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Instructions

The objective of this master's thesis is to develop a device driver for the NXP i.MX8M Plus 

ENET_QOS Ethernet controller within the PikeOS Driver Development Kit (DDK) 

framework. This project requires a comprehensive understanding of hardware, software, 

and real-time networking concepts, as it involves designing and implementing a critical 

component for real-time embedded systems.

 

The theoretical part of the thesis must introduce basic concepts of real-time operating 

systems (RTOS) and focus on time-sensitive networking (TSN). This focus includes 

introducing real-time networking scenarios and analysing strategies and protocols used 

in TSN.

 

Analyse the Embedded Starterkit STKa8MPxL Evaluation kit and the NXP i.MX 8M Plus 

processor. Examine the development of a driver for the ENET_QOS Ethernet controller 

within the PikeOS DDK framework and functionalities of its Network class. Implement 

support for these functionalities for the ENET_QOS controller. Identify the controller's 

extended functionalities, such as VLAN and TSN, and analyse how they could be 

integrated into PikeOS.

 

The expected outcome is a functional device driver for the ENET_QOS Ethernet controller. 

This driver must implement basic functionalities such as packet send and receive, PHY 

link control, frame filtering, and multicast handling. Additionally, an interface for the 
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controller's TSN features should be designed, with a discussion of how it could be 

integrated into the PikeOS DDK Ethernet class.

 

Leverage these references:

- NXP i.MX 8M Plus Applications Processor Reference Manual,

- PikeOS Device Driver Programming Reference Manual,

- Linux Driver for EQOS,

- SYSGO's Architecture and Study of TSN on ls1028a target,

- other resources related to the controller and PikeOS.
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Abstrakt

Cílem diplomové práce je studie integrace časově citlivých sítí do operačního systému
reálného času PikeOS. V analytické části práce jsou představeny operační systémy reál-
ného času a systém PikeOS. Dále představuje základní koncepty časově citlivých sítí
s důrazem na synchronizaci času pomocí protokolu Precision Time Protocol. Imple-
mentační kapitoly vysvětlují, jak jsou strukturovány ovladače systému PikeOS, se za-
měřením na Ethernetové ovladače. Jejich hlavním výstupem je ovladač pro Etherne-
tový řadič ENET_QOS. Kromě základních funkcí přenosu rámců patří mezi vlastnosti
ovladače pokročilé filtrování rámců se značkami IEEE 802.1Q, které představilo návrh
nového standardního rozhraní, zpracování vícesměrového vysílání a integrace protokolu
Precision Time Protocol. Testování ovladače ověřilo jeho správnost a naměřilo chybu
integrované časové synchronizace v očekávaném rozsahu desítek mikrosekund.

Klíčová slova TSN, PTP, IEEE 1588, PikeOS, RTOS, Ethernet, počítačové sítě

Abstract

The objective of the master’s thesis is a study on the integration of time-sensitive net-
working into the PikeOS real-time operating system. The analytical part of the thesis
introduces real-time operating systems and the PikeOS. It then presents core concepts
of time-sensitive networks, emphasizing time synchronization using the Precision Time
Protocol. The implementation chapters explain how PikeOS drivers are structured, fo-
cusing on Ethernet drivers. Their core outcome is a driver for the ENET_QOS Ethernet
controller. In addition to the essential frame transfer functionalities, the driver’s fea-
tures include advanced filtering of IEEE 802.1Q tagged frames, which presented a new
standard API proposal, multicast handling and the Precision Time Protocol integration.
Testing the driver verified its correctness and measured the error of the integrated time
synchronization in the expected range of tens of microseconds.

Keywords TSN, PTP, IEEE 1588, PikeOS, RTOS, Ethernet, computer networks

v





Contents

List of Figures xi

List of Tables xiii

List of Code Listings xv

List of Abbreviations xvii

1 Introduction 1

2 Real-time systems 3
2.1 Embedded systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Operating systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Monolithic kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.2 Microkernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.3 Hybrid kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.4 Real-time kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 PikeOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2 Resource partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.3 Time partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.3.1 Time partition zero . . . . . . . . . . . . . . . . . . . . . 10
2.3.4 Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Time-sensitive networking 13
3.1 Time in computer networks . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Best-effort networks . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.2 Time-sensitive networks . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Time-sensitive networking standards . . . . . . . . . . . . . . . . . . . . . 14
3.3 Time synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

vii



viii Contents

3.3.1 Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.2 Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.3 Time-of-day . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4 Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4.1 Osciallators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4.2 Phase-Locked Loops . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4.2.1 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4.3 Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4.3.1 Maximum time interval error . . . . . . . . . . . . . . . . 24
3.4.3.2 Time deviation . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5 Synchronous networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5.1 Traceability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.6 Synchronous Ethernet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.6.1 Ethernet equipment clocks . . . . . . . . . . . . . . . . . . . . . . . 29
3.6.2 Ethernet Synchronization Messaging Channel . . . . . . . . . . . . 29

3.7 Precison Time Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.7.1 Network Time Protocol . . . . . . . . . . . . . . . . . . . . . . . . 30
3.7.2 Entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.7.3 Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.7.4 Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.7.5 Timestamps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.7.6 Synchronization mechanism . . . . . . . . . . . . . . . . . . . . . . 35
3.7.7 Delay request-response mechanism . . . . . . . . . . . . . . . . . . 37
3.7.8 Peer-to-peer delay mechanism . . . . . . . . . . . . . . . . . . . . . 38
3.7.9 Asymmetry correction . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.7.10 One-way mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.7.11 Node types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.7.11.1 Management node . . . . . . . . . . . . . . . . . . . . . . 41
3.7.11.2 Ordinary clock . . . . . . . . . . . . . . . . . . . . . . . . 41
3.7.11.3 Boundary clock . . . . . . . . . . . . . . . . . . . . . . . 41
3.7.11.4 Transparent clock . . . . . . . . . . . . . . . . . . . . . . 41

3.7.12 Best Master Clock Algorithm . . . . . . . . . . . . . . . . . . . . . 43
3.7.13 IEEE 802.1AS profile . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.8 White Rabbit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 PikeOS driver integration 47
4.1 PikeOS drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1.1 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.1.2 Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.1.3 Resource access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49



Contents ix

4.2 Driver Development Kit framework . . . . . . . . . . . . . . . . . . . . . . 50
4.2.1 DDK Network Class . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.1.1 Address filtering . . . . . . . . . . . . . . . . . . . . . . . 51
4.2.1.2 Read and write frame transfers . . . . . . . . . . . . . . . 52
4.2.1.3 Shared buffer frame transfers . . . . . . . . . . . . . . . . 52
4.2.1.4 Configuration properties . . . . . . . . . . . . . . . . . . 53

4.2.2 DDK Network High Level Module . . . . . . . . . . . . . . . . . . 53
4.2.2.1 Hardware address generation . . . . . . . . . . . . . . . . 54
4.2.2.2 Multicast management . . . . . . . . . . . . . . . . . . . 54
4.2.2.3 VLAN based routing . . . . . . . . . . . . . . . . . . . . 55

4.3 TQ-Systems MBa8MPxL SBC . . . . . . . . . . . . . . . . . . . . . . . . 56
4.4 ENET_QOS controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.4.1.1 Direct memory access controller . . . . . . . . . . . . . . 57
4.4.1.2 MAC transaction layer . . . . . . . . . . . . . . . . . . . 58
4.4.1.3 MAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.4.1.4 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4.2 PHY support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.4.2.1 MII data exchange . . . . . . . . . . . . . . . . . . . . . . 59
4.4.2.2 MII management . . . . . . . . . . . . . . . . . . . . . . . 60
4.4.2.3 Controller MII support . . . . . . . . . . . . . . . . . . . 61

4.4.3 IEEE 802.1Q support . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4.4 Filtering features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4.5 PTP features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4.5.1 Local PTP clock . . . . . . . . . . . . . . . . . . . . . . . 63
4.4.5.2 Timestamping support . . . . . . . . . . . . . . . . . . . 63
4.4.5.3 PikeOS API . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 PikeOS driver implementation 65
5.1 Driver properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2.1 PropFS configuration . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.2.2 Hardware configuration . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.3.1 Memory allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.3.2 Controller initialization . . . . . . . . . . . . . . . . . . . . . . . . 69
5.3.3 DMA initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3.3.1 Descriptor rings . . . . . . . . . . . . . . . . . . . . . . . 70
5.3.3.2 AXI configuration . . . . . . . . . . . . . . . . . . . . . . 71

5.3.4 MAC initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . 71



x Contents

5.4 Frame transfers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.4.1 Frame interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.4.2 Frame reception . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.4.3 Frame transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.5 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.5.1 MAC filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.5.2 VLAN filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.6 PHY control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.6.1 Controller MDIO access . . . . . . . . . . . . . . . . . . . . . . . . 77
5.6.2 Link event thread . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.6.2.1 Controller link configuration . . . . . . . . . . . . . . . . 77
5.7 IOCTL interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.8 PTP integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.8.1 PTP software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.8.1.1 Clock servo . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.8.2 Clock control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.8.2.1 DDK Real-time Clock Class . . . . . . . . . . . . . . . . 81
5.8.2.2 ENET_QOS PTP Kernel Driver . . . . . . . . . . . . . . 81

5.8.3 Timestamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.8.3.1 DMA modifications . . . . . . . . . . . . . . . . . . . . . 84
5.8.3.2 Timestamp correction . . . . . . . . . . . . . . . . . . . . 85

6 PikeOS driver testing 87
6.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.2 Basic functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.3 MAC address filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.4 VLAN filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.5 PHY link control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.6 DMA load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.7 PTP integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7 Conclusion 93

Bibliography 95

A Compilation and testing 99

B Contents of the attached DVD 101



List of Figures

2.1 UNIX kernel structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Microkernel architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 PikeOS architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 PikeOS time partition configuration . . . . . . . . . . . . . . . . . . . . . 10
2.5 PikeOS scheduling with time partitioning . . . . . . . . . . . . . . . . . . 11

3.1 Syntonized phase-aligned square wave clock signals . . . . . . . . . . . . . 16
3.2 Clock signal jitter and wander . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 State diagram of a clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 PLL block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.5 Band diagram of a PLL low-pass filter . . . . . . . . . . . . . . . . . . . . 22
3.6 Time error and time interval error sampling . . . . . . . . . . . . . . . . . 24
3.7 Time error sample plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.8 ITU-T-G.8272 PRTC MTIE masks . . . . . . . . . . . . . . . . . . . . . . 26
3.9 ITU-T-G.8272 PRTC TDEV masks . . . . . . . . . . . . . . . . . . . . . . 27
3.10 Synchronous networks control methods . . . . . . . . . . . . . . . . . . . . 28
3.11 NTP offset and delay measurement . . . . . . . . . . . . . . . . . . . . . . 31
3.12 PTP relationship between nodes, instances and clocks . . . . . . . . . . . 32
3.13 PTP relationship between domains, nodes and ports . . . . . . . . . . . . 33
3.14 Diagram of possible PTP timestamp capture points . . . . . . . . . . . . 35
3.15 PTP time synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.16 PTP delay request-response mechanism . . . . . . . . . . . . . . . . . . . 37
3.17 PTP peer-to-peer delay mechanism . . . . . . . . . . . . . . . . . . . . . . 39
3.18 PTP master-slave hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.19 PTP end-to-end versus peer-to-peer transparent clock . . . . . . . . . . . 43
3.20 PTP BMCA algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1 PikeOS driver placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2 PikeOS shared buffer communication frame reception . . . . . . . . . . . . 53

xi



xii List of Figures

4.3 TQ-Systems GmbH MBa8MPxL SBC . . . . . . . . . . . . . . . . . . . . 56
4.4 ENET_QOS Ethernet controller block diagram . . . . . . . . . . . . . . . 57
4.5 MII management frame format . . . . . . . . . . . . . . . . . . . . . . . . 61
4.6 802.1Q tagged ethernet frame . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.1 ENET_QOS DMA ring structure . . . . . . . . . . . . . . . . . . . . . . . 70
5.2 PTPd clock servo block diagram . . . . . . . . . . . . . . . . . . . . . . . 79
5.3 ENET_QOS double phase accumulator clock . . . . . . . . . . . . . . . . 82
5.4 ENET_QOS timestamping DMA ring structure . . . . . . . . . . . . . . . 84

6.1 Offset from master plot of the PTP test . . . . . . . . . . . . . . . . . . . 92



List of Tables

3.1 PTP event and general message list . . . . . . . . . . . . . . . . . . . . . . 33
3.2 PTP supported transport mechanisms . . . . . . . . . . . . . . . . . . . . 34

4.1 PikeOS Ethernet I/O device configuration properties . . . . . . . . . . . . 53
4.2 PikeOS network device configuration properties . . . . . . . . . . . . . . . 55
4.3 Basic and extended MII register set . . . . . . . . . . . . . . . . . . . . . . 60

5.1 ENET_QOS driver specific configuration properties . . . . . . . . . . . . 66
5.2 ENET_QOS hardware configuration properties . . . . . . . . . . . . . . . 67
5.3 MBa8MPxL RGMII TX clock divider settings . . . . . . . . . . . . . . . . 78

6.1 PropFS configuration common to all tests . . . . . . . . . . . . . . . . . . 88
6.2 Results of the basic driver test . . . . . . . . . . . . . . . . . . . . . . . . 88
6.3 Results of the hash-based MAC address filter test . . . . . . . . . . . . . . 89
6.4 Results of the VLAN filtering test . . . . . . . . . . . . . . . . . . . . . . 90
6.5 Results of the PHY control test . . . . . . . . . . . . . . . . . . . . . . . . 91

xiii





List of Code Listings

4.1 Snippet of PikeOS driver property XML specification . . . . . . . . . . . . 48
4.2 API between DDK high-level and low-level modules . . . . . . . . . . . . 54

5.1 ENET_QOS controller DMA descriptor . . . . . . . . . . . . . . . . . . . 68
5.2 Usage of DDK platform independent register access . . . . . . . . . . . . . 69
5.3 Interrupt handling pseudocode of the dwmac driver . . . . . . . . . . . . . 73
5.4 RX interrupt handling pseudocode of the dwmac driver . . . . . . . . . . 74
5.5 Proposed PikeOS API for hardware VLAN filtering configuration . . . . . 76
5.6 PikeOS DDK NET diagnostic counters structure . . . . . . . . . . . . . . 79

xv





List of Abbreviations

A/V audio/video
ABS anti-lock braking system
ACL access conrol list
ADAS advanced driver-assistance system
AHB AMBA High-performance Bus
AMBA Advanced Microcontroller Bus Architecture
API application programming interface
ARB arbitrary
ARP Address Resolution Protocol
ASCII American Standard Code for Information Interchange
ASP architecture support package
AVB audio/video bridging
AXI Advanced eXtensible Interface
BC boundary clock
BIPM Bureau International des Poids et Mesures
BMCA Best Master Clock Algorithm
BSP board support package
C-VLAN customer virtual local area network
CAN controller area network
CDC clock domain crossing
CPU central processing unit
CRC cyclic redundancy check
CSMA Carrier-sense multiple access
CSR control and status register
cTE constant time error
DDK Driver Development Kit
DDR double data rate
DMA direct memory access

xvii



xviii List of Abbreviations

DPLL digital phase locked loop
DSC Data Set Comparison Algorithm
dTE dynamic time error
E2E end-to-end
EEC Ethernet equipment clock
ESMC Ethernet Synchronization Messsaging Channel
EST Enhancements for Scheduled Traffic
ExtFP External File Provider
FCS frame check sequence
FFD fractional frequency deviation
FIFO first-in-first-out
FIR finite impulse response
FS file system
GM grandmaster
GNSS global navigation satellite system
GPIO general purpose input output
gPTP generalized Precision Time Protocol
I/O input/output
I2C Inter-Integrated Circuit
IANA Internet Assigned Numbers Authority
ICMP Internet Control Message Protocol
IDE intergrated development environment
IEEE Institute of Electrical and Electronics Engineers
IERS International Earth Rotation and Reference Systems
IIR infinite impulse response
IOMMU input/output memory management unit
IoT Internet of Things
IPC inter-process communication
IPv4 Internet Protocol Version 4
IPv6 Internet Protocol Version 6
ITU International Telecommunication Union
KiB kibibyte
LACP Link Aggregation Control Protocol
LAN local area network
LC local clock
LKM loadable kernel module
LPC local PTP clock
LPDDR low power double data rate
LPI low power interface
MAC media access control



xix

MAN metropolitan area network
max|TE| maximum absolute time error
MCP maximum controlled priority
MDC management data clock
MDIO management data input/output
MII media independent interface
MMU memory management unit
MSB most significant bit
MTIE maximum time interval error
MTL media access control transaction layer
MTS maximum transfer size
MTU maximum transfer unit
NET DDK Network Class
NIC network interface controller
NTP Network Time Protocol
NUI network unique identifier
OC ordinary clock
OCXO oven-controlled crystal oscillator
OS operating system
OUI organizationally unique identifier
P2P peer-to-peer
PDU protocol data unit
PDV packet delay variation
PHY physical layer
PI proportional-integral
PLL phase locked loop
PLS physical signaling sublayer
ppb parts per billion
ppm parts per million
PPS pulse-per-second
PRE preamble
PropFS Property File System
PRTC primary reference time clock
PSP platform support package
PSSW PikeOS System Software
PTP Precision Time Protocol
QoS quality of service
RGMII reduced gigabit media independent interface
RMII reduced media independent interface
RMS root mean square



xx List of Abbreviations

ROM read only memory
RTC DDK Real-time Clock Class
RTOS real-time operating system
RX receive
S-VLAN service virtual local area network
SBC single-board computer
SBUF shared buffer communication
SD State Decision Algorithm
SDH Synchronous Digital Hierarchy
SDR single data rate
SI International System of Units
SOF start-of-frame
SSM Synchronization Status Message
SyncE Synchronous Ethernet
TAI Temps Atomique International
TC transparent clock
TCP Transmission Control Protocol
TCXO temperature-compensated crystal oscillator
TDEV time deviation
TDM time-division multiplex
TE time error
TLV type-length-value
ToD time-of-day
TSN time-sensitive networking
TTL time-to-live
TX transmit
UART universal asynchronous receiver-transmitter
UDP User Datagram Protocol
UNIX UNiplexed Information Computing System
UTC Coordinated Universal Time
UX user experience
VCO voltage-controlled oscillator
VCXO voltage-controlled crystal oscillator
VLAN virtual local area network
WAN wide area network
WR White Rabbit
XNU X is Not Unix
XO crystal oscillator



Chapter 1

Introduction

Real-time embedded systems have become integral to many aspects of modern life. Such
systems reside in everything we encounter daily, from modern jet airliners and automo-
biles to household appliances and mobile devices. Industries such as factory automa-
tion, telecommunications, and vehicle navigation rely heavily on such systems. Recent
advancements in information and communication technology and the Internet of Things
(IoT) emergence have driven the real-time embedded application market to new heights.

These technologies’ ubiquitous presence and application have brought an extreme
number of such systems online. In cases like factory automation, fleets of hundreds or
even thousands of independent robots must cooperate. Modern wireless telecommunica-
tion technologies such as 5G enable this. However, to build modern telecommunication
networks and even reach such a level of coordination, synchronized time is of the essence.
If one robot drops an item, expecting the other to catch it and transport it elsewhere,
care must be taken to ensure both have an identical sense of when this should happen.
Nevertheless, synchronization has been a fundamental necessity since the emergence of
digital networks in the 1970s to transfer voice. All these examples are what time-sensitive
networking conveys and tries to solve.

This work delves into what synchronization and even time itself mean. Diagnosing
synchronization issues is challenging as they often manifest as logic design problems
rather than clocking errors. Thus, robust network design is essential to mitigate sporadic
outages and data loss. These topics are explored in the context of a real-time operating
system called PikeOS.

Chapter 2 introduces real-time operating systems and PikeOS. The third chapter
delves into time synchronization in computer networks and the Precision Time Protocol.
Chapters 4 and 5 describe the integration of a new Ethernet controller into PikeOS,
including time synchronization. The last chapter of content six is dedicated to testing
the driver’s functionalities.
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Chapter 2

Real-time systems

This chapter defines the fundamental terms of real-time systems. The PikeOS real-
time operating system is situated within the context of these terms, and its core
concepts are introduced. This facilitates understanding its significance within the
domain of real-time operating systems.

