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Annotation

This thesis presents a novel, neural-network based path planning solution for an
autonomous Formula Student car. In the competition, the car autonomously
drives on racing tracks marked by traffic cones. Departing from traditional ge-
ometric and rule–based approaches, we use behavioral cloning to train a neural
network to predict optimal racing line by learning to imitate expert demon-
strations. Our method consists of synthetically generating a dataset of virtual
tracks and scenarios, including right-angle turns, chicanes and hairpins, each
paired with the optimal racing line. Using a simulator, we collect expert tra-
jectories of the car driving on these tracks, which serve as training data for
our neural network path planner model. This model, designed as a sequence–
to–sequence architecture with Gated Recurrent Units (GRUs), learns to map
scene state information (traffic cone detections) to a sequence of path points,
representing the path the car should follow. Our approach incorporates a con-
ditioning mechanism that provides the network with high–level tokens, which
let the network know about the type of the upcoming turn. This enables the
model to anticipate certain track features and execute complex maneuvers, such
as setting up early for a turn to be able to drive through it smoothly and at
higher speeds, mimicking the way human pilots drive. Furthermore, we demon-
strate the model’s ability to drive the skidpad discipline, an 8–shaped track, in
which the car has to turn based on the context of the drive, typically requiring
the use localization and mapping algorithms. We show that our model learns to
predict the correct path using only local information. We evaluate the proposed
method both in simulations and using a physical car. We show, that the car
is able to drive at higher speeds, when using our model, compared to baseline
classical planning algorithm.

Key-words: Autonomous driving, Formula Student Driverless, Neural Networks,
Path Planning, Behavioural Cloning, End-to-End Learning



Anotace

Tato diplomová práce představuje algoritmus pro plánováńı trasy pomoćı neu-
ronové śıtě pro autonomńı formuli účastńıćı se kategorie Driverless v univerzitni
soutěži Formula Student. V této soutěži, plně autonomně ř́ızené formule jezd́ı
po závodńıch okruźıch vyznačených pomoćı dopravńıch kužel̊u. Historicky bylo
plánováńı trasy, po které má auto jet, prováděno pomoćı jednoduchých geo-
metrických předpoklad̊u a ručně vytvořených pravidel pro plánováńı středové
čáry trati. Tato práce představuje metodu plánováńı trasy založenou na imi-
taci experta. Vygenerujeme dataset virtuálńıch trat́ı a specifických zatáček
(pravoúhlé, šikany, hairpin, atd.) spolu s jejich optimálńımi závodńımi trasami.
Uvnitř simulátoru auto virtuálně proj́ıžd́ı tyto tratě, aby zaznamenalo expertńı
trajektorie. Poté natrénujeme neuronovou śı̌t, aby tyto expertńı trajektorie imi-
tovala a naučila se mapováńı z vizuálńıch vstup̊u auta na předpov́ıdáńı správné
trasy, bez jakéhokoli explicitńıho odhadu mapy nebo ručně vytvořených pravi-
del. Śı̌t se nauč́ı vlastńı časovou reprezentaci scény, což j́ı umožňuje plánovat na
základě kontextu nedávných pozorováńı. Model podmiňujeme tokenem, který
mu dává informace o typu zatáčky, jež je před ńım. To umožňuje modelu
provádět složité manévry, jako je nadjet́ı si před zatáčkou pro plynulý pr̊ujezd.
Demonstrujeme také schopnost využ́ıt́ı plánovaćıho modelu pro discipĺınu ski-
dpad, osmičkovou trať. Na skidpadu se muśı auto rozhodovat na základě
kontextu j́ızdy, což obvykle vyžaduje použit́ı algoritmů pro mapováńı a lokali-
zaci. Ukazujeme, že plánovač založený na neuronové śıti se nauč́ı naplánovat
správnou trasu podle podmiňovaćıho vektoru. Představenou metodu vyhod-
not́ıme jak v simulaćıch, tak na fyzickém autě, přičemž ukazujeme, že neuronová
śı̌t může překonat referenčńı klasickou metodu plánováńı.

Kĺıčová slova: Autonomńı ř́ızeńı, Formula Student Driverless, Neuronové śıtě,
Plánováńı cesty, Imitačńı učeńı
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1 Introduction
This thesis proposes a novel approach for solving the problem of path planning
for autonomous racing in the context of the Formula Student competition. In this
section, we first give a brief introduction to the Formula Student competition with a
focus on the driverless part of the competition. Subsequently, we give the motivation
for the thesis and problem statement. We then introduce the team eForce, for which
this thesis was developed and the describe the specifics of the car setup and the
autonomous system. Finally, we outline the structure of the thesis.

1.1 Formula Student
Formula Student is an international engineering competition, where university teams
of students build formula-style race cars. During summer, there are several compe-
titions held around the world. At the competitions, the teams are evaluated based
on the race performance of their car, as well as on their engineering skills reflected
in the car’s design.

The competition, which started in 1981, has since evolved to accommodate the
advancements in automotive technology. When the competition began the cars used
combustion engines, but in 2010 the competition introduced a new class for electric
cars. In 2016, the competition introduced a new discipline for autonomously piloted
cars. Since 2022, all formula cars are required to be be capable of being piloted by a
human and to race autonomously. In this thesis, we focus only on the autonomous
racing part of the competition.

In the driverless part of the competition, there are four different dynamic disci-
plines, namely: acceleration, skidpad, autocross and trackdrive. Although they are
similar to their piloted versions, they differ in several key ways.

Firstly, the traffic cones used to denote the tracks are colored based on their
placement. There are four distinct types of traffic cones, as shown on Figure 1.
The blue and yellow ones are used to denote the general part of the track, placed
with a rule that yellow and blue cones are respectively on the right and left sides
of the road from the perspective of the driving direction. The big orange cones are
placed around the start and finish line. The regular orange cones are used to denote
braking areas in the skidpad and acceleration disciplines.

Figure 1: Traffic cones used in the Formula Student Driverless competition.

1



1.1 Formula Student

1.1.1 Autocross

The autocross discipline takes place on a circuit with a maximum length of 500
meters. The track is marked with yellow, blue and big orange traffic cones and is
built according to these rules: [7]

• Straights: No longer than 80 m

• Constant Turns: up to 50 m diameter

• Hairpin Turns: Minimum of 9 m outside diameter (of the turn)

• Miscellaneous: Chicanes, multiple turns, decreasing radius turns, etc.

• The minimum track width is at least 3 m

• The length of one lap is approximately 200 m to 500 m.

• Yellow and blue cones mark the left and right boundary of the track respec-
tively.

The goal of the discipline is for the car to drive a single lap around the track
as fast as possible. The car cannot drive off track and is penalized for hitting the
traffic cones.

1.1.2 Trackdrive

The trackdrive typically takes place on the exact same track as the autocross, with
the only difference being that the car has to drive 10 laps around the track instead of
just one. This tests the car’s physical endurance and the robustness of the algorithms
driving the car. It also gives the teams the opportunity to deploy more advanced
algorithms, such as simultaneous localization and mapping (SLAM) to build a map
of the track during the first lap and then use this map to optimize the racing line
for the later laps. [8]

1.1.3 Acceleration

The acceleration discipline consists of a 175 meter long straight track. It consists
of two parts. The first 75 meters is acceleration zone, through which the car has
to drive as fast as possible. The remaining 100 meters is the braking zone, where
the car has to safely come to a stop without hitting the traffic cones or driving off
track. This discipline tests the car’s acceleration and braking capabilities, while also
testing the robustness of the control algorithms at keeping the car centered on the
track.

2



1.1 Formula Student

Figure 2: The DV.01 car of team eForce driving the Trackdrive discipline in Formula
Student Germany 2022 competition.

Figure 3: The acceleration track.

1.1.4 Skidpad

The skidpad discipline takes place on a track made of two circles with a 15 meter
diameters. The challenge is that the car first has to drive two laps around the right
circle, then two laps around left circle and finally stop in the middle of the track.
From a physics perspective, this discipline tests that car’s cornering capabilities at
the limit of the tire’s grip. From an algorithmic perspective, there is a challenge
in planning the correct path when the car is in the middle of the track, because
depending on the context, the car has to drive either to the left or to the right.
Since the track layout is known before-hand, teams usually solve it with a localization
algorithm such as Monte Carlo localization (MCL) or particle filter. [9]

3



1.2 Motivation

Figure 4: The skidpad track.

1.2 Motivation

1.2.1 Autocross racing line

Since the inception of the Formula Student Driverless competition in 2016, teams
have been trying to solve the problem of planning the optimal path for the car to
follow. Most solutions do however only concern themselves with planning the center
line of the track, citing safety and minimization of the risk of driving off track or
into the traffic cones which denote the track.[8][10]

The only discipline, in which certain teams attempt to drive an improved racing
trajectory is the trackdrive. Trackdrive consists of 10 laps, giving the teams oppor-
tunity to build a close to perfect map of the track during the first lap using some
kind of a SLAM algorithm. This map is subsequently used as input in a racing
line optimization problem. This optimization results in some sense optimal path
for the car to follow, taking into in the criterion function things such as the car’s
driving model and in-track safety margins. Following such a trajectory allows the
car to complete the laps with lower lap times, increasing the chance of winning the
discipline.

The other free lap discipline is the autocross. It is driven on the same track as the
trackdrive with only change being, that only a single lap is driven. This makes the
strategy of mapping, localization and racing line optimization not possible. This
leaves most teams being able to only drive the center line in autocross with the

4



1.2 Motivation

exception of teams with very high end LiDAR sensors, which are in some cases able
to map the whole track very early in the lap.

