
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of radio engineering

Physical Layer TestBed for Communication
V2X Systems in 5.9GHz Band

Bc. Michael Kimmer

Supervisor: prof. Ing. Jan Sýkora, CSc.
May 2024

ii

ZADÁNÍ DIPLOMOVÉ PRÁCE​

I. OSOBNÍ A STUDIJNÍ ÚDAJE

491909 Osobní číslo:​Michael Jméno:​Kimmer Příjmení:​

Fakulta elektrotechnická Fakulta/ústav:​

Zadávající katedra/ústav: Katedra radioelektroniky

Elektronika a komunikace Studijní program:​

Komunikace a zpracování informace Specializace:​

II. ÚDAJE K DIPLOMOVÉ PRÁCI

Název diplomové práce:​

Laboratorní TestBed fyzické vrstvy V2X komunikačního systému v pásmu 5.9GHz

Název diplomové práce anglicky:​

Physical Layer TestBed for Communication V2X Systems in 5.9GHz Band

Pokyny pro vypracování:​
Cílem práce je návrh a realizace laboratorního, testovacího a verifikačního systému pro implementace rádiového rozhraní​
V2X komunikace - modulace, kódování, algoritmy M-MIMO, zpracování signálu, kooperativní algoritmy potlačení interference​
a diversity a další pokročilé algoritmy, např. Joint Communication and Sensing, kooperativní kódování, atd. V základní​
části student implementuje PHY vrstvu komunikací třídy IEEE 802.11p, s přípravou pro budoucí rozšíření na 5G NR C-V2V.​
TestBed umožní (a) verifikaci celkové funkce a srovnávací výkonnostní a provozní testy, (b) evaluaci vlastností dílčích​
subsystémů a ověřování jejich možných výzkumných/vývojových vylepšení a poslouží jako základ pro vývoj prototypu a​
rovněž pro výzkumně-vývojové práce. Výchozí HW platforma je ADRV9002 a Xilinx ZedBoard doplněná o další RF,​
baseband a řídicí komponenty.​

Seznam doporučené literatury:​
[1] ADRV9002 eval board (3-6GHz version) [online] https://www.analog.com/en/products/adrv9002.html#product-reference​
[2] ZedBoard tech resources [online]​
https://www.avnet.com/wps/portal/us/products/avnet-boards/avnet-board-families/zedboard/​
[3] Specifikace IEEE 801.11p​

Jméno a pracoviště vedoucí(ho) diplomové práce:​

prof. Ing. Jan Sýkora, CSc. katedra radioelektroniky FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) diplomové práce:​

Termín odevzdání diplomové práce: 24.05.2024 Datum zadání diplomové práce: 05.02.2024

Platnost zadání diplomové práce: 21.09.2025

___________________________​___________________________​___________________________​
prof. Mgr. Petr Páta, Ph.D.​

podpis děkana(ky)​
doc. Ing. Stanislav Vítek, Ph.D.​

podpis vedoucí(ho) ústavu/katedry​
prof. Ing. Jan Sýkora, CSc.​

podpis vedoucí(ho) práce​

III. PŘEVZETÍ ZADÁNÍ
Diplomant bere na vědomí, že je povinen vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v diplomové práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1

iv

Acknowledgements
I would like to thank my supervisor, prof.
Ing. Jan Sýkora, CSc. for his guidance
and valuable advice. Next, I would like
to thank my family, and my friends from
CB Dejvice for their constant prayers and
encouragements.

Declaration
I declare that the presented work was
developed independently and that I
have listed all sources of information
used within it in accordance with the
methodical instructions for observing the
ethical principles in the preparation of
university theses.

In Prague, May 24, 2024

Prohlašuji, že jsem předloženou práci
vypracoval samostatně a že jsem uvedl
veškeré použité informační zdroje v
souladu s Metodickým pokynem o
dodržování etických principů při přípravě
vysokoškolských závěrečných prací.

V Praze dne 24. 5. 2024

.

v

Abstract
The goal of this thesis is to get acquainted
with the IEEE 802.11p standard and sub-
sequently to create a custom receiver
which is able to process the signal in real-
time. This receiver should be then ready
for further improvements. The chosen
method is an FPGA block design. The
used hardware is ZedBoard and EVAL-
ADRV9002.

Keywords: digital communication, V2X,
IEEE 802.11p, FPGA, SoC, VHDL,
AXI4, ZedBoard, SDR, ADRV9001,
Libiio, Vivado and Vitis, scrambling,
convolutional code, interleaving, OFDM,
synchronization, channel response
estimation, Viterbi algorithm, Python
GUI

Supervisor: prof. Ing. Jan Sýkora, CSc.

Abstrakt
Cílem této práce je seznámit se se stan-
dardem IEEE 802.11p a následně imple-
mentovat vlastní přijímač, schopný real-
time příjmu. Tento přijímač má být možné
v budoucnu rozšiřovat. Vzbraná metoda
je vytvořit FPGA blokový design. Po-
užitý hardware je ZedBoard a EVAL-
ADRV9002.

Klíčová slova: digitální komunikace,
V2X, IEEE 802.11p, FPGA, SoC, VHDL,
AXI4, ZedBoard, SDR, ADRV9001,
Libiio, Vivado and Vitis, scrambling,
konvoluční kód, interleaving, OFDM,
synchronizace, odhad odezvy kanálu,
Viterbiho algoritmus, Python GUI

Překlad názvu: Laboratorní TestBed
fyzické vrstvy V2X komunikačního
systému v pásmu 5.9GHz

vi

Contents
Assignment translation 1
1 Introduction 3
2 IEEE 802.11p standard 5
2.1 V2X Communication theory 5
2.2 IEEE 802.11p standard

introduction . 5
2.3 IEEE 802.11p MAC layer 6
2.4 IEEE 802.11p PHY layer 7

2.4.1 PLCP and PHY frame 7
2.4.2 DATA scrambler 9
2.4.3 Convolutional encoder 10
2.4.4 Data interleaving 11
2.4.5 Subcarrier modulation

mapping . 11
2.4.6 Pilot subcarriers 12
2.4.7 Signal joining 13

3 Used Hardware and Software 15
3.1 Used Hardware 15

3.1.1 ZedBoard 15
3.1.2 ADRV9002 transceiver 16

3.2 Used Software 17
3.2.1 AMD Vivado and Vitis 17
3.2.2 ADI HDL Reference Designs 17
3.2.3 ADI Kuiper Linux 18
3.2.4 ADI TES and Libiio 18

3.3 Workflow preparation 18
3.3.1 ADI HDL Reference Designs

preparation 19
3.3.2 Vitis workflow 21
3.3.3 ADI Kuiper Linux preparation 22
3.3.4 ADI TES profile configuration 23

4 Hardware and Signal processing
Implementation of IEEE 802.11p 25
4.1 AXI IP block preparation 25

4.1.1 Create IP block 25
4.1.2 Implement registers in BRAM 26
4.1.3 Connection to ADI HDL design

and PS part 27
4.2 IEEE 802.11p signal and data

processing . 30
4.2.1 IQ data preparation 31
4.2.2 Signal detection and Time

synchronization 32
4.2.3 Frequency offset estimation and

correction . 36

4.2.4 OFDM FFT Demodulator . . 38
4.2.5 Channel response estimation

and tracking 39
4.2.6 Modulation demapping and

data deinterleaving 42
4.2.7 Soft Viterbi decoder 42
4.2.8 Data descrambler and output

parallelization 44
4.2.9 PL writing to BRAM 44

4.3 Hardware utilization 46
4.4 Problems and possible

improvements 47
5 GUI for IEEE 802.11p hardware
block 51
5.1 ZedBoard GUI interfaces 51

5.1.1 AXI4 Lite interface 51
5.1.2 Libiio inteface 52

5.2 Tabs description 52
5.2.1 Settings tab 52
5.2.2 RX Samples tab 53
5.2.3 RX Constellation tab 54
5.2.4 RX Realtime tab 57
5.2.5 AXI Registers tab 58

6 Conclusion 61
Bibliography 63
A Attached files 67

vii

Figures
2.1 Europe ITS Channel Plan [8] 6
2.2 SIFS and AIFS (DIFS) [7] 6
2.3 MAC and PHY packets [4] 7
2.4 PHY PLCP preamble 801.11a
(halved periods at 20 MHz) [9] 8

2.5 The SIGNAL field structure [9, p.
14] . 8

2.6 Data scrambler [9, p. 16] 10
2.7 Convolutional encoder [9, p. 17] 10
2.8 Constellation mapping [9, p. 20] 12

3.1 ZedBoard and ADRV9002 photo 15
3.2 Zynq-7000 SoC XC7Z020 PL-PS

connections (Vivado) 16

4.1 Simulation of the whole signal
processing . 30

4.2 Simulation of the IQ data
praparation . 31

4.3 STS crosscorrelation methods (no
offset) . 33

4.4 STS crosscorrelation methods
(50kHz offset 34

4.5 FPGA PL part utilization
(Implemented design) 46

4.6 DDS utilization (6x) 46
4.7 DDS AXI4 registers (512) 46
4.8 Failing level of synchronization
(IQ) . 48

4.9 Failing level of synchronization
(Constellation) 49

5.1 GUI Settings tab 53
5.2 RX Samples tab (AXI BRAM) . 54
5.3 GUI Settings tab (Libiio) 54
5.4 GUI Constellation tab (OFDM

demodulated subcarriers) 55
5.5 GUI Constellation tab (OFDM

demodulated subcarriers, LTS only) 56
5.6 GUI Constellation tab (OFDM

demodulated and equalized
subcarriers) . 56

5.7 GUI Constellation tab (OFDM
demodulated and equalized
subcarriers) . 57

5.8 GUI Realtime tab 58
5.9 GUI Realtime tab (Viterbi error) 58

5.10 GUI Registers tab (MODE = 6,
demapped BPSK bits) 59

viii

Tables
2.1 Data rate [9, p. 9, 14] 8
2.2 Modulation normalization factor [9,

p. 19] . 12
2.3 OFDM subcarriers to IFFT and

data mapping 13

ix

Assignment translation

The goal of the work is to design and implement a laboratory, testing and ver-
ification system for radio interface implementations of V2X communication -
modulation, coding, M-MIMO algorithms, signal processing, cooperative inter-
ference suppression algorithms and diversity and other advanced algorithms,
e.g. Joint Communication and Sensing, cooperative coding, etc.

In the primary part, the student will implement the PHY layer of IEEE
802.11p communication class, with preparation for future expansion to 5G
NR C-V2V. The TestBed will allow (a) verification of the overall function
and comparative performance and operational tests, (b) evaluation of the
properties of the sub-systems and verification of their possible research and de-
velopment improvements and it will serve as a basis for prototype development
as well as research and development work.

The default HW platform is ADRV9002 and Xilinx ZedBoard supplemented
with additional RF, baseband and control components.

1

2

Chapter 1
Introduction

There is a trend in automotive industry to develop smarter vehicles every
year, in recent past many companies were also experimenting with self-driving
technologies. For such vehicles it is essential to have as much complete picture
of what’s happening around them as it is possible. The V2X communication
offers one way of reliable, fast and cheap communication among such vehicles
and surrounding infrastructure.

For a fast and reliable communication advanced algorithms have to be often
used. Our work should bring us a workflow with a working prototype of a
receiver on a real hardware. This prototype should be able to get improved in
the future to test different approaches without the need of building everything
from the ground.

The biggest challenge is to meet all timing requirements of the assigned
standard IEEE 802.11p, we will get to know this standard in Chapter 2. The
options are either, first, to build a receiver with a CPU, or second, more
challenging but also more powerful, is to build a receiver with an FPGA. This
latter method will be content of whole Chapter 4, while Chapter 5 will make
a way how to access the transceiver via custom GUI.

3

4

Chapter 2
IEEE 802.11p standard

2.1 V2X Communication theory

The term V2X (vehicle to everything) communication can involve many
communication situations. Let us denote the most common situations which
are V2V (vehicle to vehicle), V2I (vehicle to infrastructure) and V2P (vehicle
to pedestrian).

The most important contributions of this type of communication emerge
from its direct character enabling ad-hoc and mesh network architectures. It
can work in areas with no mobile network coverage and offers lower latency.
V2X communication protocols are furthermore designed in a way that improve
reliability and low latency in quickly changing channels present around fast-
moving with Doppler spread. [10, p. 1166]

A sample example of V2X communication could be a pair of vehicles
exchanging information about speed, emergency braking or approaching
ambulance. Another example could be a tram or a police car requesting a
traffic light to prioritize their direction. [1]

These principles have a potential to increase road safety, prevent accidents,
reduce emissions or optimize traffic flow. [2]

To illustrate, some existing standards are: Cellular V2X (LTE-V2X, 5G-
V2X), IEEE 802.11p, or recent IEEE 802.11bd.

2.2 IEEE 802.11p standard introduction

IEEE 802.11p is an amendment for IEEE 802.11 standards (also called
standard) from 2010. It is focused on Dedicated short-range communications
(DSCR) especially on vehicular environment. Most of changes are defined for
the MAC layer to enable efficient communication setup without much of the
overhead typically needed. [11]

5

2. IEEE 802.11p standard
2.3 IEEE 802.11p MAC layer

The IEEE 802.11p Medium access control (MAC) layer serves for management
of the wireless medium. It is responsible for packet transmission timing,
collision avoidance (CSMA/CA), power selection, data rate (that is code rate
and modulation) selection and packet integrity check (CRC).

Used frequency range is 5855 - 5925 MHz in Europe and 5850 - 5925 MHz
in USA. This range is divided into channels of 10 MHz. Maximal transmitted
powers in Europe and USA are 23 - 33 dBm, depending on the region and
specific IEEE 802.11p channel (for Europe see Figure 2.1).

Figure 2.1: Europe ITS Channel Plan [8]

Collisions in IEEE 802.11p are solved by using Carrier Sense Multiple
Access with Collision Avoidance (CSMA/CA) with variuos Interframe Spaces.
The Short Interframe Space (SIFS) defines periods between contol packets
as Acknowledgements (ACK) while the longer Arbitration interframe space
(AIFS; or DIFS in other standards) defines periods when a device cannot
start transmitting after preceding frame (see Figure 2.2). The SIFS period
for the IEEE 802.11p seems not to be defined, however, most of sources use
16 µs (same as IEEE 802.11a) or 32 µs (doubled time as in PHY layer). [5, p.
7] [6, p. 3]

Figure 2.2: SIFS and AIFS (DIFS) [7]

The MAC layer frame used by the PHY layer is called PHY sublayer service

6

............................... 2.4. IEEE 802.11p PHY layer

data unit (PSDU). It is composed of a variable-length MAC Header, frame
body, and a Frame Check Sequence (FCS) CRC-32 (see Figure 2.3).