2.1 Embedded systems

A microcomputer embedded system is a system which is incorporated into a more exten-
sive system. It is designed for a specific task. That is in contrast to a microcomputer
general purpose system, which typically has multiple functions. An example of such
a system is the anti-lock braking system (ABS) in automobiles. It is a safety system
which tries to retain directional control of a vehicle when its wheels lock due to a sudden
application of brake pedal pressure. That is its sole purpose. Such systems are reactive
systems by nature. [1] They can be divided by scale into three categories:

Small-scale embedded systems typically function without an operating system. They
are most commonly implemented in assembly on eight or 16-bit microcontrollers.
An example of such a system is a television remote control;

Medium-scale systems typically include an operating system. They are usually imple-
mented using more traditional tools like the C language on more complex micro-
processors. A vending machine is an example of a medium-scale system;

Large-scale systems are extremely complex applications of cutting-edge hardware and
software co-design. Notable examples are the landing gear assembly of a modern
jet airliner or advanced driver-assistance systems (ADAS) in vehicles. [1]

3
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Embedded systems are additionally differentiated into two groups:

Non-real-time system performs based on internal triggers or external stimuli. It must
satisfy a given level of quality of service (QoS). An example is the television remote;

Real-time system must deliver correct results in a given time. This is called the task’s
deadline. ABS and ADAS are both an example. [1]

Real-time systems are further divided into two groups:

Soft real-time system may still deliver its result after the deadline, which results in
degraded performance. Multimedia applications are an example;

Hard real-time system is one whose result is useless if delivered after its deadline.
This may have catastrophic consequences depending on the system. An airbag
deployment system is an example. [1]

Note that non-real-time systems may also have timing constraints on result delivery.
They still try to provide a quality user experience (UX). [1]

2.2 Operating systems

On the highest level of abstraction, a computer system consists of hardware, software
and data. The operating system is a control program which acts as an allocator of
these resources. It decides their efficient use while facing conflicting requests. There
is not one accepted definition of what an operating system consists of. Some operating
systems include vendor-provided applications taking up gigabytes of space; others do
not even include full-screen access in kilobytes. A commonly followed definition is that
an operating system is the only always running program called the kernel. [2]

Modern kernels are complex systems. They handle many duties, from scheduling
tasks on the central processing unit’s (CPU) cores, managing memory, and providing
access to input/output (I/O) devices to networking and even virtualizing other operat-
ing systems. This requires careful design and engineering to keep such systems easily
modifiable, extensible and properly functioning. [3]

2.2.1 Monolithic kernel
A monolithic structure is the simplest way of organizing a kernel. The kernel runs in
a single address space, providing all its functionality from a single static binary. [2]

The most notable example of a monolithic kernel is the UNiplexed Information Com-
puting System (UNIX). It consists of two parts: the system programs and the kernel.
The kernel provides process scheduling, memory management, file system, and other
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functions through system calls. Functionality is extended using device drivers. This
provides a layered design where the kernel lies between the system call interface and
the hardware. This structure is depicted in Figure 2.1. The Linux kernel is structured
highly similarly. It extends this with a modular design through loadable kernel modules
(LKM), which can expand the kernel’s functionality at runtime. [2]

Figure 2.1 UNIX kernel structure. The system programs are at the top. They are connected
to the kernel through the system call interface. The kernel below this interface communicates
with the hardware through the kernel interface. [2]

The main disadvantage of monolithic kernels is the limited separation of their compo-
nents. Internal and third-party modules share the same memory space. This may lead
to fault propagation and even system-wide failures and memory corruption. Testing
components in isolation is also inherently difficult. All of these reasons lead to increased
verification complexity of modules because interaction with other parts of the kernel
must be taken into account. [4]

On the other hand, communication inside the kernel itself is remarkably swift. Also,
the system-call interface used by system programs has small overhead. Therefore, there
is apparent efficiency and performance benefit, which explains its wide use in projects
such as the Linux kernel. [2]

2.2.2 Microkernel
A microkernel is structured as small as possible. All non-essential components are
removed from the kernel and implemented as user space applications. This includes
components such as device drivers and file systems. Each of these applications has
its own address space. This results in a small binary with a clear separation of all
components. First example of this architecture was the Mach kernel. [2]

The kernel implements only the critical functionalities for running the user space
programs. These include CPU scheduling and memory management. The programs
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communicate with the kernel and between themselves through a message-passing inter-
face. This architecture is illustrated in Figure 2.2. [2]

The kernel provides the interface and acts as a router for these messages. This leads
to a simple solution to access control because all messages pass through the kernel.
However, this leads to a significant performance penalty. The messages need to be
transferred from one address space to the address space of the destination process. The
kernel may also need to switch contexts between these processes to deliver a message. [2]

A clear advantage of this structure is fault tolerance. Because the programs reside in
their own address spaces, any failure is limited to the program, excluding inter-process
dependencies. Memory corruption between modules also cannot happen. The kernel
itself is simpler than a monolithic kernel. This leads to a smaller chance of introducing
bugs during its modifications because they tend to be small. Porting the kernel to
other architectures is also simplified. All of these properties lead to easier verification of
components because they can be tested in isolation. [4]

Figure 2.2 Microkernel architecture. Most components, such as device drivers and file sys-
tems, are separated into user-space partitions. The kernel contains only the most critical com-
ponents and a message-passing interface. [2]

2.2.3 Hybrid kernel
Monolithic kernels provide performance benefit while being less fault tolerant. Micro-
kernels provide high fault tolerance and modularity while taking a performance hit. In
practice, this leads to no operating system strictly following one of these architectures.
They combine features and decisions made in both of these architectures composing a hy-
brid system. The Linux kernel is monolithic but modular through the use of LKMs. [2]

Nevertheless, the Darwin operating system is the most notable example of a hybrid
system. Darwin is the base of Apple’s macOS, iOS, and other operating systems for its
products [2]. The core of Darwin is the X is Not Unix (XNU) kernel, composed of the
Carnegie Mellon University Mach kernel, components from the FreeBSD operating sys-
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tem and IOKit. The IOKit is an object-based C++ application programming interface
(API) used for writing device drivers. [5]

2.2.4 Real-time kernel
Real-time kernels are the core of real-time operating systems (RTOS). They differ from
general-purpose kernels in the necessity for specific system response times. Two require-
ments must be fulfilled by their design. Firstly, the kernel must have predictable timing
behaviour of all its services. This means that an upper bound on the execution time of
the operation must be known. These services include system call and interrupt handling.
The second requirement is that the kernel must manage this timing. The task scheduler
must consider the task deadlines when deciding what to run next. [1]

2.3 PikeOS

The PikeOS combines an Eclipse-based integrated development environment (IDE),
a virtualization platform and a real-time operating system. It focuses on applications
requiring certification that target harm prevention, safety-critical, or demand protection
from malicious activities, security-critical. Examples of industries employing such ap-
plications are medical, aerospace and automotive industries. It uses so-called software
partitions to spatially and temporally segregate different applications running on the
system. This feature allows PikeOS to concurrently execute multiple applications on
one system, where each may require a different certification level. [6]

The PikeOS Core implements the means for this separation, also called the PikeOS
Hypervisor. The applications inside the software partitions can even be complete guest
operating systems such as Linux. [6] The selection of implemented features includes:

• Critical applications may run in their process, including their virtual address space.
Hardware memory protection using a memory management unit (MMU) is possi-
ble. This includes protection of data memory corruption by direct memory access
(DMA) peripherals using input/output MMU (IOMMU);

• Scheduling methods used are deterministic. Strict priority-based scheduling is used
with a possible prevention of priority inversion. This includes the use of so-called
time partitioning, which enables the allocation of processor time during build time;

• Interrupt handling provides a means to ensure the correct and safe execution of
critical applications even during interrupt reception and handling. [6]
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2.3.1 Architecture
PikeOS is designed modularly to support new architectures easily and adapt to the needs
of individual projects. Its architecture is illustrated in Figure 2.3. [6] The PikeOS Core
consists of two components:

PikeOS Microkernel is a real-time microkernel. It consists of a generic part, a pro-
cessor architecture support package (ASP) and a platform support package (PSP).
It is the only component in the system which runs with supervisor privileges. The
main selection of features provided by it is hardware abstraction, address space
separation, time partitioning, task scheduling, interrupt handling, timer handling,
and message passing primitives;

PikeOS System Software (PSSW) is the first user space application started by the
kernel. Its purpose is access control enforcement and system configuration. It ini-
tializes partitioning and inter-partition communication. After this, it stays active
as a server that provides health monitoring services, file system services, process
management and partition communication. [6]

Figure 2.3 PikeOS architecture. The application partitioning is visible at the top. The
PikeOS Core layering is depicted bellow with both the PSSW and the microkernel at the bottom.
Target bootloader is also shown which is out of scope of PikeOS. [6]

2.3.2 Resource partitions
Resource partitions, also called virtual machines, are the basic security tool used for
application separation in PikeOS. Each partition defines system resources to which the
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applications inside the partition have access. Applications running in one partition
cannot probe other partitions and are thus unaware of their applications. [6]

A configured number of partitions is created during boot. At startup, all partitions
are empty. The only exception is the global data partition. The kernel initializes it to
run the PSSW. Partitions cannot be deleted, but they may get stopped or restarted with
a new set of applications. However, this process does not return the partition resources
to the system. Returning resources to the system is impossible after their assignment. [6]
Resources which need to be statically configured for use in a partition are:

Processes which should be started in this partition by the PSSW;

Communication ports for a message passing based inter-partition communication;

Files to which the applications should have access through the PSSW. Each file must
be listed in the file access conrol list (ACL). Pathnames in PikeOS are of the
form: prefix:filename. The prefix selects the file provider of the given filename.
Wildcard access may be granted for simplification;

Memory and I/O resources granted. Memory is available to the application right af-
ter startup. If the partition is restarted, the memory is not returned to the system,
and the application has access to the same memory as before. This ensures predic-
tive application behaviour and prevents malicious data exchange through physical
page reassignment. The memory size for application use must be configured. This
includes the memory needed to load the application binary into and fulfil any
dynamic allocation needs with. [6]

2.3.3 Time partitions
CPU time allocation is done using time partitioning. This can be used to prevent fault-
ing threads from stealing all processor time, prevent thread starvation and ensure that
partitions get hold of the CPU for a defined amount of time. [6]

In the simplest form, each resource partition gets assigned to a specific time partition.
This is, however, not mandatory. Resource and time partitions are independent of
each other. Multiple partitions may belong to the same time partition. Under certain
circumstances, even threads of one partition may belong to different time partitions. [6]

An important fact is that the time window, the execution duration, is not a property
of the time partition. Each time partition is assigned to one or more time windows.
The time partition is then activated during scheduling. This means that the scheduler
considers the time partition threads. [6]

The resource and time partition mapping can be done per-core on multicore systems.
Example of the partition mapping is illustrated in Figure 2.4. [6]



10 2. Real-time systems

Figure 2.4 PikeOS time partition configuration. Illustrated is the mapping of five resource
partitions into three time partitions. Each time partition is then mapped into at least one of the
five time windows with a specified duration. [6]

2.3.3.1 Time partition zero

In PikeOS, there can be up to two time partitions active. The first may be any configured
time partition, and the second is always the time partition 0. This time partition has
the property of always being considered for scheduling. If two partitions are active, the
scheduler looks at the thread with the highest priority from time partition 0 and for the
thread with the highest priority from the other partition. It then chooses the higher
priority thread. In case of a priority tie, it prefers the time partition 0. If no other time
partition is active, only time partition 0 is considered. This design allows PikeOS to
handle two scheduling situations effectively. [6]

Firstly, time partition 0 may handle background tasks when other application threads
in any active time partition are idle. This helps to prevent wasting computational
resources, predominantly the CPU. [6]

The important consequence of this design decision is, however, safety-critical appli-
cations. These applications include health monitoring and response to external events.
The partition handling such applications may be assigned to time partition 0 with the
highest maximum controlled priority (MCP) value in the whole system. This ensures
that it can preempt any other thread when required. [6]

2.3.4 Scheduling
Processes in PikeOS are user applications started inside a partition by the PSSW parti-
tion daemon. One or more processes may be started inside a partition. Each process has
its properties, which include a name and an identifier, the command line it was started
with, its virtual address space, the MCP value, the maximum number of child tasks and
the maximum number of threads. A task is defined as an address space and threads
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bound to it. A process is consequently a task. Thread in PikeOS is a schedulable entity
with a defined priority. [6]

The algorithm employed for scheduling in PikeOS is a fixed priority scheduling algo-
rithm with a first-in-first-out (FIFO) ordering of threads with the same priority. Threads
are selected from the currently active time partitions. The currently running thread
is called the current thread. [6]

Each priority level has its own thread ready list. When a thread becomes runnable,
it is placed at the end of its priority list. If a thread changes priority, it is placed at
the end of the new priority list. If it is current during this change, it is placed at the
front of the new priority list. The ready lists are tracked per time partition and CPU
core on multi-core systems. The scheduling ready lists are illustrated in Figure 2.5. This
illustration also shows the constantly considered time partition 0 by the scheduler. [6]

Figure 2.5 PikeOS scheduling with time partitioning. The ready lists for time partition 0 and
one other active partition are illustrated. The highest priority threads, displayed as white boxes,
are placed at the top. Because the time partition 0 thread has higher priority, the scheduler
selects it to be executed next. [6]





Chapter 3

Time-sensitive networking

This chapter focuses on the analysis of time synchronization over computer networks
and its application in time-sensitive networking. This study includes an overview of
the IEEE 1588 Precision Time Protocol.

3.1 Time in computer networks

Ethernet has been the core of computer networking for over 50 years. Its prevalence
is impacted by its steady evolution and improvement, reinforced by industry support. It
is extended mainly by two working groups of the Institute of Electrical and Electronics
Engineers (IEEE). The IEEE 802.3 handles the physical (PHY) and media access control
(MAC) layers of Ethernet. The 802.1 is concerned with architectures of local area net-
works (LAN), metropolitan area networks (MAN) and protocols above the MAC layer.
The most notable standard for this work is 802.1Q – Bridges and Bridged Networks. This
standard defines MAC bridges, virtual LANs (VLAN) and Ethernet QoS support. [7]

Note that amendments to IEEE standards are released. These are marked as low-
ercase extensions of the standard’s name. An example is the 802.1Qbv, which is an
amendment of the 802.1Q. When standards are superseded by newer versions, these
amendments are typically included in the new version. However, the original lowercase
name is traditionally used for easier recognition when referring to the amendment. [8]

3.1.1 Best-effort networks
Before transferring audio/video (A/V) streams over computer networks, they have been
optimized to provide best-effort delivery. This, in practice, meant providing the max-
imum throughput. For networks with light loads concerned with the average delay of
data passing through, this solution truly works as the best one. On the other hand, it
breaks down when time becomes the critical metric. [9]
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This is the case for A/V streams. Human brains perceive audio coming before cor-
responding visuals as unnatural, but this is not the case the other way around. A/V
transmissions require all audio channels to be at most 20 µs within each other. Video
may come even 25 ms before its audio track, but the other way around the limit is 15
µs. Best-effort networks are not able to fulfil these requirements reliably. [9]

3.1.2 Time-sensitive networks
Two requirements must be satisfied in time-sensitive networks (TSN). Firstly, the wall
clock of devices in the network must be the same on all nodes. This is important for
phase locking, coordination and synchronization. Secondly, the data must arrive in
a specific time window. Most commonly, a maximum delay is specified. [9]

The IEEE Audio/Video Bridging (AVB) task group of the 802.1 working group was
tasked with developing mechanisms to solve these constraints. It was later renamed
to the TSN task group. This was done because the TSN requirements far exceed the
use case for AVB. [7] For example, the automotive industry shares these for its real-
time ADAS systems reacting to many sensors. These are commonly connected using
10BASE-T1S Ethernet, replacing the controller area network (CAN) bus [10]. Aca-
demic research includes RTOSs with scheduling synchronized to global navigation satel-
lite systems (GNSS) [11]. Furthermore, TSN is a critical attribute of modern cellular
telecommunication networks [12].

3.2 Time-sensitive networking standards

The AVB group developed four core standards to meet the QoS goals:

802.1AS – generalized Precision Time Protocol (gPTP): PTP profile for any network
technology based on the IEEE 802 architecture;

802.1Qav – Forwarding and Queueing of Time-Sensitive Streams: a traffic shaping
mechanism using credit based shaping instead of static priorities;

802.1Qat – Stream Reservation Protocol: bandwidth reservation protocol;

802.1BA – AVB Systems: complete AVB system architecture. [9]

Today, more than 30 IEEE standards are defined for TSN networking, including
amendments. These can be divided into four groups targeting synchronization, reliabil-
ity, latency and resource management. [13] The TSN core standards, additionally to the
AVB standards, include:

802.1Qbv – Enhancements for Scheduled Traffic (EST): a mechanism to drain frame
queues inside network bridges synchronously based on a common gPTP time base;
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802.1Qbu – Frame Preemption: a mechanism which allows frames to preempt other
frames to improve latency and bandwidth utilization;

802.1Qca – Path Control and Reservation: a mechanism to set up multiple redundant
paths between network nodes for improved reliability;

802.1CB – Frame Replication and Elimination for Reliability: a mechanism to eliminate
redundant frame copies. [7]

3.3 Time synchronization

Even though some of the services provided by different categories of TSN standards may
be used independently, synchronized time is the minimum required common property
for any practical application of most of these standards. An example is the 802.1Qbv. [9]
Three primary terms must be distinguished regarding computer networks synchroniza-
tion: frequency, phase and time-of-day [12].

3.3.1 Frequency
The definition of frequency is the number of recurring event repetitions over a given
unit of time. The standard unit used is the Hertz (Hz), which describes the event count
over a second. The inverse of frequency is called period and defines the duration of one
complete cycle. For example, a swinging pendulum with a frequency of 4 Hz has a period
of 250 ms. Mathematical representation is: [12]

Frequency(f) :=
1

Period(T )
(3.1)

Any device which performs some action at a regular interval may be used as a fre-
quency generator. Such a device is called a resonator. When this device is connected to
an electrical circuit to continue this behaviour indefinitely, it is called an oscillator. [12]

Oscillators have their nominal frequency specified. That is the frequency at which
the oscillator was designed to resonate. Because of external factors and manufacturing
imperfections, the frequency generated will deviate from the nominal frequency. This
deviation is called the fractional frequency deviation (FFD). The FFD units are parts
per million (ppm) or parts per billion (ppb). [12] The FFD at time t is mathematically
defined by the International Telecommunication Union (ITU) in its recommendation
T-REC-G.810 – Definitions and terminology for synchronization networks as:

y(t) :=
f(t)− fnom

fnom
(3.2)

where f(t) is the measured frequency and fnom is the nominal frequency. [14]
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This rate may also be looked at over time duration. For example, an FFD of +5 ppm
means the signal accumulates 5 µs more every second, 50 µs over 10 seconds, against
the reference frequency. This is called frequency drift with units of Hz/s. [12]

Frequency synchronization minimizes the presented frequency errors between two
frequency sources. When a selected error threshold is reached, we say the two sources
are frequency synchronized. This process is called syntonization. [12]

3.3.2 Phase
Phase is a term describing events happening simultaneously. It is not measurable by
itself. Phase can be only measured as a relative offset to a known reference. For example,
we can imagine two wall clocks, each having a second-hand ticking at a frequency of 1 Hz.
The first hand started at time 0, and the second hand started 300 ms after the first one.
The hands are syntonized, but they are not phase synchronized (phase aligned). The
second hand has a phase offset of -300 ms against the first. Contrariwise, the first hand
has a phase offset of +300 ms against the second. Mathematically, if CX(t) is the time
reported by clock X, then the relative phase offset θ of clock X to clock Y is: [12]

θ := CX(t)− CY (t) (3.3)

Note that syntonization is not required for phase synchronization. The point at
which we sample the phase is chosen arbitrarily; if one hand would increase frequency to
4 Hz and the phase was sampled every fourth tick of this hand, phase synchronization
may still be achieved. Nevertheless, syntonization and phase synchronization are tightly
coupled because syntonization keeps the phases close. [12]

The sample point is called the significant instant and must be repeatable. Two
sources are phase synchronized, or phase aligned, when their significant instants happen
simultaneously. Phase alignment is illustrated in Figure 3.1. [12]

Figure 3.1 Syntonized phase-aligned square wave clock signals. The blue lines indicate the
significant instants for clock Cx and clock Cy. [12]
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The phase is prone to two types of errors, noise, in the timing signal: long-term low-
rate (less frequent) variations of the significant instant and short-term high-rate (more
frequent) variations. These errors are illustrated in Figure 3.2. The clocking application
must specify what low-rate and high-rate mean in its context. PTP specifies 0.1 Hz,
whereas ITU-T-G.810 specifies 10 Hz as an example. [12] The two errors are:

Wander represents the long-term variations of the significant instants. It may be imag-
ined as a long-term shifting of the significant instant in one direction. It cannot
get filtered completely in practice;

Jitter represents the short-term variations of the significant instants. It may be imag-
ined as a flickering of the edges of a square wave clock signal back and forth.
Because it is short-term, it may get filtered out by sampling only the long-term
trend of the sampled oscillator. [12]

Figure 3.2 Clock signal jitter and wander. Depicted is an ideal signal at the top. In the
middle is illustrated jitter as flickering back and forth against the reference. Wander drifting
forward (slower than reference) is portrayed at the bottom. [12]

3.3.3 Time-of-day
The time-of-day (ToD) is the absolute time humankind agrees on. It can be defined
as a value of some counter since a synchronization point called the epoch, which in-
crements phase aligned and at the same frequency for everyone. The most common
representation of ToD is textual. That is a string of characters describing some part of
ToD, for example, the time and possibly the date. [12]

The value of time defined by the International System of Units (SI) is the Second (s).
It has a precise definition at the Bureau International des Poids et Mesures (BIPM) of
Paris, France, the International Bureau of Weights and Measures in English, website: [15]
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The second, symbol s, is the SI unit of time. It is defined by taking the fixed
numerical value of the caesium frequency ∆vCS

, the unperturbed ground-state
hyperfine transition frequency of the caesium-133 atom, to be 9 192 631 770
when expressed in the unit Hz, which is equal to s–1.

