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Abstrakt

Jazyk P4 je použ́ıván pro programováńı konfigurovatelných śıt’ových zař́ızeńı.
V této práci zkoumáme využit́ı MLIR k vytvořeńı rozšǐritelného P4 překladače,
který je schopen pracovat s několika hardwarovými a P4 architekturami. Součást́ı
práce je návrh P4 midend architektury, která je založena na kombinaci MLIR
dialekt̊u modeluj́ıćıch r̊uzné stupně abstrakce. Naše midend architektura umožňuje
vytvořit optimálńı model pro implementaci r̊uzných IR transformaćı, k čemuž
využ́ıváme MLIR a jeho schopnost postupného překladu. Všestrannost naš́ı ar-
chitektury demonstrujeme implementaćı několika optimalizaćı, které využ́ıvaj́ı
sémantiky zvolené P4 architektury. V neposledńı řadě popisujeme překlad P4
AST do našich MLIR dialekt̊u, a jejich následný export do LLVM IR.

Kĺıčová slova překladač, midend, IR, P4, MLIR, LLVM
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Abstract

P4 is a language for programming configurable network devices. In this thesis,
we explore leveraging MLIR to create an extensible P4 compiler, capable of
accommodating diverse P4 architectures and hardware backends. We design
an extensible P4 midend architecture, powered by MLIR dialects operating at
multiple levels of abstraction. We utilize MLIR’s progressive IR lowering to
provide an optimal IR model for various P4 compiler passes. To demonstrate
the flexibility and reasoning power of the proposed P4 midend, we implement
multiple P4 architecture-specific optimizations. Finally, to provide context of a
full compilation pipeline we describe the conversion of P4 AST to our dialects
and their export into LLVM IR.

Keywords compiler, midend, IR, P4, MLIR, LLVM
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Chapter 1
Introduction

“The purpose of abstraction is not to be vague, but to create a new
semantic level in which one can be absolutely precise.”

— Edsger W. Dijkstra [2]

1.1 Motivation

The Need for Language-Specific Midends

The compilation pipeline is commonly described as a sequence of three com-
ponents: frontend, midend, and backend. As the input programming language
progresses through these phases, it takes on various forms, known as interme-
diate representations (IRs).

A rigorously defined set of IRs allows to decouple frontend, midend, and back-
end, enabling each component to focus on its specific responsibilities: The
frontend and backend concentrate on understanding the source and target lan-
guages, respectively, while the midend acts as an intermediary transformer
from IR to IR, enhancing the IR in a predefined manner[3].

Figure 1.1: Three-component compilation pipeline.

The three-component compiler architecture not only provides a clear mental
model but has also laid the foundation for technologies such as LLVM[4] or

1



1. Introduction

JVM[5]. These technologies define a robust IR that can be targeted by pro-
gramming languages looking to benefit from readily available midend and back-
end, therefore avoiding the high cost of reimplementing the whole compilation
pipeline.

In the context of LLVM, to develop a substantially complete compiler for a new
programming language, we must only provide a language-specific frontend.
This frontend is primarily responsible for (1) the input validation, ensuring
adherence to a language specification, and for (2) generation of semantically-
equivalent output expressed in terms of the LLVM IR. From this point, the re-
maining part of the compilation pipeline is provided by LLVM. The LLVM mi-
dend executes diverse IR transformations, followed by the backend-facilitated
conversion into one of the available target languages, such as x86-64 instruction
set.

Figure 1.2: Compilation pipeline with reusable LLVM midend and backend.

To act as a common denominator, LLVM IR provides a fairly low-level abstrac-
tion, often described as “C with vectors”[6]. This design offers a straightforward
lowering path from both high-level and low-level abstractions, thus ensuring
that LLVM IR can be targeted by a wide array of programming languages.

As a consequence, LLVM IR acts as a double-edged sword. On the one hand,
LLVM IR greatly contributes to the reusability of the LLVM system. On the
other hand, LLVM IR is not capable of properly modeling constructs of high-
level languages, causing language-specific information to be lost during the
conversion.

This loss of source-level information makes LLVM IR an unsuitable abstraction
for analyses and optimizations which rely on specifics of high-level languages.
Such compiler passes are either not implemented at all[7], or they perform
sub-optimally with unnecessarily complex implementations[8].

In the quest to provide new features or enhance existing ones, language en-
gineers often find it necessary to introduce another level of language-specific
abstraction which stands between frontend and LLVM. Such abstraction intro-
duces a custom IR, which, together with a supporting infrastructure, forms a
separate component, commonly referred to as a language-specific midend.

The use of language-specific midends is exemplified within ecosystems of many
popular languages. For instance, Swift named its midend SIL[9], Rust uses
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MIR[7], and to better handle template instantiation, C++ is transformed into
Clang AST[10].

Figure 1.3: Examples of existing language-specific midends supported by cus-
tom infrastructures.

Language-specific midends enable better reasoning about high-level constructs,
offer additional optimization opportunities, enhance static analysis, and solve
language-specific issues. Thus offering great value despite the substantial initial
investment, further development, maintenance, and allocation of engineering
effort.

The Advent of MLIR
The emergence of language-specific midends stems from the unique require-
ments of each language. However, the supporting infrastructures implemented
for these midends share many similarities. They commonly provide support
for general IR inspection and transformation, implementing algorithms for IR
traversal, IR rewrites, source location propagation, def-use chains computation,
and many more. Additionally, compiler maintainers frequently find it neces-
sary to develop many convenience tools, such as code generators and solutions
for IR documentation.

Although these similarities do not create a direct duplication, an engineering
effort can be made towards generalization and reusability. This effort led to
the introduction of Multi-Level Intermediate Representation (MLIR)[6].

MLIR provides a highly extensible IR (sometimes referred to as meta-IR[6]),
along with a flexible supporting infrastructure and utilities. MLIR identifies
the parts of an infrastructure which are not unique to a language, and provides
them as reusable extensible components. On the other hand, for the truly
language-specific parts, MLIR provides tools for their definition and straight-
forward integration into the rest of MLIR. MLIR is developed as a sub-project
of the LLVM Compiler Infrastructure project[4].

Contrary to LLVM, MLIR does not attempt to unify all language-specific mi-
dends into a single system, rather it embraces the necessity for uniqueness and
extensibility. MLIR provides a foundation on top of which new midends can
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be built, allowing engineers to focus on the language-specific domain, instead
of addressing already solved compiler problems.

Figure 1.4: Example of possible adoption of MLIR within existing language-
specific midends.

MLIR’s meta-IR extensions are called dialects. Dialects provide encapsulation
for IR components with a common goal. For instance, the FIR[11] dialect
aims to closely model the Fortran language, or we could create a dialect which
models the Python language.

Besides modeling entire programming languages, dialects can cover consider-
ably smaller scopes. For instance, the Linalg[12] dialect provides IR com-
ponents for modeling operations of linear algebra and the Arith[13] dialect
encapsulates IR for basic arithmetic operations on integers and floating-point
numbers.

The support for co-existence of these smaller dialects is one of the MLIR’s key
design points. A single IR can contain an arbitrary combination of dialects,
even from different levels of abstraction. In many aspects, such a modeling
expressiveness introduces a novel approach for the field of compiler design,
allowing to tailor the IR for the exact requirements of each compiler pass.

In practical scenarios, language-specific midends combine multitude of both
custom and existing MLIR dialects. This way, a new dialect must be cre-
ated only for the abstractions unique to the language. On the other hand, if
the modeled language additionally contains more common constructs, existing
dialects can be reused.

P4’s inherent adaptability
P4 is a domain-specific language for programming configurable networking
devices. A P4 program describes transformations of networking packets and
interactions with the host packet processing system. Driven by the networking
industry requirements, P4 is used on a wide array of heterogeneous hardware
architectures such as general-purpose CPUs, Field-Programmable Gate Ar-
rays (FPGAs), System-on-Chips (SoCs), Network Processors, or Application-
Specific Integrated Circuits (ASICs)[14].
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To adapt to the diverse constraints and heterogeneity of the underlying hard-
ware, P4 maintains flexibility and extensibility at its core. P4 allows a sig-
nificant portion of its semantics to be customized for the intricacies of the
execution architecture. This adaptability is achieved through the P4 archi-
tecture model[15], where a P4 architecture acts as a contract between a P4
program and the underlying execution unit.

Figure 1.5: P4 architecture serves as an abstraction over a P4-programmable
hardware.

Due to the P4’s architecture model, P4 can be seen as having two layers of spec-
ification. Firstly, the P4 specification defines the core language (i.e., grammar
and semantics) and enumerates the parts which must be defined or constrained
by a P4 architecture. Secondly, the chosen P4 architecture fills in the parts of
the core P4 specification which are left up to the P4 architecture. Importantly,
the P4 architecture must work within the boundaries set by P4, meaning the
P4 architecture specification cannot contradict the core P4 specification.

In general, a particular P4 architecture consists of P4 source files which declare
architecture-specific interfaces, and a written specification with behavioral di-
agrams.

While existing P4 architectures are often vendor-specific and closely tied to
a single hardware unit (e.g., Intel Tofino ASIC comes with the Tofino Na-
tive Architecture[16]), the P4 community supports a multitude of independent
P4 architectures as well. For instance, Portable Switch Architecture (PSA)[1]
models data flows and functionalities commonly found on networking switches.
Similarly, Portable NIC Architecture (PNA)[17] models capabilities of a con-
ventional network interface card.

The main goal of independent P4 architectures is to prevent development of
multiple architectures which all provide a very similar abstraction. To of-
fer a set of foundational architectures, PSA and PNA provide functionality
commonly-found in conventional networking devices, therefore being a plausi-
ble P4 architecture to adopt for a wide array of programmable devices.

A P4 program is tightly coupled with the P4 architecture it was written for,
which makes the use of an independent architecture a convenient choice for both
P4 programmers and hardware vendors. Contrary to custom P4 architectures,
an independent architecture has a greater chance to be supported by a greater
number of P4-programmable devices, making a P4 program written for it much
more portable. On the other hand, a hardware vendor which decides to support
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an independent architecture becomes automatically compatible with a set of
already written P4 programs.

Apart from providing a common interface, an independent P4 architecture can
serve as a foundation for other custom architectures. For instance, we can
create a new P4 architecture which builds on top of PSA, exposing PSA’s
functionality together with capabilities unique to a specific device.

Fusion of P4 and MLIR

Considering the P4 architecture model and the P4’s need to model a diverse
range of hardware architectures, we argue that the adoption of MLIR into the
P4 ecosystem would significantly benefit the P4 community.

By leveraging MLIR’s capability to intermix dialects, we can develop a P4-
specific midend which is capable of modeling P4 at various levels of abstraction.
These abstractions can be decoupled into separate MLIR dialects and co-exist
within a single IR, which allows to model a P4 program in an optimal way for
various compiler passes.

Due to the P4’s architecture model, the natural way to model the P4-specific
dialects is by creating a single global P4 dialect, and a single P4 architecture
dialect for each P4 architecture.

P4 dialect models the P4 language as defined by the P4 specification. P4
dialect makes no assumption about the chosen P4 architecture. P4 dialect
allows to execute general compiler passes, which do not require the context of
the architecture.

P4 architecture dialect (e.g., PSA or PNA dialect) models the semantics
of a particular P4 architecture. In general, a P4 architecture dialect cannot
model an entire P4 program, and must rely on the P4 dialect in aspects which
are not defined or constrained by the architecture.

Although, during compilation, P4 and P4 architecture dialects can co-exist in
a single IR, their respective developments can proceed with no mutual coordi-
nation. Moreover, if a new P4 architecture aims to build on top of an existing
one, the new architecture dialect can simply declare dependency on any of the
existing dialects, and thus reuse IR elements and implemented compiler passes.

Figure 1.6: Dependency graph of possible P4 MLIR dialects. PNA-X builds
on top of PNA, therefore their respective dialects declare corresponding depen-
dency.

6



1.1. Motivation

The adoption of MLIR provides a solid foundation for improvement of the
compilation pipeline. Existing solutions typically operate at a single fixed
point of abstraction, executing compiler passes on the P4 Abstract Syntax Tree
(AST) which closely maps to P4’s syntax. A hardware vendor then chooses
a P4 architecture (possibly multiple) and creates a target-specific midend and
backend which consume P4 AST.

Figure 1.7: Conventional P4 compilation pipelines with PSA midend duplica-
tion.

Such approach prohibits the reuse of P4 architecture midends, which end up
either duplicated across multiple backends or the P4 architecture-specific opti-
mization and analyses opportunities are simply ignored.

Moreover, due to its one-to-one mapping to the input P4 program, P4 AST
captures P4 constructs which primarily exist for the convenience of a human
programmer, including implicit data flows and casts. While such information
is appropriate for validation tasks such as semantic analysis, the subsequent
compiler passes are more straightforward to implement on IR without implicit
operations.

Using MLIR dialects, a more nuanced lowering path can be adopted through a
progressive conversion across P4 AST, P4 dialect and P4 architecture dialect.
This approach enables each compiler pass to operate on an optimal level of
abstraction. For instance, once the semantic analysis (operating on P4 AST)
is finished, all implicit data flow can be modeled explicitly within the P4 dialect,
simplifying the data flow analysis.

Figure 1.8: P4’s progressively lowered IR across AST and dialects.
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Within a progressively lowered compilation pipeline, a hardware vendor must
still provide its hardware architecture-specific backend. However, such back-
end can reuse existing P4 architecture-specific midends together with their
optimizations and analyses. Additionally, vendors have a choice to either ex-
port P4 dialects into their own system (e.g., LLVM), or build their backends
using MLIR as well.

Figure 1.9: P4 compilation pipelines with reusable P4 architecture midends,
built on top of MLIR dialects.

If appropriate, an MLIR-powered backend can combine P4 dialect, P4 archi-
tecture dialect and hardware-specific dialects within a single IR, allowing for
unlimited expressiveness to accommodate arbitrary hardware-specific compiler
passes.

Finally, the adoption of MLIR not only allows for more expressive and reusable
compilation pipeline, but also connects the P4 and MLIR ecosystems. This al-
lows the P4 community to benefit from compiler industry advancements even
outside the P4, along with potentially flattening the learning curve for new-
comers looking to contribute into the P4’s toolchain.

1.2 Goal

This work investigates the application of MLIR in constructing a language-
specific midend for the P4 programming language. To provide a context of a
full compilation pipeline, we inset our P4 MLIR midend in between a readily
available P4 frontend and an LLVM backend.

Firstly, we design the P4 dialect which closely models P4 in a P4 architecture-
independent way. P4 dialect aims to identify implicit operations and data
flows within P4, and instead model them explicitly. This key design point
reduces the number of special cases that need to be considered and manually
handled during optimizations and analyses, therefore simplifying complexity
and implementation of compiler passes.

P4 dialect elements are introduced in a context of its mapping to P4 AST nodes
produced by p4c[18], a reference P4 compiler.
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Secondly, we describe a “toy” P4 architecture called Simple Architecture (SA).
Importantly, we use SA as an example P4 architecture for which we create a P4
architecture dialect named SA dialect. SA dialect aims to model the semantics
and interfaces of SA. Using SA dialect, we demonstrate the key design principles
necessary to implement a full-fledged P4 architecture dialect which is capable
of modeling architecture’s semantics.

To better understand interactions between P4 dialect and SA dialect, along
with demonstrating the flexibility of P4 MLIR midend, we show P4 architecture-
specific optimizations which are enabled by the combination of P4 dialect and
SA dialect in a single IR.

Thirdly, to demonstrate a continuation of a compilation pipeline after the P4
midend, we export subsets of P4 dialect and SA dialect into LLVM IR.

The individual components designed in this work follow a natural flow of a
compilation pipeline, and thus can be visualized by a simple diagram:

Figure 1.10: P4 MLIR midend specialized with SA dialect and inset in between
p4c and LLVM.

It is worth noting that p4c and LLVM components remain grayed out to better
indicate scope of this work. Even though we use p4c to produce P4 AST, we
do not aim to either describe inner-workings of p4c or a verification of a P4
program. Similarly, we only use LLVM as a target of conversion from P4
dialects.

Finally, before we dive into the outlined specifics of the P4 MLIR midend, we
begin with introductory chapters for P4 and MLIR.
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Chapter 2
P4 Introduction

2.1 The Need for Another Language

Traditional networking devices were designed for data transmission within com-
puter networks using a finite set of protocols. Using a predefined set of pro-
tocols meant that all device’s functionality could be directly baked into its
circuitry. Although this heavily limited extensibility of the device, the lack of
programmability allowed to process packets in speeds two magnitudes faster
than general CPUs[19].

The TCP/IP family of protocols remains a stable choice for routing from a
network node to the network edge. On the other hand, the landscape of proto-
cols used within a network is marked by constant growth[19]. As a result, the
need for appropriate accommodation of ever-changing protocol set grew with
the size of data centers and the adoption of cloud-computing[20].

However, expanding and updating the set of protocols contradicts the nature of
fixed-function networking devices. To update the functionality of such network-
ing units, network operators often had to wait for several years until hardware
vendors updated their devices with the required functionality[20].

RMT
The demand for flexibility gave rise to the Software-Defined Networking (SDN)
architecture, which introduced a significantly higher level of programmability
of networking devices[21]. Nevertheless, the initial network processors were
still a magnitude slower than the fixed-function devices. It wasn’t until the
adoption of the Reconfigurable Match Tables (RMT) hardware architecture that
programmable ASICs were able to match the speeds of their fixed-function
counterparts[19].

RMT is a carefully crafted hardware architecture, which enables to config-
ure the devices with the contemporary protocols, while providing just enough
functionality for accommodating the future ones.

To limit the gap between the speed of fixed-function and programmable devices,
RMT forwards the packet through a pipeline consisting of fixed number of
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stages and ALUs. Each stage parallelly applies its ALUs onto the packet’s
fields and sends the transformed packet towards the next stage. To limit the
costs of manufacturing RMT hardware, the number of stages is highly limited,
with the original proposal accounting for 32 stages for the incoming (ingress)
packet and 32 stages for the outgoing (egress) packet[19].

Figure 2.1: Ingress and egress stages of the RMT pipeline architecture.

The limited resources and the need for parallelism present a significant chal-
lenge for the compiler. To map a sequential program onto RMT hardware, the
compiler must be able to analyze the data dependencies within a program and,
wherever feasible, minimize them.

The Language for RMT
Bearing RMT’s constraints in mind, the authors of P4 initially explored the
use of established technologies, such as Click[22]. Click is a C++ framework
designed for describing packet processing within a CPU kernel. While capa-
ble of describing packet transformations, the use of C++ essentially provides
an unconstrained expressiveness. Such flexibility makes accurately inferring
data dependencies within a written program a challenging task, often requir-
ing overly conservative assumptions, which limit the complexity of programs
that fit within the RMT’s stages[14].

Aiming to limit unnecessary data dependencies while maintaining fair amount
of flexibility, the P4 programming language was introduced in 2014 in [14].
Building on top of the foundation of the first release, a subsequent iteration,
called P416, was introduced in 2016 in [15]. Simultaneously, the initial version
was renamed to P414.

While sharing many similarities, P416 and P414 are not source compatible, and
this study further considers only P416.

2.2 P4 Overview

P4 is a programming language designed to describe how packets undergo trans-
formations within programmable packet-processing systems, such as hardware
or software switches, network interface cards, or routers[14].

P4 is protocol-agnostic. It does not provide built-in implementation even for
the most popular networking protocols, such as Ethernet or IP[15].
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Despite being a domain-specific language tailored for the networking indus-
try, P4 is an imperative language incorporating concepts commonly found in
other general-purpose languages: P4 is statically typed and contains expres-
sions, statements, declarations, mutable variables and constructs resembling
functions.

Note on scope:

While this chapter draws from the P416 specification [15], our objective
is not to replicate it. Rather, we gradually implement a standalone P4
program for an illustrative routing protocol.

Instead of providing an exhaustive specification, our focus is on intro-
ducing the domain of P4 and its fundamental concepts, which are crucial
for understanding the chapters that follow.

P4’s Informal Specification

P4 has evolved without a formal foundation. Its language specification pri-
marily consists of informal prose, behavioral diagrams, and pseudocode. Such
approach not only limits the formal reasoning about the language and its type
system, but also leaves numerous aspects of the language up to the interpreta-
tion of each implementation.

Even though the P4 specification provides a satisfactory documentation for
a P4 programmer, compilers are better built on solid formalisms of language
theory. However, the need for the formal foundation was soon recognized by
the P4 community and materialized within the Petr4 [23] project.

Petr4 provides a formal framework for the subset of the P4 programming
language. It systematically fills the holes of the original P4 specification and
provides formal judgments about the core P4 constructs.

As such, for the purpose of this work, we choose to not divide P4 into the
original P4 and Petr4’s subset. We rather refrain from making any formal
statements about the P4’s properties, and instead provide only behavioral de-
scriptions which correspond to the P4’s specification.

2.3 Types

P4 contains base types and derived types familiar to those commonly found in
other general-purpose languages:

• void - represents no values and can appear only in few restricted places
of a P4 program.

• bool - represents either the false value or the true value.
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• bit<W> - represents an unsigned integer (also called a bit-string) of an
arbitrary bit width W. The value of W must be a compile-time known
non-negative integer.

• int<W> - represents a signed integer of an arbitrary bit width W. P4’s
signed integers use two’s complement encoding. The value of W must be
a compile-time known positive integer.

• int - represents an arbitrary-precision signed integer. The int type is
reserved for compile-time known integer values.

• string - represents a character string. P4 does not define any operations
on strings nor allows to declare parameters or variables of type string.
P4 strings can appear in few restricted places as constant string literals.

• enum - represents a type with several named constant values. An enum
declaration introduces an identifier for a new enum type, along with its
named values.

• struct - represents a type with several typed and named field variables.
A struct declaration introduces an identifier for a new struct type, along
with its fields.

• tuple<T, ..., F> - represents a value which holds values of types T, ..., F.

— P416 specification [15]

Additionally, P4 contains multiple P4-specific types suited for its networking
domain: match_kind, varbit, header, header stacks, header_union, extern, parser,
control, package and type specializations.

We examine some of these domain-specific types together with operations on
the already introduced types later in the context of other P4 constructs.