One of the main points of focus of this thesis is to provide a solution to the
problem of planning the optimal path for the car to follow in the autocross discipline.
We believe it is possible to drive along a better path than the center line without
needing any special mapping or perfect information about the track. Before the
autocross discipline takes place, the teams are given the opportunity to walk the
track to get a feeling for it. In the piloted version of the competition, the pilots
heavily rely on this track walk to be able to drive fast on their first attempt.

One of the goals of this thesis is to provide a solution, which in some sense mimics
the way a pilot uses the information from the track walk to then be able to drive
fast on his first attempt. We believe, that by just knowing the types of turns on the
track and their order, the car can drive faster than the center line approach.

The inspiration for our approach came from the way rally drivers drive. The rally
races are typically driven on a very large track, which the drivers have never driven
on before. The drivers have a co-driver, who has a map of the track and conveys
key information about the road ahead to the driver. Due to the intensity of rally
racing, the co-driver doesn’t have a time to convey the exact position and shape of
every turn, but instead conveys the type of the turn ahead using a predefined set of
turn types and names.

1.2.2 Skidpad without localization

As described before, the skidpad is an 8-shaped track, whose layout is known before-
hand. Historically, teams have solved the problem of driving the skidpad by using
a localization algorithm, which is able to determine the car’s position on the track.
When the car’s position is known, the correct path is easy to determine as a crop of
the global path, known before hand, which is closest to the car’s position.

The potential problem with this approach is that the localization error directly
translates to the error in the planned path. As in way, the car is driving blindfolded,
only knowing its position estimate. If the estimate is wrong, the car will drive right
through the cones or off track.

One of the goals of this thesis is to provide a solution, which is able to plan the
correct path for the car to follow with only local detections of the cones, without
the need to rely on perfect localization. Even more than in the autocross discipline,
driving the skidpad is highly dependent on the context of the drive. As the car
has to take left, right or straight path in the middle of the track, depending on the
current progression of the drive.

Learning to drive the skidpad using only local data and temporal context learned
from expert trajectories is another goal of this thesis. This new approach could
potentially be more robust to localization errors and and would be more similar to
the way a human driver would drive the skidpad.

5



1.3 Problem statement

1.3 Problem statement
As mentioned in the previous section, this thesis aims to enable car to drive a faster
path than the center line in the autocross discipline, in which it must drive a single
lap on an unknown track.

We propose to solve this problem using a neural network trained on a large
dataset of expert trajectories. The basic idea is to divide to enumerate the types of
turns on the track, that the car can encounter. We then generate a dataset of tracks
containing these turns and virtually drive expert trajectories on them. This will
provide us with a dataset of expert trajectories of how to optimally drive through
every type of turn.

In the next step, we will train a neural network to imitate these expert trajecto-
ries. During training, we will condition the neural network model on the type of the
turn the expert trajectory is driving through. This will allow the model to learn how
to act to set itself up for the turn ahead, even before it sees the turn. An example
of this would be to hug the right side of a road before a left turn, to be able to take
the turn in a sharper way with minimal steering input.

When the model is trained to drive through individual turns, we can then use
it to drive a whole track, which is just a sequence of individual turns. For a given
track, we will collect the types of turns and their lengths during the trackwalk and
then feed this information to the model before the attempt. Using this information,
we will be able to change the model’s conditioning on the fly, allowing it to exhibit
complex driving behavior, such as setting up for the turn ahead and then aggressively
cutting the corner.

Similarly, we will use the same approach to drive the skidpad track without the
need for localization. We will divide the track into individual turns and generate
expert trajectories of the car driving through them. Then we will train a model to
imitate these expert trajectories. Then, during a full skidpad drive, we will condition
the model on the type of turn it should take in the middle intersection.

1.4 Team eForce
Team eForce is a student team from the Faculty of Electrical Engineering of the
Czech Technical University in Prague. The team was founded in 2012 as the first
Czech team that built an electric formula car. In 2020, we started to participate in
the Formula Student Driverless competition by rebuilding the 2018 piloted car to
have autonomous capability by adding sensors such as camera and lidar, electrical
steering and the emergency brake system. In 2023, the team’s FSE.12 car was its first
car built for both autonomous and piloted racing. This thesis is a part of the team’s
effort to improve the autonomous racing capabilities of the car and to compete in
the Formula Student Driverless competition. We now give a brief overview of the
car and then describe its autonomous system.[11]
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Figure 5: The FSE.12 car is was team eForce car of the 2023 season and is was used
for testing the algorithms in this thesis.

1.4.1 Car setup

This thesis is developed for the team’s FSE.12 car, which is a 4-wheel drive electric
formula car. It is equipped with a 35 kW motor in each wheel. The car is powered by
a 600V, 7.45 kWh battery, built to last for the duration of the endurance discipline,
which is 22 km long. The car is weighs approximately 200kg, has a wheelbase of 1.2
meters and is 2 meters long.

For the autonomous racing, the car has a power steering system controlled by
the car’s computer over a CAN bus. For the perception, the car has a single camera
mounted at the top of the main hoop of the car. The camera is a ZED 2 stereo
camera with a 110 degrees field of view, although only one of the camera lenses is
used for driving. There is also an Inertial Navigation System (INS) unit inside the
car, which can be used to get real-time position and orientation of the car. There
are two CAN buses in the car connecting all the electric control units and sensors.
The main computer is a Zotac Zbox with an Intel i7 CPU and a Nvidia RTX 2080
GPU.

1.4.2 Autonomous system

The autonomous system runs on an in-house developed microsevice architecture
similar to the Robot Operating System (ROS). The individual nodes and their ser-
vices are written in Python and communicate using the ZeroMQ (ZMQ) messaging
protocol. The system is divided in to several nodes, each responsible for a different
part of the system. Generally, the nodes are divided into three types of nodes: IO
nodes, processing nodes and actuator nodes. The whole system diagram is shown
in Figure 6.

The CAN nodes and the perception nodes are the IO nodes, they are respon-
sible for watching the car’s sensors and when data is available, processing it and
sending it forward. The mission node is a processing node. It is responsible for the
decision making of the car. Algorithms for path planning, mapping and localization
and control are implemented there. The steering, motor and can sender nodes are
actuator nodes. The steering node implements the low-level control of the car’s

7



1.4 Team eForce
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Figure 6: Diagram of individual processing nodes in the micro–service architecture
of the car’s autonomous system.

steering system, translating steering angle setpoint into increment level commands
of the steering stepper motor. The motor node is responsible for the control of the
car’s motors. It receives speed and steering setpoints and translates them into mo-
tor torque commands. It implements advanced control algorithms such as torque
vectoring and traction control. Finally, the can sender node is responsible for send-
ing status messages to the car’s CAN bus, which are then displayed on the car’s
dashboard.

Local map of the sceneRGB Image from car's camera

Figure 7: Detection of traffic cones in the image using a YOLO detector and subse-
quent projections of the bounding boxes into a map of the scene.

From the algorithmic perspective, the system can be divided into three main
parts: perception, planning and control. Calling the parts more specifically to the
context of our system, it would be: traffic cone detection, path planning, path
tracking and actuation control.

The traffic cone detection is done by taking the image from the camera and run-
ning it through a YOLO (You Only Look Once) object detection neural network.[12]
YOLO is a real-time object detection neural network, using a single convolutional
neural network pass to detect objects in the image. The used instance of the YOLO
network was designed and trained as a part of author’s bachelor thesis.[13]

The network detects the traffic cones as bounding boxes in the image. The
bounding boxes are then transformed into a 3D position in the car’s coordinate
system by projecting the bounding box onto the ground plane using a pre-computed
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1.5 Outline

homography matrix. This homography matrix is recomputed at the start of each
racing session, as the camera’s position and orientation can change between sessions
and even small changes can have a big impact on the accuracy of the detection.

The path planning part of the system receives the 3D positions of the traffic
cones and their respective types and outputs a path for the car to follow. The path
is represented as a sequence of waypoints. The current implementation of the path
planner is a classical geometric path planner. It uses assumptions about the yellow
and blue cones being placed on the left and right side of the track respectively and
the assumption that the cones come in pairs.[8] The basic idea of the path planner
is to find the closest blue and yellow pair of cones and compute their mid-point.
The next mid-point is computed in the similar way, only we start from previous
mid-point and search for the next closest pair of cones. This way, the path planner
creates a sequence of mid-points, which approximate the center line of the track.
One of the goals of this thesis is to replace this path planner algorithm with a neural
network based solution.

Subsequently, the planned path is passed to the path tracking algorithm, which
is responsible for keeping the car on the planned path. The path tracking algorithm
is a simple carrot on a stick algorithm, which picks a point on the path in front of
the car and tries to steer the car towards it, by minimizing the angle between the
car’s heading and the point on the path. [14]

1.5 Outline
We give outline of following chapters:

In section 2, related work, we first give an introduction to behavioural cloning,
its history and its challenges. Next, we give a brief introduction to neural networks,
especially recurrent neural networks and their advanced versions LSTM and GRU.
Lastly, we talk about sequence to sequence (seq2seq) models and how they work.

In section 3, method, we describe our solution the problem of using behavioural
cloning for path planning in the context of the Formula Student Driverless competi-
tion. We first describe the data generation process, first by generating virtual tracks
and then driving expert trajectories on them. Subsequently, we describe the neural
network model is trained to imitate the expert trajectories.