There are two time scales commonly used by humankind:

Temps Atomique International (TAI) is the International Atomic Time in English.
It is based on a weighted average of over 400 atomic clocks placed worldwide.
The epoch defined is the 1 January 1958 00:00:00. It is a monotonic timescale.
This means that it increases each second and never jumps forward or back. This
property is why the general public does not use it. TAI is out of sync with the
rotation of the Earth. That is out of sync with day and night;

Coordinated Universal Time (UTC) is a discontinuous timescale with the same
epoch as TAI. The International Earth Rotation and Reference Systems (IERS)
service inserts leap seconds every few years to align the UTC with the Earth’s
rotation within 0.9 seconds. This makes UTC aligned with day and night. Note
that the difference between TAI and UTC is 37 seconds at the time of writing. [12]

3.4 Clocks

A clock is an oscillator with a counter, a timekeeping device. The oscillator supplies
time interval, whereas the counter provides time indication. It has a nominal frequency,
as specified by its oscillator, typically provided as a square wave signal on an output
pin in electronics. Suppose its counter phase alignment is calibrated to some external
time-of-day epoch second, such as the TAI epoch second. In that case, the pulse-per-
second (PPS) signal may provide a square wave signal of configurable duration each
epoch second. [12]

Three quality factors, directly affected by the underlying oscillator characteristics,
denote the clock’s performance. Ageing describes how the frequency generated changes
over the clock’s lifespan. Stability represents how repeatable the signal is, measured over
time. Finally, accuracy depicts how much the clock time deviates from the calibrated
reference. For example, a clock with high positive ppm FFD against some reference
is not accurate, but if the FFD measures the same for an extended period, it is stable.
The meaning of high and extended depends on the application the clock is used in. [12]

During operation, the clock generally transfers between five states [12]. This is illus-
trated in Figure 3.3. The states are:

Warm-up is the state each clock enters after a power loss. The oscillator needs time
to stabilize based on external temperature, airflow, supplied voltage and other
external factors;
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Free-run is a state entered after warm-up or loss of external reference, which guides
the clock’s operation. The clock’s quality is purely dependent on its oscillator in
this state. For instance, standalone atomic clocks based on caesium always run in
this mode;

Acquiring state is entered when the clock gets a hold of an external reference to which
it tries to syntonize and possibly phase align. The output of the clock is typically
turned off in this state. This is called clock squelching;

Locked state is entered after the clock’s control circuitry decides the alignment is within
a specified range. The range is specified based on the clock’s properties and the
implementor’s target application. Changes are made constantly to minimize the
drift from the reference. If abrupt change is encountered, the clock may return to
the acquiring state or possibly to holdover or free-run states based on how long it
kept the reference locked;

Holdover state is entered when the clock loses the reference but is kept locked for a de-
fined period. After this period, the clock can replay its historical behaviour against
the reference to guide its oscillator. Because the clock’s external environment con-
stantly changes, the learned data slowly becomes stale, decreasing accuracy. The
clock should return to the free-run state after the accuracy degrades too much. [12]

The clock’s operator may also intervene in the clock’s operation and force some
of the states. Notably, the free-run state may be enforced. The same is true for the
holdover state, regardless of the validity of the holdover data. Without the data, this
state behaves the same as the free-run state. [12]

Figure 3.3 State diagram of a clock. The diagram depicts the clock states based on the
availability of an external reference and learned holdover data. The clock’s operator may also
force the free-run and holdover states. [12]
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3.4.1 Osciallators
In modern electronics, the oscillator used is typically some form of a crystal oscillator
(XO). Such oscillators are commonly made using a quartz crystal, an instance of a piezo-
electric crystal. This means the crystal oscillates at a specific frequency when an electric
current is applied. This frequency can be influenced by the shape the crystal is cut into
and by the properties of the crystal used. However, the crystal’s properties are further-
more affected by external factors such as humidity and temperature. This is called the
crystal’s sensitivity, which also alters as the crystal ages. [12]

To overcome the crystal’s sensitivity, a variation of XO called the voltage-controlled
crystal oscillator (VCXO) may be used. Its frequency is changed by applying changes to
the supplied voltage. Nevertheless, the critical factor influencing XOs is the temperature
of the environment. [12] Two types of XOs appeared to overcome this:

Temperature-compensated crystal oscillator (TCXO) integrates a circuit which
applies correction voltage based on the ambient temperature. This is a voltage
controlled solution;

Oven-controlled crystal oscillator (OCXO) encloses the crystal in an oven, which
tries to keep the crystal’s temperature constant, above ambient temperature. This
is a temperature controlled solution. [12]

Both of these types are used in modern electronics requiring precise oscillators. The
decision must be made based on the application’s stability and cost requirements. At
around three times the cost, OCXO can be 10 to 100 times more stable than TCXO. [12]

3.4.2 Phase-Locked Loops
A phase-locked loop (PLL) is a circuit generating a clock signal syntonized and phase-
aligned to an input clock signal. Consequently, it is used as a base for all clocks which
want to provide phase-aligned output. [12] PLL architecture is illustrated in Figure 3.4.
It consists of three core blocks:

Phase comparator is a block which generates correction voltage based on the phase
difference of the two clock signals;

Loop filter is a detection circuit which tries to filter noise, wander and jitter, from
the input clock signal supplied as voltage by the phase comparator. This block
is needed because the input signal accumulates noise during its physical transmis-
sion through the clocking network;

Voltage-controlled oscillator (VCO) is any oscillator controllable by correction volt-
age. It must supply its nominal, free-run, frequency f0 when nominal control
voltage is supplied. [12]
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Figure 3.4 PLL block diagram. The diagram depicts the clock states based on the availability
of an external reference and learned holdover data. The clock’s operator may also force the free-
run and holdover states. [12]

The PLL starts with the nominal control signal applied to the VCO to provide its free-
run frequency. The input signal phase fed into the phase comparator is then compared
to the VCO output signal phase, and correction voltage is generated to increase or
decrease the VCO frequency. The loop filter removes the noise on the correction voltage
and then applies it to the VCO. This process constantly adjusts the voltage until small
enough changes put the PLL into a locked state. This process runs while an input signal
is detected. The continuous tracking of changes in both the input and VCO output keeps
these signals tightly aligned. It enables the PLL to align itself with the input signal’s
long-term average while ignoring short-term changes. [12]

Similarly to clocks, the PLL is said to be in the transient state when it is not locked
to the input reference and in the steady state when it is locked. The process of becoming
locked is called tracking. [12] Three frequency ranges specified in ppm or ppb relative to
the f0 govern these states as specified by the ITU-T-REC-G.810:

Hold-in range is defined as “the largest offset between a slave clock’s reference frequency
and a specified nominal frequency, within which the slave clock maintains lock
as the frequency varies arbitrarily slowly over the frequency range” [14]. The PLL
can stay locked if the frequency difference between f0 and input moves inside this
range. It becomes transient when it reaches the edge of this range;

Pull-in range is defined as “the largest offset between a slave clock’s reference frequency
and a specified nominal frequency, within which the slave clock will achieve locked
mode” [14]. That is, if the difference is in this range, the PLL goes from the
transient state into the steady state after some number of cycles;

Pull-out range is defined as “the offset between a slave clock’s reference frequency and
a specified nominal frequency, within which the slave clock stays in the locked mode
and outside of which the slave clock cannot maintain locked mode, irrespective of
the rate of the frequency change” [14]. If the single-step applied difference is inside
this range, the PLL stays in the steady state. Otherwise, it becomes transient. [12]
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3.4.2.1 Filtering

The PLL loop filter typically uses a low-pass (high-cut) filter. Such a filter has a cut-
off frequency defined. Frequencies higher than the cut-off frequency are attenuated
(diminished). It splits the filter’s band into the stop band, the attenuated frequencies,
and the pass band, frequencies passed through the filter. Such a filter is illustrated in
Figure 3.5. Hence, the PLL’s bandwidth is the low-pass filter’s pass band. Most PLLs
allow this band to be configured based on the application’s needs. [12]

Figure 3.5 Band diagram of a PLL low-pass filter. The horizontal axis represents the fre-
quency, and the vertical axis represents the signal strength. Illustrated are the two bands split
by the cut-off frequency. The PLL’s bandwidth is equal to the pass band. [12]

Using a low-pass filter implies that wander will pass through the PLL loop filter
because it is a low-rate phase variation, whereas jitter will get filtered. That is, if the
wander rate is lower than the low-pass filter cut-off frequency, and the opposite is true
for jitter. There are multiple reasons for this decision in PLLs. [12]

Firstly, wander may reach microhertz frequencies. Its duration should always be
measured for at least hours or better for days during the clocking testing. Implementing
low-pass filters with such capability is impractical and not cost effective. [12]

Secondly, the PLL reacts to the combination of the input clock and the VCO output.
If the low-pass filter bandwidth, in a corner case, would be zero, then only the clock
of the local oscillator would be output by the PLL. This is against the point of a PLL,
which is to have some reference to which it aligns. Also, this implies that an outstanding
local oscillator is needed, which in turn furthermore pushes the cost up. [12]

Last, the smaller the pass band, the smaller changes can be made to the local VCO.
This causes the PLL to take more time to reach the steady state. [12]
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3.4.3 Errors

Even though a local clock is declared frequency and phase synchronized to some refer-
ence, the final output signal still carries errors. This is due to the oscillator quality and
its enclosing environment. These errors are visible as phase error, which measures the
difference in significant instants between the two signals. The unit used in networking
is generally some unit of time, such as microseconds or nanoseconds. [12]

The core measurement is the time error function. It is the significant instant differ-
ence of the measured clock and the reference at time t, defined as:

x(t) := T (t)− Tref (t) (3.4)

where x(t) is the time error function, T (t) is the time of the measured clock and Tref (t)

the time of the reference clock. [14]

If the measured clock arrives later than the reference, the resulting value will be
negative and thus referred to as the negative time error. The opposite case, where the
measured clock leads the reference, is the positive time error. [12]

Practically, attaining the continuous knowledge of the x(t) function is impossible.
A sequence of equally spaced samples thus substitutes it:

xi = x(t0 + iτ0) (3.5)

where t0 is the base time and τ0 is the sampling interval. These samples are called the
time error (TE). The sampling is illustrated in Figure 3.6. [14]

While the TE measures the difference at one instantaneous point in time, the time
interval error (TIE) measures this change over an observation interval (τ). The interval
duration is fixed at the measurement start. TIE thus measures the accumulated error
over τ . TIE captures the signal jitter because TE measures the short-term variation in
the clocking signal. As with TE, TIE is, in practice, measured using sample points. [12]
Despite, it is defined as the time interval error function: [14]

TIE(t; τ) := [T (t+ τ)− T (t)]− [Tref (t+ τ)− Tref (t)] = x(t+ τ)− x(t) (3.6)

Two example observations present the usage of TIE. If TIE starts at a high value at
the beginning of the measurement and then converges towards zero, this may indicate
that the clock’s PLL reached the steady state after the measurement started. The second
example is the TIE increasing over the whole measurement duration. This occurrence
indicates the clock has some frequency offset against its reference. [12]
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Figure 3.6 Time error and time interval error sampling. Illustrated are k sampling cycles
as the observation interval. At each point n, the xi illustrates the TE of that instant. The TIE
for the first observation interval is calculated as xn+k − xn. [12]

The TE samples may be plotted, as in Figure 3.7. Three key properties may be
extrapolated from this data:

Maximum absolute time error (max |TE|) represents the largest difference of the
two clocks. It is a single positive value because all the samples are taken as an
absolute value;

Constant time error (cTE) is the mean average of the sampled values from the begin-
ning. It may be calculated over a specific duration from the beginning or the whole
measurement duration. In the second case, it represents the average offset of the
measured clock from the reference and is consequently a measure of its accuracy;

Dynamic time error (dTE) is the TE variation over a time interval. If this time
interval is long enough, dTE represents wander in the clocking signal. It must
be analyzed using the maximum time interval error (MTIE) and time deviation
(TDEV). dTE is a measure of the stability of the clock. [12]

3.4.3.1 Maximum time interval error

The MTIE is defined as “the maximum peak-to-peak delay variation of a given timing
signal with respect to an ideal timing signal within an observation time (τ = nτ0) for all
observation times of that length within the measurement period (T )” [14].

TIE measures the difference between the TE at the observation interval’s start and
end. This may not capture the maximum TE variation over this interval. MTIE requires
finding the maximum and minimum TEs and capturing their difference. Additionally,
its value is maximum over all observation intervals. Therefore, it never decreases. For
example, if the MTIE over three-second periods is 20 ns, its value will never decrease
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Figure 3.7 Time error sample plot. Illustrated are the plotted TE samples, which are shown
in blue. The cTE, max|TE| and dTE are also depicted. Note that this is only an illustration
which is not based on real data and is not in scale. [12]

for periods longer than three seconds. It thus enables the identification of a frequency
shift in the measured clock. [12]

The following formula is used for the mathematical estimation of MTIE:

MTIE(nτ0) ∼= max
1≤k≤N−n

[
max

k≤i≤k+n
xi − max

k≤i≤k+n
xi

]
(3.7)

where n = 1, 2, . . . , N − 1

where nτ0 is the observation time τ with N samples of such duration over the whole
measurement period T . [14]

If the MTIE values recorded are plotted, multiple essential observations can be made.
If the graph is flat, no new maximum variations were recorded. New maximum variations
are recorded if the graph diverges from zero to higher values. Last, if it increases linearly,
the clock is not locked to the reference. The ITU defines so-called MTIE masks, which
are line plots under which the measured clock’s MTIE plot must remain for a specified
measurement duration to be classified as a clock of some quality. Example masks for
primary reference time clocks (PRTC) are illustrated in Figure 3.8. [12]

3.4.3.2 Time deviation

The definition of TDEV is “a measure of the expected time variation of a signal as a func-
tion of integration time. TDEV can also provide information about the spectral content
of the phase (or time) noise of a signal” [14].

While MTIE observes the most significant phase differences, TDEV is a metric which
measures how frequently these occur and how stable they are. In other words, TDEV
measures the randomness of the clock’s behaviour. [12]
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Figure 3.8 ITU-T-G.8272 PRTC MTIE masks. Illustrated are masks for PRTC class A and
PRTC class B clocks. The flat line suggests that no new maximum variations should occur after
some time. The MTIE for PRTC-A clocks is 100 ns and 40 ns for PRTC-B clocks. [16]

A statistical representation of such system instability may be provided by variance or
standard deviation. However, it has been shown that the calculation of these measures
does not converge for clocks. TDEV is thus needed. [12]

Mathematical estimation of TDEV based on a sequence of TE samples is done using
the following formula:

TDEV (nτ0) ∼=

√√√√ 1

6n2(N − 3n+ 1)

N−3n+1∑
j=1

[
n+j+1∑
i=j

(xi+2n − 2xi+n + xi)

]2

(3.8)

where n = 1, . . . ,

⌊
N

3

⌋

where N is the number of TE samples xi and τ is the integration time. The integration
time equals to nτ0 where n is the number of sampling intervals within τ and τ0 is the
TE sampling interval. [14]

TDEV can be imagined as the root mean square (RMS) of the clock’s noise. RMS
is calculated by taking the square root of the mean average of the square values of the
samples. An essential property of RMS is that any extremes average out with enough
data. This is the same with TDEV. It enables the filtering of rare occurrences, such
as the sun starting to shine on the clock’s enclosure and increasing its temperature, thus
changing how the oscillator must be compensated. [12] The ITU T-G.811 recommends
measuring TDEV for 12 times the duration of the maximum observation interval [17].
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MTIE and TDEV are two fundamental metrics used to analyze the performance of
clocks. MTIE helps to detect frequency offset and outliers in the TIE samples, whereas
TDEV helps to average rare outliers and characterize the clock’s wander. [12]

Figure 3.9 ITU-T-G.8272 PRTC TDEV masks. Illustrated are masks for PRTC class A and
PRTC class B clocks. The TDEV for PRTC-A clocks is 30 ns and 5 ns for PRTC-B clocks. [18]

3.5 Synchronous networks

In asynchronous networks, nodes maintain their independent clock. Asynchronous tech-
nologies typically use some data frame delimiter. Ethernet, as an example, uses the
frame preamble (PRE) to align the receiver (RX) frequency to that of the transmitter
(TX) using the physical signaling sublayer (PLS). During Ethernet link negotiation, one
side is selected as the master, and the other is selected as the link slave. The master
uses its local free-runing clock frequency to send data. The slave recovers the mas-
ter frequency using the PLS circuitry and uses it to send data back. There stands no
centralized concept of clocking. [12]

However, this is not true with synchronous networks with a common clock reference.
The critical fact is that this may convey frequency, phase, ToD, or any combination of
the named. Devices which provide a reference signal of all three are the PRTCs. [12]

Synchronous networks are divided into two groups based on the control method:

Centralized networks are designed in a tree-like master-slave hierarchy. This provides
one grandmaster clock as the absolute clocking reference for the whole node tree;

Decentralized networks transfer timing information between all neighbouring peers
and try to determine the best quality one and let all the peer clocks contribute. [12]
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Figure 3.10 Synchronous networks control methods. On the left are illustrated slave clocks
synchronizing to one master in a centralized network. On the right are depicted cooperating
peers in a decentralized network. [12]

Furthermore, synchronous networks are divided based on the delivery method:

Physical synchronization networks use a physical clock signal carrier. An example may
be the legacy Synchronous Digital Hierarchy (SDH) technology, which creates syn-
chronous optical ring networks for periodic transmission of jumbo frames utilizing
time-division multiplex (TDM);

Packet based synchronization exchanges time representation through timestamps car-
ried using packets. For example, in the case of PTP over Ethernet, packets may
be delayed by waiting in a switch FIFO; thus, the time at which the timestamp
is taken at the sender and receiver is critical. Consequently, packet-based syn-
chronization is burdened with packet delay variation (PDV), which is the varying
transmit time of the periodic timestamp packets. That is, the periodicity is not
obeyed perfectly. The significant instant of such methods must be specified for
phase alignment, which is commonly some defined part of the packet, such as the
Ethernet start-of-frame (SOF) delimiter. [12]

3.5.1 Traceability
The clocking signal degrades in all of these scenarios as it is carried further from the
primary source. Because the goal is to provide the most accurate representation of the
primary clocking signal, the nodes need to understand the quality of the incoming signal
and where it is coming from. Traceability solves this problem in synchronous networks.
Generally, a type of clock quality message is exchanged between nodes, synchronization
status message (SSM) as an example in the case of SDH. [12]

A common problem to these methods is a timing loop. A topology may be con-
structed, where a clock X gives time to Y, which gives time to Z, which gives time back
to X. This may also happen when a signal to a master is lost, and this group of clocks
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creates a loop between them. No synchronization errors are raised because the clocks
are synchronized despite not being synchronized to the master’s clock. Traceability may
be used to solve this problem. [12]

3.6 Synchronous Ethernet

Ethernet never needed synchronization of its circuitry because it was designed to carry
asynchronous data. As explored in the previous section, only frequency synchronization
is done on a link basis, where one side is selected as the master and the other as the
slave, which turns around the master’s RX frequency on its TX path. [12]

This property of Ethernet drove the price of the hardware needed down and was,
in turn, one of the causes for its rapid adoption. Service providers started migrating
synchronous networks based on technologies such as SDH to Ethernet. Data transmission
conversion from TDM to packets brought the need for migration of the timing network.
Accordingly, the distribution of frequency over Ethernet was needed as in SDH. [12]

The result of this requirement is Synchronous Ethernet (SyncE). Slave clocks extract
timing from the frame’s preamble carried by the Ethernet line coding. This enables the
use of SyncE on optical and copper-based links while not being impacted by high packet
loads. Ethernet links of 10 Mb/s bandwidth are exempt from this technology because
idle periods occur when there is no data to transfer. During these periods, nothing is sent
on the physical layer; thus, the frequency cannot be recovered. [12]

3.6.1 Ethernet equipment clocks
Specialized hardware is needed to support SyncE. The slave must incorporate a PLL,
which locks onto the master frequency. Timing traces must also be incorporated to
transfer the timing signals between the Ethernet and timing circuitry. The recovered
clock is used to drive all the Ethernet interfaces to provide the clock signal to further
downstream nodes. Such devices are called Ethernet equipment clocks (EEC). [12]

3.6.2 Ethernet Synchronization Messaging Channel
SyncE achieves traceability utilizing the Ethernet Synchronization Messaging Channel
(ESMC). EECs communicate on this channel using the Ethernet overhead function called
the slow protocol. For example, the Link Aggregation Control Protocol (LACP) is also
an Ethernet overhead function. Information protocol data units (PDU) carry quality
indicators periodically, whereas event PDUs are generated upon events such as a quality
change or a link failure. [12]
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3.7 Precison Time Protocol

The IEEE 1588 Precision Time Protocol provides packet-based clock synchronization. It
can synchronize frequency, phase and ToD. It is extensible using so-called profiles while
default profiles permit the installation of minimal systems without user intervention.
With minimal computing and network resources, sub-microsecond accuracy is achievable.
In properly designed networks, see Section 3.8 for an example, sub-nanosecond accuracy
can be achieved. [19] Note that the protocol uses the term message for packets.

This accuracy is achieved by forming master-slave relationships in the network, where
masters provide clock to slaves, utilizing support from hardware clocks for capturing
packet timestamps. The clock of all nodes in the network is traceable to the grandmaster
(GM) clock, which acts as a source of truth for time in the network. The GM typically
sources itself with a clock from a reference such as a PRTC or the GNSS. [12]

3.7.1 Network Time Protocol
The first version of PTP from 2002 was based on multicast transport with the time-
to-live (TTL) field of packets set to zero. It was designed for clock synchronization of
nodes in close proximity. This transport limitation made it unsuitable for use in wide
area networks (WAN) such as the Internet. [12]

On the other hand, the Network Time Protocol (NTP) was invented for this purpose
in the 20th century. The goal it was designed to handle was to synchronize servers
running legal and financial transactions, transportation and other applications involving
distributed resources over the Internet. [20]

NTP organizes servers as a hierarchical structure, in which every server’s level is given
by its stratum number, to which all clients connect [7]. Its synchronization mechanism
is based on a two-way exchange of messages between the peers depicted in Figure 3.11.
The offset of the client from the server θ and the network roundtrip delay δ are periodi-
cally recalculated. [20] These two values are passed as an input into the clock discipline
algorithm, a hybrid phase/frequency-locked loop software implementation [21]. The re-
sult of this algorithm is the adjustment of the local clock. This is done on a pool of servers
by the client from which the peer-selection algorithm chooses the source truechimer.
Servers determined to be providing inaccurate time are discarded as falsetickers. [7]

Employing this software-based method, NTP can reach millisecond accuracy over
the Internet [12], sub-millisecond accuracy utilizing a PPS signal [22]. However, two
difficulties arise when calculating the critical packet-based synchronization parameter,
the network delay [9].