Figure 2.3: MAC and PHY packets [4]

2.4 IEEE 802.11p PHY layer

This section mainly follows IEEE 802.11a description in [9].
The physical (PHY) layer of IEEE 802.11p standard is very similar to

802.11a standard. The differences are in bandwidth (defined for 5, 10 and 20
Mhz with default value of 10 MHz instead of 20 MHz in 802.11a), operating
frequencies (5.9 GHz band) and allowed transmit powers. [3] The lower
bandwidths are achieved by reducing the sample rate of 802.11a to half
or quarter while not changing the algorithms PHY algorithms. Lowering
the bandwidth is beneficial for a receiver in terms of lower noise and lower
inter-symbol interference due to a delay spread that exceeds the extended
cyclic prefix length. [10]

2.4.1 PLCP and PHY frame

The Physical Layer Convergence Procedure (PLCP) defines a method of
mapping the IEEE 802.11 MAC layer frame PSDU into a frame format suitable
for sending and receiving user data and management information between
two or more stations. [9] This means, the PLCP defines a synchronization
preamble and maps PSDU together with management information fields
(RATE, LENGTH and SERVICE) into PHY fields SIGNAL and DATA (see
Figure 2.3 and Figure 2.4).

7

2. IEEE 802.11p standard

Figure 2.4: PHY PLCP preamble 801.11a (halved periods at 20 MHz) [9]

Management information fields

The SIGNAL field contains RATE and LENGTH fields (see Figure 2.5).
The RATE field defines used modulation and code rate (see Table 2.1) while
LENGTH is length of PSDU in bytes, this information is then used for
processing the DATA field. The SIGNAL field is then independently mapped
(without scrambling) onto one OFDM symbol with lowest data rate of 3
Mb/s.

The PHY layer must support transmission and reception of the 3, 6, and
12 Mb/s data rates. [10, p. 1165]

Figure 2.5: The SIGNAL field structure [9, p. 14]

Data rate (Mb/s) RATE field Modulation Coding rate (R) NBPSC NDPSC
3 1101 BPSK 1/2 48 24

4.5 1111 BPSK 3/4 48 36
6 0101 QPSK 1/2 96 48
9 0111 QPSK 3/4 96 72
12 1001 16-QAM 1/2 192 96
18 1011 16-QAM 3/4 192 144
24 0001 64-QAM 2/3 288 192
27 0011 64-QAM 3/4 288 216

Table 2.1: Data rate [9, p. 9, 14]

The DATA field is composed of SERVICE, PSDU, TAIL and PAD fields.
The 16-bit SERVICE field is used for the descrambler initialization (7 zero
bits, see subsection 2.4.2) and the rest is reserved for a "future use" (9 zero
bits). The 6-bit TAIL field of zeros is used for decoder state flushing and the
PAD field fills remaining empty space in the last OFDM symbol with zeros.
[9, p. 7]

8

............................... 2.4. IEEE 802.11p PHY layer

PLCP preamble

Every IEEE 802.11p packet PLCP preamble consist of two synchronization
sequences, these sequences does not change and are used for packet detection
and receiver synchronization.

The first sequence, called Short training sequence (STS), let us denote it
sSTS[k], k = 0..159, consists of ten repetitions of a 16 samples long signal.
Four repetitions of this sequence can be generated by computing 64-IFFT of
following sequence SSTS

−26,26. (See subcarrier to IFFT mapping in Table 2.3.)
The normalization of

√
13
6 is used to get the same average power as following

LTS sequence and OFDM modulated data. In a receiver this sequence
should be used for packet detection, timing acquisition and coarse frequency
acquisition. [9] [12]

SSTS
−26,26 =

√
13
6 · {0, 0, 1 + j, 0, 0, 0, −1 − j, 0, 0, 0, 1 + j, 0, 0,

0, −1 − j, 0, 0, 0, −1 − j, 0, 0, 0, 1 + j, 0, 0, 0, 0,

0, 0, 0, −1 − j, 0, 0, 0, −1 − j, 0, 0, 0, 1 + j, 0,

0, 0, 1 + j, 0, 0, 0, 1 + j, 0, 0, 0, 1 + j, 0, 0}

(2.1)

The second sequence, Long training sequence (LTS), let us denote it
sLTS[k], k = 0..159, consists of two repetitions of a 64 samples long signal
with one 32 samples long cyclic prefix (GI2). One repetition of this sequence
can be generated by computing 64-IFFT of following sequence SLTS

−26,26. (See
subcarrier to IFFT mapping in Table 2.3.) This sequence can be used for fine
frequency acquisition and channel estimation. [9] [12]

SLTS
−26,26 = {1, 1, −1, −1, 1, 1, −1, 1, −1, 1, 1, 1, 1, 1, 1, −1, −1, 1,

1, −1, 1, −1, 1, 1, 1, 1, 0, 1, −1, −1, 1, 1, −1, 1, −1,

1, −1, −1, −1, −1, −1, 1, 1, −1, −1, 1, −1, 1, −1, 1, 1, 1, 1}
(2.2)

2.4.2 DATA scrambler

The DATA field (SERVICE field, PSDU field and Pad field; the Tail field is
not scrambled) is randomized by a 127 bits long pseudo-random sequence
produced by the synchronous scrambler with generator polynomial S(x),
visualized in Figure 2.6. The scrambler in transmitter and the descrambler in
receiver are of the same structure. The DATA field is fed into the scrambler
byte by byte with order of least significant bits first.

S(x) = x7 + x4 + 1 (2.3)

9

2. IEEE 802.11p standard

Figure 2.6: Data scrambler [9, p. 16]

The initial state of the scrambler is selected randomly with each packet. It
can be then synchronized in a receiver’s descrambler from decoded SERVICE
field, scrambling the initial sequence of seven zeros will directly expose
scrambler’s following state.

2.4.3 Convolutional encoder

The convolutional encoder with code rate R = 1/2 is used, its generator poly-
nomials are g0 = 1338 and g1 = 1718, this is visualized in Figure 2.7. The data
outputs A and B are then alternated into the coded output (A0B0A1B1...).

Figure 2.7: Convolutional encoder [9, p. 17]

Higher coding rates R = 2/3 and R = 3/4 can be used by applying a process
called puncturing. This is done by so-called bit-stealing and bit-insertion. In
coding rate R = 2/3 puncturing is done by deleting all {Bi}i odd from the
coded output, while R = 3/4 puncturing is done by deleting (stealing) all
{Bi}(i mod)=1 and {Ai}(i mod 3)=2. (In other words, repeat: 1. Keep both
AiBi, 2. Keep only Ai, 3. Keep only Bi.) The stolen bits are then reinserted
as zero confidence bits in a receiver.

These code rates are used according to selected RATE field (see Table 2.1).

10

............................... 2.4. IEEE 802.11p PHY layer

2.4.4 Data interleaving

SIGNAL field bits and encoded DATA field bits are then interleaved by
a block interleaver with block size corresponding to the number of bits
in a single OFDM symbol NCBPS (see Table 2.1). SIGNAL field bits are
interleaved separately into one OFDM symbol. This is done by two consecutive
permutations. [9, p. 17]

The first permutation maps adjacent bits onto nonadjacent subcarriers, it
is defined by following relation.

i = (NCBPS
16) · (k mod 16) + floor(k

16), k = 0, 1, . . . , NCBPS − 1 (2.4)

The second permutation alternately maps consecutive bits onto less and
more significant bits of the constellation, it is defined by following relation,

j = s ·floor(i

s
)+(i+NCBPS −floor(16 · i

NCBPS
)) mod s, i = 0, 1, . . . , NCBPS −1

(2.5)
where

s = max(1,
NCBPS

2) (2.6)

2.4.5 Subcarrier modulation mapping

Interleaved data can be then modulated onto OFDM subcarriers by BPSK,
QPSK, 16-QAM or 64-QAM modulation using Gray-coded constellations
according to Figure 2.8. To achieve the same average power for all modulations
the result is multiplied by normalization factor KMOD as stated in Table 2.2.
The resulting value in each subcarrier can be thus expreseed as

d = KMOD · (I + jQ) (2.7)

11

2. IEEE 802.11p standard

Figure 2.8: Constellation mapping [9, p. 20]

Modulation KMOD
BPSK 1
QPSK 1/

√
2

16-QAM 1/
√

10
64-QAM 1/

√
42

Table 2.2: Modulation normalization factor [9, p. 19]

2.4.6 Pilot subcarriers

Pilot subcarriers are four known BPSK modulated data (+1, +1, +1, -1)
placed at subcarriers (-21, -7, +7, +21), respectively. These pilots are scram-

12

............................... 2.4. IEEE 802.11p PHY layer

bled by multiplying all of them by ±1, this scrambling value is generated for
each OFDM symbol by the scrambler described in subsection 2.4.2 (initialized
with "all ones") with output mapping: 0 → 1 and 1 → −1. These pilot
subcarriers should be used in a receiver to track (correct) frequency offset
value during reception. [12, p. 4925]

OFDM modulation

The result of modualtion mapping (48 subcarriers) and computed pilots (4
subcarriers) are passed to 64-IFFT input, remaining 12 subcarrier inputs are
zeroed. This mapping is captured into details in Table 2.3.

Subcarrier FFT input Data index
-32..-27 32..37 Null
-26..-22 38..42 0..5

-21 43 Pilot 1
-20..-8 44..56 6..18

-7 57 Pilot 2
-6..-1 58..63 19..23

0 0 Null
1..6 1..6 24..29
7 7 Pilot 3

8..20 8..20 30..42
21 21 Pilot 4

22..26 22..26 43..47
27..31 27..31 Null

Table 2.3: OFDM subcarriers to IFFT and data mapping

The 64-samples IFFT outputs are prepended with 16 samples of cyclic
prefix called Guard interval (GI; see Figure 2.4) taken from each IFFT output
end.

2.4.7 Signal joining

The prepared 80-samples long OFDM symbols are connected by windowing.
This process is defined by multiplying each OFDM symbol by window wT (t)
defined except for parameter TTR [9]:

wT (t) =


sin2(π

2 (0.5 + T
TTR

)), (−TTR/2 < t < TTR/2)
1 (TTR/2 ≤ t < T − TTR/2)
sin2(π

2 (0.5 − (t − T)/TTR)), (T − TTR/2 ≤ t < T + TTR/2)
(2.8)

13

14

Chapter 3
Used Hardware and Software

3.1 Used Hardware

In the range of the assignment we are limited in possible hardware to ZedBoard
platform and ADRV9002 transceiver. Our laboratory owns two ZedBoard
platforms and two ADRV9002 transceiver evaluation boards EVAL-ADRV9002
that we can use (see in Figure 3.1). In this section we would like to describe
them.

Figure 3.1: ZedBoard and ADRV9002 photo

3.1.1 ZedBoard

ZedBoard™ [13] is a development board built around a System on Chip
(SoC) that combines an FPGA Programmable logic (PL) with a Processing
system (PS). The used SoC is Xilinx Zynq®-7000 All Programmable SoC
XC7Z020-CLG484-1. [14]

The PL part (equivalent to AMD Artix-7 FPGA) contains 85K Pro-
grammable Logic Cells (53,200 LUTs and 106,400 flip-flops), 140 block RAMs
(BRAM, each 36 Kb) and 220 DSP Slices (18x25 MACs) with maximal
frequency of 741 MHz.

The PS part is composed of a dual-core ARM Cortex-A9 based CPU with
maximal frequency of 667 MHz and common peripherals connected to MIO
port (see Figure 3.2).

15

3. Used Hardware and Software
Both PS and PL parts are connected by 9 various AMBA AXI4 interfaces,

extended multiplexed I/O interface (EMIO), 3 DMA channels, clock and
reset outputs and other miscellaneous interfaces. That above mentioned can
be seen in Figure 3.2.

Figure 3.2: Zynq-7000 SoC XC7Z020 PL-PS connections (Vivado)

Except for that mentioned above, ZedBoard also features:. 512 MB DDR3 RAM. SD card storage. 10/100/1000 Ethernet. USB-JTAG programmer. USB OTG 2.0 and USB-UART.Multiple displays (1080p HDMI, 8-bit VGA, 128 x 32 OLED).Multiple I/O (including FMC)

For more details on ZedBoard see [13] , on Zynq-7000 SoC XC7Z020 see
[14].

3.1.2 ADRV9002 transceiver

ADRV9002 [15] is a Dual Narrow-Band and Wide-band RF Transceiver
manufactured by company Analog Devices Inc. (ADI). ADRV9002 belongs
to the family ADRV9001 where other models differ only in absence of either
the second channel or digital predistortion, therefore, most of designs and
documents are referenced for the entire ADRV9001 family.

Key specifications:. 2 × 2 transceiver (2 channels for both RX and TX)

16

.................................... 3.2. Used Software

. Frequency range of 30 MHz to 6 GHz.Transmitter and receiver bandwidth from 12 kHz to 40 MHz.Two fully integrated, fractional-N, RF synthesizers. LVDS and CMOS synchronous serial data interface options (see below). Dynamic profile switching for dynamic data rates and sample rates. Fully programmable via a 4-wire SPI

For our project we will use ADRV9002 evaluation board EVAL-ADRV9002
[16], version ADRV9002NP/W2/PCBZ for frequency band 3GHz to 6GHz. It
is equipped with a 38.4 MHz oscillator and a single FMC connector compatible
with ZedBoard. It is also worth mentioning that ZedBoard does not support
the same voltage on LVDS (Low-voltage differential signaling) high-speed IQ
data synchronous-serial interface (SSI) interface (LSSI), this implies that the
IQ data transfer has to use the second option, complementary metal oxide
semiconductors (CMOS) interface (CSSI), which offers maximal transfer rate
only 20 MSPS. [17, p. 59] Nevertheless, this value is sufficient for the further
development.

The ADRV9002 ADC fullscale translates to approximately 8.6 dBm (as-
suming 0 dB attenuation) with maximum safe (peak) input power on Rx1
and Rx2 of 18 dBm. [17, p. 187] Maximum transmitter output power is
approximatelly 7.2 dBm at 5800 MHz (assuming 0 dB attenuation). [18, p.
5]

3.2 Used Software

3.2.1 AMD Vivado and Vitis

Company Advanced Micro Devices, Inc. (AMD) (formerly Xilinx, Inc.) offers
entire environment of products for FPGA, embedded and (MP)SoC design.
In this project we will use AMD Vivado with AMD Vitis, these environments
can be used in combination, since Vivado aims for FPGA and (MP)SoC HDL
design while Vitis aims for software development for each programmable core
in a design.

We will be using Vivado and Vitis version 2023.2.2 (an update of version
2023.2) for the entire project and version 2022.2 for the initial build. When
installing Vivado we will need only device: Devices –> SoC –> Zynq-7000.

3.2.2 ADI HDL Reference Designs

Analog Devices Inc. (ADI) offers a collection of HDL reference designs. These
designs are AMD and Intel reference projects for various combinations of
(MP)SoC boards with ADI products, enabling given (MP)SoC to use basic
functionalities of compatible ADI products at hardware level.

17

3. Used Hardware and Software
We will be using last stable reference design for the ADRV9001 and Zed-

Board available at ADI GitHub repository hdl [19], branch hdl_2022_r2,
subdirectory ./projects/adrv9001/zed/. The project is not built and it ref-
erences libraries (also not built) and other files higher in the repository
tree.

