radar assignments based on their global performance
is done which allows for power relocation and further decreases the criteria value. The
proposed metric and algorithm behavior are examined in a simulated environment with
10 radars and 3 targets at each time interval. The JRAPS method is compared with the
exhaustive search-based strategy which shows that its performance is close to the optimum
while being significantly faster.

Zhang et al. [20] address almost the same problem as Sun et al. [19] whose work is already
described in the previous paragraph. They consider a phased array radar network (PARN)
with several monostatic radars that track multiple targets. The tracker performance is
measured by newly formulated predicted conditional Cramér-Rao lower bound (PC-CRLB)
with Bayesian detector and amplitude information (BD-AI). The problem criterion is for-
mulated as the minimization of the mean squared error of the difference between track
metric and demanded accuracy subject to the limited number of false alarms and other
system limitations. The optimization is achieved by setting the amount of time the radar

11

2. Background and State-of-the-Art

Figure 2.6: The example of MRS for MTT with a specific target-to-radar assignment and
parametrized power allocations ρ that is considered in [19].

focuses on a given target (dwell time) and pre-detection thresholds which influence the false
alarm count. The authors propose the cyclic two-step algorithm, the first step optimizes
the dwell time, while the second step optimizes thresholds. Both optimization steps are
done by the ZMFD method combined with the local search to increase the accuracy of the
solution. These two steps are repeated while the improvement remains significant. The
numerical simulation of PARN with 3 radars and 3 targets is done for various scenarios
that confirm the proposed method’s robustness.

Once again, Shi et al. [21] study the radar network with several radars which are supposed
to track multiple low probability of intercept (LPI) targets. The tracking accuracy is
predicted by the Bayesian Cramér-Rao lower bound (BCRLB). The system has three types
of variables: binary target-to-radar selection variables that assign which targets are tracked
by which radar, transmit power variables representing how much power the radar allocates
for a given target, and signal bandwidth variables that influence the bandwidth of waves
emitted by the radar toward the target. The problem is formulated as a minimization
of total power consumption under the constraints that the target track accuracy must be
maintained, each target can be tracked by only one radar, and existing system limitations.
The proposed method for solving this problem checks all possible combinations of target-to-
radar assignments and for each of these, the sub-problem with fixed assignment is optimized
by a GA. The testing scenarios consist of a radar network with 6 monostatic radars and
2 targets, the comparison is made between the proposed method with and without the
bandwidth optimization which is said to verify the correctness of the proposed methods.

12

2.3. Set Cover Problem and Its Variants

2.3 Set Cover Problem and Its Variants

The SCP is a well-known optimization problem mostly studied in the fields of computer
science, combinatorial optimization, and operations research. It can be used to solve many
problems encountered during the optimization of radar systems, some of which were already
mentioned in the previous chapter. These problems include not only the space coverage by
radar beams as studied by Briheche et al. [17]. For example, the radar-to-target assignment
problem could be resolved by generating a large set of feasible assignments with costs and
selecting the optimal subset using the weighted SCP. The optimization version of SCP is
defined as follows:

Definition 2.1. Set cover problem is denoted as (U ,S) where U is finite set of elements
{1, . . . ,m} called the universe and S is a set of n subsets of U . The problem is to find a
minimum-sized subset S ′ ⊆ S such that it covers the whole universe U =

⋃
S∈S′ S. This

can be formulated as:
min
S′

|S ′|

s.t.: U =
⋃
S∈S′

S

S ′ ⊆ S.

(2.1)

This basic formulation is often extended by the addition of subset costs which changes the
criterion to the minimization of the total cost of selected subsets, such a problem is called
weighted SCP (WSCP).

Definition 2.2. Weighted set cover problem is described by (U ,S, c) where U , S are
the same as in Definition 2.1 and function c : S −→ R≥0 assigns cost to each subset. The
goal is to find a subset S ′ ⊆ S such that it covers the whole universe U =

⋃
S∈S′ S and its

cost
∑

S∈S′ c(S) is minimal. It can be written as:

min
S′

∑
S∈S′

c(S)

s.t.: U =
⋃
S∈S′

S

S ′ ⊆ S.

(2.2)

As can be seen from its formulation, the problem is very general and as a consequence,
it is difficult to develop a reasonably fast optimization algorithm that works well for all
possible input values. This is supported by the fact that the decision version of SCP,
whose goal is to decide whether it is possible to cover the set U by at most k sets from S,
was proved to be NP-complete problem by Richard Karp in 1972 and it belongs among
the oldest problems to be proved so [22]. Furthermore, the optimization version of SCP
as formulated in (2.1) is known to be NP-hard [23]. With the optimal solution being

13

2. Background and State-of-the-Art

computationally intractable for larger instances, the researchers focused on approximation
algorithms that provide theoretical guarantees for its solution. Chvátal [24] proved that the
criterion value of solution produced by the greedy approximation algorithm, which works
by iteratively adding a subset S ∈ S to a solution S ′ that contains the greatest number
of still uncovered elements, is at most the H(maxS∈S |S|) multiple of the optimum, where
H(k) =

∑k
i=1

1
i
≤ ln k + 1. In 2014, Dinur and Steurer [25] verified that for every α > 0,

it is NP-hard to approximate set cover to within (1− α) lnn of optimum.

Algorithms providing exact solutions of SCP and WSCP are mainly based on the integer
linear programming (ILP) or variations of B&B method [26]. The ILP that corresponds
to the WSCP is formulated in (2.3), where the vector x ∈ {0, 1}m denotes which subsets
from S are selected, the vector c ∈ Rm

≥0 corresponds to the subset costs, and i-th column
of matrix A ∈ {0, 1}m×n represents which elements are present in the i-th subset of S.
Nowadays, even relatively large SCPs can be solved in a reasonable time by both commer-
cial and open-source general-purpose ILP solvers, like for example Gurobi, CPLEX, CBC,
GLPK, or HiGHS.

min
x

cTx

s.t.: Ax ≥ 1

x ∈ {0, 1}m
(2.3)

Since the ILP is NP-hard and likely impossible to solve in polynomial time, it would be
convenient if at least a subset of this problem was proven to be polynomial. Fortunately,
it is a well-known fact [27] that:

Theorem 2.3. Any LP denoted as {minx c
Tx |Ax ≥ b,x ≥ 0}, where the matrix A is

totally unimodular (TU) and the vector b is integral, has integral optima.

Corollary 2.4. When the matrix of WSCP is TU, the LP relaxation described in (2.4)
has an integral solution and the whole problem can be solved in polynomial time.

min
x

cTx

s.t.: Ax ≥ 1

x ∈ [0, 1]m

(2.4)

Furthermore, Schöbel [28] states that when the WSCP matrix is TU, it is possible to
reformulate the problem as a network flow problem in an acyclic network. They also prove
that under the same condition, the task can be transformed into the shortest path problem
in a directed acyclic graph.

The methods based on the B&B principles explore a tree of all possible solutions while its
branches are pruned according to the lower bounds of partial solutions. These lower bounds
are usually based on the optimum value of LP relaxation of SCP. Even the computation

14

2.3. Set Cover Problem and Its Variants

of the relaxed problem is too time-consuming considering that it has to be done in every
tree node. Consequently, Lagrangian relaxation combined with subgradient optimization
is often used to find near-optimal solutions [26].

Heuristic algorithms mostly work based on a similar principle as the greedy approximation
algorithm studied by Chvátal [24] - they iteratively build the solution by adding new subsets
that are selected according to some heuristic function. These functions are often based on
the Lagrangian costs of subsets which can be considered as by-products of solving the
Lagrangian relaxation of the problem. Unfortunately, these costs must be part of a more
complex heuristic because the solutions produced by different near-optimal Lagrangian
costs frequently have very different criterion values [26].

The SCP can be used to formulate and solve a wide range of problems, we include some of
them as examples. Since the 1970s, it has been used for various job and crew scheduling
problems mostly by transportation companies. This includes the airline crew scheduling
that usually consists of generating a huge amount of crew schedules according to the
predefined constraints and then solving the SCP to cover all of the planned flights by the
least amount of generated schedules [29][30]. Another famous application is a selection
of optimal facility locations to minimize the number of them needed to cover all of the
customers [31]. The facilities can include radar installations, schools, hospitals, police, and
fire stations [32]. Hochbaum et al. [33] formulate the task of labor scheduling, where at
each time interval the specific number of workers must be at work, as a special case of
WSCP called the multicover problem (MC) defined as follows.

Definition 2.5. Multicover problem given by (U ,S, c, d), where U ,S, c have the same
meaning as in Definition 2.2 and function d : U −→ N represents demand of each element.
The task is to find a collection of subsets S ′ (subsets can repeat) sampled from S such that
every element e ∈ U is present in at least d(e) selected subsets and its cost

∑
S∈S′ c(S) is

minimal.

In (2.5) the MC problem is formulated as ILP, which is similar to the formulation of
WSCP in Equation (2.3) with the difference that the vector x represents how many times
the subset from S is selected and vector d denotes the demand of individual elements.

min
x

cTx

s.t.: Ax ≥ d

x ∈ Nm

(2.5)

Hochbaum et al. study three different types of work shifts depending on the character
of binary vectors that make up the matrix A. When the shifts are consecutive - the
vectors have consecutive ones property, the problem can be solved as minimum cost network
flow. The second considered shift type is called cyclical and the vectors have consecutive

15

2. Background and State-of-the-Art

zeros property. They show that the problem with cyclical shifts and constant valued
vector d is solvable in polynomial time. On the other hand, the general cyclical shift
problem is claimed to be equivalent to the exact matching problem which is known to have
RP complexity. The final examined shift type is k-multi-shift which corresponds to the
vectors that consist of k consecutive blocks of ones. The authors provide a k-approximation
algorithm for this problem and also prove [33] that:

Theorem 2.6. There is a polynomial reduction of the R3-SAT problem into a 2-multi-shift
MC problem.

The R3-SAT problem denotes a special case of the boolean satisfiability problem (SAT) in
which each variable appears exactly three times. The R3-SAT is known to be NP-hard as
described in [22], problem LO1.

Corollary 2.7. For any k ≥ 2, the k-multi-shift MC problem is NP-hard even when the
demand vector equals 1.

Due to the complexity of the basic version of SCP, the research mostly focuses on more
specific problem instances that are often significantly easier to solve. SCPs in which both
the covered elements and their subsets can be represented by geometric objects are called
geometric set cover problems (GSCP). For example, it is known [34] that the optimal
covering of an interval by its subintervals is solvable in polynomial time. Edwards et al. [34]
consider a similar problem where the interval and subinterval endpoints are integral while
only a fraction of the interval has to be covered. Although this problem is optimally solvable
in quadratic time, they provide an approximate algorithm with lower time complexity that
is useful when working with large-volume data. It is shown that for given ϵ > 0 the
proposed algorithm is (1 + ϵ) approximation of optimum with O(1

ϵ
min{m + n, n log n})

time complexity, wherem is the size of covered interval andm is the number of subintervals.

Another NP-hard problem that is closely related to the SCP is called the hitting set
problem (HSP). We can understand it as an ”inverted” version of the SCP. Instead of
selecting subsets such that all elements are covered, the task is to select elements so that
all subsets contain the demanded amount of these elements. It even has similar extensions
based on adding demands and costs creating the demand HSP (DHSP) and weighted DHSP
(WDHSP).

Definition 2.8. Demand hitting set problem is given by (U ,S, d) where U is finite
set of n elements called the universe, S is a set of subsets of U , and function d : S −→ N
indicates the demand of each subset. The goal is to find the minimum-sized subset H ⊆ U
such that each subset S ∈ S contains at least d(S) elements from H. The problem can be

16

2.3. Set Cover Problem and Its Variants

denoted as:
min
H

|H|

s.t.: |S ∩H| ≥ d(S) ∀S ∈ S
H ⊆ U .

