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Abstrakt

Tato práce se zabývá vývojem doporučovacího systému který využívá polohová
data uživatelů. Námi navržená architekrura kombinuje přístup kódování po-
lohy se skupinami uživatelů a jejich preferencemi. Naše architektura se odlišuje
tím, že zeměpisnou šířku a změpisnou délku kóduje do vektorového prostoru
vyšší dimenze. Tento přístup umožňuje systému dynamicky generovat doporu-
čení kategorií pro nové zájmové body, jako jsou události, místa, nebo aktivity
v konkrétních lokalitách. Provedli jsme řadu experimentů, které ukazují, že
navrhovaná architektura dosahuje zlepšení oproti základním modelům. Naše
modely mohou být využity v sociálních sítích, kde mohou zvýšit zapojení jed-
notlivých uživatelů i komunity.

Klíčová slova Doporučovací systémy, GeoAI, Kódování polohy, Polohové
doporučovací systémy, Strojové učení, Doporučování skupinám, Doporučování
bodů zájmu
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Abstract

This thesis explores the development of a location-based recommender sys-
tem. We propose a novel architecture that integrates a general-purpose lo-
cation encoder with groups of users and their preferences. Our architecture
uses separate embeddings for latitude and longitude to dynamically gener-
ate recommendations of categories for new Points-of-Interests, such as events,
venues, and activities at specific locations. We conduct a series of experiments
to demonstrate that the proposed architecture outperforms baseline models.
Our models offer more relevant and engaging content that can be used in
location-based social networks, where it can increase user engagement and
community involvement.

Keywords Recommender Systems, GeoAI, Location Encoding, Location-
Based Services, Spatial Recommender Systems, Machine Learning, Group
Recommendation, Point of Interest Recommendation
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Introduction

“I invoke the first law of geography: everything is related to
everything else, but near things are more related than distant
things.”

— Waldo Rudolph Tobler [1]

Motivation and Objectives
In today’s digital age, the combination of location-based services with social
networks has changed the way people connect with places around them. De-
spite the advancements, there remains room for these systems to better match
dynamic user locations and their evolving preferences.

This thesis proposes the development of a location-based recommender
system designed to automatically suggest the best features for creating new
items such as local events, venues, or activities at specific location. For in-
stance, consider the following:

• There is a vacant commercial space (ideal for establishing a new dining
establishment) available in a calm neighborhood of the city. An en-
trepreneur is considering opening a restaurant in this location. Would
an Italian or Chinese cuisine restaurant better suit the preferences of
the local residents in this neighborhood?

• A municipality is interested in offering sports activities tailored to the
preferences of the residents in a specific area. Considering the interests
of the local citizens, would they prefer a running program or a cycling
program?

• A local bookstore is organizing an itinerant book club to encourage
reading and literary discussions among residents in different parts of the
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Introduction

city. Would the community in the next neighborhood prefer to focus on
classic literature or contemporary bestsellers for their upcoming book
club meeting?

These examples are recommendations on linking geographical coordinates to
item preferences and they are the core of our model architecture. These recom-
mendations aim to capture user interest and encourage participation, which
is especially valuable in location-based social networks (LBSNs) where users
form groups around shared interests.

Note that, in the context of current LBSNs, users are could be also the
ones who typically create content in which they organize events, such as sport-
ing activities, for others to join. This research sees an opportunity to boost
user engagement by transitioning from user-generated to system-generated
content. Such a system would streamline the process of organizing events
by automatically generating appealing and relevant activities based on an
analysis of users’ locations and interests. For example, instead of users manu-
ally organizing events, the system could automatically suggest activities such
as watching a soccer match at a local bar or participating in a nearby group
hike, customized specifically to the preferences of users in the common area.
By automatically creating content, the system makes the community more ac-
tive and engaged, and increases participation by offering activities that users
are more likely to enjoy and join.

Moreover, this system could enhance the field of recommender systems by
integrating novel methods of location encoding with user preferences, focusing
on dynamic, group-based scenarios. The expected result is a framework that
not only improves user satisfaction through personalized suggestions but also
stimulates increased community involvement. By addressing these needs, the
proposed methods aims to contribute to the development of recommendation
engines that enhance the connection between social networks and the physical
world.

In conclusion, this work offers the following contributions:

1. We propose a general-purpose architecture of a location encoder using
a novel approach to encoding location coordinates as two separate em-
beddings for latitude and longitude exclusively. We propose this novel
approach in Section 3.2.3.

2. We propose a machine learning model for creating new items based on
recommended categories to groups of users at a common location. The
aim of this approach is to dynamically adapt to both geographic data
and preferences of the user group. We propose this model in Section 3.2.

3. We conduct experiments on four real-world geographic datasets for two
different tasks:

2



Thesis Organization

Category Probability Modeling: Recommending top categories for
a potential new POI given a geographic location, based on the
modeled probability of the categories.

Rating Probability Distribution Modeling: Recommending top cat-
egories for a potential new POI given a geographic location, based
on the estimated probability distribution of rating values for cate-
gories at that location.

We formally define the tasks in in Section 3.1 and the experimets are
described in Chapter 4

4. We test the model on unseen data and compare the proposed model with
several baselines to demonstrate its effectiveness. These comparisons are
show in Section 4.3.2

Thesis Organization
This thesis is organized as follows: Chapter 1 provides an introduction to
the current state of recommender systems, group recommendation, point-of-
interest recommendation, and location encoding methods. Chapter 2 offers
insights into the raw datasets used in this study, detailing their processing
and the reasoning behind each step taken, as well as an overview and statis-
tics of the data. In Chapter 3, we define the problems to be solved and pro-
pose a general-purpose architecture for a location encoder model to address
these problems. Chapter 4 describes the setup for our experiments, including
the baseline methods, evaluation metrics, and the statement of the optimiza-
tion problem. Finally, we evaluate the proposed model against the baselines,
present the results, and analyze their implications.

3





Chapter 1
Theoretical Background

In this chapter, we first focus on general Recommender Systems, outlining
their key principles, methodologies, and the challenges they address. We then
dive into Group Recommender Systems, which help with decision-making in
collective scenarios, and Point of Interest Recommender Systems, which use
geographical data to suggest locations like restaurants, tourist attractions,
and other venues. Finally, the chapter transitions into a discussion on the use
of Location Embeddings in GeoAI. These embeddings represent geographical
locations in a vector space, capturing the nuanced spatial relationships and
characteristics that traditional models might overlook.

1.1 Recommender Systems
Recommender systems are a fundamental component of the digital world to-
day. Their primary function is to predict and recommend items to users based
on their preferences and historical interactions. These systems significantly
improve user experiences by personalizing content in various contexts, includ-
ing e-Commerce websites, video streaming services, and social media networks.
The core aim is to present content that users are most likely to be interested
in, interact with, or buy.

Central to recommender systems are the concepts of users, items, and the
interactions between them. These interactions are either explicitly given by
the user (e.g., rating in one-to five stars scale) or implicitly inferred from their
behavior (e.g., a user viewed a product in an e-commerce website). A common
challenge within recommender systems is the issue of data sparsity, where the
system usually contains a wide range of items compared to the relatively few
items each user interacts with. This imbalance can complicate the process of
providing accurate and relevant recommendations.

The goal of a recommender system is to suggest items that maximize the
likelihood of a user interacting with them. These interactions might include

5



1. Theoretical Background

viewing a video, clicking on an advertisement, or purchasing an item.

1.1.1 Interactions
Recommender systems typically involve two classes of entities: users and
items. Each user provides a rating or preference for items, which could be
products, for example. Both users and items may have attributes, and these
attributes can be used to find similarities between them.

In recommender systems, we distinguish between two types of interaction
between users and items: explicit and implicit.

Explicit interactions are those where users are explicitly asked to provide
their feedback. Examples include:

• star ratings - user can rate an item (e.g., a movie) with a value
from a range, (eg. 1-5) when prompted,

• like / dislike - user leaves a positive or negative feedback when
prompted.

Implicit interactions are those the system infers or aggregates based on
user behavior within the system. Examples include:

• click - a user clicks on an item, such as a dress in a marketplace,
indicating interest by viewing the detail page,

• add to cart - user adds an item to their cart, which suggests
interest in the item, even if it is not purchased immediately,

• play video / song - user plays a video or song, stopping a video
or song early may indicate disinterest,

• buy an item - user buys an item, directly indicating a strong
interest,

• like - when there is no option to dislike, a ’like’ is considered an
implicit feedback indicating preference.

The interactions between users and items are typically stored in a structure
known as the utility matrix (also called the user-item interaction matrix). This
matrix is usually sparse, meaning that there are many items within the system
that a user has never interacted with, leaving most of the matrix entries empty.
The matrix is sparse because there is usually a vast array of items available
in the system, and it is not possible for users to interact with most of them.

Figure 1.1 shows the differences between explicit and implicit feedback
within the utility matrix. The rows of the matrix represent users, while the
columns correspond to items in the system. In practical scenarios, this matrix
is even more sparse, as users only interact with a small percentage of the
available items. The empty fields in the matrix indicate items that have not

6



1.1. Recommender Systems

Figure 1.1: Utility matrices representing explicit (a) and implicit (b) feedback
with rows representing the m users and columns representing the n items in
the system.

yet been interacted with. These missing values pose a significant challenge for
the system, which must predict them based on the available data.

The primary goal of the recommender system is to find the user-item
pairs with the highest estimated interaction (rating) values. Generally the
recommendation problem has been defined as an optimization problem [2]:

i∗(u) = arg max
i∈I

g(u, i) (1.1)

where i∗ is the item from the set of all items I that maximizes the relevance
for user u and g represents the relevance function.

It is not necessary to determine all the unknown values. Because there are
many item the system should only select a subset of items—those with the
highest estimated score—to show to the users. This targeted approach ensures
that users are presented only with the items most likely to interest them, rather
than all items, focusing on the quality and relevance of recommendations.

1.1.2 Content-Based Recommendation
A content-based recommender system focuses on the features and properties of
items within the system. It constructs item profiles based on these character-
istics. Similarly, user profiles are created based on the historical interactions
of users with items, reflecting the user’s preferences.

The system uses these profiles to identify items that share similarities
with those that a user has previously interacted with or shown interest in.
Recommendations are then made to users based on these similar items. The
users are then likely to be interested in the recommended items because they
are similar to items which the user interacted with or liked.

Item profile is a collection of characteristics of an item that are relevant
to the system. For example, in a video streaming service, items like movies

7



1. Theoretical Background

might have features such as genre, director, or length. With advancements
in natural language processing, some features like the cast or the year of the
movie can be extracted directly from textual descriptions or reviews. Others,
such as genre, might be assigned from predefined options within the system.
For items that are documents, such as blog posts or news articles, the item pro-
file might include the author, date of creation, and significant words relevant
to the document’s topic which are extracted from the document. To determine
the significance of words in a document, common words with little meaning
are first removed. Then, for the remaining words, the tf*idf (term-frequency
times inverse document frequency) weight is calculated. Words with a tf*idf
score above a specified threshold t are selected as keywords to be included in
the document’s profile [3]. The item profile can be represented as a vector of
0’s and 1’s, where each element indicates whether a specific feature applies
to the item (1 for yes, 0 for no). For example, if one element represents the
involvement of a particular director, a ‘1’ would indicate that the director
directed the movie, and a ‘0’ would indicate they did not. This binary en-
coding works well for categorical features, but numerical features, such as the
length of a movie, require a different approach. For these, we need to apply
a normalization technique that scales the values appropriately, allowing them
to be integrated into the vector effectively.

