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Abstract
This thesis studies weighted first-order
model counting. Weighted first-order
model counting can be used to solve many
practical problems and has been shown to
be domain-liftable for certain first-order
logic fragments. In this work, we im-
plement a grounder of first-order logic
sentences from these fragments, and use
available SAT solver and weighted model
counters to compare their effectiveness to
the lifted-methods. We create a dataset
to test the effectiveness of both lifted and
non-lifted methods and provide experi-
mental results of their performance over
said dataset. Lastly, we use these re-
sults to argue that the state-of-the-art
lifted methods vastly outperform their
non-lifted counterparts, as well as pro-
vide a few observations about non-lifted
methods.

Keywords: weighted first-order model
counting, weighted model counting,
grounding, cardinality constraints,
first-order logic, Herbrand semantics

Supervisor: Ing. Jan Tóth

Abstrakt
Tato práce studuje počítání vážených mo-
delů v logice prvního řádu. Počítání váže-
ných modelů v logice prvního řádu může
být použito k řešení mnoha praktických
problémů a bylo dokázáno, že pro určité
logické fragmenty je možné počítat ho v
čase polynomiálním ve velikosti domény.
V této práci implementujeme grounder
sentencí z těchto fragmentů logiky prv-
ního řádu, a použijeme existující SAT ře-
šič a počítače vážených modelů na po-
rovnání jejich výkonu s polynomiálními
metodami. Připravíme sadu sentencí, na
kterých testujeme efektivitu polynomiál-
ních i nepolynomiálních metod a prezentu-
jeme výsledky experimentů na této sadě.
Nakonec těmito výsledky podložíme, že
nejmodernější polynomiální metody jsou
mnohonásobně výkonnější než nepolyno-
miální metody.

Klíčová slova: počítání vážených
modelů v logice prvního řádu, počítání
vážených modelů, grounding, omezení
kardinality, logika prvního řádu,
Herbrandovská semantika

Překlad názvu: Počítání vážených
modelů pro některé
doménově-liftovatelné jazyky
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Chapter 1
Introduction

In this work, we tackle the problem of Weighted First-Order Model Counting
via grounding the formula and counting its models using a model counter
or iterative calls to a SAT solver. Weighted First-Order Model Counting is
an interesting problem in computer science as it finds many applications in
computer science. Some applications of WFOMC are probabilistic inference
in Markov Logic Networks [Beame et al., 2015], enumeration problems in
combinatorics, and discovering interesting integer sequences [Svatoš et al.,
2023] since all these problems can be reduced to WFOMC. Computing
WFOMC in certain fragments of first-order logic is possible to do in time
polynomial in the size of the domain. We call these fragments domain-liftable,
and the methods that compute WFOMC in time polynomial in the size of the
domain lifted methods. It has been proven that the first-order logic fragment
with at most 2 variables, denoted FO2, is domain-liftable [Van den Broeck
et al., 2014], that the first-order logic fragment with at most 2 variables
and cardinality constraints, denoted FO2 + CC, and the first-order logic
fragment with at most 2 variables and counting quantifiers, denoted C2, are
domain-liftable [Kuželka, 2021], and also the first-order logic fragment with
at most 2 variables, counting quantifiers, and linear order axiom, denoted
C2 + Linear is domain-liftable [Tóth and Kuželka, 2023]. These qualities
together make WFOMC a tool, that can be used to effectively solve many
practical problems. While much effort has been put into developing lifted
methods capable of solving WFOMC, there is little to no naive baseline for
the FO2 + CC, C2 and C2 + Linear fragments to compare the effectiveness
of these methods to. In this thesis, we aim to provide such a baseline along
with a dataset to compare lifted methods with a naive baseline and also aim
to show the necessity for lifted methods, should WFOMC be used to tackle
some of the problems mentioned previously.

Aside from providing a baseline to compare lifted methods to, the naive
methods can compute the weighted model count of formulas from any logical
fragment, albeit it is extremely time-consuming to solve the problem for even
very small domains. We do not explore the usability of the method presented
in this thesis to solve problems beyond the fragments mentioned above.
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Chapter 2
Preliminaries

In this chapter, we intend to familiarize the reader with most of the background
we will use in this work.

2.1 First-Order Logic

In this work, we consider a function-free subset of first-order logic. It consists
of a finite set of constants ∆, a finite set of variables V, and a finite set of
predicates P. An atom is a tuple of a predicate and a number of constants
from ∆ and variables from V equal to its arity. A literal is an atom or its
negation. A formula consists of a literal, or more complex formulas and their
negations connected by logical connectives. It can also be quantified by an
existential quantifier ∃x or a universal quantifier ∀x. A formula in which
all variables are quantified is called a sentence. A formula that contains no
variables is called ground. In this work, we expect all formulas to be fully
quantified, as we can only ground sentences. Therefore, any time we mention
a formula, we mean a sentence.

We adopt the Herbrand semantics [Hinrichs and Genesereth, 2006] with a
finite domain. We consider a finite Herbrand Universe HU of all constants and
a Herbrand Base HB of all ground atoms. There exists a bijection between
the Herbrand Universe and the set of constants, so we will be denoting the
Hrebrand Universe ∆. A possible world is any subset of HB, with all ground
atoms present in the possible world considered to be true and all ground
atoms not present in the possible world considered to be false. A possible
world is a model of a formula if the formula is satisfied in the possible world.

We also use the tautological equivalence symbol ⊨⊨. A fromula Φ and a
formula Ψ are tautologically equivalent, denoted Φ ⊨⊨Ψ, if and only if for
any possible world ω if holds that, if ω |= Φ then ω ⊨ Ψ, and if ω ̸|= Φ then
ω ̸|= Ψ.

2.2 Tseytin Transformation

Tseytin transformation [Tseitin, 1983] is used to produce a formula in con-
junctive normal form that is linear in size of the original formula. It works

3



2. Preliminaries .....................................
by replacing subformulas in the original formula with new helper atoms
and introducing rules for the new helper atoms such that an equisatisfiable
formula in conjunctive normal form is created. To get the equisatisfiable
formula in conjunctive normal form, we combine the rules we obtained during
the transformation and also the last predicate we obtained. The rules for
replacing subformulas usually are as follows:

Z ⇐⇒ (P ∧Q) ⊨⊨(¬P ∨ ¬Q ∨ Z) ∧ (P ∨ ¬Z) ∧ (Q ∨ ¬Z)

Z ⇐⇒ (P ∨Q) ⊨⊨(P ∨Q ∨ ¬Z) ∧ (¬P ∨ Z) ∧ (¬Q ∨ Z)

With P, Q and Z being predicates of arity 0. Additional rules can be used, but
these two are sufficient for our purposes, as we on use Tseytin transformation
on formulas, where the only logical connectives are ∧ and ∨. We can also
expand upon these rules to get more efficient transformation as follows:

Z ⇐⇒
∧

i=1...n

Pi ⊨⊨(Z
∨

i=1...n

¬Pi)
∧

i=1...n

(¬Z ∨ Pi)

Z ⇐⇒
∨

i=1...n

Pi ⊨⊨(¬Z
∨

i=1...n

Pi)
∧

i=1...n

(Z ∨ (¬Pi))

With Z and P1 . . . Pn being predicates of arity 0. The reason for introducing
these new rules is efficiency, as our structure allows combining conjunctions
and disjunctions and we can introduce fewer new helper atoms this way.

Since the goal of our work is to count the models of an input sentence
and Tseytin transformation introduces new helper atoms, we need to address
how to handle a few things. First, when introducing new helper atoms, it is
important to know whether these new helper atoms may lead to a change in
the number of models of the new formula.
Definition 2.1 (Equicountablity). We consider two formulas ϕ and ψ to be
equicountable, if for a Herbrand Universe of any size, it holds that number of
models of ϕ and ψ is the same.

We will use this extended definition of equicountability, as we work with
first-order logic, rather than the definition in Kuiter et al. [2023], which
defines equicountability for propositional logic.
Proposition 2.2. Tseytin transformation is equicountable, meaning that the
number of models does not change when its new helper atoms are introduced
[Kuiter et al., 2023].

Even though Tseytin in equicountable, we still monitor these new helper
atoms and distinguish them from atoms original to the formula. When
forbidding found solutions, we then only add original atoms to the clause
that forbids repeated findings of an already found model. This is due to the
longer clause being less informative and worse for the performance of the SAT
solver. Also, by only caring about the original atoms when forbidding already
found models, we prevent new helper atoms from adding new models, even
if the adding of the formula with new helper atoms was not equicountable.
Lastly, when solving with weights, we need to set the weights of the new

4



............................... 2.3. SAT and #SAT Problems

helper atoms to one for positive weights and one for negative weights as that
way, these new helper atoms do not change the resulting weighted model
count.

2.3 SAT and #SAT Problems

Satisfiability problem (SAT) is a very well-known problem of deciding whether
a formula in conjunctive normal form is satisfiable. This problem was proved
to be NP-complete [Cook, 1971]. Since then, SAT solvers made huge progress
and can solve very large SAT problems, and usually do so very fast. We use
a SAT solver to solve a #SAT problem in this work, which is a counting
problem of how many models of a formula exist as a subset of a Herbrand
Base HB. The #SAT problem was introduced in Valiant [1979]. We define
both these problems below.
Definition 2.3 (CNF). A propositional formula ϕ is in conjunctive normal
form if it consists of a conjunction of subformulas χi, and all subformulas
χi are either atoms, negations of atoms or disjunctions of atoms or their
negations.
Definition 2.4 (SAT). A SAT or satisfiability problem is a decision problem
whether a model of a formula ϕ in conjunctive normal form exists as a subset
of the Herbrand Base HB.
Definition 2.5 (#SAT). A #SAT or Model Counting is the problem of how
many models of a formula ϕ in conjunctive normal form exist as a subset of
the Herbrand Base HB.

2.4 Weighted Model Counting and Weighted
First-Order Model Counting

Weighted Model Counting (WMC) is a generalization of the #SAT problem.
First, we need to mention, that WMC is a problem from propositional logic.
While we deal with first-order logic in this work, after grounding a first-order
sentence, we can consider each ground atom to be a proposition and use this
technique to count the models of a first-order sentence. This is important as
we will be using a WMC solver to count the weighted models of grounded
first-order formulas later. We use the definition of WMC presented in Dilkas
and Belle [2021]
Definition 2.6 (Weighted Model Counting). A WMC instance is a tuple
(ϕ,X,w), where X is the set of literals, ϕ is a propositional formula in
conjunctive normal form over X and w : {x|x ∈ X} ∪ {¬x|x ∈ X} → R is a
weight function. Then

WMC(ϕ,X,w) =
∑
ω|=ϕ

∏
x|=ω

w(x)
∏

x ̸|=ω

w(¬x).

5



2. Preliminaries .....................................
Weighted First-Order Model Counting (WFOMC) is a generalization of

WMC to first-order logic. It is the problem we tackle in this work. It was
first described by Broeck et al. [2011]. We use the definition of this problem
that can be found below.
Definition 2.7 (Weighted First-Order Model Counting). Let ϕ be a sentence
over some relational language L. Let HB be a Herbrand Base of L over a
domain of size n ∈ N. Let P be a set of predicates of the language L and let
p : HB → P map each atom to its predicate symbol. Let w : P → R and
w̄ : P → R be weight functions assigning positive and negative weight to each
predicate in L. Then

WFOMC(ϕ, n,w, w̄) =
∑

ω⊆HB,ω|=ϕ

∏
l∈ω

w(p(l))
∏
l /∈ω

w̄(p(l).

2.5 Logical Fragments

In mathematical logic, a fragment of a logical language or theory is a subset
of this logical language obtained by imposing syntactical restrictions on the
language [Bradley and Manna, 2007]. Focusing on a fragment of logic can
make certain calculations tractable, which would otherwise be intractable. In
this work, we mention several fragments of first-order logic.

First-order logic fragment with at most 2 variables, denoted FO2 is a
fragment of first-order logic in which at most two variables are used. It should
be noted that in this fragment any predicate of arity n ≥ 3, n ∈ N can be
replaced by a predicate of arity 2 as shown in Gradel and Vardi [1997].

Another fragment we work with is the first-order logic with at most 2
variables and cardinality constraints, denoted FO2 + CC. Cardinality con-
straints are an additional syntactic construct, used for example in Svatoš
et al. [2023] to increase the expressional power of first-order logic. We use
the following definition of cardinality constraints.
Definition 2.8 (Cardinality constraint). A cardinality constraint is an ex-
pression in the form of (|P | ▷◁ k) where P is a predicate and k ∈ N and
▷◁∈ {≤,=,≥}.

A possible world ω satisfies a given cardinality constraint (|P | ▷◁ k) if and
only if the number of ground atoms Pi(x1, ..., xa) that are true in the possible
world is ▷◁ k. A formula in FO2 + CC takes the form of

Φ = Ψ ∧ (|P | ▷◁ k)

where Ψ is a formula from FO2, k ∈ N and ▷◁∈ {≤,=,≥}.
Another fragment we work with is the first-order logic with at most 2

variables and counting quantifiers. Counting quantifiers are a generalization
of the traditional existential quantifier. They add to the expressivity of the
FO2 fragment and the fragment of first-order logic with at most two variables
with counting quantifiers is usually denoted C2. The C2 fragment has more
expressive power while still being computationally tractable, as was shown in
Kuželka [2021].

