
Czech Technical University in Prague

Faculty of Electrical Engineering
Department of Computer Science

Multi-robot Systems

Planning For Autonomous

Aerial Interception Of UAVs

Master’s Thesis

Yevhenii Kubov

Prague, May 2024

Study programme: Open Informatics
Branch of study: Artificial Intelligence

Supervisor: Ing. Matouš Vrba

ii

Acknowledgments

Firstly, I would like to express my gratitude to my supervisor Ing. Matouš Vrba for
his great support and providing all the necessary information during writing this thesis. I’m
grateful to the MRS team members for guiding me during the experiments and providing
consultations.

I would also like to thank my parents and friends for their support.

Finally, I would like to express my respect and deep gratitude to all those who have
helped Ukraine and its citizens in any way and those who defend the country.

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

492322 Personal ID number: Kubov Yevhenii Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Computer Science

Open Informatics Study program:

Artificial Intelligence Specialisation:

II. Master’s thesis details

Master’s thesis title in English:

Planning for autonomous aerial interception of UAVs

Master’s thesis title in Czech:

Plánování pro autonomní odchyt bezpilotních letounů

Guidelines:

The main aim of the thesis is to compare different methods for
planning agile trajectories for autonomous interception of small
unmanned aerial vehicles.
• Extend the existing implementations of planning based on Model
Predictive Control (MPC) developed by the MRS group.
• Research Reinforcement Learning (RL)-based planning algorithms,
implement selected algorithms and integrate them with the MRS UAV
system.
• Test the existing proportional navigation-based planner, both the
baseline and the extended MPC planner, and the developed RL planner in
realistic simulations under various conditions and compare them using
relevant metrics.

Bibliography / sources:

1. R. Yanushevsky, "Modern Missile Guidance," CRC Press, 2007.
2. M. Guelman, „Proportional Navigation with a Maneuvering Target,“ in Transactions on Aerospace and Electronic Systems,
vol. AES-8, no. 3, pp. 364-371, 1972.
3. Matouš Vrba, Viktor Walter, Václav Pritzl, Michal Pliska, Tomáš Báča, Vojtěch Spurný, Daniel Heřt and Martin Saska,
„On Onboard LiDAR-based Flying Object Detection,“ arXiv preprint cs.RO 2303.05404, 2023.
4. T. Báča, D. Heřt, G. Loianno, M. Saska and V. Kumar, „Model Predictive Trajectory Tracking and Collision Avoidance
for Reliable Outdoor Deployment of Unmanned Aerial Vehicles,“ in International Conference on Intelligent Robots and
Systems, 2018.

© ČVUT v Praze, Design: ČVUT v Praze, VIC Page 1 from 2 CVUT-CZ-ZDP-2015.1

iv

Declaration

I declare that the presented work was developed independently, and that I have listed
all sources of information used within, in accordance with the Methodical instructions for
observing ethical principles in preparation of university theses. The use of generative AI tools
was conducted in accordance with the official guidelines of the Czech Technical University.
ChatGPT was used for grammar checking and minor test reformulation.

Date

v

Abstract

As the popularity of Unmanned Aerial Vehicles (UAVs), commonly known as drones,
continues to grow, concerns regarding the potential misuse of them have become
more actual. One of the emerging challenges in the area of drone security is the
interception of intruder drones, especially when their presence can lead to injuries
or breaks the law. Intercepting a non-cooperating drone requires a sophisticated ap-
proach, and one promising branch of this technology involves deploying an intercep-
tor drone. For this purpose a fast and robust approach for planning the interception
trajectory must be used. In this thesis an Model Predictive Control (MPC)-based
trajectory planner and Reinforcement Learning (RL)-based control strategy are im-
plemented. Their effectiveness, speed and robustness are assessed, compared and
tested in simulations. The MPC-based planner is also tested in a real-world experi-
ment.

Keywords Drone Interception, Reinforcement Learning, Model Predictive Control,
Artificial Intelligence, Unmanned Aerial Vehicles

vi

Abstrakt

Popularita bezpilotńıch helikoptér, běžně známých jako drony, stále roste, stejně jako
obavy ohledně jejich možného zneužit́ı. Jedńım z nových bezpečnostńıch problémů je
nedostatek efektivńıch prostředk̊u ochrany před drony, zvláště v př́ıpadech kdy jejich
př́ıtomnost může vést ke zraněńı nebo porušuje zákon. Zachyceńı nespolupracuj́ıćıho
dronu je komplikovaný problém. Jedna slibná větev výzkumu v této oblasti zahrnuje
nasazeńı odchytového dronu. Pro tento účel je potřeba vyvinout rychlý a robustńı al-
goritmus plánováńı odchytových trajektoríı. V této práci je implementován plánovač
trajektoríı založený na prediktivńım ř́ızeńı a strategie ř́ızeńı založená na posilovaném
učeńı. Jejich účinnost, rychlost a robustnost jsou zhodnoceny, porovnány a testovány
v simulaćıch. Plánovač založený na prediktivńım ř́ızeńı je otestován i v reálném ex-
perimentu.

Kĺıčová slova Odchyt Dron̊u, Posilované Učeńı, Prediktivńı Ř́ızeńı, Umělá In-
teligence, Bezpilotńı Prostředky

vii

Abbreviations

FOV Field of View

GNSS Global Navigation Satellite System

IMU Inertial Measurement Unit

LiDAR Light Detection and Ranging

ROS Robot Operating System

RTK Real-time Kinematics

UAV Unmanned Aerial Vehicle

PN Proportional Navigation

MPC Model Predictive Control

NMPC Nonlinear Model Predictive Control

RL Reinforcement Learning

ODE Ordinary Differential Equation

MDP Markov Decision Process

PPO Proximal Policy Optimization

TRPO Trust Region Policy Optimization

DQN Deep Q-Network

LSTM Long Short-Term Memory

A2C Advantage Actor-Critic

ReLU Rectified Linear Unit

viii

Contents

1 Introduction 1

1.1 Risks of unauthorized drone deployment . 2

1.2 Drone mitigation techniques . 2

1.2.1 Physical elimination by a projectile . 2

1.2.2 Directed energy weapons . 3

1.2.3 Jamming . 3

1.2.4 GNSS Spoofing . 3

1.2.5 Mid-air interception by another vehicle 4

1.3 Related works . 4

1.3.1 Missile Guidance . 4

1.3.2 Target detection . 4

1.3.3 Model Predictive Control . 5

1.3.4 Reinforcement Learning . 5

1.3.5 Drone interception . 8

1.4 Problem statement . 9

2 MPC methodology 11

2.1 System model . 11

2.2 Prediction horizon . 11

2.3 Cost function . 13

2.4 Constraints . 14

2.5 Control law . 14

2.6 Linear vs Nonlinear MPC . 14

2.7 Solver . 15

2.8 Sequential Quadratic Programming . 15

2.9 Nonlinear Interior Point . 15

2.10 The Acados MPC framework . 16

3 MPC-based trajectory planner 17

3.1 Implementation and integration with the MRS system 17

3.2 Model of the drone . 17

3.3 Cost function . 18

3.4 Constraints . 19

4 RL methodology 20

4.1 RL formulation and assumptions . 20

4.2 Brief overview of frequently used RL algorithms 21

4.2.1 Temporal difference (TD) learning . 21

4.2.2 Q-learning . 21

ix

4.2.3 SARSA . 22
4.2.4 DQN . 22
4.2.5 PPO . 22

4.3 PPO Algorithm . 23
4.3.1 Policy gradient . 23
4.3.2 TRPO . 23
4.3.3 Clipped Surrogate Objective function 24

4.4 Value and policy networks . 24
4.5 Stable baselines . 25

5 RL-based control strategy 26
5.1 Training environment . 26
5.2 Observation space and action space . 26
5.3 Networks . 27
5.4 Reward function . 27
5.5 Training process . 28
5.6 Examples of the learned behavior . 28
5.7 ROS node . 30

6 Simulation 32
6.1 Testing scenarios . 32
6.2 Evaluation . 32
6.3 Baseline proportional navigation . 34

6.3.1 Limitations . 37
6.4 MPC-based trajectory planner . 37

6.4.1 Limitations . 37
6.4.2 Computational time comparison with the existing planner 37

6.5 RL-based control strategy . 40
6.5.1 Limitations . 40

6.6 Analysis and comparison . 40

7 Real-world evaluation of the MPC-based
trajectory planner 44

8 Conclusion 45

9 References 46

1. INTRODUCTION 1/48

1 Introduction

The increasing popularity of small multi-rotor UAVs has undeniably revolutionized
many industries. Their modern history began around 2000s, when electronic parts such as
microcontrollers, IMUs and propulsion systems have become sufficiently miniaturized and in-
expensive, making the final product affordable for a common person and businesses (Fig. 1.1).
At that time, drones started to be seen not only as a research platform, but also as a toy, a
flying camera, or a commercial tool leading to immense growth in the drone market. With the
increasing amount of production UAV models of various sizes, they have been applied to sim-
plify many tasks. Among them is cinematography: aerial shots used to be done with manned
vehicles like planes or helicopters. In many cases, these costly platforms can be replaced by a
drone, greatly reducing the costs [34]. Another example is industrial inspection: for instance,
each photovoltaic power plant needs to be regularly inspected. Thermal imaging can unveil
faults such as malfunctioning cells (Fig. 1.2), and employing the UAV to cover the rather large
area of a power plant reduces the costs and speeds up the process [39]. Also, UAVs have been
used for different delivery [18] or search and rescue tasks in hardly reachable areas [33] and
many others.

Figure 1.1: Photo of a consumer-grade filming drone DJI Mavic 31.

However, the rapid development of drones has also raised notable concerns and chal-
lenges related to safety, security, privacy, and regulatory compliance. In the wrong hands, a
UAV can pose a physical threat, cause material and non-material damage. Therefore, a new
problem has emerged: how to limit and interrupt unwanted drone operations.

1“DJI Mavic 3 Classic” photo: https://store.dji.com/cz/product/dji-mavic-3-classic (Accessed: 2024-
04-25)

2“Pv Panel Review with Thermal Drone” https://mapperx.com/en/thermal-drone-with-pv-panel-review/
(Accessed: 2024-04-25)

CTU in Prague Department of Computer Science

https://store.dji.com/cz/product/dji-mavic-3-classic
https://mapperx.com/en/thermal-drone-with-pv-panel-review/

2/48 1.1. RISKS OF UNAUTHORIZED DRONE DEPLOYMENT

Figure 1.2: Visualization of a drone inspecting a solar power plant. Image credit2.

1.1 Risks of unauthorized drone deployment

Unauthorized operation can happen both due to one’s ignorance or deliberate bad in-
tentions. Such operations of UAVs near restricted airspace like airports can compromise the
safety of manned aircraft and passengers. It can potentially lead to collisions, accidents, and
disruptions in flight operations. Adversary drones flying over critical infrastructure or mili-
tary bases3 can pose a significant threat to national security by gaining secret information or
by causing physical damage on impact. The use of drones for filming or surveillance without
consent can violate privacy rights by capturing sensitive personal information. Additionally,
drones deployed without proper permissions can interfere with emergency services4, reducing
the effectiveness of firefighters, search and rescue missions, police operations and thus put
lives at risk.

1.2 Drone mitigation techniques

Interrupting the operation of an aerial vehicle is not a new topic. Since the beginning
of aviation, people have been developing different countermeasures against aerial threats. For
this purpose, rifles and shotguns were mainly used. However, at the time of the First World
War, there was a rise of special anti-aircraft gun development [50], followed by even more
sophisticated approaches after the Second World War. Some of these methods are reviewed
in this section, along with recently developed counter-drone measures.

Physical elimination by a projectile

For the purpose of physical elimination of drones, the same basic principles or even
the same systems can be employed as for anti-aircraft and anti-rocket defense. Examples are
anti-aircraft guns (e.g. the Flakpanzer Gepard), surface-to-air missiles (e.g. the Patriot), or
short-range man-portable systems like the the Stinger.

3“UAV ‘Attacks’ German Military Base Training Ukrainian Troops On Leopard Main Battle Tanks
: BILD Report” https://www.eurasiantimes.com/uav-attacks-german-military-base-training-ukrainia/
(Accessed: 2024-04-29)

4“Konfliktńı provoz dronu v oblasti Národńıho parku České Švýcarsko.” https://www.caa.cz/news/
konfliktni-provoz-dronu-v-oblasti-narodniho-parku-ceske-svycarsko/ (Accessed: 2024-04-25)

CTU in Prague Department of Computer Science

https://www.eurasiantimes.com/uav-attacks-german-military-base-training-ukrainia/
https://www.caa.cz/news/konfliktni-provoz-dronu-v-oblasti-narodniho-parku-ceske-svycarsko/
https://www.caa.cz/news/konfliktni-provoz-dronu-v-oblasti-narodniho-parku-ceske-svycarsko/

1. INTRODUCTION 3/48

However, this method has numerous major drawbacks and can pose an even bigger
threat than the original target. The first problem is the price-per-shot, which can reach tens
of thousands or even millions of dollars5. Another consideration is the debris caused by the
drone and the missile after the impact, which renders this approach unusable over populated
areas in most scenarios. Also, there is a possibility that the projectile will not perform as
expected in case of a miss and therefore fall or explode in an unexpected location. Finally,
destroying the intruding drone is not always desirable - for example, due to legal reasons or
to allow further analysis.