(2.6)

Definition 2.9. Weighted demand hitting set problem is given by (U ,S, d, c) where
U ,S, d are the same as in Definition 2.8, and function c : U −→ R≥0 determines the cost of
each element. The task is to find the cheapest subset H ⊆ U such that each subset S ∈ S
contains at least d(S) elements from H. We can formulate the problem as follows:

min
H

∑
e∈H

c(e)

s.t.: |S ∩H| ≥ d(S) ∀S ∈ S
H ⊆ U .

(2.7)

Krupa et al. [35] consider problems of DHSP and WDHSP where the elements are points on
a real line and subsets are represented by intervals. They prove that the greedy algorithm
solves the DHSP version of this problem in linear time. Then, WDHSP with equal de-
mands is shown to be solvable by minimum cost flow, and consequently, the problem has
polynomial time complexity. Finally, the proposed minimum cost flow is generalized to
solve any ”point-interval” WDHSP.

17

Chapter 3

Problem Statement

Our task is to design an algorithm for producing optimized schedules that determine the
behavior of passive radar systems while maximizing their efficiency limited by available
resources. Even though, the presented algorithm was originally intended only for the
VERA-NG system, described in Section 2.1.1, we in this and the following chapters assume
a generalized passive radar system which will be described shortly. But first, to simplify
the text we introduce notations that will be used to further describe intervals and unions
of intervals. These are inspired by Butman et al. [36] who study the problems of minimum
vertex cover, minimum dominating set, and maximum clique of multiple-interval graphs.
From now on:

Definition 3.1. The interval defined as i = [a, b] = {x ∈ R | a ≤ x ≤ b ; a < b} will be
called single interval. The set of single intervals will be denoted as 1-I.

The leftmost point a of the single interval i will be indicated as l(i). Similarly, the rightmost
point b can be written as r(i). Finally, the size of the single interval is denoted as |i| and
it is equal to b− a.

Definition 3.2. The t-interval i is the union of t ∈ N pairwise disjoint single intervals
i1, . . . , it, such that i =

⋃t
k=1 ik. The set of t′-intervals, where t′ ≤ t, is written as t-I.

Definition 3.3. Multiple-interval can be an arbitrary single interval or t-interval where
t ∈ N. The set of multiple-intervals is symbolized as I.

Definition 3.4. We say that the multiple-interval t is contained by multiple-interval c
or that c contains t if t ⊆ c.

These definitions are illustrated in Figure 3.1

The assumed passive radar system consists of four sensor nodes deployed at different loc-
ations, denoted as SN = (SN 0, SN 1, SN 2, SN 3). Each sensor node SN i has receivers

19

3. Problem Statement

i1:

i2:
i2,1 i2,2 i2,3

Figure 3.1: The figure shows an example of a single interval i1 ∈ 1-I and a 3-interval
i2 ∈ 3-I that consists of three disjoint single intervals i2,1, i2,2, and i2,3. Both i1 and i2 can
be described as a multiple-interval. Furthermore, we can say that i1 is contained by i2 or
that i2 contains i1.

Ri = (Ri,0, Ri,1, . . .), as can be seen in Figure 3.2a. For any receiver Ri,j, its configura-
tion Ci,j determines which frequencies it observes. These frequencies can be described by
multiple-interval f(Ci,j). The possible configurations of a receiver are determined by its
type RT (Ri,j). The collection of all receiver types present in the radar system is symbol-
ized by RT = (RT 0,RT 1, . . .). Each sensor node must have at least one receiver of each
type. The set of possible configurations of receivers with type RT i is denoted as C(RT i),
and its union forms a single interval called the measurable frequencies f(RT i):

f(RT i) =
⋃

C∈C(RT i)

f(C). (3.1)

An example of possible measurable frequencies of different receiver types is provided in
Figure 3.2b. It holds that measurable frequencies of receiver types do not overlap. To
be more precise, for every pair of receiver types the size of the intersection of measurable
frequencies is at most one:

∀RT i,RT j ∈ RT; i ̸= j : |f(RT i) ∩ f(RT j)| ≤ 1. (3.2)

The passive radar system works in evenly sized time intervals, called measurement intervals,
that are synchronized across all sensor nodes. Their assumed duration is in the lower tens
of milliseconds. During each measurement interval, every receiver monitors frequencies
according to its configuration. This configuration can be instantly changed at the time of
transition to the next measurement interval. The schedule specifying the configuration of
all receivers for l measurement intervals is called a tuning plan L of size l = |L|. We expect
the tuning plan’s size to be between 5 and 50 measurement intervals. Figure 3.2c shows
an example of a tuning plan for the system presented in Figure 3.2a.

The system and user demands are communicated to the algorithm by requests. The al-
gorithm’s goal is to realize them as best as the limited resources - receivers - allow and
consequently, they shape its behavior. The set of all requests is denoted as R, its size
is n = |R| and we assume it will be in the lower hundreds. We consider four request
types: track, survey, user, and noise. It holds that R = Rtrack ∪ Rsurvey ∪ Ruser ∪ Rnoise,
and consequently: n = ntrack + nsurvey + nuser + nnoise. To describe how often is a track or

20

R2

RT 1

RT 2

RT 3

R2,0 R2,1

R2,2

R2,3

SN0

SN1

SN2

SN3

(a) The Diagram shows one of the possible compositions of the assumed passive radar system. It
has four sensor nodes with three receiver types. The receiver composition of the second sensor
node can be seen in detail.

f(RT 1) :
f(RT 2) :
f(RT 3) :

f [GHz]0 2 6 7 11

(b) Visualization of measurable frequencies of different receiver types in a passive radar system.
It can be seen that the equation (3.2) holds.

τ0 1 2 3 4 5 6 7 8 9 10 11

SN0

SN1

SN2

SN3

R2,0

R2,1

R2,2

R2,3

C2,1 during
measurement
interval 8

previous plan future plan

(c) The tuning plan of length 12 for the passive radar system which has already been presented in
(a). The x-axis corresponds to discrete time intervals called measurement intervals and the y-axis
represents the system’s receivers. Each grid tile corresponds to the planned receiver configuration
at a corresponding measurement interval.

Figure 3.2: The example of an assumed Passive Radar System.

21

3. Problem Statement

survey request realized we introduce a new unit of measurement called the measurement
frequency, defined as the number of realized measurements per one measurement interval.

First, let us consider a single emitter e that is described by single interval f(e) and positive
real value bmax(e). The f(e) specifies at which frequencies the emitter broadcasts while
the bmax(e) sets the upper bound on the size of receiver configurations that can measure
it. We assume that the f(e) fully lies inside the measurable frequencies that belong to
one of the system’s receiver types. Let us consider a configuration such that at least one
single interval from the configuration’s multiple interval that contains f(e) is lesser or equal
to bmax(e). We say that the emitter is measured during a measurement interval τ when
at least one receiver on each sensor node has this configuration during the measurement
interval τ . Each track request rtrack ∈ Rtrack corresponds to exactly one target tracked by
the system. It is described by the set of its emitters E(rtrack) = {e0, e1, . . . } and maximal

measurement frequency M̂(rtrack). The union of all emitter frequencies is multiple-interval
denoted as f(rtrack).

f(rtrack) =
⋃

e∈E(rtrack)

f(e) (3.3)

We say that the request is realized or the target is measured when at least one of its
emitters is measured as in Figure 3.3. Every measurement is likely to improve the system’s
information about the target. Since the request does not specify its goal measurement
frequency m̂(rtrack) - how often the request should be realized - it must be first computed
by the algorithm. Because of this, we consider that each track request has information
gain function IGrtrack . The function at the end of each measurement interval specifies the
maximal possible amount of information gained by measuring the target in the following
interval. We assume that for each track request, there exists at least one configuration
that realizes this request. Otherwise, the system would not be able to measure the target.

The survey request rsurvey ∈ Rsurvey is characterized by a single interval f(rsurvey) and
goal measure frequency m̂(rsurvey). As the name suggests, it describes which frequencies
f(rsurvey) should be examined for potential targets and also how often m̂(rsurvey) it should
be done. The frequency f ∈ f(rsurvey) is said to be surveyed during the measurement
interval τ when at least one receiver has a configuration C such that f ∈ f(C) during
the interval τ . Ideally, surveys of the same frequency should be distributed on different
sensor nodes throughout the time intervals to ensure complete exploration. We assume
that the observed frequencies of survey requests do not overlap. More exactly, for each
pair of survey requests the size of the intersection of surveyed frequencies is at most one,
which is also described in the following equation:

∀r1, r2 ∈ Rsurvey; r1 ̸= r2 : |f(r1) ∩ f(r2)| ≤ 1. (3.4)

Let us consider a real-world scenario, some emitter is periodically broadcasting and a
system’s receiver attempts to intercept it with the same period but a different phase
shift. Due to this shift, the emitter and receiver are never active simultaneously, and

22

rtrack: e1

bmax(e1) = 150MHz

e2

bmax(e2) = 125MHz

e3

bmax(e3) = 200MHz

C1: ✗
C2: ✗
C3: ✓

f [MHz]2125
2150

2200 2300 2350
2375

2425
2450

2600
2625

2650

Figure 3.3: The figure shows a track request rtrack and three sensor configurations:
C1, C2, C3. The request consists of three emitters E(rtrack) = {e1, e2, e3} with different
maximal bandwidths. Configuration C1 does not realize the request because it contains
no emitter. Configuration C2 does contain the emitter e1 but it is larger than bmax(e2),
thus the target can not be measured by it. Finally, the third configuration C3 contains the
second emitter e2 and is smaller than bmax(e2) consequently it can realize the track request.

consequently, the receiver never intercepts the broadcasted signals. This phenomenon is
called emitter-receiver synchronization and is described by Kulmon et al. [1]. To mitigate
it, the realization of the same track or survey request must be scheduled aperiodically.

The user request ruser ∈ Ruser is a high-level command that must always be scheduled. It
is the only way a system or user can directly influence the tuning plan contents. Request
consists of configuration C(ruser), set of sensor nodes SN (ruser), and two measurement
intervals τ(ruser) and τ(ruser), such that τ(ruser) ≤ τ(ruser). The request is scheduled if at
least one receiver on each of the sensor nodes SN (ruser) has configuration C(ruser) from
measurement interval τ(ruser) to τ(ruser).

The noise request rnoise ∈ Rnoise describes at which frequencies specified by single interval
f(rnoise) is present noise that negatively influences the system’s performance. Therefore,
these frequencies cannot be part of any scheduled configuration frequencies, except for
boundary points. We also assume that the noisy frequencies are not part of any track or
survey request, once again with the exception of boundary points.

To summarize, the constructed algorithm has to produce tuning plans according to the
received requests. First, the algorithm has to compute the goal measurement frequency for
each track request and only after that, these requests can be properly scheduled to improve
the information about targets. The survey requests describe which frequencies should be
scanned for new targets. It is evident that the track and survey requests at least partially
contradict each other because the tracks prefer to focus on specific target frequencies while
the surveys attempt to monitor as many frequencies as possible. The algorithm’s goal is

23

3. Problem Statement

to create tuning plans that realize each track and survey request as many times as its goal
measurement frequency while all user requests are scheduled and no frequencies specified
by noise requests are observed.

24

Chapter 4

Methodology

Teda, to muselo dát př́ı̌sernou práci, přitom taková blbost, co?

— matka Šebková, Peĺı̌sky, 1999

The following chapter describes the proposed algorithm, also called the planner, that con-
structs tuning plans for passive radar systems. Since the set of requests can change during
the system’s runtime and the track and survey requests must be scheduled aperiodically,
the tuning plan is constructed repeatedly. During the execution of one tuning plan which
is expected to take hundreds of milliseconds, the algorithm must be able to create the
following one. Consequently, the proposed algorithm has to be relatively fast.