In section 4, experiments, we present results of experiments we conducted. First,
we evaluate the performance of the model without any temporal or conditioning
context. Next, we show results of experiments with the model conditioned on the
type of the turn ahead and its learnt temporal context. We also evaluate the system’s
performance on a physical car driving on a real track. Lastly, we evaluate the model
on the skidpad track.

In section 5, conclusion, we summarize the motivation, method and the results
of the thesis. We then point out and discuss the limitations and challenges of the
proposed approach.
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2 Related Work

2.1 Imitation learning
The term imitation learning refers to a type of learning methods where agents learn
to perform tasks by observing an expert demonstration. It includes methods such
as apprenticeship learning, inverse reinforcement learning and behavioral cloning. It
has been used in a variety of fields such as robotics, self-driving cars and natural
language processing. [4][15][16][17]

2.2 Behavioral cloning
In this thesis, we focus on behavioral cloning, which is a type of imitation learning
where we directly learn to approximate the function mapping observations to actions.
For example, in the context of self-driving cars, a typical learning task would be to
learn to map a camera image to the corresponding steering angle. In the self-driving
car’s context, these state-action pairs are typically collected by using a ground truth
vehicle. A human drives the vehicle, while at every timestep recording the state (ie.
camera image) and the action (ie. steering angle). [3]

Formally, given a dataset of state-action pairs:

D = {(s1, a1), (s2, a2), . . . , (sN , aN )} (1)

We optimize the criterion function J with respect to the parameters θ of the mapping
function Fθ, which maps states to actions.

min
θ

J(θ) =

N∑
i=1

L(Fθ(si), ai) (2)

Given that the dataset D is rich enough to cover the entire state space, the mapping
function Fθ is expressive enough and if the assumption that a mapping function
exists, that can map states to actions holds, then learned function F will be able to
perform the task it was trained on, ie. drive a car. [3]

2.2.1 History of behavioral cloning

Behavioral cloning has been used in the context of self-driving cars for a long time.
Its use originated in 1988, when Dean Pomerleau developed ALVINN (Autonomous
Land Vehicle In a Neural Network).[1] ALVINN was a Chevrolet van, equipped with
RGB camera, laser range finder, computer and steer by wire capabilities. The 30x32
input image and 8x32 laser scan were used as input for a 3-layer neural network con-
sisting of less than 100 neurons in total. The network was trained on 1200 pairs of
image and scan vector of a given scene and the corresponding steering angle. The
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2.2 Behavioral cloning

Figure 8: ALVINN [1]

achieved performance was comparable to the State of the Art traditional algorithms
at the time. From the 1988 paper: ”Performance of the network to date is com-
parable to that achieved by the best traditional vision-based autonomous navigation
algorithm at CMU under the limited conditions tested. Specifically, the network can
accurately drive the NAVLAB at a speed of 1/2 meter per second along a 400 meter
path through a wooded area of the CMU campus under sunny fall conditions.”

Figure 9: DAVE [2]

More than 15 years later, in 2004, LeCun et al. developed a 50cm off-road RC car
called DAVE.[2] The RC car was equipped with two RGB cameras producing 149x58
resolution images and a steering rack. It was also equipped with a radio, sending
sensory data to a remote computer for processing and receiving steering commands.
The robot’s 6-layer convolutional neural network was trained on 95,000 frames of
images and corresponding steering angles. The data was recorded in several different
types of environment such as in a forest, on a parking lot and in a grass field. The
main goal of the training was to teach the robot to avoid obstacles and drive forward
as long as possible. The robot managed to drive at 2 m/s and avoid a diverse range
of obstacles such as table chairs, trees and human legs.

Another 12 years later, in 2016, Bojarski et al. from NVIDIA, utilizing modern
developments in hardware and deep learning algorithms created a system called
DAVE-2.[4] Similarly to ALVINN, it was regular car equipped with an RGB camera,
a computer and steer by wire capability. This time, the task was to drive on real
public roads. The team collected 72 hours of driving data at various locations
in United States. They put emphasis on having for diverse set of weather and
lighting conditions. Similarly to the original DAVE, DAVE-2 uses a convolutional

11



2.2 Behavioral cloning

neural network to output the steering angle. However, the DAVE-2’s PilotNet has
8 layers and around 4-times as many parameters. They evaluated the network’s
performance based on the percentage of time the system drove autonomously without
the human driver having to take control. In their test drives they managed to drive
autonomously 98% of the time.

Today, companies like Comma.ai and Tesla are using behavioral cloning to train
self-driving cars. [18]

2.2.2 Challenges and limitations

When training model with the approach of behavioural cloning, there are several
issues one might run into. Usually, when training a model with supervised learning,
we make an assumption about the data being i.i.d. (independently and identically
distributed). For behavioral cloning, this assumption generally holds during training,
but it doesn’t hold during deployment. It doesn’t hold, because the state at time
t+1 depends on the action taken at time t. This means that the distribution we are
sampling our states from during deployment is different from our train and holdout
test set used for learning.

Figure 10: Out-of-distribution problem in behavioural cloning. [3]

We look at the Figure 10 sketch. The model, trained on the expert trajectory,
outputs a steering angle which is close to correct, but inevitably with some error ϵ.

steering angle∗t = Fθ(st) + ϵ (3)

This has the effect, that the car leaves the expert trajectory on the track and the
model is out-of-distribution in the sense, that the training set didn’t contain similar
situations.

One approach to solving this problem, would be to contain all possible situations
in the dataset. This is practice is not possible due to financial and time constraints.
And in the case of recording data on public roads even dangerous and illegal.

A more practical approach, is to slightly offset the car from the expert trajectory,
to ”teach it to recover”. In the 1988 ALVINN experiments, they would place the
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2.3 Conditional imitation learning

van on the edge of the road at different angles and ground truth the steering angle
so that it would recover to the center. This strategy wouldn’t be possible for the
2016 NVIDIA DAVE-2 project, since it as trained on driving data collected on
public roads. Their approach was, using computer vision, offset the translation and
rotation of the car in the image and adjust steering angle accordingly. This approach
is depicted on Figure 11 and a similar approach is utilized in this thesis.

Library of recorded test 
routes: videos and time-
synchronized steering 

commands

CNNShift and rotate

Update car 
position and 
orientation

Synthesized
image of road as

would be seen from
simulated vehicle Network 

computed 
steering 

command

Figure 11: Camera image augmentation to simulate out-of-distribution situations in
the dataset. [4]

2.3 Conditional imitation learning
Another assumption that is made in the standard formulation of behavioral cloning,
is that a function mapping the perception data to actions exists. This assumption
holds for simple situations, such as trying to stay centered on the highway. However,
when the car reaches an intersection, there are suddenly multiple possible trajec-
tories, that are correct in different contexts. Depending on the final destination, it
might be correct to turn left or to turn right.

In the paper End-to-end Driving via Conditional Imitation Learning (2018) by
Codeville et al., they expand the behavioral cloning formulation in Equation 2,
to include a high level command ct, as shown on Figure 12 diagram.[5] The ct
can represent commands such as ”turn right at the next intersection” or even the
maximum allowed speed in the area. This command is given as ground truth during
training, but can be arbitrarily chosen during deployment.

Figure 12: Conditional imitation learning. [5]
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2.4 Neural Networks

2.4 Neural Networks
Neural networks are a popular machine learning model, which is capable of learning
complex functions from data.[19] They are in some sense similar to the human
brain, that they consist of interconnected layers of neurons, which model a function
mapping inputs to outputs.

Neural networks were first introduced in the 1940s, but have especially gained
popularity in 2010s and 2020s. In 2012, the AlexNet, a convolutional neural net-
work based image classifier, won the ImageNet competition by a large margin, which
started a new era for neural networks.[20] Since then, neural networks have been used
with great success in variety of fields such as computer vision, natural language pro-
cessing and robotics. The recent success of neural networks is typically attributed to
the increase of available data, due to the internet and the increase in computational
power, mainly due to the development of GPUs.[21]

We now give a brief overview of the most common types of neural networks. We
mainly focus on recurrent neural networks and their variants, as they are used in
this for the path planning model presented in this thesis.

2.4.1 Feedforward Neural Networks

Feedforward neural networks are the vanilla neural network architecture. The net-
work is composed of fully connected layers of neurons, where each neuron is con-
nected to every neuron in the previous layer. Mathematically a fully–connected layer
can be expressed as:

at = σ(Wat−1 + b) (4)

where at−1 are the input activations, W is the matrix representing the weights of
the connections, b is the bias vector and σ is the sigmoid activation function. In
practice, networks are composed of multiple such fully–connected layers.

These networks are trained using the backpropagation algorithm, which is a gra-
dient descent based algorithm for teaching the network to minimize a loss function.
The loss is computed as the difference between the network’s output and the ground
truth label. We compute the gradient of the loss with respect to the network’s pa-
rameters and update the parameters in the opposite direction of the gradient, to
minimize the loss.[22]

2.4.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a type of neural network used for modeling
data with variable–sized inputs. Since the feedforward neural networks have a fixed
input and output size, they are not the best choice for modeling data of variable
size. RNNs are able to model sequences of data, such as language, time series data
or signals.

The key idea behind RNNs is that they use a fully–connected network, which
receives the input vector and its previous output, called the hidden state or context
vector. This way, to process a sequence of length T , the network is run T times,
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2.4 Neural Networks

each time receiving the current input vector xt and the context vector ht−1 and
outputting the context vector (ht). The output of the network is the final context
vector hT . This way, the network is able to compress the information about the
entire sequence into a fixed–size vector. This vector can then be used as input for
following fully–connected layers, whose output could be a classification or regression
result.