6



.................................... 2.6. WMC solvers

Definition 2.9 (Counting Quantifier). A counting quantifier is an expression
in the form of ϕ = ∃▷◁kx ψ(x), k ∈ N, ▷◁∈ {≤,=,≥, ̸=}.

A possible world ω is a model of ϕ, if and only if there are exactly l
constants {A1, ..., Al} from a Herbrand Universe ∆ such that ω |= ψ(Ai) if
and only if 1 ≤ i ≤ l and l ▷◁ k.

Another fragment we work with is the first-order logic with at most two
variables and linear order axiom. This fragment is also domain-liftable, as
is shown in Tóth and Kuželka [2023]. The linear order axiom enforces a
total order, which means a reflexive, anti-symetric, transitive and strongly
connected relation. In our case, linear order is such a relation applied to the
Herbrand Universe ∆. An example of such a relation would be a predicate
≤/2. We then require the following to be true:. ∀x ≤(x, x). ∀x∀y ≤(x, y)∨ ≤(y, x). ∀x∀(y ≤(x, y)∧ ≤(y, x)) =⇒ (x = y). ∀x∀y∀z (≤(x, y)∧ ≤(y, z)) =⇒ ≤(x, z)

The last fragment we mention is the universally quantified first-order logic
with at most 2 variables and cardinality constraints, denoted UFO2 + CC.
This fragment consists of sentences in the form of ∀x∀y Ψ(x) and possibly
some cardinality constraints.

To make it easier to describe possible worlds later in this work, we use the
following definition of evaluation function. Evaluation function is often used
in propositional logic, for example in Bailleux and Boufkhad [2003].
Definition 2.10 (Evaluation function). Evaluation function eω : HB 7→ {0, 1}
is a function that maps a ground atom A ∈ HB to values 0 if and only if the
ground atom A is not true in a possible world ω and to 1 if and only if the
ground atom A is true in a possible world ω.

2.6 WMC solvers

In this work, we want to compare the performance of various non-lifted
methods of counting the weighted models of a first-order sentence to the
lifted methods. The non-lifted methods work by grounding the formula and
using a WMC solver to count the models of the grounded formula. There are
several known methods of WMC solving.

One method is to iteratively call a SAT solver and count the models this
way. We implement this method using the CryptoMiniSAT [Soos et al., 2009]
solver. In Chapter 5, we can see that this approach does not scale very well,
as it does not leverage any information about the WMC problem.

A different approach is to construct a support structure, usually a directed
acyclic graph, from which the models can be counted. Both the solvers we
use, [Muise et al., 2012], and Dudek et al. [2020], follow this approach. In

7



2. Preliminaries .....................................
Chapter 5, we can see that this approach can outperform the naive iterative
SAT-solving approach. However, it also does not scale past fairly small
instances.

2.7 On-line Encyclopedia of Integer Sequences

OEIS [OEIS Foundation Inc., 2024] or The On-Line Encyclopedia of Integer
Sequences is an online encyclopedia in which integer sequences are stored.
Users can search for sequences by their number or by inputting a few numbers
of a sequence. If the latter is used, OEIS shows up all integer sequences
starting with the numbers the user puts into the search bar. Since we generate
a sort of integer sequences when we count the modes of a sentence on Herbrand
Universes of size 1, 2 . . . n, OEIS is a great tool to help us. If the sequence
we generate by counting the models of a sentence appears in OEIS, we can
confirm the meaning of the sentence we are counting the models of.

8



Chapter 3
Approach

For #SAT solving, we consider a Herbrand universe ∆ of size n and a formula
ϕ. We first create a Herbrand base HB. The size of this Herbrand base is
in O(p · An) with n = |∆|, p being the number of predicates, and A being
the highest arity among the predicates we consider. This potentially leads to
an exponential blowup, but as long as we limit ourselves to the two variable
fragment, any predicate of arity higher than two can be equivalently expressed
by predicates of arity 2 at the cost of increasing the size of the formula [Gradel
and Vardi, 1997]. This means that in the two variable fragment, the Herbrand
base HB is polynomial in size with respect to |∆|. With the Herbrand base
constructed, we ground the formula ϕ and either iteratively find solutions
with a SAT solver or use a dedicated WMC solver to count the weighted
models of the input formula. When using a SAT solver to count the models,
with each model found, we add a clause that forces a different model to be
found until the problem is no longer satisfiable. This process is finite as there
are at most 2|HB| solutions with |HB| being the size of the Herbrand base.
We repeat this process for Herbrand universes of size 1, 2, . . . until searching
for models is no longer feasible in a reasonable time. Since the number of
possible worlds is 2|HB|, growing exponentially, we will not be experimenting
past very small instances as we need the search to run in a reasonable time.
The time we consider reasonable for gathering data in Chapter 5 for this
work is five minutes. It is a time window long enough to gather information
on what part of the program is taking too long and show the reason it is
happening while also allowing the experiments to be reproduced and rerun
without too much of a time burden. It should also be noted that Algorithm 1
only counts the models and not the weighted model count. This can be done
by multiplying the positive or negative weights of each atom based on its
presence in the model found. Since we already need to check the model for all
atoms to forbid a model from being found again, it would only add a constant
to the runtime with each model we find. To provide complete information,
we also include Algorithm 2 that solves WMC rather than #SAT 2.

9



3. Approach ......................................
Algorithm 1 #Sat naive

input: grounded formula ϕ in CNF
output: number of models of ϕ

models← 0
while satisfiable ϕ do

find model ω of ϕ
χ = (

∨
L∈ω ¬L) ∨ (

∨
L/∈ω L)

ϕ← ϕ ∧ χ
models ← models+ 1

end while
return models

Algorithm 2 WMC solved iteratively
input: grounded formula ϕ in CNF, positive weighs w, negative weights w
output: WMC of ϕ

wmc← 0
while satisfiable ϕ do

find model ω of ϕ
χ = (

∨
L∈ω ¬L) ∨ (

∨
L/∈ω L)

ϕ← ϕ ∧ χ
wmc ← wmc+ ΠL∈ωw(L) ·ΠL/∈ωw(L)

end while
return wmc

3.1 Grounding Sentences

The idea our work follows is based around grounding a sentence in order to
count its models. More precisely, we need to ground a sentence and obtain
its conjunctive normal form, as most SAT and #SAT solvers expect their
input to be a ground formula in conjunctive normal form. Since we work
with a function-free subset of first-order logic, the approach to grounding
consists of only four steps. We first remove any implications and equivalences
in the formula, then redistribute negations, then ground all quantifiers that
are present in the formula, and lastly use Tseytin transformation [Tseitin,
1983] to obtain a conjunctive normal form of the formula.

The grounding process starts with removing all implications and equiva-
lences from the formula. Since our application allows chained implications
and chained equivalences to be put together into a single subformula to save
a bit of space, we use three rules to remove implications and equivalences:

(Φ1 ⇐⇒ Φ2 ⇐⇒ . . . ⇐⇒ Φk) ⊨⊨(
∧

i∈N,i≤k

(Φi) ∨
∧

i∈N,i≤k

(¬Φi))

10



................................. 3.1. Grounding Sentences

and
(Φ =⇒ Ψ) ⊨⊨(¬Φ ∨Ψ)

and
(Φ1 =⇒ Φ2 =⇒ . . . =⇒ Φk) ⊨⊨(¬Φ1 ∨ (

∧
j∈N,2≤j≤k

Φj))

These rules can be used to remove all equivalences and implications in the
input formula and once these are removed, no additional implications or
equivalences are introduced. This reduces the number of rules that are
needed later when using the Tseytin transformation to produce a formula in
conjunctive normal form.

The next step is to remove all negations that are effecting a subformula
other than a single atom. We use the following rules until all negations are
pushed in front of an atom.

¬∃x ϕ(x) ⊨⊨∀x ¬(ϕ(x))

¬∀x ϕ(x) ⊨⊨∃x ¬(ϕ(x))

and the De Morgan Laws [Hurley, 2013]:

(¬
∧
i∈N

(ϕi)) ⊨⊨(
∨
i∈N

(¬ϕi))

(¬
∨
i∈N

(ϕi)) ⊨⊨(
∧
i∈N

(¬ϕi))

Using the rules shown above repeatedly, we can obtain a formula, that is
logically equivalent to any input formula while only using conjunctions and
disjunctions and with all negations effecting only atoms.

The next step is to ground the formula. Grounding is done from the
outermost quantifier, making its way inwards until no quantifiers are left.
The process consists of iterating 2 rules:

∃x ϕ ⊨⊨
∨

A∈∆
ϕ(x = A)

and
∀x ϕ ⊨⊨

∧
A∈∆

ϕ(x = A)

where = is unification of variable x with constant A ∈ ∆. This is only possible
because we use the Herbrand semantics. This leads to growth in the size
of the formula proportional to |∆|q where |∆| is the size of the Herbrand
Universe and q is the number of nested quantifiers.

After these steps are finished, we need to produce a formula in conjunctive
normal form, as most SAT solvers, #SAT solvers, and weighted model counters
expect a formula in conjunctive normal form as their input. This could be
done naively, by distributing atoms in conjunctions and disjunctions to create
a formula in conjunctive normal form. Choosing the naive approach, we
would use the distributive property of conjunctions and disjunctions:

11



3. Approach ......................................
(Φ ∧Ψ) ∨ (Γ ∨ Λ) ⊨⊨(Φ ∨ Γ) ∧ (Φ ∨ Λ) ∧ (Ψ ∨ Γ) ∧ (Ψ ∨ Λ)

This, however, produces a formula that is exponential in size of the original
formula. To avoid that, we use the Tseytin transformation Tseitin [1983],
which produces a formula in conjunctive normal form that is linear in size
of the original formula. Using this approach, we can produce a grounded
formula in conjunctive normal form that is polynomial in the size of the
original formula.

3.2 Cardinality Encodings

Cardinality constraints are a powerful tool to create more expressive fragment
of first-order logic. Why we care about cardinality constraints is because the
first-order logic fragment with at most two variables, FO2 enriched by cardi-
nality constraints, usually denoted FO2 + CC is computationally tractable
as was shown in Kuželka [2021]. In this work, we need to ground cardinality
constraints in order to be able to count the models of a sentence from the
FO2 + CC fragment. To make referencing atoms that we will be working
with easier, we introduce a set G = {Gi = P (x1, . . . , xa) | x1, . . . , xa ∈ ∆} for
some predicate P/a that occurres in cardinality constraint |P | ▷◁ k.

There are many ways to ground a cardinality constraint and it is important
to choose a way that suits the problem. One of the early ways to ground a
cardinality constraint in the form of |P | ≤ k is to explicitly not allow any
combinations of atoms equal to k + 1 to be true simultaneously [Ansótegui
and Manyà, 2004]. This is achieved by adding the following to the formula in
CNF: ∧

H⊆G,|H|=k+1

∨
Hi∈H

¬Hi

This approach requires no additional atoms to be introduced, but requires( |P |
k+1

)
clauses. This is very useful for k = 1, as it only produces |P | ·(|P |−1)/2

clauses, but it becomes inefficient very fast for any larger k. Since we also
allow cardinality constraints in the form of |P | ≥ k and |P | = k, we also
present how to encode those. For cardinality constraints in the form of
|P | ≥ k, for k ≥ 1 we explicitly require that a combination of at least k atoms
is true for any valid model. This is achieved by adding the following to the
formula in CNF: ∧

H⊆G,|H|=(|P |−k+1)

∨
Hi∈H

Hi

This produces
( |P |

|P |−k+1
)

new clauses, running into similar problem as the
encoding for cardinality constraint in the form of |P | ≤ k. Lastly, in the case
of cardinality constraint in the form of |P | = k, we would treat it as both of
the cardinality constraints in the forms of |P | ≤ k and |P | ≥ k, which acts as
a cardinality constraints |P | = k (and also adds a large number of clauses to
the formula in CNF). Since in this work, we expect to work with cardinality
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constraints with k greater than one, we do not consider such encoding as
useful, since it does not preserve the polynomial size of the ground form we
have kept so far. Even though such an encoding does not introduce any new
helper atoms, it is not beneficial enough to use it over more refined encodings
we introduce next.

When comparing cardinality constraint encodings, there are several factors
to consider. One is the number of new clauses and helper atoms the encoding
introduces to the formula, as a longer formula slows down the SAT solver
search. Another criterion we can consider is the efficiency of the encoding.
We base our definition of an efficient encoding on the definition presented in
Bailleux and Boufkhad [2003]. However, as the original definition is used in
propositional logic, we need to change it so that we can use it with Herbrand
logic.
Definition 3.1 (Efficient encoding). Let ∆ be a Herbrand universe, P/a a
predicate of arity a and G = {Gi = P (x1, ..., xa)|x1, . . . , xa ∈ ∆} be a set of
all ground atoms constructed using the predicate P/a and atoms from the
universe ∆. Then, for an encoding of a cardinality constraint to be efficient,
it must hold that for any model ω:. for an encoding of a cardinality constraint in the form of |P | ≤ k,

once we obtain the information that eω(Gi) = 1 for a set of indices
I = {i ∈ N | i ≤ |G|}, |I| = k, we get eω(Gj) = 0 for any atom Gj , j /∈ I
by unit propagations.. for an encoding of a cardinality constraint in the form of |P | ≥ k,
once we obtain the information that eω(Gi) = 0 for a set of indices
I = {i ∈ N | i ≤ |G|}, |I| = |G| − k, we get eω(Gj) = 1 for any atom
Gj , j /∈ I by unit propagations.