User profile is a vector that contains the same components as the item
profile; however, the elements are derived differently. The user profile is based
on the historical interactions of the user with items, which could be either ex-
plicit or implicit. The user profile is then essentially an aggregation of the
item profiles with which the user has interacted. If interactions are repre-
sented implicitly (with a ‘1’ in the utility matrix), then a simple technique to
aggregate these item profiles into a user profile is to calculate the average of
the vectors representing the interacted items [4].

Finally, the system recommends an item to a user based on the similarity
between the user’s profile vector and an item’s profile vector. This similarity
can be calculated using cosine similarity, which measures the cosine of the
angle between two vectors. The cosine similarity is given by the formula:

cos(θ) = u · v
∥u∥∥v∥

In this formula, u and v represent the user and item profile vectors, re-
spectively. The value of cos(θ) ranges from -1 to 1. Vectors with a cosine
similarity close to 1 are very similar, indicating a small angle between them.
Conversely, a cosine similarity close to 0 indicates that the vectors are less
similar, with an angle close to 90 degrees and completely different with values
close to -1.

8



1.1. Recommender Systems

Figure 1.2: This illustration demonstrates content-based filtering, where a user
is recommended items similar to those they have previously interacted with.
In this example, the blue user has interacted with a green book. Within the
system, there are also an orange book and headphones available. Because the
orange book is more similar to the green book, it is recommended to the user
over the headphones.

1.1.3 Collaborative Filtering-Based Recommendation
A recommender system that uses collaborative filtering (CF) focuses on iden-
tifying users with similar behaviors. Unlike content-based filtering models,
which focus on the features or properties of items, collaborative filtering mod-
els concentrate on the patterns of ratings or interactions among users. This
approach assumes that users who share similar tastes will likely interact with
similar items. The similarity of two users is based solely on the similarity of
their previous interactions in the system.

Memory-based collaborative filtering directly uses the entire user-
item interaction matrix to generate recommendations. The system begins
by calculating similarities between all user pairs based on their interaction
histories. These similarities can be determined using statistical metrics such
as cosine similarity. For each user, the system identifies the k-nearest neigh-
bors based on these similarities. Once this set of similar users is retrieved, the
system predicts ratings for items that the user has not yet interacted with.
Predictions are typically aggregated from the ratings given by the users in this
set, and the items with the highest aggregated ratings are recommended. The
advantages of this approach include its relatively simple implementation and
the ease with which it can accommodate new data. However, there are signif-
icant drawbacks in situations of data sparsity, which can lead to the curse of
dimensionality [5].

Model-based collaborative filtering involves constructing a machine
learning model to understand the underlying relationships in user-item inter-
action data. Techniques such as matrix factorization—specifically, Singular
Value Decomposition (SVD) or Alternating Least Squares (ALS)—are used
to decompose the utility matrix into two smaller matrices, assuming that
there exists a feature space of smaller dimension that captures the features of
users and that of items. Additional methods might include neural networks
or clustering algorithms. These models first learn patterns in the data and
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1. Theoretical Background

the trained model is then used to predict how a user might rate or interact
with items they have not yet encountered. The advantages of this approach
include its capability to handle sparse data, scalability to large datasets, and
generally more accurate predictions compared to memory-based methods. The
drawbacks include the complexity of implementation and the significant com-
putational resources required for training and tuning the models [5].

A major challenge in collaborative filtering-based systems is the cold-start
problem. This issue arises because the system relies solely on user interactions;
therefore, it cannot make recommendations for a completely new user who has
not yet had any interactions. One potential solution to this problem involves
combining collaborative filtering techniques with content-based approaches.
If any information is available about the new user (e.g., age, country), this
data can be used to identify users with similar features. Recommendations
can then be made based on the preferences of these similar users, effectively
mitigating the cold-start problem. Alternatively, as a simpler but less per-
sonalized approach, the system could initially recommend random items to
the new user. Even though this method may be less effective at reflecting the
user’s actual preferences, it allows for immediate interaction opportunities.

Figure 1.3: This illustration depicts collaborative filtering, where a user is rec-
ommended an item based on the similarity of their interactions with those of
another user. In this scenario, the green user is recommended a bike because
their interactions with headphones and a book closely mirror those of the blue
user, who has also interacted with a bike. Consequently, the bike is suggested
to the green user.

1.1.4 Hybrid Recommendation
Hybrid recommender systems combine multiple recommendation techniques
to address the limitations of individual models. For example, collaborative
filtering struggles to make recommendations for a new user due to missing
historical interactions of that user, and content-based methods require de-
tailed item attributes, which can lead to an overly large feature space. Hybrid
systems merge these approaches to enhance recommendation accuracy and
effectively address challenges such as the cold start problem.

10



1.1. Recommender Systems

1.1.5 Group Recommendation
In many scenarios, there is a need to recommend items to a group of users,
especially when a decision that requires consensus is involved. For example,
whether a family is deciding on their next vacation destination, a group of
friends is choosing where to eat, or a fitness studio is selecting music for
gymgoers, it is common for the preferences of group members to vary. The goal
of group recommender systems is to provide recommendations that maximize
the satisfaction of all members of the group [6].

As outlined by the authors in [7], there are several distinct types of groups,
each with its own dynamics and recommendation needs:

1. Established Group: Consists of individuals who explicitly decide to
join together based on shared, long-term interests. For example, a book
club, family or a group of friends.

2. Occasional Group: Consists of individuals who come together for
a specific, often one-time activity, such as a group visiting a museum
or a concert. The common thing here is a shared goal at a particular
moment.

3. Random Group: Involves individuals who share an environment tem-
porarily but have no explicit linked interests, such as visitors in a park,
or passengers on a train.

4. Automatically Identified Group: These groups are formed by sys-
tems that detect clusters of users with similar preferences or needs, often
using data-driven algorithms to assess compatibility or shared interests.

The primary challenge for the system is identifying the user groups. Often,
the system recognizes existing groups when users explicitly form them by
joining entities within the system, such as a running club. However, there
are cases where the system does not have explicit information about user
relationships and must therefore infer it from the existing data to form groups.
This can be achieved by applying k-means clustering directly to the interaction
vectors within the utility matrix. If additional user properties are available,
they can also be used in the clustering process. In [8], the authors use matrix
factorization techniques to find latent features of users. These features are
then used to cluster the user vectors in the latent space and the group profiles
are created [6].

The next challenge is that of creating the recommendations. There are
generally two strategies for aggregating recommendations for a group of users.
The first strategy involves generating individual recommendations for each
group member and then combining these into a final group recommenda-
tion. In this approach, the recommendation process precedes aggregation.
The system may either generate a set of candidate items from which users
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can collectively choose without system-generated ranking, or it can create in-
dividual predictions for each member and then aggregate these into a final
recommendation. The second strategy begins by aggregating the preferences
or interactions of all members of the group to form a group profile, which the
system treats as a single user. Recommendations are then generated based
on this group profile, placing the aggregation step before the recommendation
process [9].

The main challenge in all mentioned group recommendation scenarios
is tailoring the recommendation to the group as a whole, given information
about the individual preferences of group members. Since there is no opti-
mal way to aggregate recommendation lists, various aggregation functions are
used to come up with recommendations that consider individual preferences
as much as possible.

Aggregation functions can be categorized into three types: majority-based,
consensus-based, and borderline [9]. Below is an overview of different types
of aggregation functions taken from the social choice theory [10] and their
categorization into one of these categories:

1. Majority-based aggregation functions: These functions focus on
items that are most popular among the group.

• Plurality Voting: Identifies the item that receives the highest
number of votes.

• Borda Count: Prioritizes the item with the best total ranking
score, calculated by assigning a score from 0 to nitems − 1 to each
item rank. Scores for equally evaluated items are averaged.

• Copeland Rule: Selects the item that performs best in pairwise
evaluation comparisons with other items.

• Approval Voting: Recommends items that receive the most sup-
port from the users, measured by the number of item evaluations
above a defined threshold.

2. Consensus-based Aggregation Functions: These functions consider
the preferences of all group members.

• Additive Utilitarian: Chooses the item with the highest total of
user-individual evaluations.

• Average: Selects the item with the highest average of user-individual
evaluations, which can be problematic in larger groups as each in-
dividual’s opinion carries less weight.

• Multiplicative: Picks the item with the highest product of user-
individual evaluations.
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• Average without Misery: Recommends items that achieve an
average rating above a specified threshold, excluding those with
any individual ratings below that threshold.

• Fairness: Assigns rankings as if individuals were taking turns se-
lecting items.

3. Borderline Aggregation Functions: These functions focus on a sub-
set of the user preferences.

• Least Misery: Chooses the item that receives the highest of the
lowest evaluations given by any group member.

• Most Pleasure: Selects the item that receives the highest evalu-
ations from individuals.

• Majority Voting: Identifies the item that garners the majority of
evaluations across the group.

• Most Respected Person: Recommends items based on the eval-
uation proposed by the most respected or influential group member.

These aggregation functions are used to aggregate the final predictions
into either a ranked list of candidate items or a single aggregated group rec-
ommendation. Both collaborative (see Section 1.1.3) and content-based (see
Section 1.1.2) filtering approaches are employed for group recommendations.

1.1.6 Point-of-Interest Recommendation
Point-of-Interest (POI) recommendation focuses on suggesting new unvisited
places such as museums, restaurants, and public spaces to users within the
system. Most current research data is derived from Location-Based Social
Networks (LBSNs), which is a specific type of online platform where users can
log their visits to various locations through check-ins which represent implicit
feedback. Google Places, Yelp, Foursquare or Gowalla are examples of LBSNs.
The primary goal of the POI recommendation systems is to reduce information
and choice overload and still provide tailored recommendations to each user.

POI recommendations are very similar to classic recommendation systems;
however, they require more specific data beyond the usual user-item interac-
tion matrix. Most importantly, geographical information, such as the coordi-
nates of check-ins, plays a large role in POI recommendations. In addition,
these systems often incorporate constraints like opening and closing times,
pricing, and other factors relevant to POI to improve the relevance of their
suggestions [11].

In POI recommendation systems, the collected check-ins typically consist
of timestamps that indicate when a user visited a point of interest. Addition-
ally, users may visit the same POI multiple times, which is a scenario that
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does not occur in traditional user-item matrices. To accommodate this, fre-
quency matrices are constructed that count the number of times a user visits
each POI [11].