It must be pointed out that collecting real-world scenarios is unrealistic because of two
reasons. Firstly, all measurable frequencies would have to be monitored at all times,
for which the system does not have enough receivers. Secondly, we would have to have
information on every signal transmission within a radius of hundreds of kilometers which
is impossible. Furthermore, creating complex artificial situations inside the simulator is
extremely time-consuming. Due to these reasons, there are no existing datasets, which
discourages the application of machine learning techniques on this task.

The core idea of our algorithm is that track and survey requests at similar frequencies can
be realized at once by a single configuration, thus decreasing the hardware requirements and
increasing efficiency. The main steps taken by the planner are outlined in Algorithm 4.1,
and each of these steps is thoroughly explained in its dedicated subchapter. As already
hinted in the previous chapter, the first step is to compute measurement frequencies for all
track requests. This computation is based on linear extrapolation to compute the future
target information gains combined with the idea that all targets should be located with
the same precision. The following step splits each survey request into multiple sub-surveys
which can be handled similarly to track requests. Then, it generates a large number of

25

4. Methodology

so-called blocks - configuration with additional information about its future insertion into
a tuning plan - so that every track and sub-survey is measured by at least one block, and
each block realizes as many requests as possible. We introduce the MICntP and its various
extensions, for some of which we prove their computational complexity. The MICntP is
used to compute the goal measurement frequencies of blocks - how often each block should
be inserted into a tuning plan. The tuning plan is constructed by directly placing all
user requests and then repeatedly inserting blocks to minimize the sum of squares of the
difference between the goal and the realized measurement frequency of each block. These
insertions are done randomly such that the produced plan is compact and the frequencies
are observed aperiodically. Finally, the goal measurement frequency of sub-surveys must
be updated according to the newly constructed tuning plan to prepare for future planner
runs.

Algorithm 4.1: Planner

Input: size of tuning plan l, requests R = Rtrack ∪Rsurvey ∪Ruser ∪Rnoise, set of
previous tuning plans H

Output: tuning plan L

1 Compute measurement frequencies for track requests Rtrack

2 B ←− Generate blocks according to requests R
3 Compute measurement frequencies for blocks B as the MICntP
4 L←− Construct tuning plan of size l based on B, Ruser, and H
5 Update of sub-surveys according to L

4.1 Computing Track Measurement Frequencies

The measurement frequencies of track requests are assigned based on their predicted in-
formation gains after the execution of an ideal tuning plan that can completely realize
all requests. Therefore, we must be able to predict the future information gain of each
target depending on how often it is measured. Due to the complex and hard-to-predict
behavior of the information gain function, we have decided on a simplistic approach based
on linear extrapolation assuming that they continuously emit signal and are always suc-
cessfully measured. We also expect that the plan construction is called relatively often,
and thus the measurement frequencies are frequently updated limiting the error induced
by this extrapolation. The future information gain IG ′(r) of track request r ∈ Rtrack is
computed as:

IG ′(r) := IG(r) + s+IG+(r) + s−IG−(r), (4.1)

where IG(r) is the current information gain, s− describes how many times the target
will be measured, and s+ is how many times it won’t be. It holds that the number of
prediction steps s equals s− + s+. Finally, IG−(r) and IG+(r) correspond to the change
of the information gain the last time the target was and was not measured, respectively.
An example of this extrapolation is illustrated in Figure 4.1.

26

4.1. Computing Track Measurement Frequencies

τ
-9 -3 -1 9

information gain [-]

Figure 4.1: Linear extrapolation of the target’s information gain based on its last changes.
The x-axis represents measurement intervals. The values left of the y-axis represent the
previous information gain changes while the right side shows the prediction of information
gain after executing the imaginary tuning plan that once measures the target and nine
times does not. The target was measured during the measurement interval −9 and −3. The
IG−(r) and IG+(r) are equal to the change of the information gain during measurement
interval −3 and −1, respectively.

Now, that we have described how we predict the future information gain, we can finally
introduce the algorithm for computing measurement frequencies of track requests which is
described by Algorithm 4.2. First, the algorithm for each track request r ∈ Rtrack predicts
its information gain IG ′(r) as if the target was measured with its maximal measurement

frequency M̂(r). Then the maximum of predicted information gains is chosen as a goal

information gain ÎG meaning that every target’s predicted information gain must be smal-
ler or equal to this value. According to this rule, the algorithm for each target computes
how many times it must be measured which is done by transforming the prediction Equa-
tion (4.1) as showed in Equation (4.2). The last step of this transformation is made under
the assumption that the expression IG−(r) − IG+(r) is negative which is reasonable to
expect since the opposite would imply that the successful measurement of target decreases
its tracking accuracy more than if it was not measured at all. The last step of the algorithm
is to convert the measurement count to measurement frequency as can be seen at Line 10
of the algorithm.

ÎG ≥ IG(r) + s+IG+(r) + s−IG−(r)

ÎG ≥ IG(r) + (s− s−)IG+(r) + s−IG−(r)

ÎG− IG(r)− sIG+(r) ≥ s−(IG−(r)− IG+(r))

s− ≥ ÎG− IG(r)− sIG+(r)

IG−(r)− IG+(r)

(4.2)

To summarize, the measurement frequencies of track requests are set so that their predicted

27

4. Methodology

information gain is lower or equal to the information gain of the worst-performing one when
it is realized with its maximal measurement frequency. Consequently, this worst-performing
target has a measurement frequency always set to its maximal measurement frequency.

Algorithm 4.2: Computing track measurement frequencies

Input: track requests Rtrack, number of prediction steps s
Output: goal measurement frequency m̂(r) ∀r ∈ Rtrack

1 IG ←− {}
2 forall r ∈ Rtrack do

3 s− ←− ⌊sM̂(r)⌋
4 s+ ←− s− s−

5 IG ′ ←− IG(r) + s+IG+(r) + s−IG−(r)
6 IG ←− IG ∪ {IG ′}

7 ÎG ←− max{IG}
8 forall r ∈ Rtrack do

9 s− ←−
⌈
ÎG−IG(r)−sIG+(r)

IG−(r)−IG+(r)

⌉
10 m̂(r)←− max

{
0;min

{
M̂(r); s

−

s

}}

4.2 Generation of Blocks

Each survey request rsurvey ∈ Rsurvey specifies how often the individual frequencies are to
be measured but does not say that all surveyed frequencies f(rsurvey) must be observed
simultaneously. Because it is impossible to keep information for each surveyed frequency
about how often it is measured, we have decided to split every survey request into multiple
sub-surveys. This is done by dividing the surveyed frequency interval f(rsurvey) from left
to right into single intervals of size ∆survey which are then transformed into individual sub-
surveys, as can be seen in Figure 4.2. The sub-surveys set constructed from the survey
request rsurvey is denoted S(rsurvey). Each sub-survey sr ∈ S(rsurvey) has single interval
f(sr) describing its associated frequencies and goal measurement frequency m̂(sr) which
is initialized equal to m̂(rsurvey). We say that it is surveyed or measured during the time
intervals τ if at least one receiver has a configuration C such that f(sr) ⊆ f(C) during the
interval τ .

Thanks to the introduction of sub-surveys the realization of track and survey requests by
the tuning plan is almost identical, the only difference is whether the used configuration
must be present on all sensor nodes or only on a single one. And exactly for this purpose
we introduce a structure called a block. The block B can be understood as a receiver
configuration C(B) extended by the information about receiver type RT (B), sensor node
need SNN (B), and goal measurement frequency m̂(B) which is initialized to 0.0. As the

28

4.2. Generation of Blocks

f [MHz]

rsurvey

S(rsurvey)

∆survey

Figure 4.2: Split of a survey request rsurvey into sub-surveys S(rsurvey).

name suggests, the receiver type specifies to which receiver type the block’s configuration
belongs. The sensor node need has two possible values all and any that determine whether
the block’s configuration must be set on all sensor nodes or only one arbitrary sensor node.
We say that the block realizes or measures the track request or sub-survey when its insertion
into a tuning plan realizes the request.

The presented algorithm generates blocks and later uses them to construct the optimized
tuning plan. For this to work properly, the blocks must have the following properties: each
block realizes as many requests as possible, no block monitors noisy frequencies, the track
requests and sub-surveys realized by blocks are diverse, and every request and sub-survey
must have at least one block that realizes them. In addition, the number of blocks must be
kept reasonably low, otherwise, the algorithm may become overwhelmed in the subsequent
steps. The algorithm for the generation of blocks is described in Algorithm 4.3. We generate
these blocks by the heuristic, which we call left-right, based on the principle that every
maximum-sized block can be uniquely identified by the left-most or right-most request it
measures. In this paragraph, we will collectively refer to each emitter of every track request
and every sub-survey as a parent request. For each parent request, the heuristic generates a
group of blocks that realize the parent, their configuration has the maximum size possible
and does not overlap with noisy frequencies. Thus, for each track or survey request, there
exists a block that realizes it. Furthermore, the parent request must be as much to the left
or right of any single interval from the block’s configuration as possible. The SNN of each
block depends on which requests its configuration can realize. When only track requests or
sub-surveys can be realized the SNN is equal to all or any , respectively. When it is possible
to realize both the tracks and sub-surveys the block is duplicated and one has the SNN set
to all and the other to any . This is shown in Figure 4.3 which displays the generated blocks
for a single parent request and two different configuration shapes. Overall, the left-right
heuristic generates a diverse set of overlapping blocks with most of the possible request
combinations. Some might suggest that adding both the leftmost and rightmost blocks for

29

4. Methodology

f [MHz]

e:
sr:

B1:
B2:
B3: any

(a) The maximum-size configuration is a single interval. Since block B1 realizes only the track
request, its SNN is set to all . The situation is different with block B2 because it realizes both
the track by measuring one of its emitters e and sub-survey request sr . The SNN of this block
is all and its duplicate block B3 has SNN equal to any .

f [MHz]

e:
sr:

B1:
B2:
B3:
B4: any

B5:

(b) The maximum-size configuration is a 2-interval. Because most of the generated blocks realize
only the track request, their SNN is set to all . This differs from block B3 which measures both
emitter e and sub-survey request sr . SNN (B3) equals all and its duplicate block B4 has SNN
set to any .

Figure 4.3: Blocks generated by the left-right heuristic for the emitter e, which is part of
some track request, and for two different shapes of maximum-size configuration. It can be
seen that configurations of blocks are selected so that the emitter is always as much to the
left or right of some configuration’s single interval as possible.

each parent request is unnecessary and only the leftmost or rightmost one would suffice.
Figure 4.4 is a counterexample to this statement by showing that when a block realizes
a request that is not its parent, it might not be true that the blocks generated by this
request must include a block that can measure the parent of the original block. Therefore
both the leftmost and rightmost blocks for each parent request must be constructed.

30

4.2. Generation of Blocks

f [MHz]1325 1475 1525
1550

1575 1650
1675

e1: bmax(e1) = 250MHz
e2: bmax(e2) = 100MHz

B1,1:
B1,2:

B2,1:
B2,2:

Figure 4.4: This diagram illustrates the situation when the blocks B1,1, B1,2 with parent
e1 cannot realize the emitter e2 due to the limit on the configuration size. But the block
B2,2 generated by the parent e2 can also realize the emitter e1. Therefore, if we were to
generate blocks whose parent is only to the left as possible, the block that can measure
both emitters at once would not be constructed.