Directed energy weapons

Directed energy weapons can disable the target without using a solid projectile by using
a highly focused energy beam instead (laser, microwave, etc.). Especially interesting are laser
systems, which have been extensively tested by militaries during the recent years6. These
systems are seen as an alternative to the conventional anti-aircraft and anti-rocket defenses,
offering greatly reduced costs (it was reported that price per shot can be as low as $ 13)7.
Apart from manned aircraft and rockets, such systems are able to target UAVs and damage
their critical components like motors, sensors, or computers [20]. As for the case of shooting
down the UAV, eliminating it using a laser causes the drone to fall uncontrollably and likely
also produces debris that may result in damage on the ground.

Jamming

The main idea of jamming-based drone interception is to disrupt the communication of
the drone with its operator and/or GNSS [14]. That typically causes the drone to lose control
and enter a fail-safe mode. Most consumer drones in the case of communication loss will
perform a “return to home” maneuver or land immediately. It is a relatively safe and cheap
method, but its drawback is that the drone in some cases can land or fall in an undesirable
area, causing a damage. Furthermore, the exact behavior in case of jamming depends on many
factors and is hard to predict.

GNSS Spoofing

Spoofing can deceive the onboard GNSS receiver by sending false signals. That causes
the drone to lose its navigation capabilities or even fly in the direction desired by the defender
[35]. In combination with this method, jamming of control frequencies can also be used to
break the communication link with the drone operator. It is one of the safest methods to alter
the intruder drone behavior. On the other hand, this method relies on the assumption that
the drone’s position is controlled via a GNSS feedback control loop. Also, GNSS spoofing can
affect other receivers in the area.

5”A U.S. ’ally’ fired a $3 million Patriot missile at a $200 drone. Spoiler:
The missile won.” https://www.washingtonpost.com/news/morning-mix/wp/2017/03/17/
a-u-s-ally-fired-a-3-million-patriot-missile-at-a-200-drone-spoiler-the-missile-won/ (Accessed:
2024-04-25)

6“UK confirms progress on DragonFire laser weapon” https://ukdefencejournal.org.uk/
uk-confirms-progress-on-dragonfire-laser-weapon/ (Accessed: 2024-05-22)

7”Air defense for $13 a shot? How lasers could revolutionize the way mili-
taries counter enemy missiles and drones” https://edition.cnn.com/2024/03/13/europe/
britain-air-defense-laser-dragonfire-intl-hnk-ml/index.html (Accessed: 2024-04-25)

CTU in Prague Department of Computer Science

https://www.washingtonpost.com/news/morning-mix/wp/2017/03/17/a-u-s-ally-fired-a-3-million-patriot-missile-at-a-200-drone-spoiler-the-missile-won/
https://www.washingtonpost.com/news/morning-mix/wp/2017/03/17/a-u-s-ally-fired-a-3-million-patriot-missile-at-a-200-drone-spoiler-the-missile-won/
https://ukdefencejournal.org.uk/uk-confirms-progress-on-dragonfire-laser-weapon/
https://ukdefencejournal.org.uk/uk-confirms-progress-on-dragonfire-laser-weapon/
https://edition.cnn.com/2024/03/13/europe/britain-air-defense-laser-dragonfire-intl-hnk-ml/index.html
https://edition.cnn.com/2024/03/13/europe/britain-air-defense-laser-dragonfire-intl-hnk-ml/index.html

4/48 1.3. RELATED WORKS

Mid-air interception by another vehicle

Another option for intruder drone interdiction is using a specialized interceptor drone.
This method is inspired by the era of dogfights, when manned aircraft were fighting each
other in close air-to-air combat. Using the interceptor UAV against the intruder has several
advantages over using a full-scale aircraft. First, if the intruder is small, relatively slow, yet
agile (like the consumer-grade drones), it is easier to target it with something that has similar
dynamics. Catching or shooting it with a manned helicopter or airplane is a more complex
task, which requires more people and resources compared to the mentioned approach. Another
problem is the financial efficiency. The operational costs of manned aircraft are higher than
those for drones by orders of magnitude.

There are several options for utilizing drones in such scenario. The first one is using
a small and cheap agile self-destructive drone8 to directly hit the target or explode in its
proximity. However, this approach suffers from the same safety issues as mentioned in sections
1.2.1 and 1.2.2. Another option is to attach a net to the interceptor drone and catch the
intruder using it. This allows to prevent the drone from falling and causing damage on the
ground and to recover it intact after the interception.

An example of such approach is the Eagle.One UAV (Fig. 1.5). As described by its de-
velopers, it autonomously navigates towards the estimated position of the hostile drone, con-
tinuously updating its location [5]. Utilizing onboard cameras and sensors, the drone precisely
tracks the target [21], [15]. Artificial intelligence is used for drone detection, classification, and
planning offensive maneuvers.

The offensive action involves using a net to capture the hostile helicopter, either au-
tonomously or with operator confirmation. Once captured, the net remains connected via a
rope, ensuring the safe removal and transportation of the target to a designated area9.

1.3 Related works

Missile Guidance

The problem tackled in this thesis, is related to missile navigation. The same algo-
rithms (for example Proportional Navigation) are used as a baseline solution for interception
trajectory planning. Therefore, there is a need to understand the basics of homing methods.

In [24], a brief introduction into the problematic, evolution and application of guidance
systems in the aerospace industry is presented. The book explains various aspects of guidance
law design, frequency response analysis, the integration of classic control theory principles,
and proportional navigation.

The paper [49] covers the math involved in PN method, including the proofs. The
limitations and requirements for the successful pursuit are mathematically analyzed and it is
demonstrated that the required missile acceleration is bounded.

Target detection

The target detection problem is not the focus of this thesis and the target position
estimator is considered a blackbox providing state estimation of the target.

8“Anduril-Anvil”https://www.anduril.com/hardware/anvil/ (Accessed: 2024-05-22)
9“Eagle One” https://youtu.be/hEDGE7ofX1c (Accessed: 2024-05-22)

CTU in Prague Department of Computer Science

https://www.anduril.com/hardware/anvil/
https://youtu.be/hEDGE7ofX1c

1. INTRODUCTION 5/48

In [2], the authors introduce a novel approach for detecting and localizing flying objects,
especially suitable for dynamic aerial interception. The method is designed for implementation
onboard a UAV, leveraging a 3D LiDAR sensor for data input. It utilizes a 3D occupancy
voxel mapping technique for target detection and uses a cluster-based multiple hypothesis
tracker. The authors argue that in comparison to the existing methods, this approach offers
enhanced localization accuracy, robustness, and an extended detection range. These attributes
render the detector well-suited for applications requiring agile multi-robot interaction, such as
autonomous aerial interception or formation control, where precise, reliable, and swift relative
localization of other robots is essential. The practical applicability and performance of the
system were demonstrated in this paper through both simulated and real-world experiments.
This approach can also be used for real-world deployment of the algorithms implemented in
this thesis.

In [12], another approach is used to tackle the target detection. The authors utilize only
the onboard camera as a data input and employ a modified variant of the YOLO algorithm
[3] to get the detection. Only ground-based targets are considered in this article, but the
algorithm can be used to identify also aerial targets.

In [15], a similar method is used. The authors use an onboard camera and a neural
network to identify flying UAVs. The algorithm is designed specifically to detect aerial targets,
which makes it suitable for use in a real-world deployment of the methods implemented in
this thesis.

Another possible solution for aerial target detection is using a ground-based radar and
analyzing the radar cross-section signatures [10]. Obtained detections can then be sent to an
interceptor UAV using a communication link. However, this approach is not easily applicable
due to the complexity of the required infrastructure. Also, the cost and size of radar equipment
can be a limiting factor.

Model Predictive Control

An explanation of the MPC problem formulation and basic underlying concepts is pro-
vided by [45].

The book ”Predictive control for linear and hybrid systems”[26] provides a detailed
introduction to MPC theory, applications and the optimization involved. The authors discuss
techniques needed to design predictive control laws, validate and implement them.

An MPC-based approach is used as a trajectory tracker in the MRS UAV System [22].
This tracker takes desired trajectories as input and outputs commands for the controller.
Authors use a linear MPC in combination with a non-linear state feedback. The approach
described in [22] utilizes fast onboard simulation of UAV translational dynamics. Sampled
states of the virtual UAV are used to generate control commands for non-linear feedback.
Also, the system contains obstacle avoidance functionality facilitated by a long prediction
horizon of the MPC. By using the mentioned approach, the system is able to perform high-
precision agile maneuvers. However, the tracker is designed to track a predefined sampled
trajectory and not generate one.

Reinforcement Learning

RL is another algorithm that is extensively used in this thesis. Especially interesting for
this purpose is a Deep Reinforcement Learning which involves using neural networks. In [25],

CTU in Prague Department of Computer Science

6/48 1.3. RELATED WORKS

an introduction into the topic is provided. The authors describe the reward-driven behavior of
RL, explain the required assumptions and the challenges involved. The article provides infor-
mation about both value-based and policy-based methods, covers the main algorithms in deep
RL like Deep Q-Network (DQN), Trust Region Policy Optimization (TRPO) and Advantage
Actor-Critic (A2C). The authors underscore the advantages of deep learning approaches and
give a good overview of the field of RL in general.

RL-based approach is now widely used in robotics, and modern computers allow to
create realistic world and robot dynamics models thanks to growing computational power
[41]. These models are then used to train the RL algorithm in a simulation. Some of the
famous applications of RL are listed next.

Games

RL was used in an AlphaGo program to beat human experts in the Go board game [36],
achieving a score of 5 to 0 when playing against the European Go champion Fan Hui and 4
to 1 against the Korean professional Go player Lee Sedol (Fig. 1.3). That marked the success
of the algorithm.

Figure 1.3: AlphaGo against Lee Sedol10.

Robotics

A known task for robotic arms is reliable grasping, also called Universal Picking (UP).
RL was successfully applied to manipulation tasks, where robots learn to pick objects of
various shapes, sizes, and orientations. One notable example is Dex-Net, developed at the
AUTOLAB at UC Berkeley in affiliation with the Berkeley AI Research (BAIR). It uses RL
to train robotic arms to grasp objects and achieves high reliability [19].

Robotic applications are considered tough because the algorithm is used to interact
with the physical space on a physical agent. From that fact arise numerous challenges. Due
to the nature of learning algorithms, they require many interactions with the environment

10https://media.newyorker.com/photos/590975168b51cf59fc422f47/master/pass/House-Alpha-Go-2.jpg

CTU in Prague Department of Computer Science

https://media.newyorker.com/photos/590975168b51cf59fc422f47/master/pass/House-Alpha-Go-2.jpg

1. INTRODUCTION 7/48

during training to obtain experience. In real systems, it can be costly and require a significant
amount of time. To tackle this issue, robotic problems are usually first re-created in a virtual
environment where appropriate state, policy, value function, and optionally system dynamics
are introduced. However, virtual models approximate the system only to some extent and do
not capture all of the details, dynamics and nonlinearities. An even greater concern is that
minor deviations from the real system can accumulate to a substantially different behavior
for tasks with faster dynamics. Implemented RL-based control laws deployed on a real system
must be robust against these factors and be able to withstand uncertainties, so the learning
process often cannot be completely replaced by a simulation or requires good learning data
augmentation. Designing effective rewards is often also a non-trivial task that demands a
significant depth of domain expertise and is challenging in real implementations [40].

Locomotion

In locomotion tasks, such as walking, running, or navigating complex terrains, arise
many challenges. The first is dynamic stability: the agent must be able not only to maintain its
stable orientation in one place (which already can be non-trivial), but also to execute complex
dynamic movements without losing balance. Locomotion involves coordinated movements of
multiple joints and actuators and a significant part of the configuration space is unstable.
Furthermore, the agent must constantly adjust its movements to respond to changes in terrain,
external forces, or unexpected disturbances.

RL algorithms have been employed to teach robots (both virtual and real, and of many
types) how to walk and navigate through challenging terrains. For example, Boston Dynamics’
famous quadruped robot Spot depicted in Fig. 1.4 utilizes RL techniques to achieve fast
and robust locomotion capabilities, enabling it to traverse various environments (which was
confirmed on the Boston Dynamics official YouTube channel11).

Figure 1.4: Spot robot by Boston Dynamics12.