The general optimization problem for recommendations described in Equa-
tion 1.1 can be adapted to better suit point-of-interest recommendations [11]:

l∗(u) = arg max
l∈L

g(u, l, θ) (1.2)

In this model, l∗(u) represents the optimal POI for user u, selected from the
set L of all available POIs. The function g models the relevance of each POI
l for user u in the context θ, which includes variables such as the coordinates
of users and POIs, along with opening and closing times.

The algorithms used in POI recommender systems can be classified into
the following approaches [11]:

1. Based on Similarities: These algorithms use classic k-NN approaches
that utilize user or item similarities, such as cosine similarity. Some sys-
tems leverage social networks, using a user’s friends as “nearest neigh-
bors” to find shared interests for more personalized recommendations.
Neighborhood-based models are often combined with other recommen-
dation strategies. An example is the LARS (Location-Aware Recom-
mender System) model [12], which considers travel locality —assuming
users prefer not to travel far — and preference locality — assuming that
users from the same region tend to have similar preferences.

2. Factorization Models: These algorithms aim to decompose the check-
in matrix into two latent space matrices, one for users and one for loca-
tions, while several works are also incorporating geographical, temporal,
or social influences. An example of such an algorithm is GeoMF [13],
a weighted matrix factorization model that defines the areas of user
activity and POI influence within subdivided spatial grids. Another ex-
ample is RankGeoFM [14], where the authors incorporate neighboring
POIs of the target POI and include the influence of their distances in
the optimization process.

3. Deep Learning: Since 2020, deep learning has become the dominant
model type in POI recommendation. Various neural network architec-
tures are employed, including:

• Multilayer Perceptrons (MLP): The simplest form of neural
networks used in this domain.

• Autoencoders: These models learn by encoding information into
a latent space and then decoding it back to reconstruct the input.

• Convolutional Neural Networks (CNNs): Primarily used for
processing images.
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• Recurrent Neural Networks (RNNs): Ideal for memorizing
previous computations and processing sequential information.

• Word / Graph Embeddings: Techniques that learn latent rep-
resentations of words / graphs or similar structures, often using
matrix factorization.

A notable example is the PACE (Preference And Context Embedding)
algorithm [15], which learns separate embeddings for users and POIs.
These embeddings are then merged and fed into a neural network to
predict user preferences and the context associated with users and POIs.

4. Other approaches include the Probabilistic, Graph-Based or Link-
Based and Hybrid.

1.2 Location Encoding

In order to recommend item categories for users in a specified area, we need
to be able to represent (or encode) location coordinates into an embedding
so that it can be used by a machine learning model.

There are many tasks for encoding geolocation data such as polylines,
polygons, and graphs (e.g., trajectories, administrative regions, and trans-
portation networks respectively); however, in this work, we focus solely on
encoding points (location coordinates). Therefore, the type of encoder we
discuss is referred to as the single-point location encoder, denoted by Enc(x).

In [16], the authors define the location encoder in general as a function

Enc(θ)(x) : R2 → Rd

where x ∈ R2 represents a 2D location coordinate, d is the dimension of
the latent vector space into which the location is being encoded, and θ are the
parameters of the model function. The resulting encoded vectors are referred
to as location embeddings. In [16], the definition is more broadly stated to also
include the dependency of the function on other geolocation data and working
with 3D spatial coordinates, but here we have narrowed the definition to be
most relevant to this work. The concept of the location encoder encompasses
not only the modeling of location data but also its application to downstream
tasks, essentially representing the entire model from input to output for the
task at hand.

The objective of a location encoding model is to learn the non-linear con-
ditional probability distribution of observing the true values defined by the
downstream tasks given the input of location x.
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1.2.1 Properties of Location Encoder
According to the definition given in [16], the location encoder must conform to
a set of criteria, including preserving distance and being direction-aware. A lo-
cation encoder that only preserves distances but ignores changes in direction
is referred to as isotropic location encoder. Additionally, the encoder should
comply with other properties such as the capability for inductive learning,
task independence, and fixed parametrization with a finite set of parameters.
We further describe these notions presented in [16]:

1. Distance Preservation property ensures that two geographically close
location are be embedded into two similar location embeddings. The dot
product of the two embeddings of two locations must therefore decrease
as the physical distance between the two locations increases. This prin-
ciple asserts that the nearer two locations are in physical space, the more
similar their corresponding embeddings will be.

2. Direction Awareness property ensures that two locations pointing
in similar directions have more similar embeddings compared to those
pointing in different directions. Empirical studies hint at some multi-
scale encoders being sensitive to direction, yet there is minimal theo-
retical support or intentional efforts to develop encoders specifically for
recognizing direction. While the location encoders often preserve dis-
tance well, the intentional inclusion of directional information is still
relatively unexplored in research.

3. Inductive Learning property ensures that the trained location encoder
can process any location mathbfx, even those not previously encoun-
tered during training. Therefore, the encoder does not require retraining
when new “unknown” locations are added to the dataset or the encoder
is requested to encode them.

4. Task Independence property requires that the architecture of the en-
coder can be applied to any downstream task without modifying the
architecture, ensuring its reusability.

5. Fixed Parametrization property constrains the complexity of the
model by requiring it to have a fixed set of parameters, regardless of
the dataset size. While this model lacks flexibility, it benefits from
maintaining consistent complexity.

1.2.2 Types of Location Encoder
The common structure of a single-point location encoder can be described
as follows [16]:

16



1.2. Location Encoding

Enc(x) = NN(PE(x))

where PE(x) ∈ RW is typically a deterministic function called the posi-
tional encoder, which encodes the coordinate mathbfx into a position embed-
ding vector. NN(·), the neural network component of the encoder, contains
learnable parameters that are trained to model the specific task at hand.

Based on PE(·), the single-point location encoder is classified into cate-
gories of discretization-based, direct, sinusoidal, and multi-scale. All these en-
coders use different techniques to encode the initial position x. Discretization-
based and direct encoders are the most relevant to this work.

• Discretization-Based Location Encoder partitions the geographi-
cal area into discrete units of a given shape, which are then encoded.
For example in [17], the authors use one-hot encoded vectors of the
size, corresponding to the number of discrete areas. Each coordinate x
is represented by a vector where a ‘1’ is placed at the ith position if the
coordinate falls into the ith discretized area. This approach faces several
challenges: each discretized area embedding is trained separately, which
does not preserve the inductive learning property; density of location
points might vary in the discretized area, which can be addressed by ap-
plying finer discretization in areas with a higher density of points; and
the challenge of preserving distance, which can be managed by adding
regularization.

• Direct location encoder typically involves normalizing or standard-
izing the input location feature x before processing it through a neural
network. Various implementations of direct location encoders include
normalizing coordinates to a range of [−1, 1] (e.g., [18]) or employ other
scaling techniques. Although this method is straightforward, it fails to
capture the spatial relationships between locations without the use of
embeddings and feature decomposition [16].

In this work we focus on integrating Location Embedding 1.2 techniques
with Recommender Systems techniques 1.1.
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Chapter 2
Data

In this study, we utilize the publicly available datasets from four major U.S.
cities: Chicago, Illinois; Philadelphia, Pennsylvania; Austin, Texas;
and San Francisco, California. These datasets contain Google Local Data
dated up to September 2021. The datasets were sourced from the University
of California, San Diego McAuley Group Data Repository [19, 20, 21], and
are essential for the development of our location-based recommender system.
Each dataset consists of user-generated reviews, which provide insights into
consumer preferences and behavior, and business metadata, which contains
information on business locations, categories, operational hours, and other
attributes.

However, the raw datasets include data for the entire states of Illinois,
Pennsylvania, Texas, and California; therefore, further processing is required
to isolate data related exclusively to the respective cities and to our problem.

2.1 Business Metadata Dataset
For each state, we sourced a dataset [19] containing business metadata of
businesses in Google Maps. This dataset is provided as a JSON file, where
each line represents a JSON object containing metadata for a single business.
Below is a brief overview of the key object fields included in this dataset:

Table 2.1: Overview of Fields in the Business Metadata Dataset.
Field Name Description
gmap_id Unique identifier for the business
latitude Geographical latitude of the business
longitude Geographical longitude of the business
category List of categories of the business
price Price level of the business

19



2. Data

2.2 User Reviews Dataset
For each state, we sourced a dataset [19] containing user reviews for businesses
in Google Maps. This dataset is provided as a JSON file, where each line
represents a JSON object containing a single user review of a business. Below
is a brief overview of the key object fields included in this dataset:

Table 2.2: Overview of Fields in the User Reviews Dataset

Field Name Description
user_id Identifier for the user
gmap_id Identifier for the business
rating Rating given by the user (1-5)
text Content of the review

2.3 Geospatial Data
We use geographic shapefiles to precisely define and analyze the cities of
Chicago, Illinois; Philadelphia, Pennsylvania; Austin, Texas; and San
Francisco, California. These shapefiles represent the whole cities which are
split into polygons representing their respective neighborhoods. In this work
the shapefiles are used for filtering data, visualization and mapping.

2.3.1 Geographic Filtering of Data
Given that the original datasets consist of business data from entire states, it
is necessary to refine this data to include only those businesses located within
the city limits that are defined by the shapefiles. This filtering ensures that
our analysis is specific to the required urban areas.

2.3.2 Visualization and Mapping
Furthermore, these shapefiles are vital for the visualization and mapping as-
pects of our study. They provide well-defined neighborhood boundaries that
enable us to plot various pieces of information on maps, allowing for a detailed
spatial analysis of patterns and trends across different neighborhoods within
the cities.

2.3.3 Sources of Shapefiles
The neighborhood shapefiles used in this study are sourced from official geo-
graphic information system (GIS) data portals for each respective city, pro-
viding publicly accessible and up-to-date geospatial data. Specifically, the
shapefiles for Philadelphia are obtained from OpenDataPhilly [22], those for
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San Francisco from the San Francisco Data Portal [23], the Austin shapefiles
from the Austin Public Data Portal [24], and the Chicago shapefiles from the
Chicago Data Portal [25].

2.4 Data Processing
This section outlines the various stages of data processing that are applied to
prepare the dataset for subsequent analysis.

2.4.1 Geospatial Filtering
The original dataset, comprising business metadata (see Section 2.1), con-
tains businesses from various places in the states of Illinois, Pennsylvania,
Texas, and California. However, for the purposes of this study, our analysis
is specifically focused on the cities of Chicago, Philadelphia, Austin, and San
Francisco. Therefore, the initial processing step involves filtering businesses
based on whether their geographical coordinates (latitude, longitude) fall
within the polygons defined by the respective shapefiles of the cities. In prac-
tice this geospatial filtering is performed using the Python package geopandas
[26].