3.2.3 ADI Kuiper Linux

The Analog Devices Kuiper Linux [21] is an edited distribution of Raspberry
Pi OS image (previously known as Raspbian). The Linux features preinstalled
ADI and other related libraries and applications (including Libiio, py-adi and
IIO Oscilloscope).

We will use this prepared Linux distribution as an operating system running
on the PS part of the ZedBoard SoC.

3.2.4 ADI TES and Libiio

Analog Devices Inc. offers two ways of configuring the ADRV9001..The first possibility is to use Transceiver Evaluation Software (TES)
[25], TES offers detailed ADRV9001 configuration, being able to set
every possible combination parameters, however, its full functionalities
(including connection to the board) are not offered for the ZedBoard.
[26].The second possibility is Libiio [22], Libiio is an open source library [23]
that has been developed by Analog Devices to ease the development of
software interfacing Linux Industrial I/O (IIO) devices. It is easy to use,
supports more devices (including the ZedBoard) and can be connected
remotely (via IIO Daemon (IIOD) server). On the other hand, Libiio
cannot control all ADRV9001 parameters and it makes an additional
interface between the user and the underlying hardware, making it harder
to track all actual hardware parameters. We can also use library called
py-adi, this library is built on-top of Libiio, it offers object oriented
approach with many methods prepared so regular tasks are very easy
to perform on just a few lines. When speaking about Libiio we will be
mostly using it via py-adi.

Nevertheless, these approaches can be combined as the Libiio offers a
possibility to load a profile (set of ADRV9001 parameters) generated by TES.

3.3 Workflow preparation

In this section we prepare the overall workflow for the further progress. Our
project development will be based on Windows 11. This will mean a little
complication in the workflow preparation, however, the overall work should
be the same as done on a Linux distribution.

18

................................. 3.3. Workflow preparation

3.3.1 ADI HDL Reference Designs preparation

We will use the last stable release 2022_r2 of the ADI HDL Reference Designs
[19], this release can be found as branch hdl_2022_r2.

Build hdl_2022_r2 in Vivado 2022.2

A downside of using ADI HDL Reference Designs is that each HDL version
has to be built by an exact Vivado version. Specifically, release hdl_2022_r2
has to be built by Vivado 2022.2.

To build our Reference Design (on Windows) following steps need to be
made (see ADI Building HDL page [20]):..1. Install Vivado 2022.2..2. Install Cygwin program with make command..3. Include Vivado and 2022.2 path into Cygwin ~/.bashrc file

Listing 3.1: Include Vivado and 2022.2 path into Cygwin
1 export PATH= $PATH :/ cygdrive / path_to / Xilinx / Vivado /2022.2/ bin
2 export PATH= $PATH :/ cygdrive / path_to / Xilinx / Vivado_HLS /2022.2/ bin
3 export PATH= $PATH :/ cygdrive / path_to / Xilinx / Vitis /2022.2/ bin
4 export PATH= $PATH :/ cygdrive / path_to ...

/ Xilinx / Vitis /2022.2/ gnu/ microblaze /nt/bin
5 export PATH= $PATH :/ cygdrive / path_to / Xilinx / Vitis /2022.2/ gnu/arm/nt/bin
6 export PATH= $PATH :/ cygdrive / path_to ...

/ Xilinx / Vitis /2022.2/ gnu/ microblaze / linux_toolchain / nt64_be /bin
7 export PATH= $PATH :/ cygdrive / path_to ...

/ Xilinx / Vitis /2022.2/ gnu/ microblaze / linux_toolchain / nt64_le /bin
8 export PATH= $PATH :/ cygdrive / path_to ...

/ Xilinx / Vitis /2022.2/ gnu/ aarch32 /nt/gcc -arm -none -eabi/bin..4. Create the project folder with a short path (Vivado makes long paths that
can grow over Windows 11 limit). In my case: C:/zedboard_adrv9002_project/.
This path will be our default path for the rest of the project, referenced
as ./..5. Place the ADI HDL Reference Designs repository adi_hdl_2022_r2/
into the project folder: ./..6. In Cygwin run make command in the ADRV9001 + ZedBoad project
folder (./adi_hdl_2022_r2/projects/adrv9001/zed/). Now the project
and all needed libraries should be built by Vivado 2022.2..7. Open the project built Vivado 2022.2 in Vivado 2023.2.2 and select
Automatically upgrade to the current version..8. Export the block design script by: IP INTEGRATOR –> Open Block
Design –> File –> Export –> Export Block Design... –> Tcl file:
./adi_hdl_2022_r2/projects/adrv9001/zed/system.tcl

19

3. Used Hardware and Software
Rebuild the project in Vivado 2023.2.2

The project migrated to Vivado 2023.2.2 includes some files outside of its
folder, from which some of them have been copied and unused while some of
them were not copied. In this state it is not easy to make amendments in the
project, so the easiest solution to this problem is creating a new clean Vivado
2023.2.2 project. This can be done following these steps:..1. Create new Vivado project folder ./src_HDL/..2. Create Vivado 2023.2.2 project named adrv9001_zed in ./src_HDL/ for

ZedBoard Zynq Evaluation and Development kit from vendor avnet.com,
leave other configurations in the default state..3. Include previously built ADI libraries to the current Vivado project:
PROJECT MANAGER –> IP Catalog –> right click –> Add Reposi-
tory... –> select ./adi_hdl_2022_r2/library/..4. Generate block design by running previously exported script: Tools –>
Run Tcl script –> ./adi_hdl_2022_r2/projects/adrv9001/zed/system.tcl..5. Create block design Verilog wrapper: Sources –> Hierarchy –> Design
Sources –> right click on system.bd –> Create HDL Wrapper... -> Let
Vivado manage wrapper and auto-update..6. Copy source files from the old project to ./src_HDL/adrv9001_zed.srcs/sources_1/new/ :. ./adi_hdl_2022_r2/projects/adrv9001/zed/system_top.v. ./adi_hdl_2022_r2/library/common/ad_iobuf.v

Add these source files to the project: Sources –> Add Sources –> Add
or create design sources –> Add Files –> select files from above..7. Copy constraints files from the old project to ./src_HDL/adrv9001_zed.srcs/constrs_1/new/ :. ./adi_hdl_2022_r2/projects/adrv9001/zed/system_constr.xdc. ./adi_hdl_2022_r2/projects/adrv9001/zed/cmos_constr.xdc. ./adi_hdl_2022_r2/projects/common/zed/zed_system_constr.xdc

Add these source files to the project: Sources –> Add Sources –> Add
or create constraints –> Add Files –> select files from above..8. Set higher priority of system_constr.xdc by: right click on system_constr.xdc
–> Source File Properties... –> Properties –> set PROCESSING_ORDER
to LATE..9. Add gitignore file to the ./src_HDL/ ignoring Vivado syntheses, imple-
mentations and simulations folders (This method is not optimal since
Vivado stores a lot of files). adrv9001_zed.sim/. adrv9001_zed.runs/

20

................................. 3.3. Workflow preparation

Remove DDS and build

Now, the project should be prepared to be built. However, we make one amend-
ment. We found out that in ADI file ./adi_hdl_2022_r2/library/axi_adrv9001/axi_adrv9001_tx_channel.v
usage of entity ad_dds wastes a lot of resources (see section 4.3). This DDS
entity is responsible for generating example harmonic signal IQ data for both
transmitters at arbitrary frequency, however, we will not use it...1. We can comment the whole ad_dds usage out in ./adi_hdl_2022_r2/library/axi_adrv9001/axi_adrv9001_tx_channel.v

and assign its output dac_dds_data_s with zeros...2. This change needs to be updated in the project: IP INTEGRATOR –>
Open Block Design –> Show IP Status –> Upgrade Selected

After this change we are ready to build and export the Vivado project
output, it can be done by following:..1. PROGRAM AND DEBUG –> Generate Bitstream (this can take ap-

proximately 20 minutes)..2. File –> Export –> Export Hardware... –> Include bitstream –> select
./src_HDL/system_top.xsa (preselected)

3.3.2 Vitis workflow

The Vivado output ./src_HDL/system_top.xsa generated in the previous
section contains all information about the PL and PS initialization. However,
we need a few more features available in Vitis that cannot be done in Vivado
alone. Namely:. FSBL: Loads the PL and PS configuration into the SoC from an SD card. U-Boot: Boots Linux kernel in the PS part (see subsection 3.2.3)

These functionalities have to be implemented in the PS part (the SD card
controller is connected to PS part only). Booting the SoC from an SD card
is a common and convenient practise and Vitis has an option to generate this
option (FSBL) automatically.

The ADI Kuiper Linux U-Boot file has also been prepared by ADI, it can be
found in ADI Kuiper Linux imaged SD card (see subsection 3.3.3) at location
/zynq-zed-adv7511-adrv9002/bootgen_sysfiles.tgz/u-boot_zynq_zed.elf. We
will extract the compressed file and copy whole content of /zynq-zed-adv7511-
adrv9002/ to ./src_SDK/analog_copy/.

The overall process of creating an SD card boot image BOOT.bin in Vitis
is following:..1. Create new folder ./src_SDK/ and open it as a Vitis 2023.2.2 workspace..2. Represent the Vivado project by a Vitis Platform Component: Create

Platform Component –> Fill component name: platform_system_top
–> Hardware Design –> Browse –> select: ./src_HDL/system_top.xsa
–> select Operating system: linux, check Generate Boot artifacts

21

3. Used Hardware and Software3. Build platform_system_top (under Flow tab)..4. Create a System Project (wrapper for application on a given platform):
File –> New Component –> System Project –> select System project
name: system_linux –> Select platform: platform_system_top..5. Create a blank application so that system_linux would not be empty: File
–> New Component –> Application –> Component name: app_blank_app
–> Select platform: platform_system_top –> continue with defaults..6. Add the blank application to system_linux : VITIS COMPONENTS –>
system_linux –> Settings –> vitis-sys.json –> Add Existing Component
–> Application –> app_blank_app..7. Build system_linux (under Flow tab)..8. Generate an SD card boot image: VITIS COMPONENTS –> sys-
tem_linux –> Flow: Create Boot Image –> Add partition –> File path:
./src_SDK/analog_copy/bootgen_sysfiles/u-boot_zynq_zed.elf –> select
default Output BIF File Path and Output Image (./src_SDK/system_linux/BOOT.bin)
–> Create Image

Generated file ./src_SDK/system_linux/BOOT.bin is an SD card boot im-
age for the ZedBoard. It contains all First and Second Stage Bootloaders and
both PL and PS parts configurations. This configuration is done automatically
after boot. The Linux kernel for the PS part (booted by the Second Stage
Bootloader ./src_SDK/analog_copy/bootgen_sysfiles/u-boot_zynq_zed.elf)
is described in following subsection 3.3.3.

When we need to update an existing Platform Component by new Vivado
output (./src_HDL/system_top.xsa file), we can do it by :..1. VITIS COMPONENTS –> platform_system_top –> Settings –> vitis-

comp.json –> Switch XSA –> ./src_HDL/system_top.xsa..2. Build platform_system_top (see above)..3. Build system_linux (see above)..4. Generate an SD card boot image (see above)

3.3.3 ADI Kuiper Linux preparation

The ADI Kuiper Linux compiled image can be downloaded at its webpage
[21].

We can image the SD card (min. 16 GB) by following steps:..1. Download the ADI Kuiper Linux compiled image [21]..2. Image an SD card by the downloaded image file by an imager application
(Etcher, Raspberry Pi Imager, WinDisk32)

22

................................. 3.3. Workflow preparation..3. Copy following prepared files on the SD card into its root directory of
the BOOT partition:. zynq-zed-adv7511-adrv9002/BOOT.BIN. zynq-zed-adv7511-adrv9002/zynq-zed-adv7511-adrv9002/devicetree.dtb. zynq-common/uImage..4. Insert the SD card into the ZedBoard and power it on...5. Connect by UART to PC (Baud: 115200)..6. Change IP address and enable display output by running included:
enable_static_ip.sh and enable_dummy_display.sh

We can notice that the ADI Kuiper Linux already contains its PL and
PS default boot image file BOOT.bin. However, in subsection 3.3.1 and
subsection 3.3.2 we showed a way how to build this file, this enables us to
make PL part modifications while keeping the Kuiper Linux intact in the PS
part.

3.3.4 ADI TES profile configuration

After we have prepared our HW and ADI Kuiper Linux, we would like to
configure the ADRV9002. As mentioned before (see subsection 3.2.4), we can
combine TES and Libiio by generating a profile (set of ADRV9002 parameters)
in TES that can be then easily loaded from the Libiio.

All TES files (including the used session) can be found in folder ./other-
s/TES_802_11p/. A brief description of the used ADRV9002 TES configu-
ration is following:.Device Configuration: Channel 1 only, FDD duplex, CMOS 4-Lane

DDR SSI, I/Q 16-bit Signal Type, Dataport and Interface Rate of 20
MSPS, RF Channel Bandwidth of 10 MHz.Clock: Frequency 38.4 MHz (according to the EVAL-ADRV9002 oscilla-
tor).Carriers: Both Carrier frequencies of 5900 MHz.Radio: SPI Channel 1 Enablement Mode, Second Order Analog Low-
Pass Filter with -1 dB Frequency of 7 MHz, Transmit Data Source - Set
data through FPGA.RX (TX) Filters: Source: low_pass_10MHz_20MHz.txt (TX: Inter-
polation Factor: 2)

The FDD Duplex is used because it allows us to use both TX and RX ports
at the same time. Dataport and Interface Rate of 20 MSPS is used because
we did not find a combination of parameters to set the bandwidth and the
interface rate both to wanted 10 MHz, however, while using the following

23

3. Used Hardware and Software
filter, the downsampling in the receiver and upsampling in the transmitter
will be both effortless to make.

File low_pass_10MHz_20MHz.txt of 128-tap half-band low-pass filter
coefficients was generated by the MATLAB script filter.m.

Selected parameters can be validated by using Demo Mode in Connection
tab and clicking Program tab. After configuring the ADRV9002 the Profile
File and its corresponding Stream Image can be generated in the File tab,
these two files contain all needed ADRV9002 configuration parameters.

24

Chapter 4
Hardware and Signal processing
Implementation of IEEE 802.11p

This chapter is devoted to implementation of a custom Vivado IP block for
IEEE 802.11p reception in VHDL. This reusable block in the PL part of
Zynq-7000 SoC XC7Z020, connected to the PS part, shall process incoming
IQ samples and implement each stage of a IEEE 802.11p receiver, then it
must be capable of providing the processed data to the ADI Kuiper Linux
running in the PS part.

We chose the implementation in the PL part because of the strict realtime
requirements on response time, especially the 16 or 32 µs SIFS interval for
frame Acknowledgements (see section 2.3).

The IP project location is ./src_HDL/IP_802_11p/.