11https://youtu.be/Kf9WDqYKYQQ
12https://bostondynamics.com/wp-content/uploads/2023/05/spot-explorer-web-2.jpg

CTU in Prague Department of Computer Science

https://youtu.be/Kf9WDqYKYQQ
https://bostondynamics.com/wp-content/uploads/2023/05/spot-explorer-web-2.jpg

8/48 1.3. RELATED WORKS

Natural Language Processing

In the field of Natural Language Processing (NLP), RL-based algorithms were applied to
a large amount of various tasks. Among them are dialogue systems and conversational agents,
where RL is used to train the latter ones. It helps to generate more natural conversations that
make more contextual sense and are more relevant [32].

Another example is machine translation where RL has been employed to improve the
quality of translation systems by optimizing translation models based on feedback from human
evaluations and other quality metrics [28][23].

Text summarization is a process of generating short summary of some larger text. The
condensed version, however, must retain the main points of the original. RL has been applied
for this task and achieved significant success [29].

Also, RL is used for fine-tuning or augmenting pre-trained language models like a well-
known GPT to improve their performance in specific conversational tasks.

UAV control

In recent years, Reinforcement Learning was successfully applied to tackle the task of
UAV control [6], [11]. In [6], the authors have conducted series of tests with different deep RL
techniques and discussed their limitations. The testing scenarios were: hover, land, a random
waypoint, and target following. In terms of error, PPO (which is described later in this thesis)
had a better performance on the mentioned scenarios. However, the testing was conducted
only in a simulation.

In [11], the authors present a learning-based approach to perform time-optimal quadro-
tor trajectory planning that is adaptive to environmental changes. The UAV must fly through
the gates placed on a race track without perfect knowledge of the environment. The authors
use the PPO algorithm to accomplish the task. The observation for the agent is composed
of UAV states and relative gate position detections and the output of the network is then
the thrust for individual motors. The algorithm, however, tackles a different problem than
interception trajectory planning, has an incompatible formulation of the observation and the
action, and therefore cannot be directly applied in this thesis.

Drone interception

In [21], the authors propose a drone detection algorithm that uses a stereo camera
image as an input. It was designed specifically for the task of drone interception, and a
real-life interception experiment was conducted. The interceptor used the information from
the detector for real-time feedback control. The testing scenario included a non-cooperating
intruder drone performing evasion maneuvers. The interceptor was able to catch the intruder
using an onboard net cannon, however, the authors do not provide much explanation of the
control strategy involved.

Another example of a drone used as an interceptor is presented in [5]. The authors have
implemented an algorithm to catch a ball flying under another UAV using a net (a task from
the MBZIRC 2020 challenge). However, the trajectory shape of the target was known (up
to some parameters), so a lurking approach was used and not an active catching which is
required in this thesis.

CTU in Prague Department of Computer Science

1. INTRODUCTION 9/48

In [1], the authors propose an interception method named Fast Response Proportional
Navigation (FRPN). Its purpose is to catch agile maneuvering targets while relying on onboard
state estimation and tracking. The approach is based on the PN, the same as the baseline
method for this thesis. The hardware that was used by the authors is similar to the one in
this thesis. The proposed algorithm was evaluated in simulations and tested during real-world
experiments, showing superior performance to other state-of-the-art solutions.

1.4 Problem statement

The focus of this thesis is to implement planning algorithms for capturing a non-
cooperating UAV, test and compare them. The first method is using an MPC to generate
a reference trajectory leading to the target. The second method is using a RL to calculate the
control command which will be the reference for the interceptor UAV. The algorithms will be
tested in the realistic Gazebo simulation and prepared for real-world testing. Results of the in-
dividual experiments will be discussed and compared and suggestions for future improvement
will be presented.

As the interceptor UAV, the Eagle One is used. The drone has an octocopter configu-
ration with 8 motors. The total weight is approximately 15 kilograms. It is equipped with a
Pixhawk flight controller and a companion computer onboard (Fig. 1.6). The computer runs
Linux and the MRS UAV System [7] based on ROS. The interceptor has a LiDAR that can
detect the target as described in [2]. Positioning is performed using Global Navigation Satel-
lite System (GNSS) and Real-time Kinematics (RTK) sensors. Low-level control of the drone
is tackled by the MRS UAV System and the flight controller. As an interface between the
UAV system and the algorithms implemented in this thesis, two types of commands are used:
a trajectory reference13 (used for the MPC-based trajectory planner) or the 3D acceleration
and heading rate reference14 (used for the RL-based control strategy).

The target UAV is a quadcopter also equipped with the Pixhawk flight controller and a
companion computer with the MRS UAV System. Its localization is performed using RTK and
GNSS and the hardware configuration is similar as in Fig. 1.6 excluding the LiDAR. During
the experiments, the drone receives a predefined sampled trajectory which it then follows.
The total weight of the drone is approximately 3 kilograms.

In the virtual simulation, the positions of both drones are obtained as ground truth,
and an approximate Field of View (FOV) of the interceptor’s LiDAR-based target detector is
simulated.

To test the algorithms, close engagement scenarios between the interceptor and the
target UAV are considered (tens of meters and closer).

13https://ctu-mrs.github.io/mrs msgs/msg/TrajectoryReference.html (Accessed: 2024-05-22)
14https://ctu-mrs.github.io/mrs msgs/msg/TrackerCommand.html (Accessed: 2024-05-22)
15https://mrs.fel.cvut.cz/projects/eagle-one (Accessed: 2024-04-25)

CTU in Prague Department of Computer Science

https://ctu-mrs.github.io/mrs_msgs/msg/TrajectoryReference.html
https://ctu-mrs.github.io/mrs_msgs/msg/TrackerCommand.html
https://mrs.fel.cvut.cz/projects/eagle-one

10/48 1.4. PROBLEM STATEMENT

Figure 1.5: Eagle.One UAV developed by the MRS group15.

Pixhawk autopilot
and sensors

Intel NUC PC

Speed controllers and
motors

LiDAR

Receiver for
the manual

control

RTK
receiver

Figure 1.6: Scheme of the employed electronic hardware onboard the UAV.

CTU in Prague Department of Computer Science

2. MPC METHODOLOGY 11/48

2 MPC methodology

MPC is an advanced control strategy used in many engineering applications, including
robotics and autonomous systems. Unlike traditional control methods, which compute control
inputs based on a fixed control law, MPC works by iteratively solving an optimization problem
over a finite prediction horizon. This allows MPC to deal with systems with complex dynamics,
constraints and uncertainties. MPCs are also used for UAVs for example as trajectory trackers
[22] or to assist learning algorithms [4] providing a reference solution.

Utilizing an internal model of the system dynamics, the controller predicts future states
of the system up to a finite number of steps and computes a sequence of control inputs that
minimize the desired cost function, while also fulfilling the constraints defined for the system.
These constraints may include limitations on control inputs, state variable values and in some
cases also the operational boundaries or other non-linear functions. To find the solution, a
solver is employed.

A major drawback compared to traditional control methods is that MPC is significantly
more computationally demanding. It employs a solver to find the optimal solution. However,
modern computers and development of MPC frameworks allow to use this approach even
in real time using commonly available hardware. The main concepts regarding MPC are
explained in the following sections.

2.1 System model

MPC relies on a model of the system for predicting its future behavior, which is crucial
for planning optimal control actions. The model is a mathematical representation of the
dynamics of the controlled system. It describes how the system’s state evolves over time in
response to control inputs.

A system model can be represented in different ways and the choice depends on how ex-
pressive representation is required and which methods are used to work with it. Some common
types of system models used in control engineering include a state-space matrix (Fig. 2.1),
Ordinary Differential Equation (ODE) representations and transfer function representation.
In this thesis, a linear continuous time-invariant formulation is used in the form:

ẋ(t) = Ax(t) + Bu(t) , (2.1)

y(t) = Cx(t) + Du(t) , (2.2)

where x is the state vector, u is the input vector, y is the output vector, A,B,C,D are system
matrices.

2.2 Prediction horizon

A prediction horizon is the future time interval, over which the system state and control
actions are predicted and optimized (Fig. 2.2). For MPC, it is assumed to be finite. This
sets MPC apart from regulators in the field of optimal control like LQR (Linear Quadratic
Regulator) and H-infinity methods that may consider an infinite horizon.

CTU in Prague Department of Computer Science

12/48 2.2. PREDICTION HORIZON

CB

A

+ +

D

input output

Figure 2.1: A schematic of the state-space model.

CTU in Prague Department of Computer Science

2. MPC METHODOLOGY 13/48

The length of the prediction horizon balances the trade-off between the computational
time and long-term planning in the control strategy. A larger length means that the MPC
predicts farther into the future, but is more computationally demanding and the precision of
the estimate degrades over time. On the other hand, a shorter prediction horizon with a more
detailed model can give estimates with better precision, but will produce an optimal solution
only for the shorter time period.

The choice of the length can be limited by the dynamics of the controlled system. For
systems with fast dynamics, a shorter prediction horizon is more suitable to allow real-time
responsiveness. In contrast, for systems with slower dynamics and less measurement noise, a
longer prediction horizon can be suitable.

Time

System State

k k + 1 k + 2 k + 3

Actual Trajectory
Predicted Trajectory

Actions

Prediction Horizon

Figure 2.2: Illustration of an MPC prediction horizon starting at time k with length 3.

2.3 Cost function

In MPC, a cost function is a mandatory building block as it quantifies the performance
objectives. It is a mathematical expression that evaluates the desirability of a given control
state over the finite prediction horizon. The objective of MPC is to find the control trajectory
that minimizes this cost function while satisfying system dynamics and constraints.

The cost function typically consists of multiple terms, each reflecting different aspects of
the control system’s performance and constraints. Among these terms is usually the difference
between a desired state vector value and the actual value in each iteration and the magnitude
of control inputs. The cost function can also have different weights or separate formulas for
the so-called ”stage cost” (in every step except the last) and for the ”terminal cost” (in the
last step). According to [45], an example of an MPC cost function is

J(N,M)(x0,U) = min
u

[
xT (N)P0x(N) +

N−1∑
i=0

xT (i)Qx(i) +

M−1∑
i=1

uT (i)Ru(i)
]
, (2.3)

where U is the space of possible action vectors, P,Q,R are weighting matrices, N is the length
of the prediction horizon and M ≤ N is the length of the control horizon (often M = N holds).

The first term (xT (N)P0x(N)) corresponds to the terminal cost. It is applied only
to the last state of the system within the prediction horizon. By using it, different penalties
(typically larger) are imposed on the system’s state at the end of the horizon. These penalties
encourage the controller to drive the system towards a desired terminal state.

CTU in Prague Department of Computer Science

14/48 2.4. CONSTRAINTS

The second term (
∑N−1

i=0 xT (i)Qx(i)) penalizes differences between the desired or ref-
erence state trajectory of the system and its predicted states. This term can be understood as
a tracking error. Minimizing it ensures that the controlled system follows a specified trajectory
or achieves a desired setpoint.

The third term (
∑M−1

i=1 uT (i)Ru(i)) penalizes the control effort, which refers to the
magnitude of control inputs required to drive the system towards the desired behavior. Lim-
iting a greater control effort helps to minimize rapid changes in system behavior and in real
life also the energy consumption, wear and tear on actuators, etc.

The weighting of each term in the cost function reflects the importance of different
aspects relative to others. Tuning these weights allows to adjust the behavior of the controller
and to prioritize specific factors mentioned above. A similar cost function is used in the MPC
implementation in the following chapters.

2.4 Constraints

Constraints are another important concept in Model Predictive Control. State values of
the system are often limited in range, especially in real-life applications. For instance, a point
mass model representing a real-world mobile robot can have a limited position range, velocity,
and acceleration given by physical limitations of the robot’s actuators. These constraints can
be encoded into an MPC problem and when looking for the solution, the solver will adhere
to them.

Input values in an MPC controller can also be limited (and usually are). These input
constraints prevent excessive or physically unrealizable control effort. Input constraints can
represent limits on actuators’ capacity, voltage, current, or any other physical limitations. For
example, in an aircraft control system, attitude angles and throttle may be constrained to
prevent aggressive maneuvers or overstressing the vehicle. Constraints that are used in most
MPCs and NMPCs, can be divided into two types:

Soft constraints, which can be violated, but this violation implies additional penalty.
They enable the controller to prioritize conflicting objectives.
Hard constraints, which must be always satisfied exactly. They represent the physical
system limitations and saturations or ensure the safety and feasibility of the solution.

2.5 Control law

For practical use, sometimes only a subset of the actions from the solution is imple-
mented. The MPC can be restarted before the end of the prediction horizon of the previous
run. Therefore, if N is the length of the prediction horizon, a possible control law is to take
K actions (1 ≤ K < N), restart the MPC, and then use the fresh prediction.

2.6 Linear vs Nonlinear MPC

In linear MPC, both the constraints and model dynamics are linear and the objective
is quadratic. Conversely, in Nonlinear Model Predictive Control (NMPC), some of the con-
straints can involve nonlinear functions, the objective can be nonquadratic [44], and also the
system may contain time-varying parameters. Opting for a non-linear model changes the con-
trol problem from a convex quadratic programming to non-convex non-linear optimization.
For such tasks, finding the global optimum is not guaranteed and the task is in general more

CTU in Prague Department of Computer Science

2. MPC METHODOLOGY 15/48

difficult compared to the linear MPC, but it allows to formulate and solve a broader class of
more complex problems [46].

