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Abstract
Our study explores open-set classifica-
tion strategies using various architectures
like Transformers and CNNs. We intro-
duce Matrix Entropy for multi-view open-
set classification, demonstrating its su-
perior performance and simplicity. Our
research underscores the benefits of ag-
gregating multiple views of the same
object for classification accuracy. We
bridge the knowledge gap for unknown
classes through pseudo-annotation with
large vision-language models and data
generation using Stable Diffusion mod-
els, leveraging the DataDreamer library.
By combining pseudo-annotated real data
and synthetic data, we achieve optimal
performance. Additionally, we propose
a pipeline that enables a small model to
continuously learn under the supervision
of larger foundation models. Our find-
ings underscore the effectiveness of these
approaches in handling unknown classes
and enhancing classification and detection
performance.

Keywords: open set recognition, object
detection, image classification, image
generation, zero-shot classification,
computer vision

Supervisor: doc. Ing. Tomáš Pajdla,
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Abstrakt
Naše studie zkoumá strategie klasifikace
otevřené množiny pomocí různých archi-
tektur, jako jsou Transformátory a CNN.
Představujeme metodu Matrix Entropy
pro klasifikaci otevřené množiny z více
pohledů, která se ukazuje jako nadřa-
zená a jednoduchá. Zjistili jsme, že agre-
gace více pohledů na stejný objekt při-
náší výhody v klasifikaci. Adresujeme
znalostní mezery pro neznámé třídy po-
mocí pseudo-annotace s využitím velkých
jazykovo-obrazových modelů a generací
dat s modely Stable Diffusion s využi-
tím knihovny DataDreamer. Kombinace
pseudo-anotovaných reálných dat a syn-
tetických dat přináší optimální výsledky.
Navíc navrhujeme postup, který umož-
ňuje malému modelu nepřetržitě se učit
pod dohledem větších základních modelů.
Naše zjištění zdůrazňuje účinnost těchto
přístupů při zpracování neznámých tříd
a zlepšování výkonnosti klasifikace a de-
tekce.

Klíčová slova: rozpoznávání ve světě
bez omezení, detekce objektů, klasifikace
obrazů, generování obrázků, klasifikace
bez učení, počítačové vidění
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Chapter 1
Introduction

Most modern computer vision models used in industry operate with a limited
number of classes. The simplest way to handle unknown classes is to reject
them. However, with the advancement of models that integrate text and
images, the challenge of dealing with an infinite number of real-world classes
has become more apparent. Language supervision for vision learning enables
models to operate with a much larger set of classes [30][27].

Our work aims to combine both approaches to improve edge real-time
models that lack the capacity to learn rich image representations compared to
foundation language-image models. When an edge model encounters unknown
objects, we can use the supervision of larger, more capable models to close or
minimize the knowledge gap.

Another challenge arises when real data is not available, and we need to
extract knowledge from large language-image models. For this, we can use
text-conditioned generative models [29][22][21]. Realistic synthetic images
generated in this way can serve as valuable data sources. These images can be
pseudo-annotated by zero-shot or open-vocabulary models to create a dataset
to train the edge model.

Theoretically, this loop can run infinitely and can be viewed as follows:
the student real-time model operates in the real world and continuously
encounters objects it has not seen during training. Images with unknown
objects are passed to the teacher network for annotation, and optionally
another network generates examples for further annotation. This allows the
student network to learn about all the objects it encounters continuously. In
this analogy, we use the terms student and teacher, but this approach has
little in common with the traditional distillation method, where these terms
are commonly used.

To further investigate these concepts, we evaluate various open-set classifi-
cation strategies using different architectures, including Transformers (Vision
Transformer [7]) and CNNs (YOLOv8 [17]). We introduce Matrix Entropy for
multi-view open-set classification, which outperforms existing techniques and
is easy to implement. Our multi-view and single-view scenario assessments
show significant benefits from aggregating multiple views of the same object.

We investigate two methods to close the knowledge gap for unknown classes.
The first method involves utilizing large language-image models such as CLIP
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1. Introduction .....................................
for classification and OWLv2 for detection. The second approach involves
data generation using Stable Diffusion [33] models. The best performance is
achieved by combining pseudo-annotated real data with synthetic data.

In our work, we observe that pseudo-annotation with large language-image
models on unknown data nearly matches the quality of training on ground
truth data for classification and detection. Synthetic data effectively represent
novel classes, although managing distribution shifts is crucial. Combining
pseudo-annotated and real images mitigates distribution shifts and enhances
data augmentation, improving overall performance. The code is accessible at
https://github.com/sokovninn/open-world-object-detection.

1.1 Contribution

Our key contributions are:.We review various Open Vocabulary Detection and zero-shot Image Clas-
sification methods and discuss their connection to open set recognition..We explore the use of generative models to augment existing datasets
with novel classes..We test multiple open-set classification methods in a multi-view setting
and propose new methods that outperform existing ones..We evaluate the open-set performance of Transformer-based and CNN-
based networks and report best practices..We propose a method that allows small real-time models to learn contin-
uously by detecting unknown instances and leveraging supervision from
large language-image models..We experiment with the automatic creation of pseudo-labeled datasets
using the DataDreamer 1 library, which we developed for this purpose.

1.2 Overview of chapters

. Chapter 2 reviews and categorizes recent advancements in open set
recognition, Open Vocabulary Detection, zero-shot image classification
and image generation laying the theoretical groundwork for our approach.. In Chapter 3, we formalize our problem and propose the method to
address the task.. Chapter 4 contains implementation details of our pipeline.. Chapter 5 presents the results of conducted experiments.. Finally, Chapter 6 summarizes our findings.

1https://github.com/luxonis/datadreamer
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Chapter 2
Related work

2.1 Out of distribution detection

Detection of anomalous patterns or instances that do not fit the distribution
is one of the important tasks in computer vision. It can be applied to different
domains, such as image classification, object detection, and even more com-
plex domains, such as semantic segmentation. In [9], the authors introduce a
method that allows the identification of novel objects for pixel-level annota-
tions. They combine conventional parametric anomaly scores (max-logit) and
the non-parametric Nearest-Neighbor method. This simple approach achieves
state-of-the-art results. The study also compares features from different
backbone architectures, such as conventional CNN and Vision Transformer [7]
and shows that ViT is especially efficient for Out-of-Distribution Detection.

2.2 Open set recognition

OSR [10] is closely related to the OoD problem. In contradiction with OoD,
OSR focuses not only on identifying novel data but also on the accurate
classification of previously seen instances into multiple classes. While OoD
focuses on all types of deviation from the distribution, OSR emphasizes
semantic novelty. The assumption that labels during train and test time are
drawn from the same feature space does not hold for a real world in which
there is an infinite number of labels that appear only during test time. By
adding an "unknown" class, we require a classifier to classify seen classes and
deal with unseen ones accurately. [39] demonstrates a high correlation between
closed-set and open-set performance. The authors of this work significantly
improve the baseline (Maximum Softmax Probability or MSP) by leveraging
closed-set-related techniques such as longer training, label smoothing, and
reach augmentations. Thus, they achieve results comparable to the SOTA
methods with their improved baseline. This work highlights that models
based on the Vision Transformer have better OSR performance compared to
other architectures.
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2. Related work.....................................
2.3 Open world recognition

In an open-world setting, a recognition system must continually discover new
classes and update itself with minimal downtime. Open-world recognition,
as formally defined in [1], requires the system to accurately classify known
and unknown classes while incrementally learning new ones through labeled
instances. This scalable system continuously enhances its knowledge about
the open world. The Open World Object Detection problem was formulated
in [18], which is the most challenging as it combines object detection, open
set recognition, and incremental learning. The proposed solution involves
modifying the object detector by explicitly adding an unknown class to the
dataset, incorporating contrastive clustering to learn discriminative clusters,
integrating an energy-based unknown identifier, and storing a balanced set of
class representatives to prevent forgetting. We follow a similar pipeline in
our work, introducing new ideas for each step.