We chose 2 encodings that differ in all of the criteria to test what is more
important when counting models. The ladders encoding is efficient, but it
introduces O(nk) new helper atoms to the formula and it introduces O(nk)
new clauses to the formula. The parallel counter encoding is not efficient, but
it only introduces O(n) new helper atoms to the formula and it introduces
O(n) new clauses to the formula Ansótegui and Manyà [2004].

3.3 Ladders Encoding

Our ladder encoding is inspired by a ladder encoding described in Ansótegui
and Manyà [2004]. However, while the encoding proposed in the article can
only be used to resolve cardinality constraints in the form of |P | ≤ 1, we
modify it to work for any cardinality constraint in the form |P | ≤ k, |P | = k,
or |P | ≥ k with k ∈ N. We call it ladder encoding because when encoding
a cardinality constraint, we create a set of ladders and use it to enforce
the cardinality constraint. We present an example of this to showcase this
encoding before describing how we add it to the formula we want to ground.
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3. Approach ......................................
Example 3.2. Consider a formula Φ = Ψ∧ (|P | = 2) and a Herbrand universe
∆, |∆| = 4, where P is a predicate of arity 1. We then add 10 new helper
atoms L1,1, . . . , L1,5, L2,1, . . . L2,5, and use the following structure:

eω(P (1)) = 0 eω(L1,1) = 0 eω(L2,1) = 0
eω(P (2)) = 1 eω(L1,2) = 0 eω(L2,2) = 0
eω(P (3)) = 1 eω(L1,3) = 1 eω(L2,3) = 0
eω(P (4)) = 0 eω(L1,4) = 1 eω(L2,4) = 1

eω(L1,5) = 1 eω(L2,5) = 1

Table 3.1: Ladder Encoding Example

In this case, for a possible world to be a model, in order for an atom
to have the evaluation eω(P (x)) = 1, it needs to have a corresponding
tuple (eω(Li,x) = 0, eω(Li,x+1) = 1), for some index i. In other words, for
some ladder consisting of helper atoms Li,1, . . . , Li,n, the tuple (eω(Li,x) =
0, eω(Li,x+1) = 1) is the deciding factor whether the corresponding atom P (x)
is true or not.

We first describe the ladder encoding we used as an inspiration. This
encoding can only be used for cardinality constraints in the form of |P | ≤ 1,
but we modify it to work for any cardinality constraint in the form of
|P | ▷◁ k. To create a ladder encoding of a cardinality constraint in the
form of |P | ≤ 1, we do the following. First, we create a set of new atoms
L = {Li | i ∈ N, i ≤ (|G|+ 1)}. Next, we require that a set of clauses

{¬Li ∨ Li+1 | i ≤ |G|}

is appended to the formula. This set guarantees that in a model ω, there is
at most a single occurrence of eω(Li) = 0, eω(Li+1) = 1, i < |L|. Lastly we
require that two sets of clauses

{¬Gi ∨ Li+1 | i ≤ |G|}

and
{¬Gi ∨ ¬Li | i ≤ |G|}

are also appended to the formula. These two sets guarantee that for any model
ω it holds that eω(Gi) = 1 is possible only if eω(Li) = 0 and eω(Li+1) = 1
which can only happen at most once.

Now, we propose a ladder encoding that allows cardinality constraints in
the form of |P | ▷◁ k, k ∈ N, ▷◁∈ {≤,=,≥}. We assume a set of (n + 1) · k
new atoms L = {Lj,i | j ∈ N, j ≤ k, i ∈ N, i ≤ |G|+ 1} and require that for
cardinality constraints in the form of |P | ≤ k, we require that a possible
world ω is a model only if

eω(Gi) = 1 =⇒ (eω(Lj,i) = 0 ∧ eω(Lj,i+1) = 1)

for some j ≤ k, where j denotes that this implication is true in ladder j.
For a cardinality constraint in the form of |P | ≥ k we require a reversed
implication

eω(Gi) = 1 ⇐= (eω(Lj,i) = 0 ∧ eω(Lj,i+1) = 1)

14
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for any possible world ω to be a model. Lastly, for a cardinality constraint in
the form of |P | = k, we combine both implications.

This could be easily encoded using the formulas:

Gi =⇒
∨
j≤k

(¬Lj,i ∧ Lj,i+1)

respectively
Gi ⇐=

∨
j≤k

(¬Lj,i ∧ Lj,i+1)

However, the first formula in such an encoding would present 2 problems.
Firstly, it would not be efficient. It would also either lead to an exponential
blowup if we distributed it to obtain a formula in conjunctive normal form, or
would require us to use Tseytin transform to obtain a formula in conjunctive
normal form. Since neither approach is desirable, we use a different set of
claues to encode the ladder encoding that forces the same requirements.

Here, we present the clauses that form this encoding. We present both a
disjunction and implication form of the clauses for clarity.

{¬Li,1 | ∀i ≤ k} (3.1)

This set of unit clauses forces all helper atoms at the bottom of a ladder to
be false. We use this alongside Clauses 3.2 to guarantee that in each ladder,
the sequence of eω(Lj,i) = 0, eω(Lj,i+1) = 1 appears.

{Li,n+1 | ∀i ≤ k} (3.2)

This set of unit clauses forces all helper atoms at the top of a ladder to be
true. We use this alongside Clauses 3.1 to guarantee that in each ladder, the
sequence of eω(Lj,i) = 0, eω(Lj,i+1) = 1 appears.

{¬Lj,i ∨ Lj,i+1 | ∀j ≤ k, ∀i ≤ n}
{Lj,i =⇒ Lj,i+1 | ∀j ≤ k, ∀i ≤ n}

(3.3)

This set of clauses guarantees that in each ladder, a sequence of eω(Lj,i) =
0, eω(Lj,i+1) = 1 is found at most once (and alongside Clauses 3.1 and 3.2
exactly once).

{Lj,i ∨ ¬Lj,i+1 ∨ ¬Lj+1,i+1 | ∀j ≤ k − 1,∀i ≤ n}
{(¬Lj,i ∧ Lj,i+1) =⇒ ¬Lj+1,i+1 | ∀j ≤ k − 1,∀i ≤ n}

(3.4)

This set of clauses forces the sequence of eω(Lj,i) = 0, eω(Lj,i+1) = 1 to happen
in each ladder j at a different index ij . This is potentially unnecessary for
cardinality constraints in the form of |P | ≤ k, but we use it for all cardinality
constraints nonetheless.

{¬Lj+1,i ∨ Lj,i | ∀j ≤ k − 1,∀i ≤ n+ 1}
{Lj+1,i =⇒ Lj,i | ∀j ≤ k − 1,∀i ≤ n+ 1}

(3.5)
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3. Approach ......................................
This set of clauses guarantees that the sequence eω(Lj,i) = 0, eω(Lj,i+1) = 1
is found in lower index j for a lower index i. This allows for easier handling
of the ladders.

{¬Gi ∨ ¬Lk,i | ∀i ≤ n}
{Gi =⇒ ¬Lk,i | ∀i ≤ n}

(3.6)

This set of clauses is only used for cardinality constraints in the form of
|P | ≤ k or |P | = k. Due to the structure we forced on the ladders by Clauses
3.1 to 3.5, each atom Gi can only be true if Lk,i is not true.

{¬Gi ∨ L1,i+1|∀i ≤ n}
{Gi =⇒ L1,i+1|∀i ≤ n}

(3.7)

This set of clauses is only used for cardinality constraints in the form of
|P | ≤ k or |P | = k. Due to the structure we forced on the ladders by Clauses
3.1 to 3.5, each atom Gi can only be true if L1,i+1 is true.

{¬Gi ∨ ¬Lj,i ∨ Lj+1,i+1 | ∀i ≤ n, ∀j ≤ k − 1}
{(Lj,i ∧ ¬Lj+1,i+1) =⇒ ¬Gi | ∀i ≤ n, ∀j ≤ k − 1}

(3.8)

This set of clauses is only used for cardinality constraints in the form of
|P | ≤ k or |P | = k. Intuition behind this set of clauses is as follows. In each
ladder for Gi, one of three possible outcomes happens. eω(Lj,i+1) = 1 and
eω(Lj,i) = 0, allowing eω(Gi) = 1. Or eω(Lj,i+1) = 0, meaning Gi has to
be allowed in a ladder with lower j. Or eω(Lj,i) = 1, meaning Gi has to be
allowed in a ladder with greater j. In case eω(Lj+1,i+1) = 0 and eω(Lj,i) = 1,
Gi would need to be allowed by ladder l ∈ N, j < l < j + 1. No such l exists
hence eω(Gi) = 0.

{Gi ∨ Lj,i ∨ ¬Lj,i+1 | ∀i ≤ n, ∀j ≤ k}
{(¬Lj,i ∧ Lj,i+1) =⇒ Gi | ∀i ≤ n, ∀j ≤ k}

(3.9)

This set of clauses is only used for cardinality constraints in the form of |P | ≥ k
and |P | = k. This clause is very simple, each sequence of eω(Lj,i+1) = 1
and eω(Lj,i) = 0 requires that eω(Gi) = 1. Since we know k different such
sequences are found in the ladders, we guarantee at least k indexes such that
eω(Gi) = 1 exist.

Now, we prove that the ladder encoding is efficient and provide a worked
example. We start by proving that the encoding of cardinality constraint in
the form of |P | ≤ k is efficient.
Proof. Suppose a set G of ground atoms produced from predicate P/a, a
cardinality constraint |P | ≤ k, a set of indices I ⊆ {1, 2, . . . , |G|}, |I| = k,
and a set of helper atoms L encoding a ladder encoding. Suppose a possible
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world in which eω(Gi) = 1 for all i ∈ I. Then we need to be able to obtain
eω(Gj) = 0 for all j /∈ I only from unit clauses. We provide an example
in which |G| = 6, I = {2, 4, 5}. We start by using all the unit clauses
from Clauses 3.1 and 3.2 to obtain eω(Li,|G|+1) = 1 and eω(Li,1) = 0 for all
1 ≤ i ≤ k. A partial possible world from our example can be seen in Table
3.2. In a partial possible world, we might not know the truth values of some
atoms. We fill in truth values of all the atoms progressively as we obtain
them from unit clauses.

eω(G1) = eω(L1,1) = 0 eω(L2,1) = 0 eω(L3,1) = 0
eω(G2) = 1 eω(L1,2) = eω(L2,2) = eω(L3,2) =
eω(G3) = eω(L1,3) = eω(L2,3) = eω(L3,3) =
eω(G4) = 1 eω(L1,4) = eω(L2,4) = eω(L3,4) =
eω(G5) = 1 eω(L1,5) = eω(L2,5) = eω(L3,5) =
eω(G6) = eω(L1,6) = eω(L2,6) = eω(L3,6) =

eω(L1,7) = 1 eω(L2,7) = 1 eω(L3,7) = 1

Table 3.2: Efficiency Proof Part 1, Step 1

Next, we can use Clauses 3.6 and 3.3 to obtain eω(L1,i+1) = 1 for all
i ≥ min(I). We can also use Clauses 3.7 and 3.3 to obtain eω(Lk,i) = 0 for
all i ≤ max(I). In our example, what we know can be seen in Table 3.3

eω(G1) = eω(L1,1) = 0 eω(L2,1) = 0 eω(L3,1) = 0
eω(G2) = 1 eω(L1,2) = eω(L2,2) = eω(L3,2) = 0
eω(G3) = 0 eω(L1,3) = 1 eω(L2,3) = eω(L3,3) = 0
eω(G4) = 1 eω(L1,4) = 1 eω(L2,4) = eω(L3,4) = 0
eω(G5) = 1 eω(L1,5) = 1 eω(L2,5) = eω(L3,5) = 0
eω(G6) = eω(L1,6) = 1 eω(L2,6) = eω(L3,6) =

eω(L1,7) = 1 eω(L2,7) = 1 eω(L3,7) = 1

Table 3.3: Efficiency Proof Part 1, Step 2

Next, we can use Clauses 3.8 and 3.3 to obtain eω(L2,i+1) = 1 for all i ≥ j,
j is the second lowest element from I. In our example, we use Clause 3.8 in
which eω(G4) = 1 and eω(L1,4) = 1, which we knew already, gives us a unit
clause that requires eω(L2,5) = 1. This can be seen in Table 3.4

eω(G1) = eω(L1,1) = 0 eω(L2,1) = 0 eω(L3,1) = 0
eω(G2) = 1 eω(L1,2) = eω(L2,2) = eω(L3,2) = 0
eω(G3) = eω(L1,3) = 1 eω(L2,3) = eω(L3,3) = 0
eω(G4) = 1 eω(L1,4) = 1 eω(L2,4) = eω(L3,4) = 0
eω(G5) = 1 eω(L1,5) = 1 eω(L2,5) = 1 eω(L3,5) = 0
eω(G6) = eω(L1,6) = 1 eω(L2,6) = 1 eω(L3,6) =

eω(L1,7) = 1 eω(L2,7) = 1 eω(L3,7) = 1

Table 3.4: Efficiency Proof Part 1, Step 3

This can be repeated l times, using Clauses 3.8 and 3.3 to obtain that
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eω(Ll,i+1) = 1 for all i ≥ j, j is the l-th lowest element from I. In our example,
we repeat this one time and obtain what can be seen in Table 3.5