2.4.2 Restaurants Filtering
The original business metadata dataset includes businesses across a wide range
of categories (e.g., Pharmacy, Fire Station, Restaurant, . . .), where individual
businesses may be associated with multiple categories in the category field.
In this study, our focus is strictly on restaurants; hence, it is necessary to
refine the dataset to include only businesses that fall under this classification.
Several methods could be used to define whether a business is categorically
a restaurant were explored, including an analysis of the business’s title and
textual reviews. However, for simplification reasons, the adopted approach
involves a straightforward examination of the category field. Initially, all
category strings are converted to lowercase to ensure case-insensitive compar-
isons. Subsequently, businesses are retained if and only if any entry in their
category field contains the substring ‘restaurant’. We note that not all dining
establishments in the dataset would necessarily have this word present.

2.4.3 Categories Filtering
From these businesses all unique categories along with their frequencies are
extracted, those occurring more than d = 30 times are identified as a set of
relevant categories. For each business we retained only those categories
that were part of this frequently occurring set. Following this categorization
refinement, an additional filtering step is applied. Businesses that are left
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with no category or with only the generic category of ‘restaurant’ are removed
from the dataset. This step is taken because such a general category does not
provide enough detail to analyze the diverse types of restaurants intended for
this study. Table 2.3 illustrates which businesses are kept (‘Keep’) or discarded
(‘Discard’) based on their categorization.

Table 2.3: Examples of filtering businesses based on categories.

gmap_id category Action
0x89c. . . italian restaurant Keep
0x67a. . . pharmacy, drug store Discard
0x34c. . . fire station Discard
0xa31. . . restaurant; bar Keep
0xbcc. . . bakery; cafe Discard
0x57e. . . restaurant Discard

2.4.4 k-core Decomposition
The process of k-core decomposition is used to analyze the structure of a net-
work by peeling off the outermost layers, progressively revealing denser, more
connected cores. It is particularly useful in social networks and recommender
systems as it helps to identify communities or clusters of users who share
common interests or interactions. [27]

Definition 2.4.1 (k-core Decomposition). Given an undirected and unweighted
graph represented as G(V, E) where V is the set of vertices and E is the set
of edges and given a threshold value k, the k-core decomposition of G is the
process of systematically removing vertices from G to create G′(V ′, E′) (a sub-
graph of G) where each vertex v ∈ V ′ satisfies the condition deg(v) ≥ k.
A vertex v is removed from the process if it does not satisfy the condition
deg(v) ≥ k.[27]

In the context of recommender systems the relationships between users and
items can be represented as a bipartite graph G(Vu, Vi, E) where the Vu (users)
and Vi (items) are disjoint sets and every edge e ∈ E connects a vertex in Vu

to a vertex in Vi. Figure 2.1 shows an example of the k-core decomposition of
the user-item relationships graph where red resp. green nodes represent users
resp. items and edges represent an interaction.

We continue to process our dataset by merging the user reviews dataset
(2.2) with the refined business metadata dataset using the gmap_id field
as a key to get a resulting dataset of reviews merged with the restaurants
and their categories created in the previous steps. The k-core subset is then
extracted for k = 5, ensuring that in the resulting dataset, each user has rated
at least k restaurants, and each restaurant has been rated by at least k users.
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Figure 2.1: Example of the k-core decomposition of a bipartite graph.

This step not only focuses the analysis on a denser core where interactions are
more frequent but also helps in mitigating the effects of outliers, as it removes
nodes with connections fewer than k. By employing the k-core decomposition,
we enhance collaborative filtering techniques, allowing the recommendations
to be based on more reliable data. This method is likely to increase the accu-
racy of the system’s suggestions by concentrating on the most significant and
consistent user-item interactions.[27]

2.4.5 User Location Estimation
In our dataset, direct user location data is not available; instead, we have
access to locations of the restaurants where users have checked in.

A straightforward initial approach to estimate a user’s “home” location
might be calculating the arithmetic mean of all restaurant locations they have
visited. However, this method tends to produce resulting locations that are too
centered within the entire area, often suggesting that a user’s home location
is near the geographic center of the map, as shown in Figure 2.2(b).

This centering tendency fails to reflect the realistic distribution of residen-
tial locations. For instance, using this method, the likelihood of identifying
residences at the periphery of the city is notably low, and it might inaccu-
rately place a user’s location in non-residential areas like at an airport or
within a large park. Importantly, multiple studies in the literature suggest
that individuals tend to visit POIs closer to their homes, venturing farther
only on fewer occasions [28, 29]. This behavioral pattern implies that a user’s
most frequently visited area is a more reliable indicator of their home location
than a simple arithmetic mean of all visited locations.

Therefore, we selected a more principled method for estimating user loca-
tions by leveraging the geospatial division of cities into neighborhoods pro-
vided by the prepared shapefiles (Section 2.4.1). We calculate the average
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location of check-ins within the neighborhood where a user most frequently
checks in. This approach respects the spatial distribution of user check-ins,
the realistic distribution of residential locations within the city, and aligns
with observed behaviors regarding proximity and travel distances.

For calculating the average location, we choose the method of directly
calculating the mean of latitude and longitude coordinates. This approach
is deemed adequate due to the small scale of the areas—individual cities—
where the curvature of the Earth’s surface introduces minimal distortion to the
geographic calculations. With this simplification, the computational overhead
of transforming coordinates into a projected coordinate system can be avoided.
Moreover, preliminary analyses confirmed that the results obtained by direct
averaging are sufficiently close to those derived from more complex spatial
calculations.

Figure 2.2 compares the two user location imputation methods and their
resulting distributions within the Philadelphia area. In panel (a) we can see
gaps of areas without users, which correspond to non-residential zones such
as the airport and industrial sectors in the south, or the Fairmount Park
above the center. In contrast, panel (b) demonstrates a user distribution that
is denser in the city center and gradually fades towards the borders, reflecting
the influence of the averaging method.

Figure 2.2: Comparison of methods for imputation of user locations in the
city of Philadelphia.
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From Figure 2.3 it is also apparent that the method depicted in (a) can
identify multiple attractive locations as opposed to (b) where there seems to
only be a single “hot” center.

Figure 2.3: Comparison of methods for imputation of user locations in the
city of San Francisco.

2.4.6 One-Hot Encoding of Categories
The final step in the data processing pipeline is to perform one-hot encoding
on the category column. This involves transforming all unique categories
into separate columns within the dataset. Each entry is then marked with a 1
in the column corresponding to its category if the category is present, or a 0
if it is not.

2.5 Dataset Overview

Table 2.4: Statistics of the Datasets for All Cities.
City # Users # Items # Ratings Sparsity Area (km2)
Austin 67,543 2,747 879,868 0.0047 704
Chicago 116,962 6,622 1,461,774 0.0019 606
Philadelphia 49,105 3,311 581,169 0.0036 369
San Francisco 43,614 3,402 517,117 0.0035 121
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In Figure 2.4, we observe that the interaction of users with restaurants
across various neighborhoods in the cities shows a fairly uniform distribution
of categories. Given that Chicago is the largest city, it is reasonable to expect
that it includes the largest variety of categories.

Figure 2.4: Number of unique categories that users from each neighborhood
in each city interact with.
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Method

This section details the approach to develop a machine learning model de-
signed to recommend the most suitable categories for a new Point of Interest
(POI) based on location data and preferences of users in the neighborhood.
This task presents unique challenges due to the spatial dimension of the data,
which requires an approach that considers both the popularity of different
categories of items (restaurants) and their geographic distribution. In this
section we introduce the two problems that the proposed model aims to solve,
the architecture of the model and the reasoning behind it.

3.1 Problem Definition
We define a set of triplets P = {pi|i = 1, . . . , N}. Each triplet pi represents an
interaction of a user rating a POI which is described by pi = (xi, Ci, ri). Here,
xi ∈ R2 represents the geographical coordinates of the user, given as xi =
(loni, lati). The explicit rating ri ∈ {1, . . . , 5} is an integer reflecting the
user’s satisfaction level. The set Ci ⊆ {1, . . . , C} contains indices of the |Ci|
categories relevant to the rated POI. The set {1, . . . , C} comprises all C unique
category indices across the dataset P and it is effectively the union of Ci.

In this work, we employ solutions to the two following problems:

1. Category Probability Modeling: Given the set of points P, we define
a function fP,θ parameterized by θ, which maps input features x ∈ R2

to a vector of probabilities p̂ ∈ RC :

fP,θ(x) : R2 → RC (3.1)

This function estimates the probabilities of a user that belongs to a given
point x interacts with each of C categories. Note that these probabili-
ties are not constrained to sum to one, reflecting that a user could, for
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instance, have a 0.8 probability to interact with an Italian restaurant
and, at the same time, 0.8 to interact with a Chinese one.

2. Rating Probability Distribution Modeling: Given the set of triplets
P, we define a function gP,µ parameterized by µ, which maps input fea-
tures x ∈ R2 to a matrix P̂ ∈ RC×6. For each i ∈ {1, . . . , C}, the row
vector p̂i ∈ R6 of P̂ is a probability vector.

gP,µ(x) : R2 → RC×6 (3.2)

This function estimates for each of the categories c ∈ {1, . . . , C} the
probability distribution of c receiving a specific rating. Specifically, each
element of p̂i corresponds to the probability of obtaining a rating of 1
through 5, or no rating at all (absence of value), which is represented
by the first element of each row vector p̂i,0. The first element thus
captures the probability that a rating is not available or applicable, and
the subsequent elements represent the probabilities of ratings from 1 to
5, respectively. Note that the vectors p̂i are probability distributions,
and therefore, their values sum to one. This reflects the scenario where,
for example, a user might rate an Italian restaurant as follows: 1 with
a probability of 0.1, 2 with 0.1, 3 with 0.2, 4 with 0.1, and 5 with 0.1
and with the probability of giving no rating being 0.3.

3.2 Model Architecture
In this section, we describe the proposed architecture of the machine learning
model used to solve the problems defined in Section 3.1.

Our architecture is designed to be task independent (see Section 1.2.1),
enabling application to any problem that requires encoding geographical co-
ordinates into an embedding space. These embeddings can then be seamlessly
integrated into downstream neural network modules to tackle various tasks.

As depicted in Figure 3.1, the architecture comprises several key compo-
nents:

• Area Discretizer: Segments the geographical area into discrete zones.

• Latitude and Longitude Embeddings: Convert discretized latitude
and longitude bins into a dense embedding space, capturing spatial re-
lationships.

• MLP: Combines the embeddings to perform the task-specific computa-
tions.

• Transformation Function ϕ: Transforms the outputs of the neural
network into a format suitable for making predictions or further pro-
cessing.
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• Output Value ŷ: Represents the predicted result, tailored to the spe-
cific requirements of the task at hand.

Figure 3.1: Structure of The Proposed Model

In the following sections, we further describe the individual components
of the proposed model.

3.2.1 Input
The location coordinate x = (latitude, longitude) ∈ R2 is the input to the pro-
posed model. For both the Category Probability Modeling and Rating
Probability Distribution Modeling problems defined in Section 3.1, the
input is identical. It is the “home” location of a user presented in Section 2.4.5.