4.1 AXI IP block preparation

4.1.1 Create IP block

We start by creating a new IP block for our built Vivado design. If not
specified otherwise in this chapter, we will automatically consider the project
in this folder...1. Open the built adrv9001_zed Vivado project..2. Change Target language to VHDL: PROJECT MANAGER –> Settings

–> Project Settings –> General –> Target language –> VHDL..3. Create a new AXI4 IP: Tools –> Create and Package New IP... –>
Create a new AXI4 peripheral –> fill Name: IP_802_11p, IP location:
./src_HDL/IP_802_11p/ –> Interface type: Lite, Data Width: 32 Bits,
(Number of Registers will be changed manually later) –> Next Steps:
Edit IP..4. Change Target language back to Verilog in adrv9001_zed: PROJECT
MANAGER –> Settings –> Project Settings –> General –> Target
language –> Verilog

25

4. Hardware and Signal processing Implementation of IEEE 802.11p5. In the new IP project disable the project deletion: PROJECT MAN-
AGER –> Settings –> Project Settings –> IP –> Packager –> uncheck
Delete project after packaging..6. Add a new blank block design: IP INTEGRATOR –> Create Block
Design –> Design name: block_design_0..7. Create block_design_0_wrapper.vhd VHDL wrapper for block_design_0 :
Sources –> Hierarchy –> Design Sources –> right click block_design_0
–> Create HDL Wrapper... –> Let Vivado manage wrapper and auto-
update..8. Instantiate block_design_0_wrapper.vhd in
./src_HDL/IP_802_11p/IP_802_11p_1_0/hdl/IP_802_11p_v1_0_S00_AXI.vhd..9. Run Synthesis (When making changes, it is often needed to Open Block
Design and click on Refresh Changed Modules first)...10. Package the IP: PROJECT MANAGER –> Edit Packaged IP –> (When
displayed: File Groups –> click on Merge changes from File groups
Wizard) –> Review and Package –> Re-package IP

In this state the new IP block contains a few registers implemented by LUTs
and Flip-Flops, these registers are accessible from the AXI4 Lite interface
and can be modified in file
./src_HDL/IP_802_11p/IP_802_11p_1_0/hdl/IP_802_11p_v1_0_S00_AXI.vhd.

4.1.2 Implement registers in BRAM

The following needed step is replacing registers implemented by LUTs and
Flip-Flops since this combination wastes a lot of resources when having
bigger number of registers (see section 4.3). We will use a block RAM
(BRAM) available in the Zynq-7000 SoC XC7Z020 instead of this AXI
registers implementation.

The process of creating a BRAM follows:..1. Add new Vivado IP Block Memory Generator to block_design_0, use
following Simple Dual-Port RAM configuration with depth of 4096 and
width of 32 bits:. Basic –> Mode –> Stand Alone. Basic –> Memory Type –> Simple Dual Port RAM, check Common

Clock. Port A Options –> Port A Width –> 32. Port A Options –> Port A Depth –> 4096. Port A Options –> Operating Mode –> Read First. Port A Options –> Enable Port Type –> Use ENA Pin. Port B Options –> Port B Width –> 32

26

............................... 4.1. AXI IP block preparation

. Port B Options –> Operating Mode –> Read First. Port B Options –> Enable Port Type –> Use ENB Pin. Other Options –> Fill Remaining Memory Location –> check and
enter 0..2. Connect BRAM ports to AXI4 Lite:..a. Connect the BRAM to the block_design_0 : right click on the new
IP –> Make External –> remove trailing _0 in the new ports names..b. (Re-)Create HDL Wrapper for block_design_0..c. In ./src_HDL/IP_802_11p/IP_802_11p_1_0/hdl/IP_802_11p_v1_0_S00_AXI.vhd.Add the new ports for block_design_0_wrapper. Remove all slv_reg AXI4 Lite registers, process for writing into

them and process for reading from them. Connect BRAM ports to AXI4 Lite control and data signals
from the previous point (in future, these AXI signals will be
multiplexed with another source from the PL part, see subsec-
tion 4.2.9).Amend C_S_AXI_ADDR_WIDTH to 14
and OPT_MEM_ADDR_BITS to 11 (AXI4 addressing is in
bytes)..d. Amend C_S_AXI_ADDR_WIDTH to 14 in

./src_HDL/IP_802_11p/IP_802_11p_1_0/hdl/IP_802_11p_v1_0.vhd..e. Amend PROJECT MANAGER –> Edit Packaged IP –> Cus-
tomization Parameters –> C_S_AXI_ADDR_WIDTH to 14..f. Amend PROJECT MANAGER –> Edit Packaged IP –> Addressing
and Memory –> Range to 16384..g. Re-run the synthesis and Re-package the IP (see in subsection 4.1.1)

4.1.3 Connection to ADI HDL design and PS part

The first version of our packaged IP block IP_802_11p is in this state ready
to be used in its parent project adrv9001_zed. It can be added to its block
design by: Open project adrv9001_zed –> Open Block Design –> right click
–> Add IP... –> select IP_802_11p_v1.0

AXI Connection

The connection to the PS part can be done by using previously created
AXI port in our IP block. Connecting the IP block via AXI4 Lite and
assigning it a valid address range will use a part of unused PS address
space. We found out that address space 0x5000_0000..0x5000_3FFF (range:
16384) is in the AXI range of (PL AXI slave port #0 [14]) and it is unused,
this can be found out by looking into decompiled device tree available at
./src_SDK/analog_copy/zynq-zed-adv7511-adrv9002/devicetree.dtb (Linux

27

4. Hardware and Signal processing Implementation of IEEE 802.11p
command dts can be used for the decompilation) and checking Address Editor
in the block design of the project adrv9001_zed.

For connecting the new IP block to the AXI4 bus /sys_ps7/M_AXI_GP0
follow:..1. In axi_adrv9001 open the block design with the IP block already added..2. Click Run Connection Automation –> select

S00_AXI –> select /sys_ps7/M_AXI_GP0..3. Open Block Design –> Window –> Address Editor –> Network 1 –>
/sys_ps7 –> /sys_ps7/Data –> /IP_802_11p_0/S00_AXI –> change
Master Base Address to 0x5000_0000 and Range to 16K

These steps will connect the AXI4 Lite slave interface S00_AXI to the PS
part AXI4 master interface M_AXI_GP0 via automatic AXI Interconnect
at required address space. These addresses can be then easily accessed in the
PS part by standard C function mmap or by opening /dev/mem in the ADI
Kuiper Linux (for example from Python).

ADVR9002 SSI connection

The continuous IQ data flow from the ADRV9002 is provided by a 4-lane
CMOS SSI. We could be able to connect to this SSI interface and parallelize
the serialized IQ samples, on the other hand, the ADI design IP block
axi_adrv9001 (in adrv9001_zed project) already implements this so we can
take advantage of it.

We found out that we can use following axi_adrv9001 outputs with con-
tinuous IQ data stream:..1. adc_1_clk..2. adc_1_rst..3. adc_1_valid_i0..4. adc_1_enable_i0..5. adc_1_data_i0[15:0]..6. adc_1_data_q0[15:0].

We can extend inputs of our IP block IP_802_11p and connect them to the
signals above. To do this, following input signals have to be added to
./src_HDL/IP_802_11p/IP_802_11p_1_0/hdl/IP_802_11p_v1_0.vhd,
./src_HDL/IP_802_11p/IP_802_11p_1_0/hdl/IP_802_11p_v1_0_S00_AXI.vhd
and to IP_802_11p block_design_0 (including its wrapper)...1. RX_CLOCK..2. RX_RESET

28

............................... 4.1. AXI IP block preparation..3. RX_VALID..4. RX_ENABLE..5. RX_IDATA[15:0]..6. RX_QDATA[15:0]

After IP_802_11p Re-packaging (see subsection 4.1.1) these new inputs can
be connected to the ADI IP block axi_adrv9001 outputs mentioned above
(in the same order).

CLOCK, Switches and LEDs Connection

Now, as we have wired the AXI4 and the SSI interfaces into the the block_design_0
we need a fast clock signal for intended signal and data processing blocks
in the block_design_0. We are able to use already existing PS clock source
FCLK_CLK0 set to 100 MHz, this clock source is also used for our AXI4
Lite interface. This selection will simplify the communication between the
BRAM and other blocks in the block_design_0.

In this point we also wanted to leverage available ZedBoard eight LEDs
and eight switches (we will not use the switches in the end).

To wire all: clock, switches and LEDs into block_design_0, add following
signals in the same way as for the SSI connection above:..1. CLOCK (input)..2. SW[7:0] (input)..3. LEDS[7:0] (output)

After IP_802_11p Re-packaging (see subsection 4.1.1) the CLOCK port
can be connected to FCLK_CLK0 output in ZynQ7 Processing System block.

The process of connecting already used LEDs and switches (connected to
PS part) to IP_802_11p can follow:..1. In system block design right click on the IP ports LEDS[7:0] and SW[7:0]

–> Make External –> remove trailing _0 in their names –> save the
block design..2. (Re-)Create HDL Wrapper for system block design..3. Add SW and LEDS wires to ./src_HDL/adrv9001_zed.srcs/sources_1/new/system_top.v,
connect SW from the wrapper to hardware switches (gpio_bd[18:11],
keep the existing connection from PS), connect LEDS from the wrapper
to hardware LEDs (gpio_bd[26:19], remove the existing connection from
PS). Other gpio_bd wires can stay untouched.

29

4. Hardware and Signal processing Implementation of IEEE 802.11p
BRAM control registers

We use the AXI4 Lite interface from the PS part to generate control signals for
our design. We create control registers synchronized with particular BRAM
addresses by the AXI4 Lite from PS part. This can be achieved by intercepting
the AXI4 Lite write signals in ./src_HDL/IP_802_11p/IP_802_11p_1_0/hdl/IP_802_11p_v1_0_S00_AXI.vhd
and wiring themm to block_design_0 (including its wrapper). We imple-
mented following control signals:

. RESET (synchronized with: NOT registers(0)(0))

. DETECTION_THRESHOLD (synchronized with: registers(1), synchro-
nized only even bits while odd are forced to zero)

. SELECT_AXI_REGS_MODE (synchronized with: registers(2)(7 downto
0), in the design often referenced as MODE)

4.2 IEEE 802.11p signal and data processing

This section describes theory and implementation of custom VHDL blocks
and Vivado IP blocks used in the IP Vivado project IP_802_11p.

Custom IEEE 802.11p signal and data processing VHDL files location:
./src_HDL/IP_802_11p/edit_IP_802_11p_v1_0.srcs/sources_802_11p/.
(For better clarity we will call entities or blocks in these VHDL files with
their .vhd filename extension.)

We also made a simualtion fora whole frame so that we could easily simulate
the entire design at the same time. This simulation can load IQ data from a
text file. The simulation source is at location
./src_HDL/IP_802_11p/edit_IP_802_11p_v1_0.srcs/sim_1/new/atan_simulation.vhd.
In Figure 4.1 we can see control signals of the most important blocks of the
design propagating to the output.

Figure 4.1: Simulation of the whole signal processing

30

........................ 4.2. IEEE 802.11p signal and data processing

4.2.1 IQ data preparation

In Figure 4.2 we can see a simulation of interface block between the axi_adrv9001
block and our design. These simple blocks are described below.

Figure 4.2: Simulation of the IQ data praparation

Clock domain crossing

The IQ data samples provided from ADI IP block axi_adrv9001 (2x16-bit, at
sample rate of 20 MHz, see subsection 3.3.4) are wired into the custom block
rx_clock_domain_crossing.vhd which buffers all inputs into shift registers
(with default depth of 3) by CLOCK at 100 MHz. The clock domain crossing
is usually done with bigger depth to overcome possible metastability issues.

After reading the data from last buffer registers, a new IQ data sample is
detected when following hold for this data:. RX_CLOCK rising edge comes. RX_RESET is LOW. RX_VALID is HIGH. RX_ENABLE is HIGH

For a better timing stability we choose to detect new IQ data with falling edges
of buffered RX_CLOCK. When a new IQ data is detected, it is passed with
a one-cycle DATA_STROBE to the block output as IDATA and QDATA.

IQ Data interleaving

As mentioned in subsection 3.3.4 the IQ data sample rate can be set to
10 MHz or 20 MHz. The data sampled at 20 MHz filtered by a half-band
low-pass filter (our case, done in ADRV9002) can be decimated to 10 MHz by
interleaving every second sample. This is done in data_interleaver.vhd block,
the block can be set to pass every i-th sample only, by default this block is
set to pass every second sample.

31

4. Hardware and Signal processing Implementation of IEEE 802.11p
IQ data delay

Due to the planned need of delayed IQ data samples (see subsection 4.2.2) we
decided to implement IQ data delay within the separate block data_delay.vhd.
This block delays the IQ samples in a manner of a shift register triggered
by every new IQ sample. The block outputs these data: current data, data
delayed by 16, 32, 48 and 64 samples and DATA_OUT_STROBE which
synchronize all these data outputs.

For the further processing, let us denote the current IQ data sample stream
by x[n] (the 16 samples delayed IQ data samples stream then x[n − 16], etc.).

Instantaneous power

We created an extra block act_power.vhd for measuring instantaneous power
of IQ samples. However, we did not use it for signal processing. Therefore,
Its POWER output has been truncated to 8 MSBs and connected to LEDs
output.

4.2.2 Signal detection and Time synchronization

Theory

The first algorithmic task in a receiver is usually signal detection that tests a
hypothesis that a signal is being received. An IEEE 802.11p detection block
computes (absolute square of) crosscorrelation of the incoming IQ samples and
saved 160-samples long STS sequence, denoted |RSTS

160 [n]|2, the n-th sample is
the newest crosscorrelation sample we can get with newest sample x[n]. Then
it tests the hypothesis by comparing this value to a threshold dependent on
measured noise power.

|RSTS
160 [n]|2 = |

159∑
k=0

x[n − 159 + k]s̄STS[k]|2 (4.1)

In the crosscorrelation absolute square computation we can take advantage
of the STS periodic structure (see Figure 2.4) and compute the sum of absolute
squares of each 16-samples long STS period, we will denote it as |R̃STS

160 [n]|2.

|R̃STS
160 [n]|2 =

10∑
i=1

|RSTS
16 [n − 16i]|2 (4.2)

where

|RSTS
16 [n]|2 = |

15∑
k=0

x[n − 15 + k]s̄STS[k]|2 (4.3)

This computation amendment can worsen the frequency of misdetections by
raising this ’crosscorrelation’ value for non-STS signals (see Figure 4.3), on
the other hand, it increases resistance of the detector to frequency offset up to
ten times (see Figure 4.4). We can compute this frequency offset resistance (or

32

........................ 4.2. IEEE 802.11p signal and data processing

maximal allowed frequency offset fo,max) by setting the phase rotation of our
crosscorrelated sequence (from its start to end) equal to ∆ϕ = π/2, when a
part of the crosscorrelated signal passes this phase shift value, its contribution
to the resulting crosscorrelation absolute square becomes negative. The
maximal allowed frequency offset is given by following equation

fo,max = ∆ϕ

2π

1
Tseq

= ∆ϕ

2π

fs

Nseq
(4.4)

When we set fs = 10 MHz, ∆ϕ = π/2 and sequence lengths of Nseq = 160
and Nseq = 16 we get fo,max = 15.6 kHz and fo,max = 156 kHz, respectively.
The difference of detection in frequency offset of 15.6 kHz or 156 kHz can
play a significant role, since at 5.9 GHz these values can be translated to
oscillator accuracies of 2.6 ppm or 26 ppm.