2.4 Parser

The packet’s path through a P4 program starts at the P4 parser block. The
parser’s primary purpose is to parse an incoming packet data (unstructured
sequence of bits) into structured P4 data types which can be handled further
by P4.

Before we begin with the parser’s definition, we need to specify the structure
of a packet that our parser accepts. Any packet which does not correspond to
such structure must be rejected.

For the purpose of the P4 introduction, we implement a highly simplified IP
routing algorithm. We call such routing the Simple IP Routing (SIPR). The
SIPR protocol operates on the SIPR packets.
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Figure 2.2: The structure of the SIPR Ethernet header.

SIPR Packet
The SIPR packet starts with the Ethernet-like header, consisting of 48-bit
destination MAC address (dmac) and 2-bit type field. This header is visualized
in Figure 2.2.

After the Ethernet-like part, depending on the type field, the packet can con-
tinue in two possible ways. If the type field contains the 0x0 value, the packet
continues with the IPv4-like header. On the other hand, if the type field con-
tains the 0x1 value, the packet continues with the IPv6-like header.

Figure 2.3: The structure of the SIPR packet.

Redundant type values:

While the SIPR protocol defines the type field to be two bits wide, the
range of the accepted values (i.e., 0x0 and 0x1) can be represented with
a single bit. We reserve the additional bit for future use cases. Such
future-proof redundancy is typical across many networking protocols[24].

Finally, we need to define how the IPv4-like and IPv6-like headers look in-
side. Their structure is very similar; they both contain three fields: the source
address, the destination address, and the time-to-live (TTL) field. The only
difference is in the bit-length of the addresses: While the IPv4-like header uses
32-bit addresses, the IPv6-like header uses much wider 128-bit addresses. The
detailed SIPR packet can be seen in Figure 2.4.

SIPR Packet Data Structures
To create a P4 parser for the SIPR packet, we first define data structures which
can store the parsed SIPR headers. As described in the previous section, SIPR
protocol recognizes three types of headers: Ethernet, IPv4, and IPv6 1.

1From now on, we omit the “-like” suffix.
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Figure 2.4: The structure of the SIPR packet with detailed IPv4 and IPv6
headers.

In P4, to encapsulate fields of a single header, we use the header type. We thus
create three new header types with appropriate fields.

header Ethernet {
bit <48 > dmac;
bit <2> type;

}

header IPv4 {
bit <32 > src;
bit <32 > dest;
int <8> ttl;

}

header IPv6 {
bit <128 > src;
bit <128 > dest;
int <8> ttl;

}

Listing 2.1: Declarations of the SIPR P4 headers.

For the individual fields we use bit-strings (bit<W>) and signed integers (int<W>)
with bit widths as defined by the SIPR protocol.

To provide a more convenient way of manipulation, all P4 headers are tradition-
ally encapsulated into a single P4 struct. We therefore declare the SiprPacket
struct, which contains all of our headers.

header Ethernet { /* ... */ }
header IPv4 { /* ... */ }
header IPv6 { /* ... */ }

struct SiprPacket {
Ethernet ethernet ;
IPv4 ipv4;
IPv6 ipv6;

}

Listing 2.2: Declaration of the SIPR packet P4 structure.
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A P4 struct does not assume any concrete arrangement. Its header fields can be
therefore declared in an arbitrary order. In contrast, the individual fields within
a single header must appear in the correct order, as defined by the implemented
protocol.

SIPR Parser
With the declaration of the SiprPacket struct completed, we are ready to define
our P4 SIPR parser.

We start by defining the SiprParser parser block. The SiprParser accepts an
instance of packet_in object and an instance of the SiprPacket struct.

parser SiprParser ( packet_in wire , out SiprPacket pkt) {
state start {}

}

Listing 2.3: Definition of the P4 SIPR parser (1).

The packet_in is an extern object2 provided by the P4 core library. It offers
a stateful interface over the incoming unstructured packet bits. On the other
hand, the SiprPacket pkt parameter is an output parameter (indicated by the
out keyword) which serves as the storage for the parsed SIPR packet headers.

When the parser is invoked with these two required arguments, its execution
begins within the start parser state. As we explore later, in addition to the
compulsory start state, each P4 parser can contain any number of additional
states. Together with transitions between them, these states form the so-called
parse graph.

Given that we know the SIPR packet begins with the Ethernet header, we start
by invoking the extract method of the packet_in wire object.

parser SiprParser ( packet_in wire , out SiprPacket pkt) {
state start {

wire. extract (pkt. ethernet );
}

}

Listing 2.4: Definition of the P4 SIPR parser (2).

The extract method is one of the fundamental P4 primitives for the packet
parsing. Given a header H, the extract method reads just enough bits from
the incoming packet buffer to fill all H’s fields. In our case, we pass-in the pkt.
ethernet, which causes a read of fifty bits from the received packet. These bits
are used for the initialization of the bit<48> dmac and bit<2> type fields inside
the Ethernet header.

With the Ethernet header parsed, we can now read and manipulate the header’s
fields within our program. To continue, we use the Ethernet’s type field to

2P4 extern objects are a broad topic which we explore later in this work.
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determine the next header. As defined by the SIPR protocol, either the type’s
value is equal to 0x0 and the packet continues with the IPv4 header, or its
value is equal to 0x1 and the next expected header is the IPv6 header.

To implement such a form of conditional parsing, we must extend our parse
graph with two more states and provide appropriate transitions between them.
To do that we use the conditional transition statement.

A conditional transition chooses the next parser state depending on a provided
value and a set of patterns. In our case, we match the pkt.ethernet.type field
against a set of simple patterns — 0x0 and 0x1. Depending on the result, the
execution transitions into one of the newly defined parser states — parseIPv4
or parseIPv6.

parser SiprParser ( packet_in wire , out SiprPacket pkt) {
state parseIPv4 {}

state parseIPv6 {}

state start {
wire. extract (pkt. ethernet );
transition select (pkt. ethernet .type) {

0x0: parseIPv4 ;
0x1: parseIPv6 ;

}
}

}

Listing 2.5: Definition of the P4 SIPR parser (3).

To finish our SIPR packet parser, we have two remaining tasks. Firstly, we
need to complete the bodies of the parseIPv4 and parseIPv6 states. Secondly, we
must define the behavior if the incoming packet does not have the expected
SIPR structure.

For both of these tasks, we start by introducing two new parser states — the
accept state and the reject state. These states are provided implicitly by the
P4 language. Moreover, transitioning to either of these states terminates the
execution of the parser. The accept state indicates successful parsing, while the
reject state signals parsing failure.

To complete the parseIPv4 and parseIPv6 states, we first extract the next header
into the pkt.ipv4 field and the pkt.ipv6 field, respectively. Then, to indicate
successful parsing, we transition to the accept state using the unconditional
transition statement. Similar to the conditional transition, the unconditional
transition is prefixed with the transition keyword. However, instead of listing
several patterns, we directly specify the destination parser state.
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parser SiprParser ( packet_in wire , out SiprPacket pkt) {
state parseIPv4 {

wire. extract (pkt.ipv4);
transition accept ; // <-- unconditional transition

}

state parseIPv6 {
wire. extract (pkt.ipv6);
transition accept ; // <-- unconditional transition

}

state start {
wire. extract (pkt. ethernet );
transition select (pkt. ethernet .type) {

0x0: parseIPv4 ;
0x1: parseIPv6 ;

}
}

}

Listing 2.6: Definition of the P4 SIPR parser (4).

Finally, we need to handle situations where the incoming packet does not have
the correct SIPR structure. Such packets should be handled by transitioning
into the reject state, indicating parsing failure. Looking at the SIPR packet
format, our parser can receive only two types of invalid packets.

Firstly, the incoming packet can be too short. In such a case, one of the
extract method invocations fails to read enough bits to fill the destination
header. Conveniently, the extract method handles such situation automatically
by transitioning into the reject state.

Secondly, the Ethernet’s type field might not be equal to any of the supported
values — 0x0 or 0x1. The SIPR protocol defines the type field to be two bits
wide, as a result, such situation can possibly occur.

This issue is best handled within the existing conditional transition. One of the
possible solutions is to provide patterns for all invalid values with a transition
into the reject state. However, P4 provides a much more compact solution. To
specify a pattern which is selected only if none the other patterns match, we
use the default pattern.

/* ... */
state start {

wire. extract (pkt. ethernet );
transition select (pkt. ethernet .type) {

0x0: parseIPv4 ;
0x1: parseIPv6 ;
default : reject ; // <-- default pattern

}
}

Listing 2.7: Definition of the P4 SIPR parser (5).

Adding the default pattern with a transition into the reject state concludes
the implementation of the SIPR parser. To sum up, our parser rejects all
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packets which do not match the defined SIPR packet structure. On the other
hand, in case of a valid SIPR packet, we store the parsed headers into the
output SiprPacket pkt parameter and transition into the accept state, indicating
parsing success.

parser SiprParser ( packet_in wire , out SiprPacket pkt) {
state parseIPv4 {

wire. extract (pkt.ipv4);
transition accept ;

}

state parseIPv6 {
wire. extract (pkt.ipv6);
transition accept ;

}

state start {
wire. extract (pkt. ethernet );
transition select (pkt. ethernet .type) {

0x0: parseIPv4 ;
0x1: parseIPv6 ;
default : reject ;

}
}

}

Listing 2.8: The P4 SIPR parser.

2.5 Match-Action Pipeline

During parsing, we validated the incoming SIPR packet and initialized the
SiprPacket structure. However, to perform any form of packet routing, parsing
alone is not sufficient; we need to execute additional logic. Fundamentally, any
routing algorithm consists of performing packet transformations and choosing
the correct output port.

In P4, packet transformations and output port selection belong to the match-
action pipeline. As we will explain later, the name corresponds to the match-
action computational model, characterized by executing a sequence of config-
urable match-action units.

Before we implement the SIPR match-action pipeline, we need to describe the
specifics of the SIPR algorithm. Specifically, how are the fields of the incoming
SIPR packet used to determine the output port, and how is the SIPR packet
transformed.

SIPR Algorithm
A computer network consists of a multitude of interconnected nodes. In gen-
eral, a network forms an incomplete graph. As a result, to send a packet from
node A to node B, we cannot rely on the existence of a direct connection be-
tween A and B. Instead, such a connection leads through several intermediary
nodes. To mediate a connection between A and B, each node must adhere to
a specific routing protocol.
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Although we have already described the SIPR packet structure, the exact rout-
ing algorithm to which each node must adhere to remains undefined. The SIPR
protocol dictates to each network node what transformations to execute and
how to perform the next “hop”, which brings the SIPR packet one step closer
to the destination node.

As we have defined, each SIPR packet contains two types of destination ad-
dresses: the MAC address and the IPv4/IPv6 address. Additionally, we assume
that each network node has limited knowledge about the network topology:

1. Each node knows its own unique MAC, IPv4, and IPv6 addresses.

2. Each node knows MAC addresses of its direct neighbors. These associ-
ations are maintained as a table of MAC-neighbor pairs. We mark this
table MAC → neighbor.

3. Each node stores two tables which map every possible destination IPv4/IPv6
address to the MAC address of the “next-hop” neighbor. We mark these
tables IPv4 → MAC and IPv6 → MAC.

Figure 2.5: The network topology knowledge from the A’s viewpoint. A uses
red connections to send packet to the 2.1.4.5 (B) IPv4 address, for which it
uses bold records in its tables. The IPv6 information is omitted for brevity.

Upon receiving a SIPR packet P , the network node firstly compares its MAC
address with P ’s destination MAC address. If the MAC addresses do not
match, the packet P is discarded. The node additionally checks whether P ’s
time-to-live field is greater than zero; if not, the packet P is also discarded.

Secondly, the time-to-live field of packet P is decremented by one. This oper-
ation, along with the initial test of positivity, prevents a packet from entering
an infinite cycle within a network.

Thirdly, depending on the type of P , the node either chooses the IPv4 → MAC
or the IPv6 → MAC lookup table. Using the selected table T , the node changes
P ’s destination MAC address. The new next-hop destination MAC address is
retrieved from table T using P ’s destination IP address.
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Lastly, using the updated P ’s MAC destination address, the node selects an
appropriate output port using the MAC → neighbor table. Subsequently, the
node forwards the modified packet P to the next-hop node, where the SIPR
algorithm repeats.

SIPR Match-Action Pipeline

With the SIPR algorithm fully defined, we can translate its mechanisms into
the match-action computational model. In P4, match-action pipelines are em-
bodied by the control block constructs, defined using the control keyword.

control SiprPipe ( inout SiprPacket pkt , out bit <2> port) {
apply {}

}

Listing 2.9: Definition of the P4 SIPR match-action pipeline (1).

Similarly to the parser block, we begin by defining the control block parame-
ters. Our SIPR match-action pipeline is expected to firstly transform the SIPR
packet according to the SIPR algorithm, and secondly select the appropriate
output port. To accomplish this, the SiprPipe must be invoked with instances
of the SiprPacket pkt and bit<2> port parameters.

Using the SiprPacket pkt parameter, the SiprPipe receives the parsed SIPR
headers from our SiprParser. Indicated by the inout parameter direction, the
SiprPacket pkt serves both as the input and output of the SiprPipe’s invocation.

To select the final output port, SiprPipe must set the second port output pa-
rameter during its execution.

Similarly to the parser’s start state, the execution of every P4 control block
begins inside its apply method, which we define using the apply keyword. To
define our apply method’s body we use the if-statement which performs the
positivity test of the SIPR packet’s time-to-live field.

control SiprPipe ( inout SiprPacket pkt , out bit <2> port) {
apply {

if (pkt.ttl <= 0) {
port = 0;
return ;

}
}

}

Listing 2.10: Definition of the P4 SIPR match-action pipeline (2).

P4’s if-statement uses standard syntax and semantics familiar from many C-
like programming languages. Therefore, if the time-to-live field is less than or
equal to zero, we enter the if-statement’s body, set the output port to zero to
indicate the packet shall be discarded, and finish the SiprPipe’s execution by
using the return statement.
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Even though setting the output port to zero to discard the packet might seem
counter-intuitive, P4 does not provide a native discard operation. Instead, we
reserve the zero port to be the “discard-port”, leaving us with three more “real”
ports.

The second check that the SIPR algorithm needs to perform is the MAC address
test. The packet’s destination MAC address must match with the device’s MAC
address. While we could hard-code the device’s MAC address directly into the
P4 program, we would need to recompile the program for each new device. To
make our P4 program more practical, we utilize the main tool of the match-
action computational model — the configurable match-action units. In P4,
match-action units are embodied by the P4 tables.

Who invokes the SiprParser and SiprPipe?

At this point in our P4 introduction, there are few natural questions
that we have not answered yet, such as:

• Where do we invoke our SiprParser and SiprPipe?

• Where is the SiprPacket instance created and how do we pass it
into the SiprParser and SiprPipe?

• What if our hardware has more than four ports and therefore two
bits are insufficient to cover all of our ports?

All these questions (and many similar ones) will be addressed by the P4
architecture model, which we cover later in this chapter. Until that point,
we encourage the reader to consider these specifics as implementation
details and accept them as facts:

• Our P4 program starts with the SiprParser and continues with the
SiprPipe. Both blocks operate on the same instance of a SiprPacket.

• The bit<2> is enough to cover all of the device ports, including the
discard-port.

SIPR Tables
Apart from offering a natural computational model for packet transformations,
P4 tables introduce a possibility of runtime re-programmability.

Computer networks are dynamic, ever-changing systems. Throughout the lifes-
pan of a network, individual nodes can be both added and removed. Moreover,
a network’s workload is often highly variable and unpredictable. For example, if
a network monitoring detects a congested node, the network traffic might need
to be rerouted through a chain of more, but less busy nodes. The network
must be able to respond to these situations quickly and effectively.

Addressing such dynamic issues through recompilation of the entire P4 program
would be highly impractical and time-consuming. Instead, P4 tables provide a
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form of quick re-programmability even after compilation. In our scenario, we
could use a P4 table to perform the SIPR MAC address check, enabling us to
compile our P4 program only once and reuse it for each new device.

Each P4 table maintains a map which stores a multitude of records. Each record
consists of a value (pattern) and its associated action with action’s arguments.

To execute a P4 table, we must provide a value. This value is compared with the
patterns inside the map. If a match is found, the action (and its arguments)
associated with the matched pattern gets executed. If there is no match, a
default action is executed (can be a no-op action).

Figure 2.6: Example of a match-action unit execution.

The promised re-programmability of a P4 table is facilitated by manipulating
its map. Records in the map can be dynamically both added and removed, en-
abling the execution of different actions during runtime. Adding nor removing
a record does not require a program recompilation or lengthy packet-processing
halts.

To define an action that can be executed after a pattern match, P4 provides
the P4 action construct. Returning to our original goal of performing the SIPR
MAC address check, we add a single MacTest table and a discard action above
our apply method.

control SiprPipe ( inout SiprPacket pkt , out bit <2> port) {
action discard () {

port = 0;
}

table MacTest { /* ... */ }

apply {
if (pkt.ttl <= 0) {

discard (); // <-- replaced ‘port = 0‘
return ;

}
}

}

Listing 2.11: Definition of the P4 SIPR match-action pipeline (3).

We already know what to do if we need to discard a packet — we must set the
port output parameter to zero. Therefore, inside the discard action, we simply
execute the statement port = 0. Additionally, P4 actions are essentially inde-
pendent of P4 tables and can be called like familiar C-like functions. Therefore,
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we add the discard action call into our existing if-statement to better describe
the intent.

P4 is not isolated-from-above:
It is worth noting that in our previous snippet we were able to set the
port value, even though the port variable is not discard’s parameter.

While we could have modified the discard action to contain a new param-
eter and provide the port at the call site, the P4 language conveniently
allows referencing all symbols that are both declared lexically above and
within the same curly-braced block.

More formally, the P4 language does not define its constructs as
“isolated-from-above”, meaning it does not create artificial barriers in
its lexical scoping.

Before we define the body of the MacTest table and execute it within our pro-
gram, we need to discuss the type of records we need to store inside the MacTest’s
map. Given the device’s MAC address DEVICE_MAC and the packet’s destination
MAC address PKT_MAC, we execute the no-op action if the addresses match and
discard action otherwise. Consequently, the map will contain two records which
associate DEVICE_MAC with the no-op action and the default record associated
with the discard action.

Figure 2.7: Example of MacTest’s runtime invocation.

A P4 table requires the definition of many of its structural properties before-
hand. While the table’s records remain dynamic, the structure of an individual
record must be specified statically during compilation. This is achieved by list-
ing a sequence of key-value pairs as a part of the table’s body.

/* ... */
action discard () {

port = 0;
}

table MacTest {
key = { pkt. ethernet .dmac: exact ; }
actions = { discard ; NoAction ; }
default_action = discard ;
size = 1;

}
/* ... */

Listing 2.12: Definition of the P4 SIPR match-action pipeline (4).
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The key property defines the runtime value used to lookup a matching pattern
in the table’s map. In our case, we want to check if the packet’s destination
MAC address equals the device’s MAC address, so we use the pkt.ethernet.dmac
value. Additionally, the pkt.ethernet.dmac value is accompanied by the exact
identifier, which specifies the matching algorithm. Aligned with our goal, the
exact algorithm specifies that the pattern is looked up using a simple equals
comparison.

Although using a single runtime value with the exact algorithm is sufficient for
this thesis, the key property offers significantly more flexibility. The pattern
can consist of multiple components, where each of them is matched using a
different algorithm.

The actions property constraints the set of actions which can be associated
with a pattern within the table’s map. In our scenario, the MacTest’s records
only need to use the discard action and the no-op action. The no-op action is
conveniently provided to us by the P4 core library as the NoAction action.

The default_action property chooses the action which is executed if no other
patterns match. As we discussed, in such a case the MacTest table must discard
the packet. Therefore, the MacTest’s default action is the discard action.

The size property limits the maximum number of records that can fit into
the table’s map. Typically, this number is initially estimated and adjusted as
necessary later on. In the special case of the MacTest table, we anticipate only
a single record (with the default record not being included in this count).

The dual purpose of the key property:

In the list of P4 table’s properties, the key property can be thought of
as having a double purpose. Firstly, it defines the runtime value which
is provided during the table’s invocation. Secondly, the data type of the
key property value constraints the data type of the pattern within each
record.

In case of the MacTest table and its pkt.ethernet.dmac key, the MacTest’s
patterns must have the bit<48> type.

With the MacTest P4 table fully defined, we can insert the table’s invocation
under the ttl test. Even though P4 table definitions do not contain an apply
method, the table is executed using the .apply() syntax.

As described, the apply method firstly compares the runtime value (defined
by the key property) with the patterns inside the table’s map. Secondly, the
action associated with the matched pattern is executed.
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control SiprPipe ( inout SiprPacket pkt , out bit <2> port) {
action discard () {

port = 0;
}

table MacTest {
key = { pkt. ethernet .dmac: exact ; }
actions = { discard ; NoAction ; }
default_action = discard ;
size = 1;

}

apply {
if (pkt.ttl <= 0) {

discard ();
return ;

}
MacTest . apply () // <-- table invocation

}
}

Listing 2.13: Definition of the P4 SIPR match-action pipeline (5).

The final unclear concept concerning the P4 tables is the precise mechanism of
manipulating the table’s map. In our context, we have yet to describe how we
insert the record which associates the device-specific DEVICE_MAC value with the
discard action.

Although the low-level details are hardware-dependent, the manipulation of
the table’s map is facilitated through what is known as the control plane. The
control plane is a program that communicates with a running P4 program in
various ways. While the concept of a control plane is not unique to the P4
ecosystem, in P4 terms, it handles the manipulation of the P4 table maps. As
we see later, the communication between the control plane software and the
P4 program extends beyond runtime configuration of the P4 tables.

In practical scenarios, the control plane software typically runs on an auxiliary
CPU alongside the P4-programmable silicon3. This software is usually written
in a general-purpose programming language and communicates with the P4-
programmable processor through a hardware interface.

Figure 2.8: A P4-programmable target with a control plane.

3Traditionally called the data plane.
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SIPR Headers Validity
With the packet’s destination MAC address and time-to-live fields verified, we
can continue with finding the next-hop MAC address and sending the SIPR
packet out on its way.