3.2.2 Area Discretization
In this study, we adopt the approach of dividing the given geographical area
into discrete units of uniform size based on latitude and longitude. These
units are parameterized by the bin_width parameter. Given that this re-
search focuses on cities that are relatively small in geographic extent, we can
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reasonably neglect the effects of the Earth’s curvature. Therefore, we divide
the area into rectangular grid of m rows and n columns. Each cell extends
bin_width degrees in latitude and bin_width degrees in longitude. Each
grid cell is referred to as a “bin”, and this grid is indexed by bin_lon and
bin_lat, which represent the longitudinal and latitudinal bins, respectively.
This spatial discretization is illustrated in Figure 3.1.

The adoption of area discretization allows us to create user groups based
on their location.

For the purpose of transforming a location coordinate x into the grid
coordinate xbin = (bin_lat, bin_lon), we use the class LatLonDiscretizer
throughout the work. Figure 3.2 shows the discretization of two areas and the
partition of users.

Figure 3.2: Heatmap showing the distribution of users across the discretized
areas in Austin and Chicago.

3.2.3 Geospatial Embeddings
We encode the discretized areas, representing the preferences of groups of
users, into a higher-dimensional feature space that captures the geospatial re-
lationships of the data. As discussed in Section 1.2, the positional encoder
PE(xbin) ∈ RW is a deterministic function that transforms the input coordi-
nate xbin into a vector suitable for learning by the neural network component
NN(·). However, in this work, we do not create an embedding for the coor-
dinate as a whole. Instead, we treat xbin as two separate entities: bin_lat
and bin_lon. We create separate embeddings for each of the m latitudinal
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(horizontal) and n longitudinal (vertical) discretized sections, resulting in the
embedding matrices U ∈ Rm×d and V ∈ Rn×d which are two fully learnable
components and dimension d is the hyper-parameter of the latent space.

The multiplication of the two latent space matrices results in a matrix H
of the same dimensions as the discretized area:

H = U · V⊺ ∈ Rm×n

where we can interpret the element Hi,j as the embedding value for the
discretized bin (i, j), representing the geospatial embedding of the group of
users.

To address the distance preservation property discussed in Section 1.2.1,
we introduce specific constraints on the vectors within the embedding matri-
ces during optimization. To ensure the latitudinal and longitudinal embed-
ding vectors remain sufficiently close, we employ regularization based on the
L2 norm. Consequently, we augment the optimization loss with the following
penalty term:

λ

m−1∑
i=1

∥ui − ui+1∥2 +
n−1∑
j=1

∥vj − vj+1∥2

 (3.3)

where ui (respectively, vj) is the i-th (respectively, j-th) vector in the matrix U
(respectively, V). This approach ensures that embeddings for geographically
closer locations are closer in the embedding space, effectively preserving the
distance properties of the physical space within the model.

Inspired by matrix factorization, this approach meets the requirement of
inductive learning property discussed in Secton 1.2.1. Even when data is not
available for some bins in the discretized area, we can infer the embeddings of
these bins as long as there is at least one data point in either the horizontal
or vertical direction of the bins. Thus, this method enables predictions for
locations not included in the training set. This ability to make predictions for
previously unknown locations demonstrates the model’s value in those areas
where data is often sparse. Figure 3.2 displays a heatmap, which is a matrix
where each element represents a bin, and the value indicates the number of
users in that bin. In particular, the purple areas in Figure 3.2 represent regions
without users; however, thanks to the chosen approach, the model can still
make predictions even for these areas.

3.2.4 Multilayer Perceptron (MLP)
Given a particular coordinate xbin, the model multiplies the latitude embed-
ding vector ubin_lat with the transpose of the longitude embedding vector
vT

bin_lon, resulting in a scalar value. This scalar serves as the input to the
NN(·) component of the encoder.
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We employ a multilayer perceptron architecture for the NN(·) component
of the encoder, consisting of three fully connected layers with sizes 16, 8, and
k. The first two layers, of sizes 16 and 8, utilize the ReLU (3.2.5) activation
function. The last layer, of size k, employs an activation function appropriate
for the specific task at hand. These layers have proven sufficient for the tasks
at hand.

ReLU Activation Function

The Rectified Linear Unit (ReLU) is defined as:

f(x) = max(0, x)

This function keeps positive inputs unchanged and replaces negative
inputs with zero. ReLU introduces nonlinearity to the dense layers,
which is essential for learning complex patterns in the data.

3.2.5 Output Layer
The size k of the output layer varies depending on the problems defined in
Section 3.1. We define a function ϕ(z), a transformation function that con-
verts the raw output z of the MLP into the desired format, as illustrated in
Figure 3.1.

For the problem of Category Probability Modeling, the output of
function f (see Equation 3.1) is a vector of probabilities p̂ ∈ RC , where C
represents the number of all unique categories. In this case, the size of the
output layer k is C. Since the expected output is a vector of probabilities,
the activation function applied to the output layer is the sigmoid function.
Applying the sigmoid function directly produces the probabilities, thus no
further transformation is needed and therefore ϕ(z) = σ(z) = p̂.

Sigmoid Activation Function

The Sigmoid function is defined as:

σ(x) = 1
1 + e−x

This function outputs values between 0 and 1. It useful for models where
output needs to be interpreted as a probability.

For the problem of Modeling Rating Probability Distributions, the
output of function g (see Equation 3.2) is a matrix of probability distributions
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R̂ ∈ RC,6, where C represents the total number of unique categories. Here, the
size of the output layer k is C×6, which is then reshaped to the matrix format.
This raw output matrix is denoted az z. Since the desired output is a matrix
of probability distributions for each category, the activation function applied
to each row of the output layer is the softmax function. This ensures that
the probabilities in each vector sum up to 1, representing valid probability
distributions.

Softmax Activation Function

The Softmax function is defined as:

softmax(zi) = ezi∑K
j ezj

where z is a vector of inputs to the softmax layer. This function is par-
ticularly effective in multi-class classification problems, as it converts
logits to probabilities that sum to one [30].

For the final prediction of a rating given to a category c, the matrix R̂
must be transformed because it contains probability distributions in its rows.
To each row r̂i, we apply a function q(r) : R6 → R, which outputs the final
estimated rating. The function q is defined as follows:

q(r) =
∑6

i=2 i × ri∑6
i=2 ri

When applied to the whole matrix R̂, the function q returns a vector
r̂ ∈ RC of estimated rating values for each category. We disregard the first
element r1 (corresponding to “no rating”) in the calculations because it does
not contribute to the distribution of ratings (1-5).

The transformation ϕ(z) is therefore ϕ(z) = q(softmax(z)) where z is the
raw matrix output of the MLP.

3.2.6 Model Parameters
The model’s parameters are divided to trainable parameters, hyper-parameters
and task-specific parameters.

Trainable parameters involve the weights of the MLP dense layers and
the learnable weights of the latitude (U) and longitude (V) embeddings.

Hyper-parameters of the model are bin_width, the size of the latent
space of the embeddings d and the regularization parameter λ which defines
the influence of the regularization term proposed in Equation 3.3.

Task-specific parameters include the latitude and longitude bounds of
the discretized area and the dimensions of the output.
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3.3 Optimization
To solve the problems outlined in Section 3.1, we need to choose a suitable
loss function for optimization. This choice is critical because it shapes the
optimization algorithm’s behavior and determines what an optimal solution
looks like. In this section, we will first introduce the loss functions used in
this study and then discuss how they are applied in the optimization process.

Mathematical formulation of the optimization problem

θ∗ = arg min
θ

L(θ, y, ŷ)

where:

• θ represents the parameters of the model,

• y are the actual target values,

• ŷ(θ) are the predicted values given by the model, dependent on θ,

• L(θ, y, ŷ) is the loss function that measures the discrepancy between the
predicted values p̂ and the true values y,

• θ∗ are the optimal parameters that minimize the loss function over the
training dataset.

3.3.1 Categorical Cross-Entropy
The categorical cross-entropy loss (CCE) is designed to measure the perfor-
mance of a classification model whose output is a probability distribution
across multiple classes. The loss compares the predicted probability distribu-
tion with the actual distribution, which is typically represented as a one-hot
encoded vector. The closer the model’s outputs are to the actual distribution,
the lower the loss.

The formula of the categorical cross-entropy loss is given by:

L(y, p̂) = −
R∑

r=1
yr log(p̂r)

where:

• y is the one-hot encoded true label vector of the data point.

• p̂ is the vector of predicted probabilities that the data point belongs to
each class.

• R is the total number of classes and therefore |y| = R and |p̂| = R.

• yr and p̂r are the components of y and p̂ for class r, respectively.

34



3.3. Optimization

We choose the categorical cross-entropy loss function for the task of esti-
mating the Rating Probability Distribution for each item category and
a group of users at a given location x. This choice is appropriate because
the rating vector (corresponding to y) must represent one of the mutually
exclusive rating categories (absence of value or rating 1, 2, 3, 4, 5) for each
item category. Thus, there can be only one true value in the rating vector.
Consequently, the output vector (corresponding to p̂) forms a probability dis-
tribution in which the values sum up to 1, reflecting the exclusive nature of
each rating category. For this task, the defined number of rating categories
R, is therefore 6.

Given that the true label for this task is a matrix Y ∈ {0, 1}C,6, where C
is the number of item categories in the dataset, we calculate the categorical
cross-entropy across all categories as follows:

L(Y, P̂) = 1
C

C∑
i=1

L(yi, p̂i)

where:

• Y is the matrix of true labels, with each row yi representing the one-hot
encoded labels for the i-th category.

• P̂ is the matrix of predicted probabilities, with p̂i corresponding to the
predicted probability distribution for the i-th category.

• L(yi, p̂i) denotes the categorical cross-entropy loss for the i-th category.

3.3.2 Binary Cross-Entropy
The binary cross-entropy (BCE) is used in binary classification models, where
each output prediction is expected to be a probability value between 0 and
1. This loss function measures the performance of a classification model by
comparing the predicted probability of the target class with the actual class
label, which is either 0 or 1. The loss increases as the predicted probability
diverges from the actual label, with the goal of minimizing this divergence.

The formula of the categorical cross-entropy loss is given by:

L(y, p̂) = − (y log(p̂) + (1 − y) log(1 − p̂))

where:

• y is the true label of the data point, which can be 0 or 1.

• p̂ is the predicted probability that the data point belongs to the class
with label 1.

35



3. Method

For the task of estimating the Category Probability for a group of users
at a given location x, we need a loss function that effectively measures the
difference between the predicted probabilities and the true category labels.
Let y denote the true label vector for a given data point, where y ∈ {0, 1}C

and each component yi of the vector y is a binary indicator. Specifically, yi = 1
if the rated item belongs to the category at position i, and yi = 0 otherwise.
Given the binary nature of y and that each element of the output vector from
the function fP,θ(x) represents the independent probability of a respective
category, we choose binary cross-entropy (BCE) loss for this model.

We then average the binary cross-entropy loss across all categories as fol-
lows:

L(y, p̂) = 1
C

C∑
i=1

L(yi, p̂i)
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Chapter 4
Experiment

4.1 Baseline Methods
In this section, we introduce several baseline methods designed to assess and
predict user preferences utilizing location-based data. Each method uses dif-
ferent statistical or machine learning techniques to address the problem of pre-
dicting user preferences from geographical and categorical data. We provide
detailed descriptions of each baseline method’s implementation and highlight
the specific computational approaches used.