The Doppler effect on the frequency offset can be neglected since it con-
tributes in units of kHz. For example we compute the Doppler effect for 300
km/h at fc = 5.9 GHz:

fd = fc(
c + vRX

c
− 1) ≈ fc(

c

c − vTX
− 1) ≈ 1.6 kHz (4.5)

Figure 4.3: STS crosscorrelation methods (no offset)

33

4. Hardware and Signal processing Implementation of IEEE 802.11p

Figure 4.4: STS crosscorrelation methods (50kHz offset

STS Crosscorrelation filter

For computation of STS single period crosscorrelation absolute square |RSTS
16 [n]|2,

we designed block Parallel_STS_FIR_Filter.vhd. This block takes 2x16-bit
signed IQ data and filters it with a complex 16-tap FIR filter whose coeffi-
cients are selected to compute aforesaid crosscorrelation. These coefficients
can be computed by scaling, flipping and conjugating one period of the
STS sequence. Subsequently, the filter IQ outputs are both squared and
summed to the block output POWDATA_OUT_XCORR synchronized with
DATA_OUT_STROBE. The POWDATA_OUT_XCORR output is equal to
|RSTS

16 [n]|2 in Equation 4.3 delayed by additional 6.1 samples due to buffering
and pipelining. Precision of this computation is crucial, therefore, despite
including two fixed-point multiplications, the rounding was nearly ommited,
resulting in POWDATA_OUT_XCORR being of 61 bits (next 3 bits will be
added in the following block).

Besides the crosscorrelation computation, block Parallel_STS_FIR_Filter.vhd
computes input’s mutual energy with its 16-taps delayed version ESTS,3

16 [n−16]
(or here called autocorrelation).

ESTS,3
16 [n − 16] = x[n − 16]x̄[n − 32] + x[n − 32]x̄[n − 48] + x[n − 48]x̄[n − 64]

=
3∑

i=1
x[n − 16i]x̄[n − 16(i + 1)]

(4.6)
This signal is computed on only 3 sample pairs all 16 taps apart (using delayed
IQ samples from data_delay.vhd), this mutual energy is delayed exactly 16
taps behind its corresponding POWDATA_OUT_XCORR, it is outputted as
STS_AUTOCORR_I_16_DELAYED and STS_AUTOCORR_Q_16_DELAYED.
This will enable us to add 48 sample pairs in just 16 taps in the following block

34

........................ 4.2. IEEE 802.11p signal and data processing

timing_acquisition_802_11p.vhd and use it to coarsely estimate frequency
offset from STS sequence (see Equation 4.7).

Detection and timing acquisition

Block timing_acquisition_802_11p.vhd contains an instance of Parallel_STS_FIR_Filter.vhd,
it accumulates its crosscorrelation absolute square output POWDATA_OUT_XCORR
according to Equation 4.2, this is done in a shift register manner inside the
process shift_correlation_process (the accumulator is 64-bits wide).

Having this amended crosscorrelation absolute square |R̃STS
160 [n]|2 (delayed

by additional 6.2 samples, the 0.1 delay originated due to buffering into the
last SHIFT_REGISTER) we can use it for the 802.11p frame detection in
process detection_process. This process implements a simple state machine,
that compares mentioned crosscorrelation absolute square with threshold
DETECTION_THRESHOLD (block input, see subsection 4.1.3), when the
crosscorrelation absolute square exceeds the threshold, its value is saved into
signal MAX_XCORR the and following 16 crosscorrelation absolute square
samples are checked in following way (and order):..1. When any sample 1..16 ≥ MAX_XCORR ⇒ Update MAX_XCORR

and check following 16 crosscorrelation absolute square samples..2. When any sample 1..15 ≥ MAX_XCORR/2 ⇒ Cancel detection..3. When sample 16 ≤ MAX_XCORR/2 ⇒ Cancel detection

When the threshold was exceeded and all above mentioned conditions were
passed, block output DETECTION_SIGNAL_DETECTED is raised to
signalize 802.11p frame detection, output DETECTION_XCORR outputs
the MAX_XCORR.

This state machine adds another 18 taps delay so the signal detection is
delayed by 24.2 taps from the last sample x[n] (or 183.2 samples after the
beginning of the frame or 8.8 samples ahead of the beginning of the first LTS
sequence).

Signals DETECTION_STS_AUTOCORR_I and DETECTION_STS_AUTOCORR_Q
representing ESTS,48

16 [n] are synchronized with their corresponding DETEC-
TION_SIGNAL_DETECTED. It is computed from previously computed
ESTS,3

16 [n − 16] in a way stated in the following equation (the computation
takes place when the state machine above tests a detection, thus only for
some n)

ESTS,48
16 [n] =

16∑
i=1

ESTS,3
16 [n − 16 + i] =

47∑
i=0

x[n − i]x̄[n − i − 16] (4.7)

Above mentioned signals will be needed to provide its phase for the coarse
frequency offset estimation (see subsection 4.2.3), even in a case of a weak
signal, therefore they were implemented with a higher precision of 36 bits.

35

4. Hardware and Signal processing Implementation of IEEE 802.11p
4.2.3 Frequency offset estimation and correction

Block equalizer_time_frequency.vhd is a first more elaborate block, it uses
detection signal to start reception, with help of atan_block.vhd and rota-
tion_block.vhd it computes and equalizes the frequency offset (coarsely from
STS first, then finely from LTS), meanwhile, it feeds ofdm symbols to the
FFT block fft_ofdm.vhd and watches input signal VITERBI_RX_ENDED
for the end of the reception from the decoder (see subsection 4.2.7).

The core of equalizer_time_frequency.vhd block is a state machine im-
plemented in processes RX_state_machine and RX_outputs. This state
machine can be described by following states (following each other):..1. IDLE : Wait for 802.11p frame detection signalized by

DETECTION_SIGNAL_DETECTED and save current STS mutual
energy

ESTS,48
16 = ESTS,48

16 [n] (4.8)..2. STS_ATAN_INIT : Feed atan_block.vhd with the STS mutual energy
from the detection ESTS,48

16..3. STS_ATAN_WAIT : Wait for the output arg(ESTS,48
16) of atan_block.vhd..4. SET_ROTATION_BLOCK : compute coarse frequency offset estimation

α̂STS from atan_block.vhd output (in phase change per one sample) and
set rotation_block.vhd to equalize it [12]

α̂STS = 1
16 arg(ESTS,48

16) (4.9)..5. WAIT_FOR_LTS_MARKER: Wait for the ’first’ (because of OFDM
symbols windowing, we decided to start each OFDM symbol with the
last IQ sample of its cyclic prefix) LTS sequence IQ sample marked in
the process IQ_counter_process and passed through rotation_block.vhd
(LTS has already coarsely synchronized frequency offset)..6. RECEIVE_LTS : Send both LTS sequences to fft_ofdm.vhd (mark the
first LTS OFDM symbol with FFT_DATA_IN_FIRST_SYMBOL_MARKER)
and accumulate their mutual energy ESTS,64

64 (similar to STS 16-tap mu-
tual energy, but 64-tap on LTS)

ELTS,64
64 =

64∑
i=0

x[n − i]x̄[n − i − 64] (4.10)..7. RECEIVE_DATA: Ignore cyclic prefixes and send each data OFDM
symbol to fft_ofdm.vhd (again start at the last prefix sample). When
LTS mutual energy ELTS,64

64 is computed feed it into the atan_block.vhd,
when atan_block.vhd output is valid compute the fine frequency offset
estimation α̂LTS and set the rotation_block.vhd to equalize this updated
offset α̂STS + α̂LTS. This state can be interrupted by STOP_RX_DONE

36

........................ 4.2. IEEE 802.11p signal and data processing

from the decoder or by completing the last possible (1366th) OFDM
symbol.

α̂LTS = 1
64 arg(ELTS,64

64) (4.11)

atan_block.vhd

Block atan_block.vhd provides buffering and custom interface for Vivado IP
block CORDIC set to Arc Tan mode. In theory, this block could be omitted
without difficulty.

Used Vivado IP block CORDIC v6.0 (component name: hier_atan/cordic_0)
inputs complex signed data and outputs its phase in scaled radians format.
To reach this we used following configuration (important fields only):. Configuration Options –> Functional Selection –> Arc Tan. Configuration Options –> Architectural Configuration –> Word Serial. Configuration Options –> Phase Format –> Scaled Radians. Configuration Options –> Input Width –> 36. Configuration Options –> Output Width –> 20. Configuration Options –> Coarse rotation –> tick

Architectural Configuration Word Serial creates a serial CORDIC implemen-
tation saving resources, however, input data cannot be fed each clock cycle.
Phase Format Scaled Radians is a fixed point format 2QN (twos complement
number with an integer width of 3 bits) where value 1 corresponds to phase
π. Ticking Coarse rotation allows the input to be in any quadrant.

rotation_block.vhd

Similarly as atan_block.vhd the rotation_block.vhd provides buffering and cus-
tom interface for Vivado IP block CORDIC, however, set to Rotate mode. On
top of that, it features the buffered input ROTATION_PHASE_NEW_DIFF
that is used for phase incrementing with each IQ sample.

Used Vivado IP block CORDIC v6.0 (component name: hier_rotation/cordic_0)
inputs complex signed data with a phase in scaled radians format and outputs
those input complex data rotated by the given phase. To reach this we used
following configuration (important fields only):. Configuration Options –> Functional Selection –> Rotate. Configuration Options –> Architectural Configuration –> Parallel. Configuration Options –> Phase Format –> Scaled Radians. Configuration Options –> Input Width –> 16

37

4. Hardware and Signal processing Implementation of IEEE 802.11p
. Configuration Options –> Output Width –> 16. Configuration Options –> Coarse rotation –> tick.AXI4 Stream Options –> Cartesian Channel Options –> Has TLAST

–> tick

Architectural Configuration Parallel creates a parallel pipelined CORDIC
implementation capable of processing new input data each clock cycle. Phase
Format Scaled Radians is a fixed point format 2QN (twos complement number
with an integer width of 3 bits) where value 1 corresponds to phase π.
Ticking Coarse rotation allows the input to be in any quadrant. We will use
AXI4 TLAST signal as data marker ROTATION_DATA_IN_MARKER
and ROTATION_DATA_OUT_MARKER (the TLAST signal is passed
alongside the computed data and has no effect on the CORDIC block data
exchange).

4.2.4 OFDM FFT Demodulator

Block fft_ofdm.vhd uses equalized (in time and frequency) IQ samples from
the equalizer_time_frequency.vhd block and performs OFDM demodulation
by computing FFT from these IQ samples.

The functionality is divided into three processes. The first process, move_input_buffers_process,
buffers 64 IQ samples at 10 MHz (from the equalizer_time_frequency.vhd
block). When the last of 64 IQ samples is buffered, the second process,
move_buffers_to_fft_process, moves this entire buffer into the Vivado FFT IP
block (see below). The third process, output_process buffers and outputs the
Vivado FFT IP block output and adds FFT_DATA_OUT_FIRST_SYMBOL_MARKER
marker to the first LTS OFDM symbol.

Let us denote this OFDM demodulated by Xk[m] where k = −32, ..., 31
represents the subcarrier index and m=−2, ..., 1363 represents the OFDM
symbol index (indexes m = −2 and m = −1 represent two LTS symbols).

The fft_ofdm.vhd block output can be displayed in the GUI (see Figure 5.4
and Figure 5.5).

Vivado FFT IP block

Vivado IP block Fast Fourier Transform (9.1) (component name: hier_fft_ofdm/xfft_0)
inputs 64 (2x16-bit) complex signed data samples and outputs its Discrete
Fourier Transform image of 64 (2x23-bit) complex signed data samples. To
reach this we used following configuration (important fields only):. Configuration –> Number of Channels –> 1. Configuration –> Transform Length –> 64. Configuration –> Target Clock Frequency –> 100 MHz. Configuration –> Target Data Throughput –> 10 MSPS

38

........................ 4.2. IEEE 802.11p signal and data processing

. Implementation –> Data Format –> AUTO: Fixed Point. Implementation –> Scaling Options –> Unscaled. Implementation –> Input Data Width –> AUTO: 16. Implementation –> Control Signals –> tick ARESETn. Implementation –> Output Ordering –> Natural Order. Implementation –> Throttle Scheme –> Real Time

Target Data Throughput of 10 MSPS optimizes the architecture for 10 MHz
sampling, the output data are available before a new input data in each
computational cycle. The Fixed Point and Data Format with Unscaled option
will enlarge the data output width by 7 to 23 bits (however, we will use 24-bit
signals).

4.2.5 Channel response estimation and tracking

Next more elaborate block is constellation_tracker.vhd block. This block
uses two (OFDM demodulated) initial LTS sequences to create a frequency
selective channel estimate (phase and gain for each subcarrier), then it up-
dates (tracks) this estimate using available pilot subcarriers. The tracked
channel phase estimate is used for (OFDM demodulated) data subcarriers
equalization, the corresponding channel gain estimate (not tracked) is out-
putted alongside the phase-equalized data subcarrier. For channel phase and
gain estimate computation we use atan_constellation_block.vhd block, for
phase equalization we use rotation_constellation_block.vhd block.

The core of the constellation_tracker.vhd block is a state machine that can
be described by following states (following each other):..1. IDLE : Wait for the first LTS from the fft_ofdm.vhd block (input:

FFT_DATA_IN_FIRST_SYMBOL_MARKER)..2. RX_LTS_FIRST : Negate inverted LTS subcarriers (see SLTS
−26,26 in Equa-

tion 2.2) and buffer the first LTS (all 52 used subcarriers)..3. RX_LTS_SECOND: Average the second LTS with the first LTS and
send all these 52 subcarriers sums (or channel estimates Ĥk[0]) to the
atan_constellation_block.vhd block.

Ĥk[0] = Xk[−2] + Xk[−1]
2 , k = −26, .., −1, 1, ..., 26 (4.12)

Then receive and save channel estimate (phase arg(Ĥk[0]) and gain
|Ĥk[0]|) for each subcarrier k = −26, ...−1, 1, ..., 26 into CHANNEL_RESPONSE_PHASE
and CHANNEL_RESPONSE_AMPLITUDE.

39

4. Hardware and Signal processing Implementation of IEEE 802.11p4. RX_DATA: Use rotation_constellation_block.vhd to equalize (rotate
back) the incomming data by CHANNEL_RESPONSE_PHASE accord-
ing to their subcarrier. Then output the phase-equalized subcarriers
(let us denote them Yk[m]) with their respective channel gain |Ĥk[0]|
(can be called BPSK amplitude reference, it is not tracked) CHAN-
NEL_RESPONSE_AMPLITUDE in subcarrier order k = −26 first,
k = +26 last.