2.4 Multiview image classification

Typically, there is one view per object when we talk about image classification.
However, a single view is sometimes insufficient to make an accurate decision.
It is especially relevant for objects characterized by high inter-class similarity
and intra-class variability. Different views of the same object are expected
to provide complementary information in such classification problems. In
[36], the authors evaluate multiple fusion techniques utilizing features of
trained CNNs and show that combining multiple views increases classification
accuracy. It was found that the fusion of the late CNN stages results in the
most accurate decisions. In our setting, we demonstrate that the information
from multiple views is also beneficial in terms of open-set performance.

2.5 Contrastive Vision-Language Pre-Training

Using language supervision for vision training has shown remarkable ro-
bustness to natural distribution shifts and impressive zero-shot performance.
Zero-shot classification is the task of predicting a class that was not seen
by the model during training or was not specifically trained. The main
concept of Contrastive Vision-Language Pre-Training involves learning visual
perception from natural language supervision. This approach is efficient
and scalable, enabling learning image representations from scratch using a
dataset of millions or billions of image-text pairs collected from the Internet.
CLIP [30] and ALIGN [15] are both models for visual representation learning
using natural language supervision in a contrastive learning setting. They
differ in their approach to training data and the architectures of their vision
and language encoders. CLIP constructs its data set by creating a list of
high-frequency visual concepts from English Wikipedia, while ALIGN uses
raw alt-text data without expert curation.
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........................... 2.6. Open Vocabulary object detection

2.6 Open Vocabulary object detection

Many works aim to transfer the open-vocabulary capabilities of Vision-
Language models to object detection. The main challenge is preventing
the model from forgetting its existing knowledge while training the detection
heads on limited data. GLIP [20] uses a single text query for the entire image
and treats detection as a phrase grounding problem, limiting the number
of object categories processed per forward pass. OWL-ViT [27] features a
simpler and more flexible architecture that avoids image-text fusion and can
handle multiple independent text or image-derived queries. OWLv2 [26]
improves performance with a more efficient architecture and self-training,
scaling up the data used for object detection training. YOLO-World [5]
highlights the strong open-vocabulary performance of lightweight detectors
like YOLO [31][17], which is crucial for real-world applications. Instead of
relying on an online vocabulary, it introduces a prompt-then-detect approach
for efficient inference, where users generate prompts as needed. It pre-encodes
the prompts or categories to build an offline vocabulary and then seamlessly
integrates it into the detector. However, the smallest variant of YOLO-World
has poor open vocabulary performance, and the largest cannot run in real-
time on edge devices. In our pipeline, we use OWLv2 as it shows the best
results to date.

2.7 Synthetic data for Image Recognition

There are two main approaches to generating synthetic data: 1) using tradi-
tional renderings of 3D objects in simulation and 2) using generative models.

Synthetic datasets, created using traditional pipelines, involve generating
2D renderings of 3D models from graphics engines [8][32]. However, this
method has several drawbacks: 1) a gap often exists between synthetic and
real-world data; 2) they require significant storage space and are costly to
share; 3) the specific source limits the amount and diversity of data.

Generative models offer a more efficient way to create synthetic data
compared to traditional methods. They have several advantages: 1) they
produce high-fidelity, photorealistic images closer to real data since they
are trained on real-world data; 2) they require much less storage space; 3)
they can generate virtually unlimited amounts of data. Few studies have
explored generative models for image recognition. Some works used GAN-
based generators to produce data for image classification [2], object part
segmentation [42], and unsupervised contrastive learning [14]. These works
demonstrated promising results, but the scope and image quality were limited.
The most relevant work to ours is [12], which extensively studies the usage of
text-to-image diffusion models in different settings: 1) there are no or only a
few examples of real images per class; 2) large-scale model pre-training using
synthetic data. This work demonstrated that synthetic data is beneficial in
such scenarios.

5



2. Related work.....................................
2.8 Text-to-Image Diffusion Models

Diffusion models [13] have recently emerged as powerful generative models.
Using a likelihood-based approach, they match the data distribution by
learning to reverse a noise process. This allows for novel image sampling from
a prior Gaussian distribution via the learned reverse path. With high sample
quality, good mode coverage, and stable training, diffusion models are quickly
becoming a trend in both unconditional and conditional image synthesis. In
text-to-image generation, they excel by ensuring that sampled images match
given natural language descriptions. Models such as Stable Diffusion [33],
DALL-E3 [3] and SDXL [29], based on the formulation of diffusion models,
offer an exceptional synthesis quality. Models such as SDXL-Turbo [35], LCM
[23], and SDXL-Lightning [22] offer close-to-real-time image synthesis by
distilling larger models and reducing the number of steps required to generate
an image. GLIGEN [21] extends pre-trained text-to-image diffusion models
with grounding capabilities, enabling image generation based on various
grounding conditions such as bounding boxes, key points, depth maps, and
semantic maps. While text + box conditioned generation accurately produces
objects inside bounding boxes, it does not guarantee that target objects are
not generated in the background. Therefore, this method will also require
pseudo-annotations generated by large vision-language models.

6



Chapter 3
Approach

In the following chapter, we will describe the method for detecting unknown
objects, labeling them, and incorporating them into the dataset. The problem
specification is based on our previous work [28].

3.1 Problem specification

We use the following definitions of known and unknown classes:..1. Known classes K: classes that have labelled instances in the training
dataset. A known object (or simply known) is an instance of a known
class...2. Unknown classes U : classes which are not trained, no example of these
classes is labelled. Instances of these classes might be present in the
background at training time. U is very similar to mixed unknown UM .
An unknown object (or simply unknown) is an instance of an unknown
class.

First of all, we have a set of known classes K = {1, . . . , C}, where C is the
number of classes present during training. Additionally, there is an unlimited
set of unknown classes U = {C + 1, . . .}, which may be encountered during
inference. Let 0 be the label associated with an “unknown” class. Each
known class is assumed to be represented in the dataset D = {X, Y } with
cardinality |D| = M , where X is a sequence of images X = {I1, . . . , IM }
and Y is a sequence of matching labels Y = {L1, . . . , LM }. Li encodes ki

instances {y1, . . . , yk} present in an image Ii. Each label yj is represented
as yj = [u, v, w, h, c, s], where u, v are the coordinates of the center of the
bounding box, w, h are the width and height of the bounding box, c is the
class of the object, and s is a segmentation mask (which can be omitted for
default object detectors). For the classification problem, yj = [c, s]. The
above refers to the object detection model Md, which produces predictions
for a single image at each timestep (or Mc for classification).

A Large Vision-Language model can provide true labels for these objects
when the model identifies unknown objects {u1, . . . , un}. Optionally, based
on the retrieved classes, a generation model can produce a dataset with

7



3. Approach ......................................
training examples containing instances of the identified unknown objects to
update Md. Retraining should extend the model’s knowledge about existing
classes. After updating itself with new classes, Md can identify test instances
belonging to some class from the updated set K ′ = K ∪ {C + 1, . . . , C + n}.

The task for the small real-time model is to continuously detect unknown
objects and learn by using the supervision of large Vision-Language models.

3.2 Approach overview

Our approach consists of six main steps: 1) training the model on known
classes, 2) testing/inferencing the model in the real world and detecting
unknown objects, 3) label retrieval, 4) data generation, 5) pseudo-annotation,
and 6) model retraining on new data. The approach is illustrated in Figure
3.1.