Mathematically, a single iteration of an RNN can be expressed as:

ht = σ(Whht−1 +Wxxt + b) (5)

2.4.3 Long Short-Term Memory (LSTM)

While RNNs are able to model sequences of data, they have been shown to have
problems with retaining information over long sequences. This can lead to poor per-
formance on tasks such as next word prediction, where the correct prediction might
depend on a word from several paragraphs back. The Long Short-Term Memory
(LSTM) network was introduced to address this issue. [23]

The LSTM network is a type of an RNN. It extends the RNN by adding several
terms to the hidden state computation. The LSTM has not only the hidden state
ht, but also introduces the cell state ct, which is able to store information over long
sequences. The LSTM contains three so called gates, which are neural network
layers tasked with controlling the flow of information in the cell state.

The three gates are the forget gate, the input gate and the output gate. The
forget gate decides, based on the current input and the previous hidden state, which
information to forget from the cell state. It achieves this by outputting a vector of
values between 0 and 1, which is then multiplied element–wise with the cell state.
The other two gates, the input and output gate, decide which information to add to
the cell state and pass to the output.

The LSTM network has been shown to perform better than RNNs on tasks that
require modeling long–term dependencies.

2.4.4 Gated Recurrent Units (GRU)

The Gated Recurrent Unit (GRU) is a type of RNN, which is very similar to the
LSTM network. Introduced by Cho et al. in 2014, the GRU network is also able to
model long–term dependencies in the data, while being of simpler design than the
LSTM network. [24]

The GRU network only has two gates compared to the LSTM’s three. It also
merges the cell state and the hidden state into a single vector. This makes the GRU
network simpler have the same interface as a regular RNN, while still being able
to model long–term dependencies. When compared to the LSTM network, both
networks have been shown to perform similarly.[25]

The GRU networks are used in this thesis for processing of input sequences of
traffic cone detections.
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2.5 Sequence to Sequence models

2.5 Sequence to Sequence models
Sequence to Sequence models (seq2seq) are a type of neural network architecture,
which is used for mapping variable length input sequences to variable length output
sequences. Typical use cases for seq2seq models are would be machine translation
and speech transcription.[26]

The seq2seq model consists of two parts, the encoder and the decoder, both of
which are typically RNNs or their advanced variants such as LSTMs or GRUs. The
encoder processes the input sequence and outputs a fixed–size context vector. This
context vector, which contains the information about the entire input sequence, is
then passed to the decoder.

The decoder is an RNN, which takes the context vector ht, outputs the next
context vector ht+1, but also outputs the prediction for the next element in the
output sequence. Typically, this prediction is then also fed back to the decoder
together with context vector.

In this thesis, we use the seq2seq encoder–decoder architecture to model the path
planning problem. Where the input sequence is the list of detected traffic cones in
the scene and output is a sequence of 3D path points.

Figure 13: The sequence to sequence model. The input sequence is iteratively turned
into an encoded vector, which is then passed to the decoder, which uses to iteratively
generate the output sequence.[6]

2.6 Racing line optimization
The racing line optimization is a well–known problem in the field of autonomous
racing. It is the problem of finding the optimal trajectory for a car to follow, in
order to minimize lap time. There are several approaches to solving this problem
including geometric methods, optimal control optimization and even reinforcement
learning.[27][28][29]

In this thesis, we use a gradient descent based optimization method to find the in–
some–sense optimal racing line, which was presented in the bachelor thesis by Michal
Horáček ”Finding the Fastest Trajectory for Autonomous Student Formula”.[8].
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2.6 Racing line optimization

In the mentioned work, the car’s trajectory is represented as a sequence of 2D
points, which are connected, forming a piecewise linear path. The algorithm starts
with an initial center line. For each point on the path, a unit orthogonal vector
is computed. Then, in the direction of this orthogonal vector, each path point is
moved by distance t, which is limited by the track boundaries.
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Figure 14: Track optimization process.

In Figure 14 we can see the visualization of this process. Inside the track de-
noted by blue and yellow traffic cones, car trajectories are visualized. The red line
represents the initial center line and the green line the optimized racing line. The
grey lines represent the orthogonal vectors, which are used to parameterize the path
points and move them in the direction that minimizes a given loss function.

There are several loss function that can be used to optimize the racing line. The
thesis proposed three approaches: minimizing the overall path length, minimizing
the path curvature and directly optimizing the lap time. For the optimization of
the racing line for the path spanning the entire track, the lap time objective was
shown to be the most effective. However, for optimizing only a part of the track, the
curvature objective could be more suitable, as it is the objective that also maximizes
the potential speed of the car.

In this thesis, we use the racing line optimization algorithm for estimating the
optimal path for individual track segments consisting of a single turn. Which are
then used to generate training data for a behavioral cloning based path planning
model.
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3 Method
In this section, we describe the methods used for generating synthetic data of differ-
ent types of race tracks and using them to train a neural network for planning a path.
In the data generation process, four types of tracks are generated: general tracks,
chicane tracks, right-angle tracks and hairpin tracks. The chicane, right-angle and
hairpin tracks consist of only a single turn, while the general tracks consist of a full
circuit with multiple turns. The general tracks contain the center line of the track
as the ground truth path, while the other turn-specific tracks contain a curvature
optimized path.

Subsequently, these tracks, together with their ground truth paths, are used to
generate clips of the car driving on the track. These clips are composed of pairs of
vision inputs, which are traffic cone detections and the optimal path to be planned
by the model. We then train a sequence-to-sequence model to predict the optimal
path given the traffic cone detections on the dataset of clips of driving.

3.1 Track generation
Before explaining the track generation process of different types of tracks, we give a
definition of what we mean by a track. A track is a set of traffic cone positions and
list of path points. A traffic cone is represented by its 2D position in the world frame
and its type, which makes it a triple (x, y, t), where x and y are the 2D position of
the cone and t is the type of the cone. Where t ∈ {0, 1, 2, 3}, where 0 is a yellow
cone, 1 is a blue cone and 2 is an orange cone and 3 is a big orange cone. In terms
of matrices, the cones are represented by a matrix of size N × 3, where N is the
number of cones in the track.

The track path is represented by a list of points in the world frame, where each
point is a pair of (x, y) coordinates. The path points in the list are ordered as the
car drives along the path from start to finish. The path is represented by a matrix
of size M × 2, where M is the number of path points.

A track is then a tuple (C,P ), where C is the matrix of traffic cone positions
and types and P is the matrix of path points.

Algorithm 1 Race Track Generation Algorithm

1: Generate a set of random points (blue dots in Figure 15).
2: Compute convex hull of the points (blue polygon in Figure 15).
3: Compute the midpoint of each pair of points in the convex hull and displace it

by a random amount. (green polygon in Figure 15).
4: Given both a minimum angle and a minimum distance threshold, push apart

the set of points resulting from steps 2 and 3 to try to guarantee that:
5: Obtain the final layout by interpolating all the points from step 4 with splines,

passing through all the points (red curve in Figure 15).
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Figure 15: Generated circuit track with Algorithm 1, with each step of the generation
process visualized.

3.1.1 Circuit tracks

The first type of track we generate is a randomly generated circuit track. It is
generated by randomly sampling a set of points in the world frame, computing
their convex hull and the shifting the convex hull points orthogonally by a random
distance. These points are then interpolated with splines to obtain the final track
layout, as is described in Algorithm 1.

The spline center line is then used to populate the track with traffic cones. We
iterate over the center line and every d meters we place a blue and yellow traffic cone
orthogonally to the left and right side of the center line respectively. The d parameter
is a hyperparameter of the track population algorithm which determines the density
of the cones on the track, we randomly sample it from a uniform distribution between
3 and 6 meters. There is also the track width parameter, which determines how far
the cones are placed from the center line, we set this parameter to 4.5 meters.
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3.1 Track generation

3.1.2 Chicane turns

The second type of a track we generate is a chicane turn. The chicane turn is an
S-shaped turn that is typically found on racing circuits. This type of turn is the
first turn-specific track that we generate. We picked the chicane turn because the
difference in performance between driving along the optimal path and the center line
is quite significant. This leaves a lot of room for improvement in the car’s lap time
if the optimal path is taken through the turn. A path planner that can plan the
optimal path through this turn will result in a significant improvement in the speed
at which the car can drive through the turn resulting in reduction of the overall lap
time.

The chicane turn consists of two turns in opposite directions (left/right or right/left).
In order to minimize car’s lateral force and maximize the speed through the turn,
the optimal path a smooth narrow S-curve going through the middle of the turn.

The chicane turn is generated by first generating a center line that which consists
of a initial straight line, followed by a sine curve and then the final straight line.
Its defining parameters are the lengths of the initial and final straight lines and the
amplitude and frequency of the sine curve. There are two types of chicane turns:
left-right and right-left. For the left-right variant the sine curve is kept as it is, while
for the right-left variant the sine curve is flipped along the x-axis.

The optimal path through the chicane turn is computed by taking the center
line and applying curvature optimization algorithm to it, as described in subsec-
tion 2.6. We show examples, along with their optimal racing paths of chicane turns
in Figure 16.

3.1.3 Right angle turns

Next we generate right angle turn tracks. The right angle turn is a second type of
turn-specific track that we generate. Again, we picked the right angle turn because
the it allows for a significant increase in speed if the optimal path is taken through
the turn. The optimal path through the right angle turn is to hug the side of the
turn and then make a sharp turn through the apex of the turn.