2.7 Solver

Numerical solvers are employed to tackle the optimization problem like MPC. Hence, at
the foundation of every MPC framework lie numerical optimal control methods. Many algo-
rithms exist and their choice greatly influences the characteristics of the controller. The main
reasons for not solving such problems exactly are the computational time (as large computa-
tional times lead to greater delays) and the usage of finite precision arithmetic [30]. Designing
and choosing an algorithm for numerically solving MPC problems is an actual research topic
since there is no universal solution. While some solvers provide better computational speed,
others are more stable and have better accuracy. As a consequence, the choice is generally
based on a trade-off.

The task that is solved in MPC is the so-called initial value problem. It is described
by the initial value x0 and the differential equations of the model [30], [42]. Since MPC is
optimization-based, a definition of the optimization problem is required. Formally it can be
written as

min JN,M (x0,U) ,

w.r.t. u = {u(i),u(i) ∈ U}, 1 ≤ i ≤ N ,

s.t. xu(0) = x0 ,

xu(i+ 1) = f(xu(i),u(i)) ,

x ≤ xu(i) ≤ x ,

(2.4)

where x and x denote the lower and upper bounds on states respectively.

2.8 Sequential Quadratic Programming

Sequential Quadratic Programming (SQP) methods are a type of solvers that work
in iterations and solve quadratic programming problems obtained after approximating the
original nonlinear problem by its linearization [48]. These solvers iteratively refine the solution
until convergence to a local optimum is achieved. SQP solvers are widely used for MPC
formulations with nonlinear cost functions and constraints. To use SQP, the objective function
and the constraints must be twice continuously differentiable.

Given the optimization problem, a quadratic approximation is first obtained using this
method, which gives a quadratic program (QP). This QP is then used to do one step of
solution refinement, and the process is repeated.

2.9 Nonlinear Interior Point

The fundamental idea behind Interior Point Methods (IPMs) is to move iteratively
through the interior of the feasible region, approaching the optimal solution without violating
the constraints [43]. Unlike traditional methods that rely on the exterior of the feasible region
(like the simplex method), IPMs explore the interior of the feasible region.

Both SQP and nonlinear IPMs involve evaluating problem functions and their deriva-
tives in each iteration. SQP methods typically require fewer high-level iterations to achieve a
desired level of accuracy and also excel in warm-starting [30], which is crucial in NMPC.

CTU in Prague Department of Computer Science

16/48 2.10. THE ACADOS MPC FRAMEWORK

In practice, nonlinear IP methods are preferable for nonlinear optimization problems
with inexpensive function and derivative evaluations, especially when a good initial guess is
unavailable. Conversely, SQP methods are more favorable for problems with costly function
evaluations, such as direct shooting methods, where good initial guesses can be provided,
particularly when solving a sequence of neighboring problems [30].

2.10 The Acados MPC framework

Acados is a software package designed to provide fast and embedded solvers for nonlinear
optimal control [13]. This package provides tools and main building blocks to construct a
pipeline for solving optimal control problems, especially NMPC. According to the authors,
the main aim was to provide SQP-type methods. It requires the problems to be formulated
using the CasADi symbolic framework [16] as a nonlinear programming problem.

Acados was advised for this thesis by my supervisor and other people from the MRS
group for its superior speed and ability to run on a computer with limited resources, which is
also shown in [13]. It has interfaces for the C, Matlab, and Python programming languages,
with the latter being used in this thesis.

CTU in Prague Department of Computer Science

3. MPC-BASED TRAJECTORY PLANNER 17/48

3 MPC-based trajectory planner

Knowing the dynamic system constraints, MPC can be utilized as a feed-forward control
action generator. Each prediction run of the MPC outputs two sequences: the first one is the
sequence of control actions u(i) and the second one is the sequence of states x(i) for each time
step of the prediction horizon. One possible option is to define the system model, design the
objective function, periodically run the prediction, and apply the obtained control actions.
In the case of the multi-rotor UAVs, designing a system model controlled directly by the
motor thrust would require a low-level control over the vehicle and a very fast computational
speed to ensure the stability of flight (low-level control loops for such vehicles usually run at
frequencies of 200-1000 Hz). Because of that reason, a different approach is chosen which was
also used before at the MRS group and which was employed in the previous implementation
of the MPC trajectory planner. The details are described in the following sections.

3.1 Implementation and integration with the MRS system

The MRS UAV system interface allows for high-level control by sending a trajectory
reference command. That means that actions obtained from the prediction will not be directly
used. Instead, the idea is to use a sequence of predicted states as the input to the UAV
controller. To create a trajectory reference command, the state predictions are transformed
into a stamped trajectory reference by taking only the 3D position from each state (for
the purpose of trajectory generation there is no need to model the drone as a 6 DoF body
with translations and rotations). Also, a time step of the trajectory reference must be set
(corresponding to the time step of the MPC). Such abstraction reduces the problem to creating
a plausible sequence of future interceptor positions that will lead to a successful interception.

Although the MRS team had an existing MPC trajectory planner implementation for
the interceptor, it was implemented using the doMPC framework, which has a different in-
terface and approach to modeling the system (system matrices and discrete formulation) to
those in the Acados (Ordinary Differential Equations using symbolic variables and continuous
formulation). It can not be easily ported and therefore, there is a need to implement one
completely from scratch while keeping the main idea similar. My contribution in this chapter
of the thesis is the implementation of a new MPC planner that will replace the existing one
due to its superior computational speed and therefore performance.

3.2 Model of the drone

Advanced low-level control is tackled by the existing trajectory tracker and an SE(3)
controller running onboard the drone [7], [22]. The tracker receives a sampled trajectory as an
input and the drone follows it. Therefore, multirotor aerial vehicle dynamics can be simplified
to a 3 DoF point mass model, and the list of the predicted UAV positions through the whole
prediction horizon is sampled and converted to a trajectory. This also allows for a faster
computation and comprehensible decomposition of the control pipeline.

The MPC has the interceptor’s acceleration 3D vector as a control input. The state

CTU in Prague Department of Computer Science

18/48 3.3. COST FUNCTION

vector x is defined as

x =


r
v

rtarget

vtarget

 ∈ R12 , (3.1)

where r is interceptor’s position, v ∈ R3 is the interceptor’s velocity, rtarget ∈ R3 is the target’s
position, vtarget ∈ R3 is the target’s velocity. The control input u ∈ R3 is defined as

u = a =

axay
az

 ∈ R3 , (3.2)

where A is the acceleration of the interceptor. The heading is not present in the control input
for the MPC since it can be explicitly computed so that the drone always faces the target.

The state derivative is then

ẋ =


v
a

vtarget

0

 ∈ R12 , (3.3)

which is the set of ODEs describing the model. All variables can be limited by constraints.
That is the form used in my implementation. In a state-space representation, the model is:

ẋ =


0 I 0 0
0 0 0 0
0 0 0 I
0 0 0 0

 x +


0
I
0
0

 u, (3.4)

y = I x, (3.5)

where I is a 3x3 identity matrix and 0 is a 3x3 zero matrix.

3.3 Cost function

The cost function is formulated in a similar manner as in equation (2.3). In every time
step i ∈ 〈0, N − 1〉 of the prediction horizon, a value of

c(i) = xTQx + uTRu (3.6)

is calculated and added to the total cost. In the very last step N , the terminal cost is calculated
as

c(N) = xTPx (3.7)

and also added to the total cost as

JN (x0,U) =
N∑
i=0

c(i) . (3.8)

However, to increase the readability of the practical implementation, the cost function
was slightly transformed. Since the only two terms to be penalized are the distance to the

CTU in Prague Department of Computer Science

3. MPC-BASED TRAJECTORY PLANNER 19/48

target and the velocity difference between the target and the interceptor, an error vector e is
introduced in the following way:

e =

[
rtarget − r
vtarget − v

]
. (3.9)

This vector is used instead of the state vector x together with simplified Q and P matrices
that are denoted as Q̂ and P̂. Matrices are defined as

Q̂ =



Qxy 0 0 0 0 0
0 Qxy 0 0 0 0
0 0 Qz 0 0 0
0 0 0 Qvxy 0 0
0 0 0 0 Qvxy 0
0 0 0 0 0 Qvz

 , P̂ =



Pxy 0 0 0 0 0
0 Pxy 0 0 0 0
0 0 Pz 0 0 0
0 0 0 Pvxy 0 0
0 0 0 0 Pvxy 0
0 0 0 0 0 Pvz

 ,
(3.10)

where Qxy is the coefficient for distance in the x and y axes, Qz is the coefficient for distance
in the z axis, Qvxy is the coefficient for velocity difference in the x and y axes, Qvz is the
coefficient for the velocity difference in the z axis, and the notation for P̂ is similar.

The input penalization matrix R has the form

R =

Rxy 0 0
0 Rxy 0
0 0 Rz

 , (3.11)

where Rxy is the term penalizing the acceleration (control input) in the xy plane and Rz in
the z axis. The resulting equation for the stage cost is

c(i) = eT Q̂e + uTRu , (3.12)

and the terminal cost is
c(N) = eT P̂e . (3.13)

3.4 Constraints

In this implementation, only linear constraints on the state and the input vector are used.
There is a possibility to add also nonlinear constraints (for example a minimum distance to
the target for obstacle avoidance) since a Nonlinear MPC framework is utilized. However, this
negatively affects the computational time. Furthermore, obstacle avoidance is already available
in the lower-level parts of the MRS system. For the purpose of maintaining comparability with
the previous MPC planner available at MRS, the following linear constraints are used:

vxy ≤ vx ≤ vxy ,
vxy ≤ vy ≤ vxy ,
vz ≤ vz ≤ vz ,
axy ≤ ax ≤ axy ,
axy ≤ ay ≤ axy ,
az ≤ az ≤ az ,

(3.14)

where the underlined variables denote the corresponding lower bound and the overlined vari-
ables denote the upper bound.

CTU in Prague Department of Computer Science

20/48

4 RL methodology

RL is a concept where an agent learns its behavior by interacting with the environment
(Fig. 4.1). The agent receives rewards as a result of its action, and attempts to correct its
own behavior to maximise the received reward [47]. A world model can be created within a
computer simulation in which way the agent can be trained faster than real-time.

4.1 RL formulation and assumptions

In RL, the state of the agent is often considered a sufficient statistic of the environment,
which contains all the information needed to plan the best next action. The state vector can
include the position of the agent in space, as well as the positions of its actuators [25].

The same mathematical notation as in the chapter 2 is used in this chapter to denote the
inputs and states. In RL, the Markov assumption is typically used to interpret the dynamics
of an environment. It states that the future state of a system depends only on its current state
and the action taken, and it is independent of the past states and actions leading up to the
current state. The mathematical formulation of this assumption is

P (xt+1|xt,ut,xt−1,ut−1, ...,x0,u0) = P (xt+1|xt,ut), (4.1)

where P (x|...) is a conditional probability of getting to the state x.

This assumption reduces the complexity of the problem by eliminating the need to con-
sider the entire history of states and actions. It is an accurate enough approximation for many
problems and allows using dynamic programming methods such as value iteration and policy
iteration [27]. However, there exist different techniques where this assumption is violated. A
good example are recurrent or Long Short-Term Memory (LSTM) neural networks, which can
be used to capture longer-term dependencies and improve the RL algorithm performance.

General reinforcement learning problem formulation is typically modeled as an Markov
Decision Process (MDP). It consists of states: x ∈ Rn , actions: u ∈ Rm , transition model:
P (x′|x,u) , rewards: R(x,u,x′) ∈ R , policy: π(u|x) . As was mentioned, the best action ut in
the state xt is determined with regard to R. This reward is provided by the environment on
each state transition, after executing some action. For example in state xt, the agent executes
an action ut. Then, it receives reward rt+1 (reward value is determined by the reward function
R) and its state changes to xt+1. The cumulative reward is defined as

Rtot =
∑

∀t∈ episode
R(xt,ut,xt+1) , (4.2)

where episode is the sequence of steps from the beginning of the interaction with the en-
vironment till the termination. The goal of the agent is to obtain the highest value of the
cumulative reward which can be achieved by optimizing the policy. A policy π is a mapping
from states to a probability distribution over actions:

π : X→ p(U = u|X) , (4.3)

where X is the space of possible states, U is the space of possible actions and p denotes the
conditional probability. Therefore, the problem can be formulated more generally as

π∗ = argmax
π

E[R |π] (4.4)

CTU in Prague Department of Computer Science

4. RL METHODOLOGY 21/48

Environment

Agent (for instance a virtual drone)

Reward

Action

Figure 4.1: An illustration of the basic idea of reinforcement learning.1

where the expected value E of the reward R is maximized.