Figure 3.1: Approach scheme. The edge model trained on closed-set data
receives data from the real world and classifies some objects as unknown. Labels
for new objects are then retrieved from the unlabeled unknown images, either
automatically or with human supervision. Image generation models create
images containing the new objects. Finally, synthetic and real images are pseudo-
annotated using a Language-Image model with zero-shot capability. The resulting
dataset is merged with the initial one, and the entire process can be repeated.

3.3 Approach details

In this section, we describe the main components of the proposed pipeline.

3.3.1 Multiview open-set object classification

In Computer Vision, many extensive studies exist on both closed-set and
open-set problems (OSR). Usually, they utilize a single view of the object to
make a prediction. Most large modern datasets such as ImageNet [34] are
single-view. It is much harder to construct a dataset with a high variability of

8



................................... 3.3. Approach details

objects where each object is captured from multiple views. Under the "view,"
we understand the image of the object captured from the specific position of
the camera. While making a decision where only one view is available is a
crucial problem for many applications, multiview settings might be beneficial
for many problems. Some works, such as [36], show that using multiple views
of the same object leads to a better closed-set performance of the classifier,
especially for problems with large inter-class visual similarity and low intra-
class similarity. Our work shows that utilizing multiple views also benefits
Open Set Recognition. Information from different views helps to understand
better whether the object is from the novel unseen class. Previous work
showed that the Vision Transformer [39][9] outperforms other architectures
in OSR tasks. We use ViT to extract features from images and use them to
compute anomaly scores, which are used for known/unknown classification.

Anomaly score

Here, we introduce simple methods to compute the anomaly score a, which is
used to decide whether the object is known or unknown. An anomaly score
is computed from the outputs of a Neural Network trained in a closed-set
setting. We use the following variables: s - average softmax vector over N
views, l - average logit vector over N views, the output of the last layer before
applying softmax, qi - average output of the penultimate fully connected layer
for ith view. In our case, the dimension of s and l is ten, which is the number
of known classes. And the dimension of q is 768. For the first two methods,
we consider an object as unknown if a < θ. For the other two, we say that
the object is unknown if a > θ, where θ is some threshold.

Maximum Softmax Probability (MSP) is often used as a baseline in
Open Set Recognition problems. If the confidence of the strongest class is
too low, we say that this object is unknown.

aMSP = max(s)

Maximum Logit Score (MLS). The authors of [39] propose to use the
MLS instead of the softmax probabilities as an open-set indicator. Logits
are outputs of the last layer in the network before softmax is applied, which
normalizes them. In [6], it was noticed that the logits of unknown instances
have a lower magnitude.

aMLS = max(l)

Average cluster center distance (CCD). As pointed out in [25], unknown
objects tend to be farther away in the feature space from the center of clusters
consisting of known object’s features. Here, we compute an average vector
produced by the penultimate layer of the trained network on the training
data and call it ci for the ith class. We compute an average cluster center
distance (CCD) to measure novelty.

9



3. Approach ......................................

aCCD = 1
N

N∑
i

||qi − cŷ|| where ŷ = argmax(s)

Entropy. Another way to reject unknown objects is to measure the epistemic
uncertainty of the detector. Instead of using the maximal probability, we can
use the full softmax vector with all class probabilities. In [24] s is treated as
an average vector of class probabilities over a set of score vectors produced
by multiple forward passes of the same data with enabled dropout. In other
words, it is the average result of the model ensemble. In our case, s represents
the mean score vector on multiple views of the same 3D object. Therefore,
uncertainty may arise when the model is not able to classify the same object
from different perspectives identically. To measure uncertainty, we can use
the entropy of the probability vector:

ae = H(s) = −
C∑

i=0
si ∗ log(si)

where C is the number of known classes. If s has a uniform distribution,
the entropy will be large, so the uncertainty is high. If the class probability
is concentrated in one class, the entropy will be low, which means that the
confidence of the classifier is high.

Matrix entropy. Another way to measure uncertainty, which exploits
the consistency between feature vectors obtained from different views, is by
computing a matrix (or SVD) entropy. SVD entropy indicates the number of
eigenvectors needed for a good data explanation. In other words, it measures
the dimensionality of the data. In our case, if the vectors corresponding to
different views of the object differ too much, SVD will produce many non-zero
singular values, resulting in higher entropy. The SVD entropy is defined as:

aSV D = H(Y ) = −
M∑

i=1
σi ∗ log(σi)

where M is the number of singular values of the embedded matrix Y and
σ1,σ2,...,σM are the normalized singular values of Y . Y is the matrix that
contains feature vectors obtained from different views.

GMM score Instead of using a single cluster center to represent the class,
we can use Gaussian Mixture Models (GMM) [?]. We obtain a measure of
epistemic uncertainty for each known class by computing the log-likelihood
of the data l for every known class model Gi

aGMM = P = (log(p(l; G1)), ..., log(p(l;N )))

A low log-likelihood represents a high uncertainty that the detected object
belongs to the respective known class. To identify and reject potential open-
set detections, we can choose a minimum log-likelihood threshold θOSE and
reject detections that do not meet this threshold for at least one known class.

10



................................... 3.3. Approach details

We use the same approach for single-view object detection, but the number
of views is 1.

3.3.2 Pseudo-annotation with large Vision-Language models

Contrastive Language-Image Pre-training (CLIP)

As discussed previously, many state-of-the-art computer vision systems are
only trained to recognize a fixed set of predefined object categories. This
limited form of supervision restricts their versatility and practicality because
additional labeled data is required to recognize new visual concepts. CLIP
[30] tackles this issue by introducing a pre-training task: predicting which
caption matches with which image. The core idea is learning perception from
supervision contained in natural language. This method, which is efficient
and scalable, allows for learning image representations from scratch using a
dataset of 400 million image-text pairs collected from the Internet. Following
pre-training, natural language refers to learned visual concepts or describes
new ones, enabling the model to transfer seamlessly to new tasks without
prior training.

Figure 3.2: CLIP operates differently from traditional image models. Instead
of training an image feature extractor and a linear classifier together to predict
a label, CLIP simultaneously trains an image encoder and a text encoder to
identify the correct matches in a set of (image, text) training pairs. During
testing, the trained text encoder creates a zero-shot linear classifier by embedding
class names or descriptions from the target dataset. Figure from [30]

Architecture and training
CLIP learns to match image text pairs in the batch of size N (N x N possible

image-text pairings) by joint training of image and text encoders. The task
is to maximize the cosine similarity between image and text embeddings for
the N actual pairs in the batch and minimize the similarity between N**2 -
N incorrect pairs. In order to achieve this, a symmetric cross-entropy loss is
optimized.

For the image encoder, Vision Transformer (ViT) [7] architecture is used,
which outperforms CNN-based ResNet in both accuracy and compute effi-
ciency. The text encoder is a regular Transformer [38] with slight modifica-
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3. Approach ......................................

Figure 3.3: CLIP is more robust than dataset-specific ResNet-101. Figure from
[30]

tions.
Given a single image and a set of texts (classes), first image embeddings

and all possible matching text embeddings are computed during inference.
Then, cosine similarity between all possible image-text pairs is calculated
and scaled by a temperature parameter. Finally, the cosine similarities are
normalized using softmax.

Strengths
Learning from natural language offers several advantages over other train-

ing methods. Scaling natural language supervision is much simpler than
traditional crowd-sourced image classification labelling. Methods utilizing
natural language can passively learn from the abundance of textual data
available on the Internet. Learning from natural language also provides a cru-
cial advantage over most unsupervised or self-supervised learning approaches.
Although these approaches primarily learn representations, learning natu-
ral language connects these representations with language, enabling flexible
zero-shot transfer. Moreover, the performance of the task-agnostic CLIP is
competitive with fully-supervised task-specific models.

Another essential feature of CLIP is its robustness to distribution shift,
which is superior to standard ImageNet models. Because the training dataset
contains a large amount of data, there are minimal distribution-specific images.
Figure 3.3 illustrates the effectiveness of this approach.