Firstly, the time capture (Ti) of the event messages is a software event providing
accuracy of tens of microseconds at best. PTP standardizes the use of physical layer
timestamps, providing nanosecond accuracy. [9]
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Figure 3.11 NTP offset and delay measurement. Depicted are server A and peer B. Let
a = Ti−2 −Ti−3 and b = Ti−1 −Ti. Then, the clock offset θi = (a+ b)/2 and the roundtrip delay
δi = a− b of B relative to A at time Ti. NTP messages always carry the last three timestamps,
and the fourth (Ti) is captured upon reception of each message. [20]

Secondly, the delay is not constant. NTP tries to overcome this by taking many sam-
ples and applying its filtering algorithms. Since the 2008 revision, PTP has introduced
the concept of a transparent clock, which dynamically compensates for network buffer-
ing delays by adjusting the passing messages. [9] This revision removed the multicast
limitation and allowed a broader adoption [12].

3.7.2 Entities
The PTP standard defines multiple key terms. The physical device utilizing the protocol
is the PTP node. It may have one or more physical network interfaces. On nodes run
PTP instances of the protocol. Each instance has its local clock (LC) assigned and
its local PTP clock (LPC) assigned. The LC is a physical clock used in the protocol’s
operation. It may be syntonized to a reference clock. The LPC provides a local estimate
of the GM time. It may be a physical or a mathematical clock. LC and LPC are allowed
to be the same clock. The node may provide a dedicated LC for each instance, or they
may share a common one. Each instance has its own LPC. The relationships between
these entities are illustrated in Figure 3.12. [19]

Nodes in PTP belong to one or more domains. Instances belong to exactly one
domain. A domain is a network of instances where one GM is traceable as the time
source. Thus, the domains are logically separated and do not communicate. This means
that numerous domains may coexist on the same physical network. [12]

Each domain is identified by a number from 0 to 255. Values greater or equal to
128 are reserved. The domain 0 is called the default domain. The profiles define the
used domains and their numbers. Usually, only a small count is used, for instance, two
domains in telecommunication profiles. [12]
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Figure 3.12 PTP relationship between nodes, instances and clocks. Depicted is node A which
provides unique local and local PTP clocks for each instance. Node B illustrates a case where
all instances share a common local clock. [19]

3.7.3 Ports
A PTP port is a logical access point of an instance into a domain [19]. One instance
may have multiple PTP ports. A single physical interface of a node may have multiple
PTP ports associated with it. It is a purely virtual concept. Each port has exactly one
domain and one protocol version associated with it. Consequently, all connected ports
belong to the same PTP domain. The relationship between domains, nodes and ports
is illustrated in Figure 3.13. [12]

Each port is identified by a structure called portIdentity. It is formed from
a field clockIdentity, an eight-byte wide identifier of the port’s instance and a field
portNumber, the port’s 16-bit unsigned identifier starting at 1. These fields may be used
for tie-braking when selecting the best master clock. [12] The clockIdentity field may
get assigned the clock’s network unique identifier (NUI)-64, or NUI-48 and implementor
defined 16-bit remainder. The implementor must ensure his assignment provides unique
identifier within the domain. NUI is defined in the IEEE 802. [19]

Ports transition between three states:

MASTER when the port is a source of time on its communication path;

SLAVE when the port synchronizes to a master on its communication path;

PASSIVE when the port is neither a source of time nor synchronizes to a master. [19]

3.7.4 Messages
PTP defines two types of messages:

Event messages are sensitive to delay. The slave’s clock synchronization logic is sensitive
to the delay accumulated during transmission. For these messages, time is recorded
at their transmission and on their reception on the message target;
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Figure 3.13 PTP relationship between domains, nodes and ports. Depicted are two PTP
nodes, each with one physical network interface and two instances with one port mapped to the
interface. Each instance and port is mapped to a different PTP domain, while both nodes belong
to both PTP domains. [19]

General messages are not sensitive to delay because they carry control and management
data. They may still carry the captured time for some event messages, but their
delivery is not time-sensitive. [12]

The complete list of messages defined for both types is provided in Table 3.1. The
use and meaning of these messages is examined further.

Table 3.1 PTP event and general message list. All defined messages are listed. [12]

Event General

Sync Follow_Up
Delay_Req Delay_Resp
Pdelay_Req Pdelay_Resp_Follow_Up
Pdelay_Resp Announce

Signaling
Management

The protocol defines multiple transport methods for its messages between ports in
its annexes. It is the profile that decides the methods that are allowed and used. The
first version of the protocol from the year 2002, PTPv1, utilised multicast transport.
The following revision from 2008, PTPv2, added unicast support for the User Datagram
Protocol (UDP) over the Internet Protocol (IP). [12] The UDP port 319 is assigned
for PTP event messages, and port 320 for general messages in the Service Name and
Transport Protocol Port Number Registry of the Internet Assigned Numbers Authority
(IANA) [23]. The complete list of supported transports in the 2019 revision of the
protocol is provided in Table 3.2.
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Messages are exchanged at a rate specified per message [12]. The rate is expressed
as a log2(seconds) with possible values ranging from -128 to 127 [19]. For example, that
is -3 for one message every 1/8 of a second. The assigned rates are defined in the profile
and may sometimes be adjusted on the node by the operator [12].

Table 3.2 PTP supported transport mechanisms. All the transport mechanism annexes
defined in the 2019 protocol revision are listed. [19]

Transport Annex

UDP over IP version 4 C
UDP over IP version 6 D
Ethernet E
DeviceNET F
ControlNET G
PROFINET H

3.7.5 Timestamps
The core of PTP lies in its timestamps. A timestamp is defined as a structure, which
“represents a positive time with respect to the epoch” [19]. It consists of a 48-bit
wide unsigned integer called secondsField representing seconds since the epoch and
a 32-bit unsigned integer called nanosecondsField counting the nanoseconds following
the seconds. The nanosecond field is strictly less than 109. That is the number of
nanoseconds present in one second. [19]

The protocol may use two types of timescales for its timestamps: PTP or arbi-
trary (ARB). The ARB timescale is implementation-specific, with the condition that
it is a monotonic timescale. The PTP timescale epoch is defined as 1 January 1970
00:00:00 TAI. The offset to UTC may be thus calculated as the PTP time minus ten,
the offset of TAI and UTC on 1 January 1972, the introduction of leap seconds, and
minus the number of leap seconds since then. At the time of writing, that is the PTP
time minus 37 seconds. [12]

Timestamps are generated for PTP event messages by the timestamping clock. This
may be either the LC or the LPC. [19] It is paramount to the accuracy of the synchronized
time to capture the timestamps with the best possible quality [7]. The timestamp capture
point is defined as the SOF delimiter of the frame, but the transport layer annexes to the
standard may specify otherwise [19]. The captured timestamps may be differentiated
into two types:

Hardware timestamps are generated using dedicated circuitry. In the case of Ethernet,
this may be done either by the PHY or the MAC;
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Software timestamps are traditionally captured by an interrupt handling the frame
reception. Because software may introduce non-deterministic processing delay, it
increases the timestamping jitter and is thus avoided in applications targeting
a high level of accuracy. [7]

In both cases, additional delay is introduced against the optimal timestamping point
and must be thus corrected. An example on the hardware level is the delay in the PHY
transferring the frame to the MAC. [7] This delay is often asymmetric for RX and TX
paths and must be compensated for by the implementation [19]. The possible timestamp
capture points are illustrated in Figure 3.14.

Figure 3.14 Diagram of possible PTP timestamp capture points. Depicted are software and
hardware-based points for capturing PTP event message timestamps. [7]

3.7.6 Synchronization mechanism
The PTP synchronization is based on a two-way message exchange mechanism similar
to that of NTP. The slave must determine its offset from the master to adjust its time
to where it should be. [7] This offset may be calculated by subtracting the master’s time
from the slave’s time. In PTP, this is defined as: [19]

offsetFromMaster = Tslave − Tmaster (3.9)

Negative result of this calculation means the time on the slave passes slower than on the
master, whereas a positive value means the time passes faster on the slave [12].
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PTP uses the Sync message periodically sent by the master to its slaves to announce
its current time t1. The slave captures its time t2 at the reception of this message from
the master. Note that the t1 is the master’s time when the message was sent. This
means either the master’s hardware must be capable of inserting the timestamp while
actively sending the message, such clock is referred to as a one-step clock, or the actual
t1 is sent in the Follow_Up message. This method is referred to as the two-step clock
and is chosen by the master by setting the twoStepFlag field in the Sync message. The
slave must be capable of handling both methods. This illustrates Figure 3.15. [12]

Figure 3.15 PTP time synchronization. Depicted is the master sending its time t1 in the
Sync message in one-step mode and the slave capturing the reception timestamp t2. Optional
Follow_Up message carrying the master’s t1 in the case of two-step mode is also illustrated. [19]

Because the slave calculates the offset based on these two timestamps, delivering
the Sync message without unnecessary delay is of utmost priority because its reception
is timestamped as the t2. On the other hand, the Follow_Up message is not of the same
criticality because it just carries the master’s t1 and is not itself timestamped. [12]

However, as in all packet-based time synchronization protocols, the transit time of
the Sync message through the network must be considered. Without subtracting it, the
offset includes the transmit time as an error. This term is called the one-way propagation
delay in PTP. The value subtracted in the offset calculation is called the meanDelay
because it is the average of the roundtrip delay. [12] Two mechanisms for measuring it
are defined: delay request-response and peer-to-peer. The offset equation is thus: [19]

offsetFromMaster = t2 − t1 − meanDelay (3.10)

The protocol introduces a third mechanism to improve the accuracy of the calculated
offset called the correctionField carried in PTP messages. It is a 64-bit wide unsigned
integer field of nanoseconds multiplied by 216. Consequently, it allows the representation
of subnanosecond precision, with 48 bits of nanoseconds and 16 bits of nanosecond
fraction. [12] Its use is discussed in the following sections.
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In the case of the offset, the complete equation, including the correctionField, is:

offsetFromMaster = t2 − t1 − meanDelay− correctionField (3.11)

The subtracted value is this field of the Sync message in the one-step mode. In the case
of a two-step operation, this field of the Follow_Up message is subtracted in addition to
the one in the Sync message. [19]

The critical fact is that the standard does not define how the resulting offset should
be applied to the slave’s clock. It is up to the implementation to adequately align the
slave. This may be done, for example, by forcefully applying the offset or changing the
underlying oscillator frequency for a while to smooth out the change and prevent any
extreme jumps in time. [24]

3.7.7 Delay request-response mechanism

The delay request-response mechanism, also referred to as the end-to-end (E2E) mech-
anism, provides means to measure the meanPathDelay, which is the representation of
the meanDelay between two ports connected by any network topology. It is initiated
periodically by the slave against its master. [7]

The slave issues the Delay_Req message to the master and notes its time t3. This
is an event message, same as the Sync message, so it must be sent without delay. The
master timestamps the reception of this message as t4 and sends it back in the general
Delay_Resp message. After the response reception, the slave calculates the one-way
delay utilizing timestamps t1 and t2 from the last Sync message. The full message
exchange is illustrated in Figure 3.16. [19]

Figure 3.16 PTP delay request-response mechanism. Depicted is the measurement of the
meanPathDelay, which is the average of the one-way propagation delays of the Sync and
Delay_Req messages, assuming a symmetric connection delay. [19]
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The slave first calculates the one-way propagation delay for both message paths, that
is, master to slave and slave to master, as:

tms = t2 − t1 (3.12)
tsm = t4 − t3 (3.13)

and then the meanPathDelay as an average of these two values because the connection
delay is assumed to be symmetric:

meanPathDelay =
tms + tsm − correctionField

2
(3.14)

In the case of a one-step operation, the correctionField is equal to the sum of this
field in the Sync and Delay_Resp messages. In the two-step mode, it is the same sum
while additionally adding this field in the Follow_Up message. [19]

3.7.8 Peer-to-peer delay mechanism
In a peer-to-peer (P2P) delay mechanism, the meanDelay is measured between two
neighbouring ports and referred to as the meanLinkDelay. Ports are not allowed to
communicate with more than one peer. Both sides initiate this mechanism to measure
the delay. The Delay_Req and Delay_Resp messages are dropped. Thus, the E2E
meanPathDelay cannot be measured between the slave and the master. Consequently,
one domain cannot combine the E2E and P2P mechanisms. [12]

The P2P mechanism requires the aforementioned transparent clocks in the network
to adjust the propagation delay on a link basis in the correctionField. The advantage
is that a delay correction occurs immediately upon routing changes. [7]

The mechanism is similar to how the E2E mechanism measures the delay based on
the Sync and Delay timestamps. The requestor sends the Pdelay_Req event message
noting the transmit timestamp t1. The responder timestamps the reception as t2 and
sends it in the event message Pdelay_Resp with t3, the transmit timestamp. The re-
quester timestamps the reception of this message as t4. As with the Sync message from
a master, the responder may not be able to provide t3 in the message, so a two-step
Pdelay_Resp_Follow_Up may come later with the t3. This complete message exchange
is illustrated in Figure 3.17. [19]

Assuming a symmetric connection delay, the meanLinkDelay is calculated as:

meanLinkDelay =
[(t4 − t1) + (t2 − t3)]− correctionField

2
(3.15)

As with the E2E mechanism, the measured one-way propagation delays must be cor-
rected using the correctionField before the division. The subtracted value is this field
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Figure 3.17 PTP peer-to-peer delay mechanism. Depicted is the measurement of the
meanLinkDelay between two peers, which is the average of the one-way propagation delays
of the Pdelay_Req and Pdelay_Resp messages, assuming a symmetric connection delay. [19]

of the Pdelay_Resp message in the one-step mode. In the case of a two-step operation,
this field of the Pdelay_Resp_Follow_Up message is subtracted in addition to the one
in the Pdelay_Resp message. [19]

3.7.9 Asymmetry correction
All the PTP timing equations assume the transmit time of messages is symmetric in
both directions. In practice, this is not true. The transmission is permanently burdened
with two types of asymmetry:

Static asymmetry is the part which never changes. It can be measured using specialized
timing equipment or estimated with a certain degree of accuracy. For instance,
long fiber runs may introduce a measurable impact of chromatic dispersion, the
change of velocity of the electromagnetic wave through the fiber. Another example
is a length mismatch between fiber pairs;

Dynamic asymmetry cannot be fully compensated for in practice because it constantly
changes. An example is the message queuing in network equipment or the message
target during high network load. [12]

The main difficulty is understanding which part of asymmetry is static and which
is dynamic. PTP provides a means to compensate for the static asymmetry in all the
calculations by providing a value for the delayAsymmetry field. [12] It is defined as:

tms = meanPathDelay+ delayAsymmetry (3.16)
tsm = meanPathDelay− delayAsymmetry (3.17)
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or

tresp-to-req = meanLinkDelay+ delayAsymmetry (3.18)
treq-to-resp = meanLinkDelay− delayAsymmetry (3.19)

That is, it is positive if the master-to-slave or responder-to-requester propagation time
is longer than in the other direction. It is applied to the correctionField before the
calculations are done. [19] It is out of the scope of this work to discuss how this is done
by the protocol in all cases.

For direct connection of two PTP ports using certain bidirectional media, the value of
delayAsymmetry is almost equal to the underlying physical medium asymmetry. An ex-
ample is the 1000BASE-BX10 defined in IEEE 802.3. In such cases, the delayAsymmetry
may be calculated as follows: [19]

delayAsymmetry = constantAsymmetry+
α

α+ 2
× meanDelay (3.20)

The parameter α is called the delayCoefficient. It is the relative difference between
the two transmission times defined as:

tms = (1 + α)× tsm (3.21)
tresp-to-req = (1 + α)× treq-to-resp (3.22)

It is positive if the master-to-slave or responder-to-requester propagation time is longer
than in the other direction. The constantAsymmetry value may be provided to adjust
the delayAsymmetry calculation based on additional known static asymmetry. [19]

3.7.10 One-way mechanism
PTP may be used only for syntonization employing a one-way message exchange, the
reception of the master’s Sync messages by the slave. This is possible because, for
syntonization, only the rate at which its time passes compared to its master must be
known. [12] The slave captures the Sync events at a rate of syncInterval [19]. After
receiving at least two such events, it may calculate the frequency difference as follows:

(tN2 − t2)− (tN1 − t1)

tN1 − t1
(3.23)

where tN denotes the timestamp captured for the N-th event. [24]
Utilizing this method may be slow depending on the syncInterval defined by the

profiles. It may take up to an hour to reach syntonization. The slave must do this
measurement over an extended period because it tries to detect minor frequency errors
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in its local clock. Instead, a physical layer syntonization method may be employed
because it provides almost instantaneous syntonization. This combination of PTP for
phase and ToD synchronization and a physical layer syntonization is called hybrid mode.
The most common example of this is implementing SyncE together with PTP. [12]

3.7.11 Node types
PTP defines five types of nodes: management nodes, ordinary clocks, boundary clocks,
E2E transparent clocks, and P2P transparent clocks. [12]

3.7.11.1 Management node

Management nodes do not participate in the synchronization. They modify the proto-
col’s configuration and state variables other nodes keep in datasets. This is achieved by
dispatching Management messages, which carry elements encoded using a type-length-
value (TLV) mechanism defined by the protocol. They are rarely used, and some profiles,
such as the telecommunication ones, prohibit their use. Because of this, they will not
be further discussed. [12]

3.7.11.2 Ordinary clock

The ordinary clock (OC) is the simplest PTP clock node. It has a single port, which
is either in the master or slave state. Consequently, it must lie at the end of the domain’s
hierarchy because it cannot further distribute the clock. Hence, OC is either a slave or
the GM. That is because if it is not a slave, it must be a master, and if it is a master, it
must have been chosen as the best one. That is because the quality of all other clocks
came from this port and was decided to be worse than the port’s quality. This assumes
the operator did not disable this port or force its state. [12]

3.7.11.3 Boundary clock

Boundary clocks (BC) have at least two ports, which transition between the three pos-
sible states. They synchronize to some master and act as a master to other nodes. This
is important because they are a point of resetting the error introduced by PDV. When
the synchronization messages are received from their master, they are terminated. New
synchronization message flow is started in the direction of their slaves. Simple hierarchy
featuring OCs and BCs is illustrated in Figure 3.18. [12]

3.7.11.4 Transparent clock

Transparent clocks (TC) exist to adjust the timestamps of synchronization messages
passing through them. Let us examine an Ethernet-based PTP application as an exam-
ple. The propagation delay of the Sync message includes the time this message stayed
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Figure 3.18 PTP master-slave hierarchy. Illustrated is one grandmaster synchronized to the
GNSS. One boundary clock as its slave is depicted as a master of three other ordinary clocks. [12]

inside each network bridge it passed through while waiting to be passed from one of its
ports to some other. This directly delays the capture point of the t2 timestamp by the
slave, which may become problematic because slaves discard outlier offsets from their
masters. Bridges acting as TCs insert this residence time into the passing messages
so that the slaves can account for this. [12]

The residence time is calculated as follows:

residenceTime = egressTimestamp− ingressTimestamp (3.24)

for the passing messages where the timestamps are the ones captured by the TC. As with
the delay mechanisms, it depends on the hardware capabilities of the TC if it can insert
the residenceTime into all the passing messages in case of a one-step mode. It may
need to operate as a two-step clock. In this case, as an example, it must modify the
passing Sync messages as two-step and send its own Follow_Up message. [19]

TCs never issue their own Sync messages as masters because their ports never enter
any of the introduced port states. Two types of TCs are defined in the 2019 revision of
the protocol: [12]

E2E TC is a variant which allows all the delay request-response mechanism messages
through. For one-step masters, the correctionField of Sync messages are ad-
justed; for two-step masters, only the Follow_Up messages are adjusted. Note that
the 2019 revision of the protocol explicitly states that the messages are retrans-
mitted as a new packet and are not just adjusted;

P2P TC variant drops all the delay request-response mechanism messages. It measures
the ingress meanLinkDelay of all its ports and adjusts the passing synchronization
messages with it in addition to the residenceTime. [12]

Figure 3.19 illustrates two TC hierarchies because these types cannot coexist in one [12].
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Figure 3.19 PTP end-to-end versus peer-to-peer transparent clock. Depicted is the difference
where in E2E mode, the TCs are fully transparent to the traffic, whereas in the P2P mode, they
must actively participate in the P2P delay measurement. [12]

3.7.12 Best Master Clock Algorithm

The Best Master Clock Algorithm (BMCA) of PTP builds the master-slave hierarchy
in the network. Default BMCA is provided, though profiles are allowed to implement
alternate BMCA. The same algorithm continuously runs on all the domain OCs and
BCs, ensuring that the best clock will become the grandmaster and that the domain will
react to clock quality and network topology changes. [12] The BMCA consists of two
algorithms: data set comparison algorithm (DSC) and state decision algorithm (SD) [19].