4.2 Brief overview of frequently used RL algorithms

Numerous RL algorithms exist. They are distinguished based on the action or state
space of the environment (discrete/continuous), being off-policy or on-policy (whether the
agent uses the current policy to update its values), and other details.

Temporal difference (TD) learning

TD learning is an off-policy and model-free algorithm used for discrete action and state
spaces. It can estimate value functions or policy functions directly from experience without
requiring a model of the environment dynamics. It combines Monte-Carlo estimation and
dynamic programming ideas. In TD learning, value functions are updated iteratively based
on the observed transitions from one state to another. In this way, there is no need to wait
till the end of the episode. The update rule is

V π(xt) := V π(xt) + α(ri,t + γV π(xt+1)− V π(xt)) , (4.5)

where V π is an estimated value of a state, ri,t is a reward in episode i and time step t, α is a
learning rate and γ is a discount factor.

Q-learning

Q-learning is another off-policy model-free algorithm for discrete action and state spaces.
However, the logic behind is different. Unlike the previous algorithm, it doesn’t just estimate
the value function, but the state-action value function Qπ(x,u). Update rule is

Qπ(xt,ut) = Qπ(xt,ut) + α
(
rt + γmax

u∈U
Qπ(xt+1,u)−Qπ(xt,ut)

)
. (4.6)

1UAV photo source: https://mrs.felk.cvut.cz/research/micro-aerial-vehicles

CTU in Prague Department of Computer Science

https://mrs.felk.cvut.cz/research/micro-aerial-vehicles

22/48 4.2. BRIEF OVERVIEW OF FREQUENTLY USED RL ALGORITHMS

SARSA

SARSA is an on-policy model-free algorithm for discrete action and state spaces. Its
update rule is very similar to Q-learning, however, it uses action ut+1 instead of max over
actions:

Qπ(xt,ut) = Qπ(xt,ut) + α
(
rt + γ Qπ(xt+1,ut+1)−Qπ(xt,ut)

)
. (4.7)

DQN

DQN is an algorithm that combines ideas of Q-learning with deep neural networks
to approximate the Q-value function. It is used for continuous or discrete state-spaces and
only discrete action-spaces. This algorithm is especially suitable for environments with high-
dimensional state-space, such as images or raw sensor data. DQN was introduced by re-
searchers at DeepMind [37] and gained significant attention for its ability to achieve human-
level performance on a variety of Atari 2600 games. Large and high-dimensional environments
when used with regular Q-learning, in order to store the Q-value table, may require amounts of
memory that way exceed the capabilities of a normal personal computer (terabytes, petabytes,
and more). Q-value function Qπ(x,u) is a mapping (x,u)→ R and its tabular representation
requires an entry for each combination of state and action. So, the table size is itself |X| · |U|
assuming a finite state-space. But with the so-called ”curse of dimensionality”, the table size
often explodes. DQN tackles this problem by approximating the table with its neural net-
work which maps inputs to outputs (Fig. 4.2). It most commonly includes convolutional, fully
connected layers and activation functions in its so-called hidden layer.

DQN offers good sample efficiency because it uses a so-called replay buffer. Also, the
state space doesn’t need to be explicitly designed.

Even though the algorithm is worthy of mention, for this thesis DQN still can’t be used.
The action space of the drone agent representation is not discrete.

Inputs OutputsHidden layers

Q-value for
action 0

Q-value for
action 1

Q-value for
action 2

State 0

State 1

State 2

State 3

State 4

State 5

Figure 4.2: Example of a DQN architecture.

PPO

Proximal Policy Optimization (PPO) is a reinforcement learning algorithm that is used
for training agents in environments with both discrete and continuous action spaces. It be-

CTU in Prague Department of Computer Science

4. RL METHODOLOGY 23/48

longs to the family of policy gradient methods, which estimate the policy gradient and use it
for a stochastic gradient ascent. It combines ideas from the Advantage Actor-Critic Method
and Trust Region Policy Optimization (TRPO). Unlike other policy gradient methods which
perform single gradient update per data sample, PPO uses objective function to perform mul-
tiple epochs of minibatch updates which improves sample efficiency [31]. Also, PPO trains
reasonably fast and is good for multiprocessing. Another core concept of PPO is limiting
the policy change between epochs. Large updates can, in practice, destabilize the training
process, thereby reducing the likelihood of policies converging to the optimal solution. In
some environments, a big change in policy leads to an entirely different behavior of the agent
(incomparable to the one before the policy update) which severely affects the training.

A major difference compared to the DQN is that in policy gradient methods the policy
is learned directly (which basically means action probabilities). In DQN, the action value
function is learned.

A more detailed explanation of the algorithm’s core principles is presented in the next
section.

4.3 PPO Algorithm

As was mentioned, PPO combines ideas of A2C, TRPO and is a policy-gradient method.
Some of the crucial concepts that inspired and shaped the PPO are presented next.

Policy gradient

The commonly used form of the policy gradient estimator is:

ĝ = Êt
[
∇θlogπθ(ut,xt)Ât

]
, (4.8)

where πθ is a stochastic policy and Ât is an estimate of the advantage function at time t [31].
Advantage function describes how much better is a specific action in some state over randomly
selected action in the same state according to π, under assumption that π is followed in all
future steps. Mathematically speaking, the advantage function is defined as

Aπ(x,u) = Qπ(x,u)− V π(x) . (4.9)

Doing multiple steps of gradient ascent directly using formula 4.8 leads to large policy
updates and therefore to poor performance and the undesired behavior mentioned above [31].

TRPO

For stability reasons, it is often good to limit the change of parameters to some extent
between the learning episodes. This is the idea which was implemented in 2015 at UC Berkeley
[38].

TRPO methods introduce a trust region constraint to ensure that policy updates are
conservative and do not deviate too far from the current policy. An objective function is
formulated as the optimization problem with a constraint formalized as limiting the KL-
divergence between the new policy and the old policy:

max
θ

Êt
[πθ(ut|xt)
πθold(ut|xt)

Ât
]

s.t. Êt
[
KL[πθ(· |xt), πθold(· |xt)]

]
≤ δ .

(4.10)

CTU in Prague Department of Computer Science

24/48 4.4. VALUE AND POLICY NETWORKS

Ratio πθ(ut|xt)
πθold (ut|xt)

is later denoted as rt(θ).

Kullback–Leibler (KL) divergence, also called relative entropy, is defined for continuous
probability distributions P and Q as

KL(P,Q) =

∫ ∞
−∞

p(x) log

(
p(x)

q(x)

)
dx . (4.11)

Informally speaking, it means ”how far are two probability distributions apart from each
other”.

It was reported that pure TRPO is computationally demanding compared to other
methods and is hard to implement in practice because it uses the KL-divergence constraint
outside of the objective function2. In PPO, this issue is solved.

Clipped Surrogate Objective function

Authors of the PPO have proposed to use a so-called clipped surrogate objective function

LCLIP(θ) = Êt
[
min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât)

]
, (4.12)

where ε is a hyperparameter.

It combines two terms: the unclipped surrogate objective rt(θ)Ât and its clipped coun-
terpart. By using the minimum of them, PPO ensures that the policy updates are limited to
a certain range determined by ε. If the update is already small, the original function is used,
if the update is too large, then the clipped one is selected. Concrete examples of the function
output are presented in the table 4.1 taken from [8]. Using this idea, PPO clips the probability
ratio directly in the objective function unlike TRPO.

Table 4.1: Table summarizing the behavior of PPO’s objective function [8].

4.4 Value and policy networks

A common implementation of the PPO algorithm requires two networks: the actor
network and the critic network. While the first one determines the actions that should be
taken by maximizing the expected return of the policy, the second network learns to minimize
the difference between the estimated return and the actual return.

An example of the PPO architecture is shown on Fig. 4.3.

2https://huggingface.co/blog/deep-rl-ppo

CTU in Prague Department of Computer Science

https://huggingface.co/blog/deep-rl-ppo

4. RL METHODOLOGY 25/48

Figure 4.3: Example of a PPO architecture.

4.5 Stable baselines

Stable baselines is a library of open-source Python implementations of deep RL al-
gorithms such as DQN, PPO, SAC, TD3, and more. It is a fork from OpenAI baselines,
developed by a trusted and well-known research organization. These implementations are
rigorously tested and benchmarked to ensure stability, efficiency, and scalability. Authors of
this library wanted to tackle the issue of RL results in reproducibility which is often a non-
trivial task [17]. The library offers a consistent interface and modularity, allowing to swap the
algorithm without significant code changes, so they can be easily compared [9]. It is well inte-
grated with the OpenAI Gym, a toolkit for developing, testing, and comparing RL algorithms.
This integration allows to train and evaluate algorithms on different standard environments
provided by Gym. There is also a possibility to implement a custom environment for usage
with the library. Additionally, it has repositories with experimental features and community
contributions.

Stable baselines’ convenient modular design, high-quality tested implementations, effi-
ciency, compatibility with OpenAI Gym, tensorboard support, and large community make it
a popular choice for researchers and people curious about the field of Reinforcement Learning.

CTU in Prague Department of Computer Science

26/48

5 RL-based control strategy

The control strategy is realized by a model trained using the PPO algorithm in a
simulation environment provided by the MRS group. As an input, it receives the state of the
UAV and the target. Output is a control action. In the following sections, it is covered in
detail.

5.1 Training environment

The agent is trained in a custom simulation environment developed by the MRS. It
simulates full UAV dynamics and has an acceleration-based interface to control the drone. The
environment can be used with the Stable Baselines RL framework. This simulator provides
the reward and observation on each step and receives the control command as an input to
control the virtual interceptor.

5.2 Observation space and action space

A state vector xrl(i) is obtained using the following data:

xrl(i) =



r(i)
vrel(i)
at(i)
z(i)
v(i)
R(i)

θ̇(i)
url(i− 1)


∈ R27 , (5.1)

where r(i) ∈ R3 is the range vector to the target, vrel(i) ∈ R3 is the relative velocity to the
target, at(i) ∈ R3 is the target acceleration, z(i) ∈ R is the interceptor altitude, v(i) ∈ R3

is the interceptor velocity, R(i) ∈ R3×3 is the interceptor rotation matrix, θ̇(i) ∈ R is the
interceptor heading rate, url(i − 1) ∈ R4 is the previous action of the interceptor. These
vectors are concatenated and the rotation matrix is flattened and concatenated.

The input to the neural network consists of two state vectors stacked, where in a step
i the first is the current state xrl(i) and the second is the previous state xrl(i − 1). It helps
to capture longer-time dependencies and gives information about how the state evolved. The
time step between the states is 0.02 s which also corresponds to the time step of the training
environment.

The action vector url(i) is composed of the acceleration in 3 dimensions and the heading
rate:

url(i) =


ax
ay
az
θ̇

 ∈ R4 . (5.2)

CTU in Prague Department of Computer Science

5. RL-BASED CONTROL STRATEGY 27/48

5.3 Networks

When researching the network architectures, it was observed that for instances with
similar complexity, examples on SB3 Zoo1 employ networks with two fully connected layers
and ReLU activation function. The size differed from 64 to 256 nodes per layer. After checking
the learning speed and the training results, a network with 2 fully connected layers and 128
nodes per layer creating a hidden layer was chosen as the one having the best tradeoff. ReLU
activation is used. Two similar hidden layers are used for the value and for the policy network.

5.4 Reward function

To formalize the reward function, the following variables and constants are also required:

rnet(i) range vector from the net position (below the interceptor) to the target,
rbody(i) range vector in the interceptor coordinate frame,
α(i) angle between the x-axis of the interceptor and the target,
ω(i) vector of angular rates,
dinterception = 0.5 (m) minimal distance for interception,

where i is the step number.

The reward in step i is then defined as

R(i) = cdistance · ||rnet(i)||+
cangle · α2(i)+

cchange acc · ||a(i)− a(i− 1)||+
cchange hdg rate · |θ̇(i)− θ̇(i− 1)|+
cω · ||ω(i)||+
cωz · |ωz(i)|+
cv · ||v(i)||+
cterminated+

cout+

cinterception · clamp(1− ||rnet||
dinterception

, 0, 1) ,

(5.3)

where cdistance · ||rnet(i)|| is a distance penalty, cangle · α2(i) heading difference penalty,
cchange acc · ||a(i) − a(i − 1)|| acceleration change penalty, cchange hdg rate · |θ̇(i) − θ̇(i − 1)|
heading rate change penalty, cω · ||ω(i)|| angular rate penalty, cωz · |ωz(i)| angular in z-axis
penalty, cv · ||v(i)|| velocity penalty, cterminated termination penalty (applied only if termi-
nated), cout out of world penalty (applied only if out of the defined space), cinterception ·
clamp(1− ||rnet||

dinterception
, 0, 1) interception reward (linear between zero distance and interception

distance). The terms are multiplied by corresponding constants shown in Table 5.1.