As covered earlier, each SIPR node should maintain IPv4 → MAC and IPv6 →
MAC tables, which provide the next-hop MAC address using the destination
IPv4 or IPv6 address. Therefore, we first create the Ipv4ToMac and Ipv6ToMac P4
tables. Then, we invoke one of these two tables, depending on the type of the
incoming SIPR packet.

control SiprPipe ( inout SiprPacket pkt , out bit <2> port) {
/* ... */

table Ipv4ToMac {
/* ... */

}

table Ipv6ToMac {
/* ... */

}

apply {
if (pkt.ttl <= 0) {

discard ();
return ;

}
MacTest . apply ()

if (/* packet is IPv4 */) {
Ipv4ToMac . apply ();

} else if (/* packet is IPv6 */) {
Ipv6ToMac . apply ();

}
}

}

Listing 2.14: Definition of the P4 SIPR match-action pipeline (6).

To determine the type of the incoming packet within the SiprPipe, we can
leverage the structure of our parse graph. To recapitulate, depending on the
type of the incoming SIPR packet, the SiprParser either visits the parseIPv4 or
parseIPv6 parser states. Within these states, we then execute wire.extract(pkt.
ipv4) or wire.extract(pkt.ipv6) respectively.

We could therefore use the mutual exclusivity of the parseIPv4 and parseIPv6
states, to recognize the type of the incoming packet within the SiprPipe. To do
that we must first learn about the validity flag of P4 headers.

Each P4 header instance contains a hidden validity bit of type bool, whose value
is initially false. The value can be manually manipulated using the setValid()
and setInvalid() methods. Importantly for our use case, the extract method,
apart from filling the destination header with the parsed data, sets the header’s
validity bit to true.
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parser SiprParser ( packet_in wire , out SiprPacket pkt) {
state parseIPv4 {

// sets the validity bit of the pkt.ipv4 header
wire. extract (pkt.ipv4);
transition accept ;

}

state parseIPv6 {
// sets the validity bit of the pkt.ipv4 header
wire. extract (pkt.ipv6);
transition accept ;

}

state start {
/* ... */

}
}

Listing 2.15: The parseIPv4 and parseIPv6 parser states which set the validity
bits of their respective headers.

The SIPR parse graph ensures that only one of the IPv4 and IPv6 headers can
have their validity bit set to true. We can therefore invoke either the Ipv4ToMac
or Ipv6ToMac tables depending on the validity bits of the pkt.ipv4 and pkt.ipv6
headers. The validity bit can be queried using the isValid() method.

control SiprPipe ( inout SiprPacket pkt , out bit <2> port) {
/* ... */

table Ipv4ToMac {
/* ... */

}

table Ipv6ToMac {
/* ... */

}

apply {
if (pkt.ttl <= 0) {

discard ();
return ;

}
MacTest . apply ()

if (pkt.ipv4. isValid ()) {
Ipv4ToMac . apply ();

} else if (pkt.ipv6. isValid ()) {
Ipv6ToMac . apply ();

}
}

}

Listing 2.16: Definition of the P4 SIPR match-action pipeline (7).

To finish the implementation of the Ipv4ToMac and Ipv6ToMac tables we list their
properties and add a new setNextHopDmac action. Both of the new tables list
the setNextHopDmac action within their actions property, along with the no-op
NoAction action.
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/* ... */

action setNextHopDmac (bit <48 > nextHop ) {
/* ... */

}

table Ipv4ToMac {
key = { pkt.ipv4.dest : exact ; }
actions = { setNextHopDmac , NoAction ; }
default_action = NoAction ;
size = 1024;

}

table Ipv6ToMac {
key = { pkt.ipv6.dest : exact ; }
actions = { setNextHopDmac , NoAction ; }
default_action = NoAction ;
size = 1024;

}

/* ... */

Listing 2.17: Definition of the P4 SIPR match-action pipeline (8).

It is worth noting, that the only difference between Ipv4ToMac and Ipv6ToMac
tables lies in their key properties. The Ipv4ToMac table must be provided with
the packet’s IPv4 destination address (pkt.ipv4.dest). On the other hand, the
Ipv6ToMac requires the pkt.ipv6.dest value.

As we mentioned, a single P4 table record contains three components: a pat-
tern, the associated action, and the action’s arguments. In P4, the associated
action’s arguments are provided through the action parameters.

The setNextHopDmac action receives the next-hop destination MAC address via its
nextHop parameter. To finish the setNextHopDmac’s body, we transform the SIPR
packet by assigning the new MAC address into the pkt.ethernet.dmac field.

control SiprPipe ( inout SiprPacket pkt , out bit <2> port) {
/* ... */

action setNextHopDmac (bit <48 > nextHop ) {
pkt. ethernet .dmac = nextHop ;

}

/* ... */
}

Listing 2.18: Definition of the P4 SIPR match-action pipeline (8).

Using the control-plane software, both Ipv4ToMac and Ipv6ToMac can now be filled
with records, which associate destination IP addresses with the next-hop MAC
address.

Finally, with the next-hop MAC address assigned to the pkt.ethrnet.dmac field,
we must select an appropriate output port for the packet. This involves as-
signing the correct bit<2> value to the port parameter of the SiprPipe control
block.
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For this task, we once again employ a new P4 table. The new MacToPort table
must store the MAC → neighbor mappings, which we have already discussed
during the SIPR algorithm introduction. Importantly, we assume that the
“neighbor” value corresponds with the required output port.

control SiprPipe ( inout SiprPacket pkt , out bit <2> port) {
/* ... */

action setNewPort (bit <2> newPort ) {
port = newPort ;

}

table MacToPort {
key = { pkt. ethernet .dmac : exact ; }
actions = { setNewPort ; NoAction ; }
default_action = NoAction ;
size = 1024;

}

apply {
/* ... */

if (pkt.ipv4. isValid ()) {
Ipv4ToMac . apply ();

} else if (pkt.ipv6. isValid ()) {
Ipv6ToMac . apply ();

}

MacToPort . apply ();
}

}

Listing 2.19: Definition of the P4 SIPR match-action pipeline (8).

Similarly to the setNextHopDmac action, we use the setNewPort action, whose
newPort parameter can be used to transmit the output port from the into the
P4 program. The newPort parameter is then directly assigned into the SiprPipe’s
port parameter.

Since the output port selection is the last operation of the SIPR protocol, we
insert the MacToPort invocation as the last statement of the SiprPipe’s apply
method.

SIPR Local Elements
Before moving further, it is crucial that we address a subtle issue within our
SIPR match-action pipeline. This issue becomes evident upon reviewing the
SiprPipe’s apply method and the MacTest table, particularly focusing on the
discard action that may be invoked by the MacTest table.
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control SiprPipe ( inout SiprPacket pkt , out bit <2> port) {

action discard () {
port = 0;

}

/* ... */

action setNewPort (bit <2> newPort ) {
port = newPort ;

}

/* ... */

apply {
if (pkt.ttl <= 0) {

discard ();
return ;

}
MacTest . apply () // <-- may invoke ‘discard ‘

/* ... */

MacToPort . apply (); // <-- may invoke ‘setNewPort ‘
}

}

Listing 2.20: Definition of the P4 SIPR match-action pipeline (9).

As we know, the MacTest table compares the DEVICE_MAC address with the PKT_MAC
address. If these addresses do not match, the discard action is triggered, setting
the output port to the zero “discard-port”.

The issue arises when, after selecting the “discard-port”, the execution contin-
ues within the apply method. As expected, the program executes the rest of
the apply method’s statements, including the final MacToPort table invocation.
Unfortunately, this MacToPort invocation invocation may overwrite the output
port to a completely different port, potentially resulting in the packet not being
discarded.

To address this issue, we need to conditionally return early from the apply
method, depending on whether the discard action was invoked or not. One
possible method to achieve this is by setting a boolean flag from within the
discard action and returning from the apply method depending on this flag.
This can be achieved by using a new P4 concept — local elements.

A local element is a variable initialized before the execution of the apply
method. Similarly to tables and actions, local elements are defined above the
apply method. Since none of the P4 constructs are isolated-from-above, local
elements can be referenced and assigned throughout the entire control block,
including actions and the apply method.
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control SiprPipe ( inout SiprPacket pkt , out bit <2> port) {

bool shouldExit = false ; // <-- local element definition

action discard () {
port = 0;
shouldExit = true; // <-- set the flag

}

/* ... */

apply {
if (pkt.ttl <= 0) {

discard ();
return ;

}
MacTest . apply ()

// exit from the SiprPipe if the packet is discarded
if ( shouldExit ) {

return ;
}

/* ... */
}

}

Listing 2.21: Definition of the P4 SIPR match-action pipeline (11).

We define a boolean local element called shouldExit, initialized to false, and set
it to true within the discard action. After invoking the MacTest table, we check
the value of the shouldExit and return from the SiprPipe accordingly. This
ensures that if the packet needs to be discarded, we exit the SiprPipe early,
preventing the overwriting of the output “discard-port”.

By adding the shouldExit local element, we finalized the implementation of the
SIPR match-action pipeline. The SiprPipe control block implements the defined
behavior of the SIPR protocol: upon receiving a parsed SIPR packet, it either
discards the packet or sets its next-hop address together with the correct output
port, bringing it closer to its final destination.
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control SiprPipe ( inout SiprPacket pkt , out bit <2> port) {
bool shouldExit = false ;

action discard () {
port = 0; shouldExit = true;

}

table MacTest {
key = { pkt. ethernet .dmac: exact ; }
actions = { discard ; NoAction ; }
default_action = discard ;
size = 1;

}

action setNextHopDmac (bit <48 > nextHop ) {
port. ethernet .dmac = nextHop ;

}

table Ipv4ToMac {
key = { pkt.ipv4.dest : exact ; }
actions = { setNextHopDmac , NoAction ; }
default_action = NoAction ;
size = 1024;

}

table Ipv6ToMac {
key = { pkt.ipv6.dest : exact ; }
actions = { setNextHopDmac , NoAction ; }
default_action = NoAction ;
size = 1024;

}

action setNewPort (bit <2> newPort ) {
port = newPort ;

}

table MacToPort {
key = { pkt. ethernet .dmac : exact ; }
actions = { setNewPort ; NoAction ; }
default_action = NoAction ;
size = 1024;

}

apply {
if (pkt.ttl <= 0) {

discard ();
return ;

}

MacTest . apply ()
if ( shouldExit ) { return ; }

if (pkt.ipv4. isValid ()) { Ipv4ToMac . apply (); }
else if (pkt.ipv6. isValid ()) { Ipv6ToMac . apply (); }

MacToPort . apply ();
}

}

Listing 2.22: The P4 SIPR match-action pipeline.
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2.6 Deparser

After the packet’s route through the parser and match-action pipeline, it might
appear that our task is complete, and the P4-programmable device can forward
the packet. However, the P4 programming language offers an additional layer
of flexibility: After the match-action pipeline, we have to determine which
SIPR headers to transmit from our device and in what order. This process is
commonly known as deparsing.

In our specific scenario, deparsing is straightforward. We transmit the SIPR
headers in the same order they were received, starting with the Ethernet header
followed by either IPv4 or IPv6 header.

Similarly to the match-action pipeline, the deparser is implemented as a control
block construct.

control SiprDeparser ( SiprPacket pkt , packet_out wire) {
apply {}

}

Listing 2.23: Definition of the P4 SIPR deparser (1).

The SiprDeparser is invoked with the SiprPacket instance, which is the output
of the preceding SiprPipe. Additionally, our deparser receives the packet_out
extern object.

The packet_out object serves as the counterpart to the packet_in extern object,
which facilitated an interface over the incoming packet in our SiprParser. On
the ther hand, the packet_out provides an interface over the outgoing packet.

The packet_out object offers a single emit method, which accepts a single header
argument. This argument is then serialized and copied into the outgoing packet
buffer.

control SiprDeparser ( SiprPacket pkt , packet_out wire) {
apply {

wire.emit(pkt. ethernet );
wire.emit(pkt.ipv4);
wire.emit(pkt.ipv6);

}
}

Listing 2.24: Definition of the P4 SIPR deparser (2).

The order of emit method calls determines the order of headers in the outgo-
ing packet. Moreover, before copying a header, the emit method verifies the
header’s validity bit. If the bit is set to true, indicating the header is valid and
initialized, it is then copied into the outgoing packet buffer, otherwise it does
nothing. In our case, this behavior allows for a simple sequence of emit calls
without the need for additional control flow. The Ethernet header is emitted
unconditionally, followed by either the IPv4 or IPv6 header, depending on the
type of the SIPR packet which we have received in the parser.
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While packet deparsing often involves intricate logic, our particular case is
straightforward and includes just three emit method calls. To sum up, the
SiprDeparser emits the Ethernet header followed by the IPv4 or IPv6 header,
depending on the packet type. Once the apply method of the SiprDeparser
finishes, the SIPR packet proceeds on its path towards the next network node,
as defined by the selected output port.

2.7 P4 Architecture Model

The P4 specification does not define the full semantics of the P4 language,
instead it leaves many aspects to be filled by the selected P4 architecture. While
these missing pieces span across all levels of the P4 language, they primarily
consist of interactions between individual control and parser blocks.

To understand the practical implications of the P4 architecture model it is
helpful to look at this concept from the individual viewpoints of both hardware
vendors and P4 programmers.

A hardware vendor develops a packet-processing device. To enable P4 pro-
grammability, the hardware vendor selects one or more P4 architectures. Sub-
sequently, the hardware vendor creates a P4 compiler which supports writing
a P4 program against the selected P4 architectures.

P4 programmers seeking to implement a set of networking protocols begin by
selecting an existing P4 architecture. Subsequently, they write a P4 program
against the chosen architecture. Finally, to execute their P4 program, they
select a P4-programmable device equipped with a compiler supporting the se-
lected P4 architecture.

It is worth noting, that in practical scenarios P4 programmers may be con-
strained to a single hardware device, forcing them to choose a P4 architecture
supported by that particular device (or rather its compiler).

The natural follow-up question would be, which P4 architecture we used for
our SIPR protocol implementation: Our SIPR program was written against
an ad-hoc P4 architecture, which we have implicitly defined throughout this
chapter. Since we reference our ad-hoc P4 architecture further in this work,
for clarity, we name it the Simple Architecture (SA). The key aspects of the
SA can be summarized as follows:

• Structure: Our P4 program must consist of the parser, match-action
pipeline, and deparser components. The parser is represented by the
P4 parser block, while the match-action pipeline and deparser are repre-
sented by the P4 control block.

• Control flow: The SA firstly invokes the parser followed by the match-
action pipeline and deparser.

• Data flow: All of the components operate on a single instance of a user-
defined packet struct. Additionally, the parser receives a packet_in object,
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the match-action pipeline receives a bit<2> object, and the deparser re-
ceives a packet_out object.

• Parameter semantics: Assigning a value to the match-action pipeline’s
bit<2> parameter selects the packet’s output port. Moreover, selecting the
zero port causes the packet to be discarded, skipping the execution of the
deparser.

• Parser semantics: Within the parser, transitioning into the reject state
causes the packet to be immediately discarded, bypassing the match-
action pipeline and deparser.

Conceptually, every P4 architecture defines a fixed pipeline with several P4-
programmable components. Additionally, an architecture creates and main-
tains several P4 objects which are passed into its components as arguments.
In case of the SA, the fixed pipeline is a simple three-component architec-
ture, with architecture-maintained objects corresponding to the parameters of
the SiprParser, SiprPipe, and SiprDeparser. The only user-defined component
parameter is the packet struct, which depends on the implemented protocols.

Figure 2.9: The SA pipeline programmed with the SIPR implementation.

To provide broader context, in Figure 2.10 we show the pipeline of the Portable
Switch Architecture (PSA), which we have already mentioned in Chapter 1 as
one of the open P4 architectures, maintained by the P4 community.

Contrary to the SA, the PSA pipeline provides much greater number of P4-
programmable components, which are additionally inter-connected through re-
circulate channels. The recirculate channels allow to send a packet into the
preceding stages, allowing to implement loops in the packet’s path through
the pipeline. In terms of architecture-maintained objects, PSA offers a set
of metadata structures, which enable a fine-grained control over the packet’s
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path, with access to utility information, such as the timestamp of the packet’s
arrival.

Figure 2.10: The Portable Switch Architecture (PSA) pipeline. Taken from
[1].

While we have chosen the SA architecture for the implementation of the SIPR
protocol, given the simplicity of the SIPR algorithm, we can imagine that an
alternative implementation could be written against the PSA architecture as
well.

The uncanny resemblance of RMT and PSA

In the introduction of this chapter, we introduced the RMT hardware
architecture, which enabled efficient programmability of networking de-
vices. Upon reexamining the RMT’s architecture diagram in Figure 2.1,
we can observe a striking resemblance to the PSA pipeline in Figure
2.10. This is not a coincidence. The PSA architecture is one of the first
independent architectures[1], hence it is thoughtfully designed to provide
a natural translation path to the prevalent hardware architecture of pro-
grammable packet-processing systems — the RMT architecture[19].

The semantics of a P4 architecture are typically provided as a written spec-
ification, often supplemented with behavioral diagrams and pseudocode. Im-
portantly for the next section, each P4 architecture is accompanied by the
architecture-description file. This file contains P4 declarations of the so-called
externs.

SIPR Externs

Apart from defining a fixed pipeline programming model, a P4 architecture
exposes functionalities unique to particular hardware units. Within a P4 pro-
gram, these functionalities can be used through interfaces declared by the so-
called P4 extern objects4.

These hardware features often include specialized stateless units aiding in
packet transformations, such as checksum units. Moreover, externs can ex-
pose stateful functionalities, which can persist a state across individual packet
pipeline executions.

4Also called simply externs.
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In terms of P4 constructs which we have covered in this chapter up to this point,
only P4 tables are able to maintain their state across multiple received packets,
while being mutable at the same time. As a result, if we assume constant P4
tables, P4 programs could be thought of as “pure”. This implies, that the value
of the outgoing packet depends solely on the value of the received packet.

While the stateless programming model can simplify program reasoning for
both compiler and programmer, it falls short in conveniently solving numerous
networking problems, such as various network monitoring tasks.

To demonstrate the practicality of stateful externs in implementing monitoring
tasks, we integrate a basic network traffic statistic into our SIPR program. Our
goal is to count the successfully forwarded IPv4 and IPv6 SIPR packets.

For this purpose, we add the Counter extern into the SA. We define the Counter
to be an abstraction of a persistent integer, which can be initialized to zero,
and subsequently incremented by one multiple times.

extern Counter {
// constructor which initializes counter to zero
Counter ();

// increments the counter by one
void increment ();

}

Listing 2.25: The SA Counter extern declaration.

The fundamental characteristic of all P4 externs is their absence of P4 imple-
mentation. A P4 extern solely provides its interfaces, which include the extern’s
name, constructor names, method names, method parameters, and method re-
turn types. On the other hand, the semantics of an extern are specified within
the architecture’s documentation. Consequently, it is the responsibility of a
compiler to ensure adherence to this documentation during program runtime.

To obtain an instance of an extern, it must be instantiated using one of its
constructors. In case of the Counter extern, we defined a single constructor,
which has no parameters and initializes the state of the counter instance to
zero.

control SiprDeparser ( SiprPacket pkt , packet_out wire) {
Counter () ipv4Counter ; // <-- IPv4 Counter instantiation
Counter () ipv6Counter ; // <-- IPv6 Counter instantiation

apply {
wire.emit(pkt. ethernet );
wire.emit(pkt.ipv4);
wire.emit(pkt.ipv6);

}
}

Listing 2.26: Definition of the monitored P4 SIPR deparser (1).

39



2. P4 Introduction

A P4 extern must be instantiated either in the global scope or as a part of a
parser or control block. It’s important to note that although our Counter object
is instantiated lexically in the same place as P4 local elements, it is initialized
only once and maintains its state across individual packets. In contrast, a local
element is initialized with its initial value before each apply method invocation.

After instantiation, we can proceed to invoke the extern’s methods. Therefore,
we call the increment method of one of our counters, depending on the type of
the SIPR packet that is being deparsed.

control SiprDeparser ( SiprPacket pkt , packet_out wire) {
Counter () ipv4Counter ; // <-- IPv4 counter instantiation
Counter () ipv6Counter ; // <-- IPv6 counter instantiation

apply {
if (pkt.ipv4. isValid ()) {

ipv4Counter . increment ();
} else {

ipv6Counter . increment ();
}

wire.emit(pkt. ethernet );
wire.emit(pkt.ipv4);
wire.emit(pkt.ipv6);

}
}

Listing 2.27: Definition of the monitored P4 SIPR deparser (2).

Currently, the Counter extern does not include a method to return its state to a
P4 program. We assume that a counter’s state is queried and processed solely
by a control plane. Such communication between a control plane and an extern
is not part of a P4 program, and therefore, additional “getter” method within
a counter’s declaration is not necessary.

Finally, it is important to note that declarations of P4 externs are not meant
to be created by a P4 programmer. A P4 programmer merely imports the
so-called architecture-description file which contains all the extern declarations
offered by the used P4 architecture.
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Chapter 3
MLIR Introduction

MLIR streamlines the development of reusable and extensible compiler infras-
tructure. It offers a cost-effective approach to defining new IRs, and allows to
represent the program’s semantics by the combination of IR dialects operating
on different levels of abstraction. MLIR achieves this by:

1. Standardizing the Static Single Assignment-based IR structure.

2. Providing a declarative framework for defining new IR elements and IR
transformations.

3. Providing a wide range of common infrastructure components.

3.1 Dialects

MLIR introduces the concept of IR dialects. A dialect is a named collection
of IR elements. By convention, elements of a single dialect model a common
abstraction. This abstraction can range from an entire programming language,
such as Fortran dialect, to a small set of arithmetic operations, such as floating-
point numbers dialect.