Yk[m] = Xk[m]e−j arg(Ĥk[m]), k = −26, .., −1, 1, ..., 26, m = 0, ...1363,
(4.13)

Meanwhile, accumulate all four (equalized) Pilot subcarriers according
to their scrambled polarities (127-bit long srambling sequence is saved in
PILOT_POLARITIES, see subsection 2.4.6) and send the result P [m]
to atan_constellation_block.vhd block.

P [m] = ±(Y−21[m] + Y−7[m] + Y7[m] − Y21[m]) (4.14)

Then receive the pilot phase arg(P [m]) and rotate (track) all elements
of CHANNEL_RESPONSE_PHASE to cancel this pilot phase error.

arg(Ĥk[m + 1]) = arg(Ĥk[m])ej arg(P [m]) (4.15)

The constellation_tracker.vhd block output can be displayed in the GUI
(see Figure 5.6 and Figure 5.7).

atan_constellation_block.vhd

Block atan_constellation_block.vhd provides buffering and custom interface
for Vivado IP block CORDIC set to Translate mode. In theory, this block
could be omitted without difficulty.

Used Vivado IP block CORDIC v6.0 (component name: hier_atan_constellation/cordic_0)
inputs complex signed data and outputs its phase in scaled radians format
and amplitude (the difference from Arc Tan mode). To reach this we used
following configuration (important fields only):. Configuration Options –> Functional Selection –> Translate. Configuration Options –> Architectural Configuration –> Parallel. Configuration Options –> Phase Format –> Scaled Radians. Configuration Options –> Input Width –> 24. Configuration Options –> Output Width –> 24. Configuration Options –> Coarse rotation –> tick.AXI4 Stream Options –> Cartesian Channel Options –> Has TUSER

–> tick

40

........................ 4.2. IEEE 802.11p signal and data processing

.AXI4 Stream Options –> Cartesian Channel Options –> TUSER Width
–> 6

Architectural Configuration Parallel creates a parallel pipelined CORDIC
implementation capable of processing new input data each clock cycle. Phase
Format Scaled Radians is a fixed point format 2QN (twos complement number
with an integer width of 3 bits) where value 1 corresponds to phase π. Ticking
Coarse rotation allows the input to be in any quadrant. The TUSER data is
passed alongside the cartesian input data and outputted nonchanged with
corresponding translated data, we will use this data as a subcarrier counter.

rotation_constellation_block.vhd

Block rotation_constellation_block.vhd provides buffering and custom inter-
face for Vivado IP block CORDIC set to Rotate mode. In theory, this block
could be omitted without difficulty.

Used Vivado IP block CORDIC v6.0 (component name: hier_rotation_constellation/cordic_0)
inputs complex signed data with a phase in scaled radians format and outputs
those input complex data rotated by the given phase. To reach this we used
following configuration (important fields only):. Configuration Options –> Functional Selection –> Rotate. Configuration Options –> Architectural Configuration –> Parallel. Configuration Options –> Phase Format –> Scaled Radians. Configuration Options –> Input Width –> 24. Configuration Options –> Output Width –> 24. Configuration Options –> Coarse rotation –> tick.AXI4 Stream Options –> Cartesian Channel Options –> Has TUSER

–> tick.AXI4 Stream Options –> Cartesian Channel Options –> TUSER Width
–> 6

Architectural Configuration Parallel creates a parallel pipelined CORDIC
implementation capable of processing new input data each clock cycle. Phase
Format Scaled Radians is a fixed point format 2QN (twos complement number
with an integer width of 3 bits) where value 1 corresponds to phase π. Ticking
Coarse rotation allows the input to be in any quadrant. The TUSER data is
passed alongside the cartesian input data and outputted nonchanged with
corresponding rotated data, we will use this data as a subcarrier counter.

41

4. Hardware and Signal processing Implementation of IEEE 802.11p
4.2.6 Modulation demapping and data deinterleaving

In this point the phase equalized data from constellation_tracker.vhd can be
perceived as constellation points, thus they are prepared for the modulation
demapping, this is done in demapper_soft.vhd. This block receives equalized
subcarriers Yk[m] with their respective BPSK amplitude reference Ĥ_k[m]|
(computed from LTS) one by one. These subcarriers are demapped to bits
according to Figure 2.8 and a 2-bit heuristic distance ρ ∈ {0, 1, 2} (we reserve
ρ = 3 for uncertainty) is computed for each demapped bit, both done by
comparing the subcarriers to a set of thresholds scaled by their respective
BPSK amplitude reference. This process is done for all BPSK, QPSK and 16-
QAM modulations (modulation 64-QAM is not supported in this receiver, this
should not be an essential problem because it does not have to be supported
according to the IEEE 802.11p, see section 2.4). The resulting data bits and
their respective 2-bit distances are parallelized for each OFDM symbol.

These demapped bit data with their corresponding distances are then
deinterleaved by deinterleaver_soft.vhd block. The deinterleaving tables were
precomputed in MATLAB script deinterleaver_vhd.m for all three modula-
tions (by numerically inverting permutations Equation 2.4 and Equation 2.5).
This small block deinterleaves all data subcarriers in a single clock.

4.2.7 Soft Viterbi decoder

The last more elaborate block is viterbi_soft.vhd. This block takes demapped
and deinterleaved data with their demapped (heuristic) distances and performs
soft Viterbi decoding. This includes decoding the SIGNAL field first with
code rate and modulation selection for successive data.

The core of the viterbi_soft.vhd block is process viterbi_process. This
process is updated with each new data indicated VITERBI_INPUT_VALID
and performs following operations:..1. Compute (heuristic) soft distance for all 64 incoming states for both

incoming paths: ∆ρi,0, ∆ρi,1, i = 0, ..., 63. These distances are computed
between received coded (demapped) bits and coded bits generated by
given state and its incoming path. Each bit contributes to the distance
according to the match or mismatch.

∆ρi,j =
{

ρ, if match
6 − ρ, otherwise

(4.16)

The results are saved to PATH_0_SOFT_DISTANCE(state) and
PATH_0_SOFT_DISTANCE(state)...2. Accumulate current state distance for all 64 states into ρi or STATE_DISTANCE
registers by selecting the incoming path with lower accumulated dis-
tance. According the incomming path selection, fill zeroth bit into each
STATE_TRACEBACK_REGISTERS(state) and shift other (older) bits
to the right.

42

........................ 4.2. IEEE 802.11p signal and data processing..3. In three steps, find minimal value of STATE_DISTANCE and save its
corresponding last traceback bit. The minimal value is found in a tree
structure where each step narrows the possibilities by four...4. When the viterbi_process is filled with enough input coded bits, out-
put the decoded (traceback) bit into VITERBI_OUTPUT (marked by
VITERBI_OUTPUT_VALID) with each new input

With control signal VITERBI_RESET all Viterbi STATE_DISTANCE
accumulators are reset to zero and the viterbi_process is ready to start new
decoding.

The Viterbi core is controlled by a state machine located in processes
state_update_process and input_output_process. This state machine can be
described by its following states (following each other):..1. IDLE : Wait for first deinterleaved data block (marked by input signal

DEINTERLEAVER_START_MARKER)..2. RX_SIGNAL: Feed the viterbi_process by BPSK demapped data from
this first SIGNAL OFDM symbol (without depuncturing, code rate
R=1/2, see subsection 2.4.1), then feed the viterbi_process by zeros with
zero distance until all 24 decoded SIGNAL bits are outputted from this
process, buffer this SIGNAL field to VITERBI_SIGNAL_OUTPUT_BUFFER
register. Meanwhile, compute parity for first 16 SIGNAL bits, if odd raise
VITERBI_RX_ENDED output signal (used by equalizer_time_frequency.vhd
and descrambler.vhd blocks) and go to IDLE...3. PROCESS_RATE : In this one-clock state, use the RATE field
VITERBI_SIGNAL_OUTPUT_BUFFER(31 downto 28) to decode
parameters needed for further reception, these are: MODULATION,
CODE_RATE, number of bits per symbol N_CBPS (coded bits) and
N_DBPS (data bits). If RATE field is unknown or unsupported,
raise VITERBI_RX_ENDED output signal and go to IDLE. Also
decode length of the transmitted message LENGTH_BYTES from
VITERBI_SIGNAL_OUTPUT_BUFFER(26 downto 15). Also reset
the viterbi_process by raising VITERBI_RESET signal...4. WAIT_FOR_DATA: Wait for data OFDM symblol. Enable viterbi_process
but do not feed it...5. RX_DATA: Feed viterbi_process with appropriate data according to
MODULATION and CODE_RATE (depuncuring is done by inserting
zero bits with neutral heuristic distance of 3 that translates to uncer-
tainty). There is hidden a bug in the depuncturing since it works in
Behavioral simulation only, see section 4.4). Forward the decoded data
to output VITERBI_DECODED_OUTPUT. When not entire message
received in the current OFDM block, go to WAIT_FOR_DATA...6. END_DECODING: Feed the viterbi_process by zeros with zero distance
until all decoded SIGNAL bits are outputted from this process. then
raise VITERBI_RX_ENDED signal and go to IDLE.

43

4. Hardware and Signal processing Implementation of IEEE 802.11p
4.2.8 Data descrambler and output parallelization

The decoded data descrambling is implemented in descrambler.vhd block. This
small block implements descrambler identical to the scrambler in Figure 2.6.

As stated in subsection 2.4.2, the descrambler is initialized by first seven
bits of the decoded data (the first bits location are found by observing
VITERBI_SIGNAL_VALID output control signal from the viterbi_soft.vhd
block). After initialization, the descrambler generates its descrambling bit
sequence that is XORed with the received data. When the input signal
VITERBI_RX_ENDED is detected, stop descrambling and generate pulse at
DESCRAMBLED_OUTPUT_LAST output signal with the last descrambled
bit.

The descrambled stream of bits is then parallelized into 32-bit registers
in the output_ser2par.vhd block. The start of this stream is also synchro-
nized by the VITERBI_SIGNAL_VALID output control signal from the
viterbi_soft.vhd block and the end of the stream by the descrambler.vhd block
control signal DESCRAMBLED_OUTPUT_LAST, the remaining empty
register part is appended with zeros when the last data bit comes.

4.2.9 PL writing to BRAM

The last block in our block design is axi_regs_mux.vhd. Its function is to
multiplex different data from the PL design, assign them an address (output
FPGA_REG_WRITE_ADDRESS), and forwarding them into the BRAM as
FPGA_REG_WRITE_DATA output (synchronized by FPGA_REG_WRITE_STROBE).

The data sources should not involve any serious conflicts (timing simulated
for all combinations except IQ samples output set by SELECT_AXI_REGS_MODE
= 1), however, they they are outputted with following priority (descending):..1. registers[3]: STS Coarse frequency offset from equalizer_time_frequency.vhd

block (scaled radians per one IQ sample in signed(19 downto 0) format)..2. registers[4]: Additional LTS Fine frequency offset from equalizer_time_frequency.vhd
block (scaled radians per one IQ sample in signed(19 downto 0) format)..3. registers[5]: Started receptions counter (counts frames by counting
LTS offset computations) stored in START_PROCESSING_CNTR
(signed(31 downto 0) format)..4. registers[14]: Done decoding counter (counts frames by counting last
parallel decoded outputs from output_ser2par.vhd block) stored in DE-
CODED_OUTPUTS_CNTR (signed(31 downto 0) format)..5. registers[15]: SIGNAL field from viterbi_soft.vhd (orientation: SIG-
NAL(0) bit at FPGA_REG_WRITE_DATA(31) bit)..6. registers[16:4094]: Data selected by the MODE input, address is reset
with each STS Coarse frequency offset write and incremented until 4095

44

........................ 4.2. IEEE 802.11p signal and data processing

reached (this last address is not used for writing). Modes from 1 to 5 fol-
low format of two signed(15 downto 0) where FPGA_REG_WRITE_DATA(31
downto 16) represents the imaginary part. The data selection by the
SELECT_AXI_REGS_MODE (referenced as MODE]) input follows:..a. MODE = 0: No data written..b. MODE = 1: Original IQ samples, synchronized after STS Coarse

frequency offset computation (starting at 1-7 last IQ samples of the
LTS prefix, depends on delay from atan_block.vhd)..c. MODE = 2: OFDM demodulated subcarriers (all 64 subcarriers;
including both LTS sequences, all 64 subcarriers) from fft_ofdm.vhd
block (16/24 MSB)..d. MODE = 3: OFDM demodulated subcarriers (all 64 subcarriers;
including both LTS sequences) from fft_ofdm.vhd block (16/24 LSB
with sign and out of limit value limitation)..e. MODE = 4: Phase equalized (OFDM demodulated) subcarriers
(all used 52 subcarriers; excluding LTS sequences) from constella-
tion_tracker.vhd block (16/24 MSB)..f. MODE = 5: Phase equalized (OFDM demodulated) subcarriers
(all used 52 subcarriers; excluding LTS sequences) from constella-
tion_tracker.vhd block (16/24 LSB with sign and out of limit value
limitation)..g. MODE = 6: BPSK demapped subcarriers (including pilots) from
the demapper_soft.vhd block (every two registers represent one
OFDM symbol, each odd register is filled with 16 LSB zeros)..h. MODE = 7: QPSK demapped subcarriers (including pilots) from
the demapper_soft.vhd block (every three registers represent one
OFDM symbol)..i. MODE = 8: 16-QAM demapped subcarriers (including pilots)
from the demapper_soft.vhd block (every six registers represent one
OFDM symbol)..j. MODE = 9: Decoded and descrambled data from output_ser2par.vhd
block

axi_regs_mux.vhd connection to BRAM

As mentioned in the previous paragraph, the axi_regs_mux.vhd block outputs
a simple one-directional bus of strobe, address and data. These signals are
driven into the
./src_HDL/IP_802_11p/IP_802_11p_1_0/hdl/IP_802_11p_v1_0_S00_AXI.vhd
AXI4 Lite block where they are connected to the BRAM write port A. The
connection to the BRAM port A is done by multiplexing the AXI4 Lite writing
from the PS part (see section 4.1) and this FPGA_REG_WRITE_DATA
writing, the AXI4 writing is prioritized.

45

4. Hardware and Signal processing Implementation of IEEE 802.11p
4.3 Hardware utilization

Figure 4.5: FPGA PL part utilization (Implemented design)

As mentioned in subsection 3.3.1 we removed the DDS. This ad_dds block
occupied a lot of resources and was present in each of six transmission channels.
For details see Figure 4.6.

Figure 4.6: DDS utilization (6x)

At of creating the IP we replaced default AXI Lite registers by BRAM (see
subsection 4.1.2), the reason was again that a lot of registers occupied a lot
of resources. For details (with 512 AXI registers see Figure 4.7).