The interception reward is counted only once until the interceptor gets farther from the
target than 3 · dinterception. After that, the interception reward can be obtained again.

1https://stable-baselines3.readthedocs.io/en/master/guide/rl zoo.html

CTU in Prague Department of Computer Science

https://stable-baselines3.readthedocs.io/en/master/guide/rl_zoo.html

28/48 5.5. TRAINING PROCESS

cdistance -0.09

cangle -0.0001

cchange acc -0.04

cchange hdg rate -0.02

cω -0.0001

cωz -0.1

cv 0

cterminated -5000

cout -5000

cinterception 1000

Table 5.1: Constants corresponding to different terms of the reward function used in this
thesis.

5.5 Training process

Apart from the network architecture, PPO requires several hyperparameters. Since they
can’t be analytically computed, there is a need to identify them first by trial and error or by
taking the parameters that have been previously applied for a similar instance. Then they
must be tuned to achieve the best performance. The initial guess of the parameters was
determined after looking at the examples of PPO usage on SB3 Zoo. After doing multiple
iterations of hyperparameter tuning, the following values were empirically selected based on
observed performance:

Learning rate: a function of the remaining training progress. It starts at 3e-4 in the
beginning and linearly reduces with time to 1.5e-6 at the end of the training (the total
amount of steps is predefined),
Number of steps to run each environment per update: 300,
Minibatch size: 3000,
Number of parallel environments: 100,

During the training, it was observed that the algorithm is prone to getting stuck in
local minima. A comprehensible metric of the learning process success is the mean reward per
episode. Most of the runs ended up converging to a local minimum with poor performance and
a low mean reward. An example is presented on Fig. 5.1a, where the agent after 50 million
steps of training receives a reward of approximately -1000 and has not improved since hitting
the 10 million steps mark.

An example of not getting stuck is on the Fig. 5.1b. The value rises gradually up to
approximately 2000 and the trend shows that further improvement is possible. After this
experiment, the total number of steps was doubled to 100 M.

The final model was trained for a total of 100 000 000 steps until the mean episode
reward reached a reasonably stable and high value of 4000 for the last 10 M steps (Fig. 5.1c).

5.6 Examples of the learned behavior

The trained model was first validated using the training environment. Some selected
results are shown in the Fig. 5.2a and Fig. 5.2b. As can be observed, the agent has learned
to perform some zig-zag maneuvers over the target. The behavior is logical considering the

CTU in Prague Department of Computer Science

5. RL-BASED CONTROL STRATEGY 29/48

1 2 3 4
Number of steps 1e7

−15000

−12500

−10000

−7500

−5000

−2500

M
ea

n
ep

iso
de

 re
wa

rd

(a) Learning stuck in a local minimum.

1 2 3 4 5
Number of steps 1e7

−8000

−6000

−4000

−2000

0

2000

M
ea

n
ep

iso
de

 re
wa

rd

(b) Learns successfully for 50 million steps.

0.0 0.2 0.4 0.6 0.8 1.0
Number of steps 1e8

−15000

−10000

−5000

0

M
ea

n
ep

iso
de

 re
wa

rd

(c) Learns successfully for 100 million steps (blue line). Previous runs
are shown for comparison (green and orange lines).

Figure 5.1: Mean reward per episode during the training process.

CTU in Prague Department of Computer Science

30/48 5.7. ROS NODE

designed reward function and also makes practical sense. When doing this maneuver, the UAV
will catch the target with its net while not staying too close to the target for long periods
since that leads to the loss of it from the sensor’s FOV. The control command is reasonable
and does not suffer from oscillations.

5.7 ROS node

To be able to test the trained RL model with the MRS UAV System, it is required
to implement a specialized ROS node. First, it processes the data like vehicle state and the
target state into a format defined in the equation 5.1. Then, this data is used to perform a
forward pass through the previously trained actor neural network. The action vector that was
obtained as a result of the forward pass is processed into a ROS message and sent back to the
MRS UAV System to control the drone.

CTU in Prague Department of Computer Science

5. RL-BASED CONTROL STRATEGY 31/48

(a)

(b)

Figure 5.2: Testing in the training environment. UAV positions and selected data are visu-
alized. The control command plot is zoomed to show only 100 steps to visualize the lack of
rapid oscillations.

CTU in Prague Department of Computer Science

32/48

6 Simulation

To safely evaluate the efficiency and performance of the algorithms proposed for au-
tonomous aerial interception of UAVs, a realistic simulation environment must be used in the
first place. Direct testing on real robots can be dangerous and in case of unstable or incorrect
algorithm implementation, such deployment will lead to unpredictable behavior. Therefore,
accurate virtual testing is required before proceeding with any real experiments. The Gazebo
simulator was used for this task because it provides an accurate representation of real-world
scenarios and robot dynamics and offers the flexibility to control the virtual world. It is a
popular environment for performing mobile and aerial robotics experiments. Its seamless in-
tegration with the rviz tool, ROS, and a long history of its extensive usage among the MRS
group members, make it a perfect choice for testing my implementation.

6.1 Testing scenarios

A set of 4 interception scenarios was used within the Gazebo environment to represent
a variety of potential encounters between the interceptor UAV and the target UAV. These
scenarios differ in factors such as the trajectory shape and the speed of its execution. During
the test, the target follows a predefined complex trajectory in a 3D space. The trajectories
are shown in Fig. 6.1.

Trajectory 1 in Fig. 6.1a is the longest out of all. It contains several parts corresponding
to different maneuvers. First, the drone starts executing a relatively narrow zig-zag pattern.
Then it flies forward, turns left, and executes 1.5 circles with small height changes. After
that, it performs several ”squeezed eight”-shaped maneuvers also with changes in height and
finishes.

Trajectory 2 in Fig. 6.1b is a simple ”eight” with a constant height.

Trajectory 3 in Fig. 6.1c consists of two deformed circles of different size, which form a
closed line. The drone flies through it twice.

Trajectory 4 in Fig. 6.1d when looking top-down resembles a deformed circle. In fact, it
consists of two circles with large variance on the z axis, also forming a closed line. The drone
flies through it twice.

6.2 Evaluation

Each testing trajectory was executed by the intruder UAV within the simulation envi-
ronment. During the execution, as the interceptor attempted to catch it, data was recorded
to a logging file and afterwards various metrics were computed using the logged data. These
metrics are:

Interception success: determining whether the interceptor UAV successfully intercepted
the target UAV or the number of interceptions throughout the trajectory. The number
of successful interceptions is denoted as n.
Miss distance on interception: evaluating how closely the executed trajectory approached
the target on interception. The mean miss distance is denoted as D and its standard
deviation σD.

CTU in Prague Department of Computer Science

6. SIMULATION 33/48

(a) Trajectory 1. (b) Trajectory 2.

(c) Trajectory 3. (d) Trajectory 4.

Figure 6.1: Visualization of trajectories used for testing in Gazebo. The grid size is 5 m.

CTU in Prague Department of Computer Science

34/48 6.3. BASELINE PROPORTIONAL NAVIGATION

Distance to the target: evaluating how closely on average the interceptor followed the
target during the flight. The mean distance throughout the experiment is denoted as d
and its standard deviation σd.
Computational performance: assessing the computational time required for a single ex-
ecution of the algorithm. The mean computational time is denoted as t and its standard
deviation σt.

The analysis is based on computing and comparing the mentioned metrics across the
scenarios to identify strengths, weaknesses, and trade-offs of each approach. The following
rules were chosen to compute the metrics:

the target is intercepted if the distance to it in the xy-plane is less than dinterception,
the interception attempt is counted if the mutual distance in the xy-plane is smaller
than the interception distance for at least 5 timesteps (odometry rate during the tests
is 125 Hz),
only neighboring samples fully lying in the interception radius are counted as a single
attempt.

The z-axis is ignored in these experiments since due to the configuration of the used
MRS UAV system version, the vehicle can’t be controlled by the acceleration command in the
z-axis (needed for RL method and PN method). Instead, the altitude must be commanded
explicitly in meters and during the experiments it was set to always be 2 meters above the
target.

To test the robustness, the trajectory 1 is used, and the speed of the target is increased
gradually by reducing the trajectory time step. The physical limit for the target, however, is
performing the flight 2 times faster than shown in Fig. 6.2.

6.3 Baseline proportional navigation

From the testing data, it is visible that PN is good for intercepting the target which
performs ”zig-zag” evasion maneuvers (successfully caught the target on every turn of the
”zig-zag” in Fig. 6.2a).

On a straight part of the trajectory, PN showed a worse result, but still managed to
catch, as visible in the lower part of the graph and on relatively straight parts of the ”eight”
in Fig. 6.2a.

However, when the target was executing trajectories close to circular, PN was observed
to lag slightly behind, often not getting close enough to score the interception as seen on the
circular part of Fig. 6.2a, Fig. 6.2b, Fig. 6.2c. In the Fig. 6.2d the result is better because
the target was slowing down a bit in the xy plane when going up/down, therefore giving the
opportunity for the interceptor.

Overall, during the experiment, the PN method tracked the target with good precision
staying close to it and only small deviations. It has successfully intercepted the target several
times on every trajectory.

The computational speed of the algorithm was not measured since PN only involves
evaluating several simple arithmetic operations and is therefore not computationally demand-
ing.

CTU in Prague Department of Computer Science

6. SIMULATION 35/48

(a) Trajectory 1: n = 27, D = 0.29 m, σD = 0.11 m. (b) Trajectory 2: n = 3, D = 0.16 m, σD = 0.12 m.

(c) Trajectory 3: n = 4, D = 0.24 m, σD = 0.09 m. (d) Trajectory 4: n = 7, D = 0.22 m, σD = 0.11 m.

Figure 6.2: PN method, results of testing in Gazebo. Top view. Red crosses denote the inter-
ceptions.

CTU in Prague Department of Computer Science

36/48 6.3. BASELINE PROPORTIONAL NAVIGATION

0

5

Target elocity (m/s)

0

5

Interceptor elocity (m/s)

−100

0

Interceptor acceleration commands (m/s^2)
x
y
z

−2.5

0.0

2.5
Interceptor heading rate command (rad/s)

0

2

4
Relati e horizontal distance (m)

50 100 150 200 250 300 350

2

4

Relati e 3D distance (m)

(a) Trajectory 1.

0

5

Target velocity (m/s)

0

5

Interce tor velocity (m/s)

−100

0

Interce tor acceleration commands (m/s^2)

x
y
z

−2.5

0.0

2.5
Interce tor heading rate command (rad/s)

0

5

10
Relative horizontal distance (m)

40 50 60 70 80 90

5

10
Relative 3D distance (m)

(b) Trajectory 2.

0

5

Target velocity (m/)

0

5

Interceptor velocity (m/)

−50

0

50
Interceptor acceleration command (m/ ^2)

x
y
z

−2.5

0.0

2.5
Interceptor heading rate command (rad/)

0

5

10
Relative horizontal di tance (m)

40 60 80 100 120

5

10
Relative 3D di tance (m)

(c) Trajectory 3.

0

5

10

Target elocity (m/s)

0

5

Interceptor elocity (m/s)

−50

0

Interceptor acceleration commands (m/s^2)

x
y
z

−2.5

0.0

2.5
Interceptor heading rate command (rad/s)

0

10

Relati e horizontal distance (m)

25 50 75 100 125 150 175 200
0

10

Relati e 3D distance (m)

(d) Trajectory 4.

Figure 6.3: PN method, results of testing in Gazebo, additional metrics.

CTU in Prague Department of Computer Science

6. SIMULATION 37/48

Limitations

When the target performed the flight two times faster than in the original experiment
on Fig. 6.3a, the UAV scored 4 interceptions. Despite the target performing fast maneuvers,
the PN method showed good robustness and tracking capabilities, being able to catch the
intruder. The target speed is already maximal, its further increase is not possible.

6.4 MPC-based trajectory planner

As can be seen from the testing data (Fig. 6.4), the MPC-based planner showed out-
standing results, tracking the target precisely on all trajectories during almost the whole
flight. It has not suffered from any distinguishable problems on any specific part of the testing
trajectories. On every graph, there is a repeating pattern of places where the interception is
detected (red crosses) followed by a few meters with no interception. The reason is that when
flying directly above, the interceptor loses the target from its simulated field of view (which
is expected to happen) but then quickly recovers.

Limitations

To test the limitations, the target performed the flight two times faster than in the orig-
inal experiment on Fig. 6.5a. In that scenario, the MPC still managed to score 23 interception
attempts, making it a robust choice. The target speed is already maximal, its further increase
is not possible.

Computational time comparison with the existing planner

Both the previous version of the MPC trajectory planner implemented using doMPC
and my Acados implementation were tested under the same scenario and with the same
problem formulation. An important point was to test the computational efficiency since both
planners do the same task and use a similar model. Therefore, only computational demands
are compared. To measure the computational times, a complex trajectory on Fig. 6.1a was
selected. Data was collected from 2000 calls of each planner. Metrics are the mean time and
the standard deviation presented in Table 6.1.