Weaknesses
While CLIP learns rich image representations which are helpful for common

tasks (such as food or car model classification), its zero-shot performance
on more specialized, abstract, and complex tasks (such as satellite image
classification or counting objects in synthetic scenes) is poor.
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CLIP generalizes well to image distribution shift, but it still generalizes
poorly to truly out-of-distribution data. For example, simple logistic regression
exceeds CLIP on the classification of hand-written digits in MNIST because
digitally rendered text is much more common in the training dataset, as
shown in [30]. So, its generalization capability is limited. The main naive
assumption of CLIP is training on such a large and diverse dataset that all
data encountered in the future will be in-distribution. It is limited to choosing
from concepts and patterns that were encountered during training.

Open-set and zero-shot performance discussion
CLIP does not really solve the problem of having an infinite number of

classes of visual categories in the real world and does not work well on truly
out-of-distribution data. Instead, it tries to cover as many visual concepts
as possible by seeing a vast amount of data. There might still be unknown
classes not encountered in the 400M images dataset, but identifying such
objects might be a complex problem.

For our approach, it’s important that CLIP allows us to create our own
classes without retraining by combining relatively simple known concepts
such as "man in a red shirt".

Deep learning models are good at spotting correlations and patterns in the
data they are trained on. This helps them perform well within that same kind
of data. However, sometimes, these correlations are actually spurious and
useless, which can result in a significant performance drop on other datasets.

When we talk about zero-shot models, they should not be affected by
these useless correlations because they are not trained on that specific data.
The robustness to image distribution shift is crucial since we will work with
synthetic images that look different from real ones.

Vision Transformer for Open-World Localization

Vision Transformer for Open-World Localization (OWL-ViT) [27] leverages
large-scale image-level pre-training similar to CLIP but takes another step
to enable zero-shot localization of objects in images. It achieves competitive
zero-shot performance with much more complex approaches. For object
detection, data labeling is much more time-consuming, so making large-scale
datasets with objects localized by humans seems infeasible. OWL-ViT shows
that it is possible to effectively transfer the representations obtained by
contrastive learning with image-text pairs to detection tasks by fine-tuning on
smaller closed-set datasets. It has been found that increasing the size of the
pre-training datasets and the size of the model leads to better performance
on the downstream object detection task. This suggests that pre-training on
billions of image-text examples provides strong generalization ability, which
can be transferred to detection tasks even with relatively limited object-level
data. OWL-ViT focuses on standard transformer-based models because of
their scalability and good close-set detection performance.

Architecture
OWL-ViT uses standard Transformer-based encoders similar to CLIP.

To adapt the image encoder for detection, the token pooling and the final
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Figure 3.4: OWLv2 demonstrates impressive open vocabulary performance. Any
text can be used as target classes for detection, enabling the model to correctly
detect specific kinds of trees, such as sakura, and to distinguish car types and
colours. OWLv2 can detect objects and properties not represented in standard
object detection datasets. The knowledge acquired from weak supervision during
contrastive text-image pre-training is effectively transferred to the detection task
during fine-tuning.

projection layer are removed, and instead, each output token representation
is linearly projected to obtain image embeddings per object for classification
(Figure 3.5). The overall setup resembles DETR [4] but is simplified by
removing the decoder.

For open-vocabulary classification of detected objects, OWL-ViT uses text
embeddings instead of learned class embeddings in the classification head.
These text embeddings, called queries, are generated by passing category
names or object descriptions through a text encoder. The model’s task is
to predict a bounding box and the probability of each query applying to
each object. This means each image has its own set of text-based labels.
This method includes traditional closed-vocabulary object detection as a
special case where all object category names are used as queries for each
image. Each query is a separate token sequence processed individually by
the text encoder. It is also possible to use image-derived embeddings as
queries in the classification head without modifying the model. The model
can perform image-conditioned one-shot object detection by using embeddings
of prototypical object images as queries. This method enables the detection
of objects that are difficult to describe in text.
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Training
Image and text models are initially pre-trained on the image level and

then fine-tuned on object-level annotations. Pre-training is performed from
scratch using a dataset of 3.6 billion image-text pairs similar to LiT [40].
After pre-training, detection heads are added and fine-tuned on medium-sized
detection data. All components of the fine-tuning approach aim to reduce
overfitting on the relatively small number of available detection annotations
and the limited semantic label space they cover. For example, the learning
rate for the text encoder is 100x smaller than for the image encoder. This
may reduce overfitting by preventing the text encoder from "forgetting" the
semantics learned during pre-training while fine-tuning on a small set of
detection labels. Interestingly, completely freezing the text encoder yields
poor results.

Figure 3.5: Open-Vocabulary Object Detection with ViT [27] Overview. Left:
Initially, the image and text encoder are pre-trained using image-text pairs in
a contrastive manner similar to CLIP. Right: Subsequently, the pre-trained
encoders are adapted for open-vocabulary object detection by eliminating token
pooling and integrating lightweight object classification and localization heads
directly onto the output tokens of the image encoder. For open-vocabulary
detection, query strings are processed through the text encoder for classification
purposes. The model undergoes fine-tuning using conventional detection datasets.
During inference, the model utilizes embeddings derived from text for open-
vocabulary detection or from images for few-shot image-conditioned detection.

Scaling Open-Vocabulary Object Detection
The scarcity of detection data can be addressed with self-training. In

self-training, an existing detector (OWL-ViT) predicts bounding boxes on
unlabeled images to generate data for training better detectors. Combining
open-vocabulary detectors with web image-text data allows this pseudo-
labeling to create nearly unlimited amounts of open-vocabulary detection
training data using image-associated text for semantic supervision. Scaling
Open-Vocabulary Object Detection [26] introduces the OWLv2 model, which
has improved training efficiency, and a self-training recipe called OWL-ST,
which together largely improve open vocabulary and zero-shot performance.

The self-training approach consists of three steps:..1. Utilize an existing open-vocabulary detector to predict bounding boxes
for a large Web image-text dataset.
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3. Approach ........................................2. Self-train a new detector using the pseudo-annotations...3. Optionally, the self-trained model can be briefly fine-tuned on human-
annotated detection data.

All 10 billion images from the pre-training phase are annotated with
bounding box pseudo-annotations using OWL-ViT CLIP-L/14.

Open-Vocabulary and zero-shot detection performance discussion
To measure performance on unseen categories, the authors of OWL-ViT

remove all box annotations for rare categories. The zero-shot performance
for the model is measured in the sense that the model has not seen localized
annotations for these categories. However, these categories might have oc-
curred during contrastive image-text pre-training and during self-training.
Also, during fine-tuning the removal of bounding boxes for some categories, it
might lead to the model being learned to ignore or classify objects from these
categories as background. So, the performance on this rare category does
not represent true zero-shot performance when target objects are not present
during training. The results presented in [27] also suggest that Transformers
may be more biased toward learning semantic generalization than CNN or
Transfomer-CNN hybrids, which is crucial for high zero-shot performance
and could be advantageous with large-scale pre-training. So, similar to CLIP,
good open vocabulary and zero-shot performance are achieved due to the
huge amount of images seen.

3.3.3 Synthetic dataset generation

To generate images for novel categories, we use image generation models. In
the following text, we briefly describe the chosen models.

Stable Diffusion XL (SDXL)

Figure 3.6: SDXL architecture. Figure from [29]

Stable Diffusion XL [29] is a Latent Diffusion Model (LDM) for text-to-
image synthesis. Based on the given text/prompt, the model generates an
image that follows this prompt, which can be used as a caption for the image.
Figure 3.6 shows the architecture of the model.
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Latent Diffusion Models (LDM) are probabilistic models that learn data
distributions by iteratively removing noise from a normally distributed vari-
able. This approach involves a sequence of denoising autoencoders trained
to predict a cleaned-up version of their input. By doing so, LDM abstracts
away subtle details, creating a compact, efficient latent space suitable for
generative modeling. This space focuses on essential semantic features and
enables computationally efficient training. The generation can be conditioned
with semantic maps, text, representations, or images. In our work, we only
use text conditioning.