Using dialects, MLIR presents a novel approach to program modeling. Firstly, a
single program can be represented by the co-existence of several dialects, where
each of them operates at a different level of abstraction. For example, we can
imagine a point in our compilation pipeline, where we model the program’s
semantics using the combination of high-level concepts, such as the structured
control flow dialect, and machine-level abstractions, like the ARM instructions
dialect.

scf.while ( %true ) {
%res1 = arm.add (%a, %b) : (i64, i64) -> i64
%res2 = arm.sub ( %res1 , %1) : (i64, i64) -> i64
%res3 = arm.mov ( %res2 ) : (i64) -> i64

}

Listing 3.1: Example of the co-existence of the structured control flow dialect
with the ARM dialect.

41



3. MLIR Introduction

The second MLIR’s novel design point is the idea of progressive lowering. MLIR
enables to craft a fine-grained compilation pipeline, through which the IR pro-
gresses via small partial conversions. Specifically, this involves converting a
single higher-level dialect to another lower-level dialect.

Figure 3.1: Example of a progressively lowered MLIR pipeline.

In contrast, IRs in traditional pipelines provide inextensible fixed-point ab-
stractions.

Figure 3.2: Example of IR conversions in a conventional pipeline.

The concepts of dialect inter-mixing and progressive lowering serve an impor-
tant purpose: They enable to shift away from compiler passes which have to
compromise and adapt to the underlying rigid IR. Instead, for each pass MLIR
allows to pick the ideal collection of dialects which model the input program
in a way that allows for easier implementation and optimal performance.

To prevent fragmentation and constant reinvention of even the most basic IR
elements, MLIR provides a multitude of built-in dialects. As we see later, these
built-in dialects span various levels of abstraction.

MLIR allows to both reuse existing dialects and develop new ones. To facilitate
a common interface necessary for the co-existence of different dialects within
a single IR, MLIR chooses to standardize the general structure of each dialect
and its components.

Each MLIR dialect consists of three basic abstractions — types, operations and
attributes. These abstractions are structured into the hierarchy of regions and
basic blocks. Moreover, as we see later, MLIR’s abstractions operate on Static
Single Assignment (SSA) values5.

5We provide SSA overview in Appendix A.
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3.2 MLIR Basics

“The unit of semantics in MLIR is an ‘operation’, often referred to as Op.
Everything from ‘instruction’ to ‘function’ to ‘module’ are modeled as Ops in
this system.” [6]

To model the semantics of the standard integer addition, we can use the addi
operation. The addi Op is a part of the built-in arith dialect.

%a = " arith.addi "( %b, %c) : (i64, i64) -> i64

Listing 3.2: arith.addi operation.

The preceding snippet illustrates a canonical example of an Op usage. In MLIR,
every operation is assigned a unique opcode, consisting of two dot-separated
components. The first component denotes the Op’s dialect (arith), while the
second component represents the Op’s name (addi).

Ops can both accept and produce zero or more values. In the textual repre-
sentation, all MLIR values are prefixed with the % symbol. Our addi operation
accepts values %b and %c, and produces value %a. All MLIR values adhere to
the SSA form, implying that they must be defined (assigned) before use, and
cannot be redefined (reassigned).

All uses of an operation specify the types of their arguments (also called
operands) and produced values. In our example, the addi operation is pro-
vided with two 64-bit integers, and produces a value of the same type. This is
indicated by the (i64, i64) -> i64 suffix.

In the following snippet, the result of our addition is being compared against
itself. To compare integers, we can use the cmpi operation which again comes
from the arith dialect. The cmpi Op produces a boolean value.

%a = " arith.addi "( %b, %c) : (i64, i64) -> i64
%d = " arith.cmpi "( %a, %a) {pred = 5 : i64} : (i64, i64) -> bool

Listing 3.3: arith.cmpi operation.

The arith.cmpi operation again specifies the types of its arguments and results
((i64, i64) -> bool). In addition, the arith.cmpi Op must indicate the type of
the performed comparison. The cmpi Op does so by using one of the MLIR’s
fundamental abstractions — attributes.

Each operation contains a map of its attributes (can be empty). An attribute
represents a compile-time known value which is associated with a name and
a type. The set of allowed attributes and their semantics are defined by the
operation itself.

The cmpi Op requires a single i64 attribute named pred. Setting the pred at-
tribute’s value to 5 instructs cmpi to perform a signed greater-than or equal
comparison. The range of allowed pred values and their corresponding seman-
tics can be found in the cmpi’s specification.

43



3. MLIR Introduction

Textual Representation
MLIR represents its abstractions using in-memory objects that can be pro-
grammatically manipulated using MLIR’s infrastructure. Additionally, MLIR
provides the option to visualize these in-memory structures using the textual
format, as demonstrated in our previous two examples. While acknowledging
that MLIR is primarily a programmatic framework, in this work, we exclu-
sively use its textual representation due to its better suitability for the written
format.

MLIR’s objective is to make its textual representation human-readable and
debuggable[6]. As a result, MLIR allows to customize the textual representa-
tion, making its dialects succinct and more convenient to read. The represen-
tation which we have used so far is referred to as generic. The generic textual
representation aims to closely mirror its in-memory counterpart.

On the other hand, the customized representation is referred to as pretty-
printed. The pretty-printed version enables a more concise form without re-
dundant information. In the case of the built-in cmpi Op, the comparison of
both of its forms can be seen in the following snippet.

// Generic form
%d = " arith.cmpi "( %a, %a) {pred = 5 : i64} : (i64, i64) -> bool

// Pretty - printed form
%d = arith.cmpi sge, %a, %a : i64

Listing 3.4: The generic and pretty-printed textual forms of the arith.cmpi
operation.

Besides omitting redundant type information, the cmpi Op takes advantage of
the pretty-printed format and replaces the “{pred = 5 : i64}” representation of
its attribute by a simple sge string, which allows to deduce the comparison type
without reading the cmpi’s specification first.

Although the MLIR allows for a lot of flexibility, the pretty-printed version
must still follow certain rules. For instance, both components of the opcode
cannot be omitted. In addition, contrary to the generic form, the pretty printed
opcode is not enclosed into quotation marks.

3.3 Constants

Traditional programming languages operate both on symbolic names (e.g., vari-
ables) and constant data (e.g, integer literal, string literal). In MLIR, symbolic
names correspond to the %-prefixed names. However, the representation of con-
stant data is a bit more nuanced.

To avoid creating a special abstraction for literals, MLIR uses combination of
Ops and attributes. This design avoids a need for special handling of SSA
values and literals, therefore simplifying implementation of compiler passes.
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As an example, the arith dialect offers the arith.constant operation which pro-
duces an SSA value from its compile-time known attribute. For instance, to
create a floating-point literal, we use an attribute of type f32.

// Floating - point constant
%a = arith.constant 4.2 : f32

// Equivalent generic form
%a = " arith.constant "() { value = 4.2 : f32} : () -> f32

Listing 3.5: The generic and pretty-printed textual forms of the arith.constant
operation.

3.4 Regions

An MLIR operation can have multiple attached regions. The primary purpose
of regions is to allow modeling nested constructs within the IR. Although re-
gions are essential for MLIR’s expressiveness, none of the Ops we have covered
so far can contain regions. The closest operations with regions can be found
within the built-in scf (structured control flow) dialect. Specifically, the scf.if
Op.

" scf.if "( %a) ({
%b = arith.constant 4 : i32
%c = arith.addi (%b, %b) : i32
scf.yield

}) : (bool) -> ()

Listing 3.6: The scf.if operation.

The scf.if operation contains a single region, beginning with “({” and ending
with “})”. The specification of the scf.if Op states that the attached region
is executed if and only if the provided boolean operand has true value. This
corresponds with the usual semantics of if-statements known from other pro-
gramming languages. Additionally, the scf.if dictates that the attached region
must be terminated with the scf.yield operation.

To model the usual semantics of the “else block”, the scf.if Op allows to attach
a second region. In this case, by passing an SSA value into the scf.yield Op,
the scf.if Op allows to produce values as a result of the scf.if evaluation. Such
usage is presented in the generic form in the following snippet.

%result = " scf.if "( %a) ({
%b = arith.constant 4 : i32
%c = arith.constant 2 : i32
%d = arith.addi (%c, %c) : i32
scf.yield %d : i32

}, {
%e = arith.constant 5 : i32
scf.yield %e : i32

}) : (bool) -> (i32)

Listing 3.7: The scf.if operation with else block and result value.
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The presence of multiple regions underscores the importance of pretty-printed
representations to improve readability. Similarly to the cmpi Op, the scf.if
offers a pretty-printed format as well. While semantically equivalent to the

preceding snippet, the custom representation resembles the conventional syntax
of if-statements.

%result = scf.if %a -> i32 {
%b = arith.constant 4 : i32
%c = arith.constant 2 : i32
%d = arith.addi (%c, %c) : i32
scf.yield %d : i32

} else {
%e = arith.constant 5 : i32
scf.yield %e : i32

}

Listing 3.8: The pretty-printed form of the scf.if operation.

The scf.if’s custom representation does not include any type information for
the provided condition operand (%a). Omitting information from the Op’s
custom textual representation is permitted as long as it does not introduce
any ambiguity. In our case, the scf.if Op does not allow any other type of
condition value other than bool.

Note:
Further in this study, if not stated otherwise, we prefer to use the more
compact pretty-printed form of Op’s representation.

3.5 Functions with Symbols

MLIR provides a built-in func dialect for expressing function definitions and
function calls. To express these abstractions, MLIR uses the func.func and
func.call operations together with the concept of symbols.

// Function declaration Op, declaring a symbol ‘addTwo ‘
func.func @addTwo (%x: i64) -> (i64) {

%two = arith.constant 2 : i64
%result = arith.addi (%x, %two) : i64
func.return %result : i64

}

%0 = arith.constant 0 : i64
// Function call Op, referencing the symbol ‘addTwo ‘
%1 = func.call @addTwo (%0) : (i64, i64) -> i64

Listing 3.9: Example usage of the func dialect.

The func operations have semantics familiar from other C-like languages. The
func.func operation defines a function, whose body is expressed using a single
attached region. To execute the func’s region, the func.func operation must be
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referenced through the func.call Op. To facilitate Op references, MLIR offers
the mechanism of symbols.

The MLIR symbols infrastructure provides a mechanism for referring to oper-
ations which declare a symbol. This allows for referring to operations by name
from other Ops.

Additionally, the symbol infrastructure verifies several invariants of the IR.
Firstly, MLIR checks that no two operations declare a duplicate symbol, and
secondly MLIR checks that each symbol reference refers to an existing symbol
declaration.

Interestingly, symbols do not belong to MLIR’s core abstractions. Instead, they
are constructed using fundamental concepts like Ops and attributes. Symbol
references and declarations are attached to operations through attributes of a
string-like type, and subsequently pretty-printed with the @-prefix.

3.6 Unstructured Control Flow

So far, to express the structured control flow, we have used the scf.if Op.
However, MLIR aims to provide modeling capabilities for both higher and lower
levels of abstraction. To offer control flow constructs that are conceptually
closer to the hardware-level concepts, MLIR allows operations to be organized
into control flow graphs (CFGs) and basic blocks.

In fact, basic blocks have been used in all of our MLIR examples thus far.
Each region contains one or more basic blocks, with each basic block holding
a sequence of Ops. Returning to the example of the scf.if operation, we can
observe this underlying nested structure of regions and basic blocks.

%result = scf.if %a -> i32 {
// <-- region start

// <-- basic block start
%b = arith.constant 4 : i32
%c = arith.constant 2 : i32
%d = arith.addi (%c, %c) : i32
scf.yield %d : i32

// <-- basic block end
// <-- region end

} else {
// <-- region start

// <-- basic block start
%e = arith.constant 5 : i32
scf.yield %e : i32

// <-- basic block end
// <-- region end

}

Listing 3.10: The scf.if operation with highlighted hierarchy of regions and
blocks.

To represent more complex CFGs within a region, we need to include addi-
tional basic blocks with jumps between them. Operations representing either
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conditional or unconditional jumps can be found inside the MLIR’s cf (control
flow) dialect.

The MLIR’s built-in cf dialect offers a set of terminator6 operations which
express a transition between basic blocks of a single CFG. In this work, we
use the cf.cond_br and cf.br Op, which model conditional and unconditional
jumps, respectively.

In the following snippet, to demonstrate the usage of the cf.cond_br Op, we
present two semantically-equivalent functions, each utilizing a different type of
control flow.

// Structured control flow version
func.func @negate ( %flag : bool) -> (bool) {

scf.if %flag -> bool {
%f = arith.constant false : bool
func.return %f : bool

} else {
%t = arith.constant true : bool
func.return %t : bool

}
}

// Unstructured control flow version
func.func @negate ( %flag : bool) -> (bool) {

ˆbb0:
// Jump to ˆbb1 if %flag is true, to ˆbb2 otherwise
cf.cond_br %flag , ˆbb1, ˆbb2

ˆbb1:
%f = arith.constant false : bool
func.return %f : bool

ˆbb2:
%t = arith.constant true : bool
func.return %t : bool

}

Listing 3.11: An illustrative function demonstrating difference between MLIR’s
structured and unstructured control flow Ops.

As depicted in the preceding snippet, when a region contains one or more basic
blocks, each block must declare a label. These labels can then be referenced
from the cf.cond_br Op to indicate the target of a jump.

Finally, it is worth noting, that both structured and unstructured types of
control flow can co-exist, even within a single basic block. For instance, consider
a scf.if Op modeling structured control flow inside a basic block which is part
of a bigger CFG.

Basic Block Parameters
MLIR’s basic blocks can have zero or more typed parameters. While these
parameters can be used to model different concepts, its main goal is to model
SSA’s ϕ-nodes.

6Terminator operation can be used only as the last Op of a basic block.
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Consider the following pseudocode function containing a ϕ-node.

function addOneOrTwo (num , flag)
add1 = 0
if flag == true

add2 = 1
else

add3 = 2
add4 = ϕ(add2 , add3)
return num + add4

Listing 3.12: The addOneOrTwo function expressed using pseudocode with
phi-nodes.

In terms of MLIR, the addOneOrTwo function can be equivalently expressed using
the unconditional branch Op cf.br with ϕ-nodes converted into basic block
parameters.

func.func @addOneOrTwo (%num: i32, %flag : bool) -> (i32) {
ˆbb0:

%add1 = arith.constant 0 : i32
cf.cond_br %flag , ˆbb1, ˆbb2

ˆbb1:
%2 = arith.constant 1 : i32
cf.br ˆbb3(%1: i32) // Jump to ˆbb3 with argument %1

ˆbb2:
%2 = arith.constant 2 : i32
cf.br ˆbb3(%2: i32) // Jump to ˆbb3 with argument %2

// ˆbb3 has one integer parameter
ˆbb3(%arg : i32):

%result = arith.addi (%num, %arg) : i32
func.return %result : i32

}

Listing 3.13: The addOneOrTwo function expressed with the cf dialect.

Semantically, basic block parameters are equivalent to ϕ-nodes[6]. MLIR chooses
basic block parameters, since unlike ϕ-nodes, basic block parameters are typi-
cally not treated as pseudo-instructions, and therefore do not require a special
handling in various compiler passes[4].

3.7 Visibility of Values

MLIR’s operations are organized into a non-trivial recursive hierarchy of basic
blocks and regions. Therefore, it is worthwhile to discuss the rules of value
visibility. The question of value visibility in MLIR revolves around determining
which SSA values can be referenced from specific parts of an MLIR program.
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For an SSA value reference to be valid it must comply with all of the following
types of visibility:

1. Region visibility: “Region-based visibility is defined based on simple
nesting of regions: a value must be defined lexically above and inside the
region of the use”. The region visibility corresponds with the familiar
notion of lexical scoping from other C-like languages.

2. SSA dominance visibility: All control paths which evaluate the SSA
value reference must evaluate its definition first.

3. Semantic visibility: An operation can impose arbitrary restrictions on
the SSA values contained in its regions. For instance, func.func is defined
as isolated-from-above, indicating that no SSA value can reference SSA
values defined outside of the func.func’s region.

— MLIR specification [6]

The following snippet demonstrates several examples which do not follow the
listed rules.

/* Region visibility */
// error : %0 must be defined lexically above its use
%1 = arith.addi (%0, %0) : i32
func.func @foo1 () {

%0 = arith.constant 0 : i32
}

/* SSA dominance visibility */
func.func @foo2 ( %flag : bool) {

ˆbb0:
%0 = arith.constant 0 : i32
cf.cond_br %flag , ˆbb1, ˆbb2

ˆbb1:
%1 = arith.constant 0 : i32
cf.br ˆbb2

ˆbb2:
// allowed : every control path defines %0
%2 = arith.addi (%0, %0) : i32
// error : not every control path goes through ˆbb1
%3 = arith.addi (%1, %1) : i32
func.return

}

/* Semantic visibility */
%0 = arith.constant 0 : i32
func.func @foo1 () {

// error : func.func Ops are defined as isolated -from - above
%1 = arith.addi (%0, %0) : i32

}

Listing 3.14: Examples of invalid SSA value references
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3.8 Type System

Every MLIR value has a type, indicated either by the operation which produced
the value, or by a block parameter.

%1 = " arith.addi "( %arg1, %arg2 ) : (i32, i32) -> i32

func.func @foo () {
ˆbb0(%arg: i64):

/* ... */
}

Listing 3.15: Sources of types of values. Relevant types and values are
highlighted in red.

Every MLIR operation indicates expected types of its operands.

%1 = " arith.addi "( %arg1, %arg2 ) : (i32, i32) -> i32

Listing 3.16: Expected types of operands. Relevant types highlighted in red.

Type of the operand must match exactly with the type expected by the oper-
ation — MLIR does not define any implicit conversion rules.

%1 = arith.constant 4 : i32
%2 = arith.constant 2 : i64

// error : type mismatch
%3 = arith.addi (%1, %2) : (i32, i32) -> i32

Listing 3.17: MLIR does not perform implicit type conversions. Type mismatch
highlighted in red.

3.9 Extending MLIR

All operations, types, and attributes presented thus far are part of MLIR’s
built-in dialects. Built-in dialects aim to provide abstractions commonly found
across many domains. Such abstractions include commonly used types (e.g.,
i32, i64, f32, bool), arithmetic operations (e.g., arith dialect), and control flow
constructs (e.g., scf dialect, cf dialect).

Moreover, MLIR offers built-in dialects that closely model commonly targeted
systems, including LLVM. For instance, the llvm dialect directly corresponds
to the LLVM IR. Additionally, MLIR’s infrastructure provides seamless con-
version of such dialects into their respective target systems. Therefore, if our
ultimate objective is to generate LLVM IR, we can first convert our dialects
into the llvm dialect, and then utilize the conversion to LLVM IR provided by
MLIR.

MLIR currently provides more than forty built-in dialects[25].

In cases when none of the built-in dialects are sufficient for expressing the de-
sired abstractions, MLIR provides rich infrastructure for creating new dialects
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consisting of custom operations, types, and attributes. Conceptually, custom
dialects are on par with MLIR’s built-in dialects, enabling seamless co-existence
of built-in dialects, our custom dialects, and third-party custom dialects.

To demonstrate a small example of a custom dialect, we create a miniature
stl dialect, which models some of the semantics of the C++ std::vector data
structure.

The std::vector is C++’s version of an automatically resizable array. Impor-
tantly for our scenario, the std::vector can be initialized as either empty or
with several elements.

// Empty initialization
std :: vector <int > vec1;

// Initialization with several elements
std :: vector <int > vec2{4, 1, 9, 10 };

Listing 3.18: Initialization of an std::vector object.

After the initialization, a new element can be added using the push_back method.

std :: vector <int > vec;
vec.push_back (12);

Listing 3.19: Demonstration of appending an element into an std::vector object.

Using our stl dialect, we would like to model solely these two operations:
initialization of an std::vector object and the push_back method. Consider the
following C++ snippet.

std :: vector <int > data;
data.push_back (1);
data.push_back (2);
data.push_back (3);
process (data); // Pass data further

Listing 3.20: Illustration of filling std::vector using the push back method.

The preceding snippet can be represented using a combination of our custom
stl dialect and the existing built-in dialects.

%data0 = stl.vector_constant [] : ! stl.vector <i32 >
%1 = arith.constant 1 : i32
%2 = arith.constant 2 : i32
%3 = arith.constant 3 : i32
%data1 = stl.push_back ( %data0 , %1) : ! stl.vector <i32 >
%data2 = stl.push_back ( %data1 , %2) : ! stl.vector <i32 >
%data3 = stl.push_back ( %data2 , %3) : ! stl.vector <i32 >
func.call @process ( %data3 ) : (! stl.vector <i32 >) -> ()

Listing 3.21: Filling an empty std::vector using push back. Expressed in MLIR.
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Firstly, the stl dialect contains a new parameterized type named vector<T>.
Since our original C++ snippet works with integers, we choose T = i32. As
we can also see in our snippet, all MLIR’s custom types are prefixed with an
exclamation mark followed by the name of the type’s dialect.

Secondly, the stl dialect defines the vector_constant operation, which creates
a value of type !stl.vector<T>. The vector_constant Op contains an array at-
tribute, whose elements (which can be empty) are used to initialize the pro-
duced !stl.vector<T> value.

Finally, to model the push_back method, we define the push_back operation, which
accepts the receiving stl.vector<T> value and a new element of type T. The
push_back Op produces a new vector with the provided value appended.

To create values of type i32, and to call the process function, we use the built-in
arith and func dialects.

With the semantics of our C++ snippet expressed completely in terms of MLIR
dialects, we can implement diverse compiler passes, which leverage the stl
dialect to reason about our program. For instance, we can implement an

optimization pass which converts our original snippet with several push_back
calls into a direct vector initialization.

%data = stl.vector_constant [1, 2, 3] : ! stl.vector <i32 >
func.call @process ( %data ) : (! stl.vector <i32 >) -> ()

Listing 3.22: Creating a directly initialized std::vector. Expressed in MLIR.

Do we really need a special dialect?

It is important to understand that optimizing the provided C++ snippet
(Listing 3.20) is not a straightforward transformation. Our optimization
pass relies on the knowledge of the precise semantics of the stl Ops.
For instance, in LLVM IR, calls to the push_back method are treated
as regular opaque function calls, which call into a function whose body
can be defined in a different translation unit. On the other hand, the
stl.push_back Op is fully self-contained and elementary, with no other
Ops needed to express its semantics.