We generate the right angle turn by first generating a center line, consisting of a
straight line followed by a sharp turn, generated as a quarter circle and then another
straight line. The defining parameters of the right angle turn are the lengths of the
initial and final straight lines and the radius of the quarter circle. Again, there are
two types of right angle turns: left and right, depending on the orienttion of the
quarter circle.

To compute the racing line through the right angle turn, we again apply the cur-
vature optimization algorithm to the center line. However, to achieve a consistent
pattern for driving through the right angle turn, we also add a constrain to the op-
timization algorithm, that only a portion of the center line is changed. Particularly,
we only allow the 10 meters before and after the apex of the turn to be optimized,
while the rest of the center line is kept as it is. This is done to ensure that the car
is not expected to start setting up for the turn even before it sees it, which would
be unrealistic and could lead to instability in training of the model.
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3.1 Track generation

Examples of left right-angle and right right-angle turns, along with their racing
lines are shown in Figure 16.

3.1.4 Hairpin turns

Finally, we generate hairpin turn tracks. The hairpin turn is a third type of turn-
specific track that we generate. It is the most challenging turn to drive through, as
it requires the car to make a very sharp turn. There are several types of strategies
to drive through a hairpin turn, but the most common one is to drive along the
outside of the turn and then make a sharp turn through the apex of the turn.

We generate the hairpin turn by first generating a center line, consisting of a
straight line followed by a half circle and then another straight line. The defining
parameters of the hairpin turn are the lengths of the initial and final straight lines,
the radius of the half circle and the orientation of the half circle (left or right).

For this type of turn, we compute the racing manually, as the curvature op-
timization algorithm does not work well on the hairpin turns, due to its circular
nature. To compute the racing line, we increase the radius of the half circle to be
a given distance away from the track boundary (e.g. enough for the car to fit next
to the cones). We then shift the path downwards, towards the inside of the turn to
take a more aggressive early turn through the hairpin.

Again, example of left and right hairpin turns, along with the racing lines are
shown in Figure 16.
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Figure 16: An example of a chicane, right angle and hairpin turn.
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3.2 Clip generation
After generating the tracks, we generate clips of the car driving on the track. We
do this by simulating the car driving on the track and recording the traffic cone
detections and the optimal path each timestep. The car is placed at the start of the
track path and is set in motion at a constant speed. The path is planned as if the
car is driving autonomously and the optimal path is generated by the path planner.
The car then drives along the path using a simple carrot on a stick controller, which
steers the car towards the next point on the path.

At each time step, the detections of the traffic cones are simulated by taking a
cone shaped field of view crop of the track traffic cones in front of the car’s position.
This way we simulate the car’s vision input as if it would be detecting the cones in
real life. Same is done for the path, we take a crop of the path points in front of the
car’s position.

For each clip, we also record the turn type of the track, which is then used to
train the model to predict the optimal path conditioned on the turn type. Therefore,
the clip is a tuple (C,P, T ), where C is an N ×3 matrix representing the traffic cone
detections, P is an M × 2 matrix representing the path points and T is the turn
type token.

For a portion of the clips, we add a cumulative gaussian noise to the car’s steering
angle commands. This is done to make the model more robust to going off the
optimal path and to be able to recover from such situations. The motivation for this
is described in subsection 2.2.

3.2.1 Data augmentation

In order to make the model robust to different types of noise that might occur,
while driving on a real track, we augment the traffic cone detections in the clips in
several ways. Firstly, we simulate the error in the traffic cone detections by adding
random noise to the cone positions. In particular, we add a noise translation vector
with y-component sampled from a normal distribution with mean 0 and standard
deviation of 0.1 and x-component sampled from a skewed normal distribution with
mean 0, standard deviation of 0.1 and the shape parameter of 1.0. This models the
fact that the error of the cone detection is typically larger in the x-direction (forward
and backward) than in the y-direction (left and right).

Secondly, we simulate the possibility for cone class misclassification by randomly
changing the class of a detected cone with a small probability. This probability is
conditioned on the true class of the cone, as the misclassification is more likely to
happen between cones of similar colors, such as orange and big orange cones.

Another type of noise is a false negative detection, where a cone is not detected
by the car’s vision system. With a small probability, we remove a cone from the
vector of detections. Similarly, we simulate the false positive detections by adding
a cone to the detection at a random position with a small probability.

Lastly, we simulate the error in the building of the track itself by adding a
random gaussian noise to each traffic cone position in the track before beginning of
each drive.

23



3.3 Autocross clips

3.3 Autocross clips
As mentioned before, a clip is a sequence of triplets (C,P, T ), where C is the matrix
of traffic cone detections, P is the matrix of path points and T is the turn type
token. The turn type token is used to condition the model to predict the optimal
path for the turn coming up ahead.

For the autocross discipline, we distinguish between seven turn conditioning
tokens:

Turn type Token ID

CENTER LINE 0
LEFT CHICANE 1
RIGHT CHICANE 2
RIGHT RIGHT–ANGLE 3
LEFT RIGHT–ANGLE 4
RIGHT HAIRPIN 5
LEFT HAIRPIN 6

Table 1: Enumeration of the conditioning tokens for path planning model driving
in the Autocross discipline.

These tokens are used to condition the model to change its driving behavior
to suit the upcoming turn. For example, when the model is conditioned with the
LEFT RIGHT-ANGLE token, it should predict the path for the car to hug the right side
of the track and then make a sharp left turn at the right moment.

3.4 Skidpad clips
In addition to learning to plan the optimal path for several types of turns and for
general tracks, we also generate clips for learning to perform a skidpad run. As
mentioned in the /refsec:skidpad, the skidpad is an eight-shaped track that is used
to test the car’s lateral acceleration.

From the perspective of planning a path for the car at each time step, the
skidpad is uniquely challenging because depending on the lap counter, the car needs
to drive take a different path through the main intersection. Due to this needed
conditioning and the complexity of the traffic cone scene in the middle of the track,
the simple geometry based path planning algorithms do not work on the skidpad as
they would on the trackdrive tracks. The typical solution to this problem is to use
a localization algorithm to determine the car’s position on the track and then just
follow the precomputed path for that position.This is possible because the skidpad
layout is known beforehand and is always the same. The typically used algorithms
include Extended Kalman Filter and Monte Carlo Localization.

We propose a different approach to driving the skidpad. We generate clips of the
car driving on the skidpad in different context and record the traffic cone detections
and the optimal path for each time step. The context, determined by the lap counter,
is gives the car its turn direction at the main intersection. There are three possible
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3.4 Skidpad clips

turn directions: left, right and straight, as shown in Figure 17. During the first
two passes, the car drives around the right circle, then it drives twice around the
left circle and finally it drives straight through the middle intersection and into the
braking zone.

The skidpad clip is also just a tuple (C,P, T ) as the trackdrive clips just with
the T token representing a skidpad turn direction instead of a track turn type. For
each skidpad direction token, we generate the clips by simulating the car driving
from a particular starting position and then taking the correct turn direction at the
main intersection with accordance with the current direction token. The all possible
situations of driving through the skidpad center can be divided into 9 situations,
which are defined by the starting position of the car: left circle, starting zone, right
circle and the turn directions: turning left, driving straight and turning right. Of
these 9 unique combinations only 5 occur during a skidpad run. Namely, the car
starts in the starting zone and drives right, then it finds itself in the right circle and
the turns right again, then it finds itself in the right circle, but takes the left turn,
then it starts in the left circle and takes the left turn and finally it finds itself in the
left circle and drives straight into the braking zone. The division of these situations
between the three skidpad tokens is shown in Figure 17.

These 5 situations can be further divided into 3 behavioural patters, which are
based on the way the car drives through the main intersection. It either turns right,
turns left or drives straight through the finish line into the braking zone. This leaves
us with the following skidpad turn type conditioning tokens:

Turn type Token ID

SKIDPAD RIGHT 0
SKIDPAD LEFT 1
SKIDPAD END 2

Table 2: Enumeration of the conditioning tokens for path planning model driving
in the Skidpad discipline.
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Figure 17: Examples of 5 situations of skidpad turns. Each situation is defined by
where the car starts and which turn it takes at the center intersection.
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3.5 Model architecture

3.5 Model architecture
The model architecture is a sequence-to-sequence model using a GRU (Gated Recur-
rent Unit) encoder-decoder architecture. This architecture is used for tasks where
the input and output sequences have different lengths such as machine translation.
In our case, the input sequence is the traffic cone detections and the output se-
quence are the path points. At each time step the car can see a different number
of cones and it may need to output a different number of path points, making this
architecture suitable for our task.

The full model architecture is shown in Figure 18. The model consists of a
GRU encoder, a GRU decoder and a fully connected layer in between, that also
incorporates the turn type token into the model. The model first encodes the variable
length input sequence into a fixed length context vector. Following this, we append
the one-hot encoded turn type token to the context vector and pass it through a
fully connected layer to obtain a new context vector, which contains the information
about the current turn type. Finally, the decoder takes this context vector and
decodes it into the output sequence of path points.