All clocks provide quality attributes by periodically issuing the Announce general
message [12]. Each pass of this message through BC increments the included counter
field stepsRemoved, initially set to 0. The DSC pairwise compares the received attributes
of all clocks and the clock itself and chooses the best one. This is done per port. Then,
the SD chooses the next state of the port. If a better clock is discovered, the port enters
the slave state. If the port is the best one, it enters the master state. [19]

Two ports may determine the same remote clock as being the best one. The port
which received the message with lower stepsRemoved counter is selected as topologi-
cally better and enters the slave state. The other port enters the passive state. This
unambiguously selects one port when cyclic paths in the network are not removed by
a protocol other than PTP. An example illustration is provided in Figure 3.20. [19]
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The data set comparison algorithm does a pairwise comparison in this order:

priority1 user-configurable priority;

clockClass attribute defining TAI traceability;

clockAccuracy attribute defining the accuracy of the LPC;

offsetScaledLogVariance attribute defining the stability of the LPC;

priority2 finer-grained user-configurable priority;

clockIdentity field, which is used as a tie-breaker. [25]

Figure 3.20 PTP BMCA algorithm. Depicted is the result of the BMCA algorithm simplified
to the clockClass and stepsRemoved fields. [12]

3.7.13 IEEE 802.1AS profile
The generalized PTP is a profile defined for use in TSN. It is a strict subset of the
complete IEEE 1588. The gPTP standard document defines the key differences between
IEEE 802.1AS and IEEE 1588: [26]

• The only supported transport mechanism is Ethernet MAC PDUs utilizing Ether-
net addressing. No other transports are supported. [26]

• gPTP specifies a media-independent sublayer, which simplifies the integration of
technologies with different media access protocols into one timing domain, such
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as IEEE 802.11. Each medium has its media-dependent layer specified. In IEEE
1588, this is optional. [26]

• Two types of domain nodes are specified instead. End instances correspond to
OCs and relay instances correspond to TCs. However, relay nodes can send Sync
messages and invoke the BMCA to let their ports enter any of the states. [26]

• Communication is always done only between gPTP instances. Non-relay instances
cannot be used to pass gPTP traffic. Thus, non-PTP devices are also not allowed
anywhere between gPTP nodes. [26]

• Only the peer-to-peer delay mechanism is allowed. [26]

• gPTP requires two-step processing while declaring one-step processing as optional.
IEEE 1588 allows both of them to be required. [26]

• All instances are required to be logically syntonized. This may be done by the
one-way PTP mechanism. [26]

The standard requires all participating time-aware systems separated by six or fewer
nodes, seven hops at maximum, to be peak-to-peak synchronized within 1 µs. The rate
of Announce and Pdelay_Req messages is once per second. Sync messages are issued
eight times per second. [12]

3.8 White Rabbit

White Rabbit (WR) is an exemplary state-of-the-art application of the presented syn-
chronization technologies. The White Rabbit Project is a: “multilaboratory, multicom-
pany and multinational collaboration to develop new technology that provides a versatile
solution for control and data acquisition systems” [27] started by the Conseil européen
pour la Recherche nucléaire (CERN) of Meyrin, Switzerland, the European Organization
for Nuclear Research in English. [27]

It is an open-source project defining the White Rabbit Network. The network is an
Ethernet-based bridged LAN with VLANs, which synchronizes frequency using SyncE
and phase and ToD using an extension of PTP. It features picosecond synchronization
accuracy between thousands of nodes with an average distance of 10 kilometres over
gigabit Ethernet links. The extension was merged into the 2019 revision of PTP. [27]

WR employs numerous asymmetry corrections. For example, the asymmetry in-
troduced by the layout of the circuit board of the network element is assumed to be
static and accordingly compensated for by measuring its amount. Medium asymmetry
of fiber runs between nodes is measured. Changes in propagation speeds through fiber
runs based on cyclical changes, such as temperature changes during the day, are cor-
rected. The last example is calibrating the physical links utilizing specialized network
equipment. All these and other corrections help WR achieve such a level of accuracy. [12]





Chapter 4

PikeOS driver integration

This chapter introduces the hardware used, specifically the TQ-Systems GmbH
MBa8MPxL single-board computer and the ENET_QOS Ethernet controller. The
primary topic is introducing the PikeOS Driver Development Kit framework and
analysing the controller’s features selected for integration.

4.1 PikeOS drivers

Drivers in PikeOS are used to extend the system I/O functionality. That provides addi-
tional functionality to operations like read and write. The language of choice is the C
language. Drivers implemented in the kernel, Kernel Drivers (KDEV), are gate providers
that can be accessed using files or other APIs. Drivers accessible via the file system are
called file providers or volume providers. File providers may be implemented in the
PSSW, in which case they are called Internal File Providers. These are called External
File Providers (ExtFP) inside the user partition. Since PikeOS 4.0, the recommenda-
tion is to choose between Kernel Drivers and External File Providers. This hierarchy
is depicted in detail in Figure 4.1. [6]

4.1.1 Configuration
The PSSW and user-level drivers may be configured using the PikeOS property file
system (PropFS). It is implemented as an internal file provider in the PSSW and is in-
tended to provide read-only configuration data. Access is done through system calls
using predefined paths starting with prop: prefix to select this filesystem. Configura-
tion is provided through strongly typed binary properties. Possible properties for a given
driver are defined using XML files, providing the structure and types of all needed prop-
erties and default values of optional properties. All of these XML files are then merged
into a property tree and embedded in the target’s ROM image. [6]

47
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Figure 4.1 PikeOS Driver Placement. The hierarchy of different PikeOS driver types is de-
picted. The user-partitioned External File Provider is in the top right corner. The Kernel Drivers
are on the bottom. [6]

Kernel Drivers are configured using a binary compiled from another specialized XML
file providing set values for all required properties. This form of configuration has an
advantage for array-like properties. Access to these is much faster using the precompiled
binary because, in the case of PropFS, each member access requires its system call.
The disadvantage of this decision is that there are less flexible options for changing
the underlying format. PropFS may be changed or extended while providing the same
functionality without any API change. On the other hand, the binary format must have
its version explicitly announced and handled. Example snippet of a driver configuration
is provided in Listing 4.1. [6]

<ParameterTable>
<Separator display="Driver Specific Configuration"/>
<Parameter name="BCAST_ENABLE" type="boolean" value="true"/>

</ParameterTable>
<Romimage>
<properties>

<prop_dir name="config/provider/$(DEP:PROVIDER:PREFIX)">
<prop_dir name="priv/io/$(IO_ID)">
<prop_bool data="$(BCAST_ENABLE)" name="bcast_enable"/>

</prop_dir>
</prop_dir>

</properties>
</Romimage>

Code listing 4.1 Snippet of PikeOS driver property XML specification. Depicted is the
definition of broadcast reception enable boolean property for the ENET_QOS driver.
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4.1.2 Separation
All open, close, and stat requests from user space are handled by an inter-process
communication (IPC) call through the PSSW. This decision enables access control and
makes access time the same for all drivers. Exempt from this are open and close calls
for volume providers. For them, only the mount operation is tunnelled through the
PSSW for access control. All other operations like read, write, and ioctl are handled
using IPC requests by the drivers. These involve an address space switch to the driver’s
address space. Kernel Drivers are exempt from all PSSW tunnelling because they use
system calls directly. These are faster because no address space switch is required. [6]

Because ExtFP and volume providers reside in their user partition and their own
address space, any failure during their execution does not propagate to other partitions.
This makes them non-critical to the system. That is other than critical inter-partition
dependencies. Internal file providers run in the address space of the PSSW and are thus
on the same criticality level as the PSSW. That is the highest in the system. None of
these have access to the kernel memory space. Kernel Drivers are also critical because
their failure will affect the whole system. In addition, they are also given access to the
kernel memory space. [6]

4.1.3 Resource access
User-space drivers have routed interrupts by blocking. This means that interrupt han-
dling may involve address space switches. The implication is that hardware that needs
an immediate reset of a given interrupt cannot be driven from user space. In contrast,
Kernel Drivers can be used for such hardware. Specific callbacks for interrupts may be
installed. These callbacks operate in a limited environment where only wake-up of other
threads and data transfers are allowed. [6]

Access to the I/O memory region or other resources may be granted to user space
drivers at their request. Exempt from these are resources running in supervisor mode,
like high-resolution timers. Kernel drivers are given access to all resources. [6]

All user space drivers may use all the PikeOS threading, synchronization and block-
ing functionalities. Worker threads in the driver partition may be created to handle
background tasks. Internal file providers are exempt from this because they run in the
PSSW partition daemon thread, which is not blockable. Their worker threads can block
if the communication with the partition daemon is not blocked. This means that, for
example, mutexes cannot be used because they block. Kernel Drivers can block because
they run exclusively when invoked through a system call. On the other hand, the kernel
API provides only a limited set of blocking calls. Kernel Drivers are not allowed to start
any worker threads. [6]
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4.2 Driver Development Kit framework

The DDK stands for Driver Development Kit. The runtime environment in which drivers
execute is referred to as the driver framework. [28] This framework consists of two
categories of elements:

Driver Entry Points represent the public interface of the driver in the direction of
the rest of the system. The framework defines the semantics of these;

Driver Services are functionalities provided by the driver framework which the drivers
themselves can use. [28]

No specific behaviour is defined for any driver by the framework. So-called device
classes do this. These classes group drivers that handle I/O devices of similar proper-
ties. [28] Seven specific classes are defined:

CHAR class for generic drivers;

SER class for serial universal asynchronous receiver-transmitter (UART) drivers;

NET class for Ethernet drivers;

DIO class for general purpose input output (GPIO) drivers;

CAN class for CAN bus drivers;

BLK class for storage drivers;

WDT class for watchdog timer drivers. [28]

The framework furthermore differentiates two types of devices:

I/O device is a hardware device independent of its use of registers and interrupts from
all other devices. The driver is assigned this device to manage;

Logical device is an object which is provided to the user clients. There is no strict
requirement for 1:1 mapping between the managed I/O and logical devices. Driver
design may allow 1:N mapping. [28]

4.2.1 DDK Network Class
The framework’s network class is used for drivers which manage Ethernet controllers. It
defines data types and framework services that ease the implementation of such drivers.
Relevant services are introduced in the implementation chapter. [28]
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The file system API which any network driver must provide is:

vm_open() to select operation mode and start the controller;

vm_close() to stop the controller;

vm_read() to receive an Ethernet frame;

vm_write() to transmit an Ethernet frame;

vm_ioctl() to set runtime configuration and receive status. [28]

This class introduces the concept of virtual Ethernet devices. Applications see these
devices as Ethernet ports with their own MAC address, other than the controller’s
physical port. This enables the use of one Ethernet device by multiple applications.
That is because opening the device implies exclusive access to it. Two types of mutually
exclusive device operation modes are defined. [28] Selection is made by opening a device
of a given type:

Real device mode is selected when the real device provided by the driver is opened.
The partition has exclusive access to the controller’s physical port. The broadcast
domain in this mode is strictly the physical network. This is an instance of 1:1
I/O device mapping;

Virtual mode is selected by opening the virtual Ethernet device. In this mode, all
opened virtual devices share the physical Ethernet port. Broadcast domain, in
this case, extends the physical network with all the virtual devices. This is an
instance of 1:N I/O device mapping. [28]

The ioctl client API provides the state of the device statistic counters and link
status. It allows querying and setting the hardware address used. Finally, the runtime
configuration of multicast reception is done through this interface. [28]

4.2.1.1 Address filtering

Each network driver decides in its implementation if perfect software filtering or im-
perfect hash filtering is done for frame reception based on the target MAC address.
Typically, hardware such as the ENET_QOS controller implements only imperfect hash
filtering if multiple MAC addresses are requested. That is the case when multiple vir-
tual devices are used. This means further processing is needed if only matching packets
should be seen by the driver clients. This decision makes driver development more
flexible. Either the driver’s higher performance may be implemented using imperfect
hardware filtering, or higher security is chosen to ensure the clients see only frames that
belong to them. [28]
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4.2.1.2 Read and write frame transfers

Transfer of Ethernet frames using the read and write calls is done one Ethernet frame at
a time. It is not possible to transfer multiple frames at once. The configured maximum
transfer unit (MTU) determines the maximum size of such a frame. The recommended
value for drivers without jumbo frame support is 1522. If the buffer provided to the read
operation is smaller than this value, the driver can fill the buffer and discard the rest
of the frame. These operations can be asynchronous with the wire frame reception and
transmission. That is, the driver is allowed to buffer the frames internally. If not enough
space is left to hold the frames, any following frames can be dropped and counted. [28]

The driver operations may be implemented as blocking. This means waiting up to
a configured period for a frame to become available for a read operation. This means
waiting for enough space for the transmission for a write operation. In virtual operating
mode, this is true only for frames going to the physical network. Frames going to other
virtual devices never fail to transmit. Nevertheless, insufficient resources may lead to
a drop of these frames on the receiver side. [28]

In nonblocking mode, the read operation returns immediately with a timeout error
if no frame is available. The write operation does the same if insufficient space for the
frame transmission is available. [28]

4.2.1.3 Shared buffer frame transfers

Frame transfers between the driver and client may be done using shared buffer com-
munication (SBUF). This mode establishes a shared memory region, which the driver
provides, and the application maps. This API should offer higher throughput due to the
minimized context switching. The application uses an ioctl call in runtime to switch
to this mode. [28]

Two FIFO rings are established for packet reception and transmission. The client
is responsible for managing the TX ring. The driver is responsible for the RX ring. In
contrast to the read and write mode, both sides can operate on multiple frames simulta-
neously. These rings hold buffer descriptors, which hold an index into the shared memory
region where the buffers reside. The size of the buffers is set to the configured MTU.
The size of these rings is user-configurable, with a maximum size of 511 descriptors. [28]

When the driver receives a frame, a vacant buffer in the RX ring is allocated. This
removes its descriptor from the ring, and the driver copies the frame data into this
buffer. Then, the driver puts its descriptor back into the ring and signals to the client
that a new packet is ready. The client, woken up by this, deques the new descriptor
and may immediately use the frame data in the buffer. After this, the client puts the
descriptor back into the ring. The same holds for frame transmission, but only the driver
and client switch roles. Note that both parties modify both rings and could thus corrupt
the ring of the other party. The case of frame reception is depicted in Figure 4.2. [28]
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Figure 4.2 PikeOS shared buffer communication frame reception. The driver allocates
a buffer, and data is copied into it. The filled descriptor is returned to the ring, and the client
is notified. The client removes the ring upon notification, uses the data and returns the buffer
to the ring. [28]

4.2.1.4 Configuration properties

Configuration of network class devices is done using properties in PropFS. The Ethernet
I/O device must have configurable link settings. These are listed in Table 4.1. Two types
of configurations are defined for real and virtual devices. The configurable parameters
for real and virtual devices are listed in Table 4.2. The driver may also expose any
specific configuration properties. An example of such property for enabling broadcast
frame reception in the ENET_QOS driver was shown in Listing 4.1. [28]

Table 4.1 PikeOS Ethernet I/O device configuration properties. [28]

Pathname Type Decription Default

aneg bool Autonegotiation enabled or not. True
duplex bool Full-duplex enabled or not. True
speed uint32 Link speed in Mbps. 100

4.2.2 DDK Network High Level Module
The DDK Network High Level Module implements the hardware-independent part of
a DDK Ethernet driver. It can be used for ExtFP drivers. It is provided as a binary
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object linked to the hardware-specific driver during build. It implements all the features
introduced in the previous section. These features include configurable software RX
FIFO, handling of blocking and nonblocking modes, real and virtual device access and
the SBUF mode of operation. [28]

The complete interface, which defines the data and control flows between the low-
level and high-level modules, is depicted in Listing 4.2. It is analysed in detail in the
implementation chapter. [28]

4.2.2.1 Hardware address generation

When operating in the virtual device mode, each interface needs to have its hardware
address assigned to receive and transmit frames. These addresses can be configured by
the user or autogenerated based on the real device address. This is done in a way to
prevent address collisions in the network. [28]

MAC addresses are constructed from two parts: the organizationally unique identifier
(OUI) in the three most significant bytes and the network interface controller (NIC) in
the three least significant bytes. The autogenerated address keeps the NIC part. The
most significant byte is set as the interface number shifted left by two bits. This byte’s
second least significant bit is set to mark the address as locally administered. The
following two bytes are set to ASCII string p4. An example of an address generated by
this algorithm is 02:70:34:aa:bb:cc. [28]

/* Provider entry points. */
drv_char_init_prov_t init_prov;
drv_char_init_io_dev_t init_io_dev;
drv_char_init_logic_dev_t init_logic_dev;
drv_char_init_complete_t init_complete;

/* Logical device entry points. */
drv_hlnet_start_dev_t start;
drv_hlnet_stop_dev_t stop;
drv_hlnet_transmit_t transmit;
drv_hlnet_get_mac_t get_mac;
drv_hlnet_set_mac_t set_mac;
drv_hlnet_set_mcast_t set_mcast;
drv_hlnet_ioctl_t ioctl;

Code listing 4.2 API between DDK high-level and low-level modules. Listed are all callbacks
the low-level module must implement. [28]

4.2.2.2 Multicast management

The high-level module abstracts the network class multicast API from the low-level
device. The filtering is implemented using the imperfect option for performance reasons.
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Table 4.2 PikeOS network device configuration properties. At the top are properties common
to both device types. Following are additional real device properties. Last are virtual device
properties in addition to the common ones. [28]

Pathname Type Decription Default

Real/Virtual
mac_address mac MAC address. 00:00:00:00:00:00
receive_queue_depth uint32 Software RX FIFO size. 32
send_queue_depth uint32 Software TX FIFO size. 0
enable_mcast bool Enable multicast RX/TX. False
mcast_table_size uint32 Size of multicast MAC table. No default.
mbuf_pool_size uint32 Software buffers available. No default.

Real
vlan_dev bool Enable VLAN routing. False
vlan_tag_ethertype uint32 0x8100 or 0x88a8. No default.

Virtual
vlan_id uint32 802.1Q tag No default.
vlan_rx_untag bool Strip tag on RX. True
vlan_tx_tag bool Add tag on TX. True
vlan_prio uint32 802.1Q priority value. 0.

That is because standard hardware also implements this option. This means that a hash
table created from the configured addresses is used. Clients may thus receive frames that
do not belong to them. Clients must account for this, but the low lever driver can still
try to minimize the load on the software filtering by using the hardware perfect filtering
if such capability is available. [28]

Addresses can be individually added, deleted or the table reset. The size of the
software table is limited by the mcast_table_size property. Multicast handling must
be enabled on the real device and all virtual devices, which should accept multicast
traffic using the enable_mcast property. The table is created in the virtual device mode
by combining tables from all active virtual devices. [28]

4.2.2.3 VLAN based routing

The high-level module also implements VLAN-aware mode when operating in the virtual
device mode. In this mode, not only the MAC address of each virtual device is taken
into account during software frame filtering, but also the 12-bit VLAN identifier. The
tagging scheme is configurable. This means that not only 802.1Q is supported, but also
802.1ad. Frames without any tag are processed as if having tag 0. [28]

During reception, frames are delivered to the device with a matching tag and MAC
address. If no such device exists, the frame is dropped. Broadcast frames are delivered
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to all devices with matching tags. Multicast frames are delivered to all devices that are
registered for the address and have a matching tag. The tag may be stripped. [28]

During transmission, frames are delivered to the virtual device which matches the
destination MAC and tag. Otherwise, the frame is sent to the physical network. Broad-
cast frames are forwarded to all other virtual devices with matching tags and the physical
network. Multicast frames are forwarded to all devices that are registered for the address
and have a matching tag. The tag may be optionally added before transmission. [28]

4.3 TQ-Systems MBa8MPxL SBC

The integration work is performed on the MBa8MPxL revision 01XX single-board com-
puter (SBC) developed by TQ-Systems GmbH based on their TQMa8MPxL platform.
This board is shown in Figure 4.3. [29] It is based on the i.MX 8M Plus platform de-
veloped by NXP. This platform is designed as a starting base for integrators focusing
on advanced multimedia, machine learning, and industrial automation applications with
high reliability in Industry 4.0. [30]

Figure 4.3 TQ-Systems GmbH MBa8MPxL SBC. The RJ-45 connector on the right is con-
nected to the ENET_QOS controller. The USB 2.0 Micro-B connector next to the SD card slot
in the top right corner provides access to the board’s serial console. [31]

The MBa8MPxL board features four ARM Cortex-A53 cores with an industrial tem-
perature range from -40 °C to 105 °C and 2 GiB of LPDDR4 memory. The board’s I/O
features a wide range of audio and video connectors, which are not crucial for the fo-
cus of this thesis. The essential components are the ENET_QOS ethernet controller
and the Texas Instruments DP83867IS physical layer chip. The controller supports ad-
vanced features, including quality of service, audio video bridging and the IEEE 1588
PTP protocol used for time synchronization in TSN. [29]

PikeOS already supports this target in its board support package (BSP) for this
target. The BSP initializes all peripherals using the Das U-Boot bootloader and supports
selected features using PikeOS drivers.
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4.4 ENET_QOS controller

The ENET_QOS module is a fully compliant IEEE 802.3-2015 ethernet controller. In
addition to the default features of the IEEE specification, it supports a range of addi-
tional ones. A subset of these features applicable to the PikeOS integration and the
IEEE 1588 PTP protocol is introduced starting with Section 4.4.2. [32]

4.4.1 Architecture
The controller is split into three blocks: direct memory access, MAC transaction layer
and the MAC. These provide the core interfaces, functionalities and protocol support.
Each block has its control and status register (CSR) set used for configuration and
querying the block’s state. Figure 4.4 illustrates the controller’s block diagram. [32]

Figure 4.4 ENET_QOS Ethernet controller block diagram. Depicted are the three core blocks
of the controller and how data flows between them. The registers are accessible separately from
the data path. Notable are the frame queue memories, which are not part of the controller. [32]

4.4.1.1 Direct memory access controller

Direct memory access (DMA) access is done using either the Advanced Extensible In-
terface (AXI) or the AMBA High-performance Bus (AHB). These busses are defined in
the ARM Advanced Microcontroller Bus Architecture (AMBA) [32]. The AXI bus is the
one used on the MBa8MPxL [33].