SDXL-Lightning

SDXL-Lightning [22] proposes an effective way to distil SDXL that results in
much faster generation due to a lower number of required generation steps
with a slight loss in generated image quality. Figure 3.7 shows the images
generated with both models. We can see that SDXL-Lightning generates
slightly less realistic images, but it is more than ten times faster than the
undistilled model.

Figure 3.7: Visual comparison of images generated by SDXL and SDXL-
Lightning using the prompt "A photo of a dog walking in the park." Left:
SDXL with 65 steps. Right: SDXL-Lightning with 4 steps.
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Chapter 4
Implementation

This chapter briefly describes tools, datasets, and implementation details
used in our work.

4.1 Toolkit

4.1.1 YOLOv8

Ultralytics YOLOv8 [17] represents the latest advancement in object detection
models, leveraging the achievements of previous YOLO iterations while
integrating novel features and enhancements to enhance both performance
and adaptability. YOLOv8 prioritizes speed, precision, and user-friendliness,
making it the top pick for various tasks, including object detection and image
classification.

In our experiments, we use its smallest and fastest version nano with 3.2M
parameteres.

4.1.2 DataDreamer

In modern AI, data plays a crucial role. Collecting data usually takes the
most time when training a model for a particular task. However, consider the
possibility of skipping this step altogether and creating a Computer Vision
model without using real-world data. The only requirement is to provide the
names of the objects to be identified or classified.

Consider a scenario requiring an application to identify robots in videos
and images. DataDreamer 1 simplifies this process, allowing users to generate
thousands of annotated images with just one command. This innovative
approach saves time and expands the possibilities for AI development, freeing
it from the constraints of traditional data collection methods.

DataDreamer is a library that facilitates the creation of custom datasets
covering virtually any imaginable class, starting from scratch. This process is
broken down into three key steps.

1https://github.com/luxonis/datadreamer
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4. Implementation....................................

Figure 4.1: DataDreamer pipeline

Prompt Generation

During this step, DataDreamer automatically generates prompts for the
image generation models based on a list of class names. While the most
straightforward approach involves concatenating target objects in the prompt,
such as "A photo of a knight, unicorn, and tractor," research suggests that
richer prompts, which also describe the interaction between objects and the
scene, lead to a better dataset quality [12].

DataDreamer leverages language models like Mistral-7B-Instruct [16] and
TinyLLama [41] to generate semantically rich prompts, thereby enhancing
the diversity of the dataset. The prompt format used for a language model is
as follows:

f"[INST] Generate a short and concise caption for an image.
Follow this template: ’A photo of {’, ’.join(selected_objects)}’,
where the objects interact in a meaningful way within a scene,
complete with a short scene description. [/INST]"

Consequently, generated prompts may look like this: "A photo of a knight,
unicorn, and tractor working together on a farm."

Image Generation

DataDreamer provides a solution to reduce the reliance on large datasets for
AI training. It allows users to create synthetic datasets from scratch using
advanced generative models. These models can generate diverse, high-quality
images customized to specific requirements.

Users can choose between three image generators within DataDreamer.
The first option is Stable Diffusion XL [29], which is known for its fidelity to
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prompts and ability to produce images of exceptional quality. However, this
comes at the cost of slower generation speed. Alternatively, users can opt for
SDXL-Turbo [35] or SDXL-Lightning [22], which offers a faster generation time
albeit with a slight trade-off in image fidelity compared to Stable Diffusion
XL.

To enhance image quality, the prompts are refined by appending ", hd, 8k,
highly detailed" at the end.

Image Annotation

In the final stage, the framework employs foundation models such as CLIP
and OWLv2 to label the generated images. This process depends on the initial
class names provided, ensuring accurate labeling of each image according to
the specifications.

The preceding two steps can be skipped to annotate unlabeled real images.
Several strategies are employed to improve the annotations, such as Test

Time Augmentation (TTA), usage of synonyms for class names, and careful
selection of the confidence/IOU thresholds.

4.2 Datasets

4.2.1 Imagenette

Imagenette is a small dataset that contains 10 simple-to-identify classes from
Imagenet. These include objects like tench, English springer, cassette player,
chain saw, church, French horn, garbage truck, gas pump, golf ball, and
parachute. The images in Imagenette are kept at their original size from the
Imagenet dataset.

4.2.2 Tiny ImageNet

Tiny ImageNet is a subset of ImageNet [34], which has 200 classes and 500
images per class in the training set. The validation and test datasets have
50 images per class. Usually, it is considered the most challenging case for
open-set recognition due to the large number of classes and their complexity.
The dimensions of each image are 64×64.

4.2.3 Multi-View RGB-D Object Dataset

To evaluate the multi-view performance of the proposed model, we use A
Large-Scale Hierarchical Multi-View RGB-D Object Dataset [19]. It contains
300 objects common in office and home environments organized into 51
categories. There are 3-10 distinct object instances within each category.
Each object is spinning on a turntable at a constant speed. Three cameras
mounted at three different angles relative to the turntable (approximately
30◦, 45◦ and 60◦) record a video sequence at 20 Hz, which results in around
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250 RGB-D images per camera and around 250,000 RGB-D images in total.
In our work, we use only RGB data, and depth images are ignored.

4.2.4 PASCAL VOC

The PASCAL VOC dataset is a widely used benchmark for object detection
and image segmentation tasks. It contains approximately 17,000 training
and 5,000 validation images, with annotations for 20 different object classes.
These classes include everyday objects like person, car, dog, and bicycle. Each
image in the dataset is annotated with bounding boxes, segmentation masks,
and class labels, making it valuable for training and evaluating machine
learning models for object detection and image segmentation.
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Chapter 5
Experiments

In this section, we conduct multiple experiments to demonstrate and evaluate
each part of our approach and test how the entire pipeline works on different
datasets.

5.1 Multi-view Open-Set Classification

The authors of [39] showed that there is a roughly linear relationship between
the top-1 accuracy used for closed-set performance evaluation and the Area
Under the Receiver Operating Characteristic (AUROC) used for open-set
performance evaluation. In the following experiment, we use the most promi-
nent architecture for image classification, the Vision Transformer (ViT) [7],
specifically its ViT-B/16 variant. We take the pre-trained model on ImageNet
and train it on selected classes from Tiny ImageNet for ten epochs, with an
input size of 128x128.

The number of common classes between Tiny ImageNet and Multi-View
RGB-D Object Dataset is very low. We choose ten classes (keyboard, water
bottle, flashlight, pitcher, plate, bell pepper, orange, lemon, banana, coffee
mug) that have a one-to-one correspondence and consider them as known.
We train ViT only on Tiny ImageNet images from these 10 selected classes;
the other 190 classes are not used. Objects from 41 classes in the RGB-D
Object Dataset are labeled unknown.

To measure closed-set performance, we use the top-1 accuracy. For open-set
performance, we use the Area Under the Receiver Operating Characteristic
Curve (AUROC).

In the following text, we will show how multiple views affect the closed-set
and open-set performance of the classifier. We run the model multiple times
using a different number of views. Each result is averaged over ten runs in
which random views are selected.