eω(G1) = eω(L1,1) = 0 eω(L2,1) = 0 eω(L3,1) = 0
eω(G2) = 1 eω(L1,2) = eω(L2,2) = eω(L3,2) = 0
eω(G3) = eω(L1,3) = 1 eω(L2,3) = eω(L3,3) = 0
eω(G4) = 1 eω(L1,4) = 1 eω(L2,4) = eω(L3,4) = 0
eω(G5) = 1 eω(L1,5) = 1 eω(L2,5) = 1 eω(L3,5) = 0
eω(G6) = eω(L1,6) = 1 eω(L2,6) = 1 eω(L3,6) = 1

eω(L1,7) = 1 eω(L2,7) = 1 eω(L3,7) = 1

Table 3.5: Efficiency Proof Part 1, Step 4

Next, we again use Clauses 3.8 and 3.3 to obtain that eω(Lk−1,i) = 0 for
all i ≤ j, where j is the 2nd highest element from I. In our example, we use
Clause 3.8 and from eω(G4) = 1 and eω(L3,5) = 0 we obtain a unit clause
that gives us eω(L2,4) = 0. This can be seen in Table 3.6

eω(G1) = eω(L1,1) = 0 eω(L2,1) = 0 eω(L3,1) = 0
eω(G2) = 1 eω(L1,2) = eω(L2,2) = 0 eω(L3,2) = 0
eω(G3) = eω(L1,3) = 1 eω(L2,3) = 0 eω(L3,3) = 0
eω(G4) = 1 eω(L1,4) = 1 eω(L2,4) = 0 eω(L3,4) = 0
eω(G5) = 1 eω(L1,5) = 1 eω(L2,5) = 1 eω(L3,5) = 0
eω(G6) = eω(L1,6) = 1 eω(L2,6) = 1 eω(L3,6) = 1

eω(L1,7) = 1 eω(L2,7) = 1 eω(L3,7) = 1

Table 3.6: Efficiency Proof Part 1, Step 5

We can again repeat this process, which allows us to use Clauses 3.8 and
3.3 to obtain that eω(Lk−l,i) = 0 for all i ≤ j, where j is the l-th highest
element from I. Using this in our example, we obtain truth values of all the
helper atoms and can use Clauses 3.1, 3.2, and 3.8 to obtain truth values
of all atoms in G. The final evaluation of our example can then be seen in
Table 3.7 Therefore, we obtained that eω(Gi) = 0, ∀ i /∈ I only using unit

eω(G1) = 0 eω(L1,1) = 0 eω(L2,1) = 0 eω(L3,1) = 0
eω(G2) = 1 eω(L1,2) = 0 eω(L2,2) = 0 eω(L3,2) = 0
eω(G3) = 0 eω(L1,3) = 1 eω(L2,3) = 0 eω(L3,3) = 0
eω(G4) = 1 eω(L1,4) = 1 eω(L2,4) = 0 eω(L3,4) = 0
eω(G5) = 1 eω(L1,5) = 1 eω(L2,5) = 1 eω(L3,5) = 0
eω(G6) = 0 eω(L1,6) = 1 eω(L2,6) = 1 eω(L3,6) = 1

eω(L1,7) = 1 eω(L2,7) = 1 eω(L3,7) = 1

Table 3.7: Efficiency Proof Part 1, Step 6

clauses.
We also need to prove that the ladder encoding is efficient for cardinality

constraints |P | ≥ k.
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Proof. Suppose a set G of ground atoms produced from predicate P/a, a
cardinality constraint |P | ≥ k, a set of indices I ⊆ {1, 2, . . . , |G|}, |I| = |G|−k,
and a set of helper atoms L encoding a ladder encoding. Suppose a possible
world in which eω(Gi) = 0 for all i ∈ I. Then we need to be able to obtain
eω(Gj) = 1 for all j /∈ I only from unit clauses. We provide an example
in which |G| = 6, k = {1, 3, 6}. We start by using all the unit clauses
from Clauses 3.1 and 3.2 to obtain eω(Li,|G|+1) = 1 and eω(Li,1) = 0 for all
1 ≤ i ≤ k. A possible world from our example can be seen in Table 3.8.

eω(G1) = 0 eω(L1,1) = 0 eω(L2,1) = 0 eω(L3,1) = 0
eω(G2) = eω(L1,2) = eω(L2,2) = eω(L3,2) =
eω(G3) = 0 eω(L1,3) = eω(L2,3) = eω(L3,3) =
eω(G4) = eω(L1,4) = eω(L2,4) = eω(L3,4) =
eω(G5) = eω(L1,5) = eω(L2,5) = eω(L3,5) =
eω(G6) = 0 eω(L1,6) = eω(L2,6) = eω(L3,6) =

eω(L1,7) = 1 eω(L2,7) = 1 eω(L3,7) = 1

Table 3.8: Efficiency Proof Part 2, Step 1

Next, we use all unit clauses obtained from Clauses 3.9, to obtain from
eω(Gi) = 0 that eω(Li,j) = eω(Li,j+1) for all i, j, where we know the truth
value of either Li,j or LLi,j+1 . In our example, this gives the information that
can be seen in Table 3.9.

eω(G1) = 0 eω(L1,1) = 0 eω(L2,1) = 0 eω(L3,1) = 0
eω(G2) = eω(L1,2) = 0 eω(L2,2) = 0 eω(L3,2) = 0
eω(G3) = 0 eω(L1,3) = eω(L2,3) = eω(L3,3) =
eω(G4) = eω(L1,4) = eω(L2,4) = eω(L3,4) =
eω(G5) = eω(L1,5) = eω(L2,5) = eω(L3,5) =
eω(G6) = 0 eω(L1,6) = 1 eω(L2,6) = 1 eω(L3,6) = 1

eω(L1,7) = 1 eω(L2,7) = 1 eω(L3,7) = 1

Table 3.9: Efficiency Proof Part 2, Step 2

When there are no unit clauses from Clauses 3.9, we use unit clauses
produced from Clauses 3.4. In our example, we obtain eω(L1,5) = 1 from
eω(L1,6) = 1 and eω(L2,6) = 1, and eω(L2,5) = 1 from eω(L2,6) = 1 and
eω(L3,6) = 1. In our example, we also use the fact that eω(L1,5) = 1 and
eω(L2,5) = 1 and use that to get eω(L1,4) = 1 via the unit clause from Clause
3.9 and get eω(L1,3) = 1. This can be seen in Table 3.10.

Now we can use Clauses 3.9 to obtain that eω(G2) = 1. Also, we can use
Clauses 3.4 to obtain eω(L2,3) = 0. We can see the usage of that (along with
some use of Clauses 3.3 and 3.5) in Table 3.11.

Last, we use Clauses 3.9 and 3.4 to obtain all the truth values. This can
be seen in Table 3.12. This shows that by only using unit clauses, we can
obtain all the truth values for all the atoms. Therefore, the ladder encoding
of cardinality constraints is efficient.

19



3. Approach ......................................

eω(G1) = 0 eω(L1,1) = 0 eω(L2,1) = 0 eω(L3,1) = 0
eω(G2) = eω(L1,2) = 0 eω(L2,2) = 0 eω(L3,2) = 0
eω(G3) = 0 eω(L1,3) = 1 eω(L2,3) = eω(L3,3) =
eω(G4) = eω(L1,4) = 1 eω(L2,4) = eω(L3,4) =
eω(G5) = eω(L1,5) = 1 eω(L2,5) = 1 eω(L3,5) =
eω(G6) = 0 eω(L1,6) = 1 eω(L2,6) = 1 eω(L3,6) = 1

eω(L1,7) = 1 eω(L2,7) = 1 eω(L3,7) = 1

Table 3.10: Efficiency Proof Part 2, Step 3

eω(G1) = 0 eω(L1,1) = 0 eω(L2,1) = 0 eω(L3,1) = 0
eω(G2) = 1 eω(L1,2) = 0 eω(L2,2) = 0 eω(L3,2) = 0
eω(G3) = 0 eω(L1,3) = 1 eω(L2,3) = 0 eω(L3,3) = 0
eω(G4) = eω(L1,4) = 1 eω(L2,4) = eω(L3,4) =
eω(G5) = eω(L1,5) = 1 eω(L2,5) = 1 eω(L3,5) =
eω(G6) = 0 eω(L1,6) = 1 eω(L2,6) = 1 eω(L3,6) = 1

eω(L1,7) = 1 eω(L2,7) = 1 eω(L3,7) = 1

Table 3.11: Efficiency Proof Part 2, Step 4

eω(G1) = 0 eω(L1,1) = 0 eω(L2,1) = 0 eω(L3,1) = 0
eω(G2) = 1 eω(L1,2) = 0 eω(L2,2) = 0 eω(L3,2) = 0
eω(G3) = 0 eω(L1,3) = 1 eω(L2,3) = 0 eω(L3,3) = 0
eω(G4) = 1 eω(L1,4) = 1 eω(L2,4) = 0 eω(L3,4) = 0
eω(G5) = 1 eω(L1,5) = 1 eω(L2,5) = 1 eω(L3,5) = 0
eω(G6) = 0 eω(L1,6) = 1 eω(L2,6) = 1 eω(L3,6) = 1

eω(L1,7) = 1 eω(L2,7) = 1 eω(L3,7) = 1

Table 3.12: Efficiency Proof Part 2, Step 5
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One problem the ladders encoding presents is that for any cardinality
constraint other than one in the form of |P | = k, which means for cardinality
constraints in the form of |P | ≤ k and |P | ≥ k, the formula resulting from
adding the clauses to encode the cardinality constraint is not equicountable
with the original formula. This is because for these cardinality constraints, the
helper atoms in the ladders we introduce create more models with the same
original atoms as we show in Examples 3.5 and 3.6 We solve this problem
by only counting solutions where at least one truth value of an atom from
the original formula is different. We cannot to do this with dedicated WMC
solvers though, so we must not use this encoding for WMC solvers unless for
cardinality constraints in the form of |P | = k.
Lemma 3.3. When grounding cardinality constraints and introducing new
helper atoms, we can show equicountablity as follows.
Proof Sketch 3.1 (Lemma 3.3). Consider a formula:

ϕ = ψ ∧ (|Pi| ≤ k)

where ψ is a formula in conjunctive normal form and a formula:

ϕ′ = ψ ∧ χ

where χ is a formula in conjunctive normal form encoding the cardinality
constraint (|P | ≤ k). Consider a set Ω = {ωi|ωi |= ϕ} and a set Ω′ = {ω′

i|ω′
i |=

ϕ′}. Then we can use a bijective proof to show that |Ω| = |Ω′|. If the
cardinality constraint encoding is correct, we can suppose that the mapping
f−1 : Ω′ 7→ Ω is trivial, as to obtain ω from ω′, we simply remove all ground
atoms, that do not appear in ψ from ω′ and obtain ω. Therefore, when
proving equisatisfiablity using a bijective proof, we will only show a mapping
f : Ω 7→ Ω′, supposing the inverse is created trivially as shown above.

The idea of the presented lemma is that as long as we can show that for
any constellation of atoms original to formula ϕ that is a model, only one
constellation of new helper and original atoms that is a model of ϕ′ exists.
We can show that is the case for ladders encoding of cardinality constraints in
the form of |P | = k, and provide counterexamples for cardinality constraints
in the form of |P | ≤ k and |P | ≥ k.

We start by showing that for a cardinality constraint in the form of |P | = k
the ladders encoding produces an equicountable formula after grounding.
Example 3.4. Consider a Herbrand universe ∆, |∆| = 5, and a simple formula

ϕ = |P | = 2.

One model ω can be seen in Table 3.13.
We can show that

eω(P (2)) = 1⇝ eω(L1,3) = 1, eω(L1,4) = 1, eω(L1,5) = 1, eω(L1,6) = 1

from Clauses 3.7 and 3.3.
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eω(P (1)) = 0 eω(L1,1) = 0 eω(L2,1) = 0
eω(P (2)) = 1 eω(L1,2) = 0 eω(L2,2) = 0
eω(P (3)) = 1 eω(L1,3) = 1 eω(L2,3) = 0
eω(P (4)) = 0 eω(L1,4) = 1 eω(L2,4) = 1
eω(P (5)) = 0 eω(L1,5) = 1 eω(L2,5) = 1

eω(L1,6) = 1 eω(L2,6) = 1

Table 3.13: Model Example, Ladder Encoding Equicountablity

Also,

eω(P (3)) = 1⇝ eω(L2,3) = 0, eω(L2,2) = 0, eω(L2,1) = 0

from Clauses 3.6 and 3.3.
Then

(eω(P (2)) = 1 ∧ eω(L2,3) = 0)⇝ eω(L1,2) = 0, eω(L1,1) = 0

from Clauses 3.8 and 3.3.
Lastly

(eω(P (3)) = 1 ∧ eω(L1,3) = 1)⇝ eω(L2,4) = 1, eω(L2,5) = 1, eω(L2,6) = 1

again from Clauses 3.8 and 3.3.
This shows that only from the constellation of original atoms, we can get

one and only one constellation of the new helper atoms. We do not present
a proof of the existence of a mapping M from truth values of the original
atoms to the truth values of the new helper atoms, as in Proof 3.3, we prove
that for a cardinality constraint in the form of |P | ≤ k and only a partial
information about the original atoms (including that there are k atoms with
truth value one, that is important, however, for any cardinality constraint in
the form of |P | = k, there need to be k atoms with truth value one), we get
one and only one constellation of truth values of the new helper atoms.
Example 3.5. Here we provide a counter-example to show that ladders
encoding of a cardinality constraint in the form |P | ≤ k is not equicountable
to the original formula. Consider a Herbrand universe of size five and a simple
formula

ϕ = |P | ≤ 2.