The DMA controller has independent transmit and receive engines. The engines
move the Ethernet frame data between the system memory and the MAC transaction
layer (MTL). A descriptor ring of configurable length from 4 to 1024 is used to minimize
the application intervention. The DMA controller supports up to 5 TX and 5 RX
independent descriptor rings, also called channels. These may be used to split different
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traffic priorities based on the 802.1Q VLAN tags. The driver implementation for basic
functionalities and PTP does not need to handle traffic priorities and is limited to only
the DMA queue 0. [32]

Each descriptor may point to up to 2 data buffers in physical memory. These buffers
do not have any restrictions on their start address alignment, but operations will be
done using the DMA bus alignment. Data, therefore, start at the correct address, but
dummy bytes are still read from or written at the address aligned. The PikeOS high-
level module abstraction layer provides buffers aligned to the DMA bus width. The
structure of the descriptor ring and the descriptors themselves are introduced in the
implementation chapter. [32]

4.4.1.2 MAC transaction layer

The MTL is a simple FIFO memory between the DMA and MAC in the controller. It
regulates the flow of packets between these two blocks. Like the DMA, it features two
data paths, one for TX and one for RX. Each path has eight kibibytes (KiB) of memory
on the MBa8MPxL SBC. [32] Both of the data paths can operate in two modes:

Threshold mode forwards data from and to the MAC once the configured number of
bytes is stored in the queue. Thus, frames may span multiple DMA descriptors;

Store-and-forward mode waits for the complete packet to cross the queue boundary
or for the queue to fill up. Only valid packets are forwarded to the MAC on the
RX data path. Thus, one frame equals one DMA descriptor. [32]

The driver implementation uses the store-and-forward mode. This mode makes the
descriptor ring management more predictable when introducing PTP traffic. However,
this decision limits the driver’s maximum supported frame size to the size of the FIFO.

4.4.1.3 MAC

The controller’s MAC transfers complete frames between the PHY and the controller.
After stripping the physical layer preamble, the MAC applies configured filtering and
other actions for supported protocols. Selected features of the MAC are introduced in
the following sections. [32]

4.4.1.4 Interrupts

For the reduction of the CPU load, the controller supports interrupt coalescing. Each of
the three introduced blocks generates interrupts configured using their enable registers.
Frame reception and transmission are captured per DMA queue. Interrupts are not
queued in the controller and the respective blocks. Because of this, the driver must
handle the event firing again before even the first occurrence is handled. [32]
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4.4.2 PHY support

The media independent interface (MII) is a simple interconnection between MACs and
PHYs. It is widely known as the IEEE Clause 22. [34]

4.4.2.1 MII data exchange

The MII interface provides 10 Mb/s and 100 Mb/s full duplex operation. The transfer
is done across four-bit wide independent receive and transmit paths. Each path also
includes its own delimiter, error and clock signals. The PHY drives the transmit clock
based on the physical layer link speed, 2.5 MHz for 10 Mb/s and 25 MHz for 100 Mb/s.
The receive path extends this with collision detection and carrier sense signals for carrier
sense multiple access (CSMA) on the physical layer. The receive clock is recovered from
the incoming signal using a PLL in the PHY. That is 16 signals in total. [34]

Because the 16 MII signals are separate for every PHY connected to the MAC,
high port density systems require a lower pin count design. Furthermore, the system
clocking design is complex because of the separate TX and RX source synchronous clocks.
The reduced media independent interface (RMII) implements this simplification. The
clocking is done using a system synchronous 50 MHz clock for both TX and RX shared
across all ports. The data paths are reduced to two bits. That is why the clock frequency
is doubled from the 25 MHz used in 100 Mb/s operation in MII. The 10 Mb/s operation
is done using oversampling. That is repeating the same signal for ten clock cycles. To
further reduce the pin count, the collision detection signal is removed. The carrier sense
signal is multiplexed with the RX delimiter on alternate clock cycles as a last reduction.
Consequently, RMII requires seven signals, and the clock is shared across all ports. [35]

To support 1000 Mb/s operation between the PHY and MAC, a gigabit media in-
dependent interface (GMII) may be used. Its design is the same as that of MII, only
extending the data paths to eight-bit wide and enabling a 125 MHz frequency for the
TX clock operating in 1000 Mb/s mode. This clock has a signal separate from the MII
TX clock signal. It is used only in the 1000 Mb/s mode to be backwards compatible
with MII. That is 25 signals in total. [34]

For the same reasons as with MII, reduced gigabit media independent interface
(RGMII) reduces the pin count of GMII. The data paths are reduced to four bits wide,
and double data rate (DDR) signalling is used instead. That is sampling the data on
both the rising and falling edge of the clock signal. Source synchronous clocking is still
used, but the extra TX gigabit clock signal is removed. The CSMA signals are removed.
The TX and RX error and delimiter signals are multiplexed using both clock edges.
That is 12 signals in total. [35]
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4.4.2.2 MII management

The control and status information exchange between the PHYs and MACs is done using
the management data input/output (MDIO) bus. This bus is shared between all the
PHYs and MACs. Two signals drive it: the MDIO signal and the management data
clock (MDC) signal. The clock is not free-running and has an upper limit of 2.5 MHz.
Each PHY on this bus has a five-bit wide address assigned. In its design, it is very
similar to the Inter-Integrated Circuit (I2C) bus. [36]

All PHYs shall support the basic register set consisting of two registers, the Control
Register 0 and Status Register 1. Gigabit PHYs shall also incorporate the Extended
Status Register 15. Registers 2 through 14 are part of the extended register set defined
for the auto-negotiation protocol. That is IEEE protocol Clause 28 or Clause 37. The
whole register set is listed in Table 4.3. The specific contents of these registers needed
for the controller driver are introduced in the implementation. [34]

Table 4.3 Basic and extended MII register set. [34]

Address Name Basic/Extended
MII GMII

0 Control B B
1 Status B B

2,3 PHY Identifier E E
4 Auto-Negotiation Advertisement E E
5 Auto-Negotiation Link Partner Base Page Ability E E
6 Auto-Negotiation Expansion E E
7 Auto-Negotiation Next Page Transmit E E
8 Auto-Negotiation Link Partner Received Next Page E E
9 MASTER-SLAVE Control Register E E
10 MASTER-SLAVE Status Register E E
11 PSE Control register E E
12 PSE Status register E E
13 MMD Access Control Register E E
14 MMD Access Address Data Register E E
15 Extended Status Reserved B

16-31 Vendor Specific E E

Clause 22 management data is exchanged using frames in two types of operations.
That is operation read 10 and operation write 01. Communication starts from the MAC
to the PHY with a preamble of 32 bits of 1, followed by the start field ’01’, the operation
code, the five-bit wide PHY address and the five-bit wide register address. In the case
of a write, the MAC follows with bits 01 and sends 16 bits of data. That is the MII
register width. In the case of a read, it releases the MDIO line and waits on it for the
data from the PHY. The frame format is shown in Figure 4.5. [34]
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Frame fields
PRE ST OP PHYAD REGAD TA DATA

READ 1…1 01 10 AAAAA RRRRR Z0 DDDDDDDDDDDDDDDD
WRITE 1…1 01 01 AAAAA RRRRR 10 DDDDDDDDDDDDDDDD

Figure 4.5 MII management frame format. [34]

4.4.2.3 Controller MII support

The RMII and RGMII interfaces are both supported for the interconnection of the MAC
layer in the controller and the PHY chip. The interface selection cannot be changed
through the controller’s registers. It is done using a physical selection pin sampled
during the controller reset. RGMII is selected on the MBa8MPxL. [32]

Because PikeOS itself does not have an abstraction layer over the MDIO bus or
PHY handling, this must be implemented in the controller’s driver using the provided
registers. Clause 22 management is provided through the MDIO address register at
offset 0x200, setting up the frame structure. The MDIO data register at offset 0x204
holds the data from the PHY after the read operation or the data to submit in case of
a write operation. [32]

4.4.3 IEEE 802.1Q support
The controller supports the IEEE 802.1Q VLAN tagging standard. Both single and
double VLAN tagging are supported. The inner tag, known as customer VLAN (C-
VLAN), and the outer tag, known as service VLAN (S-VLAN), may be replaced or
removed before transferring the frame to the application. On the transmit side, both
tags can be inserted by the controller. It is important to note that the controller requires
the ethernet header type to be set to 0x8100 or 0x88a8 when VLAN tagging is used.
The S-VLAN ethernet type is thus not configurable. This follows the IEEE specification
but makes the controller less versatile. If only one VLAN tag is used, it is considered an
outer tag. The structure and difference of such frames are shown in Figure 4.6. [32]

The VLAN tagging support is also important because it changes the behaviour of the
controller’s maximum transfer size (MTS) set. That is the maximum ethernet frame size
in bytes, including the frame check sequence (FCS), which the controller can transfer. If
VLAN tagging is used, the controller considers this limit to be increased by 4 or 8 bytes
per frame. That is the size of one or two 802.1Q tags, based on the tagging mode. [32]

4.4.4 Filtering features
The controller supports a four-layer filtering sequence of incoming frames. Any frame
that fails the given filter is immediately discarded. In the opposite case, it is passed to
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the upper layer filter or the application in the case of the last filter. The promiscuous
mode may be enabled to skip all the filters and enable the system supervision. [32] The
filtering layers are:

Ethernet filter is the first to receive the frame. It filters frames based on the source or
destination MAC address. Broadcast frames may get dropped or passed. Unicast
frames may get filtered using the perfect filter, in which case all the 48 bits of
the addresses are checked. Any additional unicast addresses may get filtered using
imperfect hash filtering. A hash table of size 64 is used in this case. Its bucket
is considered a pass if it is set to 1. The indexing into this table is done using
the six most significant bits (MSB) of the IEEE 802.3 FCS algorithm applied to
the address. The same applies to multicast frames, which share the hash table
with the unicast. However, unicast and multicast filtering are done and enabled
separately. Group filtering can be done by comparing only specific bytes of the
perfect MAC setup;

VLAN filter is queried after the Ethernet one. It enables the same filtering as can be
done on the Ethernet layer. Eight VLANs may be filtered perfectly. Hash filtering
can be done using four MSBs of the tag’s FCS in a 16-bucket hash table. Only the
12-bit identifier of the tag can be compared instead of the complete 16 bits;

IP filter filters the source or destination IP address of up to eight perfect matches. Both
IPv4 and IPv6 addresses are supported;

TCP/UDP filters the Transmission Control Protocol’s (TCP) and UDP’s source and
destination ports. The configuration is shared with the IP filter for eight perfect
matches, but the TCP/UDP filtering can be selectively enabled per slot. [32]

All the filtering options have their inverse enable flag, which inverts the outcome of
the filter. For example, changing the hash table filtering from pass mode to drop mode.
That is drop when the frame’s index bucket is set to 1. [32]

SMAC ETYPE/SIZE PAYLOAD FCS

SMAC 802.1Q (0x8100) ETYPE/SIZE PAYLOAD FCS

SMAC 802.1ad (0x88a8) 802.1Q (0x8100) ETYPE/SIZE PAYLOAD FCS

Figure 4.6 802.1Q tagged ethernet frame. The preamble, destination address, and interframe
gap are removed for conciseness. From top to bottom, there is a frame without a tag, an 802.1Q
single-tagged frame in the middle, and an 802.1ad double-tagged frame at the bottom. [37]
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4.4.5 PTP features
The MAC block supports all the introduced clock types of the 2008 revision of PTP
in both the one-step and the two-step operation modes. The one-step transmission
is selected per frame in the frame’s DMA descriptor. [32]

4.4.5.1 Local PTP clock

The MAC features one instance of a local PTP clock used for timestamping and provided
to the PTP software in one of two possible configurations chosen by the controller’s
hardware implementor:

External time source connected through a 64-bit wide interface. This configuration
allows the MAC to use a possibly higher-quality external time source while limiting
the PTP seconds to 32 bits instead of the standard 48 bits;

Internal time source possibly providing the full 80-bit PTP timestamps. The upper
16 bits of seconds may still get disabled. In this mode, a clock signal must drive
the internal time source. This option is used on the MBa8MPxL driven by a 100
MHz, ten nanosecond period clock signal. [32]

The internal time source further allows two modes of operation precision:

Digital rollover mode limits the 32-bit nanosecond field to a maximum value of 109−1.
After this value is reached, it rolls over to 0. This provides a 1 ns resolution;

Binary rollover mode limits this field to a maximum value of 0x7FFFFFFF after which
it rolls over to 0. This provides ∼0.465 ns resolution. [32]

The software may update the internal time source by setting the system time or pro-
viding an offset added to the system time. This is referred to as the coarse method, as it
may introduce extreme changes or jitter to the system time. The other option is changing
the flow of time of the internal clock through a so-called addend register. This is referred
to as the fine method. The decision about which method should be used depends on the
capabilities of the PTP software used. The driver implementation on MBa8MPxL uses
the fine method, which is examined in more detail in the implementation chapter. [32]

4.4.5.2 Timestamping support

The timestamp on frame reception is captured per standard at the leading edge of the
first bit of the first octet following the frame’s SOF. This may be selectively done for
all frames, only PTP frames, selected PTP frames or only PTP event frames. The
captured timestamp is returned in the descriptor following the last one for the received
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frame. Thus, each timestamped frame spans exactly two descriptors in store-and-forward
mode. This simplifies mapping the captured timestamps to their respective frames. [32]

The same timestamping rules hold for frame transmission, with the only difference
being that the timestamp is captured after SOF is transferred and not received. Times-
tamping for transmitted frames is selected per frame in the frame’s DMA descriptor.
The captured timestamp is returned in the same descriptor. [32]

Because the timestamping in both directions is far from the network boundary, it
must be corrected. Known PHY latency may be provided to the controller so that it can
be corrected automatically. The controller provides internal ingress and egress delays,
which must be read on link speed change and written into a second set of registers.
Lastly, the errors introduced by clock domain crossing (CDC), the difference between
the PTP clock signal and the selected MII interface, are specified as twice the period of
the PTP clock. [32]

4.4.5.3 PikeOS API

The introduced stable PikeOS API for drivers does not include any functionality to
provide real-time clock access or append timestamps to frames. The summary of what
needs to be done by the implementation while staying backwards compatible is as follows:

• Provide a way to enable timestamping on request;

• Return timestamp for a given TX frame to the PTP software;

• Return timestamps for RX frames to the PTP software;

• Provide access to the PTP clock;

• Provide means to update the clock;

• Provide means to update the frequency of the clock.



Chapter 5

PikeOS driver implementation

This chapter introduces the core ideas and a high-level overview of the implementa-
tion of the ENET_QOS controller driver. Critical design decisions and algorithms
employed are presented.

5.1 Driver properties

Based on the hardware and PikeOS analysis, the following properties define the controller
driver, further called dwmac:

• The driver is a user-level ExtFP DDK driver;

• It belongs to the NET DDK class;

• It uses the DDK Network High Level module;

• It implements the low-level API depicted in Listing 4.2;

• The driver has exclusive access to the controller;

• Generic PHY is accessed using the controller’s MDIO registers.

Even though the driver is designed in a generic way over the platform, one notable
exception currently limits its use to the MBa8MPxL target. PikeOS currently does not
support its Clock Manager module on this platform. Clock Manager enables the config-
uration of the state and rate of clocks on a given platform. Because of this limitation,
the driver currently includes the minimal code needed for this platform’s ENET_QOS
controller clock handling. The PikeOS team is familiar with this limitation.

Note that the following sections do not appear entirely in the order in which the driver
implementation does all the necessary steps. They group logical blocks of operations the
driver needs to do and handle. The reader may infer the order and dependencies of all
these steps from the attached implementation source files.

65
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5.2 Configuration

Before the controller can be set up, two parts of its configuration must be received. The
driver configuration is split into the user PropFS configuration and configuration read
from the controller.

5.2.1 PropFS configuration
The DDK NET logical and I/O device configuration was introduced in Section 4.2.1.4,
and all properties were introduced in Tables 4.1 and 4.2.

One driver-specific boolean property extends the logical device configuration, en-
abling the reception of broadcast frames.

The second addition is the I/O device configuration from the target platform BSP.
In this configuration, we must provide a value for a property of type memmap, which
describes the address and size of the memory region where the controller registers are
mapped on a given platform. For the MBa8MPxL target, the address is 0x30BF0000,
and the size is 0x2000 bytes. The second additional property is the interrupt identifier
for interrupts coming from the controller. Because PikeOS uses an interrupt offset of 32,
the value for our platform is 167.

Because PikeOS does not currently support its Clock Manager module on the target
platform, we need two additional driver-specific properties in the BSP configuration.
These are the default rates of clocks in Hertz driving the controller CSRs and PTP.

The final addition is a uint32 property in the provider configuration describing the
base address of the platform clock management registers. A value of 0 turns off any
clock configuration by the driver. Clock Manager should replace this property.

All of these properties are summarized in Table 5.1.

Table 5.1 ENET_QOS driver specific configuration properties.

Pathname Type Decription Default

Driver
iores_clk uint32 Clock registers base. 0

Logical device
bcast_enable bool Broadcast reception enabled. True

BSP
iores0 memmap Memory map of CSR registers. No default
irq0 uint32 Interrupt identifier. No default
clkhz_csr uint32 CSR clock rate. 266 666 666
clkhz_ptp uint32 PTP clock rate. 125 000 000
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5.2.2 Hardware configuration
The second part of the configuration comes from the hardware itself. This has two
reasons. The controller is incrementally developed, and different revisions and types
exist. The second reason is that the integrator may and must provide configuration
parts using strapping pins on the controller itself. An example of such property is using
either RMII or RGMII towards the PHY. The controller summarises this configuration
in four registers, which must be read to set up the driver correctly. All properties the
dwmac driver needs are listed in Table 5.2. Their usage is clarified further.

Table 5.2 ENET_QOS hardware configuration properties.

Name Type Decription

maxspd uint32 Maximum enabled speed in Mbps.
minspd uint32 Minimum enabled speed in Mbps.
txqsiz uint32 MTL TX FIFO size in number of 256 byte blocks.
rxqsiz uint32 MTL RX FIFO size in number of 256 byte blocks.
hmapsiz uint16 Number of unicast and multicast filtering hash table entries.
nvlans uint16 Number of perfect filtering VLAN entries.
cnts bool Diagnostic frame counters supported.
mdio bool MDIO access through controller enabled.
hdx bool Half duplex support enabled.
tstamp bool Timestamping support enabled. enabled.

5.3 Initialization

From the DDK framework’s point of view, the driver initialization is done by calling the
provider entry points in order of appearance as introduced in Listing 4.2. The high-level
overview of the initialization of the dwmac driver is as follows:

1. init_prov() is called by the driver framework for the dwmac provider eth0 where
the driver initializes an instance of the framework’s network services.

2. init_io_dev() is called for the driver’s configured I/O device. Here, the driver
first allocates its private data structure for the controller. The PropFS properties
are read next. The I/O device is mapped into the driver’s address space based on
the iores0 property. Interrupt handler based on the irq0 property is attached
with highest scheduling priority DRV_THREAD_PRIO_HIGHEST.

3. init_logic_dev() is called for the driver’s logical device dev0. First, an instance
of the High Level device is allocated. Then, all memory required by the con-
troller descriptor rings is allocated. The PropFS configuration is verified. The
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controller is then initialized without starting its operation. A thread for PHY
configuration and link change events is started with the lowest scheduling priority
DRV_THREAD_PRIO_LOWEST. Only after successful initialization the logical device
entry points from Listing 4.2 are registered to make the controller available.

4. init_complete() is called to print diagnostic information about successful con-
troller initialization to the serial console.

Any errors encountered during initialization are propagated, and it is up to the High
Level module how it reacts.

5.3.1 Memory allocation
Dwmac must preallocate three memory regions. Because some of these are directly
shared with the hardware through DMA access, careful cache management, memory
operation order, and alignment must be considered. A notable feature of the PikeOS
allocator is that it is a one-way allocator. This means the driver does not have any
means to free allocated memory. This is done to simplify PikeOS certification.

The first region is the hardware descriptor ring, which spans from 4 to up to 1024
descriptors. The size of this ring is statically set to 512 based on other PikeOS drivers
upon discussion with the PikeOS team. This is done for the RX and TX directions,
which are allocated simultaneously. The TX ring starts at descriptor offset 0, and the
RX ring follows at offset 512. The descriptor structure is depicted in Listing 5.1.

struct dma_descriptor {
P4_uint32_t des0;
P4_uint32_t des1;
P4_uint32_t des2;
P4_uint32_t des3;

};

Code listing 5.1 ENET_QOS controller DMA descriptor. The four uint32 fields represent
bitfields, defined based on the direction, TX or RX, and based on the owner, driver or controller.