To make direct comparisons and evaluations possible, all implemented
baseline models conform to a uniform structure. Specifically, they are de-
signed to accept the same form of input and generate outputs of the same
structure. This standardization ensures that the results can be seamlessly
integrated into the evaluation metrics and directly compared with the ground
truth values.

The baseline models are all initialized with the following parameters:

• lon_min, lon_max, lat_min, lat_max – geographical bounds of the
area,

• bin_width – width and height of the discretized areas,

• n_categories – number of categories,

All baseline models internally use the LatLonDiscretizer to process the
input location coordinate x = (lon, lat) into the discretized location coordinate
xbin = (lonbin, latbin). The output is then a vector ĉ ∈ Rn_categories, where
each element represents the values estimated for each category. The inter-
pretation of these values varies depending on the baseline method. A value
at position i in the estimated vector ĉ can represent the estimated rating
given to a category i by users within the area defined by xbin (i.e, explicit
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4. Experiment

feedback), or it can indicate the level of confidence that users within that
area favor the category i (i.e, implicit feedback).

The structure of the baseline models is shown in Figure 4.1.

Figure 4.1: The structure of the baseline models using a tensor format. The
three-dimensional grid is organized first along two axes, n_bins_lon and
n_bins_lat, which discretize the city area into bins. Each bin has a uni-
form width and height defined by bin_width, segmenting the city into a grid
where each cell represents a specific geographic area. The red vector along
the n_categories axis represents the estimated vector ĉ for users within the
area defined by xbin.

4.1.1 Random (Rand)
This baseline serves as an initial benchmark to determine whether the pro-
posed model can outperform a random generation of recommended categories
for users at a given location.

For each group of users, defined by discretized areas of the city, this base-
line method randomly generates category ratings in the given area.

The input of this model is the location coordinate x and the output is the
vector ĉ of randomly generated ratings which are floating-point values
ranging from 1 to 5, for all categories at the location x.

4.1.2 Most Popular Categories (MostPop)
We choose this baseline as a benchmark to determine whether the proposed
model can outperform a method of recommending categories at a given loca-
tion based on the Bayesian average rating given by the users in that area.

For each group of users, defined by discretized areas of the city, we calcu-
late the most popular categories. To determine these categories, we use the
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Bayesian average rating for each category within each discretized area. This
method aims to provide a more robust evaluation of popularity by incorporat-
ing both the average ratings and the number of ratings, and it should provide
a more balanced representation of the estimated rating, especially in areas
with sparse data. The Bayesian average incorporates prior knowledge about
the distribution of ratings into the calculation of an average. The formula for
the Bayesian average is as follows [31]:

x = C · m +
∑n

i=1 xi

C + n

Where:

• x = estimated Bayesian average rating for a category

• C = number of ratings per category

• m = average rating of a category

• n = number of ratings of a category

• ∑n
i=1 xi = sum of the ratings for a category

The input of this model is the location coordinate x and the output is a vec-
tor ĉ of the estimated ratings, which are floating-point values ranging from
1 to 5, for all categories at the location x.

4.1.3 Matrix Factorization (MatFac)
For each group of users, defined by discretized areas of the city, we calculate
the average category confidence vector ĉ. A value in this vector at po-
sition i represents the confidence that the particular group of users will like
the category i. To determine the category confidence vectors, we use the col-
laborative filtering method of matrix factorization of the user-item interaction
matrix into the latent space matrices U ∈ Rm×d and V ∈ Rn×d where d is the
hyperparameter for the size of the latent space, m is the number of users and
n is the number of items (restaurants). After estimating the confidence matrix
R̂ = UV⊤ ∈ Rm×n we further process it to get the average confidence values
of all categories at all locations.

The input of this model is the location coordinate x, and the output is the
vector ĉ of confidence values for all categories at the location x.

4.1.4 Direct Coordinate Encoder (Direct)
In [18], researchers present a model for fine-grained recognition of animal
species in images given geolocation data. They begin by normalizing the lo-
cation vector, x, to the range [−1, 1], resulting in a normalized vector xnorm.
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This vector is then fed directly into a neural network comprising three fully
connected layers with sizes 256, 128, and 128. We adopt this encoder structure
as a baseline model for comparison with our proposed model. The objective
of this comparison is to determine whether our model, which should capture
spatial dependencies, performs better than a model that directly encodes lo-
cation coordinates. This will help us evaluate whether our proposed method
of decomposing location coordinates into embeddings offers any advantages.

4.1.5 Implementation Details

In this section, we detail the implementation of the baseline methods.

Random Model: We implement this baseline as the RandomModel class,
which is initialized with the parameters specified in 4.1.

A tensor of shape (n_bins_lon, n_bins_lat, n_categories) (see Fig-
ure 4.1) is created by uniformly generating random ratings, which are floating-
point values ranging from 1 to 5. This tensor is static in that it is created
only once to ensure that the model, analogous to the proposed trained model,
produces consistent outputs for identical inputs.

Most Popular Categories Model: This baseline is implemented as the
MostPopularModel class, initialized with the parameters detailed in 4.1. It
stores the calculated Bayesian average estimations in a tensor with shape
(n_bins_lon, n_bins_lat, n_categories), where the last axis contains
the estimated ratings for the categories at the specified location coordinate
x.

Matrix Factorization Model: This model is implemented using the
MatrixFactorizationModel class, initialized with parameters from 4.1. It
utilizes the alternating least squares (ALS) algorithm from the Python
package implicit. Originally designed for implicit feedback, the ALS algorithm
is adapted for our needs to process explicit ratings. We train the model solely
on samples with ratings of 3 or higher, interpreting these as indicators of
positive interactions.

For training, a custom fit function is used, involving the following pa-
rameters:

• df – a pandas.DataFrame containing the columns user_id, gmap_id,
rating, user_latitude, and user_longitude, which provide user in-
teractions and location data.

• factors – the dimension of the latent space for the ALS matrix decom-
position, influencing the granularity of feature representation.
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• regularization – regularization factor to prevent overfitting in the ALS
algorithm.

• iterations – number of iterations to perform in the ALS optimization
process.

• confidence_alpha – scaling factor used to adjust the influence of rat-
ings, enhancing their confidence in the model.

Inside the fit function, we construct a sparse user-item matrix R ∈ Rm×n,
populated exclusively with ratings of 3 or higher, where m denotes the number
of users and n denotes the number of items (restaurants). These ratings are
treated as confidence levels, indicative of implicit feedback. The entries of R
are scaled by a factor confidence_alpha to enhance the distinctions in user
preferences. User and item embedding matrices, U ∈ Rm×factors and V ∈
Rn×factors, respectively, are then calculated using the ALS algorithm. The
recovered matrix R̂ = UV⊤ ∈ Rm×n encapsulates the confidence level of user
ui interacting with item ij for each indexed pair (i, j) ∈ {1, . . . , m}×{1, . . . , n}.

The calculated confidences are then translated into the context of cate-
gories of users at specific locations as follows:

Each user’s “home” location, imputed as described in Section 2.4.5, corre-
sponds to a specific discretized location coordinate xbin. The rows of matrix
R̂, which represent individual users, are grouped according to these discretized
locations. An average item confidence vector cg ∈ Rn is computed for each
group. This vector cg is stored in the tensor T ∈ Rn_bins_lon×n_bins_lat×n at
the indices corresponding to each group’s discretized coordinates xbin. For
each item (restaurant), a binary vector representing the one-hot encoded
categories bj ∈ {0, 1}n_categories is defined as described in Section 2.4.6.
Element-wise multiplication of cg with each bj results in a tensor Tcat ∈
Rn_bins_lon×n_bins_lat×n×n_categories. To aggregate the resulting category con-
fidence vectors, we compute the mean of the non-zero values across the third
dimension, yielding a tensor Tfinal ∈ Rn_bins_lon×n_bins_lat×n_categories. An
entry at position (bin_lon, bin_lat, i) in Tfinal represents the average confi-
dence of the category i for users at the discretized location (bin_lon, bin_lat).

4.2 Evaluation Metrics
In this section, we describe the metrics used to evaluate and compare the
effectiveness of the proposed models along with the baseline models presented
in the work. The chosen metrics — Mean Reciprocal Rank, Mean Average
Precision, and Root Mean Squared Error — provide insights into each model’s
ranking prediction capability and error rate.
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4.2.1 Mean Reciprocal Rank
The mean reciprocal rank (MRR) is a statistical measure used to evaluate the
effectiveness of a query response system. It is commonly used in information
retrieval and in evaluating recommender systems. Specifically, it focuses on
the position of the first relevant item in the list of responses. MRR is mainly
useful in scenarios where there exists one ideal response to a query.

Definition and formula: Given a set of queries Q with each query q ∈ Q,
the Mean Reciprocal Rank is defined as follows:

MRR = 1
|Q|

|Q|∑
i=1

1
ranki

where ranki is the position of the first relevant answer for the i-th query
within the list of responses returned by the system, |Q| is the total number of
queries.

4.2.2 Mean Average Precision
The mean average precision (MAP) is a statistical measure used to evaluate
the effectiveness of query response systems. It is commonly used in infor-
mation retrieval and in evaluating recommender systems. MAP assesses the
precision at every relevant position in the list of responses and averages this
over all queries. This measure is particularly ideal for situations with mul-
tiple relevant items per query. It provides a comprehensive indicator of the
performance of the system at different levels of recall.

Definition and formula: Given a set of queries Q with each query q ∈ Q,
we define precision at k (Precisionk) for a query as follows:

Precisionk = Number of relevant items in the top k positions
k

Next, we define the Average Precision (AP) for a single query q:

APq =
∑n

k=1(Precisionk × relk)
number of relevant items for q

where n is the number of items retrieved, relk is an indicator function equal
to 1 if the item at position k is relevant and 0 otherwise.

Finally, the Mean Average Precision is defined as the mean of the Average
Precisions for all queries in Q:

MAP = 1
|Q|

∑
q∈Q

APq

where |Q| represents the total number of queries.
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4.2.3 Root Mean Squared Error
Definition and formula: The root mean squared error (RMSE) is a stan-
dard way to measure the error of a model in predicting quantitative data.
RMSE quantifies the square root of the average square differences between
the predicted and actual values.

Given n observations or predictions, where yi represents the actual value of
the i-th observation and ŷi denotes the predicted value for the i-th observation,
the formula for RMSE is as follows:

RMSE =

√√√√ 1
n

n∑
i=1

(yi − ŷi)2

4.3 Model Evaluation
To test the proposed model, we compare its performance with the baseline
methods defined in Section 4.1 on the user-restaurant rating dataset prepared
in Chapter 2. The model is designed to solve the following tasks formally
defined in Section 3.1:

• Rating Probability Distribution Modeling: This task involves pre-
dicting the probability of each rating value (1-5) for a category ci at
a given location x. Based on these probabilities, we construct a vector
of predicted ratings for all categories at location x. This vector is then
used to compare with the truth values to calculate the metrics MAP,
MRR, and RMSE. Refer to Section 4.2 for detailed explanations on how
these comparisons are performed. We label this method as LLCR.