One model ω can be seen in Table 3.14.
Another model ω can be seen in Table 3.15.
It can be seen that there are new models introduced by adding new helper

atoms.
Example 3.6. Here we provide a counter-example to show that ladders
encoding of a cardinality constraint in the form |P | ≥ k is not equicountable
to the original formula. Consider a Herbrand universe of size five and a simple
formula

ϕ = |P | ≥ 2.
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eω(P (1)) = 0 eω(L1,1) = 0 eω(L2,1) = 0
eω(P (2)) = 1 eω(L1,2) = 0 eω(L2,2) = 0
eω(P (3)) = 0 eω(L1,3) = 1 eω(L2,3) = 0
eω(P (4)) = 0 eω(L1,4) = 1 eω(L2,4) = 1
eω(P (5)) = 0 eω(L1,5) = 1 eω(L2,5) = 1

eω(L1,6) = 1 eω(L2,6) = 1

Table 3.14: Ladder Encoding Equicountablity Counterexample 1, Model 1

eω(P (1)) = 0 eω(L1,1) = 0 eω(L2,1) = 0
eω(P (2)) = 1 eω(L1,2) = 0 eω(L2,2) = 0
eω(P (3)) = 0 eω(L1,3) = 1 eω(L2,3) = 0
eω(P (4)) = 0 eω(L1,4) = 1 eω(L2,4) = 0
eω(P (5)) = 0 eω(L1,5) = 1 eω(L2,5) = 1

eω(L1,6) = 1 eω(L2,6) = 1

Table 3.15: Ladder Encoding Equicountablity Counterexample 1, Model 2

eω(P (1)) = 0 eω(L1,1) = 0 eω(L2,1) = 0
eω(P (2)) = 1 eω(L1,2) = 0 eω(L2,2) = 0
eω(P (3)) = 1 eω(L1,3) = 1 eω(L2,3) = 0
eω(P (4)) = 1 eω(L1,4) = 1 eω(L2,4) = 1
eω(P (5)) = 1 eω(L1,5) = 1 eω(L2,5) = 1

eω(L1,6) = 1 eω(L2,6) = 1

Table 3.16: Ladder Encoding Equicountablity Counterexample 2, Model 1

eω(P (1)) = 0 eω(L1,1) = 0 eω(L2,1) = 0
eω(P (2)) = 1 eω(L1,2) = 0 eω(L2,2) = 0
eω(P (3)) = 1 eω(L1,3) = 1 eω(L2,3) = 0
eω(P (4)) = 1 eω(L1,4) = 1 eω(L2,4) = 0
eω(P (5)) = 1 eω(L1,5) = 1 eω(L2,5) = 1

eω(L1,6) = 1 eω(L2,6) = 1

Table 3.17: Ladder Encoding Equicountablity Counterexample 2, Model 2

One model ω can be seen in Table 3.16.
Another model ω can be seen in Table 3.17.
It can be seen that there are new models introduced by adding new helper

atoms.

3.4 Parallel Counter Encoding

The next encoding we propose is a parallel counter encoding based on the
parallel counter encoding presented in Ansótegui and Manyà [2004]. To
encode a cardinality constraint using the parallel counter encoding, we need
to construct a binary adder to add the input atoms and then construct a
comparator circuit that compares the sum of the variables to the desired
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Figure 3.1: Parallel counter

k for a cardinality constraint |P | ▷◁ k. However, the encoding presented in
Ansótegui and Manyà [2004] only encodes cardinality constraints in the form
of |P | ≤ k. Therefore, we first present the encoding from Ansótegui and
Manyà [2004] and then our expanded encoding for any cardinality constraint
|P | ▷◁ k.

In order to implement a parallel counter encoding, we need to first construct
a binary adder. To construct the adder, we first recursively divide the input
variables into halves. In Ansótegui and Manyà [2004], the number of input
atoms is conveniently in the form of 2m − 1,m ∈ N. Numbers in this form
are easy to divide into halves for the adder as can be seen in Figure 3.1 with
each recursion starting with a number of 2m−1 − 1 input atoms. The paper
does not include any information as how different numbers of input atoms
are treated, but we show how we treat this procedure to incorporate any
number of input atoms in our version later in this chapter. The recursion
stops when three input atoms remain at which point a full binary adder is
constructed. In case only two input atoms remain (which can happen if the
number of input atoms is not in the form of 2m− 1,m ∈ N), only a half adder
is constructed. A half adder is constructed by introducing two new helper
atoms, one for the sum of the adder and the other for the carry. The two
input atoms entering the half adder will be called A and B in the clauses that
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are to be added and two new helper atoms will be created for each adder,
Sum and Carry. The half adder then introduces three new clauses to the
CNF formula:. A ∨B ∨ Sum. ¬A ∨B ∨ Sum. ¬A ∨ ¬B ∨ Carry
In the case of a full adder, we consider three input atoms, called A, B, and C,
and introduce two new helper atoms for each adder Sum and Carry. Then,
the following seven clauses are added:. ¬A ∨B ∨ C ∨ Sum. A ∨ ¬B ∨ C ∨ Sum. A ∨B ∨ ¬C ∨ Sum

These three clauses work so that if one of the input atoms is true, then exactly
two are true or Sum is true (or, since this is only one way implication, exactly
two input atoms are true and Sum is also true).. ¬A ∨ ¬B ∨ ¬C ∨ Sum
This clause works so that if all three input atoms are true, Sum is also true.. ¬A ∨ ¬B ∨ Carry. ¬A ∨ ¬C ∨ Carry. ¬B ∨ ¬C ∨ Carry
These three clauses work so that if 2 or more input atoms are true, Carry is
also true.

As we can see, there are only implications to the Sum and Carry helper
atoms, and no reversed implications. This is even mentioned in the original
paper, saying that the implications above are the only ones needed. That
is true, however, it is only true for cardinality constraints in the form of
|P | ≤ k. For the other forms we allow in this work, these implications are
not sufficient.

After the adders that add the original atoms are created, the next layer of
adders is created from newly introduced helper atoms. In each layer, a one
bit longer output sum is created, by chaining adders of bits of the previous
sums. The output of the full procedure is the sum of all the input atoms.

Once we obtain the full sum of the input atoms, we need to construct the
comparator circuit. The comparator circuit for a cardinality constraint in the
form of |P | = k is the easiest, as we simply take a binary representation of
the constraint number k and for each bit, we add a unit clause setting the
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truth value of the respective output sum bit to one if the bit in the binary
representation of k is one and to zero if the binary representation bit is zero.

The comparator circuit for cardinality constraint in the form of |P | ≤ k
consists of several clauses. To construct the less than or equal comparator
circuit, we consider a list L = (l0, ..., lm), where l0 is the lowest bit of binary
representation of the number k and lm is the highest. We also consider
the output sum of the parallel counter, a list S = (s0, ..., sm). We consider
these two lists to have the same number of elements m. In case either of the
numbers has fewer bits in binary representations, all elements of the respective
list at position i > j, where j is the highest bit in the binary representation
of either number, are considered to be zero. The clauses added to form the
comparator circuit then have the form of

¬si

∨
i<j<m,lj=0

¬sj ,

for all i such that li = 0.
The comparator circuit for a cardinality constraint in the form of |P | ≥ k

is similar to the comparator circuit for a cardinality constraint in the form of
|P | ≤ k described above. We again consider a list L = (l0, ..., lm), and a list
S = (s0, ..., sm) of the sum of the output of the adder. If either list is smaller,
we pad it as above. The clauses to be added to form the comparator circuit
then have the form of

si

∨
i<j<m,lj=1

sj ,

for all i such that li = 1.
However, even though we describe these comparator circuits here, the

version of the parallel counter encoding from Ansótegui and Manyà [2004] can
only encode cardinality constraints in the form of |P | ≤ k. That is because
in the adders, only implications for the Sum and Carry are used, instead of
full equivalences. This means that the adders only output an upper bound on
the number of input atoms rather than their exact sum. This led to adding
the reverse implications in our version, to allow for correctly constructing
the parallel counter encoding for forms other than |P | ≤ k. We describe the
additional clauses alongside our way of splitting the input atoms into the
adders below.

When splitting an arbitrary number of input atoms n ∈ N, we first need to
recursively split them until a base case is reached. In our work, base cases
are any input of two input atoms to five input atoms. These numbers are
not chosen at random, as if we treat all these numbers of input atoms as
base cases, we never run into a split of only one input atom, which is what
we are trying to prevent. Then, for an arbitrary number of input atoms n,
we execute Algorithm 3. To prevent confusion, we use upper index to index
different lists, lower index to index elements of lists and the + symbol means
a concatenation of lists. The procedure add_sums that is used creates a chain
of adders adding the two input list of atoms and using the last atom as a carry
to input to the first adder, so it can be created as a full adder. The procedure

26



............................... 3.4. Parallel Counter Encoding

half_adder creates a half adder adding two atoms and returning a list with
a binary representation of the result. The procedure full_adder behaves
similarly, taking three atoms and returning a list with a binary representation
of the result.

Algorithm 3 Add atoms
input: list L of atoms to add
output: list representing a binary representation of the number of true
input atoms

n← |L|
if n = 2 then

sum← half_adder(l1, l2)
return sum

end if
if n = 3 then

sum← full_adder(l1, l2, l3)
return sum

end if
if n = 4 then

subsum1 ← half_adder(l1, l2)
subsum2 ← half_adder(l3, l4)
subsum3 ← half_adder(subsum1

1, subsum
2
1)

sum← full_adder(subsum1
2, subsum

2
2, subsum

3
2) + subsum3

1
return sum

end if
if n = 5 then

subsum1 ← half_adder(l1, l2)
subsum2 ← half_adder(l3, l4)
sum← add_sums(subsum1, subsum2, l5)
return sum

end if
split← argmaxm∈N(2m < n− 1)
split← split− 1
subsum1 ← add_atoms((l1, ..., lsplit))
subsum2 ← add_atoms((lsplit+1, ..., ln−1))
sum← add_sums(subsum1, subsum2, ln)
return sum

Another change we make to the cardinality constraint encoding presented
in the original paper is that we require a full equation with the sum, rather
than just a one way implication. As was said, this is required for cardinality
constraints in the form of |P | ≥ k and in the form of |P | = k. Or rather, the
full equality is only required for cardinality constraints in the form of |P | = k,
while only the reversed implications not presented in the original paper would
be required for a cardinality constraint in the form of |P | ≥ k. We however
always include the full implication, as it should have only a negligible effect
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on performance. So the half adder that adds two input atoms A and B in
our work consists of two new helper atoms sum and carry and the following
clauses:. A ∨ ¬B ∨ Sum. ¬A ∨B ∨ Sum. ¬A ∨ ¬B ∨ ¬Sum. A ∨B ∨ ¬Sum

These 4 clauses together deal with any possible combination of truth values
of the input atoms and the resulting truth value of Sum.. ¬A ∨ ¬B ∨ Carry. A ∨ ¬Carry. B ∨ ¬Carry

These 3 clauses specify the truth value of Carry. The first forces Carry to
be true if both the input atoms are true and the remaining 2 force Carry to
be false unless both the input atoms are true.

An adder in this form outputs the exact binary representation of the sum
of the input atoms.

The full adder, which adds three input atoms A, B, and C again creates
two new helper atoms, Sum, and Carry. Then it adds the following clauses:. ¬A ∨B ∨ C ∨ Sum. A ∨ ¬B ∨ C ∨ Sum. A ∨B ∨ ¬C ∨ Sum. ¬A ∨ ¬B ∨ ¬C ∨ Sum. ¬A ∨ ¬B ∨ C ∨ ¬Sum. ¬A ∨B ∨ ¬C ∨ ¬Sum. A ∨ ¬B ∨ ¬C ∨ ¬Sum. A ∨B ∨ C ∨ ¬Sum

These 8 clauses deal with any possible constellation of truth values of input
atoms A, B, and C, and what the resulting truth value of Sum is. We need
8 clauses for that, as 23 = 8, so there are 8 possible truth evaluations of 3
atoms.. ¬A ∨ ¬B ∨ Carry. ¬A ∨ ¬C ∨ Carry
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. ¬B ∨ ¬C ∨ Carry. A ∨B ∨ ¬Carry. A ∨ C ∨ ¬Carry. B ∨ C ∨ ¬Carry

We only need 6 clauses for the Carry, as any combination of 2 true input
atoms mean that Carry is also true and any combination of 2 false input
atoms mean that Carry is also false.

This approach might seem inefficient and we could reduce the number of
clauses by only using the implications that are required for the adder, either
only the implications that lead to a positive sum and carry for the cardinality
constraints in the form of |P | ≤ k, or only the implications that lead to a
negative sum and carry for the cardinality constraints in the form of |P | ≥ k.
However, in our case the effect on the speed with which we can search for
models is minimal. Also, since for a cardinality constraint in the form of
|P | = k, we still need to add all the clauses above.