Algorithm 4.3: Generation of blocks

Input: track requests Rtrack, survey requests Rsurvey, noise requests Rnoise

Output: blocks B
1 B ←− {}
2 forall rtrack ∈ Rtrack do
3 forall e ∈ E(rtrack) do
4 B′ ←− {B | B realizes e; no noise; e is leftmost/rightmost of B; all/any}
5 B ←− B ∪ B′

6 forall rsurvey ∈ Rsurvey do
7 forall sr ∈ S(rsurvey) do
8 B′ ←− {B | B realizes sr ; no noise; sr is leftmost/rightmost of B; all/any}
9 B ←− B ∪ B′

31

4. Methodology

4.3 Multiple-Interval Containment Problem

This subchapter introduces a new optimization problem that is a generalization of a prob-
lem that will be encountered in the following chapter when determining block measurement
frequencies. The problem is also very similar to the already-introduced SCP. We present a
special notation that helps with the representation of different related problems created by
adding constraints to the general problem. Finally, some possible and useful constraints
are described - their definition, how they influence the problem, and sometimes even how
the subproblems to which they correspond can be efficiently solved.

Definition 4.1. Multiple-interval containment problem (MICntP): given a finite set
of targets T and a finite set of covers C, both consisting of multiple-intervals, find the
smallest subset of covers C ′ ⊆ C such that each target is contained by at least one cover
from C ′. The problem is described by the tuple (C, T) and it can be formulated as follows:

min
∑
c∈C

xc

s.t.:
∑

c∈C: c contains t

xc ≥ 1 ∀t ∈ T

xc ∈ {0, 1} ∀c ∈ C.

(4.3)

The exemplary instance of the MICntP can be seen in Figure 4.5 which consists of four
targets and four covers. One of the feasible solutions is a set {c1, c2, c3} because every
target is contained by some of the selected covers (the c1 contains targets t1 and t4, c2
contains t3, and c3 contains t2). The optimal solution is a set {c1, c4} (c1 contains t1 and
t4, c4 contains t2 and t3).

It is evident that the basic formulation of the MICntP is practically equivalent to the
SCP and consequently, it might be considered uninteresting. This significantly changes
when we limit the possible shape of targets and covers, from the multiple-intervals to, for
example, 2-intervals, or when further constraints are added to the problem. To simplify
these problem descriptions and more easily differentiate between various instances, we
introduce a notation that describes problems related to the general MICntP, called families.
The notation consists of two parts divided by a vertical bar and enclosed by round brackets,
as can be seen in the following equation:

(cover set C; cover constraints | target set T; target constraints). (4.4)

The first part describes the set, which contains all possible covers, and various cover con-
straints. The second part does the same for targets. For example, the general MICntP as
described by Definition 4.1 can be denoted as (I | I). Furthermore, the problem instance
visualized in Figure 4.5 belongs to the family (2-I | 3-I).

32

4.3. Multiple-Interval Containment Problem

T : t1:

t2:

t3:

t4:

C: c1:

c2:

c3:

c4:

Figure 4.5: The exemplary instance of the MICntP. The optimal solution is {c1, c4}. This
instance belongs to a family denoted as (2-I | 3-I).

Corollary 4.2. A MICntP instance (C, T) belongs to a family if C ⊆ C, all covers fulfill
given cover constraints, T ⊆ T, and all targets satisfy the target constraints.

Definition 4.3. Family F1 = (C1; coverConstraints1 | T1; targetConstraints1) is a subset
of family F2 = (C2; coverConstraints2 | T2; targetConstraints2) denoted as F1 ⊆ F2 when
cover and target constraints are the same, C1 ⊆ C2, and T1 ⊆ T2.

For example, (1-I | 1-I) ⊆ (2-I | 1-I) holds true because both families do not have any
constraints and 1-I ⊆ 2-I according to the formulation of t-I in Definition 3.2.

The following chapters present several cover and target constraints that often seriously
influence the problem’s complexity. For some special cases of constrained problems, we
either show its transformation to an existing problem and prove its correctness or we
introduce the algorithm for solving such a problem.

4.3.1 No Containment

The first presented constraint is essential for solving many problems in polynomial time.
This constraint can be introduced to both the cover and target intervals and it is denoted
by the keyword ”no containment”:

(C; no containment | T) (4.5)

(C | T; no containment). (4.6)

As the name suggests, it must hold that for each interval i1 from the interval set I, there
is no other interval i2 ∈ I that contains it, as described in (4.7).

∀i1 ∈ I : ∄i2 ∈ (I \ {i1}) : i1 ⊆ i2 (4.7)

33

4. Methodology

For single intervals, Equation (4.7) can be reformulated as:

∀i1 ∈ I : ∄i2 ∈ (I \ {i1}) : l(i2) ≤ l(i1) ∧ r(i1) ≤ r(i2). (4.8)

The interval set I represents either the cover set C or the target set T depending on where
the constraint is present in the problem description.

Now, we introduce and prove two theorems that will be useful later for proving the cor-
rectness of the introduced methods. These theorems and their proofs are very similar but,
unfortunately, different enough that they must be formulated separately.

Theorem 4.4. For a set of single intervals without containment T and arbitrary single
interval c, when the set T is ordered into a sequence of single intervals such that their
right endpoints are non-decreasing, the intervals from T contained by c form a consecutive
subsequence.

Proof. Assume that the intervals from T are sorted so that their right endpoints are non-
decreasing. This forms a sequence (t1, t2, . . . , t|T |) where:

∀m,n ∈ {1, . . . |T |};m < n : r(tm) ≤ r(tn). (4.9)

Assume that the interval at index i is the left-most one which is contained by c. If no such
interval exists, no intervals are contained by c, thus the consecutive subsequence is empty
and the statement is true. When such interval exists, either all of the following intervals are
contained by c and form a consecutive subsequence (ti, . . . , t|T |) or there exists an interval
at index j which is contained by c while the interval at index j + 1 is not contained by c.
Because tj+1 is not contained by c we have that either r(c) < r(tj+1) or l(tj+1) < l(c). Let us
consider that the second inequality is true. Due to Equation (4.9) we have r(tj) ≤ r(tj+1),
while l(c) ≤ l(tj) holds because cj is covered by t. The last three mentioned inequalities
can be combined:

l(tj+1) < l(c) ≤ l(tj) < r(tj) ≤ r(tj+1). (4.10)

Equation (4.10) would imply that tj+1 contains tj which can not be true because of the
theorem’s assumption that the intervals from T do not contain each other. Therefore,
l(c) ≤ l(tj) cannot be true, and consequently r(c) < r(tj+1) must always hold. Then for
any tk where j + 1 ≤ k we have r(c) < r(tj+1) ≤ r(tk), as a result of the cover ordering,
hence tk cannot be contained by c. Consequently, (ti, . . . , tj) is a consecutive subsequence
of all intervals from T contained by c.

Theorem 4.5. For a set of single intervals without containment C and arbitrary single
interval t, when the set C is ordered into a sequence of single intervals such that their
right endpoints are non-decreasing, the intervals from C containing t form a consecutive
subsequence.

34

4.3. Multiple-Interval Containment Problem

Proof. Assume that the intervals from C are sorted so that their right endpoints are non-
decreasing. This forms a sequence (c1, c2, . . . , c|C|) with the same property as described in
Equation (4.9). Assume that the interval at index i is the left-most one which covers t.
If no such interval exists, no intervals cover c, thus the consecutive subsequence is empty
and the statement is true. When such interval exists, either all of the following intervals
contain t and form a consecutive subsequence (ci, . . . , c|C|) or there exists an interval at
index j which contains t while the interval at index j + 1 does not contain t. Because
cj+1 does not contain t we have that either l(t) < l(cj+1) or r(cj+1) < r(t). The second
option is not possible. Due to the ordering we have r(cj) ≤ r(cj+1). By joining the last
two inequalities we get:

r(cj) ≤ r(cj+1) < r(t), (4.11)

this cannot be true, because it implies that the t is not covered by cj which is a contradic-
tion. Consequently,

l(t) < l(cj+1) (4.12)

must be true. Then for any ck where j + 1 < k we have either l(ck) < l(cj+1) or l(cj+1) ≤
l(ck). The first inequality cannot be true because when it is combined with interval order
we get:

l(ck) < l(cj+1) < r(cj+1) ≤ r(ck), (4.13)

implying that ck contains cj+1 which is in contradiction with our initial statement. There-
fore, the second inequality holds and it can be combined with Equation (4.12) resulting in
l(t) < l(cj+1) ≤ l(ck), hence ck cannot contain t. Consequently, (ci, . . . , cj) is a consecutive
subsequence of all intervals from C containing t.

4.3.2 Cover Cost

The natural extension of the general problem (4.3) is the addition of cover costs. The cost
of cover c, denoted as cost(c), represents how much the criteria increases when the cover
is active, more precisely when xc = 1. In our notation, this constraint is indicated by the
keyword ”cost” which belongs among the cover conditions:

(C; cost | T). (4.14)

The only change in the original problem Definition 4.1 is the addition of cover cost to the
problem’s input (C, cost, T) and to the criteria function:

min
∑
c∈C

cost(c)xc

s.t.:
∑

c∈C: c contains t

xc ≥ 1 ∀t ∈ T

xc ∈ {0, 1} ∀c ∈ C.

(4.15)

35

4. Methodology

For later use, we also include an ILP formulation of this problem. The vector x represents
cover usage and matrix A ∈ {0, 1}|T |×|C| signalizes whether the cover c contains target t.
To be more precise, each matrix column A = [a1, . . . , a|C|] corresponds to one cover and
its i-th value describes whether this cover contains the i-th target.

min
x

cost(x)Tx

s.t.: Ax ≥ 1

x ∈ {0, 1}|C|

(4.16)

Now, we formulate a theorem that will allow us to generalize future results that are based
on the no containment of targets.

Theorem 4.6. Any multiple-interval containment problem with cover costs (I; cost | I)
can be transformed without loss of generality into a similar problem without target con-
tainment described as (I; cost | I; no containment). The transformation algorithm takes
problem A = (C, cost, T) and removes targets that are contained by any other target:

T ′ = {t ∈ T | (∄t′ ∈ T)[t ⊂ t′]}, (4.17)

producing problem B = (C, cost, T ′).

Proof. We will show that any feasible solution of one problem is also the feasible solution
to the other problem which will be done in two steps. In the first step, we show that any
feasible solution to the problem A, denoted as C ′

A, is also a feasible solution to problem B.
This is evident because T ′ ⊆ T . As a consequence, any solution that covers all multiple-
intervals in T also covers all multiple-intervals in T ′. Therefore any feasible solution to the
problem A is also the feasible solution to problem B.

In the second step, we show that any feasible solution to problem B, denoted as C ′
B, is also

a feasible solution to problem A. To prove this, we have to show that for every target in
T exists a cover from C ′

B that contains it. This by definition holds for all t′ ∈ T ′. The
remaining targets are those that were removed during the transformation t′′ ∈ (T \ T ′).
From Equation (4.17) follows that every such target t′′ is contained by some t′ ∈ T ′ which
is, as already mentioned, further contained by some cover c ∈ C ′

B. Consequently, by the
transitivity property of containment every t′′ is contained by some cover from C ′

B. Hence,
any feasible solution to problem B is also a feasible solution to problem A.

Because any feasible solution to one problem is also feasible to the other problem and the
cover costs and criteria are the same for both problems, the optimal solutions must also
be the same.

Theorem 4.7. Containment problems with cover costs, single-interval covers, and single-
interval targets, denoted as (1-I; cost | 1-I; no containment), can be solved in polynomial
time.