Figure 4.7: DDS AXI4 registers (512)

46

.......................... 4.4. Problems and possible improvements

4.4 Problems and possible improvements

Depuncturing not working

The depuncturing (in viterbi_soft.vhd) does not work anywhere after the
synthesis (no matter how the synthesis is set), however, the Behavioral
simulation returns correct decoded outputs (simulated for BPSK, R=3/4).
There were not found any errors nor warning concerning the synthesis of
viterbi_soft.vhd. This could be caused by an ambiguous description in the
design, that was grasped right by the simulator, however, we were not able
to find the error in the Post synthesis functional simulation. It can be seen
in Figure 5.9.

With an error in depuncturing we can use only rate R=1/2, meaning data
rates of the 3, 6, and 12 Mb/s (those required ones). These three data rates
were all successfully tested.

Naming conventions shifted during the design

Some strobe signals should be renamed, some inputs to outputs and vice
versa to valid signals to comply with the axi naming conventions.

Multiple Block designs

In the beginning of the design we got into a trouble with Vivado. Behavioral
simulations of the atan_block.vhd were alright, however, the implementation
and sometimes even the synthesis were failing (error of type: No formal port,
). Then we found out that the Vivado 2023.2.2 does not support multiple
Block designs in one project, IP cores does not count. You can explore git
branch multiple_bd_errors.

FFT Vivado block TLAST input

The Vivado FFT block hier_fft_ofdm/xfft_0 regularly raises error signal of
missing and unexpected AXI4 Stream TLAST input. The design was checked
and nothing was found, however the values are computed right. (There is a
possibility that one sample is not inputted right.)

IEEE 802.11a expanding

The IEEE 802.11a differs in its bouble bandwidth achieved double sampling
rate. The processing would work for IEEE 802.11a if the CLOCK and
S_AXI_ACLK could double their frequency. If this would not be possible or
beneficial, the FFT Vivado FFT block hier_fft_ofdm/xfft_0 would have to
be reconfigured to higher Target Data Throughput. It is not excluded that any
different block in the design would not stop meeting its deadlines, however,
the majority should be transferable to double IQ data rate.

47

4. Hardware and Signal processing Implementation of IEEE 802.11p
Realtime receptions

An interrupt and DMA could be implemented to transfer data from the
IP_802_11p PL block to the PS part. This would shorten intervals of frame
reception while freeing the PS.

BRAM multiplexing seems not to be fully stable

BRAM port A PL/PS writing multiplex is probably not the best option
since we had to make it without buffering. Sometimes BRAM addresses
0 and 1 are randomly overwritten. (It does not affect the RESET and
DETECTION_THRESHOLD registers). One soulution could be to use a
True-dual port RAM with bigger AXI4 Lite signals modification, another
option would be to use Vivado IP block AXI BRAM Controller.

There is a non-optimality in time or frequency acquisition

The threshold is implemented from BRAM registers[1] (DETECTION_THRESHOLD)
and not automatic from power and noise power by hypothesis testing.

The synchronization starts failing at sufficiently strong signal. The error
is most likely in frequency synchronization or equalization since no mat-
ter of the textitregisters[1] (DETECTION_THRESHOLD) the frequency
synchronization fails for signal in Figure 4.8 and Figure 4.9.

Figure 4.8: Failing level of synchronization (IQ)

48

.......................... 4.4. Problems and possible improvements

Figure 4.9: Failing level of synchronization (Constellation)

49

50

Chapter 5
GUI for IEEE 802.11p hardware block

This GUI (Graphical User Interface) is a custom application for controlling the
ADRV9002 via Libiio and our custom IP_802_11p PL block (see chapter 4)
via AXI4 Lite interface.

The GUI is written completely in Python using mostly tkinter standard
Python interface library. The GUI can be found in folder ./others/gui_axi/
with main file GUI_axi.py.

For enabling all of its features the GUI must be run directly in the ADI
Kuiper Linux on ZedBoard with our IP_802_11p PL block. However, it can
be running on any PC (having standard libraries and ADI py-adi library), this
will enable Libiio functionalities by remotely connecting to a ZedBoard. In
both cases the ZedBoard IP address (IIO_uri) has to be set in the GUI_axi.py
file.

5.1 ZedBoard GUI interfaces

5.1.1 AXI4 Lite interface

As mentioned in subsection 4.1.2, the AXI4 Lite interface at address range
0x5000_0000..0x5000_3FFF is connected to the 32-bit wide BRAM memory
of length 4096. This memory (in the design sometimes wrongly called registers)
can be accessed either via AXI4 Lite from the PS (the purpose of this GUI)
or from the IP_802_11p PL block (see subsection 4.2.9), therefore, we will
use it as a connection to the IP_802_11p block. For the (BRAM) register
map see subsection 4.2.9.

Low level BRAM read and write python functions are implemented in
access_axi_regs.py, this file is imported into the GUI.

Function axi_read_regs takes address range (from 0 to 4095) to read this
range from the BRAM memory. The output is a numpy.array object of
numpy.uint32 datatype. For each reading the /dev/mem device memory
is opened by os.open function, mapped by mmap.mmap function at range
0x5000_0000..0x5000_3FFF and read with offset according to the read
address. This approach requires root privileges.

Function axi_write_regs takes write start address and a numpy.array object
of numpy.uint32 datatype, this entire array is then written to the BRAM

51

5. GUI for IEEE 802.11p hardware block
starting with its zeroth element at the start address. The mapping approach
is identical to the axi_read_regs function in the preceding paragraph.

5.1.2 Libiio inteface

The Libiio library (see subsection 3.2.4) shares no connection to our IP_802_11p
PL block. On the other hand, it can use many features of the original ADI
HDL design. Therefore, we can take advantage of it in the GUI (called
directly from GUI_axi.py) alongside the AXI4 Lite communication. Its major
advantages are a straightforward ADRV9002 control as well as possibility of
remote connection. As already said, no matter of local or remote connection,
the ZedBoard IP address (IIO_uri) has to be set in GUI_axi.py code before
starting.

We will use the Libiio (specifically py-adi library) for ADRV9002:. Profile loading. Setting carrier frequencies and gains. Large asynchronous IQ samples reads.Transmitting 802.11p test packets

5.2 Tabs description

The GUI is composed of 5 functional tabs and a Help tab. Functional tabs
control or read a specific hardware function. In this section we would like to
describe each of these tabs, a brief version of this description is included in
the Help tab in the GUI.

The tab change is implemented to switch mode of IP_802_11p PL block by
writing into SELECT_AXI_REGS_MODE (also called: MODE or BRAM
registers[2]).

5.2.1 Settings tab

The Settings tab is implemented for the ADRV9002 control, all features
(except buttons Check AXI and 802.11p Reset/Disable) are implemented
using the Libiio (specifically py-adi). Let us describe these features:. (Re-) Connect IIO button: Connect to the Libiio.. Check AXI button: On Linux, try reading address 0x5000_0000 (BRAM

registers[0]).. Load Stream & Profile button: Load TES Stream and Profile (from
data/ ; see subsection 3.3.4), then set both RX and TX to calibrated
state, set carrier frequencies to 5.9 GHz, turn ON RX AGC and set TX
attenuator to -10 dB.

52

................................... 5.2. Tabs description

. 802.11p Reset and 802.11p Disable: Both buttons clear the BRAM
(including registers[0] synchronized with NOT RESET), the reset button
then enables the IP_802_11p PL block (writes 1 to registers[0]) and set
default threshold (registers[1] or even bits of DETECTION_THRESHOLD,
see subsection 4.1.3) to 1e5.. Other control buttons (with their corresponding entries) serve for manual
ADRV9002 channel gains, carrier frequencies and state control.. Control (IIO) transmitter : Use the transmitter for transmitting a pre-
computed IEEE 802.11p packet in more modulations and code rates.
The packets (saved at data/signals/) were generated by MATLAB
script ./others/matlab 802_11a_p/generate_signal_802_11p.m (chang-
ing DATARATE variable) according to the example in [3, p. 55].

Figure 5.1: GUI Settings tab

5.2.2 RX Samples tab

The RX Samples tab is created for visualizing the received IQ data, specifically
I part (blue), Q part (red), amplitude (green) in the upper graph and power
spectral density in the lower graph. It supports two types of IQ data.

The first IQ data type sets IP_802_11p PL block BRAM registers[2]
MODE = 1 (when entering the tab) and reads the selected register address
range. The IQ samples address range can be between 16 and 4094, this is
read by Read AXI button. The retrieved values are time-synchronized to
the moment of the STS Coarse frequency offset computation (that is 1-7
last IQ samples of the LTS prefix, depends on delay from atan_block.vhd)
(see subsection 4.2.9), thus the data is only valid when a reception happened
between the setting of MODE = 1 and the AXI reading.

53

5. GUI for IEEE 802.11p hardware block
The second IQ data type is implemented by calling the Libiio (via py-adi),

thus it does not need the IP_802_11p block. The data is read asynchronously
after pressing Read AXI button with maximal buffer length of 222 samples.

Figure 5.2: RX Samples tab (AXI BRAM)

Figure 5.3: GUI Settings tab (Libiio)

5.2.3 RX Constellation tab

The RX Constellation tab is made for visualizing the OFDM demodulated
subcarrier data from IP_802_11p PL block in constellation space.

There are four modes that can visualize different data, all differ in setting
IP_802_11p PL block BRAM registers[2] MODE, therefore, as in the previous
tab, the data is only valid when a reception happened between the setting

54

................................... 5.2. Tabs description

of MODE and the AXI reading. The address range for reading remains
between 16 and 4094. There are following modes for visualization (see also
subsection 4.2.9):

. FFT output (16 MSB) (MODE = 2): OFDM demodulated subcarriers
(all 64 subcarriers; including both LTS sequences) from fft_ofdm.vhd
block (16/24 MSB, then 8 LSB zeros added)

. FFT output (16 LSB) (MODE = 3): OFDM demodulated subcarriers
(all 64 subcarriers; including both LTS sequences) from fft_ofdm.vhd
block (16/24 LSB with sign and out of limit value limitation)

. Tracked constellation (16 MSB) (MODE = 4): Phase equalized (OFDM
demodulated) subcarriers (all used 52 subcarriers including pilots; exclud-
ing LTS sequences) from constellation_tracker.vhd block (16/24 MSB,
then 8 LSB zeros added)

. Tracked constellation (MODE = 5): Phase equalized (OFDM demod-
ulated) subcarriers (all used 52 subcarriers including pilots; excluding
LTS sequences) from constellation_tracker.vhd block (16/24 LSB with
sign and out of limit value limitation)

Figure 5.4: GUI Constellation tab (OFDM demodulated subcarriers)

55

5. GUI for IEEE 802.11p hardware block

Figure 5.5: GUI Constellation tab (OFDM demodulated subcarriers, LTS only)

Figure 5.6: GUI Constellation tab (OFDM demodulated and equalized subcar-
riers)

56

................................... 5.2. Tabs description

Figure 5.7: GUI Constellation tab (OFDM demodulated and equalized subcar-
riers)

5.2.4 RX Realtime tab

The RX Realtime tab is made for reception of the final decoded and descram-
bled data as well as providing parameters of the reception, it uses register
MODE = 9 (when entering the tab, see subsection 4.2.9). When clicking the
Start buttton the AXI BRAM is read every 500 ms and a new data is written
to the log. It includes:..1. Counters of started receptions and done decodings (see subsection 4.2.9)..2. STS and LTS frequency offset synchronization (the fine LTS offset is the

difference to the coarse STS offset)..3. SIGNAL field in transmission order (LSB first)..4. From the SIGNAL field: Modulation, Code rate and Length (in bytes)..5. SERVICE field in transmission order (LSB first)..6. DATA field in hex format (space divided)..7. DATA field in ASCII format (only displayable characters (32-126), CR
and LF, others displayed as ’?’)

When clicking the Read Once... buttton the reading is performed only
once but the data (PSDU field in binary format) is also written to the file
received_data/received_data.txt.

An example of a RX Realtime tab output can be seen in Figure 5.8.

57

5. GUI for IEEE 802.11p hardware block

Figure 5.8: GUI Realtime tab

The Viterbi depuncturing does not work, this can be seen in Figure 5.9.
See section 4.4 for more details

Figure 5.9: GUI Realtime tab (Viterbi error)

5.2.5 AXI Registers tab

The AXI Registers tab is used for manual writing and reading to/from the
BRAM memory. This includes manual selection of the detection threshold
(registers[1] or even bits of DETECTION_THRESHOLD, see subsection 4.1.3)
or MODE (registers[2]). Also all 4096 BRAM addresses can be read and
displayed in more predefined formats, that is: one hex format, one uint32, two
int16 and 4 ASCII characters with reversed bit order (see subsection 2.4.2).
The checkbutton TabChange can be used to disable MODE (registers[2])

58

................................... 5.2. Tabs description

writing with tab changes. For the BRAM (register) usage see subsection 4.1.3
and subsection 4.2.9.

Figure 5.10: GUI Registers tab (MODE = 6, demapped BPSK bits)

59

60

Chapter 6
Conclusion

In Chapter 2 we got acquinted with the IEEE 802.11p standard. This included
data scrambling, coding, interleaving, modulating by mapping, modulating
by OFDM and creating synchronization sequences.

In Chapter 3 we used the available hardware and software to preapare a
custom workflow using mainly AMD Vivado and Vitis.

In Chapter 4 we used the gained information about the standard and our
workflow to make a custom FPGA receiver as a Vivado IP block (not fully
dependent on the current FPGA). Chapter 5 described a custom GUI running
on a PS part (CPU) of the given board to access the block in the FPGA.

In this project many things could be improved and developed further,
this relates mainly to the demapper and Viterbi algorithm block which were
made using a few heuristics, the frequency offset synchronization should be
reviewed, as well as used BRAM interfacing.