When deciding whether to add full equivalences or only half equivalences,
we should also consider if the encoding is equicountable. In the case of
half equivalences, we can easily find an example showing that it is not
equicountable.
Example 3.7. Consider a simple formula ϕ = ∃xP (x) ∧ |P | ≤ 1, where P/1
is a predicate and a Herbrand Universe |∆| = 2. Then we get a ground form
from parallel counter encoding with half equivalnces:

(P (1) ∨ P (2)) ∧ (P (1) ∨ ¬P (2) ∨ Sum) ∧ (¬P (1) ∨ P (2) ∨ Sum)∧

(¬P (1) ∨ ¬P (2) ∨ Carry) ∧ (¬Carry)

where sum and carry are new helper predicates of arity zero. This formula
has the following models:

{{}, {P (1), Sum}, {P (2), Sum}, {Sum}}

We can clearly see that the last model of {Sum} is a model that was introduced
by introducing new variables.

However, when we use full equivalences, we can show that by grounding a
cardinality constraint we get a new equicountable formula.
Lemma 3.8.

ϕ = ψ ∧ |P | ≤ k

and a formula
ϕ′ = ψ ∧ χ

where ψ is a formula in conjunctive normal form and χ is a parallel counter
encoding of the cardinality constraint |P | ▷◁ k using full equivalences is
equicountable.

29



3. Approach ......................................
Proof Sketch 3.2. To show that ϕ and ϕ′ are equicountable, according to
Lemma 3.3, we need to show that a mapping f : Ω 7→ Ω′ where Ω = {ωi|ωi |=
ϕ} and Ω′ = {ω′

i|ω′
i |= ϕ′} exists. A parallel counter encoding consists of half

and full adders that add either input atoms or outputs of previous adders.
Since we use full equivalences, we can show all possible outcomes for any
adder. Consider a half adder with input atoms A and B and output atoms
Sum and Carry. Then only the following sets are subsets of any model:

{}, {A,Sum}, {B,Sum}, {A,B,Carry}

Now we consider a full adder with input atoms A, B, and C and output atoms
Sum and Carry. Then, only the following sets are subsets of any model:

{}, {A,Sum}, {B,Sum}, {C, Sum},

{A,B,Carry},

{A,C,Carry}, {B,C,Carry},

{A,B,C, Sum,Carry}

Since we never introduce a new helper atom outside of the adders and each
adder only allows one output for any input, we can see that any model ω ∈ Ω
maps to exactly one model from ω′ ∈ Ω′.

3.5 Counting Quantifiers

Counting quantifiers are a generalization of the traditional existential quan-
tifier. They add to the expressivity of the FO2 fragment and the frag-
ment of first-order logic with at most two variables with counting quanti-
fiers is usually denoted C2. The C2 fragment has more expressive power
while still being computationally tractable, as was shown in Kuželka [2021].
While lifted methods focus mainly on the counting quantifier in the form of
∃=kxψ(x), k ∈ N, and transform other forms of the counting quantifier to
the form of ∃=kxψ(x), k ∈ N, our approach of grounding the problem allows
us to use any of the counting quantifiers from Definition 2.9. We will show
that while grounding, it is much appreciated to be able to deal with any of
the forms above and also show that once a solid infrastructure to ground
cardinality constraints is established, grounding counting quantifiers is fairly
simple.

When grounding counting quantifiers, we can use a simple rule that works
as follows:

∃=k xϕ(x) ⊨⊨(∀x (C(x) ⇐⇒ ϕ(x)) ∧ (|C| = k))

It is extremely important to mention that this rule can only be used if the
counting quantifier is not preceded by any other quantifier or a negation.
This approach also works for any other form of the counting quantifier as
follows:

∃≤kx ϕ(x) ⊨⊨(∀x (C(x) ⇐⇒ ϕ(x)) ∧ (|C| ≤ k))
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∃≥kx ϕ(x) ⊨⊨(∀x (C(x) ⇐⇒ ϕ(x)) ∧ (|C| ≥ k))
We use a special way to ground the counting quantifier ∄=k

∄=kx ϕ(x) ⊨⊨∀x (((C(x) ⇐⇒ ϕ(x)) ∧ (|C| ≥ k + 1))

∨((D(x) ⇐⇒ ϕ(x)) ∧ (|D| ≤ k − 1)))
We said previously that we do not introduce any new equivalences into the
formula once we remove equivalences from the original in the beginning. This
holds, as instead of the equivalence, we use a conjunction of two disjunctions.
We provide an example below, just to be clear, all the equivalences added are
handled the same way as in the example:

∃≤kx ϕ(x) ⊨⊨((∀x (¬C(x) ∨ ϕ(x))) ∧ (∀x (C(x) ∨ ¬ϕ(x))) ∧ (|C| ≤ k))

However, when describing grounding the counting quantifiers, we will use the
equivalence form as it is much more readable.

We said above that this approach of grounding only works when the
quantifier is not preceded by a different quantifier or a negation. When a
negation precedes a counting quantifier, we can use a simple rule of flipping
its comparison sign as follows:

(¬∃=kx ϕ(x)) ⊨⊨(∄=kx ϕ(x))

(¬∃≤kx ϕ(x)) ⊨⊨(∃≥k+1x ϕ(x))
(¬∃≥kx ϕ(x)) ⊨⊨(∃≤k−1x ϕ(x))
(¬∄=kx ϕ(x)) ⊨⊨(∃=kx ϕ(x))

When a quantifier precedes a counting quantifier, we can ground it as
follows:

(∀x∃=ky ϕ(x, y)) ⊨⊨(
∧

Ai∈∆
(

∧
Bi∈∆

(CAi(Bi) ⇐⇒ ϕ(Ai, Bi)) ∧ (|CAi | = k)))

where ∆ is a Herbrand Universe and CAi/1 are |∆| new predicates. It is
extremely important to mind the correct placement of the parenthesis around
subformulas, as even a slight misplacement might change the meaning of
the formula. Similarly, we ground the existential quantifier preceding the
counting quantifier:

(∃x∃=ky ϕ(x, y)) ⊨⊨(
∨

Ai∈∆
(

∧
Bi∈∆

(CAi(Bi) ⇐⇒ ϕ(Ai, Bi)) ∧ (|CAi | = k)))

where ∆ is a Herbrand Universe and CAi/1 are |∆| new predicates. The
most complicated constellation happens when two counting quantifiers are
following one another. Then, the grounding looks as follows:

(∃=lx ∃=kyϕ(x, y)) ⊨⊨
(

∧
Ai∈∆

(C(Ai) ⇐⇒ (
∧

Bi∈∆
(DAi(Bi) ⇐⇒ ϕ(Ai, Bi))

∧(|DAi | = k))) ∧ (|C| = l))
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We mentioned earlier that when grounding counting quantifiers, it is

extremely important to mind the correct placement of parenthesis and to
create the correct equivalence in the formula. We now show an example of
how even a slight mistake can lead to an incorrect model count.
Example 3.9. Consider a sentence

∃=1x∀y R(x, y)

in a Herbrand Universe ∆ of size two, where R is a predicate of arity two.
Then the correct grounding looks as follows:

∀x (C(x) ⇐⇒ ∀y R(x, y)) ∧ (|C| = 1)

which is grounded to∧
A∈{1,2}

(C(A) ⇐⇒
∧

B∈{1,2}
R(A,B)) ∧ (|C| = 1)

If we consider an encoding of the cardinality constraint that does not introduce
any new atoms (such an encoding exists and was described previously), we
can see that all models of such a sentence are:

{{C(1), R(1, 1), R(1, 2)}, {C(1), R(1, 1), R(1, 2), R(2, 1)},
{C(1), R(1, 1), R(1, 2), R(2, 2)}, {C(2), R(2, 1), R(2, 2)},

{C(2), R(1, 1), R(2, 1), R(2, 2)}, {C(2), R(1, 2), R(2, 1), R(2, 2)}}

Now we show what happens for an incorrect grounding where the universal
quantifier is left out of the newly introduced equivalence:

∀x∀y (C(x) ⇐⇒ R(x, y)) ∧ (|C| = 1)

which is grounded to∧
A∈{1,2}

∧
B∈{1,2}

(C(A) ⇐⇒ R(A,B)) ∧ (|C| = 1)

Then only two models of such a sentence exist:

{{C(1), R(1, 1), R(1, 2)}, {C(2), R(2, 1), R(2, 2)}}

This shows that we need to be very careful when grounding counting
quantifiers in the way we do, to avoid making such a mistake. In a small
example like the one presented, the mistake is easy to spot, however, for more
complicated sentences, such a mistake might not be as easy to spot.

3.5.1 Lifted Approach to Counting Quantifiers

Another way to ground counting quantifiers is the way used in the lifted
methods that solve WFOMC. This way uses a number of lemmas which are
neatly and compactly aggregated in Tóth and Kuželka [2024]. Notice that the
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paper presents a conversion from C2 to UFO2 + CC. In this work, however,
we do not require the formula to be universally quantified as long as the
formula is a sentence. We now present the lemmas as they are presented in
the paper.

Lemma 1 in the paper is a skolemization procedure first presented in
Van den Broeck et al. [2014], and a modified version from Beame et al. [2015]
is used.
Lemma 3.10. Let Γ = Q1x1Q2x2, ..., Qkxkϕ(x1, ..., xk) be a first-order sen-
tence in prenex normal form with each quantifier Qi being either ∀ or ∃
and ϕ being a quantifier-free formula. Denote j the first position of ∃. Let
x = (x1, ..., xj−1) and ϕ(x, xj) = Qj+1xj+1...Qkxkϕ. Set

Γ′ = ∀x ((∃xj ϕ(x, xj)) =⇒ A(x))

where A is a fresh predicate. Then, for any n ∈ N and any weights (w,w)
with w(A) = 1 and w(A) = −1, it holds that

WFOMC(Γ, n, w,w) = WFOMC(Γ′, n, w,w)

This lemma is needed to remove existential quantifiers. This is needed for
lifted methods, but not for our grounding method.

Lemma 2 in the paper is a technique to remove negations without distribut-
ing them inside the formula. This lemma was presented in Beame et al. [2015].
This lemma could be used even when grounding to remove free variables.
Lemma 3.11. Let ¬ψ(x) be a subformula of a first-order logic sentence
Γ with k free variables x = (x1, ..., xk) Let C/k and D/k be two fresh
predicates with w(C) = w(C) = w(D) = 1 and w(D) = −1. Denote Γ′ the
formula obtained from Γ by replacing the subformula ¬ψ(x) with C(x). Let
Υ = (∀x C(x)∨D(x))∧ (∀x C(x)∨ψ(x))∧ (∀x D(x)∨ψ(x)). Then, it holds
that

WFOMC(Γ, n, w,w) = WFOMC(Γ′ ∧Υ, n, w,w)

With these two lemmas, we can now start with how to remove counting
quantifiers from a formula. Lemma 3 in the paper removes a single counting
quantifier and was first presented in Kuželka [2021].
Lemma 3.12. Let Γ be a first-order logic sentence. Let ψ be a C2 sentence
such that ψ = ∃=kxR(x). Let ψ′ = (|R| = k) be a cardinality constraint.
Then, it holds that

WFOMC(Γ ∧ ψ, n,w,w) = WFOMC(Γ ∧Ψ′, n, w,w)

Next lemma deals with a case of ∀∃=k. This lemma was originally presented
in Kuželka [2021].
Lemma 3.13. Let Γ be a first-order logic sentence. Let Ψ be a C2 sentence
such that ψ = ∀x∃=k R(x, y). Let Υ be an FO2 + CC sentence defined as

Υ = (|R| = k · n)
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∧(∀x∀y R(x, y) ⇐⇒

∨
i,1≤i≤k

fi(x, y))

∧
∧

1≤i<j≤k

(∀x∀y fi(x, y) =⇒ ¬fj(x, y))

∧
∧

1≤i≤k

(∀x∃y fi(x, y))

where fi/2 are fresh predicates not appearing anywhere else. Then, it holds
that

WFOMC(Γ ∧Ψ, n, w,w) = 1
k!nWFOMC(Γ ∧Υ, n, w,w)

Next is the last lemma used to obtain a UFO2 sentence from a C2 sentence.
It was originally presented in Kuželka [2021].
Lemma 3.14. Let Γ be a first-order logic sentence. Let Ψ be a C2 sentence
such that Ψ = ∀x A(x) ∨ (∃=kR(x, y)). Define Υ = Υ1 ∧Υ2 ∧Υ3 ∧Υ4 such
that

Υ1 = ∀x∀y ¬A(x) =⇒ (R(x, y) ⇐⇒ BR(x, y)

Υ2 = ∀x∀y ((A(x) ∧BR(x, y)) =⇒ UR(y))

Υ3 = (|UR| = k)

Υ4 = ∀x∃=k yBR(x, y)

where U , R/1, and BR/2 are fresh predicates not appearing anywhere else.
Then, it holds that

WFOMC(Γ ∧Ψ, n, w,w) = 1(n
k

)WFOMC(Γ ∧Υ, n, w,w)

Notice that in all these cases, only counting quantifiers in the form of
∃=k are used. That is because the mentioned lifted methods only work with
counting quantifiers in the form of ∃=k. That is because both the counting
quantifier in the form of ∃≤k and ∃≥ k can be transformed to the form of
∃=k. A sketch of how that is done is that counting quantifiers in the form of
∃≤kxP (x) can be transformed to∨

1≤i≤k

(∃=kP (x)).