During each output path point prediction, the GRU decoder also outputs a
context vector. We take the final context vector of the current time step and pass
it as the initial context vector the next time step’s GRU encoder. This allows the
model to take into account information from previous time steps. We believe this is
a crucial attribute for the model to be able to perform complex maneuvers such as
setting up for a turn.
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Figure 18: The path planning model architecture. Cone detections, turn type token
and the previous tokens are passed through the encoder and the decoder to predict
a path.
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Figure 19: The processing of a temporal sequence of cone detections and turn type
tokens to predict the path in each time step.
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3.6 Training
We divide the training process into two stages: pre-training and training on clips.
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Figure 20: Examples of sequences from the dataset used for pre-training. Single
frames with no temporal information or turn type context.

3.6.1 Pre-training

In the pre-training stage, we effectively train the model on clips of length 1, contain-
ing only a single sequence of traffic cone detections and corresponding path points.
This is done to make the model learn the basic mapping between the traffic cone
detections and the center line. It could be seen as first learning to imitate the center
line path planner algorithms, which do not take into account any temporal or turn
type information.

The data for this is generated only on the generic circuit tracks. We place the car
at a random position on the track, along the center line and take a single snapshot of
the traffic cones the car would see and the appropriate center line, the path planner
should predict. In order to give the model more robustness, we also offset the car’s
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position from the center line by random translation vector and randomly rotate it.
A sample of the pre-training sequences is shown in Figure 20.
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Figure 21: Distribution of the sequences dataset.

For the pre-training dataset, we first generate 30,000 sequences. Due to the
nature of the track generation algorithm, most of the sequences are of the car driving
straight. In order to balance the dataset, to contain more sequence of the car driving
through turns, we resample the dataset. We divide the dataset into a 2D–histogram
over the positions in the car’s local coordinate frame and then, where each data
point is a represented by the last path point of the sequence. We then resample the
dataset, so that sequences with the last path point of the sequences is uniformly
distributed over the edges of the histogram. The distribution of the dataset before
and after resampling is shown in Figure 21.

3.6.2 Training on clips

In the second stage of training, we train the model on the clips of the car driving on
the different types of tracks. The clips are generated as described in the previous
section and are of varying lengths. As we can see, the clips are of varying lengths,
with minimum length set at 3 seconds and maximum set at 7 seconds.

Just as in the pre-training stage, we use the Adam optimizer and batch size of
32. We first train the model for 100 epochs with a learning rate of 10−3 and after
that we reduce the learning rate to 10−4 and train for another 100 epochs. We use
the mean squared error loss function to train the model.

We train two separate models, one for the general circuit tracks, which appear
in the autocross discipline and the other to drive the skidpad track. The sizes of the
datasets for the autocross and skidpad models are shown in the following tables.
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3.6 Training

Turn type Number of clips

CENTER LINE 232
LEFT CHICANE 126
RIGHT CHICANE 143
RIGHT RIGHT–ANGLE 119
LEFT RIGHT–ANGLE 131
RIGHT HAIRPIN 66
LEFT HAIRPIN 88

Table 3: Clip count for each turn type token used for training of the Autocross path
planning model.

Turn type Number of clips

SKIDPAD RIGHT 122
SKIDPAD LEFT 116
SKIDPAD END 113

Table 4: Clip count for each turn type token used for training for the Skidpad path
planning model.
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3.7 Deployment
When running in the car, the model is ran in real-time on the car’s onboard com-
puter. In each iteration of the main processing node, it receives the traffic cone
detections from the vision system. It then outputs a path, which is then used by a
path tracking controller to steer the car according to the path.

So far, we have only described how to train the model to drive on certain track
segments, while providing the model with the conditioning token for the situation
it is in. This is simple in simulations, but when the model is deployed to drive a
full lap on a track, we need to provide the model with the correct turn type token
at each time step. We now describe how we handle this situation for the autocross
and skidpad disciplines respectively.

3.7.1 Autocross

In the autocross discipline, the car drives on a track with an unknown layout. In the
competition rule book, it is stated, that the members of the team can walk the track
at a designated time before the autocross event.[7] They cannot use any electronic
devices to record or map the track layout.

We plan to utilize this rule to our advantage. During the track walk, we will
count the number of cones on each side of the track, which typically have a constant
density (e.g. 1 pair of cones every 5 meters). This will then give us the approximate
distance to each turn from the start of the track. Using this information, we can
then determine the turn type token for each segment of the track, based on the
driven distance by the car.

For the second attempt at the autocross, we can then use the collected informa-
tion from the first drive to make the estimation of turn type segments more accurate.
This way, we can provide the model with the correct turn type token at each time
step, which will allow it to plan the optimal path through the track.

3.7.2 Skidpad

Deploying the model in the skidpad discipline is simpler. The conditioning token
provides the model with the about information about how to turn at the main
intersection. Due to the nature of the skidpad track, this can be estimated by
counting the number of times the car has driven through the start–finish line. If it
has been 0–1 times, the car should turn right, it it has been 2–3 after the last left
turn, the car should drive straight into the braking zone.
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4 Experiments
In this section we evaluate the performance of the path planner neural network, as
described in subsection 3.6. First, we evaluate the pre-training model on the dataset
of single-frame clips it was trained on. We show that the model is able to predict
the centerline path of the track given only a single frame of traffic cone detections.
However, we show examples where the model struggles to match the ground truth
path due to scene ambiguity.

Secondly, we present the training evaluation, where we evaluate the model on
the dataset of clips of expert trajectories it was trained on. Thirdly, we evaluate
the model in a virtual environment on a testing set of tracks similar to the ones
the training clips were generated from. This way we can evaluate how well the
model generalizes to working in dynamic environments, where its perceptions are
influenced by the actions it takes. We perform this evaluation for both the autocross
and skidpad models.

Next, we evaluate the model on a full virtual circuit track, which contains some of
the specific turns it was trained on, as well as some more ambiguous turns, where the
model should follow the centerline. We compare the model to the classical geometric
path planner, which is used as a baseline for the experiments.

For the skidpad model, we also evaluate it by making the model drive a full
skidpad run. We compare the model to a classical solution that uses Monte Carlo
Localization to estimate the correct path to take. We show that the model is able
to compete with the classical solution.

Finally, we evaluate the autocross model on a physical car on a real-world track.
We analyze its driving performance and compare it to the results from the virtual
evaluation, as well as to the performance of the classical geometric path planner in
the same conditions.

4.1 Single frame model
As described in subsection 3.6, before training the model on clip sequences, which
contain several seconds of temporal context, we first pre-train the model on a dataset
of single-frame clips. This is done to first teach the model the basic task of predicting
the centerline path of the track given only the current traffic cone detections. It is
the exact same task as the one performed by the classical path planner.

In figure Figure 22, we show the progression of training and validation loss of
the model during training. We can see that the validation loss reaches root mean
squared error of just above 0.5 meters after 80 epochs of training. The error is
calculated across all individual points of the predicted path, which gives it a good
degree of interpretability.

We now evaluate the model on a test set of single-frame clips, which were not
seen during training and present some of the best, worst and random sequences of
the model’s predictions.

First, we show the sequences with the lowest error. In Figure 24, we can see
that the model is able to predict the centerline path of the track with high accuracy
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Figure 22: Training and validation loss progression for the pre-training of the model
on single-frame clips.

even on examples with non-trivial turns and traffic cone placements. Also, notice
how the model is able to predict its deviation from the centerline path, by correctly
predicting the position the first path point away from the car, but on the centerline.

Next, we look at the sequences with the highest error. In Figure 24, we can see
that the model struggles with predicting the path in cases where the correct center-
line is ambiguous, even for a human observer without additional context. However,
we notice that the predicted paths are still rather reasonable, given the context of
the scene. The model learns to respect the track rules, such as blue and yellow
cones marking the track boundaries on the left and right side, respectively. Even
though the loss is high, the model predicts a reasonable path for each example and
it could be argued that in a real driving situation, the model would eventually see
more cones and correct its path.

Similarly, the randomly chosen sequences in Figure 25 show a similar pattern of
the model predicting reasonable paths, even when they do not match the ground
truth path.
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Figure 23: The selection of lowest error sequences from the test set of single-frame
clips.
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Figure 24: The selection of highest error sequences from the test set of single-frame
clips.

4.2 Autocross evaluation
In this section, we evaluate the autocross path planner model, which was trained
to plan a path based on the temporal context of the scene and high-level turn type
conditioning. We first present the training progression and results on the training
set of clip sequences. Subsequently, we evaluate the model on a hold-out set of turn
tracks to test the model in a virtual environment. Finally, we evaluate the model
on a full virtual circuit track.

4.2.1 Training evaluation

In Figure 26, we show the progression of training and validation loss of the model
during training. We also show the validation RMSE error’s of the model’s predictions
divided into the different turn types.

We notice that the validation loss reaches lower RMSE than the pre-trained
model, which is expected, as the model has access to temporal context and high-
level turn type vector, which provides it with more information about the scene.
The model performs best on the centerline clips, which are just general driving clips
without any specific turns. The model performs worse, in terms of RMSE, on the
all the turn-specific clips. One possible explanation for this is that the center line
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Figure 25: Random selection of sequences from the test set of single-frame clips.

clips contain a lot of straight line driving, which is very easy to score a low loss on,
while the turn-specific clips always contain a challenging turn, making them more
”action-packed” and difficult to predict.

4.2.2 Hold-out track set evaluation

Next, we evaluate the model on a hold-out set of turn tracks, which were not used
for clip generation during training, however, they were generated using the same
process. Therefore they are similar to the tracks depicted in Figure 16. We evalu-
ate how the model performs in same conditions as during training clip generation
with only difference being that the the path tracking controller receives the model’s
predicted path as the input, instead of the ground truth path. That is, we let the
car drive on the virtual track for 7 seconds per track at a constant speed of 5 m/s.
Subsequently, we perform the same evaluation with the classical geometric path
planning algorithm. We then compare the results of the two methods.