The need to analyze possibly extensive function body restricts the ability
to fully understand the push_back’s semantics and side effects. As of
version 17.0.1, the LLVM-based C++ compiler Clang, cannot perform
such optimization for the x86-64 architecture, even with the -O3 and -lto
optimization options enabled. Instead of generating a single allocation
for three integers, Clang emits three separate memory allocation calls.

TableGen, Constraints, Interfaces
MLIR is implemented using C++. As a result, new custom dialects and com-
piler passes must be implemented using C++ as well. To avoid intricacies of
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the C++ language, MLIR provides a TableGen-based domain specific language
to simplify implementation of new dialects and compiler passes.

TableGen is a code generation tool created as a part of the LLVM project.
LLVM uses TableGen to facilitate C++ code generation for commonly imple-
mented constructs, such as LLVM IR elements[4]. Based on the successful
adoption within the LLVM project, TableGen was employed for MLIR as well,
providing a streamlined way of creating new compiler passes and dialects.

Although this text does not aim to provide comprehensive TableGen overview,
we provide an illustrative example to better understand the necessary steps for
defining a new MLIR Op. For this purpose, we’ll use an example of creating
the push_back operation, which was discussed in the previous section.

def STL_PushBackOp : STL_Op <" push_back ",
// Op ’s interfaces and multi - entity constraints
[ NoMemoryEffect, AppendVectorTypeConstraint ]> {

// One line documentation summary of this Op
let summary =

" Returns a copy of the input vector with a new element
appended. ";

// Full specification of this Op
let description = [{

" Creates a copy of the ‘data ‘ input vector and adds ‘value ‘
at the end of the new vector. The new vector is returned.
Element type of ‘data ‘ and type of ‘value ‘ must be the same.
"

Serves to model the standard ‘std :: vector :: push_back ‘
method.

}];

// Ops can have a list of named and typed arguments
let arguments = (ins STL_Vector : $data, AnyType : $value );

// And a list of named and typed results
let results = (outs STL_Vector : $output );

}

Listing 3.23: Definition of the push back operation using TableGen.

Starting at the top of our snippet, new MLIR operation must define its dialect
and mnemonic. Mnemonic is the operation’s name used in the MLIR’s textual
format.

STL_Op <" push_back ",

Listing 3.24: Definition of the push back’s mnemonic and dialect using
TableGen.

Secondly, using the summary and description fields, the operation can define
its one line documentation, respectively the full specification of its semantics.
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let summary = "/* ... */";
let description = "/* ... */";

Listing 3.25: Op’s specification uses summary and description fields.

The MLIR specification describes these two fields as the standard way for doc-
umenting the individual dialect components[6]. Conveniently, MLIR provides
a documentation generator tool which utilizes the summary and description
fields to generate documentation for the entire dialect.

Next, the operation defines its named and typed SSA parameters and results.

let arguments = (ins STL_Vector : $data, AnyType : $value );
let results = (outs STL_Vector : $output );

Listing 3.26: Definition of the push back Op’s inputs and results using
TableGen.

The push_back operation accepts a vector parameterized by the type T and a
new value of the same type T. Then, it produces a value of the same type as
the input vector value.

While specifying a single type for an input or result value is possible (e.g., i32
or i64), MLIR uses a more general concept of type constraints.

Constraints describe a set of allowed types. The most permissive constraint
is the AnyType constraint, which the push_back operation uses for the type of
the appended value. The AnyType is an MLIR’s built-in constraint and allows
the value to be of any type. Another example of a built-in constraint is the
AnyInteger constraint, which allows all integral types like i16 or i64.

Additionally, the push_back operation uses the custom STL_Vector constraint for
the input and output vector values. While we do not detail the implementation
of the STL_Vector, the STL_Vector constraint limits the value’s type to be of the
!stl.vector<T> type with arbitrary element type T.

A constraint specified directly next to an input or result value can define a
set of possible types for a single value. However, for the push_back operation,
single-value constraints are not sufficient. We need to use a constraint that
defines a relationship between multiple values. Specifically, we need to ensure
that the types of the input and output vectors are the same, and that the
element type T of the vectors matches the type of the appended value.

These requirements demand to define a multi-entity constraint. Multi-entity
constraints are again defined via TableGen and specified during the Op’s def-
inition. In our scenario, we can call such constraint AppendVectorTypeConstraint
and include it into a list right after the push_back’s mnemonic.
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def STL_PushBackOp : STL_Op <" push_back ",
[ NoMemoryEffect, AppendVectorTypeConstraint ]> {

Listing 3.27: Operations can constraint its values using multi-entity
constraints, such as the AppendVectorTypeConstraint.

Finally, in addition to multi-entity constraints, an operation can specify its
interfaces. MLIR interfaces programmatically convey the semantics of an op-
eration to compiler passes. In the case of the push_back Op, we specifiy the
NoMemoryEffect interface.

def STL_PushBackOp : STL_Op <" push_back ",
[ NoMemoryEffect , AppendVectorTypeConstraint > {

Listing 3.28: Operations can indicate its semantics to compiler passes using
interfaces, such as the NoMemoryEffect interface.

The NoMemoryEffect is a built-in interface which indicates that the operation
does not manipulate an external memory system. Compiler passes that rely
on this fact can leverage this interface to reason about the operation. Impor-
tantly, adding built-in MLIR interfaces such as the NoMemoryEffect to custom
Ops enables existing compiler passes to reason about new operations without
modifying the compiler pass. For instance, we could design a compiler pass
which traverses an MLIR program and eliminates every Op which causes no
side effects and its resultant value is not used. Such pass could rely exclusively
on the NoMemoryEffect interface to recognize such removable operations. This
approach allows for reuse of transformations and optimizations with minimal
additional effort.

While not presented in this text, TableGen allows to define many more proper-
ties of operations, such as the pretty-printed format or additional verifications
of the Op’s usage.
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Chapter 4
P4 Dialect

The objective of the P4 dialect is to serve as a straightforward translation
target for the P4 AST produced by p4c. Consequently, the P4 dialect preserves
the general structure of the P4 language, avoiding any loss of relevant source
information. This design enables optimizations and analyses that rely on the
structure of the original P4 program.

On the other hand, the P4 dialect takes advantage of the fact that it is not
meant to be written by hand and removes several P4 concepts primarily de-
signed for the convenience of human programmers. As we see later, this in-
volves explicitly capturing P4’s implicit data flows and simplifying P4’s calling
convention.

These design choices simplify subsequent data flow analysis, reduce the num-
ber of cases that require special care by dialect passes, and allow for parallel
processing of the IR.

The P4 dialect is introduced in terms of its mapping from the P4 language.
Even though the translation into the P4 dialect is performed from P4 AST, we
choose to present these conversions directly from the P4 language. Skipping
the intermediary P4 AST is better suited for the text format, while at the same
time does not introduce any ambiguity due to the close one-to-one mapping of
the P4 language to P4 AST.

Figure 4.1: This chapter introduces the P4 dialect elements in a context of
their mapping to the P4 language constructs.
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P4’s reference compiler p4c:

The P4 community maintains a reference P4 compiler called p4c.

“P4c is modular; it provides a standard frontend and midend which can
be combined with a target-specific backend to create a complete P4 com-
piler.” [18]

As described in Chapter 1, our dialects aim to provide an alternative
solution to some of the key design points of p4c.

In contrast to our MLIR-based solution, p4c offers a fixed-point IR in
the form of the P4 Abstract Syntax Tree (P4 AST). The P4 AST closely
mirrors the P4 language, even modeling concepts that introduce unnec-
essary complexity into subsequent passes. The P4 AST is supported by a
custom infrastructure developed and maintained by the P4 community.
Moreover, p4c delegates all P4 architecture-specific compiler passes to a
hardware-specific backend.

In this work, we only utilize the frontend part of p4c. Specifically, we use
the P4 AST generated by the p4c frontend as input into our MLIR-based
midend. We assume the input P4 AST represents a valid P4 program.

4.1 Types

P4 dialect mirrors P4’s types, offering a semantically equivalent counterparts
for all P4 types, with the exception of the void type. Additionally, P4 dialect
introduces the reference type, whose motivation and semantics we provide later
in this chapter.

The majority of P4 dialect types appear in the text that follows, and their map-
ping to the P4 types is apparent (e.g., header MyHeader → !p4.header<"MyHeader">).
Therefore, we list here only the types that require additional comments.

Integers: P4’s signed and unsigned fixed-width integers are modeled using
MLIR’s built-in signed and unsigned fixed-width integers denoted as uiW and
siW. For instance, bit<12> → ui12 and int<8> → si8.

Booleans: For P4 booleans, the P4 dialect uses MLIR’s built-in signless 1-bit
integer denoted as i1, with 1 representing true and 0 representing false. In the
textual format, MLIR allows printing the i1 type as bool, along with true and
false values.

Void: The P4 dialect does not include the void type. P4 extern methods and
functions that return a value of type void are modeled to have no return value,
therefore having no return type.
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4.2 Action

To define an action, P4 dialect introduces the p4.action operation. The action
Op declares a symbol and has a single attached region representing the action’s
body. This region must contain one or more basic blocks, representing CFG of
the action’s body.

action myAction () {}

p4.action @myAction () {
p4.return

}

Listing 4.1: Action definition.

To return from an action P4 dialect uses the p4.return terminator Op. Contrary
to P4, return operation is not implicitly assumed if it is missing. In case of a
missing return Op, IR’s verification fails.

To transfer control flow to the action’s region, or in other words, to call the
action, the P4 dialect utilizes the p4.call operation. This operation references
the target action using the action’s symbol. Similarly to P4, actions and action
calls do not return a value.

myAction ();

p4.call @myAction () : () -> ()

Listing 4.2: Action call.

Action operations contain zero or more SSA value parameters. Unlike in P4,
parameters in the P4 dialect do not have a direction.

action myAction (in int <8> arg0 , in bit <16 > arg1) {}

p4.action @myAction ( %arg0 : si8, %arg1 : ui16) {
p4.return

}

Listing 4.3: Action definition with parameters.

To produce values for an action call with arguments, we can use the p4.constant
operation which produces a constant of a given type and value. Similarly to
the arith.constant Op, the type and value are provided as compile-time known
MLIR attributes7.

7We cannot reuse the arith.constant Op, since it allows only integral and floating-point
constants which is not sufficient for P4.
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myAction (4, 2);

%1 = p4.constant 4 : si8
%2 = p4.constant 2 : ui16
p4.call @myAction (%1, %2) : (si8, ui16) -> ()

Listing 4.4: Action call with constant arguments.

Although we have already introduced the P4’s in, inout, and out parameter
directions, we have yet to describe the precise semantics of P4’s calling con-
vention. P4 follows the copy-in/copy-out calling convention. We intentionally
defer the introduction of the copy-in/copy-out convention until later in this
chapter to describe it in the broader context of its non-trivial implications for
the P4 dialect.

4.3 Control Block

The P4 control block is translated into the p4.control operation. Similarly to
the p4.action Op, the p4.control Op declares a symbol and contains a single
attached region. This region must include a single p4.apply operation, repre-
senting P4’s apply method. As with action Ops, the apply operation must
explicitly include the p4.return Op.

control MyControl (in int <8> arg0 , in bit <16 > arg1) {
apply {}

}

p4.control @MyControl {

p4.apply ( %arg0 : si8, %arg1 : ui16) {
p4.return

}

}

Listing 4.5: Control block definition.

Importantly, as can be seen in the preceding snippet, P4 dialect lexically moves
the control block’s arguments, making them direct parameters of the apply
method, instead of the control block.

This decision allows to define the p4.apply Op with the isolated-from-above
interface. The isolated-from-above interface is MLIR’s built-in interface which
indicates that the p4.apply Op cannot reference SSA values defined outside of
its region. As we will see later, we use the isolated-from-above interface for
p4.action Ops as well.

Apart from verifying that the operation does not truly reference any external
SSA values, MLIR treats all isolated-from-above operations as independent
IR units with no shared data structures. This allows transformations of each
isolated-from-above Op in parallel without any need for data structure locking,
effectively speeding up the compilation[6].
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On the other hand, this change in structure requires a corresponding adjust-
ment in the structure of all constructs defined within a control block. Consider
the following P4 snippet.

control MyControl (in int <8> arg0) {

action myAction (in int <8> arg1) {
int <8> localVar = arg0 + arg1;

}

apply {
myAction (5);

}

}

Listing 4.6: P4 action referencing a control block argument.

Here, myAction relies on the fact that P4 actions are not isolated-from-above and
directly references the arg0 parameter of the enclosing control block. However,
converting control block parameters into the apply method parameters results
in the arg0 parameter declaration no longer being visible inside the myAction
action Op.

To address this issue, we must first synthesize new parameters for all action
operations referencing the control block’s parameters. Secondly, we must pass
in the appropriate arguments at action call sites.

p4.control @MyControl {

// Action with new ‘arg0 ‘ synthesized parameter
p4.action @myAction ( %arg0 : si8, %arg1 : si8) {

%localVar = p4.add ( %arg0 , %arg1 ) : (si8, si8) -> si8
}

p4.apply ( %arg0 : si8, %arg1 : ui16) {
%five = p4.constant 5 : si5
// Action call with new synthesized argument
p4.call @myAction ( %arg0 , %five ) : (si8, si8) -> si8

}

}

Listing 4.7: P4 dialect action with synthesized parameter.

In addition to the previously discussed parallelization benefits, another ad-
vantage of this structural change is the consolidation of parameter handling
throughout the entire dialect. Specifically, each P4 dialect pass now only needs
to handle a single source of action inputs, simplifying the implementation of
compiler passes. This benefit becomes even more evident when considering the
implications of the P4 local elements, which we discuss later.

While for demonstration purposes we have focused solely on actions and the
apply method, as we will see later, a similar synthesis of parameters and argu-
ments is required for tables as well.
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4.4 Control Flow

Rationale
As discussed in Chapter 3, MLIR offers the flexibility to model control flow
within a region either using structured operations, such as those provided by
the built-in scf dialect, or through unstructured CFG with basic blocks and
arbitrary transitions between them, which are offered by the built-in cf dialect.

The semantics of P4’s control flow constructs do not differ from those of other
general-purpose languages, we therefore choose to not introduce special P4
dialect control flow operations. Instead, we leverage the scf and cf dialects.

P4 dialect operations can be combined with both structured and unstructured
control flow operations. In practical scenarios, structured control flow is ini-
tially used for high-level analysis, with a gradual transition to unstructured
basic blocks once the structure is no longer necessary. The exact combination
of structured and unstructured models should be guided by the requirements
of implemented analyses, transformations, and optimizations.

Arguably, the translation of P4 into unstructured basic blocks is more intrigu-
ing, and as such, it is the only one detailed in this text.

Unstructured Control Flow

action myAction (int <8> arg) {
int <8> localVar ;
if (arg > 0) {

localVar = 4;
} else {

localVar = 2;
}

}

p4.action @myAction (%arg : si8) {
ˆbb0:

%zero = p4.constant 0 : si8
%flag = p4.cmp (%arg, %zero ) gt : (si8, si8) -> i1
cf.cond_br %flag , ˆbb1, ˆbb2

ˆbb1:
%four = p4.constant 4 : si8
cf.br ˆbb3

ˆbb2:
%two = p4.constant 2 : si8
cf.br ˆbb3

ˆbb3:
p4.return

}

Listing 4.8: Action with an if-statement.

As can be seen in the above snippet, to model an if-statement, the P4 dialect
uses operations from the built-in cf dialect. In particular, it uses the cf.cond_br
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Op to model conditional jumps and the cf.br Op for unconditional jumps.

The P4 if-statement is modeled using four basic blocks: an entry block with a
conditional jump (ˆbb0), along with if (ˆbb1) and else (ˆbb2) blocks that contain
unconditional jumps into the last merge block (ˆbb3).

In our example, P4 uses the result of the arg > 0 comparison as the condition
value. For such comparison, the P4 dialect provides the p4.cmp operation. The
value produced by the p4.cmp Op is then passed into the cf.cond_br Op which
performs the transition into another basic block.

It is worth noting that this example demonstrates the interaction between
MLIR’s built-in dialect and our custom P4 dialect for the first time. Since
both the p4.cmp and cf.cond_br operations operate on values of the same i1 type,
the interaction maintains clear semantics. However, if the p4.cmp operation
produced a value of a different type, the P4 dialect would need to provide a
special cast operation to perform the conversion between the different type and
the i1 type.

4.5 SSA Form Conversion

MLIR requires that its IR follows the SSA form. However, in general, a P4
program is not in SSA form because P4 allows reassignment of variables, which
contradicts the SSA’s requirement that each variable is assigned only once.

As will be discussed later, the P4 dialect offers operations that initially allocate
all values into external memory instead of SSA registers. This approach allows
for a straightforward conversion of P4 values into MLIR values. However,
allocating all values into memory instead of SSA registers effectively eliminates
all benefits acquired by using the SSA form.

Although a subsequent compiler pass could convert the memory allocated val-
ues into SSA register values8, we instead choose to create an ad-hoc SSA form
over the P4 AST. Using this ad-hoc SSA form, we can translate the P4 AST
into the P4 dialect with values already allocated into SSA registers.

Consider the following snippet with the reassignment of the A variable and its
subsequent use after the if-statement.

action myAction (in int <8> arg) {
int <8> A;
if (arg > 0) {

A = 4;
} else {

A = 2;
}
int <8> result = arg + A // <-- ‘A‘ use

}

Listing 4.9: P4 action with a reassignment of the A variable.

8This approach is demonstrated by LLVM and its MemToReg pass[4].
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While operating on the input P4 AST, the creation of the ad-hoc SSA form
follows the standard SSA conversion algorithm described in Appendix A. The
ad-hoc SSA form for the preceding P4 snippet can be visualized by adding an
integral subscript to variables that were assigned multiple times and placing
ϕ-nodes where the control flow merges multiple versions of the same variable.

action myAction (in int <8> arg) {
int <8> A1 = undefined ;
if (arg > 0) {

A2 = 4;
} else {

A3 = 2;
}
A4 = phi(A2 , A3);
int <8> result = arg + A4

}

Listing 4.10: Ad-hoc SSA form of the Listing 4.9.

This ad-hoc SSA overlay over our original P4 snippet can be directly con-
verted into P4 dialect, as shown in the following snippet. Although we have
discussed the process of translating if-statements in the previous chapter, in
this case, we need to use a basic block parameter for the merge block (ˆbb3 ).
This basic block parameter corresponds to the only ϕ-node in the preceding
snippet. As discussed in Section 3.6, basic block parameters are an equivalent
representation of ϕ-nodes.

p4.action @myAction (%arg : si8) {
%A_1 = p4.undefined : si8
%flag = p4.cmp (%arg, %A_1) gt : (si8, si8) -> i1
cf.cond_br %flag , ˆbb1, ˆbb2

ˆbb1:
%A_2 = p4.constant 4 : si8
cf.br ˆbb3(%A_2 : si8)

ˆbb2:
%A_3 = p4.constant 2 : si8
cf.br ˆbb3(%A_3 : si8)

ˆbb3(%A_4: si8):
%res = p4.add (%arg, %A_4) : (si8, si8) -> si8
p4.return

}

Listing 4.11: P4 dialect action with basic block parameters.

Additionally, P4 allows declaring a variable without an initial value, in which
case the value of the variable is undefined. For this purpose, the P4 dialect
introduces the p4.undefined operation, which produces an SSA value of the given
type with an undefined value. The usage of the p4.undefined operation can be
seen in the preceding snippet as well.
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4.6 Translating P4’s Calling Convention

The P4 language follows the copy-in/copy-out calling convention, which has
non-trivial implications for the P4 dialect. Before we cover these implications,
it is important to describe the copy-in/copy-out semantics.

Copy-in/Copy-out Semantics
Each P4 parameter is assigned a type and can either be directionless or one
of three potential directions: in, out, or inout. These directions are specified
before the type in a parameter declaration; if no direction is explicitly stated,
the parameter is treated as directionless.

The in and directionless parameters cannot be written, only read. On the other
hand, both out and inout parameters can be read and written. Contrary to the
inout parameter, the initial value of the out parameter is undefined.

At the call site, if an argument is bound to an an out or inout parameter, it
must be an l-value, meaning it cannot be a temporary value, rather it must be
a reference to a memory storage.

action myAction ( inout int <8> arg) { /* ... */ }

int <8> val = 5;
myAction (val); // <-- allowed : val is an l- value
myAction (2 + 3) // <-- error : ‘2 + 3‘ produces a temporary value

Listing 4.12: An inout parameter must be bound to an l-value.

During an invocation, arguments are passed in according to the following steps.

1. Arguments are evaluated from left to right as they appear in the function
call expression.

2. Before evaluating the next argument, the value (can be an l-value) of the
argument is saved into a temporary.

3. The function is invoked with the temporaries as arguments. We are
guaranteed that the temporaries that are passed as arguments are never
aliased to each other, so this synthesized function call can be implemented
using call-by-reference.

4. On function return, the temporaries that correspond to out or inout ar-
guments are copied in order from left to right into the l-values saved in
step 2.

— P416 specification [15]

As can be seen in the following snippet, the listed steps can be illustrated by
a simple P4 action call with a semantically-equivalent pseudocode. Within the
pseudocode, we assume a call-by-reference calling convention.
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action foo(in int <8> x, out int <8> y, inout int <8> z);

int <8> a = 1;
int <8> b = 20;
foo(a, a, b);

a = 1
b = 20

// step 1 and 2
tmp1 = a
tmp2 = a
tmp3 = b

// step 3
foo(tmp1 , tmp2 , tmp3)

// step 4
a = tmp2
b = tmp3

Listing 4.13: Example of a call using copy-in/copy-out semantics.

The primary reason for using the copy-in/copy-out semantics instead of the
more common call-by-reference semantics is to limit the possible side-effects
of calling P4 externs. The P4 language does not impose restrictions on the
power of externs. Therefore, hypothetically, if call-by-reference was used, a P4
extern could store a reference to its arguments, which could be manipulated
asynchronously from the control plane or during the invocation of different
externs. This would severely limit a compiler’s ability to reason about a P4
program, restricting analysis and optimizations[15].