The counting quantifiers in the form of ∃≥kxP (x) can be transformed into

¬
∨

1≤i≤k−1
(∃=kP (x)).

Tóth and Kuželka [2024] also provide an algorithm describing how to apply
all the lemmas above to obtain a UFO2 + CC sentence from a C2 sentence.

This concludes the description of how lifted methods deal with counting
quantifiers. We had the option to implement this method as well, however, we
opted not to do so. That is because it would put a huge strain on the solvers
by introducing many new solutions. We can see that lemma 3.14 introduces
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Algorithm 4 Convert C2 to UFO2

Algorithm Convert C2 to UFO2

Input: Sentence Γ ∈ C2

Output: Sentence Γ′ ∈ UFO2 + CC
for all sentence ∃=kx Ψ(x) in Γ do

Apply Lemma 3.12
end for
for all sentence ∀x∃=ky Ψ(x, y) in Γ do

Apply Lemma 3.13
end for
for all subformula Φ(x) = ∃=ky Ψ(x, y) in Γ do

Create new predicates R/2 and A/1
Let µ← ∀x∀y R(x, y) ⇐⇒ Ψ(x, y)
Let ν ← ∀x A(x) ⇐⇒ (∃=ky R(x, y))
Apply Lemmas 3.11, 3.14 and 3.13 to ν
Replace Φ by A(x)
Append µ ∧ ν to Γ

end for
for all sentence with an existential quantifier in Γ do

Apply Lemma 3.10
end for
return Γ

(n
k

)
-times new models, where n = |∆|, where ∆ is the Herbrand Universe,

and k is the number in the counting quantifier. Also, lemma 3.13 introduces
k!n-times new models, where n = |∆|, where ∆ is the Herbrand Universe,
and k is the number in the counting quantifier. As we show later, the number
of models plays a key role in the runtime of our implementation, so using
this method would only lower the size of universes we would be able to count
the models of a sentence in. Also, implementing this method would be much
harder than the first method we describe in this section, requiring a lot of
work for very little results. However, we need to mention the importance of
this method for counting the models of a sentence in a lifted way.

3.6 Linear Order Axiom

The last fragment of first-order logic we implment the grounding of is the
FO2 with the Linear Order Axiom. Linear order axiom enforces a a
total order, which means a reflexive, anti-symetric, transitive and strongly
connected relation. Aside from transitivity, all these properties do belong to
the FO2 fragment. Transitivity, however, requires 3 variables, so it does not
belong to the FO2 fragment. However, Tóth and Kuželka [2023] showed that
WFOMC with linear order axiom is domain-liftable.

We will be using the predicate ≤ to denote a linear order. When using
the predicate ≤ to represent a linear order, we will be also using the infix
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notation. We will be denoting Φ = Ψ ∧ Linear(≤), where Ψ is a sentence in
C2 and ≤ is a predicate of arity two. We also provide a definition.
Definition 3.15. Let Ψ be a logical sentence containing a predicate ≤ of arity
2. A possible model ω is a model of Φ = Ψ ∧ Linear(≤) if and only if ω is a
model of Ψ and ≤ satisfies the linear order axioms.

Now, we present the 2 ways we ground the linear order. The first way we
ground the linear order is by adding clauses to the formula in conjunctive
normal form that we obtained such that a predicate follows the linear order
axiom. That means we need to add all the qualities of the linear order to
a predicate. Since we do not require a limited number of predicates that
follow the linear order, we consider a predicate P/2 that linear order is being
applied to, and a Herbrand Universe ∆. This is done by adding the following
clauses to the formula in conjunctive normal form:. ∧

x∈∆
P (x, x)

This is simple reflexivity, there is no problem with it.. ∧
x∈∆

∧
y∈∆,y ̸=x

(P (x, y) ∨ P (y, x))

We require that for any combination of two variables, at least one relation
is true, either P(x, y) or P(y, x).. ∧

x∈∆

∧
y∈∆,y ̸=x

(¬P (x, y) ∨ ¬P (y, x))

While in the previous addition of clauses, we could have omitted the
requirement that x ̸= y, this time it is necessary to only append this
clause when x ̸= y. That is because if we added the clause where x = y,
we would get a contradiction with reflexivity immediately.. ∧

x∈∆

∧
y∈∆,y ̸=x

∧
z∈∆,z ̸=x,z ̸=y

(¬P (x, y) ∨ ¬P (y, z) ∨ P (x, z))

These are clauses that encode transitivity. We use three variables, which
would not be possible in the two-variable fragment of first-order logic, but
since our application allows it, we use this approach. Importantly, this
allows for the input sentences to contain evidence about the linear order.
It also still allows us to claim that the resulting formula in conjunctive
normal form is polynomial in the size of the domain, as the transitivity
is encoded in O(|∆|3) size.

Another way we can ground the linear order axiom is not to fully ground
it but to semi-ground it. This is done by fixing a single possible linear order,
solving the WFOMC problem with a fixed linear order, and then multiplying
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the result by |∆|!, where ∆ is a Herbrand Universe. This was presented as
Corollary 1 in Tóth and Kuželka [2023]. This only allows one linear order
axiom in a formula, compared to the full grounding above. Also, we only
allow this way of grounding for sentences without evidence, meaning with no
constants. It is possible to have a sentence with constants and linear order
that can be solved using the semi-grounded approach, however, it would be
hard to detect which sentences are possible to count this way and which
cannot. We provide some examples below.
Example 3.16. Consider a sentence Φ = (2 ≤ 1) ∧ Linear(≤) and a semi-
grounded linear order {(1 ≤ 1), (1 ≤ 2), (2 ≤ 2)}. Then we easily obtain a
contradiction, which means there are no models of Φ, while there exists at
least one model: {(2 ≤ 2), (2 ≤ 1), (1 ≤ 1)}.
Example 3.17. Consider a sentence Φ = P (1) ∧ Linear(≤) and a semi-
grounded linear order {(1 ≤ 1), (1 ≤ 2), (2 ≤ 2)}. This sentence contains
evidence and its models can be counted using the semi-grounded linear order.
Example 3.18. Consider a sentence

Φ = Ψ ∧ Linear(≤),

Ψ = (P (1) ∨ (Q(2, 1) =⇒ (2 ≤ 1))

and a semi-grounded linear order {(1 ≤ 1), (1 ≤ 2), (2 ≤ 2)}. We can see that
the ground atoms change what possible worlds are models drastically. Even
more indirect evidence for the linear order may be introduced in a formula.
Knowing this, it would require a high amount of preprocessing to distinguish
formulas with evidence of which we can count the models with semi-grounded
linear order and which models we cannot. Therefore, we do not allow any
constants in sentences with linear order.
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Chapter 4
Implementation

In this chapter, we introduce the reader to the implementation of the ap-
plication we developed to solve the WFOMC problem by grounding. The
application we provide is written in C, which we chose for its high perfor-
mance. While C does not support object-oriented programming, we can
leverage structures to obtain a pseudo polymorphism. This is useful when
storing arbitrary first-order logic formulas.

4.1 Data Structures

To store arbitrary formulas, we use the following data structures.Object is a pseudo superclass to represent a formula. It stores either a
Formula or Atom with the information which of the former it is.. Formula is a structure that consists of a list of Prepositions that affect
the formula, the logical connective between its subformulas, and a list of
Objects that represent its subformulas..Atom is an atomic formula, it consists of a list of Prepositions being
applied to the Predicate inside, a Predicate, and a (possibly empty) list
of Terms this predicate is being applied to..Preposition is a negation symbol, a universal, existential, or counting
quantifier along with the variable it is being applied to, in the case of
counting quantifier also with a number k of the counting quantifier..Term is a pseudo superclass for Functions, Variables, and Constants,
containing any of the former and the type it stores.. Function consists of a function symbol and Terms it is being applied to..Variable, Constant represent variables and constants, containing their
respective names.

These data structures allow us to store any arbitrary formula ϕ. During
experiments, we do not allow the use of functions, as any function of arity
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greater or equal to 1 makes the Herbrand base infinite, making model counting
impossible.

In our implementation, cardinality constraints are not represented as a
part of a formula, but rather a list of cardinality constraints is passed to
the counter if any are present. Similarly, a linear order is not represented as
a part of a formula, but rather a name of a predicate that needs to satisfy
the linear order is passed to the counter. The reason for this is that both
cardinality constraints and linear order are enforced by adding clauses after
the formula has been grounded. This makes grounding the formula easier,
as when grounding a formula, we need not worry about any cardinality
constraints or linear order. Also, when grounding the cardinality constraints
or linear order, we can create clauses in DIMACS format, the output format
of the grounder, rather than creating a construct of structures that would be
transformed to the DIMACS format immediately.

The DIMACS format 1 is a widely used format for storing propositional
formulas in CNF. We ground formulas into the DIMACS format both in the
case of solving iteratively with a SAT solver or when using dedicated WMC
solver as all these solvers expect their input to be a DIMACS file.

A file in the DIMACS format is an ASCII file that stores propositional
formulas in CNF. The file consists of a problem line in the format of p cnf
n m, where n is the number of clauses in the formula and m is the number of
propositional variables, and usually n clause lines, which are lines of positive
or negative whole numbers ending with a 0. There can also be optional
comment lines starting with c. It is not necessary to write each clause on a
separate line, a clause can take several lines or several clauses divided by 0s
can be on a single line, however, it is customary that each clause be one line
long. A short example of a DIMACS file is a file:
c first comment line
p cnf 2 3
c second comment line
1 -2 0
-1 3 0
which encodes the formula (x∨¬y)∧(¬x∨z). The application we implemented
either solves iteratively using a SAT solver or produces a DIMACS file to be
used with a WMC solver.

4.2 Solvers

In this work, we work with 3 solvers. The first is a SAT solver CryptoMiniSat
[Soos et al., 2009]. This solver is a SAT solver, that we use when finding
solutions by iterative calls to a SAT solver. We chose CryptoMiniSat because
it offers an interface in C, which made it easy to implement in our application.
Also, CrpytoMiniSat is a contender for the International SAT Competition 2.
It earned three bronze awards in the year 2018 and a golden and bronze award

1/https://www.satcompetition.org/2009/format-benchmarks2009.html
2http://www.satcompetition.org/
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in the year 2016. It offers a fair bit of documentation, making its use easy
while being sufficiently fast, which is shown in the experiments. Other solvers
exist, for example, CaDiCaL [Biere et al., 2020], or Glucose and many others
that can be found in Heule et al. [2018]. However, not many of them offer an
interface in C or sufficient documentation to use them in our implementation.

Next, we use the solver DSHARP [Muise et al., 2012], which is a WMC
solver. The last solver we use is the ADDMC solver [Dudek et al., 2020], which
is a WMC solver that tied for first place at the Model Counting Competition
of 2020 [Fichte et al., 2021]. Again, many other solvers exist and some of
them can be found in Fichte et al. [2021].

We compare the performance of these model counters against the state-
of-the-art model counters using the lifted approach. These model counters
utilize the FastWFOMC algorithm [van Bremen and Kuželka, 2021] and the
IncrementalWFOMC algorithm [Tóth and Kuželka, 2023]. FastWFOMC is
an algorithm that computes WFOMC in the C2 fragment, while Incremen-
talWFOMC computes WFOMC in the C2 + Linear fragment.

4.3 File Structure

We keep the usual file structure of C programs having an implementation
file file.c and a header file file.h for each structure and each major
functionality. An exemption from this is the definition of object, formula,
and atom structures in the files formula.c and formula.h. This is to prevent
circular dependency.

All functions the user should need are declared in the files fluffbro.h, in
which they are also documented. How to use these functions can be seen in
the file main.c, in which all examples from Chapter 5 are also implemented.
Alongside the source code, we provide a Makefile, which can be used to
compile the main.c into an executable binary main. It also has the typical
options of run, which executes the binary, and clean, which removes the .o
files. Another option of the Makefile is valrun, which compiles the code
and runs Valgrind with the file. This is because we developed the code to be
Valgrind safe 3.

3https://valgrind.org/
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Chapter 5
Experiments

In this chapter, we present the results we obtained from testing different
approaches to WFOMC on several examples. When comparing the different
approaches, we measure the maximum size of the Herbrand universe the
approach can manage and the time it takes. The lifted approach is imple-
mented in the Julia language [Bezanson et al., 2017], so we used the package
BenchmarkTools 1 to measure the execution time, which gives us the average
time of many runs. We only measure runtimes on universes |∆| ≤ 20 using
the lifted approach, even though it is capable of going far beyond |∆| = 20.
However, no other approach can go beyond |∆| = 20, so we stop there. Other-
wise, we measured the time of 100 runs and chose the median, if possible, and
performed fewer measurements when runtime did not allow that many runs.
We counted unweighted formulas, as the only difference to weighted formulas
is multiplying the weights of predicates, which would only add constant time
to what we measure this way. All measurements were taken on a laptop with
the Intel Core i3-8145U CPU.

5.1 Two-Variable Fragment

We first measure the performance of different solvers within the FO2 fragment.
We chose the following problems to measure the performance of the solvers.

Graphs without isolated nodes, which are represented by the formula

Φ =∀x ¬Edge(x, x)∧
∀x∀y Edge(x, y) =⇒ Edge(y, x)∧
∀x∃y Edge(x, y).

Runtimes can be seen in Figure 5.1. The sequence generated by counting
the models of this sentence can be found in OEIS Foundation Inc. [2024] as
sequence A006129.