Feature Embeddings Visualization

To ensure that our approach of measuring the distance to the center of
the cluster in the feature space (CCD) is valid, we visualize the features of
known and unknown objects in 2D (Figure 5.2). We plot 2D T-SNE latent
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Figure 5.1: Objects from the RGB-D Object Dataset [19]. Each object shown
here belongs to a different category. Objects are placed on a turntable, which
allows them to be captured from different sides.

representations of 300 objects from the multi-view dataset. As input for 2D
T-SNE, we provide outputs of the penultimate layer (with dimension 768)
averaged over five different views. We see that known objects form tight
clusters and are close to the cluster centers computed from the single-view
training dataset. Interestingly, semantically similar objects like "orange" and
"lemon" or "pitcher" and "water bottle" are placed close to each other. Figure
5.2 demonstrates that unknown objects are usually farther away from the
cluster centers than known ones.

Figure 5.2: The left plot shows 2D T-SNE latent representations of cluster
centers, known and unknown objects. The right figure visualizes classification
accuracy for a different number of available object views. Each result is averaged
over ten runs where random views are selected.
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Closed Set Performance

After training the classifier on ten Tiny ImageNet classes with a validation
accuracy of 95.7%, we tested it on the multi-view dataset. Figure 5.2 shows
that the accuracy increases when multiple views are used for classification.
Only two additional views result in more than a 3% increase. However, more
additional views do not affect performance much. The maximum classification
accuracy achieved on the test multi-view dataset is 81.2% (15 and 20 views).

Open Set Performance

In a similar setting, we evaluate the open-set classification performance.
Figure 5.3 shows that all methods benefit from using multiple views. The
greatest boost in performance is observed when only one view is added. Also,
we can observe that using more than 20 views is not very beneficial. We can see
that using raw output (MLS) instead of softmax probabilities (MSP) results
in a large increase in AUROC. CCD, MLS, and entropy methods perform very
similarly. However, using the Matrix (SVD) Entropy of probability scores as
an uncertainty measure shows the best performance. The maximum AUROC
achieved is 0.919 (50 views). GMM score shows the best performance on a
low number of views (1-3).

Figure 5.3: The left plot shows the AUROC for different numbers of views. CCD
stands for Cluster Center Distance, MSP for Maximum Softmax Probability, and
MLS for Maximum Logit Score. These are evaluated on the dataset visualized in
Figure 5.1. The right plot shows the evaluation of the best-performing anomaly
score, i.e., Matrix entropy (ViT-B trained on 10 classes), on the Broca dataset.
Bed, chair, clock, and drinking fountain classes were not used during training.

5.1.1 Multiview results

Table 5.1 shows that the use of multiple views is beneficial for both closed-set
and open-set classification. Observing an object from different angles provides
richer information about it. If the classifier response from different points
of view is similar, then the object can be considered known. On the other
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hand, if the object looks different from different sides and the model outputs
different predictions, then this object can be classified as unknown. From
Table 5.1, we can conclude that 20 views are the best choice in terms of
accuracy and AUROC, but 5 views seem optimal since the performance drop
is not significant and they are easier/faster to obtain.

Metric/N views 1 2 3 5 10 15 20 25
Accuracy 0.768 0.791 0.808 0.811 0.795 0.812 0.812 0.803
AUROC 0.856 0.891 0.893 0.907 0.910 0.914 0.916 0.918

Table 5.1: Classification results on RGB-D Object Dataset (10 classes are
known, 41 are unknown). For AUROC results, the best open-set method (matrix
entropy) is used.

We demonstrated that combining features from multiple object views is
beneficial for closed-set tasks and open-set recognition. A few additional views
of the same object can significantly enhance classification performance. We
integrated successful approaches from previous similar studies. We evaluated
multiple easy-to-implement methods for computing anomaly scores, finding
that Matrix Entropy performs the best in the multi-view setting. This method,
also known as matrix entropy, aggregates features from multiple views to
determine whether an object belongs to the unknown category. Matrix entropy
serves as an indicator of the number of eigenvectors required to explain the
dataset adequately. As a result, objects with substantially distinct feature
vectors from different views will exhibit higher Matrix Entropy. This method
has proven to outperform all the previously tested approaches.

5.2 Single view open set classification: simple
dataset

To evaluate our pipeline in a single-view setting, we initially utilize a small
dataset called Imagenette, which contains 10 easily distinguishable classes.

5.2.1 Open set performance

We begin by training the model on the entire Imagenette dataset, achieving
a 97.7% accuracy. This high accuracy indicates that the classes are visually
distinct and easily separable. Next, we remove images from three randomly
chosen classes: English springer, tench, and chainsaw. We then train the
model on the remaining seven classes and again achieve a 97.7% accuracy.

We use the following commands to train the model:
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1 # Full dataset
2 yolo classify train model=yolov8n.pth data=datasets/imagenette320

imgsz=256 epochs=20 batch=8 label_smoothing=0.1 workers=8
amp=False

3 # Dataset with 7 classes
4 yolo classify train model=yolov8n.pth data=datasets/

imagenette320_70 imgsz=256 epochs=10 batch=8 label_smoothing
=0.1 workers=8 amp=False

We can now use the same methods for detecting unknown objects as in a
multi-view setting, except for matrix entropy. Figure 5.4 shows that most
methods perform equally well when classes are easily separable. Surprisingly,
thresholding on the maximum logit score (MLS) yields the best AUROC
(0.968), while thresholding on entropy performs slightly worse. These results
align with observations from previous studies: good closed-set performance
leads to good open-set performance, and even simple rules for detecting
unknown instances are highly effective in such scenarios.

Figure 5.4: ROC curves for different methods on Imagenette with 7 known and
3 unknown classes.

We visualize the logits and softmax vectors for the seven classes in the
training set to investigate the open-set performance further. Figure 5.5 shows
that the embeddings can be easily projected into 2D space, with images from
different classes forming distinct clusters. We also visualize the logit and
softmax vectors on the validation set, including unknown objects. Figure
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5.6 reveals that unknown objects form a large, separate cluster from known
objects, explaining why simple anomaly scores are effective for this dataset.
The placement of the unknown cluster in the center of the 2D T-SNE latent
representation space indicates that both logits and softmax scores for unknown
objects typically have lower magnitudes.

Figure 5.5: Left plot shows 2D T-SNE latent representations of logit embeddings,
right plot shows shows 2D T-SNE latent representations of softmax embeddings.
Retrieved from the train dataset.

Figure 5.6: Left plot shows 2D T-SNE latent representations of logit embeddings,
right plot shows shows 2D T-SNE latent representations of softmax embeddings.
Retrieved from the validation dataset.

5.2.2 Pseudo-annotation of unknown instances with CLIP

The next step in our pipeline is to train the model on the detected unknown
objects. We run open-set detection using the MLS score and save the images
identified as unknown. Next, we annotate these images with CLIP using
DataDreamer:
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1 datadreamer --save_dir predicted_unknown_imagenette \
2 --class_names "tench" "English␣springer" "chain␣saw" \
3 --use_tta \
4 --task classification \
5 --image_annotator clip \
6 --annotator_size large \
7 --annotate_only \
8 --dataset_format cls-single \
9 --split_ratios 0.7 0.3 0.0

Fine-tuning the model trained on the seven known classes using the merged
initial and newly obtained dataset results in an accuracy of 96.8%. This
performance closely matches the accuracy achieved with human annotations
for all classes in the initial dataset, demonstrating the success of our proposed
approach.

1 yolo classify train model=imagenette320_70_best_yolov8n.pth data=
datasets/imagenette320_70_unk_clip imgsz=256 epochs=10 batch
=8 label_smoothing=0.1 workers=8 amp=False

5.2.3 Synthetic dataset

We also investigate the model’s performance when synthetic data are used
to train the model on previously unknown classes. Data generation is con-
ducted using DataDreamer, with TinyLLama enriching prompts for the image
generation model to enhance the diversity of object appearances and scenes.
Subsequently, SDXL-Lightning generates images based on these prompts,
and CLIP pseudo-annotates the images. Figure 5.7 illustrates the resulting
dataset containing both real and synthetic images. In this and the following
experiments, we generate approximately the same number of images for each
class as in the real dataset. For comparison, Figure 5.8 shows the full Ima-
genette dataset with real images. It is evident that while synthetic images
may appear realistic, they often lack the imperfections and nuances found in
real-world photography, appearing as though they were captured under ideal
conditions with a high-quality camera and without noise.