In Table 5, we show the results of the evaluation on the hold-out containing
16 tracks for each different turn type. We evaluate the planners in terms of four
metrics: mean deviation from the ”optimal” racing line, cumulative number of cones
hit, mean maximum steering angle and mean steering angle.

The motivation for the deviation metric is to measure how well the end-to-end
model is able to make the car follow the optimal line compared to the center line
planner. The cones hit metric is obvious, as the car should avoid hitting cones.
The steering angle metrics are interesting, as they show how much did the steering
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Figure 26: Progression of individual turn type losses during training of the autocross
model.

Planner-Track Deviation (m) Cones Hit Max Steer (°) Steer (°)
classical–center line 0.17 0 47.94 8.35
e2e–center line 0.08 0 34.26 8.33

classical–right angle 0.67 1 79.7 17.73
e2e–right angle 0.13 0 54.39 13.99

classical–chicanes 0.27 0 71.63 15.76
e2e–chicanes 0.16 0 35.53 11.68

classical–hairpin 0.9 2 79.7 35.29
e2e–hairpin 0.23 1 73.51 27.97

Table 5: Evaluation results of the path planner on a test of virtual turn specific
tracks. Results are averaged over 16 tracks per each type.

controller have to drive the given trajectory. As previously discussed, we consider
trajectories with high steering angles to be suboptimal, as they limit the maximal
speed the car can achieve without losing traction. For this, the mean maximum
steering angle is the most important metric, since even if the mean steering angle is
low, if the car has to steer aggressively at some point, it will affect the entire run.

In Table 5, we can see that the end-to-end model outperform the classical planner
in all metrics. The end-to-end model has lower mean deviation, which doesn’t
necessarily mean its better than the classical planner, but it shows that the model
correctly predicts the racing line. Most importantly, the end-to-end generated paths
lead to a smoother drive, as both the mean maximum steering angle and the mean
steering angle metrics are lower than for the classical planner. In practice, this
should result in the car being able to drive faster and perhaps safer than with the
classical path planning algorithm.
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Figure 27: Virtual track used for comparison between the end-to-end neural network
path planner and the classical planner.
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4.2.3 Virtual circuit evaluation

We now evaluate the model on a full virtual circuit track, which is depicted in
Figure 27. The track contains several specific turns, such as two left-turning right-
angle turns, two chicanes and a hairpin. It also contains some more ambiguous
turns, such as the high radius turn at the start and the right turn after the first
chicane, where the model has to drive the centerline.

As discussed in the previous section, in deployment, we have to be able to first
define the high-level turn type sequence of the track, which is then used to condition
the model while driving. We do this by constructing a table of turn types for each
track segment, which is defined by integrating the driven distance since the start of
the run. (i.e., the 0–50 meters is a CENTER LINE segment, then the 50–100 meters
are a RIGHT ANGLE segment, etc.) In this case, we construct this sequence of turn
types manually, as we know the track layout. The division of the track into segments
based on the driven distance is depicted in Table 6.

Distance (m) Turn Type

0–32 CENTER LINE

32–65 RIGHT CHICANE

65–78 CENTER LINE

78–120 LEFT HAIRPIN

120–150 LEFT RIGHT ANGLE

150–∞ LEFT CHICANE

Table 6: The assignment table for the turn type based on the distance from the
start of the track for the virtual autocross track.

We evaluate the model on the track by performing several full runs, for both the
end-to-end model and the classical geometric path planner. Each run is defined by
the constant speed setpoint, we start at 5 m/s and increase it by 1 m/s for each run.

We present the results in Table 7. The table contains only runs starting with 8
m/s, as both the planners performed very similarly in terms of laptime and cones
hit for the lower speeds. This is expected, as the advantage of a optimal racing
line in terms curvature and smoothness is only pronounced at higher speeds. Low
curvature racing line can be slower at lower speeds, as it might happen that the
minimal curvature path is longer by distance than the center line path.

In the results, we observe that for the classical planner, the mean steering angle
increases with the speed, as the car is forced to steer more aggressively to able follow
the path. This is not the case for the end-to-end model, which holds a much lower
mean steering angle up to the speed of 12 m/s. Starting at speed of 10 m/s, the car
with the classical planner starts to fail, by spinning out of the track in hairpin turn,
while the end-to-end model is able to drive the track without any issues up until
the speed of 12.5 m/s. These results show that the end-to-end model has learned
to predict the path that is in some sense superior to the classical planner, that only
plans the centerline path.

40



4.2 Autocross evaluation

Planner Speed (m/s) Laptime (s) Steer(°) Cones hit

e2e-planning 8 24.86±0.13 21.16±0.25 0±0.0
classic-planning 8 24.81±0.16 23.55±0.26 1±0.0

e2e-planning 9 22.21±0.13 21.41±0.14 0.0±0.0
classic-planning 9 22.11±0.17 24.43±0.41 0.0±0.0

e2e-planning 10 20.62±0.08 21.70±0.26 0.0±0.0
classic-planning 10 20.37±0.09 24.87±0.30 0.0±0.0

e2e-planning 11 19.23±0.12 22.24±0.31 0.0±0.0
classic-planning 11 19.19±0.05 28.60±0.68 0.2±0.4

e2e-planning 12 18.11±0.09 24.25±0.57 0.0±0.0
classic-planning 12 FAILED 29.73±0.86 0.2±0.4

e2e-planning 13 FAILED 30.89±1.44 1.4±0.8
classic-planning 13 FAILED 28.62±2.39 2.0±0.0

Table 7: Autocross evaluation results, of driving through the virtual track with dif-
ferent speed setpoints. The results are averaged over 5 runs, with standard deviation
included.

4.2.4 Real-world evaluation

Finally, we evaluate the model using the physical car on a real-world track. To set
up the experiment, we have built a small 100x50 meters track in an airfield, which
the team uses for testing. We built the track according to the same principles as
were used for building the virtual one.

We made the track 4.5 meters wide and inserted some of the specific turns
discussed in this thesis. The track contains two right-angle turns, a chicane and an
hairpin turn. It also contains several more ambiguous turns, where the car has to
drive the centerline.

We first had to generate the turn type sequence, which divides the track into
several segments based on the driven distance, where each segment is assigned a
turn type. In order to do so, we have measured the approximate distances between
individual turns using a measuring tape. Since the track is rather narrow and the
turn type sequence is not very sensitive to precision, we then manually assigned the
turn types to each segment based on the driven distance in the previous run. In
Figure 28, we show the track layout together with the driven path of the car with
turn type segments visualized.

We performed two full runs on the track with the end-to-end model and the clas-
sical path planner each. We started with a speed setpoint of 5 m/s and subsequently
increased it by 1 m/s to 6 m/s. We show the results of the runs in Table 8.

When driving 5 m/s, the car was able to complete the track without hitting any
cones using both planners. Visually, the end-to-end model was able to plan a path
that was closer to the optimal racing line. During the lap, it setup for the right angle
turns, cut through the chicanes and drove through the outside of the hairpin turn.
As discussed previously, driving the racing line at lower speeds does not result in a
faster lap time, so both the end-to-end model and the classical planner performed
similarly.

When driving with speed a setpoint of 6 m/s, the car was able to the track with
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Figure 28: Drone image of the real-world track used for the experiments with the
physical car. The driven path of the car at 5 m/s is visualized as a red line.

Planner Speed (m/s) Laptime (s) Steer(°) Cones hit

e2e-planning 5.0 26.31 26.45 0
classic-planning 5.0 26.02 25.15 0

e2e-planning 6.0 22.30 29.30 3
classic-planning 6.0 21.62 24.89 0

Table 8: Comparison of the autocross path planner model and the classical path
planner on a real-world autocross track wtih a physical car.

both planners, however, when using the end-to-end model, the car hit three cones in
the hairpin turn. After closer inspection, we found that the path tracking controller
was not able to follow the path in as stable and responsive way as in the virtual
environment. This problem was present in the classical planner run as well, however,
as the car drove in the middle of the track, it was able to avoid hitting any cones.

We have also noticed that the car didn’t drive through the inside of the hairpin
turn in the same was as it was supposed to. (as defined in Figure 16) This could be
due to the combination of the car’s steering controller being too slow to react and
perhaps also some additional simulation to reality discrepancy. This discrepancy
could be caused by potentially unaccounted for sources of error, such as the cone
detections being less accurate in the real world due to car’s roll and pitch variability
while driving.

Due to time constraints, we were not able to perform more runs with the physical
car to further evaluate these issues. However, with the obtained results, we believe
that the end-to-end model has shown potential to match and the performance of
the classical path planner in real-world conditions. The simulation to reality gap
has to be further investigated and overcome for the model to be able to used in a
real-world competition setting.
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4.3 Skidpad evaluation

4.3 Skidpad evaluation
In this section, we evaluate the model’s performance on the skidpad track. First,
similarly to the autocross model, we present the training progression and individual
losses for each turn type vector. Next, we evaluate the model on a hold-out set
of skidpad clip tracks. Finally, we test the model’s performance at higher speeds
on a full skidpad run. We compare the model’s performance to the Monte Carlo
Localization solution developed and currently used by the team for the skidpad runs.

4.3.1 Training evaluation

In Figure 29, we show the progression of training and validation loss of the model
during training. The plot also shows the validation RMSE error’s of the model’s
prediction split into the different skidpad turn maneuvers.