36

4.3. Multiple-Interval Containment Problem

Proof. The stated problem can be rewritten as a relaxation of the ILP formulated in (4.16)
which results in LP (4.18). Following Theorem 4.4, the targets can be sorted by their right
endpoints so that the matrix A consists of columns with the consecutive-ones property and
as a consequence, the problem matrix is TU. Therefore, according to Theorem 2.3, the LP
has an integral optimum and the problem can be solved in polynomial time.

min
x

cost(x)Tx

s.t.: Ax ≥ 1

x ∈ [0, 1]|C|

(4.18)

From the total unimodularity of matrix A, we conclude that problems which belong to
(1-I; cost | 1-I; no containment) problem family can be reformulated and solved as a min-
cost flow problem in DAG or as a shortest path problem in DAG as already mentioned in
Section 2.3.

Corollary 4.8. All problems that can be denoted as (1-I; cost | 1-I) are solvable in poly-
nomial time.

Theorem 4.9. The problem family described by (2-I; cost | 1-I) is NP-hard.

Proof. The 2-multi-shift MC problem with a demand vector filled with ones, which will be
referred to as 2MCd1 to simplify the following text, is known to be NP-hard as stated in
Corollary 2.7. The 2MCd1 directly corresponds to a subset of the family (2-I; cost | 1-I)
of the MICntP. This can be seen when we compare the formulation of the MC problem in
Equation (2.5) and the matrix formulation of the MICntP with cost constraint in Equa-
tion (4.16). The only difference is that the optimized vector in the MICntP is restricted to
binary values while in the 2MCd1 problem values are natural numbers. However, because
the demand vector of the 2MCd1 problem is equal to 1, there is no reason to select one
shift more than once. Consequently, the optimized vector x can be limited to binary values
without loss of generality.

Figure 4.6 illustrates the transformation from the 2MCd1 problem to the MICntP belonging
to (2-I | 1-I) family. Each one from the demand vector directly translates into a target
whose multiple-interval has collapsed into a single value equal to the one’s index in the
demand vector. Similarly, every work shift represented by the vector in matrix A is
transformed into a cover represented by a 2-interval.

Therefore, the subset of problem family (2-I; cost | 1-I) is NP-hard and consequently the
whole problem family must be also NP-hard.

37

4. Methodology

2MCd1 (2-I | 1-I)

1 0 0 1

1 0 1 1

1 0 1 0

· · · 0 1 1 0

1 0 0 1

0 1 0 1

0 1 1 0

A

1

1

1

1

1

1

1

d

T ⊂ 1-I

. . .

...

C ⊂ 2-I

Figure 4.6: Example of direct transformation of a 2-multi-shift MC problem instance whose
demand vector is filled with ones, which is denoted as 2MCd1, into a MICntP instance
from the family (2-I | 1-I).

Corollary 4.10. For an arbitrary n ∈ {2, 3, . . . } and m ∈ {1, 2, . . . }, the problem family
(n-I; cost | m-I) is NP-hard.

4.3.3 Target Demand

In this section, we will introduce a new constraint that will significantly alter the problem
formulation resulting in its notable simplification. The newly added constraint represents
the notion that each target t has a demand, denoted as demand(t), which can be met by
covers that contain the target. We denote this constraint in our problem notation by the
keyword ”demand” :

(C | T; demand). (4.19)

Target demand changes the original problem formula (4.3). The binary variable xc, which
indicates whether the cover is used in the original formula, becomes a positive real-valued
variable representing how much of the target’s demand can be met by the corresponding
cover c. Furthermore, the right-hand side of the first equation changes from 1 to the
target demand demand(t). Formulation (4.20) holds for any possible form of the covers
and targets. It is also evident that such a problem can be solved in polynomial time by
LP.

38

4.3. Multiple-Interval Containment Problem

min
∀c∈C: xc

∑
c∈C

xc

s.t.:
∑

c∈C: c contains t

xc ≥ demand(t) ∀t ∈ T

xc ∈ R≥0 ∀c ∈ C

(4.20)

Corollary 4.11. Any problem with the target demand constraint, which can be formulated
as (I | I; demand) is solvable in polynomial time.

Theorem 4.12. Problems with the positive integer-valued target demands, single-interval
covers without containment, and single-interval targets, which are in our notation described
as (1-I; no containment | 1-I; demand ∈ N), have integral optimum.

Proof. We can rewrite the LP into a matrix form:

min
x

1Tx

s.t.: Ax ≥ d

x ∈ R|C|
≥0 ,

(4.21)

where a vector x represents the demands met by individual covers, a vector d ∈ N|T | is
constructed by concatenating target demands, and a matrix A ∈ {0, 1}|T |×|C|:

at,c =

{
1, if c covers t

0, otherwise .
(4.22)

It is evident, that the ordering of covers in x influences the values of A. When the covers
are ordered in a way that their right endpoints are non-decreasing, the columns ofA consist
of consecutive ones independent of the target order. This is already proved in Theorem 4.5.
Because the matrix A has the consecutive ones property it is TU. This fact combined with
right-hand side vector d consisting of integers shows that the LP (4.21) has total dual
integrality property and thus it has integral optimum.

Theorem 4.13. Problems with single-interval covers, and single-interval targets without
containment with positive integer-valued target demands, which can be formulated as
(1-I | 1-I; no containment, demand ∈ N), have integral optimum.

Proof. The proof is practically identical to the proof of Theorem 4.12 and thus we provide
only a quick outline. The difference is that the targets are ordered instead of covers,
resulting in rows with consecutive-ones property according to Theorem 4.4. Consequently,
the matrix A is TU and has an integral optimum.

39

4. Methodology

4.3.4 Target Separability

The following constraint changes the way how the containment relationship is defined. The
target separability represents the concept that an arbitrary target t is contained by a cover
c when at least one of the target’s single intervals t′ ∈ t is a subset of c:

∃t′ ∈ t : t′ ⊆ c. (4.23)

The keyword ”separable” located among the target constraints represents the target separ-
ability constraint:

(C | T; separable). (4.24)

Upon further inspection, it becomes evident that the introduction of target separability
does not have any impact on problems that have only single interval targets 1-I. There-
fore, we can write that the family (1-I; cost | 1-I; separable) is solvable in polynomial time.
When the target separability constraint is combined with the target demand the problem
formulation (4.20) does not change, and (I | I; demand, separable) is solvable in polyno-
mial time using LP. Once again because the addition of target separability constraint
does not impact the problems with single interval targets, we conclude that the famil-
ies (1-I; no containment | 1-I; demand ∈ N, separable) and (1-I | 1-I; no containment,
demand ∈ N, separable) have integral optimum.

4.4 Computing Block Measurement Frequencies

Now that we have successfully created blocks we must know how many times each block
has to be inserted into a tuning plan for the complete realization of every track and survey
request. To reformulate, we need to find the goal measurement frequency of each block
such that all track requests and sub-surveys are measured often enough while minimizing
the receiver usage. This problem can be transformed into the MICntP described by a
family (I; cost, type | I; demand, separable, size). The cover cost, target demand, and
target separability constraints were already introduced in the preceding chapter. In this
chapter, we have decided to describe the two remaining constraints - the type and cover
size - since they are closely tied to our problem, relatively simple, and not general enough
to be included in the previous one.

The type constraint limits which targets can be contained by which covers based on their
types. Each cover c is assigned type type(c) from the set of all possible cover types Tcover.
A similar is done for each target t, where type(t) ∈ Ttarget. Finally, a boolean function
typeMeasurable : Tcover × Ttarget −→ {0, 1} is defined and determines whether the cover
type could contain the stated target type. The type constraint is in the MICntP notation
denoted by the keyword ”type”:

(C; type | T). (4.25)

40

4.4. Computing Block Measurement Frequencies

The last remaining constraint - the cover size - also changes the definition of containment
relationship. This is accomplished by setting an upper limit on the total size of covers that
contain the target. For every single interval of every target t′ ∈ t the problem formulation
is extended by its cover size limit size(t′) ∈ R≥0 such that size(t′) ≥ |t′|. The ”size”
keyword describes the presence of size constraint in the MICntP.

(C | T; size) (4.26)

Finally, when we combine all of these constraints, the cover c, composed of single intervals
c′ ∈ c, contains the target t or t is contained by c, only if the cover’s type can measure the
target’s type, at least one single interval belonging to the target t′ ∈ t is contained by the
cover and the sum of sizes of cover’s single intervals that intersect with t′ is lesser or equal
to size(t ′). This is described by the following equation:

typeMeasurable(type(c), type(t))∧

∃t′ ∈ t :
(
t′ ⊆ c

)
∧

 ∑
c′∈c:

c′∩ t′ ̸=∅

|c′| ≤ size(t′)

 . (4.27)

Fortunately, the problem family (I; cost, type | I; demand, separable, size) remains solv-
able by LP in polynomial time because the only differences in problem formulation (4.20)
caused by the redefinition of containment relationship are over which covers the summa-
tions are made, which does not influence its complexity.

The transformation of our problem to the MICntP is quite straightforward. First, the
constructed blocks B are filtered to keep only those that realize a unique set of requests.
This is done to decrease the constraint matrix’s size and the number of optimal solutions,
which should reduce the LP solver runtime. Then, for each of the unique blocks B ∈ B, we
create a multiple-interval cover c equal to the block’s configuration C (B) with cover type
type(c) equal to the SNN (B) and the cost defined as follows:

cost(c) =

{
4, if type(c) = all

1, otherwise,
(4.28)

where the value corresponds to the number of receivers occupied by the block in the tuning
plan. Each track request rtrack ∈ Rtrack corresponds to a multiple-interval target t whose
single intervals t′ ∈ t are equal to the track’s emitter frequencies f(e) with cover size
limits size(t) set to bmax(e), its demand demand(t) equals the goal measurement frequency
m̂(rtrack), and target type type(t) is track . For each sub-survey sr a single interval target t
is created such that it corresponds to the single interval f(sr), the cover size limit size(t) is
set to infinity, the demand demand(d) once again equals the goal measurement frequency
m̂(sr), and its target type type(t) is survey .

41

4. Methodology

The last thing remaining is to define a typeMeasure function. The block with the SNN set
to all can realize both track requests and sub-surveys, in contrast, the ”any” block can
realize only sub-surveys. Therefore, we define the function as follows:

typeMeasurable(type(c), type(t)) =

1, if type(c) = all

1, if (type(c) = any) ∧ (type(t) = survey)

0, otherwise.

(4.29)

After the problem is transformed into the MICntP, it can be solved as LP using any
available LP solver like those already mentioned above. Each of the decision variables xc

corresponds to a block B according to which it was created and describes its optimal goal
measurement frequency m̂(B).

4.5 Construction of Tuning Plan

The following step is to finally construct the tuning plan. The construction process can
be formulated as an optimization problem described by Equation (4.30). The goal is to
produce a tuning plan L that minimizes the sum of squares of the difference between the
goal m̂(B) and the realized m(L,B) measurement frequency of each block B ∈ B such
that each user request is scheduled, no noisy frequencies are observed, and frequencies are
measured aperiodically.

min
L

∑
B∈B

max{0, m̂(B)−m(L,B)}2

s.t.: All user requests are scheduled.

Noise frequencies are never observed.

Frequencies are measured aperiodically.

(4.30)

How we solve this problem is described by Algorithm 4.4. First, the empty tuning plan
L of predetermined size l is initialized and each user request ruser ∈ Ruser is directly
inserted into it, as can be seen at Line 3. This ensures that all user requests are scheduled
and consequently, the first constraint of (4.30) is fulfilled. Now, we can freely insert the
constructed blocks because the second constraint is always satisfied due to the fact that
no block contains noisy frequencies as described in Chapter 4.2. Since there are only two
simple ways the block can occupy the tuning plan - one or four receivers - and it does not
matter at which measurement interval we insert the block, we conclude that the blocks
can be inserted into the tuning plan greedily. The greedy approach also ensures that the
tuning plan construction is fast which is one of the main requirements for the planning
algorithm.