Testing was performed using the following hardware configuration: CPU: Intel core i7
8700, GPU: Nvidia GTX 1060, RAM: 32 GB.

Settings of the interceptor implemented in doMPC, provided by the MRS group:

Solver: IPOPT MUMPS,
default settings as of doMPC version 4.6.4.

Settings of the interceptor implemented in Acados:

nlp solver type: SQP,
qp solver: PARTIAL CONDENSING HPIPM,
hessian approx: GAUSS NEWTON,
integrator type: IRK.

As can be observed from the results, the planner implemented in Acados offers a signifi-
cant performance boost compared to the provided doMPC planner. Under the same scenario,
the average computational time and its standard deviation are lower when using the planner
implemented in this thesis.

CTU in Prague Department of Computer Science

38/48 6.4. MPC-BASED TRAJECTORY PLANNER

(a) Trajectory 1: n = 71, D = 0.15 m, σD = 0.13 m. (b) Trajectory 2: n = 12, D = 0.16 m, σD = 0.11 m.

(c) Trajectory 3: n = 20, D = 0.19 m, σD = 0.10 m. (d) Trajectory 4: n = 26, D = 0.19 m, σD = 0.08 m.

Figure 6.4: MPC-based method, results of testing in Gazebo. Top view. Red crosses denote
the interceptions.

CTU in Prague Department of Computer Science

6. SIMULATION 39/48

0

2

4

6

Target velocity (m/s)

0

2

4

6

Interceptor velocity (m/s)

0

2

4

6

Relative horizontal distance (m)

50 100 150 200 250 300 350
0

2

4

6

Relative 3D distance (m)

(a) Trajectory 1.

0

2

4

6

8

Target velocity (m/s)

0

2

4

6

8
Interceptor velocity (m/s)

0.0

2.5

5.0

7.5

Relative horizontal distance (m)

30 40 50 60 70 80 90
0.0

2.5

5.0

7.5

10.0
Relative 3D distance (m)

(b) Trajectory 2.

0

2

4

6

8

Target velocity (m/s)

0

2

4

6

8
Interceptor velocity (m/s)

0.0

2.5

5.0

7.5

Relative horizontal distance (m)

40 60 80 100 120
0.0

2.5

5.0

7.5

10.0
Relative 3D distance (m)

(c) Trajectory 3.

0

5

10

Target velocity (m/s)

0.0

2.5

5.0

7.5

10.0

Interceptor velocity (m/s)

0

5

10

15
Relative horizontal distance (m)

40 60 80 100 120 140 160
0

5

10

15
Relative 3D distance (m)

(d) Trajectory 4.

Figure 6.5: MPC-based method, results of testing in Gazebo, additional metrics.

CTU in Prague Department of Computer Science

40/48 6.5. RL-BASED CONTROL STRATEGY

Number of calls Mean computational time Standard deviation

doMPC 2000 0.0580 s 0.0182 s

Acados 2000 0.0136 s 0.0034 s

Table 6.1: Comparison of the computational time between the doMPC-based and the Acados-
based planners.

6.5 RL-based control strategy

The algorithm based on RL has also shown better results than the baseline method
(Fig. 6.6). In the graphs, it is visible that the interceptor trajectory differs more from the
target trajectory. Unlike when using previous methods, the UAV was attempting to not only
track the target but perform more aggressive side-to-side maneuvers to catch it. It helps to
do the interception while also maintaining the target in the FOV. A worse performance was
observed when the target was executing a zig-zag maneuver on Fig. 6.6a, but it can be solved
by training the model more on such trajectories.

The computational speed is fast compared to the MPC because to compute the action,
only a forward pass through the network is performed. Measured values are t = 0.0049 s,
σt = 0.0031 s calculated over 2000 calls.

Limitations

A known issue found during the experiments was a situation when the target is too far
away from the interceptor. In such cases, the control command is usually saturated for long
periods of time in all axes, possibly leading to flyaways or crashes. A suggested solution is
using another guidance algorithm when the target is farther than a predefined distance and
then switching to RL for closer engagement.

The RL-based algorithm performed poorly in terms of the average distance metric, being
often far from the target. A possible solution is to create more training scenarios with a faster
target for the RL model.

When the target performed the flight two times faster than in the original experiment
on Fig. 6.7a, it led to scoring only 5 interceptions. The behavior mentioned in the previous
paragraph was also observed when the target occasionally became too far. However, the in-
terceptor still managed to recover and not fly away. The target speed is already maximal, its
further increase is not possible.

6.6 Analysis and comparison

While all methods have successfully caught the target on the presented trajectories,
there is a significant performance difference between them, which was observed during the
testing.

The baseline PN method has shown the worst performance, scoring the least intercep-
tions. It tracked the target closely but lagged slightly behind for most of the flight.

The MPC-based planner, on the other hand, was able to precisely track and intercept
the target, except for moments when it was lost from the sensor’s FOV. According to the
previously selected metrics, it scored the most interceptions out of all algorithms. In real-world

CTU in Prague Department of Computer Science

6. SIMULATION 41/48

deployments, however, the performance can be worse, given the uncertainties and noises of
the target’s detection.

The RL-based control strategy had a different behavior than previous algorithms. In-
stead of attempting to track the target, it performed more active maneuvers which can be
better for the purpose of aerial interception. RL does not require real-time optimization like
MPC which makes it less computationally demanding. The control action is calculated by
performing a forward pass through the network, which is relatively fast. Also, a highly com-
plex non-linear reward function can be defined for training purposes, containing rewards for
many aspects. The interception rate is much higher than using PN but lower than using the
MPC. Although according to the metrics, it performed worse than the MPC (see Table 6.2),
it is arguable whether the same holds in practice. The complex behavior of the RL-controlled
UAV can be more desirable. A drawback, however, is that this method showed worse stability
with a faster-flying target, which may be solved by including such scenarios in the training
data.

Algorithm n D (m) σD (m) d (m) σd (m)

Trajectory 1
PN 27 0.29 0.11 1.90 0.90

MPC 71 0.15 0.13 1.82 1.30
RL 42 0.18 0.13 3.23 1.82

Trajectory 2
PN 3 0.16 0.12 2.29 1.53

MPC 12 0.16 0.11 2.02 1.90
RL 4 0.15 0.14 5.96 5.39

Trajectory 3
PN 4 0.24 0.09 2.03 1.42

MPC 20 0.19 0.10 1.71 1.49
RL 11 0.20 0.14 3.60 2.25

Trajectory 4
PN 7 0.22 0.11 1.47 1.94

MPC 26 0.19 0.08 1.87 1.94
RL 12 0.28 0.12 3.72 2.69

Trajectory 1, 2x speed
PN 3 0.29 0.13 4.09 2.35

MPC 24 0.19 0.14 5.20 3.16
RL 4 0.29 0.14 20.20 14.45

Table 6.2: Results of the Gazebo experiments. The best result for each trajectory is highlighted
in bold.

CTU in Prague Department of Computer Science

42/48 6.6. ANALYSIS AND COMPARISON

(a) Trajectory 1: n = 42, D = 0.18 m, σD = 0.13 m. (b) Trajectory 2: n = 4, D = 0.15 m, σD = 0.14 m.

(c) Trajectory 3: n = 11, D = 0.20 m, σD = 0.14 m. (d) Trajectory 4: n = 12, D = 0.28 m, σD = 0.12 m.

Figure 6.6: RL-based method, results of testing in Gazebo. Top view. Red crosses denote the
interceptions.

CTU in Prague Department of Computer Science

6. SIMULATION 43/48

0

5

Target elocity (m/s)

0

5

Interceptor elocity (m/s)

−2.5

0.0

2.5
Interceptor acceleration commands (m/s^2)

x
y
z

−2.5

0.0

2.5
Interceptor heading rate command (rad/s)

0

5

10
Relati e horizontal distance (m)

50 100 150 200 250 300 350 400
0

5

10
Relati e 3D distance (m)

(a) Trajectory 1.

0

5

Target velocity (m/s)

0

5

10
Interce tor velocity (m/s)

−2.5

0.0

2.5
Interce tor acceleration commands (m/s^2)

x
y
z

−2.5

0.0

2.5
Interce tor heading rate command (rad/s)

0

10

20
Relative horizontal distance (m)

30 40 50 60 70 80 90

10

20
Relative 3D distance (m)

(b) Trajectory 2.

0

5

Target velocity (m/)

0

5

Interceptor velocity (m/)

−2.5

0.0

2.5
Interceptor acceleration command (m/ ^2)

x
y
z

−2.5

0.0

2.5
Interceptor heading rate command (rad/)

0

5

10
Relative horizontal di tance (m)

40 60 80 100 120

5

10

Relative 3D di tance (m)

(c) Trajectory 3.

0

5

10

Target velocity (m/)

0

5

10
Interceptor velocity (m/)

−2.5

0.0

2.5
Interceptor acceleration command (m/ ^2)

x
y
z

−2.5

0.0

2.5
Interceptor heading rate command (rad/)

0

10

Relative horizontal di tance (m)

40 60 80 100 120 140 160
0

10

Relative 3D di tance (m)

(d) Trajectory 4.

Figure 6.7: RL-based method, results of testing in Gazebo, additional metrics.

CTU in Prague Department of Computer Science

44/48

7 Real-world evaluation of the MPC-based

trajectory planner

The performance of the MPC-based trajectory planner was tested in a real-world ex-
periment. At the beginning of the experiment, the target UAV was executing a periodic rect-
angular trajectory, and the interceptor was approximately 40 meters far. Then, the planner
was enabled and the interceptor started flying towards the target. The target was “caught”
on the first attempt with a miss distance of 0.42 m. The plot finishes shortly afterward, when
the manual control over the interceptor is enabled for safety reasons. This experiment shows
that the algorithm performs well not only in the simulation, but also in a real-world scenario.
However, further experiments are required to gather more data about the performance of the
planner given various target speeds and maneuvers.

(a) 3D plot of trajectories of both UAVs. (b) Top view of trajectories of both UAVs.

0

5

Interceptor velocity (m/s)

0

25

Relative horizontal distance (m)

0 5 10 15 20 25
+1.7140493e9

0

25

Relative 3D distance (m)

(c) Interceptor’s velocity and distance to the target. Horizontal axis denotes the time
in seconds.

Figure 7.1: Results of a real-world experiment using the MPC-based method.

CTU in Prague Department of Computer Science

8. CONCLUSION 45/48

8 Conclusion

In this thesis, a task of aerial interception of intruder drones was tackled. The aim was
to design a system for navigating an interceptor UAV to catch a flying target. A Model Pre-
dictive Control (MPC)-based trajectory planner and a Reinforcement Learning (RL)-based
control strategy were successfully implemented after performing a thorough research of the
related literature and understanding the underlying concepts. Their effectiveness, speed and
robustness were assessed, compared and tested in a simulation. A comparison with a base-
line Proportional Navigation (PN) method was conducted. The MPC-based planner was also
compared with the previous implementation of the MPC planner provided by the MRS group
and tested in a real-world experiment, scoring a successful virtual interception.

The implemented algorithms demonstrated good interception performance, being more
effective than the provided baseline PN-based method. Especially the MPC-based planner
has shown outstanding interception effectiveness while also providing superior computational
time to the previous version. To further improve the MPC planner, nonlinear constraints can
be added to take collision avoidance into consideration directly in the produced trajectory.
Another possible improvement is implementing penalization terms for the sensor Field of View
so that configurations not preserving target visibility will have a worse value of the objective
function.

The RL method on the other hand performed more complicated maneuvers than just
tracking the target. It resulted in a greater mean distance from the target during the flight,
but distinct interception attempts. The interceptor always scored more interceptions when
using this method instead of the PN baseline method. However, according to the defined
metrics, it has not shown as good interception rate as the MPC. Worse results were also
observed with an increased target’s speed. These issues can be tackled in future work by
adding more training scenarios, containing the problematic configurations. Redesigning or
tuning of the objective function may further improve the overall result. Another improvement
can potentially be achieved by fine-tuning (training) directly in the Gazebo environment
(currently it was trained only using a custom MRS simulator).

The implemented algorithms showed their viability as demonstrated during the experi-
ments. Based on the simulation results, the algorithms work sufficiently well and are prepared
for deployment. There is also room for further improvements of the two implemented methods
presumably leading to better results as discussed in the thesis.

CTU in Prague Department of Computer Science

46/48

9 References

[1] M. Pliska, M. Vrba, T. Báča, and M. Saska, Towards safe mid-air drone interception: Strategies
for tracking & capture, 2024. arXiv: 2405.13542 [cs.RO].

[2] M. Vrba, V. Walter, V. Pritzl, M. Pliska, T. Báča, V. Spurný, D. Heřt, and M. Saska, On onboard
lidar-based flying object detection, 2023. arXiv: 2303.05404 [cs.RO].