We note that the model reaches reasonably low RMSE errors on the validation
set. Compared to the pre-trained model, the skidpad model reaches twice as low
RMSE error. This can be attributed to the fact, that the skidpad track is simpler in
the way, that the turns are very consistent and the track is symmetric, so in theory
the model doesn’t have to ”guess” as much as in the autocross tracks.

We notice, that the highest RMSE error is for the SKIDPAD LEFT turn type. This
turn type contains the maneuver, where the car has to transition from driving around
the right circle to driving around the left circle. This is a challenging maneuver for
the model to learn, as it has to predict a different path, that is a left turn, in the
exact position where it was predicting a right turn before.
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Figure 29: The training and validation loss progression for the skidpad mode. The
plot also shows the validation errors for each skidpad turn type.
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4.3 Skidpad evaluation

4.3.2 Hold-out track set evaluation

Next, we evaluate the model on a hold-out set of skidpad tracks, similar to the ones
used to generate the training clips, as shown in Figure 17. We evaluate the model
in a similar way to the autocross model. We let the car drive on a virtual track for
7 seconds at a constant speed of 5 m/s. For each drive, we check if the car is able
to follow the ground truth path.

For skidpad tracks, the max and mean deviation metrics are not important only
because they show the predicted path is close to the ground truth path. But, if the
max deviation is low, it means the car not only followed the path with precision,
but also that the model was able to take the right turn at the skidpad middle
intersection. This is the most challenging part of the skidpad track, as the car has
to take a different turn at the same position in the track, depending on the turn
type conditioning.

Planner-Track Max Deviation (m) Mean Deviation (m) Cones Hit

e2e–skidpad right 0.45 0.31 0
e2e–skidpad left 0.49 0.24 0
e2e–skidpad end 0.64 0.14 0

Table 9: Evaluation results of the skidpad path planner on virtual tracks used for
training. The tracks are of three different types: right, left and end based on the
type of turn the model is supposed to take in the middle intersection.

In Table 9, we show the results of the evaluation on the hold-out set of skidpad
tracks. We notice that the model is able to follow the path with precision similar
and in some cases better than in the autocross evaluation. The maximal deviation
doesn’t go over 0.5 meters for the SKIDPAD RIGHT and SKIDPAD LEFT and 0.64 for
the SKIDPAD END turn type. This means the model always took the right path in
the middle intersection, which shows that the model did learn to interpret the turn
type context conditioning correctly.
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Figure 30: The skidpad path planner model plannning different paths, when the car
is in the same position on the track, but the turn type conditioning token changes.
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4.3 Skidpad evaluation

4.3.3 Virtual track evaluation

Finally, we evaluate the model on a full skidpad run. As described in the previous
section, in deployment on the skidpad track, we set the turn type conditioning vector
based on the lap count. The lap count is incremented every time the car passes
through start line, realized by the four big orange cones in the middle intersection,
as shown in Figure 30.

Similarly to the autocross evaluation, we perform several full runs with increas-
ingly higher speed setpoints. For each speed setpoint, we perform a test run with
both our end-to-end model and the Monte Carlo Localization solution. We compare
the results for both methods in terms of the final time and the number of cones hit.

We present the results in Table 10. We notice that the for most of the different
speeds, the both the end-to-end model and the Monte Carlo Localization solution
perform identically. The skidpad track is very simple and symmetric and both
algorithms use the same path tracking controller and drive the same constant speed.
Therefore, given that both models predict the correct path, they should achieve the
same result.

Planner Speed (m/s) Time (s) Cones hit

E2E-skidpad 8 6.90 0
MCL-skidpad 8 6.90 0

E2E-skidpad 9 6.20 0
MCL-skidpad 9 6.20 0

E2E-skidpad 10 5.65 0
MCL-skidpad 10 5.65 0

E2E-skidpad 11 5.10 0
MCL-skidpad 11 5.10 0

E2E-skidpad 12 4.70 0
MCL-skidpad 12 FAIL 4

E2E-skidpad 12.5 FAIL 8
MCL-skidpad 12.5 FAIL 0

Table 10: Evaluation of the skidpad path planner model in comparison with the
Monte Carlo Localization solution on the virtual skidpad track.

We notice that the Monte Carlo Localization solution first fails at the speed of
12 m/s, while the end-to-end model is able to drive through the track, at the same
speed. After closer inspection, we found that the Monte Carlo Localization solution
doesn’t fail at 12 m/s due to localization error, but due to losing traction, while
following what looks as the correct path. Since the end-to-end solution runs into the
same issue, at speed of 12.5 m/s, which is only 0.5 m/s higher, we conclude that the
methods perform similarly in virtual testing environment. For accurate evaluation
at higher speeds, we would have to test the solutions on a real-world track to avoid
the simulation inaccuracies.
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5 Conclusion

5.1 Summary
In this thesis, we have set the goal of designing a path planning algorithm for a
driverless formula car, competing in the Formula Student Driverless competition.
The goal was to design such an algorithm, which would allow the car to drive as
fast as possible through the track. In particular, to be able to drive a racing line
through an unmapped track, utilizing only the car’s camera perception system and
knowledge about the types of turns that appear on the track. Similarly to a human
driver, the system should be able to adjust its high-level driving strategy based on its
perception and knowing what type of turn is coming up next. For example, setting
up for a right angle turn to the left, by driving on the right side of the track and
then sharply turning to cut the corner to maximize the speed through the turn.

To achieve this goal, we have decomposed potential track layouts into a set
of typical turns, namely: right angle, chicane and hairpin turns. We have then
designed a data generation pipeline, which allows us to synthetically generate expert
trajectories of the car optimally driving through these turns. We have achieved this
by first generating virtual tracks, which contain these typical turns. Subsequently,
we have used a racing line optimization algorithm to find the optimal path to drive
through the particular track. Lastly, using a simulator, we have driven the car
through the track, following the optimal path, to record expert trajectories.

We have then designed a neural network model, which is able to learn to imitate
these expert trajectories, mapping the car’s perception inputs to the correct path
to follow. This type of model is called an end-to-end model, as it learns to map the
perception inputs directly to the driving action, without any hand-crafted rules.

We also provide the model with a conditioning token, which gives it information
about the type of turn that is coming up next. The conditioning vector tokens
include different types of turns and driving behaviours, such as: center–line, right–
angle turn, turn–left, turn–right, etc. This allows the model to adapt its driving
behaviour to be able to drive through the upcoming turn as fast as possible.

We have designed the path planning model as a sequence to sequence neural
network, taking sequence of traffic cone detections as the input and outputting a
sequence of path points. The model uses the Gated Recurrent Unit (GRU) for
implementing the encoder and decoder. The GRU is a type of Recurrent Neural
Network (RNN), which is able to learn long term dependencies over inputs it has
seen in the past. Giving the model temporal memory in the form of a context vector,
which is passed along from one frame to the next. This allows the model to learn
the necessary temporal dependencies to be able to plan and execute complex driving
manoeuvres. (ie. setting up for a turn to be able to cut a corner)

After training the model on the expert trajectories, we have evaluated the model
on a set of virtual tracks. We have compared the model to a classical path planning
algorithm, which plans the centerline of the track using basic geometry. The results
show that the model is able to drive the centerline of the track as well as the classical
path planning algorithm. For tracks containing some of the typical turns, the model
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is able to plan such a path, that allows the car to reach higher speeds, leading to
lower lap times.

Lastly, we have also shown this path planning model to be able to learn to drive
the 8–shaped skidpad track, which is one of the four tracks in the Formula Student
Driverless competition. This track contains a middle intersection, in which the car
has to decide whether to turn left or right, depending on the lap. We show that
the model is able to learn to drive the track, utilizing the conditioning vector to
decide which way to turn at the intersection. We compared the model to a Monte
Carlo Localization (MCL) solution and shown that the model is able to match the
performance of the MCL solution in virtual settings.

5.2 Challenges and limitations
Learning to plan a path through a track, by learning from synthetically generated ex-
pert trajectories has several advantages. It allows us to express complex behavioural
patterns in data, utilizing the full control over the environment. The model is then
able to to imitate these expert trajectories and learn complex driving behaviours,
such as setting up for a turn to cut a corner. While this approach has these advan-
tages, it also has several limitations and challenges that need to be addressed.

One of the big challenges is the potential discrepancy between the virtual and real
world. Since the model is trained on virtual tracks, it is hard to estimate how well the
model will generalize to real world tracks. This discrepancy can be cause by many
different factors. The virtual track modeling could contain patterns that are not
present in the real world, leading to the model learning to exploit these pattern and
then failing to generalize. On the other hand, the real world could contain sources
of noise, which are not properly modeled in the simulation environment. Physical
factors such as varying pitch and roll of the car during braking and cornering, could
lead to loss of accuracy of the cone detections. This could lead to the model failing
due to being exposed out–of–distribution data.

Due to these challenges, extensive real world testing and validation is needed to
ensure that the simulation environment is a good approximation of the real world.
This can be challenging from a resource perspective, requiring a lot of time and
effort, which might not be available. In such case, choosing an off-the-shelf classical
algorithm might be a better choice.

Lastly, as the model is realized as a neural network, it might be challenging
to debug and interpret the model’s decisions. This is a common challenge when
working with neural networks, which are often called black or grey boxes. This
difficulty in interpreting the model’s decisions makes the previously mentioned real
world validation and debugging even more difficult and time consuming.
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