42

4.5. Construction of Tuning Plan

During each step, the block with the highest priority is selected using the priority queue,
as described at Line 9. The priority of block B ∈ B is formulated in Equation (4.31) and
describes how much the criterion will decrease due to its insertion.

priority(B) = max {0, m̂(B)−m(L,B)}2 −max

{
0, m̂(B)−m(L,B)− 1

l

}2

= (m̂(B)−m(L,B))2 −max

{
0, m̂(B)−m(L,B)− 1

l

}2

=

{
(m̂(B)−m(L,B))2 , if

(
m̂(B)−m(L,B)− 1

l

)
≤ 0

2m̂(B)1
l
− 2m(L,B)1

l
− 1

l2
, otherwise

=

{
(m̂(B)−m(L,B))2 , if

(
m̂(B)−m(L,B)− 1

l

)
≤ 0

2
l
(m̂(B)−m(L,B))− 1

l2
, otherwise

(4.31)

We assume that m̂(B)−m(L,B) is larger than 0 because otherwise, the block would not
be inserted into the queue. The left expression denotes the amount currently added by
the block B to the criterion while the right one corresponds to the amount added after
the next insertion of B. The only difference between these two expressions is 1

l
which is

equal to the amount of measurement frequency by which m(L,B) increases after another
insertion of B into the plan.

The algorithm then thrice attempts to insert the selected block B into the plan, as shown
at Lines 10-24, and with each attempt the insertion conditions are less constraining. This
is achieved by generating all possible positions into which the block can be inserted, these
can vary only by the measurement interval and sensor nodes because the block already
determines the receiver type and receivers of the same type are identical. During the
first attempt, described at Lines 10-16, each position P ∈ P1 must fulfill the following
conditions: empty, feasible, not present, no fragmentation, and no repetition.

The empty and feasible conditions are quite straightforward, no block can be scheduled
there and it must be possible to insert the selected block into it. The block’s SNN de-
termines the meaning of the not present condition which aims to prevent the useless block
repetition. When the need equals all, the position cannot be at the same measurement
interval as the selected block was already scheduled during the previous iterations. Sim-
ilarly, when the need is any, the generated position cannot be at the same measurement
interval and sensor node as the selected block was previously inserted. The no fragmenta-
tion condition helps to create the compact tuning plan by filtering out positions at which
the insertion of block B results in a decrease of the fragmentation count. This count de-
termines how many blocks with SNN set to all can be inserted into the tuning plan L at
the measurement interval τ and it is possible to denote as follows:

fragmentCount(L, τ) =
∑

RT∈RT

min
i∈{1,...,|SN|}

∑
R∈Ri

JRT = RT (R)KJLτ,R is emptyK. (4.32)

43

4. Methodology

Consequently, the blocks with SNN equal to any tend to cluster into the same measurement
intervals while spreading to different sensor nodes resulting in a compact plan with more
positions for future insertions of ”all” blocks. Finally, the no repetition condition depends
on the set of previously constructed tuning plans H which is one of the algorithm’s inputs.
The condition allows only for positions at the measurement intervals during which the
selected block was not scheduled in previously constructed tuning plans from H. This
helps to mitigate the periodicity between the current and historical plans.

The second attempt, which is described at Lines 17-20, constructs position set P2 with
the same conditions as the first, except for no repetition. The final attempt, shown at
Lines 21-24, removes one more condition - no fragmentation - and constructs the set of
positions P3. When any of the position sets P1, P2, or P3 is not empty, one of the positions
P is randomly sampled, and the block is inserted into the tuning plan L at this position.
Random sampling practically ensures the aperiodicity of the constructed plan and thus
we consider the last constraint of problem (4.30) satisfied. Then the block’s priority is
updated and if it is larger than zero, the block is returned to the priority queue with this
new priority. These block insertions are repeated until the criterion is zero or no further
blocks can be scheduled.

If the algorithm’s main loop has finished and the tuning plan is not full, the randomly
sampled blocks fill the remaining empty positions as described in Algorithm 4.6. The
following steps are repeated until the set of blocks B is empty. A block B is randomly
sampled from the blocks set B. Its set of all possible positions P is generated according
to the constraints: empty, feasible, and no repetition. If this set is empty, the block B is
removed from set B, otherwise, the block is inserted at the position P sampled from P .

4.6 Update of Sub-surveys

As already mentioned, we expect that the tuning plan will be constructed repeatedly and
the request exists many times longer than the duration of a single plan. Therefore, it
seems reasonable to assume that sometimes the track requests or sub-surveys might not be
realized often enough, when the system becomes overwhelmed with requests, and, on the
other hand, during idle periods they might be measured more often than necessary. It may
be useful to include information about the previous measurements in the goal measurement
frequencies of requests to help balance these extremes. Fortunately, this is already imple-
mented for track requests because variations in realized measurement frequency directly
influence the information gain of a target and consequently the computation of its goal
measurement frequency during the next run of the algorithm. This chapter describes how
the algorithm approaches this problem for sub-surveys.

Since the recent deviations are significantly more important than the old ones, we have
decided to collect the discounted previous measurement frequencies mhist with the discount

44

4.6. Update of Sub-surveys

Algorithm 4.4: Tuning plan construction

Input: size of tuning plan l, set of blocks B, set of user requests Ruser, set of
previous tuning plans H

Output: tuning plan L

1 Initialize empty tuning plan L with size l
2 forall ruser ∈ Ruser do
3 Insert ruser into L at predetermined slots

4 Initialize empty priority queue Q
5 forall B ∈ B do
6 if priority(B) > 0 then
7 Insert block B to Q with priority(B)

8 while Q is not empty do
9 B ←− Pop block with highest priority from Q

10 P1 ←− {
11 P ∈ L |
12 for B : empty; feasible; not present; no fragmentation; no repetition
13 }
14 if P1 is not empty then
15 L,Q←− InsertBlock(L, Q, B, P1)

16 continue

17 P2 ←− {P ∈ L | for B : empty; feasible; not present; no fragmentation}
18 if P2 is not empty then
19 L,Q←− InsertBlock(L, Q, B, P2)

20 continue

21 P3 ←− {P ∈ L | for B : empty; feasible; not present}
22 if P3 is not empty then
23 L,Q←− InsertBlock(L, Q, B, P3)

24 continue

25 if L is not full then
26 L←−FillEmptySlots(L, B)

45

4. Methodology

Algorithm 4.5: InsertBlock

Input: tuning plan L, priority queue Q, block B, set of positions P ,
Output: tuning plan L, priority queue Q

1 P ←− Randomly sample P
2 Insert block B to L at position P
3 Update priority(B)
4 if priority(B) > 0 then
5 Insert block B to Q with priority(B)

Algorithm 4.6: FillEmptySlots

Input: tuning plan L, set of blocks B,
Output: tuning plan L

1 while B is not empty do
2 B ←− Randomly sample B
3 P ←− {P ∈ L | for B : empty; feasible; not present};
4 if P is not empty then
5 P ←− Randomly sample P
6 Insert block B to L at position P

7 else
8 Remove B from B

factor γ ∈ (0; 1). Let us consider the situation when the algorithm has constructed the
h-th tuning plan, its historical measurement frequencies mhist

h look as follows:

mhist
h = γh−1m1 + · · ·+ γmh−1 +mh =

h∑
i=1

γi−1mi, (4.33)

where mi symbolizes the measurement frequency realized by i-th plan. We consider that
the highest possible measurement frequency is 1 and consequently, it holds that:

mhist
h ≤ 1− γh

1− γ
. (4.34)

The algorithm’s goal for the (h+1)-th iteration is to realize the corresponding sub-survey
request often enough so that the normalized historical measurement frequency after that
run is larger or equal to the overall goal measurement frequency m̂ determined by its
survey request. Therefore, the measurement frequency during the (h + 1)-th iteration

46

4.6. Update of Sub-surveys

mh+1 must be:

m̂ ≤ γhm1 + · · ·+ γmh +mh+1

1−γh+1

1−γ

1− γh+1

1− γ
m̂ ≤ γhm1 + · · ·+ γmh +mh+1

mh+1 ≥
1− γh+1

1− γ
m̂− γ(γh−1m1 + · · ·+mh)

mh+1 ≥
1− γh+1

1− γ
m̂− γmhist

h .

(4.35)

And the goal measurement frequency of the sub-survey during the construction of (h+1)-th

tuning plan should be set to 1−γh+1

1−γ
m̂− γmhist

h .

The above-stated process is done for each sub-survey sr ∈ S(rsurvey) of every survey request
rsurvey ∈ Rsurvey to determine its goal measurement frequency for next iteration m̂(sr)
as can be seen in Algorithm 4.7. First, the historical measurement frequency mhist(sr)
is updated according to the number of its realizations in a recently constructed tuning
plan m(L, sr). Then the goal measurement frequency is computed as described in Equa-
tion (4.35) and rounded to lie between 0 and 1. This ensures that the previous sub-survey
measurement frequencies are reflected during the future construction of the tuning plan.

Algorithm 4.7: Sub-surveys update

Input: survey requests Rsurvey, tuning plan L
Output: goal measurement frequency m̂(sr) ∀sr ∈ S(r) ∀r ∈ Rsurvey

1 forall rsurvey ∈ Rsurvey do
2 forall sr ∈ S(rsurvey) do
3 mhist(sr)←− γmhist(sr) +m(L, sr)

4 m̂←− 1−γh+1

1−γ
m̂(rsurvey)− γmhist(sr)

5 m̂(sr)←− max{0,min{m̂, 1}}

47

Chapter 5

Experimental Results

The complete evaluation of the algorithm proposed in the previous chapter would require us
to develop complex scenarios and a simulation environment where the constructed tuning
plans would be executed according to these scenarios. As already mentioned, this would
be highly time-consuming and far beyond the scope of this thesis. Besides, thanks to the
careful algorithm design, we already know that the produced tuning plans achieve all given
constraints and realize as many requests as possible. Therefore, we have decided to limit
experiments conducted in this chapter to simpler ones focused on the algorithm’s other
essential property - computation time and its associated metrics. Each of these simpler
experiments corresponds to a single run of the algorithm which produces one tuning plan.
Furthermore, the track measurement frequencies are assigned during the request creation
and consequently, the algorithm’s first step - computation of track measurement frequencies
- is skipped. The experiments are designed so we can study the effect of different requests
on the execution time with a focus on the processing time of the LP solver since it is the
expected bottleneck of our algorithm.

We must point out that adding user requests does not influence the complexity of the
solved LP and its influence on the total computation time is insignificant. A similar can be
said about noise requests because the only step of the algorithm influenced by noise is the
block construction which is heuristic and minimally affects the computational complexity.
Therefore, we do not include these two request types in any of the following experiments.
In contrast, the track and survey request types directly influence the amount and character
of generated blocks and thus also the number of targets, covers, and LP complexity.

Because no publicly available database of track requests and their emitter frequencies
exists, we have decided that all of the track requests used in the experiments will be
randomly generated. During each experiment, all track requests Rtrack have the same
predetermined number of emitters. The single intervals corresponding to emitters are
uniformly distributed across all observable frequencies. The size of each of these single

49

5. Experimental Results

intervals is also sampled from a uniform distribution with possible values ranging from
1MHz to the maximal possible value such that there exists at least one configuration that
can realize the corresponding emitter. The maximum configuration size bmax(e) of emitter
e is with the probability P (bmax) equal to the sum of the emitter’s size and a value sampled
from the geometric distribution with success probability parameter equal to 0.02, otherwise
it is set to infinity. Finally, the goal measurement frequencies are sampled from a uniform
distribution U(0, 1) and then normalized such that

∑
r∈Rtrack

m̂(r) = 1. Consequently, the
system should always have enough resources to realize all generated track requests.