The allocation is done with memory page size alignment to satisfy the DMA bus
alignment requirement. Because access permissions on this region must be set, the
allocation size is rounded up to page size. First, the data cache of the allocated region
is flushed, and then the access mode is changed to uncached strongly-ordered. This
ensures the hardware sees our writes, and we can read back the data it writes without
data loss. If this is not done, it could lead to data loss on CPUs with cache lines
larger than one descriptor. When receiving a frame, the driver immediately queues the
descriptor for reuse. This means the CPU needs to flush the cache line. If any other
descriptor has been written by the hardware with another frame, that frame gets lost.
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The second region is the frame data buffers. The High Level module preallocates
these in a pool of structures called mbuf and handles the alignment. However, during
frame reception, the buffer’s data cache must be invalidated to force retrieval of the
actual data stored in the buffer. On transmission, the buffer’s data cache must be
flushed for the same reason from the hardware’s point of view.

Because dwmac does not handle the buffers, a pointer ring must be allocated to
map the descriptors to the data buffers. The driver asks for the mbuf buffers from the
High Level module, which returns pointers to them. No special handling of this memory
region is needed.

5.3.2 Controller initialization
The controller initialization configures its three main blocks: the DMA, MTL and MAC.
The register size of the controller is 32 bits. The framework provides the driver with
drv_io_write32() and drv_io_read32() functions to access the controller registers.
These operate on an instance of struct drv_io_str, which represents a mapped I/O
device the driver receives from the framework during the init_io_dev() procedure.
This is important because the framework initializes this structure with the platform
endianness, and the driver is thus portable without any modifications or conditional
compilation. Listing 5.2 shows an example of register modification using this API.

P4_uint32_t reg = drv_io_read32(&io, REGISTER_OFFSET)
| REGISTER_FLAG;

drv_io_write32(&io, REGISTER_OFFSET, reg);

Code listing 5.2 Usage of DDK platform independent register access.

The summarized order of controller initialization is as follows:

1. The unicast MAC address set in the controller is read. It may be set by the
bootloader. This address is used if the High Level module sets no other address.

2. Software reset of the controller is done with a timeout of one second.

3. The hardware configuration introduced in Table 5.2 is read after reset.

4. The driver descriptor ring handling is initialized. Each RX descriptor is associated
with a data buffer.

5. The DMA and MAC blocks are initialized without starting the frame reception
and transmission. The MTL block is set to store-and-forward mode.

6. The PHY connected to the controller is autodetected and initialized.
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5.3.3 DMA initialization
The DMA initialization consists of the descriptor rings and the AXI bus.

5.3.3.1 Descriptor rings

The descriptor is a simple structure of four 32-bit wide bitfields numbered 0 to 3, as shown
in Listing 5.1. Its four bitfields differ based on the descriptor direction, that is, controller-
to-driver or driver-to-controller, and by the type of operation, TX or RX. Bit 31 of field 3
is common to all of these modes. If this bit is set, the controller may use this descriptor.
For the driver-to-controller direction, fields des0 and des1 hold the physical address of
the mbuf associated with this descriptor.

For each direction, the controller descriptor ring gets configured with the address of
the first descriptor, the number of descriptors in the ring and a tail pointer. The tail
pointer indicates the first descriptor the driver owns. The controller consumes descriptors
until the current descriptor pointer is less than the tail pointer. Then, the DMA goes
into suspend mode and waits for a write to the tail pointer. The controller automatically
wraps the address when the end of the ring is reached. The application must own at least
one descriptor to differentiate between all descriptors being available and no descriptor
being available. This operation is depicted in Figure 5.1. Dwmac provides the controller
with 511 RX descriptors and no TX descriptors at initialization time.

Figure 5.1 ENET_QOS DMA ring structure. Illustrated is one DMA ring. The blue de-
scriptors belong to the driver; the white ones belong to the controller’s DMA. The tail pointer
indicates the first driver-owned descriptor. The current pointer indicates the controller’s descrip-
tor for the next frame. [32]

When working with the DMA descriptors, the platform endianness must be consid-
ered. The 32-bit wide bitfields are handled as little-endian integers by the controller.
The driver framework provides us with the drv_ltoh32() and drv_htol32() functions,
which do conversion between the host byte order and little-endian order. These must be
used for all accesses to the descriptors.
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5.3.3.2 AXI configuration

The AXI bus is based on transactions. We must configure the number of outstanding
requests for read and write operations. This value is 16 for the MBa8MPxL. We do not
support the AXI Low Power Interface (LPI), so it needs to be disabled. Also, read and
write operations may be done in bursts to increase throughput. The maximum length
of each burst in the number of beats must be configured. A beat is a unit of one read
or write operation, 128 bits on the MBa8MPxL. At most, the size is limited by half of
the MTL FIFO set in txqsiz and rxqsiz hardware properties. The last configuration
property of the AXI configuration is the frame data buffer size in bytes. [32]

5.3.4 MAC initialization
The MAC block initialization is needed for proper frame filtering and PHY support.

First, the bootloader MAC address is written back to the controller, which was
cleared by its reset. Based on the PropFS configuration, the filtering is prepared. As in-
troduced in Section 4.4.4, the controller supports perfect and hash-based destination
MAC address filtering on frame reception. Because different controller revisions do not
expose the number of perfect MAC addresses allowed for perfect filtering in registers,
only one address is filtered perfectly by dwmac, and the hash table handles the remain-
der. Therefore, we must configure the controller to pass frames that pass at least one of
these filters. Broadcast frames are filtered based on the bcast_enabled property.

The configured frame MTS must be set in the MAC block in addition to the DMA
block. By default, Watchdog and Jabber controller functions monitor the number of
bytes on both frame paths and stop the transfer if more than 2048 bytes are detected.
Because the user-configurable value is limited by 16 379 bytes, we must turn off these
functions if the user requests more than 2048 bytes.

5.4 Frame transfers

Frame reception and transmission are turned off by default in the dwmac driver. Both
are enabled on demand using the start() and stop() logical device callbacks. The
operations done by the start() callback are:

1. Interrupts for the DMA channels get enabled.

2. The controller DMA RX and TX channels get enabled.

3. The MAC transmitter and receiver are started.

4. The High Level module frame queue is woken up.
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The operations done by the stop() callback are:

1. The High Level module queue is stopped.

2. The controller DMA TX channel is stopped.

3. The driver waits for the MTL layer to finish all its transmissions to prevent errors
on subsequent calls to start().

4. The MAC transmitter and receiver are stopped.

5. The DMA RX channel is stopped.

6. The driver waits for all frame data to be transferred to the system memory to
prevent data loss.

7. The DMA interrupts get disabled.

5.4.1 Frame interrupts
The only interrupts the dwmac driver enables are the ones for the DMA channel 0.
As was described in Section 4.4.1.4, care must be taken not to miss any interrupts.
The DMA controller exposes a global interrupt status register with a status bit for
each enabled DMA channel. This register is self-cleared once all channel interrupts are
handled. Each DMA channel has its interrupt status register. Only enabled interrupt
events trigger changes in this register. The dwmac driver enables three events: frame
received, frame transmission completed and bus error. This register must be cleared by
writing 1 to the bit of the event.

The interrupt handling algorithm, depicted by a pseudo implementation in List-
ing 5.3, is as follows. Read the global status register. If the channel 0 status bit is not
set, stop. Otherwise, read the channel 0 status register. Clear all bits in the channel 0
status register. If a bus error is detected, raise driver panic. If a transmission is finished,
handle the TX ring update. If a frame was received, handle the RX ring update. Go
back to reading the global status. Pseudo implementation is depicted in Listing 5.3.

5.4.2 Frame reception
Frame reception is handled solely by the RX interrupt callback. Once the controller
marks a descriptor as belonging to the driver by clearing its bit 31 in the des3 field,
the descriptor’s mbuf containing the frame data is returned to the High Level module.
The driver remembers the index of the descriptor it should use for reception next. This
indexing maps the given descriptor to its mbuf, which should be returned to the High
Level model’s queue.
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dma = get_dma_status()
while dma is not empty:

ch0 = get_status(channel=0)
confirm_status(channel=0)

if ch0 encountered DMA error:
panic()

if ch0 finised transmission:
complete_tx(channel=0)

if ch0 received frame:
complete_rx(channel=0)

dma = get_dma_status()

Code listing 5.3 Interrupt handling pseudocode of the dwmac driver.

The frame reception algorithm, depicted by a pseudo implementation in Listing 5.4,
is as follows. Read the descriptor at the index. Read the ownership bit 31 of field 3. If
the controller is the owner, stop. Otherwise, check the descriptor error bit. If it is set,
queue the descriptor back. Set the owner bit, forward the driver index and set the DMA
tail pointer to the address of this descriptor. Go back to reading the next descriptor.
If no error is detected, request a new data buffer from the High Level module software
queue. Drop the frame and queue the descriptor if no other buffer is available. Go back
to reading the next descriptor. Otherwise, invalidate the data cache of the RX buffer
and pass it to the High Level module software queue. Set the physical address of the
new buffer in the descriptor. Flush the data cache of the new data buffer and queue the
descriptor back. Go back to reading the next descriptor. Stop if the number of iterations
reaches the length of the DMA ring.

5.4.3 Frame transmission
Frame transmissions are split into two parts. The driver remembers two indexes: the
first descriptor it should use for the subsequent transmission and the oldest descriptor
used for transmission. It also remembers the number of empty descriptors.

The first part involves enqueuing the frame into the hardware TX ring. This is done in
the transmit() logical device callback. First, the passed-in data buffer length is checked
against the configured MTS. If the buffer is too large, the frame is dropped. Next,
the number of empty descriptors is checked. If no descriptor is available, the frame
is dropped. Otherwise the data cache of the buffer is flushed. The physical address of
the buffer is set in the descriptor, and the descriptor is queued the same way as in receive.
The number of available descriptors is decremented. The High Level module software
queue is stopped to prevent new frame transmissions if no other descriptor is available.
On multicore systems, transmit() may still receive frames even if this is done.
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The second part happens in the TX interrupt. Its handler walks the descriptor ring
from the oldest index until a descriptor owned by the controller is reached. All mbufs
associated with the descriptors until this one are returned to the High Level module for
reuse. This loop also stops if the number of free descriptors equals the length of the ring.
If the software queue was stopped by transmit(), it is enabled again. That is because
if the interrupt was called, at least one descriptor must be available.

foreach i = 0..DMA_RING_LENGTH:
des = dwmac.rx_des[dwmac.rxi]
mbuf = dwmac.rx_mbuf[dwmac.rxi]

if controller owns des:
return

if des contains error:
set_des_own_bit(des)
dwmac.rxi += 1
dwmac.rxi %= DMA_RING_LENGTH
set_dma_rx_tail(des)
continue

new_mbuf = alloc_mbuf()
if got new_mbuf:

invalidate_cache(mbuf)
hlnet_rx(mbuf)
mbuf = new_mbuf

flush_cache(mbuf)
dwmac.rx_mbuf[dwmac.rxi] = mbuf
set_des_own_bit(des)
dwmac.rxi += 1
dwmac.rxi %= DMA_RING_LENGTH
set_dma_rx_tail(des)

Code listing 5.4 RX interrupt handling pseudocode of the dwmac driver.

5.5 Filtering

Perfect unicast MAC address filtering is always enabled and is done by programming the
MAC address bytes into the controller MAC address registers. The controller is assigned
this address as its own.

5.5.1 MAC filtering
Hash-based filtering is enabled on demand separately for unicast and multicast traffic.
In addition to enabling the traffic type, addresses that should pass must be programmed
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into the filtering hash table. Programming of the table must be done carefully due to two
reasons. The first reason for this is the fact that this table is shared between both kinds
of traffic. The second is the PikeOS logical device API, which splits the configuration of
unicast and multicast addresses into the set_mac() and set_mcast() callbacks. These
callbacks receive as an input argument a list of MAC addresses the hash-based filter
should pass for that kind of traffic. When any of these is called twice, the filter must
be configured as if the first call did not happen. When an empty table is passed, the
hash-based filter should be disabled for the given traffic type.

The table is represented by N = hmapsiz/32 controller registers, where 32 is the
register size in bits. This implies X = 32 − log2 hmapsiz bits are needed to index the
entire table, of which 5 bits are needed to index into one register. Indexing is done
by applying the IEEE 802.3 FCS algorithm to the MAC address. The result gets bit-
reversed. That is, 1010 in binary becomes 0101. This reversed value is shifted right by
X bits, giving the index. The driver thus uses:

register = index >> 5 (5.1)
bucket = index & 0x1F (5.2)

to enable filtering passthrough for each requested MAC address.
Let us consider an example. Both types of traffic have hash-based filtering enabled,

but only multicast traffic enabled bits 2-63. Multicast filtering gets turned off by a call to
set_mcast() with an empty list. If we only turn off multicast hash filtering by clearing
its flag, unicast addresses hitting bits 2-63 will still get passed. There is no correctness
problem because the software must handle the imperfect filtering. However, leaving the
table like this introduces an unnecessary performance penalty. The same example can
be applied to reprogramming the traffic type with a new address list.

The dwmac driver solves this by holding a software copy of the hash table for each
traffic type separately. When any type gets reprogrammed, the table is configured only
for the other type first, and the current type gets added to it afterwards. If the hardware
property hmapsiz indicates no hash filtering support, multicast traffic is passed without
filtering using the pass-all multicast flag. Unicast traffic is passed using the promiscuous
mode flag in this case. That is, all traffic gets passed.

5.5.2 VLAN filtering

Even though PikeOS supports VLAN tagging on virtual devices, during dwmac im-
plementation, it was discovered that no other project needed to implement hardware
support for VLAN tagging. It was done only in software. Consequently, there exists no
API to apply VLAN filters to Ethernet controllers.
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The dwmac driver implements hardware support for VLAN filtering of single-tagged
frames. It does not use the controller’s more advanced features, such as applying or
changing the frame tags, to stay compatible with the existing software implementation.
The filtering may be done imperfectly, as with multiple MAC addresses, so the High
Level module can decide if it wants to filter perfectly. The proposed C API is based on
the MAC address API as follows:

P4_e_t set_vlan(
P4_uint16_t eth_type,
P4_uint16_t *vid_list,
P4_size_t entries);

Code listing 5.5 Proposed PikeOS API for hardware VLAN filtering configuration.

The set_vlan function is given a list of the complete 16-bit VLAN tags, not just
the 12-bit identifiers, and a single Ethernet frame type that applies to all of them.
Thus, 801.Q and 802.1ad cannot be mixed. This is done because the same holds for the
configuration of Ethernet devices through PropFS.

Dwmac configures the controller’s VLAN filter registers based on the nvlans prop-
erty. The VLAN promiscuous mode is enabled if the requested number of VLANs
exceeds the number the hardware supports. The filtering is done based on the 12-bit
identifiers of the given tags because the current software implementation does the same.

5.6 PHY control

The PHY implementation is done as a generic driver for any Clause 22 adhering PHY.
This is done to make the dwmac driver portable as much as possible. The order of PHY
initialization is as follows:

1. The MII bus is scanned on all 32 addresses starting with address 0 by a register
read to autodetect the PHY. If multiple PHYs occupy the same bus, the PHY with
the lowest address is used.

2. The PHY is reset using the Clause 22 Control register.

3. The PHY abilities get discovered. This includes detecting whether the PHY sup-
ports auto-negotiation, the link speed and duplex operation range, and whether
the extended register set is supported.

4. The driver I/O device link configuration is checked against the PHY abilities.
Without the extended register set, an I/O device link other than auto-negotiation
gets refused as unsupported by the PHY. Because auto-negotiation is enforced for
link speeds greater or equal to 1000 Mbps by IEEE 802.3 [34], the configuration
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is refused if the PHY does not support the extended register set and the configured
device link is set to 1000 Mbps. That is because the advertised speeds need to be
changed to reflect this, which is impossible without the extended set.

5. The PHY link event thread is started.

5.6.1 Controller MDIO access
The Clause 22 protocol introduced in Section 4.4.2.2 is accessible through the controller’s
MDIO address and data registers. That is if the mdio hardware property is set. It
is entirely transparent to the driver. To do any operation, the driver fills the address
register with the PHY address, register address, and rate of the CSR clock. The rate
is given to the driver in the clkhz_csr BSP property. The controller must select an
appropriate divider because the MDIO clock rate cannot exceed 2.5 MHz and is driven
from the CSR clock. The data to be read or written come from the MDIO data register.

These operations are started by setting the bit 0 of the address register and waiting for
it to become 0. The dwmac driver implements these as blocking operations with a polling
rate of 10 µs and a timeout of 1 ms. Therefore, any PHY operation may timeout.

5.6.2 Link event thread
A worker thread is started to configure the PHY, handle link change events and set the
controller and RGMII TX clock. The polling rate is set to four times a second. Each
iteration’s current link state retrieved from the PHY is checked against the previous one.
If the link changes to down, only a diagnostic message is shown. Even though PHYs
should restart the auto-negotiation automatically, the driver reconfigures the PHY to
prevent issues with non-conforming PHYs. If the link comes up, the controller and
RGMII TX clock are configured for the negotiated link speed and duplex mode.

If auto-negotiation is used, the link speed must be resolved from the Clause 22 auto-
negotiation advertisement registers. Full duplex mode is always given precedence over
half duplex mode. First, the MASTER-SLAVE Control and Status registers 9 and 10
are examined. If both carry a flag for either 1000 Mbps full or half duplex mode, it
is used as the negotiated link. Otherwise, the Auto-Negotiation Advertisement and Link
Partner Base Page Ability registers 4 and 5 get examined. Any 100 Mbps mode gets
precedence over any 10 Mbps mode.

5.6.2.1 Controller link configuration

When the link event thread encounters a new link-up event, the controller must be
configured for the new settings. Nothing is done if the new link settings do not pass
a check against the maxspd, minspd and hdx hardware properties.
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First, the controller is stopped as if the stop() logical device callback was called.
Modifying the MAC’s configuration is not allowed if it is actively operating. Then, the
duplex is changed because the MTL TX FIFO must be flushed when switching to half-
duplex. Next, the controller’s speed is changed. This is done by setting two bits toggling
between 10, 100 or 1000 Mbps. Because RGMII is used on the MBa8MPxL, the RGMII
TX clock towards the PHY must also be set to the correct frequency. This is the part
of the driver that the Clock Manager should replace. The clock registers are not part of
the ENET_QOS controller. The base frequency is 125 MHz, and a correct divider must
be set based on the link speed. Table 5.3 lists all the divider settings. This is done only
if the iores_clk property is not 0. The last step is starting the controller again if it
was started before the link change event. The link thread ignores any errors as it does
not have the means to react meaningfully. That is other than reporting the error.

Table 5.3 MBa8MPxL RGMII TX clock divider settings.

Mbps Target MHz Divider

1000 125 1
100 25 5
10 2.5 50

5.7 IOCTL interface

The low-level driver must provide three services through the ioctl interface.
The first service returns the current link state and speed. The returned value is the

current link configuration set in the controller, which is saved when its configuration
changes. If the controller’s reconfiguration by the link event thread fails, this may be
a different state than the PHY reports.

The second two services return and clear the state of the controller’s diagnostic
counters. The controller reports support for these in the cnts hardware property. If it
is not set, the driver’s only counters are drops counted by the transmit() callback and
RX interrupt handler. If the property is set, the controller supports a granular set of
9 counters for the TX direction and 13 for the RX direction. These are combined with
the drop counters kept by the driver. This combination is then mapped into a PikeOS
counter structure for each direction depicted in Listing 5.6.

5.8 PTP integration

Implementing the functionalities needed for PTP integration on the MBa8MPxL target
using the ENET_QOS controller is based on a previous experimental PikeOS integration
of TSN on the ls1028a target.
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struct drv_net_stats {
P4_uint64_t bytes;
P4_uint64_t frames;
P4_uint64_t bcasts;
P4_uint64_t mcasts;
P4_uint64_t errors;
P4_uint64_t drops;
/* Only for TX direction. */
P4_uint64_t collisions;

};

Code listing 5.6 PikeOS DDK NET diagnostic counters structure

5.8.1 PTP software
The PTP software running on the target is a modified PTPv2 implementation available
on GitHub at ptpd/ptpd. It supports the E2E and P2P delay measurements while
acting as an ordinary clock slave or master. It supports both the multicast and unicast
transports over Ethernet and IP. It also supports the 802.1AS profile. It does not support
the Management general messages. [38]

5.8.1.1 Clock servo

The central part of any PTP software is its clock servo algorithm. This component
adjusts the local clock based on the offsetFromMaster and meanDelay values. It is the
component PTP does not define. Figure 5.2 shows a block diagram of ptpd’s clock servo.