We utilize the following command to generate the synthetic dataset:
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Figure 5.7: The dataset with seven real and three synthetic classes (chain saw,
tench, English springer). While the images generally exhibit a high degree of
realism, occasional artefacts are present, such as flying fish above the water.

1 datadreamer --save_dir imagenette_3classes_4500 \
2 --class_names "tench" "English␣springer" "chain␣saw" \
3 --prompts_number 4500 \
4 --prompt_generator tiny \
5 --num_objects_range 1 1 \
6 --image_generator sdxl-lightning \
7 --use_tta \
8 --batch_size_prompt 256 \
9 --batch_size_image 4 \

10 --task classification \
11 --image_annotator clip \
12 --annotator_size large

We find that to achieve the best performance when training on the merged
real and synthetic datasets, we need to freeze all layers except the last and
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Figure 5.8: Images from the original Imagenette dataset.

fine-tune the model for only 1 epoch, which yields the best results. We
obtain an accuracy of 84.1% on the full real dataset when training on the
dataset with 4500 images in total and an accuracy of 86.4% when training on
a dataset three times larger, with 13500 images. Figure 5.9 illustrates the
performance on individual classes, revealing a lower accuracy for synthetic
classes. This discrepancy could be attributed to a domain shift between real
and synthetic images. A domain shift refers to differences in the distributions
of data between different domains. When training models on synthetic data
and then applying them to real-world data, the model may struggle due to
these distribution discrepancies, leading to a decrease in performance, as
observed in this experiment.

1 yolo classify train model=imagenette320_70_best_yolov8n.pth data=
datasets/imagenette320_70_synth_merged imgsz=256 epochs=1
batch=8 label_smoothing=0.1 workers=8 amp=False freeze=9
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In the following experiments, we omit the bash commands used for training

models, as they mainly differ in the dataset used and the number of epochs.

Figure 5.9: The model trained on the dataset comprising 7 real and 3 synthetic
classes exhibits lower accuracy for the English springer, chain saw, and tench
classes, which consist only of synthetic images.

Figure 5.10 illustrates the comparison of accuracy when the model is
trained on different datasets. We observe that the pseudo-annotation of
predicted unknown images yields the largest boost, achieving performance
close to that of the model trained on the original dataset with 10 classes.
Considering the absence of real images of unknown classes, adding synthetic
images works quite well, particularly when enlarging the synthetic dataset
three times, resulting in a small boost. However, the main challenge for the
synthetic dataset lies in its distribution difference compared to real images.
Combining pseudo-annotated and synthetic data results in a slight decrease
in the examined setting.
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Figure 5.10: Accuracy on the original Imagenette dataset validation set.

5.3 Single view open set classification: complex
dataset

Similarly to the previous experiment, we follow the same steps for Tiny
ImageNet. We remove 20 random classes and run the open set classification.
From Figure 5.11, we observe that the entropy and the MSP score perform
the best on more complex data. The complexity of the data is evident from
Figure 5.12, where known and unknown classes are no longer easily separable
in a 2D space. Since curves have different shapes, the choice of score to use
depends on the task requirements (for example, how many false positives we
can allow). We choose entropy for the next step, where we detect unknown
objects.

We generate pseudo-annotate datasets using commands similar to those
for Imagenette but with different classes. We achieve 70.6% accuracy on the
full dataset, 69.4% with pseudo-annotated unknown classes by CLIP, again
highlighting the power of pseudo-annotated data. However, performance
drops significantly to only 64.1% when trained in 180 real + 20 synthetic
classes (Figure 5.14). It is evident that the model almost did not learn to
correctly classify the real images for 20 new classes, indicating that it learned
a synthetic-specific distribution for unknown classes, which resulted in failure
on real classes. To further investigate this issue, we train the model only
on the 20 synthetic classes and evaluate it on the 20 real classes, resulting
in 59.8% accuracy on real data (subset with 20 classes). The per-class
accuracies are visualized in Figure 5.13. This suggests that while achieving
good performance with synthetic data is possible, the difference in real and
synthetic data distribution should be addressed to improve performance on
real-world tasks.
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Figure 5.11: ROC curves for TinyImageNet with 180 known and 20 unknown
classes.

Figure 5.13: Confusion matrix for the model trained on 20 synthetic classes and
evaluated on 20 real classes from Tiny ImageNet.
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Figure 5.12: The left plot displays 2D T-SNE latent representations of logit
embeddings, while the right plot shows 2D T-SNE latent representations of
softmax embeddings, both retrieved from the Tiny ImageNet validation dataset.
In both plots, yellow indicates unknown classes.

Figure 5.14: Accuracy on the original Tiny ImageNet dataset validation set.

5.4 Open set object detection

In the last experiment, we evaluate the performance of our proposed pipeline
in the object detection setting. First, we train the YOLOv8n model on the
entire PASCAL VOC dataset, then remove the 5 most underrepresented
classes (bus, cow, dining table, sofa, and train) and train the model on the
remaining 15 classes. The removed classes are treated as unknown. We then
investigate the open-set performance using an entropy threshold of 0.2. The
results of the open-set detection are shown in Figure 5.15. We observe that
the model fails to detect half of the unknown objects, and many unknown
objects with over-confident predictions are misclassified as known objects.
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This occurs because some unknown objects have a high degree of similarity
to the known ones. For example, buses share many common visual features
with cars, and some chairs closely resemble sofas. While it is challenging to
avoid such errors, they do not pose a problem for the next step in the pipeline
(pseudo-labeling) since the known objects predicted as unknown will also be
pseudo-annotated.

Figure 5.15: Open set performance on VOC PASCAL dataset with 15 known
and 5 unknown classes. 80% of known objects are correctly detected.

36



............................... 5.4. Open set object detection

5.4.1 Automatic label retrieval

(a) : Predicted unknowns. (b) : GT unknowns.

Figure 5.16: Retrieved labels. Deleted (gt) unknown labels: cow, train, sofa,
bus, dinning table.

Labels can be automatically retrieved from the unlabeled image set using
a multimodal model for visual question answering (VQA) purposes. We
employ TinyLLaVA [43] to run inference on detected unknown images and
ground truth unknown images. The model receives images along with the
following prompt: "USER: <image> Name 3 objects in the image, separated
by commas. ASSISTANT:". We then post-process the outputs to extract
object names and count the occurrences of each label. Figure 5.16 displays the
top 10 labels for both predicted and ground truth unknowns. We observe that
labels retrieved from ground truth contain all 5 unknown classes, while those
from predictions include only 3. This approach can be used without human
intervention, allowing the top-k labels to be directly provided to annotation
and generation models. Alternatively, humans can select relevant objects for
specific applications.