Every one of the following subchapters proposes a set of experiments that focus on a
different aspect of track or survey request to study its influence on the algorithm’s runtime.
All presented experiments were repeated 100 times with different input values to obtain
reliable results. Hence, the following figures display the sampled mean values while the
shaded regions correspond to the standard deviation, as is usual. During the experiments,
we measure the execution time of the block generation combined with the computation
of containment relationship between covers and targets (block time), the execution time
of LP solver (LP time), and the execution time of tuning plan construction (construction
time). The total execution time (total time) is also measured which is approximately equal
to the sum of the aforementioned run times. Moreover, we keep track of the number of
blocks that realize unique combinations of requests (unique block count), which influences
the size of the created LP. The number of blocks with resulting non-zero goal measurement
frequency (non-zero block count) is also monitored to determine how many unique blocks
will be inserted into the tuning plan.

The algorithm was implemented in Python 3.12. The portion library [37] was used for the
interval representation and various operations over intervals that often appear in the al-
gorithm. The LP used to compute the goal measurement frequencies of blocks as described
in Chapter 4.4 was formulated with the help of Pyomo package [38][39] and subsequently
solved by the COIN-OR Branch-and-Cut (CBC) solver [40]. The NumPy [41] was used to
compute the statistics over data collected during the experiments. These statistics were
then plotted using the Matplotlib library [42] according to the figure format provided by
the SciencePlots package [43]. All of the experiments were conducted on the laptop with
13th Gen Intel(R) Core(TM) i9-13980HX 2.20GHz CPU, NVIDIA(R) GeForce RTX(TM)
4070 Laptop GPU 8GB GDDR6, and 32GB of DDR5-5600 RAM.

5.1 Number of Track Requests

The first set of experiments focuses on how the number of track requests influences the
algorithm runtime. The experiments are set up so that the number of track requests is an
independent variable that increases from 0 to 400 with steps of size 10. Each track request
has only one emitter and P (bmax) equals 0.0. During these experiments, no survey requests
are inserted into the algorithm.

50

5.1. Number of Track Requests

0 50 100 150 200 250 300 350 400

Number of Tracks

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

T
im

e
[s
]

Total Time

Block Time

LP Time

Construction Time

(a)

0 50 100 150 200 250 300 350 400

Number of Tracks

0.00

0.05

0.10

0.15

T
im

e
[s
]

LP Time

Construction Time

(b)

Figure 5.1: Measured execution times as a function of the number of track requests. Figure
(b) displays a detail of (a) for better legibility.

51

5. Experimental Results

0 50 100 150 200 250 300 350 400

Number of Tracks

0

200

400

600

800

1000

50
100

N
u
m
b
er

o
f
B
lo
ck
s

Unique Block Count

Non-zero Block Count

Figure 5.2: Unique and non-zero block counts as a function of the number of track requests.

The measured execution times can be seen in Figure 5.1. Surprisingly, the LP time (orange)
seems to grow linearly with the number of track requests. The slope of this growth is very
gentle, starting at around 0.105s and ending at 0.135s while the number of tracks increases
from 10 to 400. We speculate that this favorable outcome is caused by the interconnected
character of generated blocks which later form the constraint matrix of the solved LP.
The construction time (red) is throughout the experiments shorter than the LP time but
its growth is steeper. During the majority of the experiments, the most time-consuming
part of the experiment was the block construction and containment computation (green)
whose execution time grew more than linearly. This was not caused by the amount of
generated blocks but by the computation of the containment relationship between covers
and all existing targets. Fortunately, it can be mitigated in a real-world deployment by
memorizing the constructed covers with targets they contain and reusing them in future
algorithm runs. This is possible because we expect that requests are added gradually
throughout the multiple runs of the algorithm while each request generates the same blocks
and therefore the same covers.

As mentioned in Chapter 4.2, the number of blocks generated per each track request is
linear, and thus the number of both the unique and non-zero blocks has a linear upper
bound. The amounts of blocks encountered during the experiments are plotted in Fig-
ure 5.2. It can be seen that the incline of the unique block count (blue) increases together
with the number of tracks. This can be expected because when the algorithm has only

52

5.2. Number of Emitters per Track Request

a few randomly generated track requests that are sparsely distributed, the created blocks
likely realize only their parent requests. And as the number of tracks increases the more
unique request combinations arise. In contrast, the number of non-zero blocks behaves
almost logarithmically which is promising in terms of the tuning plan construction.

5.2 Number of Emitters per Track Request

As the name suggests, this subchapter examines the dependence between the algorithm’s
performance and the number of emitters per track request. The number of generated track
requests is the same in all experiments and equals 40. The number of emitters assigned
to each track request is an explanatory variable that ranges from 0 to 10. Similar to
the previous chapter, P (bmax) is set to 0.0 and no survey requests are inserted into the
algorithm.

Figure 5.3 displays the execution times observed during the experiments. The LP time is
practically constant which is likely caused by the fact that the number of track requests
is not increasing, therefore the size of constructed LP remains the same across all of the
experiments. The construction time increases linearly with the addition of further emitters
to the tracks. We already know that the number of generated blocks directly depends on the
overall amount of emitters in the experiment. Because of this and the fact that the current
and previous scenarios have equal emitter counts, the block times of both scenarios behave
the same. The number of unique blocks also behaves similarly to the previous subchapter,
as shown in Figure 5.4. On the other hand, the number of non-zero blocks slowly decreases.
This is because, with each additional emitter per track request, the chance that one block
can realize multiple requests increases, and consequently the algorithm can fulfill all of the
requests with fewer blocks.

5.3 Probability of Emitter Configuration Size

The last property of track request whose influence on the algorithm remains to be explored
is the probability of emitter configuration size, which was already denoted as P (bmax). We
consider eleven different probability values that range from 0.0 to 1.0 with steps of size 0.1.
The number of track requests during this set of experiments is constant and equals 200.
Each track has only one emitter. No other requests are inserted into the algorithm except
the already mentioned track requests.

As can be seen in Figure 5.5, both the LP and construction time remain constant during
all experiments. Therefore, we conclude that introducing the configuration size limits for
emitters does not influence the complexity of the constructed LP. Figure 5.6 shows that the
unique block count decreases as P (bmax) grows. This happens because the introduced size
limits restrict the size of generated blocks which cannot realize as many unique requests

53

5. Experimental Results

0 2 4 6 8 10

Number of Emitters per Track

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

T
im

e
[s
]

Total Time

Block Time

LP Time

Construction Time

(a)

0 2 4 6 8 10

Number of Emitters per Tracks

0.00

0.05

0.10

0.15

T
im

e
[s
]

LP Time

Construction Time

(b)

Figure 5.3: Measured execution times as a function of the number of emitters per track
request. Figure (b) displays a detail of (a) for better legibility.

54

5.3. Probability of Emitter Configuration Size

0 2 4 6 8 10

Number of Emitters per Track

0

200

400

600

800

1000

50
100

N
u
m
b
er

of
B
lo
ck
s

Unique Block Count

Non-zero Block Count

(a)

0 2 4 6 8 10

Number of Emitters per Tracks

0

10

20

30

N
u
m
b
er

of
B
lo
ck
s

Non-zero Block Count

(b)

Figure 5.4: Unique and non-zero block counts as a function of the number of emitters per
track request. Figure (b) displays a detail of (a) for better legibility.

55

5. Experimental Results

0.0 0.2 0.4 0.6 0.8 1.0

P (bmax)

0.1

0.2

0.3

0.4

0.5

0.6
T
im

e
[s
]

Total Time

Block Time

LP Time

Construction Time

Figure 5.5: Measured execution times as a function of the probability of emitter configur-
ation size.

as usual. Consequently, the block time shrinks with increasing P (bmax). In contrast, the
number of non-zero blocks must increase to realize all requests.

5.4 Complete Survey Request

In this chapter, we focus on how adding survey requests changes the algorithm’s behavior.
Since the monitored frequencies of survey requests cannot overlap and splitting a survey
request into sub-surveys is the same for all requests, the change in the algorithm’s com-
plexity cannot be caused by the number of requests but by the total size of monitored
frequencies. Therefore, we have decided to use only a single survey request that spans all
measurable frequencies which we will compare with the results presented in Chapter 5.1.
The goal measurement frequency of this request is set to 0.1. Other than that, the inputs
of the experiments are identical to those in the first set of experiments. The track request
count ranges between 0 and 400 with steps of 10, each of the track requests has one emitter,
and P (bmax) equals 0.0.

From Figure 5.7 we see that the block time significantly increased compared to the first
scenario. This is expected because the number of generated blocks increases linearly with
the newly added sub-surveys. In contrast with the experiments without the survey, the

56

5.4. Complete Survey Request

0.0 0.2 0.4 0.6 0.8 1.0

P (bmax)

0

50

100

150

200

250

300

350

400

450
N
u
m
b
er

of
B
lo
ck
s

Unique Block Count

Non-zero Block Count

Figure 5.6: Unique and non-zero block counts as a function of the probability of emitter
configuration size.

construction time is always longer than the LP time and grows almost logarithmically with
the number of track requests. The LP time begins at around 0.1s and linearly increases to
0.2s as more track requests are added. The number of unique blocks also rises linearly, as
plotted in Figure 5.8. The behavior of non-zero block count is logarithmic similar to the
first scenario.

57

5. Experimental Results

0 50 100 150 200 250 300 350 400

Number of Tracks

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

0.5

T
im

e
[s
]

Total Time

Block Time

LP Time

Construction Time

(a)

0 50 100 150 200 250 300 350 400

Number of Tracks

0.0

0.1

0.2

0.3

0.4

0.5

T
im

e
[s
]

LP Time

Construction Time

(b)

Figure 5.7: Measured execution times as a function of the number of track requests during
a complete survey. Figure (b) displays a detail of (a) for better legibility.

58

5.4. Complete Survey Request

0 50 100 150 200 250 300 350 400

Number of Tracks

0

200

400

600

800

1000

1200

1400

1600

100

N
u
m
b
er

of
B
lo
ck
s

Unique Block Count

Non-zero Block Count

Figure 5.8: Unique and non-zero block counts as a function of the number of track requests
during a complete survey.

59

Chapter 6

Conclusions

In this thesis, we proposed the algorithm for the construction of optimized tuning plans
for a generalized passive radar system. Tuning plans produced by the algorithm are al-
ways feasible w.r.t. system’s requests thanks to its careful design. One of the algorithm’s
steps optimizes receiver configurations to maximize the number of simultaneously realized
requests which we consider to be our main contribution to the field of passive radar op-
timization. The receiver optimization is a special case of the newly formulated MICntP
which can be optimally solved in polynomial time using LP. Furthermore, we studied other
versions of MICntP with various constraints and proved that single-interval instances with
cover costs can be solved in polynomial time. On the other hand, the problem becomes
NP-hard even when the targets remain single intervals and at least some of the covers are
2-intervals.

The experiments have focused on a relationship between the algorithm’s runtime and re-
quest complexity during the construction of a single tuning plan. They have shown that
the most time-consuming step of the algorithm is determining the coverage of targets by
covers whose runtime grows quadratically with the number of requests. However, this can
be mitigated in actual deployment by memorizing the information obtained during the
construction of previous tuning plans. Surprisingly, the time it takes the optimizer to solve
the constructed LP is short and increases linearly. A similar can be said about the step
that constructs a tuning plan from generated blocks.

Future work should mostly focus on further experimentation. It would be ideal to integrate
the proposed algorithm into the existing passive radar system and thoroughly test its
behavior using a simulator capable of emulating real-world scenarios.

In the current algorithm, more specialized requests produced by the radar’s subsystems
are expected to be communicated via user requests. Instead of this process, it might be
useful to add new request types which will simplify the communications from subsystems

61

6. Conclusions

to the planner.

From the scheduling point of view, it might be interesting to study the optimality of the
greedy algorithm used for inserting blocks into the tuning plan.