1juliaci.github.io/BenchmarkTools.jl/
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n-colored graphs without isolated nodes, with the general formula

Φ =∀x ¬Edge(x, x)∧
∀x∀y Edge(x, y) =⇒ Edge(y, x)∧
∀x∃y Edge(x, y)∧
∀x

∨
1≤i≤n

Ci(x)

∀x ¬Ci ∨ ¬Cj , 1 ≤ i < j ≤ n ∧
∀x∀y Edge(x, y) =⇒ ¬Ci(x) ∨ ¬Ci(y) 1 ≤ i ≤ n.

We chose n ∈ {2, 3, 4, 5}. Runtimes can be seen in Figure 5.2. The only
sequence of those generated by model counting these sentences that can be
found in OEIS Foundation Inc. [2024] is A052332 for n = 2.

Edge covers, which are represented by the formula:

Φ =∀x ¬Edge(x, x)∧
∀x∀y Edge(x, y) =⇒ Edge(y, x)∧
∀x∃y CoverEdge(x, y)
∀x∀y CoverEdge(x, y) =⇒ CoverEdge(y, x)
∀x∀y CoverEdge(x, y) =⇒ Edge(x, y)

Runtimes can be seen in Figure 5.3.
And vertex covers, which are represented by the formula:

Φ =∀x ¬Edge(x, x)∧
∀x∀ yEdge(x, y) =⇒ Edge(y, x)∧
∀x∀y (Edge(x, y) =⇒ CoverV ertex(x) ∨ CoverV ertex(y))

Runtimes can be seen in Figure 5.4. The sequence generated by counting
the models of this formula can be found in OEIS Foundation Inc. [2024] as
seqeunce A079491.

We can state several observations from the data in Figures 5.1 through 5.4.
First, we can see that the iterative SAT solver is worse than exponential

when counting models. This is because the more solutions we find, the longer
time it takes to generate new solutions. This can be seen in Figure 5.5, which
shows the cumulative time it takes the iterative SAT solver to find 200,000
solutions of a graph with unisolated nodes formula with |∆| = 7.

The DSHARP model counter works very well for small domain sizes. Then,
we can see that its complexity is exponential in the size of the universe. From
the non-lifted model counters, DSHARP performs the best. From the runtime
of n-colorable graphs, we can see that it struggles a bit with a larger equation
of 5-colorable graphs.

The ADDMC model counter did not perform well. It features weird but
reproducible spikes in some sizes of the universe ∆. This behavior can be
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Figure 5.1: Runtime of Graphs Without Isolated Nodes

seen in Figures 5.1 and 5.4. It does not outperform the DSHARP model
counter and sometimes not even the iterative SAT solver. It comes out as
worst but will show more promise in other fragments.

The FastWFOMC lifted method shows that its runtime is almost constant
in the size of the universe ∆. We could go far beyond |∆| = 20 and it still
counts models of the formula in nearly the same time. There is a noticeable
jump in runtime between the runtime of counting models of 4-colorable
graphs and 5-colorable graphs in Figure 5.2. It is because the FastWFOMC
complexity is polynomial in the size of the domain. Since the 5-colorable
graphs have the largest formula, the time to count the models of this formula
is the longest.
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Figure 5.4: Runtime of Vertex Covers
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5. Experiments .....................................
5.2 Two-Variable Fragment With Cardinality
Constraints

Next, we measured the runtime of solving problems from the FO2 + CC
fragment. We chose the following problems to measure the performance of the
solvers. Since the FastWFOMC package only allows for cardinality constraints
in the form of |P | = k, we only use this form of cardinality constraints so
that we can compare the results to FastWFOMC.

Graphs with 3-edge cover and 4-edge cover, which are represented by the
formula:

Φ =∀x ¬Edge(x, x)∧
∀x∀y Edge(x, y) =⇒ Edge(y, x)∧
∀x∃y CoverEdge(x, y)∧
∀x∀y CoverEdge(x, y) =⇒ CoverEdge(y, x)∧
∀x∀y CoverEdge(x, y) =⇒ Edge(x, y)∧
|CoverEdge| = k,

where k ∈ {6, 8}. The runtimes can be seen in Figures 5.6 and 5.7. It should
be noted, that for k = 3, model count of any universe |∆| > 6 is 0, so we
only go up to |∆| = 7 and stop there. Similarly, we only go up to |∆| = 9 for
k = 4.

Graphs with 1-vertex cover, 2-vertex cover, or 3-vertex cover. The formula
representing this problem is:

Φ =∀x ¬Edge(x, x)∧
∀x∀y Edge(x, y) =⇒ Edge(y, x)∧
∀x∀y Edge(x, y) =⇒ (CoverV ertex(x) ∨ CoverV ertex(y))∧
|CoverV ertex| = k,

where k ∈ {1, 2, 3}. The runtimes can be seen in Figures 5.8 through 5.10.
The sequences generated by this sentence can be found in OEIS Foundation
Inc. [2024] as:. A001787 for n = 1.. A052780 for n = 2..There is no entry for n = 3.

In these examples, we can show several things. We can see that the iterative
SAT solver is extremely responsive to the number of solutions it has to find.
In Figure 5.6, it can to count the models of universe |∆| = 6, and the universe
|∆| = 7 is much faster as there are no models from this universe onwards.
In Figure 5.13, we see that for a very restrictive formula that has very few
models, it can count the models of a universe |∆| = 15. However, in Figure
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Figure 5.6: Runtime of 3-Edge Covers

5.15, we can see that for a formula that has many solutions, it can only count
up to |∆| = 5. We can also compare the ladder encoding and parallel counter
encoding. The comparison can be seen in Figure 5.11. The encoding that
seems to be slightly better is the ladder encoding. This makes it seem that
the efficiency is more important for runtime than the number of clauses or
atoms.

We can see that DSHARP performs well, being the best of the non-lifted
methods. We can see jumps in runtimes for 1-vertex covers and 3-vertex
covers. This is because these problems have 0 models for |∆| = 2 ·k+1, k ∈ N
and DSHARP decides satisfiablity during preprocessing, skipping counting
the models if the formula is unsatisfiable.

ADDMC again performs the worst of the solvers. It does not decide
satisfiablity of the formula and only counts its models, which is important for
the problems we chose for this fragment.

FastWFOMC still takes constant time to count models of universes of all
sizes.
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Figure 5.7: Runtime of 4-Edge Covers
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Figure 5.9: Runtime of 2-Vertex Covers
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Figure 5.10: Runtime of 3-Vertex Covers
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5.3 Two-Variable Fragment with Counting
Quantifiers

The next fragment we measured the runtime of solvers is C2. We chose the
following problems to measure the performance of the solvers.

Perfect Matching, which is represented by the formula:

Φ =∀x ¬Edge(x, x)∧
∀x∀y Edge(x, y) =⇒ Edge(y, x)∧
∀x∃=1y Match(x, y)∧
∀x∀y Match(x, y) =⇒ Match(y, x)∧
∀x∀y Match(x, y) =⇒ Edge(x, y)

The runtimes of this formula can be seen in Figure 5.12
n-regular graphs, which are represented by the formula:

Φ =∀x ¬Edge(x, x)∧
∀x∀y Edge(x, y) =⇒ Edge(y, x)∧
∀x∃=ny Edge(x, y),

where n ∈ {1, 2, 3}. The runtimes of this formula can be seen in Figures 5.13
through 5.15. The sequences generated by this sentence can be found in OEIS
Foundation Inc. [2024] as:. A123023 for n = 1.. A001205 for n = 2..There is no entry for n = 3.

From the runtimes, we can again see that the unsatisfiable problems are
much faster to solve for the iterative SAT solver. We also see that the ladder
encoding seems to perform better. Further proof of that can be seen in Figure
5.16. We have more empyrical evidence that efficiency is the more important
factor for cardinality constraint encodings.

DSHARP is still able to count the models of the formulas up to the highest
|∆| from the non-lifted methods. However, it starts to run into problems, as
it cannot count the models of a universe with more than 21024 possible worlds,
which is equivalent to a grounded formula with 1024 ground atoms. Even if
we use the parallel counter encoding to reduce the number of ground atoms
in the formula, DSHARP still is not able to count past some universe sizes.

ADDMC is able to count to higher sizes of ∆, but still performs the worst
of the presented solvers.

FastWFOMC still runs in nearly constant time, with the exceptions that
can be seen in Figures 5.14, and 5.15. In these cases, the formula is unsolvable
for |∆| ≤ 2 or |∆| ≤ 3 respectively and some preprocessing is likely responsible
for faster detection of this fact.
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Figure 5.12: Runtime of Prefect Matching
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Figure 5.13: Runtime of 1-Regular Graphs
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Figure 5.14: Runtime of 2-Regular Graphs
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Figure 5.15: Runtime of 3-Regular Graphs
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5.4 Two-Variable Fragemnt with Linear Order
Axiom

The last fragment we measured the performance of the solvers on is the
FO2 + Linear. In this fragment, we chose the sequence splitting problems
Head & Tail and Head, Tail, & Middle. These problems split a sequence to a
head and tail, or head, tail, and middle respectively.

Head & Tail

Φ =∀x Head(x) ∨ Tail(x)∧
∀x ¬Head(x) ∨ ¬Tail(X)∧
∀x∀y (Head(x) ∧ (y ≤ x)) =⇒ Head(y)∧
∀x∀y (Tail(x) ∧ (x ≤ y)) =⇒ Tail(y)∧
Linear(≤)

The runtime of this formula can be seen in Figure 5.17. The sequence
generated by counting the models of this sentence can be found in OEIS
Foundation Inc. [2024] as sequence A000142.

Head, Tail & Middle

Φ =∀x Head(x) ∨ Tail(x) ∨Middle(x)∧
∀x ¬Head(x) ∨ ¬Tail(X)∧
∀x ¬Middle(x) ∨ ¬Tail(X)∧
∀x ¬Head(x) ∨ ¬Middle(X)∧
∀x∀y (Head(x) ∧ (y ≤ x)) =⇒ Head(y)∧
∀x∀y (Tail(x) ∧ (x ≤ y)) =⇒ Tail(y)∧
Linear(≤)

The runtime of this formula can be seen in Figure 5.18. The sequence
generated by counting the models of this sentence can be found in OEIS
Foundation Inc. [2024] as sequence A001710.

In this fragment, we can see that all the solvers are overwhelmed by
the extremely high number of models these formulas have. ADDMC again
performs poorly.

The iterative SAT solver utilizing a full grounding of the linear order is
again worse than exponential and times out on quite a small universe ∆.
On the other hand, the iterative SAT solver utilizing a semi-grounding of
the linear order works extremely well. It is very fast, but at |∆| = 12,
we encounter an integer overflow and the results are not correct from this
point onward. This could be solved by improving the implementation to use
arbitrary precision for the output. Even if we achieved arbitrary precision
though, we can see from the Figures 5.17 and 5.18 that the trend is that this
approach would be outperformed by IterativeWFOMC for larger domains.

The IncrementalWFOMC counts models in nearly constant times and again
can count the models in much larger universes than we present.
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Figure 5.17: Runtime of Head Tail
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Figure 5.18: Runtime of Head Tail Middle
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Chapter 6
Conclusion

Weighted first-order model counting is a powerful technique that can be
used to solve several practical problems. With the progress made recently
in lifted approach to WFOMC, this technique became even more powerful.
However, lifted approach to WFOMC is only possible in certain first-order
logical fragments. For some of these fragments, the non-lifted baseline we
could compare the performance of the lifted approach to is missing. The
goal of this work was to provide such a baseline and compare it to the lifted
methods.

We first created an infrastructure, that allowed us to handle formulas from
the required fragments and ground them. We then used several different
solvers to count the models of the formula and compared their performance to
the performance of the lifted approach. We also compared several approaches
to grounding fragment-specific constructs.

In Chapter 5 we present the results of experimental performance testing. We
can clearly see from the results that the lifted methods perform incomparably
better to the non-lifted ones. This performance is what makes the lifted
approach to WFOMC much more desirable and usable compared to the
non-lifted approach. This proves that the effort put into developing lifted
methods that solve the WFOMC problem yields great results.

The only advantage of non-lifted methods is their ability to count the
models of any arbitrary formulas not being subject to any logical fragment.
However, as we show in Chapter 5, the number of atoms in the grounded
formula as well as the number of models makes counting the models of the
formula take more time. That means that these methods would probably fail
for arbitrary formulas that are more complicated than those we can solve
using lifted methods. To conclude our work, we can safely say that the lifted
methods vastly outperform the non-lifted baseline.
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Appendix A
Enclosed Source Codes

cardinality_constraint.c
cardinality_constraint.h
cns.c
cns.h
constant.c
constant.h
fluffbro.c
fluffbro.h
formula.c
formula.h
function_symbol.h
function_symbol.c
grounder.c
grounder.h
hash_simple.c
hash_simple.h
ladder_encoding.c
ladder_encoding.h
linear_order_axiom.c
linear_order_axiom.h
list.c
list.h
main.c
Makefile
parallel_counter_encoding.c
parallel_counter_encoding.h
predicate.c
predicate.h
prenex.c
prenex.h
prep.c
prep.h
skolemize.c
skolemize.h
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A. Enclosed Source Codes ................................
term.c
term.h
utils.c
utils.h
variable.c
variable.h
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