By using the copy-in/copy-out calling convention, we ensure that the extern
receives only a copy of its argument. Consequently, it becomes impossible for
a P4 extern to store a reference to a P4 variable. As a result, externs are
only able to modify their arguments during their invocation, enabling the P4
compiler to reason about values within a P4 program.

In Parameters
With the P4’s copy-in/copy-out calling convention clarified, we can discuss
its implications for conversion into MLIR, starting with the conversion of in
parameters.

All MLIR values adhere to the SSA form and are therefore immutable (they can
only be assigned once). These semantics directly correspond with the semantics
of in parameters, making their conversion into the P4 dialect straightforward.
We simply pass the corresponding SSA value into the p4.call operation.
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action myAction (in int <8> arg) { /* ... */ }

myAction (10);

p4.action @myAction (%arg: si8) { /* ... */ }

%10 = p4.constant 10 : si8
p4.call @myAction (%10) : (si8) -> ()

Listing 4.14: Conversion of an in parameter.

It is worth noting that we effectively skipped the second step of the copy-
in/copy-out calling convention, which requires copying the argument into a
temporary variable before the invocation. The primary purpose of this step is
to prevent overwriting of the variable during the evaluation of subsequent argu-
ments. However, as mentioned, all MLIR values are immutable, and therefore
the value cannot change before the invocation.

Reference Type
The conversion of out, inout, and directionless P4 parameters requires intro-
duction of a new type.

The P4 dialect provides a reference type parameterized with type T, denoted as
!p4.ref<T> (e.g., !p4.ref<si32>). Unlike other P4 dialect types, !p4.ref<T> does
not correspond to any P4 type. The !p4.ref<T> type represents a reference to
a mutable memory cell, capable of storing values of type T.

To allocate a mutable memory cell of type T, the P4 dialect defines the p4.alloc
operation, which produces an SSA value of type !p4.ref<T>.

%ref = p4.alloc : ! p4.ref <ui16 >

Listing 4.15: Allocation of ui16 memory cell.

Initially, the value stored inside the allocated memory cell is undefined. To
store and load a value into the cell, the P4 dialect uses the p4.store and p4.load
operations. These operations accept a reference to the memory cell, and in the
case of p4.store, an SSA value that should be stored into the cell.

// Allocate and initialize
%ref = p4.alloc : ! p4.ref <ui16 >
%42 = p4.constant 42 : ui16
p4.store (%ref, %42) : (! p4.ref <ui16 >, ui16) -> ()

// Load
%value = p4.load (%ref) : ! p4.ref <ui16 > -> ui16

Listing 4.16: Example store and load operations manipulating a memory cell.

The memory cell allocated via the p4.alloc operation remains allocated until
the control flow leaves the enclosing region. Such semantics correspond to the
stack allocation known from memory models of general-purpose languages.
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To align with the heavily constrained nature of the P4 language and prevent
introducing unnecessary expressiveness, the !p4.ref<T> type is subject to signif-
icant constraints regarding its usage.

Firstly, the reference type can be used as an operand only for a highly limited
number of P4 dialect operations. Secondly, the reference type is not permit-
ted to contain nested references, such as !p4.ref<!p4.ref<si32>>. Further, the
reference type cannot be stored within compound types such as structures and
headers. And finally, !p4.ref<T> is not allowed to be returned from externs nor
stored within a control plane.

InOut and Out Parameters
Having introduced the !p4.ref<T> type, we can describe the conversion of P4’s
out and inout parameters. To translate both out and inout parameters, we must
ensure that writes of P4 variables that occur within an action can be observed
after the action invocation as well. As a result, instead of using the original
value type T, we convert the type of the parameter to be !p4.ref<T>.

action foo(out int <8> arg1 , inout int <8> arg2) {
/* ... */

}

p4.action @foo( %arg1 : ! p4.ref <si8 >, %arg2 : ! p4.ref <si8 >) {
/* ... */

}

Listing 4.17: During out and inout parameter conversions, value types must be
converted to reference types.

Subsequently, as can be seen in the following snippet, the operations operating
on the reference parameters must use the p4.store and p4.load operations to
manipulate the referenced memory.

action foo(out int <8> arg1 , inout int <8> arg2) {
arg1 = 2;
arg2 = arg2 + 1;

}

p4.action @foo( %arg1 : ! p4.ref <si8 >, %arg2 : ! p4.ref <si8 >) {
// arg1 = 2;
%2 = p4.constant 2 : si8
p4.store ( %arg1 , %2) : (! p4.ref <si8 >, si8) -> ()

// arg2 = arg2 + 2;
%tmp1 = p4.load ( %arg2 ) : ! p4.ref <si8 > -> si8
%tmp2 = p4.add ( %tmp1 , %2) : (si8, si8) -> si8
p4.store ( %arg2 , %tmp2 ) : (! p4.ref <si8 >, si8) -> ()

}

Listing 4.18: Reference parameters must manipulate their memory cells with
store and load operations.
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At the call site, contrary to the arguments bound to the in parameters, the out
and inout arguments require additional handling to adhere to the copy-in/copy-
out calling convention.

The individual steps are outlined in the following snippet. To pass an out
or inout argument into a call operation, the copy-in/copy-out mechanism is
followed precisely, with a slight variation outlined for the out parameter.

action foo( inout int <8> arg) { /* ... */ }

int <8> var = 42;
foo(var);

p4.action @foo(%arg: ! p4.ref <si8 >) { /* ... */ }

// Allocate and initialize the argument.
%var = p4.alloc : ! p4.ref <si8 >
%42 = p4.constant 42 : si8
p4.store (%var, %42) : (! p4.ref <si8 >, si8) -> ()

// step 1 and 2:
// Alloc and init a temporary storage with the argument ’s value.
// Initialization is not necessary for an ‘out ‘ argument.
%tmp = p4.alloc : ! p4.ref <si8 >
p4.store (%tmp, %42) : (! p4.ref <si8 >, si8) -> ()

// step 3:
// Call the action with the temporary storage as an argument.
p4.call @foo(%tmp) : (! p4.ref <si8 >) -> ()

// step 4:
// Copy the value from the temporary storage
// back to the original argument.
%res = p4.load (%tmp) : ! p4.ref <si8 > -> si8
p4.store (%var, %res) : (! p4.ref <si8 >, si8) -> ()

Listing 4.19: Calling an action with a single inout parameter.

While initially, the calling convention is followed precisely, subsequent com-
piler passes can detect unnecessary operations for the particular call site and
eliminate them.

Directionless Parameters
The algorithm for the conversion of directionless parameters depends on the
type of the parameter.

If the type of the parameter is an extern object, the corresponding P4 dialect
type must be encapsulated into the !p4.ref<T> type. This scenario will be
described in more detail in the section dedicated to the conversion of P4 externs.

In any other case, the directionless parameters are converted as SSA values
with the corresponding type, with no special handling at the call site. In other
words, they are handled as if they were in parameters.
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action myAction (int <8> arg) { /* ... */ }

p4.action @myAction (%arg: si8) { /* ... */ }

Listing 4.20: Conversion of a directionless parameter

4.7 Tables

Definition of a P4 table is composed of a set of key-value pairs. As we dis-
cussed in Chapter 2, the P4 language specifies several keys along with their
corresponding type of values and semantics. These keys include: key, actions,
default_action, and size.

In the P4 dialect, a table declaration is modeled using the p4.table operation,
which declares a symbol and contains a single attached region. Following the
structure of the P4 language, the p4.table Op must be used within a p4.control’s
region.

control MyControl (in int <8> arg0 , in bit <24 > arg1)

action myAction1 () {}
action myAction2 () {}

// Table definition
table myTable {

key = { arg0: exact ; arg1: lpm; }
actions = { myAction1 ; myAction2 ; }
size = 1024 + 500 + 500;
default_action = myAction1 ;

}

apply {}

}

p4.control @MyControl {

p4.action @myAction1 () { /* ... */ }
p4.action @myAction2 () { /* ... */ }

// Table operation
p4.table @myTable ( /* ... */ ) {

/* ... */
}

p4.apply ( %arg0 : si8, %arg1 : ui24) {
p4.return

}

}

Listing 4.21: Table definition.

In the above snippet, while the P4 table is fully defined, the p4.table’s region
remains empty. We now go over each of the table’s properties and briefly
discuss their conversion into the P4 dialect.
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Key Property
For the key table property, the P4 dialect provides the p4.table_keys_list oper-
ation, acting as a container for the individual key components represented by
the p4.table_key operations.

key = { arg0: exact ; arg1: lpm; }

p4.table_keys_list {
p4.table_key @exact {

p4.init ( %arg0 ) : (si8)
}
p4.table_key @lpm {

p4.init ( %arg1 ) : (ui24)
}

}

Listing 4.22: Table key property conversion.

The p4.table_key Op contains a symbol referencing the type of the match algo-
rithm (e.g., @exact or @lpm) and a single attached region to define the specific
SSA value used for the key component. This region must be terminated by
passing the SSA value into the new p4.init operation.

The p4.init Op is not exclusive to the p4.table_key operation; it is used in
various contexts within the P4 dialect to generally “mark” an SSA value at
the end of a region. We will meet the p4.init Op at several other parts of this
text.

Size Property
In the P4 dialect, the size property is represented with the p4.table_size op-
eration with a single region. Similarly to the key property, this region must
be terminated with the p4.init operation. Following the P4’s constraints, the
p4.init within the p4.table_size’s region must receive a compile-time known
integral value.

size = 1024 + 500 + 500;

p4.table_size {
%1 = p4.constant 1024 : si64
%2 = p4.constant 500 : si64
%3 = p4.add (%1, %2) : (si64, si64) -> si64
%4 = p4.add (%3, %2) : (si64, si64) -> si64
p4.init (%4) : (si64)

}

Listing 4.23: Table size property conversion.

Action Properties
To represent P4’s actions and default_action table properties, the P4 dialect
provides the p4.table_actions_list and p4.table_default_action operations.

71



4. P4 Dialect

actions = { myAction1 ; myAction2 ; }
default_action = myAction1 ;

p4.table_actions_list {
p4.table_action @myAction1
p4.table_action @myAction2

}
p4.table_default_action {

p4.table_action @myAction1
}

Listing 4.24: Conversion of the actions and default action table properties.

To define the specific actions within the regions of these operations, the P4
dialect uses the p4.table_action Op with a symbol reference.

Table Invocation
To invoke a table, the P4 dialect uses the p4.call_table operation, which ref-
erences the symbol declared by the p4.table Op. Contrary to the p4.call op-
eration (which we used to invoke actions), the p4.call_table can be used only
from within the p4.apply’s region.

control MyControl (in int <8> arg0 , in bit <16 > arg1) {

table myTable { /* ... */ }

apply {
myTable . apply ();

}
}

p4.control @MyControl {

p4.table @myTable ( %arg0 : si8, %arg1 : ui16) { /* ... */ }

p4.apply ( %arg0 : si8, %arg1 : ui16) {
p4.call_table @myTable ( %arg0 , %arg1 )
p4.return

}
}

Listing 4.25: Conversion of a table invocation.

In the above snippet, the primary distinction is that the P4 dialect’s tables de-
clare their parameters. These parameters are declared as a part of the p4.table
operation. As a result, while the P4’s .apply() method call does not accept any
arguments, the corresponding p4.call_table is provided with two SSA operands.

Similarly to the p4.action operation, the p4.table Op is defined as isolated-from-
above. Consequently, if the table definition uses any of the control block’s
parameters, the p4.table operation must use newly synthesized parameters.

As already discussed regarding the p4.action Op, the isolated-from-above in-
terface allows parallel compilation and a simplified implementation of compiler
passes, which now have only a single source of input values.
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Note:
As P4 dialect types become more complex, their textual representation
becomes more verbose, even when using the pretty-printed form. In-
cluding all input and result types of every MLIR operation in a snippet
can be impractical. Therefore, in the following text, if a type is easily
deducible, it is omitted for brevity.

To conclude the conversion of tables, we provide the complete example that we
used throughout this section, including the p4.table’s region and invocation.

control MyControl (in int <8> arg0 , in bit <16 > arg1) {

table myTable {
key = { arg0: exact ; arg1: lpm; }
actions = { myAction1 ; myAction2 ; }
default_action = myAction1 ;
size = 1024 + 500 + 500;

}

apply { myTable . apply (); }
}

p4.control @MyControl {

p4.table @myTable ( %arg0 : si8, %arg1 : ui16) {
p4.table_keys_list {

p4.table_key @exact {
p4.init ( %arg0 ) : (si8)

}
p4.table_key @lpm {

p4.init ( %arg1 ) : (ui24)
}

}
p4.table_actions_list {

p4.table_action @myAction1
p4.table_action @myAction2

}
p4.table_default_action {

p4.table_action @myAction1
}
p4.table_size {

%1 = p4.constant 1024 : si64
%2 = p4.constant 500 : si64
%3 = p4.add (%1, %2) : (si64, si64) -> si64
%4 = p4.add (%3, %2) : (si64, si64) -> si64
p4.init (%4) : (si64)

}
}

p4.apply ( %arg0 : si8, %arg1 : ui16) {
p4.call_table @myTable ( %arg0 , %arg1 )
p4.return

}
}

Listing 4.26: Conversion of a table and its invocation.
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4.8 Structures and Headers

In the P4 dialect, similarly to the P4 language, before a header and struct types
can be referenced, they must be declared first. For this purpose, the P4 dialect
introduces the p4.struct and p4.header operations, which declare a symbol and
a single region. This region contains member declarations, which declare the
symbol and type of each member.

struct MyStruct {
MyHeader hdr;
bit <16 > f1;

}

header MyHeader {
int <8> f1;
int <8> f2;

}

p4.header @MyHeader {
p4.member_decl @f1 : si8
p4.member_decl @f2 : si8
p4.valid_bit_decl @__valid : i1

}

p4.struct @MyStruct {
p4.member_decl @hdr : ! p4.header <" MyHeader ">
p4.member_decl @f1 : ui16

}

Listing 4.27: Definition of a new struct and header types.

Once the types are declared using the p4.header and p4.struct operations, type
references of the declared symbols become valid. For example, if a p4.struct
Op declares the @MyStruct symbol, a type reference !p4.struct<"MyStruct"> be-
comes valid. Similarly, after a p4.header @MyHeader operation, we can use a type
reference of the form !p4.header<"MyHeader">.

Additionally, contrary to the P4 language, the p4.header’s region must declare
an extra @__valid member using the p4.valid_bit_decl operation. The valid bit
member is required to be of type i1 and lacks a direct counterpart in the original
P4 program.

The @__valid member models the hidden validity bit of a P4 header, which
is manipulated through the .setValid(), .setInvalid(), and .isValid() method
calls. Making the validity bit a regular header member aims to reduce the
number of necessary Ops and simplify subsequent compiler passes, which can
treat the validity bit manipulations as ordinary member writes and reads.

Initialization
The P4 language allows the creation of objects of composite types (i.e., headers
and structs) either as uninitialized or initialized. In the P4 dialect, to create
uninitialized composite objects, we reuse the p4.uninitialized Op, which is al-
ready used to create uninitialized variables of base types. On the other hand,
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to initialize all members of a composite object, the P4 language provides a suc-
cinct tuple syntax, which is modeled within the P4 dialect with the p4.tuple Op.
The following snippet demonstrates both types of composite object creation.

// Uninitialized ‘MyStruct ‘ value .
MyStruct myStruct ;

// Inititialized ‘MyHeader ‘ value .
MyHeader myHdr = {4, 2};

// Uninitialized ‘MyStruct ‘ value.
%myStruct = p4.uninitialized : ! p4.struct <" MyStruct ">

// Inititialized ‘MyHeader ‘ value.
%4 = p4.constant 4 : si8
%2 = p4.constant 2 : si8
%t = p4.constant true : bool
%myHdr = p4.tuple (%4, %2, %t) : ! p4.header <" MyHeader ">

Listing 4.28: Example of definition of struct and header values.

According to the P4 specification, when a header is initialized using the tu-
ple syntax, its validity bit is automatically set to true[15]. This behavior is
reflected within the above MLIR snippet by explicitly initializing the header’s
last @__valid field to true as well.

Member Access and Write
Besides creating SSA struct and header values, the P4 dialect allows to allo-
cate values of composite types into memory as well. The type of allocation
determines which P4 dialect operations are used to access and modify their
members.

To retrieve a member of an SSA struct or header value, the P4 dialect intro-
duces the p4.get_member operation. Given a composite value and a symbol of its
member, the p4.get_member Op copies the member value into an SSA register.

MyStruct myStruct ;
bit <16 > var = myStruct .f1;

%myStruct = p4.uninitialized : ! p4.struct <" MyStruct ">
%var = p4.get_member ( %myStruct ) @f1 : ui16

Listing 4.29: Member access of an SSA allocated struct value.

To access a member of a memory allocated composite value, the P4 dialect
uses the p4.get_member_ref operation, which accepts a member symbol and a
!p4.ref<T> reference of a composite value. The p4.get_member_ref Op produces a
!p4.ref<T> reference of the member. This member reference can then be loaded
into an SSA register using the previously introduced p4.load Op.
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MyStruct myStruct ;
bit <16 > var = myStruct .f1;

%myStruct = p4.alloc : ! p4.ref <! p4.struct <" MyStruct ">>
%ref = p4.get_member_ref ( %myStruct ) @f1 : ! p4.ref <ui16 >
%var = p4.load (%ref) : (! p4.ref <ui16 >) -> ui16

Listing 4.30: Member access of a memory allocated struct.

Similarly, to modify a member of a memory allocated composite value, the P4
dialect uses the p4.store Op.

MyHeader myHdr ;
myHdr .f1 = 50;

%myHdr = p4.alloc : ! p4.ref <! p4.header <" MyHeader ">>
%ref = p4.get_member_ref ( %myHdr ) @f1 : ! p4.ref <si8 >
%50 = p4.constant 50 : si8
p4.store (%ref, %50) : (! p4.ref <si8 >, si8)

Listing 4.31: Member write of a memory allocated header.

It is worth noting that the P4 dialect does not currently allow modification of
members of SSA register allocated values.

4.9 Local Elements

As covered in Chapter 2, the P4 language allows to initialize a set of variables
before the apply method invocation. These variables, called local elements, are
lexically defined within the control block, among tables and actions.

Local elements can then be referenced from all other constructs which are
lexically below and within the control block. For example, in our SIPR protocol
implementation, we used the shouldExit local element, which was initialized to
false and set to true inside the discard action. The value of the shouldExit local
element was then used to control an early exit from the apply method.

Considering we have decided to define the P4 dialect Ops as isolated-from-
above, the local elements are no longer visible from apply methods, actions,
nor tables. They will therefore need a special handling during translation.

Similarly to the action arguments and tables, we choose to synthesize new
parameters which are used to pass the local elements into the isolated-from-
above constructs as arguments. Consider the following example, where the
myAction action modifies a local element of the enclosing control block. As a
result, the corresponding p4.action Op must contain an additional parameter.
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control MyControl () {
// Local element definition
bit <16 > localElem = 42;

action myAction () {
localElem = 10;

}

apply { myAction (); }
}

p4.control @MyControl {

p4.action @myAction ( %localElem : ! p4.ref <ui16 >) {
%10 = p4.constant 10 : ui16
p4.store ( %localElem , %10) : (! p4.ref <ui16 >, ui16)
p4.return

}

p4.apply () { /* ... */ }
}

Listing 4.32: Conversion of an action which references a local element.

Crucially, the above MLIR snippet does not model the local element initializa-
tion; i.e., there are no corresponding Ops above the p4.action operation. For
the P4 dialect, we choose to move local elements initialization to the beginning
of the p4.apply’s region.

This design effectively eliminates the concept of local elements from the P4
dialect, simplifying all subsequent compiler passes, which can treat local ele-
ments as ordinary local variables. Consider the following snippet, which fills
the p4.apply’s region which we have omitted in the preceding snippet.

control MyControl () {
bit <16 > localElem = 42;

action myAction () { /* ... */ }

apply { myAction (); }
}

p4.control @MyControl {
p4.action @myAction ( %localElem : ! p4.ref <ui16 >) { /* ... */ }

p4.apply () {
// Local element initialization
%42 = p4.constant 42 : ui16
%localElem = p4.alloc : ! p4.ref <ui16 >
p4.store ( %localElem , %42) : (! p4.ref <ui16 >, ui16)

p4.call @myAction ( %localElem ) : (! p4.ref <ui16 >)
p4.return

}
}

Listing 4.33: Conversion of local elements initialization.
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Once the local element is initialized, its value is passed into the action in place of
the newly synthesized arguments. This way the local element can be modified
from within the isolated-from-above action.

4.10 Externs

P4 externs declare interfaces for functionalities which are backed by the used
P4 architecture. The semantics of P4 externs are either documented by the
P4 architecture itself (e.g., the Counter extern in our Simple Architecture), or,
in case of the packet_in and packet_out externs, directly by the P4 specifica-
tion. The P4 source code merely declares available externs, which provides a
convenient way for a compiler to verify their use.

An extern declaration consists of its name, methods, and constructors. In
the P4 dialect, the P4’s structure of extern declarations is replicated by the
p4.extern_class, p4.extern, and p4.constructor operations. To demonstrate the
conversion of P4 externs, we consider our SA Counter extern, with a slightly
altered functionality. This new Counter provides a constructor to initialize its
state with an arbitrary int<8> value. It also offers the add methods which
increment the Counter by one or by an arbitrary int<8> value. Finally, to enable
querying of the counter’s state from within the P4 program, we add the get
method which returns the current counter state.

extern Counter {
Counter (int <8> init);
void add(int <8> value );
void add ();
int <8> get ();

}

p4.extern_class @Counter {
p4.constructor @Counter_1 (si8)
p4.extern @add_1 (si8)
p4.extern @add_0 ()
p4.extern @get_1 () -> si8

}

Listing 4.34: Conversion of the modified Counter extern.

Interestingly, the P4 dialect counterpart modifies the names of the Counter’s
constructor and methods. This alteration is necessary due to the fact that P4
allows to overload methods and constructors, using the same name for multiple
declarations inside a single extern. On the other hand, the MLIR’s symbol
system mandates a unique name for each of the symbols. As a result, to each
MLIR symbol we simply add a number of its parameters as a suffix, which
makes sure the names within the extern remain unique. This simple naming
scheme is possible due to the fact that the P4 specification allows overloading
of methods and constructors based solely on the number of input parameters.
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Instantiation
P4 allows instantiation of extern object variables either in a global namespace
or as a local element.