On the other hand, the resulting project is working and is able to receive
given test packet. The project is also quite easy to edit. To conclude the goal
of basic reception in the test bed was accomplished

61

62

Bibliography

[1] Kaja H, Stoehr JM, Beard C. V2X-assisted emergency vehi-
cle transit in VANETs. SIMULATION. 2024;100(3):229-244.
doi:10.1177/00375497231209774. https://doi.org/10.1177/
00375497231209774

[2] Vehicle-to-Everything (V2X) Communication: Enhancing Road Safety
and Traffic Management, AUTOMOTIVE Technology, accessed
May 2024. https://www.automotive-technology.com/articles/
vehicle-to-everything-v2x-communication-enhancing-road-
safety-and-traffic-management

[3] S. Gräfling, P. Mähönen and J. Riihijärvi, "Performance evalua-
tion of IEEE 1609 WAVE and IEEE 802.11p for vehicular com-
munications," 2010 Second International Conference on Ubiquitous
and Future Networks (ICUFN), Jeju, Korea (South), 2010, pp. 344-
348, doi: 10.1109/ICUFN.2010.5547184. https://doi.org/10.1109%
2FICUFN.2010.5547184

[4] Admission control based on rate-variance envelop for VBR traffic over
IEEE 802.11e HCCA WLANs - Scientific Figure on ResearchGate. ac-
cessed May 2024. https://www.researchgate.net/figure/The-data-
frame-format-of-80211a_fig4_3156831,

[5] Bilstrup, Katrin & Uhlemann, Elisabeth & Ström, Erik & Bilstrup,
Urban. (2009). On the Ability of the 802.11p MAC Method and STDMA
to Support Real-Time Vehicle-to-Vehicle Communication. EURASIP
J. Wireless Comm. and Networking. 2009. 10.1155/2009/902414.
https://www.researchgate.net/publication/220537383_On_the_
Ability_of_the_80211p_MAC_Method_and_STDMA_to_Support_Real-
Time_Vehicle-to-Vehicle_Communication

[6] Bilgin, Bilal & Gungor, V.C.. (2013). Performance Comparison
of IEEE 802.11p and IEEE 802.11b for Vehicle-to-Vehicle Com-
munications in Highway, Rural, and Urban Areas. International
Journal of Vehicular Technology. 2013. 10.1155/2013/971684. https:
//www.researchgate.net/publication/289662891_Performance_

63

https://doi.org/10.1177/00375497231209774
https://doi.org/10.1177/00375497231209774
https://www.automotive-technology.com/articles/vehicle-to-everything-v2x-communication-enhancing-road-safety-and-traffic-management
https://www.automotive-technology.com/articles/vehicle-to-everything-v2x-communication-enhancing-road-safety-and-traffic-management
https://www.automotive-technology.com/articles/vehicle-to-everything-v2x-communication-enhancing-road-safety-and-traffic-management
https://doi.org/10.1109%2FICUFN.2010.5547184
https://doi.org/10.1109%2FICUFN.2010.5547184
https://www.researchgate.net/figure/The-data-frame-format-of-80211a_fig4_3156831
https://www.researchgate.net/figure/The-data-frame-format-of-80211a_fig4_3156831
https://www.researchgate.net/publication/220537383_On_the_Ability_of_the_80211p_MAC_Method_and_STDMA_to_Support_Real-Time_Vehicle-to-Vehicle_Communication
https://www.researchgate.net/publication/220537383_On_the_Ability_of_the_80211p_MAC_Method_and_STDMA_to_Support_Real-Time_Vehicle-to-Vehicle_Communication
https://www.researchgate.net/publication/220537383_On_the_Ability_of_the_80211p_MAC_Method_and_STDMA_to_Support_Real-Time_Vehicle-to-Vehicle_Communication
https://www.researchgate.net/publication/289662891_Performance_Comparison_of_IEEE_80211p_and_IEEE_80211b_for_Vehicle-to-Vehicle_Communications_in_Highway_Rural_and_Urban_Areas
https://www.researchgate.net/publication/289662891_Performance_Comparison_of_IEEE_80211p_and_IEEE_80211b_for_Vehicle-to-Vehicle_Communications_in_Highway_Rural_and_Urban_Areas
https://www.researchgate.net/publication/289662891_Performance_Comparison_of_IEEE_80211p_and_IEEE_80211b_for_Vehicle-to-Vehicle_Communications_in_Highway_Rural_and_Urban_Areas
https://www.researchgate.net/publication/289662891_Performance_Comparison_of_IEEE_80211p_and_IEEE_80211b_for_Vehicle-to-Vehicle_Communications_in_Highway_Rural_and_Urban_Areas

6. Conclusion......................................
Comparison_of_IEEE_80211p_and_IEEE_80211b_for_Vehicle-to-
Vehicle_Communications_in_Highway_Rural_and_Urban_Areas

[7] Interframe spaces (RIFS, SIFS, PIFS, DIFS, AIFS, EIFS) -
Figure 8.2 SIFS and DIFS, Dot11AP @AmitPindoria. accessed
May 2024. https://dot11ap.wordpress.com/interframe-spaces-
rifs-sifs-pifs-difs-aifs-eifs/

[8] L. Ward, Dr. M. Simon, Rohde & Schwarz GmbH & Co KG. Intel-
ligent Transportation Systems Using IEEE 802.11p. 2019. https://
scdn.rohde-schwarz.com/ur/pws/dl_downloads/dl_application/
application_notes/1ma152/1MA152_5e_ITS_using_802_11p.pdf

[9] "IEEE Standard for Telecommunications and Information Exchange
Between Systems - LAN/MAN Specific Requirements - Part 11:
Wireless Medium Access Control (MAC) and physical layer (PHY)
specifications: High Speed Physical Layer in the 5 GHz band,"
in IEEE Std 802.11a-1999 , vol., no., pp.1-102, 30 Dec. 1999,
doi: 10.1109/IEEESTD.1999.90606. https://pdos.csail.mit.edu/
archive/decouto/papers/802.11a.pdf

[10] J. B. Kenney, "Dedicated Short-Range Communications (DSRC) Stan-
dards in the United States," in Proceedings of the IEEE, vol. 99,
no. 7, pp. 1162-1182, July 2011, doi: 10.1109/JPROC.2011.2132790.
https://ieeexplore.ieee.org/document/5888501

[11] Jiang, Daniel Delgrossi, Luca. (2008). IEEE 802.11p: Towards an Interna-
tional Standard for Wireless Access in Vehicular Environments. IEEE Ve-
hicular Technology Conference. 2036 - 2040. 10.1109/VETECS.2008.458.
https://standards.ieee.org/ieee/802.11p/3953/

[12] Sourour, Essam & El-Ghoroury, H. & McNeill, D.. (2004). Fre-
quency offset estimation and correction in the IEEE 802.11a
WLAN. 4923 - 4927 Vol. 7. 10.1109/VETECF.2004.1405033.
https://www.researchgate.net/publication/4128357_Frequency_
offset_estimation_and_correction_in_the_IEEE_80211a_WLAN

[13] ZedBoard product details, Avnet, Inc., accessed May 2024.https:
//www.avnet.com/wps/portal/us/products/avnet-boards/avnet-
board-families/zedboard/

[14] Zynq 7000 SoC product details, Advanced Micro Devices, Inc.,
accessed May 2024.https://www.xilinx.com/products/silicon-
devices/soc/zynq-7000.html#documentation

[15] ADRV9002 product details, Analog Devices, Inc., accessed May 2024.
https://www.analog.com/en/products/adrv9002.html#product-
overview

64

https://www.researchgate.net/publication/289662891_Performance_Comparison_of_IEEE_80211p_and_IEEE_80211b_for_Vehicle-to-Vehicle_Communications_in_Highway_Rural_and_Urban_Areas
https://www.researchgate.net/publication/289662891_Performance_Comparison_of_IEEE_80211p_and_IEEE_80211b_for_Vehicle-to-Vehicle_Communications_in_Highway_Rural_and_Urban_Areas
https://www.researchgate.net/publication/289662891_Performance_Comparison_of_IEEE_80211p_and_IEEE_80211b_for_Vehicle-to-Vehicle_Communications_in_Highway_Rural_and_Urban_Areas
https://www.researchgate.net/publication/289662891_Performance_Comparison_of_IEEE_80211p_and_IEEE_80211b_for_Vehicle-to-Vehicle_Communications_in_Highway_Rural_and_Urban_Areas
https://dot11ap.wordpress.com/interframe-spaces-rifs-sifs-pifs-difs-aifs-eifs/
https://dot11ap.wordpress.com/interframe-spaces-rifs-sifs-pifs-difs-aifs-eifs/
https://scdn.rohde-schwarz.com/ur/pws/dl_downloads/dl_application/application_notes/1ma152/1MA152_5e_ITS_using_802_11p.pdf
https://scdn.rohde-schwarz.com/ur/pws/dl_downloads/dl_application/application_notes/1ma152/1MA152_5e_ITS_using_802_11p.pdf
https://scdn.rohde-schwarz.com/ur/pws/dl_downloads/dl_application/application_notes/1ma152/1MA152_5e_ITS_using_802_11p.pdf
https://pdos.csail.mit.edu/archive/decouto/papers/802.11a.pdf
https://pdos.csail.mit.edu/archive/decouto/papers/802.11a.pdf
https://ieeexplore.ieee.org/document/5888501
https://standards.ieee.org/ieee/802.11p/3953/
https://www.researchgate.net/publication/4128357_Frequency_offset_estimation_and_correction_in_the_IEEE_80211a_WLAN
https://www.researchgate.net/publication/4128357_Frequency_offset_estimation_and_correction_in_the_IEEE_80211a_WLAN
https://www.avnet.com/wps/portal/us/products/avnet-boards/avnet-board-families/zedboard/
https://www.avnet.com/wps/portal/us/products/avnet-boards/avnet-board-families/zedboard/
https://www.avnet.com/wps/portal/us/products/avnet-boards/avnet-board-families/zedboard/
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html#documentation
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html#documentation
https://www.analog.com/en/products/adrv9002.html#product-overview
https://www.analog.com/en/products/adrv9002.html#product-overview

...................................... 6. Conclusion

[16] EVAL-ADRV9002 Overview, Analog Devices, Inc., accessed May 2024.
https://www.analog.com/en/resources/evaluation-hardware-
and-software/evaluation-boards-kits/eval-adrv9002.html#eb-
overview

[17] ADRV9001 User Guide, Analog Devices, Inc., accessed May 2024. https:
//www.analog.com/media/en/technical-documentation/user-
guides/adrv9001-system-development-user-guide-ug-1828.pdf

[18] ADRV9001 datasheet, Analog Devices, Inc., accessed May 2024.
https://www.analog.com/media/en/technical-documentation/
data-sheets/adrv9002.pdf

[19] HDL GitHub, Analog Devices, Inc., accessed May 2024.https://github.
com/analogdevicesinc/hdl

[20] build ADI HDL, Analog Devices, Inc., accessed May 2024. https://
wiki.analog.com/resources/fpga/docs/build

[21] Kuiper Linux, Analog Devices, Inc., accessed May 2024.
https://wiki.analog.com/resources/tools-software/linux-
software/kuiper-linux

[22] About libiio, Analog Devices, Inc., accessed May 2024.
https://wiki.analog.com/resources/tools-software/linux-
software/libiio_internals

[23] Libiio GitHub, Analog Devices, Inc., accessed May 2024. https://
github.com/analogdevicesinc/libiio/tree/2021_R2

[24] IIO Oscilloscope, Analog Devices, Inc., accessed May 2024.
https://wiki.analog.com/resources/tools-software/linux-
software/iio_oscilloscope

[25] Transceiver Evaluation Software (TES), Analog Devices, Inc., ac-
cessed May 2024. https://www.analog.com/en/license/licensing-
agreement/transceiver-evaluation-software.html

[26] ADRV9001 SOFTWARE AND HARDWARE SELECTION
GUIDE, Analog Devices, Inc., accessed May 2024. https://www.
analog.com/media/en/evaluation-boards-kits/evaluation-
software/adrv9001_software_and_hardware_selection_guide.pdf

65

https://www.analog.com/en/resources/evaluation-hardware-and-software/evaluation-boards-kits/eval-adrv9002.html#eb-overview
https://www.analog.com/en/resources/evaluation-hardware-and-software/evaluation-boards-kits/eval-adrv9002.html#eb-overview
https://www.analog.com/en/resources/evaluation-hardware-and-software/evaluation-boards-kits/eval-adrv9002.html#eb-overview
https://www.analog.com/media/en/technical-documentation/user-guides/adrv9001-system-development-user-guide-ug-1828.pdf
https://www.analog.com/media/en/technical-documentation/user-guides/adrv9001-system-development-user-guide-ug-1828.pdf
https://www.analog.com/media/en/technical-documentation/user-guides/adrv9001-system-development-user-guide-ug-1828.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/adrv9002.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/adrv9002.pdf
https://github.com/analogdevicesinc/hdl
https://github.com/analogdevicesinc/hdl
https://wiki.analog.com/resources/fpga/docs/build
https://wiki.analog.com/resources/fpga/docs/build
https://wiki.analog.com/resources/tools-software/linux-software/kuiper-linux
https://wiki.analog.com/resources/tools-software/linux-software/kuiper-linux
https://wiki.analog.com/resources/tools-software/linux-software/libiio_internals
https://wiki.analog.com/resources/tools-software/linux-software/libiio_internals
https://github.com/analogdevicesinc/libiio/tree/2021_R2
https://github.com/analogdevicesinc/libiio/tree/2021_R2
https://wiki.analog.com/resources/tools-software/linux-software/iio_oscilloscope
https://wiki.analog.com/resources/tools-software/linux-software/iio_oscilloscope
https://www.analog.com/en/license/licensing-agreement/transceiver-evaluation-software.html
https://www.analog.com/en/license/licensing-agreement/transceiver-evaluation-software.html
https://www.analog.com/media/en/evaluation-boards-kits/evaluation-software/adrv9001_software_and_hardware_selection_guide.pdf
https://www.analog.com/media/en/evaluation-boards-kits/evaluation-software/adrv9001_software_and_hardware_selection_guide.pdf
https://www.analog.com/media/en/evaluation-boards-kits/evaluation-software/adrv9001_software_and_hardware_selection_guide.pdf

66

Appendix A
Attached files

Full repository can be accessed by my school GitLab or my personal GitHub:
https://gitlab.fel.cvut.cz/kimmemic/zedboard_adrv9002_project.git
https://github.com/michaelkimmer/zedboard_adrv9002_project.git

Necessary files are attached.

67

https://gitlab.fel.cvut.cz/kimmemic/zedboard_adrv9002_project.git
https://github.com/michaelkimmer/zedboard_adrv9002_project.git

	Assignment translation
	Introduction
	IEEE 802.11p standard
	V2X Communication theory
	IEEE 802.11p standard introduction
	IEEE 802.11p MAC layer
	IEEE 802.11p PHY layer
	PLCP and PHY frame
	DATA scrambler
	Convolutional encoder
	Data interleaving
	Subcarrier modulation mapping
	Pilot subcarriers
	Signal joining

	Used Hardware and Software
	Used Hardware
	ZedBoard
	ADRV9002 transceiver

	Used Software
	AMD Vivado and Vitis
	ADI HDL Reference Designs
	ADI Kuiper Linux
	ADI TES and Libiio

	Workflow preparation
	ADI HDL Reference Designs preparation
	Vitis workflow
	ADI Kuiper Linux preparation
	ADI TES profile configuration

	Hardware and Signal processing Implementation of IEEE 802.11p
	AXI IP block preparation
	Create IP block
	Implement registers in BRAM
	Connection to ADI HDL design and PS part

	IEEE 802.11p signal and data processing
	IQ data preparation
	Signal detection and Time synchronization
	Frequency offset estimation and correction
	OFDM FFT Demodulator
	Channel response estimation and tracking
	Modulation demapping and data deinterleaving
	Soft Viterbi decoder
	Data descrambler and output parallelization
	PL writing to BRAM

	Hardware utilization
	Problems and possible improvements

	GUI for IEEE 802.11p hardware block
	ZedBoard GUI interfaces
	AXI4 Lite interface
	Libiio inteface

	Tabs description
	Settings tab
	RX Samples tab
	RX Constellation tab
	RX Realtime tab
	AXI Registers tab

	Conclusion
	Bibliography
	Attached files