• Category Probability Modeling: This task predicts the probability
that a category ci is relevant at a given location x for the vector of all
categories. This vector is then used to compare with the truth values
to calculate the metrics MAP and MRR. We do not calculate RMSE
as this method does not return ratings. Since we aim to retrieve the
most relevant categories, we train and validate this model only on such
samples from the dataset that have a rating of 3 or higher. We label
this method as LLCC.

We label the baseline methods as Rand for Random (4.1.1), MostPop for
Most Popular Categories (4.1.2), MatFac for Matrix Factorization (4.1.3),
Direct for Direct Coordinate Encoder (4.1.4).

The evaluation is performed on the datasets of all the cities - Austin,
Chicago, Philadelphia, and San Francisco. The datasets are split into training,
validation, and test sets in the ratio 70:15:15.
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4.3.1 Hyper-Parameter Selection
For each method and city, we conducted a grid search to determine the opti-
mal hyper-parameters, using model performance on the validation set as the
criterion for selection. Below, we detail the hyper-parameters considered for
each method and identify the best values obtained.

The methods Rand and MostPop do not involve hyper-parameter tuning
due to their deterministic nature.

For the MatFac method, the training, validation, and testing datasets were
modified to only include ratings with a value of 3 or higher. This adaptation
aligns with the model’s use of implicit feedback, which requires positive sam-
ples for effective evaluation. In the following, we outline the ranges of values
tested and the optimal values selected:

• factors: Tested values {5, 20, 50, 100}. The optimal value selected for
all cities is 5.

• regularization: Tested values {0.1, 0.01, 0.002}. The optimal value
for all cities is 0.002.

• iterations: Tested values {50, 100}. The optimal value selected for all
cities is 100.

• confidence_alpha: Tested values {1, 50}. The optimal value selected
for all cities is 50.

For the Direct method, the only hyper-parameter to be selected is the
learning rate of the Adam optimizer. Tested values: {10−1, 10−3, 10−5, 10−7}.
The optimal value selected for all cities is 10−5.

The following hyper-parameters are tuned for both the tasks LLCR and
LLCC :

• bin_width - Width/height of the discretized area of the city. Tested
values: {0.002, 0.003, 0.004, 0.005}. The optimal value is 0.002 for San
Francisco and 0.003 for all other cities.

• d - Size of the latent space for the latitude and longitude embeddings.
Tested values: {4, 8, 10, 24}. The optimal value for all cities is 10.

• lambda_reg - Regularization parameter (λ) used to smooth the lat-
itude and longitude embeddings (see Equation 3.3). Tested values:
{10−1, 10−3, 10−5}. The optimal value for all cities is 10−1.

• lr - Learning rate for the Adam optimizer. Tested values: {8×10−5, 1.5×
10−5, 1.4×10−5, 10−5}. For model LLCR the optimal value is 1.4 × 10−5

for Chicago and 1.5 × 10−5 for all other cities. For model LLCC the
optimal value is 3 × 10−5 for all cities.
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• batch_size - Batch size for training. Tested values: {128, 256}. The
optimal value for all cities is 256.

The graphs in Figure 4.2 indicate that the model LLCR tends to start
overfitting after a certain number of epochs. This can be seen in the rapid
decline of the MAP and MRR curves. However, we can also see that the
Loss and RMSE curves for training and validation datasets are already quite
converged by the time overfitting becomes apparent.Therefore, we based our
decision on the optimal stopping point for model training on the MAP met-
ric. Our analysis suggests selecting the model configuration that achieves the
highest MAP, as this metric stabilizes prior to significant overfitting. With
this approach, our goal is to maximize the predictive accuracy of our model
while avoiding excessive training, which could lead to poor generalization on
unseen data. We can also observe that for the cities of Austin and Chicago,
the MAP and MRR begin to decline only after approximately 5 epochs, in
contrast to the metrics for San Francisco and Philadelphia.

Figure 4.2: Training and validation curves showing the progress of the LLCR
model’s performance metrics (MAP, MRR, RMSE, Categorical Cross Entropy
Loss) across epochs, using the best hyper-parameters for Austin, Chicago, San
Francisco, and Philadelphia datasets.

On the other hand, in the graphs shown in Figure 4.3, we observe that the
model eventually converges for the loss and both metrics. A range of learning
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rate values was cross-validated; however, in each case, the model converged to
the same local optimum.

Figure 4.3: Training and validation curves showing the progress of the LLCC
model’s performance metrics (MAP, MRR, Binary Cross Entropy Loss) across
epochs, using the best hyper-parameters for Austin, Chicago, San Francisco,
and Philadelphia datasets.

4.3.2 Test Data Performance
Table 4.1 displays the performance of all the models with their best hyper-
parameters evaluated on the test dataset. We observe that both LLCR and
LLCC models outperform the baseline models. However it is not possible to
definitely determine which of the two, LLCR or LLCC, actually performs bet-
ter since their results are very close. We can see that the MostPop model shows
the best performance in terms of RMSE. This is expected since it is based on
calculating the average of the ratings in a specific area. Although the pro-
posed models have higher RMSE values, this is not a significant concern for
this study, as the primary objective is to maximize recommendation quality,
making ranking metrics more important.

In terms of dataset differences, San Francisco had the poorest performance
for both LLCR and LLCC. This suggests that the models found it challenging
to uncover the underlying relationships of the preferences of users in this area,
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4.3. Model Evaluation

which is understandable given the significantly higher user density per km2

(see Table 2.4) in San Francisco compared to other cities.

Table 4.1: Model Performance Evaluation
Rand MostPop MatFac Direct LLCR LLCC

Austin

MAP 0.0049 0.0042 0.0067 0.1785 0.2771 0.2700
MRR 0.0033 0.0028 0.0042 0.1351 0.2071 0.1958
RMSE 1.8095 0.8305 - 0.8631 1.1781 -

Chicago

MAP 0.0038 0.0039 0.0 0.8208 0.2635 0.2659
MRR 0.0027 0.0028 0.0 0.0572 0.1988 0.1979
RMSE 1.8135 0.8504 0.0 0.8551 1.1692 -

Philadelphia

MAP 0.0062 0.0057 0.0100 0.1158 0.2712 0.2752
MRR 0.0042 0.0038 0.0063 0.0873 0.1941 0.1973
RMSE 1.7768 0.9137 - 1.4672 1.2027 -

San Francisco

MAP 0.0021 0.0022 0.0026 0.1182 0.2384 0.2392
MRR 0.0015 0.0016 0.0018 0.0971 0.1921 0.1912
RMSE 1.7622 0.7535 - 1.4270 0.9237 -
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4. Experiment

Figure 4.4: This image captures the weight values of the geospatial embedding
matrix H defined in Section 3.2.3. It demonstrates the model’s ability to
identify patterns across different cities.
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Conclusion

In conclusion, this thesis set out to make four contributions to the field
of recommender systems while incorporating spatial information. We pro-
posed a general-purpose location encoder architecture that is adaptable to
any downstream task. We then applied this architecture to two specific tasks:
Category Probability Modeling and Rating Probability Distribution
Modeling. In these applications, we used users’ locations together with their
ratings to train models that recommend top categories based on geographic
location.

To achieve these contributions, we began with a general introduction to
the field of recommender systems, then we focused specifically on group rec-
ommendations and Point-of-Interest (POI) recommendations, which are an
essential prerequisite to this work. We reviewed state-of-the-art recommenda-
tion algorithms that utilize concepts of groups and POIs as a foundation upon
which we built our model. Additionally, we introduced the concept of location
encoding, where we also reviewed the latest work and algorithms while outlin-
ing the properties a location encoder should possess to meet the requirements
in our model.

We provided a detailed description of the datasets used in this thesis, in-
cluding their processing and the reasoning behind each step. We also analyzed
these datasets to prepare them for effective modeling.

Next, we proposed a novel location encoding model architecture that em-
beds geographic coordinates as separate latitudinal and longitudinal compo-
nents. This architecture aligns with the location encoder properties outlined
in Chapter 1. Based on this architecture, we developed two machine learn-
ing models to address the tasks of Category Probability Modeling and
Rating Probability Distribution Modeling. These models aim to enable
the creation of new POIs by recommending categories to groups of users at
a common location.

In the final phase of our work, we set up experiments to validate the
effectiveness of our proposed architecture. We trained the models on datasets
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Conclusion

from four different U.S. cities and evaluated them on previously unseen data.
The results, compared against several baselines, demonstrated that our models
provide high-quality recommendations, outperforming all baselines in terms
of Mean Average Precision (MAP) and Mean Reciprocal Rank (MRR).

50



Bibliography

1. TOBLER, Waldo R. A computer movie simulating urban growth in the
Detroit region. Economic geography. 1970, vol. 46, no. sup1, pp. 234–240.

2. ADOMAVICIUS, G.; TUZHILIN, A. Toward the next generation of rec-
ommender systems: a survey of the state-of-the-art and possible exten-
sions. IEEE Transactions on Knowledge and Data Engineering. 2005,
vol. 17, no. 6, pp. 734–749. Available from doi: 10.1109/TKDE.2005.99.

3. PAZZANI, Michael J.; BILLSUS, Daniel. Content-Based Recommenda-
tion Systems. In: The Adaptive Web: Methods and Strategies of Web Per-
sonalization. Ed. by BRUSILOVSKY, Peter; KOBSA, Alfred; NEJDL,
Wolfgang. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 325–
341. isbn 978-3-540-72079-9. Available from doi: 10.1007/978-3-540-
72079-9_10.

4. LESKOVEC, Jure; RAJARAMAN, Anand; ULLMAN, Jeffrey David.
Recommendation Systems. In: Mining of Massive Datasets. 2nd. Cam-
bridge University Press, 2014, chap. 9, pp. 319–353. isbn 1107077230.

5. ADITYA, P. H.; BUDI, I.; MUNAJAT, Q. A comparative analysis of
memory-based and model-based collaborative filtering on the implemen-
tation of recommender system for E-commerce in Indonesia: A case study
PT X. In: 2016 International Conference on Advanced Computer Science
and Information Systems (ICACSIS). 2016, pp. 303–308. Available from
doi: 10.1109/ICACSIS.2016.7872755.

6. DARA, Sriharsha; CHOWDARY, C Ravindranath; KUMAR, Chintoo.
A survey on group recommender systems. Journal of Intelligent Infor-
mation Systems. 2020, vol. 54, no. 2, pp. 271–295.