[3] P. Jiang, D. Ergu, F. Liu, Y. Cai, and B. Ma, “A review of Yolo algorithm developments,”
Procedia computer science, vol. 199, pp. 1066–1073, 2022.

[4] Y. Song and D. Scaramuzza, “Policy search for model predictive control with application to agile
drone flight,” IEEE Transactions on Robotics, vol. 38, no. 4, pp. 2114–2130, 2022.

[5] M. Vrba, Y. Stasinchuk, T. Báča, V. Spurný, M. Petrĺık, D. Heřt, D. Žaitĺık, and M. Saska,
“Autonomous capture of agile flying objects using UAVs: The MBZIRC 2020 challenge,” Robotics
and Autonomous Systems, vol. 149, p. 103 970, 2022, issn: 0921-8890. doi: https://doi.org/
10.1016/j.robot.2021.103970. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0921889021002396.

[6] A. T. Azar, A. Koubaa, N. Ali Mohamed, H. A. Ibrahim, Z. F. Ibrahim, M. Kazim, A. Ammar,
B. Benjdira, A. M. Khamis, I. A. Hameed, et al., “Drone deep reinforcement learning: A review,”
Electronics, vol. 10, no. 9, p. 999, 2021.

[7] T. Baca, M. Petrlik, M. Vrba, V. Spurny, R. Penicka, D. Hert, and M. Saska, “The MRS UAV
system: Pushing the frontiers of reproducible research, real-world deployment, and education
with autonomous unmanned aerial vehicles,” Journal of Intelligent & Robotic Systems, vol. 102,
no. 1, p. 26, 2021.

[8] D. Bick, “Towards delivering a coherent self-contained explanation of proximal policy optimiza-
tion,” Ph.D. dissertation, 2021.

[9] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dormann, “Stable-baselines3:
Reliable reinforcement learning implementations,” Journal of Machine Learning Research,
vol. 22, no. 268, pp. 1–8, 2021. [Online]. Available: http://jmlr.org/papers/v22/20-1364.html.

[10] V. Semkin, M. Yin, Y. Hu, M. Mezzavilla, and S. Rangan, “Drone detection and classification
based on radar cross section signatures,” in 2020 International Symposium on Antennas and
Propagation (ISAP), IEEE, 2021, pp. 223–224.

[11] Y. Song, M. Steinweg, E. Kaufmann, and D. Scaramuzza, “Autonomous drone racing with deep
reinforcement learning,” in 2021 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), IEEE, 2021, pp. 1205–1212.

[12] L. Tan, X. Lv, X. Lian, and G. Wang, “Yolov4 drone: UAV image target detection based on an
improved yolov4 algorithm,” Computers & Electrical Engineering, vol. 93, p. 107 261, 2021.

[13] R. Verschueren, G. Frison, D. Kouzoupis, J. Frey, N. van Duijkeren, A. Zanelli, B. Novoselnik,
T. Albin, R. Quirynen, and M. Diehl, “Acados – a modular open-source framework for fast
embedded optimal control,” Mathematical Programming Computation, 2021, issn: 1867-2957.
doi: 10.1007/s12532-021-00208-8. [Online]. Available: https://doi.org/10.1007/s12532-
021-00208-8.

[14] V. Matić, V. Kosjer, A. Lebl, B. Pavić, and J. Radivojević, “Methods for drone detection and
jamming,” in Proceedings of the 10th International Conference on Information Society and Tech-
nology (ICIST), 2020, pp. 16–21.

[15] M. Vrba and M. Saska, “Marker-less micro aerial vehicle detection and localization using convo-
lutional neural networks,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 2459–2466,
2020, issn: 2377-3766. doi: 10.1109/LRA.2020.2972819.

CTU in Prague Department of Computer Science

https://arxiv.org/abs/2405.13542
https://arxiv.org/abs/2303.05404
https://doi.org/https://doi.org/10.1016/j.robot.2021.103970
https://doi.org/https://doi.org/10.1016/j.robot.2021.103970
https://www.sciencedirect.com/science/article/pii/S0921889021002396
https://www.sciencedirect.com/science/article/pii/S0921889021002396
http://jmlr.org/papers/v22/20-1364.html
https://doi.org/10.1007/s12532-021-00208-8
https://doi.org/10.1007/s12532-021-00208-8
https://doi.org/10.1007/s12532-021-00208-8
https://doi.org/10.1109/LRA.2020.2972819

9. REFERENCES 47/48

[16] J. A. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl, “Casadi: A software frame-
work for nonlinear optimization and optimal control,” Mathematical Programming Computation,
vol. 11, pp. 1–36, 2019.

[17] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger, Deep reinforcement
learning that matters, 2019. arXiv: 1709.06560 [cs.LG].

[18] G. Ling and N. Draghic, “Aerial drones for blood delivery,” Transfusion, vol. 59, no. S2, pp. 1608–
1611, 2019.

[19] J. Mahler, M. Matl, V. Satish, M. Danielczuk, B. DeRose, S. McKinley, and K. Goldberg,
“Learning ambidextrous robot grasping policies,” Science Robotics, vol. 4, no. 26, eaau4984,
2019. doi: 10.1126/scirobotics.aau4984. eprint: https://www.science.org/doi/pdf/10.
1126/scirobotics.aau4984. [Online]. Available: https://www.science.org/doi/abs/10.1126/
scirobotics.aau4984.

[20] H. T. Obering, “Directed energy weapons are real... and disruptive,” Prism, vol. 8, no. 3, pp. 36–
47, 2019.

[21] M. Vrba, D. Heřt, and M. Saska, “Onboard marker-less detection and localization of non-
cooperating drones for their safe interception by an autonomous aerial system,” IEEE Robotics
and Automation Letters, vol. 4, no. 4, pp. 3402–3409, 2019.

[22] T. Baca, D. Hert, G. Loianno, M. Saska, and V. Kumar, “Model predictive trajectory tracking
and collision avoidance for reliable outdoor deployment of unmanned aerial vehicles,” in 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, 2018,
pp. 6753–6760.

[23] L. Wu, F. Tian, T. Qin, J. Lai, and T.-Y. Liu, “A study of reinforcement learning for neural
machine translation,” arXiv preprint arXiv:1808.08866, 2018.

[24] R. Yanushevsky, Modern missile guidance. CRC Press, 2018.

[25] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath, “Deep reinforcement
learning: A brief survey,” IEEE Signal Processing Magazine, vol. 34, no. 6, pp. 26–38, 2017.

[26] F. Borrelli, A. Bemporad, and M. Morari, Predictive control for linear and hybrid systems.
Cambridge University Press, 2017.

[27] Y. Li, “Deep reinforcement learning: An overview,” arXiv preprint arXiv:1701.07274, 2017.

[28] K. Nguyen, H. Daumé III, and J. Boyd-Graber, “Reinforcement learning for bandit neural ma-
chine translation with simulated human feedback,” arXiv preprint arXiv:1707.07402, 2017.

[29] R. Paulus, C. Xiong, and R. Socher, “A deep reinforced model for abstractive summarization,”
arXiv preprint arXiv:1705.04304, 2017.

[30] J. B. Rawlings, D. Q. Mayne, and M. Diehl, Model predictive control: theory, computation, and
design. Nob Hill Publishing Madison, WI, 2017, vol. 2.

[31] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization
algorithms,” arXiv preprint arXiv:1707.06347, 2017.

[32] A. R. Sharma and P. Kaushik, “Literature survey of statistical, deep and reinforcement learning
in natural language processing,” in 2017 International conference on computing, communication
and automation (ICCCA), IEEE, 2017, pp. 350–354.

[33] C. Van Tilburg, “First report of using portable unmanned aircraft systems (drones) for search
and rescue,” Wilderness & environmental medicine, vol. 28, no. 2, pp. 116–118, 2017.

[34] H. Perritt Jr and E. Sprague, Domesticating Drones: The technology, law, and economics of
unmanned aircraft. Routledge, 2016.

[35] M. L. Psiaki and T. E. Humphreys, “GNSS spoofing and detection,” Proceedings of the IEEE,
vol. 104, no. 6, pp. 1258–1270, 2016.

CTU in Prague Department of Computer Science

https://arxiv.org/abs/1709.06560
https://doi.org/10.1126/scirobotics.aau4984
https://www.science.org/doi/pdf/10.1126/scirobotics.aau4984
https://www.science.org/doi/pdf/10.1126/scirobotics.aau4984
https://www.science.org/doi/abs/10.1126/scirobotics.aau4984
https://www.science.org/doi/abs/10.1126/scirobotics.aau4984

48/48

[36] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, et al., “Mastering the game of Go with deep
neural networks and tree search,” Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[37] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Ried-
miller, A. K. Fidjeland, G. Ostrovski, et al., “Human-level control through deep reinforcement
learning,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[38] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust region policy optimization,”
in International conference on machine learning, PMLR, 2015, pp. 1889–1897.

[39] P. B. Quater, F. Grimaccia, S. Leva, M. Mussetta, and M. Aghaei, “Light unmanned aerial
vehicles (UAVs) for cooperative inspection of PV plants,” IEEE Journal of Photovoltaics, vol. 4,
no. 4, pp. 1107–1113, 2014.

[40] J. Kober, J. Bagnell, and J. Peters, “Reinforcement learning in robotics: A survey,” The In-
ternational Journal of Robotics Research, vol. 32, pp. 1238–1274, Sep. 2013. doi: 10.1177/
0278364913495721.

[41] P. Kormushev, S. Calinon, and D. G. Caldwell, “Reinforcement learning in robotics: Applications
and real-world challenges,” Robotics, vol. 2, no. 3, pp. 122–148, 2013.

[42] L. Grüne and J. Pannek, “Nonlinear model predictive control,” in Apr. 2011, pp. 43–66, isbn:
978-0-85729-500-2. doi: 10.1007/978-0-85729-501-9 3.

[43] I. M. Bomze, V. F. Demyanov, R. Fletcher, T. Terlaky, I. Pólik, and T. Terlaky, “Interior
point methods for nonlinear optimization,” Nonlinear Optimization: Lectures given at the CIME
Summer School held in Cetraro, Italy, July 1-7, 2007, pp. 215–276, 2010.

[44] F. Allgower, R. Findeisen, Z. K. Nagy, et al., “Nonlinear model predictive control: From theory
to application,” Journal-Chinese Institute Of Chemical Engineers, vol. 35, no. 3, pp. 299–316,
2004.

[45] M. Morari and J. H. Lee, “Model predictive control: Past, present and future,” Computers &
chemical engineering, vol. 23, no. 4-5, pp. 667–682, 1999.

[46] S. J. Qin and T. A. Badgwell, “An overview of industrial model predictive control technology,” in
AIche symposium series, New York, NY: American Institute of Chemical Engineers, 1971-c2002.,
vol. 93, 1997, pp. 232–256.

[47] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement learning: A survey,” Journal
of artificial intelligence research, vol. 4, pp. 237–285, 1996.

[48] P. T. Boggs and J. W. Tolle, “Sequential quadratic programming,” Acta numerica, vol. 4, pp. 1–
51, 1995.

[49] M. Guelman, “Proportional navigation with a maneuvering target,” IEEE Transactions on
Aerospace and Electronic Systems, no. 3, pp. 364–371, 1972.

[50] W. Dickinson, History of Anti-aircraft Guns, 1941. GP 0., 1920.

CTU in Prague Department of Computer Science

https://doi.org/10.1177/0278364913495721
https://doi.org/10.1177/0278364913495721
https://doi.org/10.1007/978-0-85729-501-9_3

	Introduction
	Risks of unauthorized drone deployment
	Drone mitigation techniques
	Physical elimination by a projectile
	Directed energy weapons
	Jamming
	GNSS Spoofing
	Mid-air interception by another vehicle

	Related works
	Missile Guidance
	Target detection
	Model Predictive Control
	Reinforcement Learning
	Drone interception

	Problem statement

	MPC methodology
	System model
	Prediction horizon
	Cost function
	Constraints
	Control law
	Linear vs Nonlinear MPC
	Solver
	Sequential Quadratic Programming
	Nonlinear Interior Point
	The Acados MPC framework

	MPC-based trajectory planner
	Implementation and integration with the MRS system
	Model of the drone
	Cost function
	Constraints

	RL methodology
	RL formulation and assumptions
	Brief overview of frequently used RL algorithms
	Temporal difference (TD) learning
	Q-learning
	SARSA
	DQN
	PPO

	PPO Algorithm
	Policy gradient
	TRPO
	Clipped Surrogate Objective function

	Value and policy networks
	Stable baselines

	RL-based control strategy
	Training environment
	Observation space and action space
	Networks
	Reward function
	Training process
	Examples of the learned behavior
	ROS node

	Simulation
	Testing scenarios
	Evaluation
	Baseline proportional navigation
	Limitations

	MPC-based trajectory planner
	Limitations
	Computational time comparison with the existing planner

	RL-based control strategy
	Limitations

	Analysis and comparison

	Real-world evaluation of the MPC-based trajectory planner
	Conclusion
	References