5.4.2 Training on novel classes

After obtaining images with unknown labels, we can train the model to detect
new classes. First, we generate a synthetic dataset with 5000 images using
SDXL-Lightning. Next, we generate a dataset with the same properties but
using SDXL, which requires more denoising steps for generation, to see if
there is a significant gap in quality that affects performance on real data.
From Figure 5.19, it is evident that a stronger model generates much better
data, resulting in a +0.03 mAP-50 increase in absolute values. The visual
quality comparison can be seen in Figure 5.17.
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Figure 5.17: Synthetic object detection dataset created using SDXL-Lightning
(up) and SDXL (down).
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Dataset generation command:

1 datadreamer --save_dir voc_5_classes_sdxl_5k \
2 --class_names "bus" "cow" "dining␣table" "sofa" "

train" \
3 --prompts_number 5000 \
4 --prompt_generator tiny \
5 --num_objects_range 1 1 \
6 --image_generator sdxl \
7 --use_tta \
8 --batch_size_prompt 256 \
9 --batch_size_image 4 \

10 --task detection \
11 --image_annotator owlv2 \
12 --annotator_size base

Then we reannotate the resulting dataset with all classes present in PASCAL
VOC, as some previously known objects can occur in the background:

1 datadreamer --save_dir voc_5_classes_sdxl_5k \
2 --class_names "aeroplane" "bicycle" "bird" "boat" "

bottle" "bus" "car" "cat" "chair" "cow" "dining␣
table" "dog" "horse" "motorbike" "person" "potted␣
plant" "sheep" "sofa" "train" "tv␣monitor" \

3 --use_tta \
4 --task detection \
5 --image_annotator owlv2 \
6 --annotator_size base \
7 --annotate_only

We use five ground truth class names to pseudo-annotate real images using
OWLv2. With just 1000 images labeled as unknown, we observe that real
images are much more data-effective than synthetic ones, resulting in a +0.05
increase in mAP-50 compared to the best synthetic dataset with 5x more
images (Figure 5.19).

Figure 5.18 shows the class distributions for different datasets. Interestingly,
despite being explicitly stated to contain target objects, the synthetic dataset
(Figure 5.18b) generates images with many other objects. For example,
synthetic data contain more people and many more potted plants. This
may occur for two reasons. First, we use a language model (TinyLlama) to
generate prompts that should include the names of target objects, but it
can also generate other names, such as "A photo of a person in the living
room with a sofa and potted plant." Second, the image generation model
(SDXL) might not strictly follow the given text prompt and may generate
some unwanted objects in the background. From Figure 5.18c, we can also
observe that our method managed to detect almost all unknown cows and
many trains, but only a few instances of other classes (bus, sofa, dining table).
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(a) : 20 real (b) : 15 real + 5 synthetic (SDXL)

(c) : 15 real + 5 pseudo-annotated
(OWLv2)

(d) : 15 synthetic (SDXL) + 5 pseudo-
annotated (OWLv2)

Figure 5.18: Label distributions.

Finally, we combine both pseudo-annotated and synthetic data, which
results in a further performance increase. All results are shown in Figure 5.19.
This demonstrates that, in this setting, synthetic data provide a significant
boost. Furthermore, we train the model on the merged real + synthetic dataset
generated using SDXL and achieve a new best mAP-50 of 0.827, which is
better than training only on real data (0.816). This highlights that the use of
synthetic data is highly effective for object detection. One possible reason it
works here and not as well for classification is mosaic augmentation, which
combines images from the batch into a 2x2 grid, thereby mixing synthetic and
real images so the model does not overfit on the synthetic data distribution.
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Figure 5.19: YOLOv8n mAP-50 on the validation split of VOC PASCAL for
different training datasets. SDXL-L stands for SDXL-Lightning.

5.5 Results discussion

We evaluated multiple simple open-set detection approaches in different set-
tings, multi-view and single-view, and for different architectures, Transformer-
based and CNN-based. We demonstrated that using multiple views of the
same objects is highly beneficial for both closed-set and open-set recognition.
Our introduced method, called Matrix Entropy, achieved the best perfor-
mance for multi-view classification. Almost all methods perform equally well
for single-view classification with simple data, while entropy thresholding is
the optimal choice for more complex data.

We showed that pseudo-annotation with large language-image models on
detected unknown data can achieve almost the same quality as training on
ground truth data for both classification and detection.

We demonstrated that synthetic data can be relatively effective in repre-
senting novel classes. Synthetic data was revealed to work better for object
detection than for image classification. We highlight that for effective usage,
the distribution shift should be handled.

Finally, we illustrated that combining pseudo-annotated and synthetic
images is very beneficial and can achieve excellent performance. This ap-
proach seems to mitigate distribution shift because real instances of novel
classes are present, and synthetic images can be considered as advanced data
augmentation.

In summary, our findings are:..1. Multi-view Benefits: Using multiple views of the same object enhances
both closed-set and open-set recognition performance. Matrix Entropy
was the most effective method for multi-view classification.
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5. Experiments .......................................2. Open-Set Detection: In simpler datasets, various methods performed
well, but for complex datasets, entropy thresholding was the best ap-
proach...3. Pseudo-Annotation Effectiveness: Leveraging large language-image
models for pseudo-annotation of unknown classes can yield results compa-
rable to ground truth training, benefiting both classification and detection
tasks...4. Synthetic Data Usage: While synthetic data is useful, especially for
object detection, handling the distribution shift between synthetic and
real data is crucial for maximizing effectiveness...5. Combining Data Types: Integrating pseudo-annotated and synthetic
images leads to significant performance improvements, addressing distri-
bution shifts and enhancing overall model robustness.

These findings suggest a robust pipeline for improving open-set recognition
and object detection tasks through the strategic use of multi-view data,
pseudo-annotation with large language-vision models, and synthetic data
generation with Stable Diffusion models.

5.6 Future work

5.6.1 Multiple Pipeline Iterations

We considered and experimented with only a single iteration of our pipeline:
1) unknown object detection, 2) dataset production for novel classes using
foundational models, and 3) retraining with new classes. In theory, this could
be iterated multiple times, allowing the edge model to continuously learn
until it can detect/classify every object in the specific environment in which
it operates.

5.6.2 Closing the Synth2Real Gap

We observed that using synthetic data with real data could be challenging due
to the difference in data distribution. Therefore, some advanced techniques
should be applied to mitigate this and minimize the Synth2Real gap.

5.6.3 Large Scale

To properly verify our proposed pipeline’s efficiency, the experiments should
be run on a larger scale. By using a larger foundational model, it is possible to
obtain even better quality data and better results. Additionally, our approach
can be verified on larger open vocabulary datasets such as LVIS [11] and
Object365 [37], which contain significantly more categories and images.
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Chapter 6
Conclusion

In conclusion, we conducted an evaluation of various open-set classification
strategies using different architectures, including Transformers (represented
by Vision Transformer) and CNNs (represented by YOLOv8). Our novel
method, Matrix Entropy, for multi-view open-set classification, outperformed
existing techniques and is straightforward to implement. We assessed open-set
classification in both multi-view and single-view scenarios, highlighting the
clear benefits of aggregating multiple views of the same object.

For single-view classification, our experiments across several datasets con-
firmed that performance in closed-set scenarios significantly impacts open-set
outcomes. We explored two approaches to address the knowledge gap and
learn about unknown classes. The first approach used large language-image
models (CLIP for classification and OWLv2 for detection). The second
approach involved data generation using Stable Diffusion models. Com-
bining pseudo-annotated real data with synthetic data yielded the highest
performance.

Our work demonstrated that pseudo-annotation with large language-image
models on detected unknown data can achieve nearly the same quality as
training on ground truth data for both classification and detection tasks.
Furthermore, we showed that synthetic data could effectively represent novel
classes, though addressing distribution shift is necessary. Finally, our ap-
proach of combining pseudo-annotated and real images mitigates distribution
shift and serves as advanced data augmentation, achieving excellent overall
performance for object detection.
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Appendix B
AI Tools Used

In the course of this diploma thesis, the following AI tools were utilized:.GitHub Copilot1 - Used for code suggestions and completions..ChatGPT2: Offered suggestions for writing style and rephrasing..Writefull3: Used for improving academic writing, checking grammar,
and suggesting rephrasing..Grammarly4: Assisted with grammar checking, punctuation, and style
suggestions to enhance the quality of the text.

1https://github.com/features/copilot
2https://chat.openai.com
3https://writefull.com
4https://www.grammarly.com
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