7. BORATTO, Ludovico; CARTA, Salvatore. State-of-the-Art in Group
Recommendation and New Approaches for Automatic Identification of
Groups. In: Information Retrieval and Mining in Distributed Environ-
ments. Ed. by SORO, Alessandro; VARGIU, Eloisa; ARMANO, Giu-

51

https://doi.org/10.1109/TKDE.2005.99
https://doi.org/10.1007/978-3-540-72079-9_10
https://doi.org/10.1007/978-3-540-72079-9_10
https://doi.org/10.1109/ICACSIS.2016.7872755


Bibliography

liano; PADDEU, Gavino. Berlin, Heidelberg: Springer Berlin Heidelberg,
2011, pp. 1–20. isbn 978-3-642-16089-9. Available from doi: 10.1007/
978-3-642-16089-9_1.

8. SHI, Jing; WU, Bin; LIN, Xiuqin. A Latent Group Model for Group
Recommendation. In: 2015 IEEE International Conference on Mobile
Services. 2015, pp. 233–238. Available from doi: 10.1109/MobServ.
2015.41.

9. FELFERNIG, Alexander; ATAS, Müslüm; HELIC, Denis; TRAN, Thi
Ngoc Trang; STETTINGER, Martin; SAMER, Ralph. Algorithms for
Group Recommendation. In: Group Recommender Systems: An Intro-
duction. Ed. by FELFERNIG, Alexander; BORATTO, Ludovico; STET-
TINGER, Martin; TKALČIČ, Marko. Cham: Springer Nature Switzer-
land, 2024, pp. 29–61. isbn 978-3-031-44943-7. Available from doi: 10.
1007/978-3-031-44943-7_2.

10. PENNOCK, David M.; HORVITZ, Eric; LEE GILES, C. Social Choice
Theory and Recommender Systems: Analysis of the Axiomatic Foun-
dations of Collaborative Filtering. In: Proceedings of the 17th National
Conference on Artificial Intelligence and 12fth Conference on Innova-
tive Applications ofArtificial Intelligence, AAAI 2000. AAAI press, 2000,
pp. 729–734. Proceedings of the 17th National Conference on Artificial
Intelligence and 12th Conference on Innovative Applications of Artificial
Intelligence, AAAI 2000. Funding Information: Thanks to Jack Breese
and to the anonymous reviewers for ideas, insights, and pointers to rel-
evant work. Publisher Copyright: Copyright © 2000, American Associa-
tion for Artificial Intelligence (www.aaai.org). All rights reserved.; 17th
National Conference on Artificial Intelligence, AAA1 2000 ; Conference
date: 30-07-2000 Through 03-08-2000.

11. SÁNCHEZ, Pablo; BELLOGÍN, Alejandro. Point-of-Interest Recom-
mender Systems: A Survey from an Experimental Perspective. CoRR.
2021, vol. abs/2106.10069. Available from arXiv: 2106.10069.

12. LEVANDOSKI, Justin J; SARWAT, Mohamed; ELDAWY, Ahmed;
MOKBEL, Mohamed F. Lars: A location-aware recommender system.
In: 2012 IEEE 28th international conference on data engineering. IEEE,
2012, pp. 450–461.

13. LIAN, Defu; ZHAO, Cong; XIE, Xing; SUN, Guangzhong; CHEN, En-
hong; RUI, Yong. GeoMF: joint geographical modeling and matrix fac-
torization for point-of-interest recommendation. In: Proceedings of the
20th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. New York, New York, USA: Association for Computing
Machinery, 2014, pp. 831–840. KDD ’14. isbn 9781450329569. Available
from doi: 10.1145/2623330.2623638.

52

https://doi.org/10.1007/978-3-642-16089-9_1
https://doi.org/10.1007/978-3-642-16089-9_1
https://doi.org/10.1109/MobServ.2015.41
https://doi.org/10.1109/MobServ.2015.41
https://doi.org/10.1007/978-3-031-44943-7_2
https://doi.org/10.1007/978-3-031-44943-7_2
https://arxiv.org/abs/2106.10069
https://doi.org/10.1145/2623330.2623638


Bibliography

14. LI, Xutao; CONG, Gao; LI, Xiao-Li; PHAM, Tuan-Anh Nguyen; KRISH-
NASWAMY, Shonali. Rank-geofm: A ranking based geographical factor-
ization method for point of interest recommendation. In: Proceedings of
the 38th international ACM SIGIR conference on research and develop-
ment in information retrieval. 2015, pp. 433–442.

15. YANG, Carl; BAI, Lanxiao; ZHANG, Chao; YUAN, Quan; HAN, Ji-
awei. Bridging Collaborative Filtering and Semi-Supervised Learning:
A Neural Approach for POI Recommendation. In: Proceedings of the
23rd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. Halifax, NS, Canada: Association for Computing Ma-
chinery, 2017, pp. 1245–1254. KDD ’17. isbn 9781450348874. Available
from doi: 10.1145/3097983.3098094.

16. MAI, Gengchen; JANOWICZ, Krzysztof; HU, Yingjie; GAO, Song;
YAN, Bo; ZHU, Rui; CAI, Ling; LAO, Ni. A Review of Location Encod-
ing for GeoAI: Methods and Applications. CoRR. 2021, vol. abs/2111.04006.
Available from arXiv: 2111.04006.

17. TANG, Kevin D.; PALURI, Manohar; FEI-FEI, Li; FERGUS, Rob;
BOURDEV, Lubomir D. Improving Image Classification with Location
Context. CoRR. 2015, vol. abs/1505.03873. Available from arXiv: 1505.
03873.

18. CHU, Grace; POTETZ, Brian; WANG, Weijun; HOWARD, Andrew;
SONG, Yang; BRUCHER, Fernando; LEUNG, Thomas; ADAM, Hartwig.
Geo-Aware Networks for Fine Grained Recognition. CoRR. 2019, vol. abs/1906.01737.
Available from arXiv: 1906.01737.

19. ZHANG, Tianyang; LI, Jiacheng. Google Local Data Repository. 2021.
Available also from: https : / / datarepo . eng . ucsd . edu / mcauley _
group/gdrive/googlelocal/. Accessed: 2023-11-03.

20. LI, Jiacheng; SHANG, Jingbo; MCAULEY, Julian. Uctopic: Unsuper-
vised contrastive learning for phrase representations and topic mining.
arXiv preprint arXiv:2202.13469. 2022. Available also from: https://
arxiv.org/abs/2202.13469.

21. YAN, An; HE, Zhankui; LI, Jiacheng; ZHANG, Tianyang; MCAULEY,
Julian. Personalized showcases: Generating multi-modal explanations for
recommendations. In: Proceedings of the 46th International ACM SIGIR
Conference on Research and Development in Information Retrieval. 2023,
pp. 2251–2255. Available also from: https://dl.acm.org/doi/abs/10.
1145/3539618.3592036.

22. Philadelphia Neighborhoods [https://opendataphilly.org/datasets/
philadelphia-neighborhoods/]. [N.d.]. Accessed: 2023-11-03.

23. Analysis Neighborhoods [https : / / data . sfgov . org/ - /Analysis -
Neighborhoods/p5b7-5n3h]. [N.d.]. Accessed: 2023-11-03.

53

https://doi.org/10.1145/3097983.3098094
https://arxiv.org/abs/2111.04006
https://arxiv.org/abs/1505.03873
https://arxiv.org/abs/1505.03873
https://arxiv.org/abs/1906.01737
https://datarepo.eng.ucsd.edu/mcauley_group/gdrive/googlelocal/
https://datarepo.eng.ucsd.edu/mcauley_group/gdrive/googlelocal/
https://arxiv.org/abs/2202.13469
https://arxiv.org/abs/2202.13469
https://dl.acm.org/doi/abs/10.1145/3539618.3592036
https://dl.acm.org/doi/abs/10.1145/3539618.3592036
https://opendataphilly.org/datasets/philadelphia-neighborhoods/
https://opendataphilly.org/datasets/philadelphia-neighborhoods/
https://data.sfgov.org/-/Analysis-Neighborhoods/p5b7-5n3h
https://data.sfgov.org/-/Analysis-Neighborhoods/p5b7-5n3h


Bibliography

24. Neighborhoods [https://data.austintexas.gov/Locations- and-
Maps/Neighborhoods/a7ap-j2yt/about_data]. [N.d.]. Accessed: 2023-
11-03.

25. Boundaries - Neighborhoods [https : / / data . cityofchicago . org /
Facilities-Geographic-Boundaries/Boundaries-Neighborhoods/
bbvz-uum9]. [N.d.]. Accessed: 2023-11-03.

26. GEOPANDAS DEVELOPERS. GeoPandas 0.11.1 Documentation.
GeoPandas, 2023. Available also from: https : / / geopandas . org /
en/stable/. Accessed: 2023-11-1.

27. MALLIAROS, Fragkiskos D; GIATSIDIS, Christos; PAPADOPOULOS,
Apostolos N; VAZIRGIANNIS, Michalis. The core decomposition of net-
works: Theory, algorithms and applications. The VLDB Journal. 2020,
vol. 29, no. 1, pp. 61–92.

28. CHO, Eunjoon; MYERS, Seth A; LESKOVEC, Jure. Friendship and
mobility: user movement in location-based social networks. In: Proceed-
ings of the 17th ACM SIGKDD international conference on Knowledge
discovery and data mining. 2011, pp. 1082–1090.

29. LIU, Wei; LAI, Hanjiang; WANG, Jing; KE, Geyang; YANG, Weiwei;
YIN, Jian. Mix geographical information into local collaborative ranking
for POI recommendation. World Wide Web. 2020, vol. 23, pp. 131–152.

30. WIKIPEDIA CONTRIBUTORS. Softmax function — Wikipedia, The
Free Encyclopedia. 2024. Available also from: https://en.wikipedia.
org / w / index . php ? title = Softmax _ function & oldid = 1220708012.
[Online; accessed 9-May-2024].

31. FULMICOTON. Bayesian Rating [https://fulmicoton.com/posts/
bayesian_rating/]. 2013. Accessed: 2024-03-12.

54

https://data.austintexas.gov/Locations-and-Maps/Neighborhoods/a7ap-j2yt/about_data
https://data.austintexas.gov/Locations-and-Maps/Neighborhoods/a7ap-j2yt/about_data
https://data.cityofchicago.org/Facilities-Geographic-Boundaries/Boundaries-Neighborhoods/bbvz-uum9
https://data.cityofchicago.org/Facilities-Geographic-Boundaries/Boundaries-Neighborhoods/bbvz-uum9
https://data.cityofchicago.org/Facilities-Geographic-Boundaries/Boundaries-Neighborhoods/bbvz-uum9
https://geopandas.org/en/stable/
https://geopandas.org/en/stable/
https://en.wikipedia.org/w/index.php?title=Softmax_function&oldid=1220708012
https://en.wikipedia.org/w/index.php?title=Softmax_function&oldid=1220708012
https://fulmicoton.com/posts/bayesian_rating/
https://fulmicoton.com/posts/bayesian_rating/


Appendix A
Contents of enclosed media

implementation .............................. directory with source code
trained-models...........................directory with trained models
text .......................................... folder with the thesis text

thesis.pdf.....................................thesis in PDF format
source.......................folder with the source code of the thesis
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