// Global extern instantiation
Control (10) globalCounter ;

control MyControl () {
// Local element instantiation
Counter (0) counter ;

apply { /* ... */ }
}

Listing 4.35: Instantiation of a Counter object as a local element and a global.

To define a global object, the P4 dialect introduces the p4.global operation.

p4.global @globalCounter : ! p4.extern_class <" Counter "> {
%1 = p4.constant 10 : si8
p4.init @Counter_1 ! p4.extern_class <" Counter "> (%1) : (si8)

}

Listing 4.36: Global Counter extern object definition.

The p4.global operation declares a symbol and a data type of the object. Ad-
ditionally, the p4.global Op contains a single attached region which contains
Ops instantiating the object. This region must be terminated by the p4.init
Op, which specifies the symbol of the used constructor and its arguments.

In case of the object instantiation within a control block, we can no longer
perform the same structural transformation which we did for the local elements.
For the local elements, we could have moved their initialization Ops to the
beginning of the apply method, where they are evaluated during every apply
method invocation (for each new packet). On the other hand, the P4 extern
objects are stateful, meaning its initialization happens only once, before the
first packet arrives.

Therefore, in the P4 dialect, the objects within a control block stay lexically
among tables and actions. For their initialization we reuse the p4.member_decl
Op, which otherwise behaves exactly the same as the p4.global Op.

p4.control @MyControl () {
// Counter extern object definition
p4.member_decl @counter : ! p4.extern_class <" Counter "> {

%1 = p4.constant 0 : si8
p4.init @Counter_1 ! p4.extern_class <" Counter "> (%1)

}

p4.apply { /* ... */ }
}

Listing 4.37: Instantiation of a Counter object within a control block.
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Calling Extern Methods

To invoke a method of an extern object, we introduce the p4.call_method into
the P4 dialect. This operation expects a !p4.ref<T> reference to the extern
object value, the method’s symbol, and the method’s arguments.

Since both types of extern object definitions declare a symbol and not an SSA
value, to obtain a !p4.ref<T> reference, we must first use a materializing Op.
The type of a materializing Op depends on the type of the object definition.

To materialize a global object value, we use the new p4.addressof Op, which
simply accepts a symbol of the object instance and produces a reference to it.

p4.global @cnt : ! p4.extern_class <" Counter "> { /* ... */ }

%ref = p4.addressof @cnt : ! p4.ref <! p4.extern_class <" Counter ">>

Listing 4.38: Global Counter object materialization.

This materialized reference can then be passed into the p4.call_method Op to
invoke an extern method.

%res = p4.call_method %ref @get_0 ()
: (! p4.ref <! p4.extern_class <" Counter " >>) -> si8

Listing 4.39: Calling a method of a Counter instance.

The process of materializing an extern object defined within a control block
is analogical to the materialization of a global extern object. The only dif-
ference is in the used Op, where instead of the p4.addressof Op we reuse the
p4.get_member_ref Op.

%ref = p4.get_member_of @cnt
: ! p4.ref <! p4.extern_class <" Counter ">>

Listing 4.40: Materialization of a Counter object defined within a control block.

4.11 Packet Externs

While most externs are provided by P4 architectures, the P4 language itself
introduces abstractions over packet data through the packet_in and packet_out
extern objects. These represent an incoming packet and outgoing packet buffer,
respectively.

The semantics of packet_in and packet_out externs are fully defined by the P4
standard. As a result, the P4 dialect can provide a special set of elements
which enable to better capture the semantics of these objects within the IR.
Such elements can be utilized by compiler passes which are better implemented
over a model which makes a distinction between packet externs and other, P4
architecture, externs.
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These elements include new data types for each of the externs, !packet_in and
!packet_out, along with two new operations, p4.extract and p4.emit, which serve
to model the extract and emit methods, respectively.

The usage of these elements will be demonstrated in the following section.

4.12 Parser Block

Similarly to the control block, the P4 dialect conversion of the parser block
mostly follows the general structure of its P4 counterpart. However, we ac-
knowledge that the P4 dialect is not meant to be handwritten and therefore
does not need to capture many aspects of P4 that exist primarily for the con-
venience of human programmers.

One change the P4 dialect makes in the structure of a P4 parser block is the
addition of the apply method. A P4 parser begins its execution inside the
start state. Additionally, similarly to the control block, a P4 parser allows the
definition of local elements, which are lexically defined above all states, but are
semantically initialized before each parser invocation.

For p4.control, we moved local elements to the beginning of the apply method
and converted them into ordinary local variables. To perform the same trans-
formation for the parser block, we need a starting block where we can insert the
initialization operations. While one might think to insert them at the begin-
ning of the start state, it is important to remember that parser states express
a graph, and graphs can contain cycles. If the start state is a part of a cycle,
we end up re-initializing local elements on each visit to the start state.

For this reason, we synthesize an apply method, which is invoked once for each
packet. In addition to initializing local elements, it contains an unconditional
transition into the start state. This design explicitly marks the initial state of
the parse graph, instead of relying on a state with a special name.

parser MyParser ( packet_in wire , out MyHeader pkt) {

int <8> localElem = 10;

state start { /* ... */ }
}

p4.parser @MyParser {
p4.state @start ( %wire : ! p4.packet_in , %localElem : si8) {

/* ... */
}

p4.apply ( %wire : ! p4.packet_in ,
%pkt: ! p4.ref <! p4.header <" MyHeader " >>) {

%localElem = p4.constant 10 : si8
p4.transition @start ( %wire , %localElem ) : ()

}
}

Listing 4.41: Parser block definition.
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It is important to note that all key design decisions introduced for the p4.control
Op apply to the p4.parser Op as well: The parser block parameters are moved
directly into the apply method, and both the apply method and parser states
are defined as isolated-from-above. Consequently, this necessitates the intro-
duction of parameters for the parser states, which are missing in their P4
counterparts.

4.13 Parser Transitions

P4 provides both unconditional and conditional state transitions, where every
parser state must terminate with one of these transitions. Additionally, P4
defines implicit accept and reject states, signifying parsing success and failure,
respectively.

In the P4 dialect, the unconditional parser state transition is represented using
the p4.transition Op, along with special operations for transitioning into the
accept and reject states.

// Transition into the ‘myState ‘ state
transition myState ;

// Transition into the implicit ‘accept ‘ state
transition accept ;

// Transition into the implicit ‘reject ‘ state
transition reject ;

// Transition into the ‘myState ‘ state
p4.transition @myState (/* ... */)

// Transition into the implicit ‘accept ‘ state
p4.parser_accept

// Transition into the implicit ‘reject ‘ state
p4.parser_reject

Listing 4.42: Examples of unconditional parser state transitions.

The conditional transitions involve listing possible cases, where each case con-
sists of a pattern and a target parser state. If the provided values successfully
match one of these patterns, a transition into the indicated state occurs.

state start {
bit <8> var1 = 4;
int <16 > var2 = 20;
transition select (var1 , var2) {

(1.. 10 , 3): myState1 ;
(1, 2): myState2 ;
_: reject ; // <-- default case

}
}

Listing 4.43: Example of a P4 conditional transition.
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To support conditional transitions, the P4 dialect introduces multiple new op-
erations. The following snippets gradually build the P4 dialect representation
of the conditional transition from the preceding snippet.

The p4.select_transition operation serves as a container for possible cases. Each
case is defined by the p4.select_transition_case Op. Additionally, the list of
cases must include a single p4.select_transition_default_case operation, which
contains operation indicating where to transition if none of the other cases
match.

%var1 = p4.constant 4 : ui8
%var2 = p4.constant 20 : si16
p4.select_transition %var1 , %var2 : (ui8, si16) {

p4.select_transition_case {
/* ... */

}
p4.select_transition_case {

/* ... */
}
p4.select_transition_default_case {

p4.parser_reject
}

}

Listing 4.44: Conditional transition with the case bodies elided.

Continuing into a p4.select_transition_case operation, a single case comprises
of a p4.select_transition_pattern and a transition Op. In this example, both
patterns consist of two components. Therefore, p4.select_transition_pattern
must mark two SSA values of type !p4.set, which represents a set of numbers.
Such set is created using the p4.range(%from, %to) operation, producing a set of
all numbers from the [%from, %to] interval.

// (1 ..10, 3): myState1 ;
p4.select_transition_pattern {

%1 = p4.constant 1 : ui8
%10 = p4.constant 10 : ui8
%3 = p4.constant 3 : si16

// (1 ..10)
%set1 = p4.range (%1, %10) : (ui8, ui8) -> ! p4.set <ui8 >

// 3
%set2 = p4.range (%3, %3) : (si16, si16) -> ! p4.set <si16 >

// (1 ..10, 3)
p4.init ( %set1 , %set2 ) : (! p4.set <ui8 >, ! p4.set <si16 >)

}

Listing 4.45: Definition of a single pattern.

Finally, with the pattern created, we can add the second part of each transition
case — the transition Op. The complete case with the pattern and transition
operation can be seen in the following snippet.
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p4.select_transition_case {
p4.select_transition_pattern {

%1 = p4.constant 1 : ui8
%10 = p4.constant 10 : ui8
%3 = p4.constant 3 : si16
%set1 = p4.range (%1, %10) : (ui8, ui8) -> ! p4.set <ui8 >
%set2 = p4.range (%3, %3) : (si16, si16) -> ! p4.set <si16 >
p4.init ( %set1 , %set2 ) : (! p4.set <ui8 >, ! p4.set <si16 >)

}
p4.transition @myState1 (/* ... */)

}

Listing 4.46: P4 dialect - Definition of a complete transition case
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Chapter 5
Simple Architecture Dialect

The P4 language specification presents numerous opportunities to extend or
further constrain its core features. These flexible aspects of the specification
are intended to be precisely defined by the P4 architecture in use.

In addition to precisely defining the semantics of the core language features,
a P4 architecture specifies how the packet processing pipeline looks: which
blocks it contains and which of these blocks are programmable by P4. For
example, the Simple Architecture (SA) defines three programmable blocks: the
parser, match-action pipeline, and deparser. The SA also specifies the order
in which these blocks are executed: The packet is initially processed by the
parser and then continues through the match-action pipeline before being sent
to the deparser.

A P4 architecture also specifies various exceptional control flows throughout
the pipeline and how these exceptional control flows are triggered. For example,
the SA specifies that transitioning into the reject state within the parser causes
the packet to be immediately discarded. Also, assigning zero to the bit<2> port
in the match-action pipeline parameter causes the packet to be discarded as
well, skipping the deparser.

Moreover, a P4 architecture defines externs, which expose additional function-
ality that cannot be simply expressed by P4 and is expected to be backed by
specialized hardware units. The SA offers the Counter extern, which provides
an interface for a persistent counter that maintains its state across individual
processed packets.

All of these properties of a P4 architecture offer various opportunities for a
compiler. Such opportunities can include program analysis, as well as opti-
mizations that leverage detailed knowledge of the pipeline’s control flow. For
example, if for a given program, the SA parser transitions into the reject state
for all packets whose field foo is zero, then checking if foo == 0 within the de-
parser will always result in false and can therefore be replaced by a constant
Op.

Such program transformations are highly dependent on the specifics of the
chosen P4 architecture and should thus be part of a P4 architecture dialect.
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A P4 architecture dialect should primarily be viewed as a set of compiler passes
which exploit additional information that is provided by the chosen P4 archi-
tecture. This perspective suggests the kind of IR elements that an architecture
dialect should contain: IR elements that allow for modeling the program in a
way that is natural for the required compiler passes.

Using this simple guide, we will demonstrate a concrete scenario for the Simple
Architecture. We will create the SA dialect, which can co-exist with the P4
dialect and assist in implementing transformations utilizing the SA semantics.

Figure 5.1: This chapter introduces the SA dialect elements and demonstrates
its usage during optimizations.

5.1 Counter

The SA provides a single extern object named Counter. Counter provides an
abstraction of a counter which persists its state across multiple packets. The
P4 dialect declaration of the Counter declaration looks as follows.

p4.extern_class @Counter {
p4.constructor @Counter_1 (ui8)
p4.extern @increment_0 ()
p4.extern @add_1 (ui8)
p4.extern @get_0 () -> ui8

}

Listing 5.1: P4 dialect declaration of the Counter extern

The Counter’s constructor initializes its state to the given value. Subsequently,
an instance of the Counter extern can be incremented by one, incremented by
a given value, or queried for its state. Additionally, at this point, we add an
extra piece of specification for the Counter: The SA Counter defines that if its
state overflows, it results in undefined behavior. In other words, our program
transformations can assume that an instance of a Counter never overflows.

Upon examining the Counter declaration, it becomes evident that its interface
was designed with human programmers in mind. The increment method appears
redundant, as its semantics can be equivalently expressed by invoking the add
method with a value of 1 as an argument.

Furthermore, the P4 dialect’s approach of listing the entire Counter interface
via declaration may become cumbersome during implementation of IR passes.
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Although technically sound, this approach could lead to code being driven by
numerous string comparisons in practice. For instance, to identify the Counter
type, one would need to verify that a given !p4.extern_class<"Counter"> type
indeed contains the string "Counter". Similarly, to recognize a call of the add
method, one would need to inspect whether the p4.call_method Op references the
string "add_1". Such an approach could potentially complicate and introduce
errors in the implementation of compiler passes.

To address these practical issues, we can introduce a new Counter type and
a set of native Counter Ops within the SA dialect. This approach significantly
enhances the convenience and type safety9 of implementing SA compiler passes.

We name the new SA dialect type !p4sa.counter, and in the following snippet,
we demonstrate the new SA dialect Counter Ops alongside their mapping to the
P4 dialect Ops.

// %cnt = p4.addressof @counter
// : !p4.ref <! p4.extern_class <" Counter ">>
%cnt = p4.addressof @counter : ! p4.ref <! p4sa.counter >

// p4.call_method %cnt @increment_0 ()
%1 = p4.constant 1 : ui8
p4sa.counter_add (%cnt, %1)

// call_method %cnt @add_1 (%5)
%5 = p4.constant 5 : ui8
p4sa.counter_add (%cnt, %5)

// %count = call_method %cnt @get_0 () : ui8
%count = p4sa.counter_get (%cnt) : ui8

Listing 5.2: SA dialect conversion patterns for the Counter.

It is worth noting, that the SA dialect does not contain a corresponding Op for
the increment method. As we have already explained, this method is redundant
and can be replaced by calling the p4sa.counter_add Op with 1 as an argument.

Furthermore, while not detailed in this text, the SA dialect includes a compiler
pass that traverses the IR, and replaces the P4 dialect Counter Ops with their
native SA dialect counterparts. This pass also removes the P4 dialect Counter
declaration, which is now redundant.

5.2 SA Dialect Optimizations

With the introduction of the Counter SA dialect Ops, we can dive into a con-
crete example of dialect optimizations. However, it is important to note that we
have not specified the concrete hardware architecture on which our programs
will run; we only know that our P4 programs are written against the Simple
Architecture. Consequently, the scope of optimizations we can implement and
offer as part of the SA dialect is limited. Generally, we should focus on trans-
formations that benefit all possible hardware targets. Classic examples of such
IR transformations include dead code elimination and constant propagation.

9Each MLIR Op corresponds to a C++ class.
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To illustrate these transformations, we can consider the following P4 snippet
programmed against the SA architecture. This snippet already utilizes the SA
dialect Counter Ops.

p4.global @counter : ! p4.ref <! p4sa.counter >

p4.control @MyPipe {
p4.apply (%hdr: ! p4.ref <! p4.header <" MyHeader ">>,

%port : ! p4.ref <ui2 >) {
/* ... */

// Store the output port into a header field
%ref = p4.get_member_ref (%hdr) @bridged_port
p4.store (%ref, %port )

p4.return
}

}

p4.control @MyDeparser {
p4.apply (%hdr: ! p4.ref <! p4.header <" MyHeader ">>, /* ... */) {

// Increment the counter by 1
%cnt = p4.addressof @counter
%1 = p4.constant 1
p4sa.counter_add (%cnt, %1)

// Check if counter > 0
%0 = p4.constant 0
%state = p4sa.counter_get (%cnt)
%res1 = p4.cmp ( %state , %0) gt : bool

// Check if port > 0
%ref = p4.get_member_ref (%hdr) @bridged_port
%port = p4.load (%ref)
%res2 = p4.cmp ( %port , %0) gt : bool

// If counter > 0 && port > 0, increment counter by 2
%res3 = p4.and ( %res1 , %res2 ) : bool
scf.if %res3 {

%2 = p4.constant 2
p4sa.counter_add (%cnt, %2)

}

p4.return
}

}

Listing 5.3: Example of SA dialect optimizations (1).

The snippet demonstrates an excerpt from a complete program, showing im-
plementation of the SA match-action pipeline and deparser. Firstly, at the
very top, we have defined an instance of a Counter extern. Further, within the
match-action pipeline, we store the output port into the bridged_port field of
the packet. Subsequently, the packet progresses within the deparser. Inside
the deparser, we first increment the counter by one, and if the state of the
counter and the bridged_port header field are greater than zero, we additionally
increment the counter by two.
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An initial observation can be made about the comparison of the output port
(stored within the bridged_port header field) within the deparser. As the Simple
Architecture defines, if the match-action pipeline sets the output port to zero,
the packet is discarded and does not continue into the deparser. Consequently,
the value of the output port inside the deparser can never be zero, and the
result of checking the port for positivity is always true. Therefore, the p4.cmp
operation can be simply replaced by the p4.constant Op, and the Ops retrieving
the bridged_port field eliminated. The result of these transformations are shown
in the following snippet.

p4.global @counter : ! p4.ref <! p4sa.counter >

p4.control @MyDeparser {
p4.apply (%hdr: ! p4.ref <! p4.header <" MyHeader ">>, /* ... */) {

// Increment the counter by 1
%cnt = p4.addressof @counter
%1 = p4.constant 1
p4sa.counter_add (%cnt, %1)

// Check if counter > 0
%0 = p4.constant 0
%state = p4sa.counter_get (%cnt)
%res1 = p4.cmp ( %state , %0) gt : bool

// Check if port > 0 <-- optimized
%res2 = p4.constant true : bool

// If counter > 0 && port > 0, increment counter by 2
%res3 = p4.and ( %res1 , %res2 ) : bool
scf.if %res3 {

%2 = p4.constant 2
p4sa.counter_add (%cnt, %2)

}

p4.return
}

}

Listing 5.4: Example of SA dialect optimizations (2).

The second observation uses the SA dialect’s understanding of the Counter ex-
tern’s semantics. In our snippet, we increment the counter extern by one and
subsequently check its state for positivity. Given that the counter tracks its
state as an unsigned integer, and considering our definition in this chapter that
overflow results in undefined behavior, we can deduce that such a comparison
must always be true. Therefore, similarly to the previous case, we can replace
this comparison with a constant.
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p4.global @counter : ! p4.ref <! p4sa.counter >

p4.control @MyDeparser {
p4.apply (%hdr: ! p4.ref <! p4.header <" MyHeader ">>, /* ... */) {

// Increment the counter by 1
%cnt = p4.addressof @counter
%1 = p4.constant 1
p4sa.counter_add (%cnt, %1)

// Check if counter > 0 <-- optimized
%res1 = p4.constant true : bool

// Check if port > 0 <-- optimized
%res2 = p4.constant true : bool

// If counter > 0 && port > 0, increment counter by 2
%res3 = p4.and ( %res1 , %res2 ) : bool
scf.if %res3 {

%2 = p4.constant 2
p4sa.counter_add (%cnt, %2)

}

p4.return
}

}

Listing 5.5: Example of SA dialect optimizations (3).

Further, the p4.and Op now receives two constant true values. Such opera-
tion can be folded into a true constant, resulting in converting the conditional
counter increment to an unconditional one.

p4.global @counter : ! p4.ref <! p4sa.counter >

p4.control @MyDeparser {
p4.apply (%hdr: ! p4.ref <! p4.header <" MyHeader ">>, /* ... */) {

// Increment the counter by 1
%cnt = p4.addressof @counter
%1 = p4.constant 1
p4sa.counter_add (%cnt, %1)

// Increment the counter by 2
%2 = p4.constant 2
p4sa.counter_add (%cnt, %2)

p4.return
}

}

Listing 5.6: Example of SA dialect optimizations (4).

Finally, since our dialect understands the exact effects of the p4sa.counter_add
Op, the two sequential p4sa.counter_add operations can be safely merged into a
single one, resulting in the final version of the optimized deparser.
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p4.global @counter : ! p4.ref <! p4sa.counter >

p4.control @MyDeparser {
p4.apply (%hdr: ! p4.ref <! p4.header <" MyHeader ">>, /* ... */) {

// Increment the counter by 3
%cnt = p4.addressof @counter
%3 = p4.constant 3
p4sa.counter_add (%cnt, %3)

p4.return
}

}

Listing 5.7: Example of SA dialect optimizations (5).

The shown transformations are primarily supposed to demonstrate a general
philosophy of P4 architecture dialects. We aim to showcase what kind of com-
piler passes a P4 architecture dialect should contain, how can a dialect use the
context of the used P4 architecture, and how can such passes be supported
by additional IR elements. In practical scenarios, while these transformations
remain part of a dialect, they should be integrated into generalized data-flow
and pattern matching algorithms.
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Chapter 6
Compiling P4/SA Dialects to LLVM

This chapter aims to illustrate a conversion of a subset of the P4 and SA di-
alects into a representation which models abstractions closer to the underlying
hardware. Such lowering must address actual implementation details of var-
ious P4 constructs, and together with preceding chapters forms a complete
walkthrough of a compilation pipeline.

For the final conversion, we choose the LLVM. The LLVM system offers a
diverse range of IR components which are conceptually close to hardware in-
structions. Importantly for our scenario, the LLVM IR offers a possibility to
showcase a conversion from P4-specific dialects into representations which were
not designed with P4 in mind.

6.1 LLVM Dialect

While the LLVM is an external system10, it is popular enough that the MLIR
community deemed it worthwhile to offer a possibility to use the MLIR infras-
tructure even when working with LLVM. This is achieved by offering an LLVM
dialect as one of the built-in dialects.