62

Bibliography

[1] Kulmon, P.; Suja, J.; Benko, M. Scheduling of Multi-Function Sensor. IEEE Transac-
tions on Radar Systems, volume 1, 2023: pp. 729–739, doi:10.1109/TRS.2023.3335208.

[2] Skolnik, M. An introduction and overview of radar. Radar Handbook, volume 3, 2008:
pp. 1–1.

[3] Richards, M. A.; Scheer, J.; Holm, W. A.; et al. Principles of modern radar. 2010.

[4] Rahman, H. Fundamental Principles of Radar. CRC Press, 2019.

[5] Guarnieri, M. The Early History of Radar [Historical]. IEEE Industrial Electronics
Magazine, volume 4, no. 3, 2010: pp. 36–42, doi:10.1109/MIE.2010.937936.

[6] Goodchild. The 360ft transmitter towers at Bawdsey Chain Home radar station, Suf-
folk. May 1945, for Royal Air Force, image created and released by Imperial War Mu-
seum, [Online; accessed January 24, 2024]. Available from: https://www.iwm.org.uk/
collections/item/object/205196697

[7] RADAR COVER, SEPTEMBER 1939 AND SEPTEMBER 1940. 1953, brit-
ish Official Histories (History of the Second World War), [Online; accessed
January 24, 2024]. Available from: https://commons.wikimedia.org/wiki/File:
Chain home coverage.jpg

[8] Sarkar, T. K.; Salazar Palma, M.; Mokole, E. L. Echoing Across the Years: A History
of Early Radar Evolution. IEEE Microwave Magazine, volume 17, no. 10, 2016: pp.
46–60, doi:10.1109/MMM.2016.2589200.

[9] Gortyna. Meteorological radar on the top of Praha hill in Brdy mountains.
July 2016, [Online; accessed February 2, 2024]. Available from: https://

commons.wikimedia.org/wiki/File:Praha radar4.jpg

63

https://www.iwm.org.uk/collections/item/object/205196697
https://www.iwm.org.uk/collections/item/object/205196697
https://commons.wikimedia.org/wiki/File:Chain_home_coverage.jpg
https://commons.wikimedia.org/wiki/File:Chain_home_coverage.jpg
https://commons.wikimedia.org/wiki/File:Praha_radar4.jpg
https://commons.wikimedia.org/wiki/File:Praha_radar4.jpg

Bibliography

[10] ČHMÚ nowcasting webportal. February 2024, provided by Czech Hydrometeorological
Institute, [Online; accessed February 2, 2024]. Available from: https://www.chmi.cz/
files/portal/docs/meteo/rad/inca-cz/short.html

[11] Budge, M. C.; German, S. R. Basic RADAR analysis. Artech House, 2020.

[12] Griffiths, H. D.; Baker, C. J. An introduction to passive radar. Artech House, 2022.

[13] Kuschel, H.; Cristallini, D.; Olsen, K. E. Tutorial: Passive radar tutorial. IEEE
Aerospace and Electronic Systems Magazine, volume 34, no. 2, 2019: pp. 2–19.

[14] Qu, Z.; Ding, Z.; Moo, P. A Radar Task Scheduling Method Using Random Shifted
Start Time with the EST Algorithm. In 2019 IEEE Radar Conference (RadarConf),
2019, pp. 1–5, doi:10.1109/RADAR.2019.8835636.

[15] Shaghaghi, M.; Adve, R. S. Task selection and scheduling in multifunction multichan-
nel radars. In 2017 IEEE Radar Conference (RadarConf), 2017, pp. 0969–0974, doi:
10.1109/RADAR.2017.7944344.

[16] Shaghaghi, M.; Adve, R. S. Machine learning based cognitive radar resource man-
agement. In 2018 IEEE Radar Conference (RadarConf18), 2018, pp. 1433–1438, doi:
10.1109/RADAR.2018.8378775.

[17] Briheche, Y.; Barbaresco, F.; Bennis, F.; et al. Theoretical complexity of grid cover
problems used in radar applications. Journal of Optimization Theory and Applications,
volume 179, no. 3, 2018: pp. 1086–1106.

[18] Deb, K.; Pratap, A.; Agarwal, S.; et al. A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, volume 6,
no. 2, 2002: pp. 182–197, doi:10.1109/4235.996017.

[19] Sun, J.; Yi, W.; Varshney, P. K.; et al. Resource Scheduling for Multi-Target Track-
ing in Multi-Radar Systems With Imperfect Detection. IEEE Transactions on Signal
Processing, volume 70, 2022: pp. 3878–3893, doi:10.1109/TSP.2022.3191800.

[20] Zhang, H.; Liu, W.; Yang, X. Resource saving based dwell time allocation and de-
tection threshold optimization in an asynchronous distributed phased array radar
network. Chinese Journal of Aeronautics, volume 36, no. 11, 2023: pp. 311–327, ISSN
1000-9361, doi:https://doi.org/10.1016/j.cja.2023.06.017.

[21] Shi, C.; Ding, L.; Wang, F.; et al. Low Probability of Intercept-Based Collaborative
Power and Bandwidth Allocation Strategy for Multi-Target Tracking in Distributed
Radar Network System. IEEE Sensors Journal, volume 20, no. 12, 2020: pp. 6367–
6377, doi:10.1109/JSEN.2020.2977328.

[22] Garey, M. R.; Johnson, D. S. Computers and Intractability: A Guide to the Theory of
NP-Completeness. USA: W. H. Freeman & Co., 1979, ISBN 0716710447.

64

https://www.chmi.cz/files/portal/docs/meteo/rad/inca-cz/short.html
https://www.chmi.cz/files/portal/docs/meteo/rad/inca-cz/short.html

Bibliography

[23] Korte, B. H.; Vygen, J.; Korte, B.; et al. Combinatorial optimization, volume 1.
Springer, 2011.

[24] Chvatal, V. A Greedy Heuristic for the Set-Covering Problem. Mathematics of Op-
erations Research, volume 4, no. 3, 1979: pp. 233–235, ISSN 0364765X, 15265471.
Available from: http://www.jstor.org/stable/3689577

[25] Dinur, I.; Steurer, D. Analytical approach to parallel repetition. In Proceedings of the
forty-sixth annual ACM symposium on Theory of computing, 2014, pp. 624–633.

[26] Caprara, A.; Toth, P.; Fischetti, M. Algorithms for the set covering problem. Annals
of Operations Research, volume 98, no. 1-4, 2000: pp. 353–371.

[27] Hoffman, A. J.; Kruskal, J. B. Integral boundary points of convex polyhedra. 50
Years of Integer Programming 1958-2008: From the Early Years to the State-of-the-
Art, 2010: pp. 49–76.

[28] Schöbel, A. Set covering problems with consecutive ones property. Technical report.

[29] Kasirzadeh, A.; Saddoune, M.; Soumis, F. Airline crew scheduling: models, al-
gorithms, and data sets. EURO Journal on Transportation and Logistics, volume 6,
no. 2, 2017: pp. 111–137, ISSN 2192-4376, doi:https://doi.org/10.1007/s13676-015-
0080-x. Available from: https://www.sciencedirect.com/science/article/pii/
S2192437620300820

[30] Marchiori, E.; Steenbeek, A. An evolutionary algorithm for large scale set covering
problems with application to airline crew scheduling. In Workshops on Real-World
Applications of Evolutionary Computation, Springer, 2000, pp. 370–384.

[31] Farahani, R. Z.; Asgari, N.; Heidari, N.; et al. Covering problems in facility location:
A review. Computers & Industrial Engineering, volume 62, no. 1, 2012: pp. 368–
407, ISSN 0360-8352, doi:https://doi.org/10.1016/j.cie.2011.08.020. Available from:
https://www.sciencedirect.com/science/article/pii/S036083521100249X

[32] Aktaş, E.; Özaydın, Ö.; Bozkaya, B.; et al. Optimizing fire station locations for the
Istanbul metropolitan municipality. Interfaces, volume 43, no. 3, 2013: pp. 240–255.

[33] Hochbaum, D. S.; Levin, A. Cyclical scheduling and multi-shift scheduling: Complex-
ity and approximation algorithms. Discrete Optimization, volume 3, no. 4, 2006: pp.
327–340.

[34] Edwards, K.; Griffiths, S.; Kennedy, W. S. Partial interval set cover–trade-offs between
scalability and optimality. In International Workshop on Approximation Algorithms
for Combinatorial Optimization, Springer, 2013, pp. 110–125.

65

http://www.jstor.org/stable/3689577
https://www.sciencedirect.com/science/article/pii/S2192437620300820
https://www.sciencedirect.com/science/article/pii/S2192437620300820
https://www.sciencedirect.com/science/article/pii/S036083521100249X

Bibliography

[35] Krupa R, D.; Basu Roy, A.; De, M.; et al. Demand hitting and covering of intervals.
In Algorithms and Discrete Applied Mathematics: Third International Conference,
CALDAM 2017, Sancoale, Goa, India, February 16-18, 2017, Proceedings 3, Springer,
2017, pp. 267–280.

[36] Butman, A.; Hermelin, D.; Lewenstein, M.; et al. Optimization problems in multiple-
interval graphs. ACM Transactions on Algorithms (TALG), volume 6, no. 2, 2010:
pp. 1–18.

[37] Decan, A. portion: Python data structure and operations for intervals. Available from:
https://github.com/AlexandreDecan/portion

[38] Bynum, M. L.; Hackebeil, G. A.; Hart, W. E.; et al. Pyomo–optimization modeling in
python, volume 67. Springer Science & Business Media, third edition, 2021.

[39] Hart, W. E.; Watson, J.-P.; Woodruff, D. L. Pyomo: modeling and solving mathem-
atical programs in Python. Mathematical Programming Computation, volume 3, no. 3,
2011: pp. 219–260.

[40] Forrest, J.; Ralphs, T.; Vigerske, S.; et al. coin-or/Cbc: Release releases/2.10.11.
Oct. 2023, doi:10.5281/zenodo.10041724. Available from: https://doi.org/10.5281/
zenodo.10041724

[41] Harris, C. R.; Millman, K. J.; van der Walt, S. J.; et al. Array programming with
NumPy. Nature, volume 585, no. 7825, Sept. 2020: pp. 357–362, doi:10.1038/s41586-
020-2649-2. Available from: https://doi.org/10.1038/s41586-020-2649-2

[42] Hunter, J. D. Matplotlib: A 2D graphics environment. Computing in Science & En-
gineering, volume 9, no. 3, 2007: pp. 90–95, doi:10.1109/MCSE.2007.55.

[43] Garrett, J. D. garrettj403/SciencePlots. Sept. 2021, doi:10.5281/zenodo.4106649.
Available from: http://doi.org/10.5281/zenodo.4106649

66

https://github.com/AlexandreDecan/portion
https://doi.org/10.5281/zenodo.10041724
https://doi.org/10.5281/zenodo.10041724
https://doi.org/10.1038/s41586-020-2649-2
http://doi.org/10.5281/zenodo.4106649

	List of Figures
	List of Algorithms
	List of Abbreviations and Symbols
	Introduction
	Background and State-of-the-Art
	Introduction to Radar
	VERA-NG

	Literature Review on Optimization of Radar Systems
	Set Cover Problem and Its Variants

	Problem Statement
	Methodology
	Computing Track Measurement Frequencies
	Generation of Blocks
	Multiple-Interval Containment Problem
	No Containment
	Cover Cost
	Target Demand
	Target Separability

	Computing Block Measurement Frequencies
	Construction of Tuning Plan
	Update of Sub-surveys

	Experimental Results
	Number of Track Requests
	Number of Emitters per Track Request
	Probability of Emitter Configuration Size
	Complete Survey Request

	Conclusions
	Bibliography