The llvm dialect serves as a wrapper around a subset of LLVM’s IR elements[26].
While functioning within the constraints of MLIR, the llvm dialect offers a
collection of Ops which map one-to-one to their LLVM counterparts.

// LLVM IR
%a = add i32 5, 7

// LLVM dialect
%5 = llvm.mlir.constant (5 : i32)
%7 = llvm.mlir.constant (7 : i32)
%a = llvm.add %5, %7 : i32

Listing 6.1: Example of adding two numbers in the LLVM IR and its mapping
to the LLVM dialect.

10This is not exactly true, MLIR is an LLVM sub-project.
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Apart from the dialect elements, the llvm dialect also contains a conversion
pass which exports an IR of llvm Ops into the textual representation of the
actual LLVM IR. The LLVM IR can then be loaded into the LLVM and pro-
cessed further. As a result, we can formulate the objective of this chapter as
transforming an IR expressed with P4 and SA dialects into IR containing only
the llvm dialect.

Figure 6.1: In this chapter we convert the P4/SA dialects into the LLVM
dialect.

6.2 Action

Even though the LLVM IR aims to be conceptually close to machine instruc-
tions, it still provides a concept of functions. Although our P4 dialects do not
directly feature functions, they do include abstractions similar to functional
blocks, such as actions, states, and apply methods. All of these P4 constructs
can be mapped onto the LLVM’s understanding of functions, as we initially
demonstrate with the p4.action operation.

p4.action @myAction (%arg: si8) {
%1 = p4.constant 10 : si8
%2 = p4.add (%arg, %1) : (si8, si8) -> si8
p4.return

}

llvm.func @myAction (%arg: i8) -> () {
%1 = llvm.mlir.constant 10 : i8
%2 = llvm.add %arg0 , %1 : i8
llvm.return

}

Listing 6.2: Conversion of p4.action into the llvm.func Op.

To convert the p4.action Op, we use the llvm.func Op with no return type.
Within the action body, the p4.constant, p4.add, and p4.return Ops naturally
correspond to the llvm.mlir.constant, llvm.add, and llvm.return Ops. Interest-
ingly, the llvm.mlir.constant Op is additionally prefixed with the mlir string.
This is llvm’s dialect way of indicating that an Op does not have a direct coun-
terpart within the LLVM IR instructions. LLVM IR models constants as a first-
class concept (see Listing 6.1), whereas, as we know, the MLIR must use an
Op producing a value to express a constant. Therefore, the llvm.mlir.constant
serves as a bridging Op between these two models.
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To call an llvm.func, we use the llvm.call Op.

%42 = p4.constant 42 : si8
p4.call @myAction (%42)

%42 = llvm.mlir.constant 42 : i8
llvm.call @myAction (%42) : (i8) -> ()

Listing 6.3: Conversion of p4.call into the l lvm.call Op.

As we can see, the llvm dialect reuses the system of MLIR symbols to declare
a name of a callable Op, which can then be referenced from a call operation.

6.3 Integral Data Types

Importantly, as we can see in the preceding snippets, during the conversion
into the llvm dialect, we had to change the data types of integral values. While
the P4 dialect versions use the si8 (which originates from the P4’s int<8>), the
llvm versions use the signless version — i8. This conversion corresponds with
the LLVM’s understanding of integral data types, which does no distinguish
between signed and unsigned versions of integers. Instead, LLVM encodes all
integer constants using the 2’s complement encoding, but then treats them as
plain strings of bits. It is then up to the used operation to interpret these
strings as signed or unsigned. Therefore, as we demonstrate in the following
snippet, during the conversion from the P4/SA dialects, we must be mindful
of the used integral types and choose the correct llvm Op accordingly.

// Signed division
%10s = p4.constant 10 : si8
%5s = p4.constant 5 : si8
%sres = p4.div (%10s, %5s) : si8

// Unsigned division
%10u = p4.constant 10 : ui8
%5u = p4.constant 5 : ui8
%ures = p4.div (%10u, %5u) : ui8

%10 = llvm.mlir.constant 10 : i8
%5 = llvm.mlir.constant 5 : i8

// Signed division
%sres = llvm.sdiv (%10, %5) : i8

// Unsigned division
%ures = llvm.udiv (%10, %5) : i8

Listing 6.4: Conversion of the p4.div must consider the types of operands to
choose the correct llvm Op.

However, some arithmetic operations work the same for both integral types,
and do not need to differentiate between signed and unsigned versions. For
such operations, as was the case for the p4.add and llvm.add Ops, we would
emit the same operation for both signed and unsigned operands.
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6.4 Control Block

Conversion of the p4.control operation with no stateful externs yields no llvm
Ops. On the other hand, the p4.control’s body elements are moved into the
global scope. To prevent name conflicts which can now occur after such tran-
formation (e.g., two different control blocks with equally named actions), we
prepend the resultant llvm.func names with "__"11 and the name of the enclos-
ing control block. Additionally, the p4.apply is converted into an llvm Op as if
it was an p4.action called @__apply. We demonstrate this transformation with
the following snippet, where we convert the MyControl’s body into llvm.func Ops
and move them into the global scope.

p4.control @MyControl {

p4.action @myAction ( %arg0 : si8) {
/* ... */

}

p4.apply ( %arg0 : si8) {
p4.call @myAction ( %arg0 ) : (si8) -> ()
p4.return

}

}

llvm.func @__MyControl_myAction ( %arg0 : i8) {
/* ... */

}

llvm.func @__MyControl___apply ( %arg0 : i8) {
llvm.call @__MyControl_myAction ( %arg0 ) : (i8) -> ()
llvm.return

}

Listing 6.5: Conversion of the p4.control into multiple l lvm.func Ops in the
global scope.

It is worth noting, that moving P4 actions into the global scope can be a
fairly complex process with many nuances. Nevertheless, our P4 dialects made
the key design decision to transform control and parser parameters into the
apply method parameters, to convert all functional P4 constructs into isolated-
from-above Ops, and to eliminate the concept of local elements. All of these
preceding transformations make the control block’s conversion into the llvm
dialect a relatively straightforward process.

11In P4, no user-defined symbol can begin with double underscore, we therefore use it to
prevent conflicts with other already existing global symbols.
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6.5 Allocation

The P4 dialects offer an “escape-hatch” from the SSA’s immutability in the
form of the p4.alloc Op. The p4.alloc Op allocates a mutable memory cell and
provides a !p4.ref<T> reference to it. Through this reference value, the memory
cell can be read and written using the p4.load and p4.store Ops. The memory
allocated through the p4.alloc is automatically released when execution control
leaves the region in which it was allocated.

The memory model of the P4 dialects mirrors the behavior of the stack mem-
ory known from general-purpose machines. Consequently, the p4.alloc can be
directly converted into the llvm.alloca operation, which allocates memory on
the stack of the machine modeled by the LLVM system. The llvm.alloca Op
produces a value of type !llvm.ptr<T>. While the !llvm.ptr<T> type is generally
more expressive than our !p4.ref<T> type (e.g., an !llvm.ptr<T> value can be an
operand of pointer arithmetic operations), all semantics of the !p4.ref<T> type
can be expressed by the !llvm.ptr<T> type, and as such, the !p4.ref<T> type
can be directly converted to the !llvm.ptr<T> type. Finally, to read and write
the memory referenced by the !llvm.ptr<T> value, we use the llvm.store and
llvm.load Ops.

// Allocate
%ref = p4.alloc : ! p4.ref <si8 >

// Store and load
%50 = p4.constant 50 : si8
p4.store (%ref, %50)
%val = p4.load (%ref) : si8

// Allocate
%count = arith.constant 1 : i32
%ptr = llvm.alloca %count x i8 : (i32) -> ! llvm.ptr <i8 >

// Store and load
%50 = llvm.mlir.constant 50 : si8
llvm.store %50, %ptr : ! llvm.ptr <i8 >, i8
%val = llvm.load %ptr : ! llvm.ptr <i8 > -> i8

Listing 6.6: Conversion of memory allocation and memory manipulation Ops.

As can be seen in the preceding snippet, the llvm’s alloca operation requires an
additional integer value to indicate the number of allocated values. This value
will always be one for all types introduced in this work.

6.6 Structures and Headers

P4 headers and structures can be expressed using the LLVM structs. However,
while our P4 dialects reference composite types through a reference of a dec-
laration Op, the LLVM IR and llvm dialect omit the type declarations and list
both the name and the types of fields during each type reference.
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p4.struct @MyStruct {
p4.member_decl @f1 : si8
p4.member_decl @f2 : si16
p4.member_decl @f3 : ui3

}

$str = foo.get : ! p4.struct <" MyStruct ">

$str = foo.get : ! llvm.struct <" MyStruct ", (i8, i16, i3)>

Listing 6.7: Conversion of a P4 dialect’s composite type into an LLVM struct.

With the LLVM’s way of referencing a struct type, the IR’s textual representa-
tion can become quickly cluttered with lengthy type references. Luckily, MLIR
offers possibility to define a type alias, which effectively allows us to reference
a structure without listing all of its members. We can therefore create such a
type alias definition in place of our header and struct declarations.

// Alias definitions
! MyHeader = type ! llvm.struct <" MyHeader ", (i8, i16, i1)>
! MyStruct = type ! llvm.struct <" MyStruct ", (! MyHeader , i10)>

// Alias references
$0 = foo.get : ! MyStruct
$1 = foo.get : ! MyHeader

Listing 6.8: Definition and usage of MLIR’s type aliases.

Member Access and Write
Similarly to the P4 dialect’s structs and headers, to access members of LLVM
structs, the llvm dialect uses different operations depending on whether the
struct value is allocated into an SSA register or a stack memory. As a result,
the P4 dialect’s p4.get_member and p4.get_member_ref can be mapped to the llvm’s
llvm.extractvalue and llvm.getelementptr Ops respectively.

// Register - allocated struct member access
%val = p4.get_member (%str) @f1 : ! p4.struct <" MyStruct "> -> si8

// Memory - allocated struct member access
%ref = p4.get_member_ref ( %addr ) @f1 :

! p4.ref <! p4.struct <" MyStruct ">> -> ! p4.ref <si8 >

// Register - allocated struct member access
$val = llvm.extractvalue %str [0] : ! MyStruct -> i8

// Memory - allocated struct member access
%0 = llvm.mlir.constant 0 : i32
%ptr = llvm.getelementptr %addr [%0] :

(! llvm.ptr <! MyStruct >, i32) -> ! llvm.ptr <i8 >

Listing 6.9: Conversion of the member access Ops.

During the conversion of the member access Ops, the main distinction is the
indication of the accessed member. While the P4 dialect accesses members
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using their symbols, the LLVM dialect uses the index from the beginning of
the structure. Therefore, if the P4 dialect Ops use @f1 to access the first member
of the MyStruct, the LLVM dialect uses index zero.

Finally, to modify a struct’s field, similarly to the P4 dialect, we need to use the
llvm.store Op with the !llvm.ptr<T> value produced by the llvm.getelementptr.

6.7 Counter

In general, the backend is the first stage of the compilation pipeline, where it
is necessary to consider the actual implementation of P4 externs. Conversion
of a P4 extern to LLVM IR (or any other backend IR) heavily relies on the
extern’s semantics and therefore cannot be universally generalized. However,
with LLVM, we consistently have the option to either directly implement the
extern’s semantics using LLVM’s instructions, or to delegate the implementa-
tion by invoking certain library functions. For the Simple Architecture’s Counter
extern, we will illustrate the former approach.

As LLVM IR models an unconstrained general-purpose hardware, the Counter
can be directly represented as a first-class LLVM data type. For converting a
global Counter definition, we use the llvm.mlir.global Op, specifying its type as
i8, and initialize it with an appropriate value.

p4.global @counter : ! p4sa.counter {
%10 = p4.constant 10 : si8
p4.init (%10) : (si8)

}

llvm.mlir.global @counter (10 : i8) : i8

Listing 6.10: Conversion of a global Counter instance to an llvm’s global i8.

To convert SA dialect operations which manipulate a counter instance, we first
use the llvm.mlir.addressof to retrieve a pointer, and then use other already
discussed llvm’s Ops to manipulate the referenced i8 value.

llvm.mlir.global @counter (10 : i8) : i8
%ptr = llvm.mlir.addressof @counter : ! llvm.ptr <i8 >

// p4sa.counter_get
%curr = llvm.load %ptr : ! llvm.ptr <i8 >, i8

// p4sa.counter_add (%3)
%3 = llvm.mlir.constant 3 : i8
%next = llvm.add ( %curr , %3)
llvm.store %next , %ptr : i8, ! llvm.ptr <i8 >

Listing 6.11: Conversion of the SA dialect’s Counter Ops.
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Chapter 7
Evaluation

For the evaluation purposes, we need to first identify the primary contributions
of our work and the metrics we can use to assess them.

The key contribution of this work lies in the methodology of integrating the
P4 and MLIR ecosystems. This involves designing the P4 dialect, introducing
the concept of P4 architecture dialects, and outlining how these dialects, along
with other MLIR dialects, can coexist within a single compilation pipeline.

On the other hand, we deem the Simple Architecture dialect and the conversion
of our dialects into the LLVM dialect as primarily demonstrative. While the SA
dialect follows the key principles for creating a full-fledged P4 architecture, the
Simple Architecture is merely a minimalistic example created for the purposes
of this thesis. Similarly, the conversion of our dialects into the LLVM dialect
considers only a limited subset of P4 constructs.

However, within the scope of our work, objectively evaluating our contributions
presents significant challenges. To understand the difficulty of this task, we can
outline several possible evaluation methods and the challenges they bring.

One approach involves passing a non-trivial P4 program through our compi-
lation pipeline based on P4 dialects, performing various optimizations, and
measuring metrics of the final IR, such as the number of branching Ops. This
method’s drawback lies in its expansive scope, requiring the development of
analysis algorithms and optimization frameworks tailored to P4/SA dialects,
which would vastly extend the intended focus of this text.

Alternatively, we could examine runtime statistics like packet throughput or
latency of a compiled P4 program, but this too conflicts with the project’s
scope. It would be necessary to develop a substantial runtime environment to
accommodate P4 constructs converted into the LLVM representation. Such
environment would include interfaces for extracting the incoming packets, ser-
vices implementing the match-action table semantics, and interfaces to emit
packet bits to an outgoing packet buffer. Additionally, there would need to be
a driver program which allocates necessary resources, and invokes the control
and parser blocks as defined by the Simple Architecture.
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Nevertheless, while we do not evaluate our dialects using a robust metric,
there are still several objective judgments that we can make about our MLIR-
based approach, together with several comparisons to the p4c (the reference
P4 compiler).

7.1 P4 Dialect Design

Apart from being able to serve as a robust compilation target for an arbitrary
P4 program, the P4 dialect makes several design decisions which aim to simplify
complexity of IR transformations.

Firstly, the P4 dialect eliminates the concept of local elements. In Section 4.9
we have demonstrated a simple conversion algorithm which can turn the P4
local elements into semantically-equivalent local variables.

Secondly, the P4 dialect turns the control block, parser block, actions, states,
tables, and apply methods into isolated-from-above constructs. This means
that a compiler pass can work only with a single source of region input SSA
values. As described in Section 4.3, this design point necessitated to transform
the control and parser block parameters into the apply method parameters.

7.2 Separation of the P4 Architecture Development

Our proposed approach of creating a single global P4 architecture-independent
dialect, and moving an architecture-dependent passes and IR elements into
a separate dialect provides a straightforward solution to encapsulating a P4
architecture development into a single logical unit.

As discussed in Chapter 1, the p4c compiler delegates all of the P4 architecture-
dependent IR transformations to the backend, causing great duplication across
various hardware architectures. Having a dedicated dialect for all architecture-
dependent code structures reduces both cognitive load and chances of intro-
ducing unwanted dependencies which would otherwise reduce the possibility
of reusing the architecture-dependent elements across backends. Additionally,
thanks to the MLIR, packaging and distributing a P4 architecture dialect is a
straightforward and tested operation maintained by the MLIR community.

7.3 Practicality

We have successfully created an example P4 architecture dialect (SA dialect),
and implemented a partial conversion of our P4 dialects to the LLVM dialect.
While we have marked these contributions as primarily demonstrative, it nev-
ertheless indicates that our approach is practical and that our MLIR-based IR
model can withstand various transformations and conversions across ecosys-
tems.
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7.4 MLIR Ecosystem

The sole decision to use the MLIR framework brings several benefits by it-
self. While we have provided a detailed motivation for the use of the MLIR
framework in Chapter 1, we briefly list the key advantages here as well.

Firstly, by providing infrastructure, standardized ways of documentation, util-
ity tools, and code generators, MLIR allows the P4 community to focus on the
P4-specific domain, instead of solving already solved problems.

Secondly, with the support for combination of dialects and the progressive low-
ering, the MLIR allows to create a flexible IR model that promotes adaptability
to compiler passes.

Lastly, contrary to the P4 AST, MLIR uses SSA form, whose advantages are
backed by scientific literature[27, 28, 29, 30], and its integration into popular
systems, such as LLVM, successfully withstood the test of time.
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Conclusion

We embarked on developing a P4 compilation pipeline that is modular, can
adapt to various compiler passes, and can efficiently support P4’s architecture
model. Our aim was to create an IR capable of modeling the program’s seman-
tics in a way that is ideal for each of the required IR transformations, rather
than offering a single fixed-point abstraction. To achieve this, we decided to
use the MLIR framework and its novel approach to compiler design, leveraging
dialect inter-mixing and progressive lowering.

Following the introductory chapters on P4 and MLIR, we designed the P4 di-
alect, which includes IR components to model a P4 program in an architecture-
independent manner. In spite of maintaining the general structure of P4, the
P4 dialect makes several design decisions aimed at simplifying compiler pass
implementation and enabling parallel IR processing within MLIR.

Subsequently, we described the principles guiding P4 architecture dialects and
developed a dialect for the Simple Architecture. Furthermore, we demonstrated
a series of program optimizations utilizing both SA and P4 dialects.

Moreover, we outlined the conversion of several P4 constructs into the LLVM
dialect, which demonstrated the translation of P4-specific abstractions into a
backend dialect not originally created with P4 in mind.

Lastly, we briefly compared our MLIR-based approach with a P4 AST-based
compilation pipeline, reiterating on the multitude of advantages of our P4
MLIR dialects.
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Appendix A
Static Single Assignment

“A single program is defined to be in SSA form if each variable is a target of
exactly one assignment statement in the program text.” [27]

For instance, none of the P4 actions in the following snippet are in SSA form.

action foo () {
bit <8> var = 2;
var = 4; // <-- ‘var ‘ reassigned

}

action bar () {
bit <8> var;
if (var > 3) {

var = 3; // <-- ‘var ‘ reassigned
}

}

action baz( inout bit <8> var) {
var = 2; // <-- ‘var ‘ reassigned

}

Listing A.1: Examples of P4 actions that are not in SSA form.

SSA form considers only simple scalar, unaliased variables[28]. While many
extensions exist, such as [30] or [31], SSA form does not consider derived types
like structures, arrays or pointers.

Since each variable has exactly one value, which was assigned to it at a single
place of a program, SSA form makes reasoning about many aspects of the
data flow of a program trivial, simplifying queries about use-definition and
definition-use chains.

As a consequence, SSA form of a program provides data flow information in a
form which makes many compiler optimizations easier to perform. For instance,
whenever we apply a constant propagation algorithm on SSA code, the use of a
variable can be replaced by its value directly, since there is only one definition
of that variable in the entire program[29].
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Even though the initial program representation is not in SSA form, it is still
possible to benefit from SSA form by using the so-called ϕ-nodes.

The algorithm proposed in [28] converts a program into a Control Flow Graph
(CFG) representation first, and places ϕ-nodes at the start of the basic blocks
where two possible versions of a variable merge.

For instance, consider the following pseudocode (which is not in SSA form).

X = input ()
V = 0
if X < 3

V = 4
else

V = 2
X = V

Listing A.2: Example of a program that cannot be converted to SSA form
without the introduction of a ϕ-node.

If we attempt to rename each assigned variable to a unique name without intro-
ducing the ϕ-nodes first, we will be able to successfully rename all occurrences
of variable X, since at each use of variable X, there is only one possible source
assignment. However, we cannot do the same with variable V. Without a ϕ-
node, we cannot determine whether the read V value on the last line is coming
either from the V = 4 or the V = 2 assignment. The version of the read variable
depends on the input during the program’s execution.

To address this issue, we need to place a single ϕ-node before the last X = V
assignment.

X = input ()
V = 0
if X < 3

V = 4
else

V = 2
V = phi(V, V)
X = V

Listing A.3: Example of a program with a ϕ-node.

For each parent basic block, this ϕ-node accepts an input variable V. Next, the
result of the ϕ-node is assigned back to the variable V.

Finally, as demonstrated in the following snippet, we can rename each variable
correctly by renaming the input variables in the ϕ-node according to the version
from the parent basic block.
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X1 = input ()
V1 = 0
if X1 < 3

V2 = 4
else

V3 = 2
V4 = phi(V2 , V3)
X2 = V4

Listing A.4: Example of a program with a ϕ-node and renamed variables.

The ϕ-node is a special kind of function placed at the start of a basic block B,
having as many input arguments as there are parents of B. During evaluation,
the ϕ-node selects the input argument corresponding to the parent from which
the control flow entered B, and returns it unaltered.

While the ϕ-node has clear semantics, conventional hardware does not im-
plement such function nor is able to simulate it efficiently. Therefore, before
lowering to the machine code, ϕ-nodes must be transformed into several copy
operations. A naive solution places a copy operation into each of the preceding
basic blocks.

X = input ()
V = 0
if X < 3

V = 4
V = V

else
V = 2
V = V

X = V

Listing A.5: Example of a naive conversion from the SSA form using copy
assignments.

While such solution is always correct, [27] describes a more efficient algorithm,
which as proved by [32] creates only necessary copy operations.

113





Appendix B
Contents of enclosed medium

src.....................................................implementation
text...........................................the thesis text directory

thesis.pdf............................the thesis text in PDF format
src .............................. the directory of LATEX source codes
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