Figure 5.2 PTPd clock servo block diagram. The one-way delay is filtered using a low-pass
IIR filter. The master offset is filtered using a two-sample average low-pass FIR filter. Output
from the PI controller is the ppb adjust of the local clock. [39]

The output of ptpd’s clock servo is the fractional tick-rate ppb adjustment of the
local clock. It comes from its proportional-integral (PI) controller. The PI controller
corrects both the frequency and time of the local clock. The proportional term is the
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time difference between the master and slave clocks. The integral term is the frequency
difference of the two clocks. Before the inputs are passed to the PI controller, they are
filtered using two low-pass filters to reduce jitter. [39]

The master offset is filtered utilizing a finite impulse response (FIR) filter. It is im-
plemented as a two-sample average:

y[n] =
x[n]

2
+

x[n− 1]

2
(5.3)

where x[n] is the filter’s input signal and y[n] is the output signal. This is done because
the PI controller does not filter effectively high-frequency noise. This filter introduces
a one-sample delay, but the tracking error introduced by this is negligible. [39]

The one-way propagation delay passes through a first-order infinite impulse response
(IIR) filter with a variable cutoff frequency defined as:

s× y[n]− (s− 1)× y[n− 1] =
x[n]

2
+

x[n− 1]

2
(5.4)

where s is the filter’s stiffness term. This term controls the filter’s phase and cutoff. It
starts at a value of one, which leaves only the two-sample average, the same as the LP
FIR. It then increments the stiffness term with each sample until reaching a maximum
value. The higher s term lowers the filter’s cutoff, which in turn smooths out the one-way
delay. The one-way delay is filtered separately from the master offset for two reasons. [39]

As the one-way delay is sampled at a lower rate, it is interpolated in the combination
with the master offset. The result of this interpolation is lowering the frequency of the
one-way delay’s noise. This allows more noise to pass through the LP filters. Separating
the filtering eliminates the error introduced by the interpolation. [39]

Secondly, the one-way delay is dependent on the network topology. It thus has vastly
different characteristics than the master offset. The one-way delay is nominally close to
a constant. Therefore, it can be filtered using a low-cutoff filter without increasing the
clock servo’s tracking error. On the other hand, this property of ptpd’s clock servo
makes it less suitable for applications where the network topology is not stable. [39]

5.8.2 Clock control
The ENET_QOS clock control implementation provides the three functionalities re-
quired by ptpd: setting the system time, getting the system time, and adjusting the
clock’s frequency. Because ptpd returns ppb adjustments from its PI controller, it sup-
ports the fine system time update method.

A notable property of the implementation is that only the digital rollover mode
is supported. The dwmac driver is the base for future integrations of similar controllers
such as GMAC. This work does not delve into the implementation of other TSN features
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because they cannot be implemented without the controller’s PTP features first. How-
ever, future integrations may require features such as EST, and these are not supported
by the controllers in the binary rollover mode [32].

5.8.2.1 DDK Real-time Clock Class

PikeOS tracks only monotonic time in units of nanoseconds since startup in a 64-bit un-
signed integer P4_time_t. Its resolution depends on the platform and configuration. [6]
To provide applications with access to wall time clocks, the PikeOS x86 architecture
variant introduced the DDK Real-time Clock Class (RTC). This class is typically imple-
mented as a Kernel Driver providing a file. The ls1028a integration adapted the RTC
file API for PTP clocks:

• start() is called by the RTC framework when an application opens the driver’s
file for writing;

• set_timestamp() directly sets the clock’s system time to the one provided in its
P4_time_t parameter in the PikeOS format;

• get_timestamp() retrieves the clock’s system time in the PikeOS format into its
P4_time_t parameter;

• adjust() modifies the clock’s frequency based on a 32-bit signed integer parameter
carrying the ppb adjustment.

5.8.2.2 ENET_QOS PTP Kernel Driver

This API is implemented by a second driver, dwmac_ptp RTC Kernel Driver. The
ptpd control servo accesses the ENET_QOS’s PTP clock through this driver. The
implementation ignores the controller’s 16-bit higher-second register for simplicity, which
limits the second resolution to 32 bits. That is to the year 2106.

The set_timestamp() function first transforms the PikeOS time to the controller’s
representation in split seconds and nanoseconds:

seconds =
P4_time_t

109
(5.5)

nanoseconds = P4_time_t % 109 (5.6)

and sets its seconds and nanoseconds 32-bit registers to these values. The inverse is done
by the get_timestamp() function:

P4_time_t =
(
seconds× 109

)
+ nanoseconds (5.7)
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The core function of the driver is the start() function. It first checks if the main
driver enabled the timestamping block; if not, it returns an error. Otherwise, it initializes
the values of the increment and addend registers. When the controller’s timestamping
block operates in fine mode, the timestamping and timekeeping employ a pair of phase
accumulators [40]. This is depicted in Figure 5.3.

Figure 5.3 ENET_QOS double phase accumulator clock. Depicted is the timestamping
utilizing the addend register. Its value is added to a 32-bit accumulator, which ticks every
time it overflows. On each overflow, the subsecond register is incremented by the configured
amount. On each subsecond overflow, the seconds register is incremented. The subseconds
register is depicted as 32-bit since it supports the digital and binary rollover modes. [40]

The seconds register of the clock is incremented on each overflow of the subsecond
accumulator. Because the implementation considers only the digital rollover mode, this
overflow occurs once the subsecond accumulator reaches 109 nanoseconds. The accumu-
lator is incremented by an increment nanoseconds configured by the driver.

In the coarse update method, this is the period of the PTP oscillator, which has
a frequency defined by the clkhz_ptp property. The subnanosecond remainder may
also be configured, multiplied by 28. As an example, the nanosecond increment is five
for 5.3 ns period, and the subnanosecond increment is 0x4C. [32] The driver implements
this in picoseconds to stay in integer arithmetics:

ps =
1012

clkhz_ptp
(5.8)

ns =
ps
1000

(5.9)

subns =
(ps % 1000)× 256

1000
(5.10)

In the fine method, the subsecond increment is driven by a frequency generated by
overflowing the addend accumulator. The PTP oscillator drives its increment. [32] Let
y be the number of overflows of the subsecond accumulator in one second. If this value
gets multiplied by 232, the size of the addend accumulator, the result represents the total
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of the addend value added clkhz_ptp times. That is, addend is the total divided by the
oscillator’s rate. [40] Mathematically:

y =
1012

ps
(5.11)

addend =
y × 232

clkhz_ptp
(5.12)

The driver doubles the ps value from Equation 5.8. This is done because the cal-
culated addend is divided by two and thus equals 231. That is, if the remainder of the
division by the oscillator rate is 0. This allows its fine-grained control in both directions
by the ptpd’s clock servo, which controls the frequency by adjusting the addend value.
As an example, for a 125 MHz PTP oscillator, period of eight nanoseconds, the ps is 16
000, and the addend is 0x80000000.

The frequency adjustments are done through the adjust() function, which receives
a 32-bit signed ppb value. The driver then calculates the new addend value as:

new = addend+
addend× ppb

109
(5.13)

and writes it into the addend register. The calculation always uses the addend value
from driver initialization. That is without any previous modifications.

5.8.3 Timestamping
Timestamping is enabled on demand by the application requesting timestamping using
an ioctl call through the main dwmac driver. This is done to keep the drivers backwards
compatible. Dwmac, in this case, configures the DMA rings for timestamping, initializes
the timestamping and programs the correction values.

Drivers provide timestamps for PTP packets in the packet’s mbuf buffer. On the RX
data path, the 8 bytes of the timestamp are appended to the received packet data. On
the TX path, the timestamp bytes are written at the beginning of the buffer. It is then
up to the modified DDK NET High Level module to provide the timestamp further to
the application. This depends on whether the new boolean enable_ptp property is set
on the virtual device. If it is not, the module removes the timestamp from the buffer
before passing it to the application.

Packets which should get timestamped in the TX direction are issued through another
ioctl call instead of the regular packet send method utilizing the write function. This
interface was chosen because applications may selectively request only some TX packets
to get timestamped. Furthermore, the ioctl call returns the timestamp for the given
packet in the same context to the application.
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5.8.3.1 DMA modifications

For both the TX and RX channels, a timestamp for a given packet is given in the DMA
descriptor’s fields des0, holding the nanoseconds, and des1, holding the seconds. These
fields are transformed to the P4_time_t representation using Equation 5.7.

The driver requests TX timestamps by setting a timestamping bit in the packet’s
descriptor before passing it to the controller. The driver may request one-step times-
tamping, but the application API currently does not provide a means for the applications
to request one. In the transmit() callback, the driver then waits on the given descriptor
until the controller marks the descriptor as not owned by it. The driver then verifies that
the descriptor contains no error bits set and retrieves the timestamp. This operation
may timeout if no timestamp is received or the descriptor is marked again as belonging
to the controller.

During the timestamping initialization, the driver modifies the RX DMA ring to
retrieve the RX timestamps. The controller is configured to timestamp every received
packet. It is then up to the High Level module and the application to decide if they are
interested in the packet’s timestamp. The controller returns the timestamp in an RX
descriptor called the context descriptor. Its sole purpose is to return the timestamp of
an RX packet. This descriptor is the descriptor following the packet’s last descriptor.
Because dwmac operates in store-and-forward mode, it is the packet’s second descriptor.
During the timestamping initialization, each second descriptor is cleared of its associated
mbuf structure for its reuse. This, in turn, effectively cuts the RX descriptor ring length
to half. That is 256 descriptor. The modified ring structure is depicted in Figure 5.4.

Figure 5.4 ENET_QOS timestamping DMA ring structure. The blue descriptors belong
to the driver; the white ones belong to the controller’s DMA. Indicated is that every second
descriptor is a context holding the packet’s timestamp. [32]
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5.8.3.2 Timestamp correction

In the ingress direction, the timestamp captured by the MAC is delayed to the point
when the SOF of the incoming frame hits the local PHY. The captured timestamp must
be thus reduced. The unknown PHY latency is not corrected because the driver expects
operation with a generic PHY. The MAC’s internal nanosecond latency is read from its
latency status register. Because the correction value is added to the timestamp by the
MAC, it must be programmed back with the bit 31 set for negative value and bits[30:0]
set to 109 − ingressLatency. This is done on every link speed change.

In the egress direction, the internal latency is read from the egress latency status
register and written back for correction without modification. These four combined
read and write operations on the internal latencies must be done by drivers because the
controller cannot automatically convert them to the correct format when operating in
the binary rollover mode. [32]

The CDC synchronization error specified as 2 × clkhz_ptp is added to the latency
in the ingress direction and subtracted in the egress direction by the driver before pro-
gramming the correction [32]. This can be done only because one-step TX timestamping
is currently not supported. Otherwise, these corrections would have to be applied man-
ually by the driver when reading the timestamps back because the equation for one-step
mode differs, and this mode is enabled on demand per frame.





Chapter 6

PikeOS driver testing

This chapter is dedicated to testing all the implemented functionalities of the
ENET_QOS Ethernet controller through the dwmac driver. The tests include ba-
sic functionalities, advanced filtering, and essential tests of the PTP implementation.

6.1 Setup

The driver is tested through a direct Ethernet connection between a Lenovo ThinkPad
E14 Gen 4 AMD laptop and the MBa8MPxL target. This is done to exclude the influence
of the network topology and configuration on the testing procedures. Furthermore, this
simplifies the forging of testing packets because values of fields such as TTL can be
ignored since no routers are engaged. If not specified otherwise, the driver binary used
is the development compilation variant as provided by the PikeOS IDE. That means
compiler optimizations are disabled, and assertions are enabled to catch invalid states.

The attached implementation includes test cases in Python and shell scripts. The
only supported platform is Linux. Any distribution may be used under the condition
that bash, ethtool, ping, Python and Scapy packages are available. Scapy is a Python
library that enables decoding and forging packets of a wide range of protocols, sending
network traffic and matching responses [41].

Table 6.1 lists configuration properties common to all tests.

6.2 Basic functionality

The basic functionality test verifies the core functionality of the driver, that is, packet
send and receive. It utilizes an instance of an Internet Control Message Protocol (ICMP)
echo server in PikeOS. The server is configured with one virtual interface. This ICMP
interface is assigned the real device dwmac provides. It is assigned the link-local IP
address 169.254.0.100.
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Table 6.1 PropFS configuration common to all tests.

Pathname Default

I/O device
aneg True

Real device
enable_mcast True
mac_address 00:00:00:00:00:00
mbuf_pool_size 2048
mcast_table_size 32
receive_queue_depth 512
send_queue_depth 512

dwmac
bcast_enable True
clkhz_csr 266 666 666
iores_clk 0x30380000
iores0 0x30bf0000
irq0 167

This test includes verification of the bcast_enable property. Scapy allows sending
and matching frames of the Address Resolution Protocol (ARP), which utilizes broadcast
Ethernet traffic. With the property disabled, an ARP request for the target’s MAC
address is made using Scapy. The expected result is a timeout since the frame should not
traverse through the controller. Then, the property is enabled, and the test is repeated.
In case of an ARP reply, one ICMP echo-request is issued towards the target’s IP
address, and an echo-reply is expected to be received.

The test results, listed in Table 6.2, indicate that the driver correctly receives and
transmits packets. They also show that it properly filters broadcast traffic based on the
bcast_enable property.

Table 6.2 Results of the basic driver test.

Traffic type Expected Actual

bcast_enable = False
ARP No response No response
ICMP No response No response

bcast_enable = True
ARP Response Response
ICMP Response Response
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6.3 MAC address filtering

The MAC address filtering test verifies the driver’s configuration of the hash-based fil-
tering. It utilizes an instance of the ICMP echo server configured with four virtual
interfaces. Each ICMP interface is assigned one of the four virtual devices dwmac pro-
vides. Each interface is assigned an IP address in the form 169.254.0.10X where X

is the interface number starting at index 0. In addition, the logical device 0 has the
enable_mcast property set. The matching ICMP interface is assigned the multicast
address 224.0.0.1. That is multicast MAC address 01:00:5e:00:01:2a. Manual veri-
fication ensures that the multicast and virtual autogenerated MAC addresses correspond
to five different hash table buckets.

The basic functionality test has verified that the driver correctly assigns the con-
troller’s perfect unicast MAC address. The unicast hash-based filter is tested first by
turning off the code inside the set_mac() using conditional compilation block #if 0 but
still returning success. In this configuration, no interface should respond to an unicast
ICMP echo. Then, the code is compiled back in, and the test is repeated, expecting
all the interfaces to respond. The multicast test is executed similarly but, in addition,
configures the enable_mcast property of the real device. Even without the body of the
set_mac() callback, a response is expected in the multicast case because the filtering
happens only on ingress from the external network, not the device itself.

The test results, listed in Table 6.3, demonstrate that the driver correctly configures
the hash-based MAC address filter for each traffic type separately. That is because each
assigned MAC address corresponds to a different bucket.

Table 6.3 Results of the hash-based MAC address filter test.

Traffic type Expected Actual

set_mac() with #if 0, enable_mcast = False
ICMP unicast No response No response
ICMP multicast No response No response
set_mac() with #if 0, enable_mcast = True
ICMP unicast No response No response
ICMP multicast Response Response

set_mac(), enable_mcast = False
ICMP unicast Response Response
ICMP multicast No response No response

set_mac(), enable_mcast = True
ICMP unicast Response Response
ICMP multicast Response Response
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6.4 VLAN filtering

The VLAN filtering test verifies the proposed API for configuring the VLANs in Eth-
ernet drivers utilizing the ICMP echo server. Since accessing the VLAN configuration
is impossible, the call of set_vlan() function must be compiled in with static config-
uration. Both 802.1Q and 802.1ad are tested separately, ensuring the other type does
not pass the configured filter. The real device is configured by setting the vlan_dev and
the vlan_tag_ethertype based on the tagging mode. The virtual device’s 0 VLAN ID
is set in the vlan_id property. This configuration is reflected in the call to set_vlan().

First, 802.1Q VLAN 100 is configured on the virtual device. Then, ICMP echo
is issued on four Linux interfaces: 802.1Q 100, 802.1Q 200, 802.1ad 100 and 802.1ad 200.
The reply should be received only on the first interface. Then, the same test is repeated
with the virtual device configured as an 802.1ad VLAN 100. The expected outcome
is a reply on the 802.1ad 100 Linux interface.

The ICMP results listed in Table 6.4 display that the driver properly configures the
perfect VLAN filters in the controller.

Table 6.4 Results of the VLAN filtering test.

Linux interface Expected Actual

PikeOS 802.1Q 100
100Q Response Response
200Q No response No response
100ad No response No response
200ad No response No response

PikeOS 802.1ad 100
100Q No response No response
200Q No response No response
100ad Response Response
200ad No response No response

6.5 PHY link control

The PHY link control test examines multiple parts of the driver. The generic Clause 22
PHY code is tested. That is PHY configuration and autonegotiation result parsing. The
controller link speed configuration and the start() and stop() callbacks are tested.
The platform-dependent clock control code replacing the Clock Manager is tested.

The test is separated into two parts executed utilizing the ICMP echo server on the
real device. First, the driver is configured to use autonegotiation, and the Linux side gets
configured for all the six combinations of 10/100/1000 Mbps link speed and half/full-
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duplex mode autonegotiation utilizing the ethtool utility. Then, both sides are assigned
a static configuration, without autonegotiation, for each combination. The result is 12
link configurations, each tested by an ICMP echo when the link comes up.

The results in Table 6.4 indicate that the driver correctly configures the PHY and
parses the negotiated link to configure the controller and the external RGMII TX clock.

Table 6.5 Results of the PHY control test.

Speed Half duplex Full duplex

10 Response Response
10 auto Response Response
100 Response Response
100 auto Response Response
1000 Response Response
1000 auto Response Response

6.6 DMA load

The DMA load test verifies the handling of the DMA ring structure in both directions
under heavy load. It ensures that the rings stay consistent and that no packet drops
occur. This test is performed against one ICMP interface mapped to the real device. The
ping utility on the Linux side is set in -f -l512 mode. That is flood ping with a preload
of 512 ICMP echo requests, which keeps 512 requests on the wire without waiting for
a reply. This configuration maintains the DMA rings full in both directions because the
dwmac configured ring length is 512. This is run continuously for four hours, which the
team agreed upon as long enough. This test uses a binary compiled with optimizations
and assertions enabled in the IDE build configuration.

The result is no packet drops over the whole period of the measurement. Repeating
the test with a preload value of 513 exposes packet drops in units of seconds. That
is expected behaviour because the DMA rings are full and cannot keep up with the
number of transmitted frames.

6.7 PTP integration

The PTP integration is tested with the target sat in a laboratory, not in a direct connec-
tion with the Linux host. That is, multiple hops are made through non-PTP network
nodes. This is done to replicate the setup used for the integration on the ls1028a target.

The master side is the ptpd/ptpd daemon, commit #1ec9e65, running on the Linux
host in forced master mode with P2P link delay measurement. It is free-running (not
synchronized with any upstream master) with the ARB timescale set. Real absolute
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time is not crucial in determining the correctness of the dwmac implementation. The
message rate is set to 0 for both the Sync and Pdelay_Req messages. The transport
utilized is unicast UDP over IP. No specific PTP profile is used.

The samples of the offset from the master as measured by the target’s ptpd instance
are taken over one hour every second after the slave reaches calibration for the first time.
The slave enters the calibrated state when its offset reaches 10 µs. The slave returns to
the uncalibrated state if its offset from the master reaches 1 ms. [38]

The collected data, plotted in Figure 6.1, indicates functioning PTP implementa-
tion. The calculated resulting cTE is 0.716 µs, and max|TE| is 293.212 µs. This is in
the expected range based on the experimental integration on the ls1028a target. That
implementation reached cTE of 30 µs over a non-direct (multi-hop) LAN connection [42].
The difference may come from the underlying oscillator quality and network load.

Figure 6.1 Offset from master plot of the PTP test. Plotted are TE samples taken each
second over a 1-hour measurement against a free-running Linux master after the target reached
the calibrated state. The measured cTE is 0.716 µs, and max|TE| is 293.212 µs.

The primary reason for not measuring MTIE and TDEV is that these metrics are
typically used to determine the quality of the resulting clock. However, with the current
experimental support, it is sufficient to ascertain if the integration is functioning with
any clock quality. Moreover, since the same methodology was successfully applied to the
ls1028a target, it is valuable to have comparable results.

The second reason is that only specialized network equipment can measure these
values. For example, it must be synchronized to the GNSS and requires some form of
clock output from the target, such as a PPS signal. With how the target is set up, that
is not possible.



Chapter 7

Conclusion

The main objective of this thesis was to study time-sensitive networking features re-
quired to integrate TSN into the PikeOS real-time operating system and experimentally
implement a selected subset on the TQ Systems MBa8MPxL SBC.

The analytical part of the thesis first introduced the concept of real-time operat-
ing systems. The base terminology was introduced to emphasize the differentiation of
operating systems kernels. The PikeOS RTOS was introduced as an exemplary real-
time microkernel. Following that, time-sensitive networking was explored. The focus
was placed on time synchronization in TSN, which is required for all other TSN func-
tionalities. It was studied from the definition of time, how it is kept using clocks and
how their quality is measured. Emphasis was set on packet-based time synchronization
methods employing the Precisisin Time Protocol in TSN. PTP’s central mathematical
synchronization model, algorithms and involved entities were analyzed.

The implementation part of the thesis first explored the PikeOS driver model. It
studied the classes of PikeOS drivers and how they are configured. An in-depth analysis
of the network class was done, including its High Level module, which abstracts the
hardware-independent part of Ethernet drivers. A low-level driver for a new Ethernet
controller, ENET_QOS, was designed and implemented. Its feature set included an
integrated driver for any IEEE Clause 22 conforming PHY and advanced features such
as VLAN filtering, which required a new standard API proposal. Building on a previous
TSN experiment on the PikeOS ls1028a target, PTP features of the controller were
enumerated as a selected TSN subset to integrate. These were implemented utilizing
a new experimental API for network drivers and required a third driver.

Testing the driver asserted the implementation correct. All the driver’s functionali-
ties were tested. These included basic packet send and receive, unicast traffic filtering,
and advanced multicast and VLAN-tagged traffic filtering. The PHY driver was tested
against the SBC’s Texas Instruments PHY. The PTP test against a Linux master mea-
sured an offset in the expected range of tens of microseconds.
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The implementation will be used in a real project utilizing a derivative controller
called GMAC. That application will require other TSN features, such as the 802.1Qbv
protocol. The central focus of future work building on this thesis will be the integration
of this and other TSN protocols utilizing the PTP synchronized time base, which was
accomplished by this thesis.
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Appendix A

Compilation and testing

Codeo IDE must be used to compile the drivers. Import both the dwmac and dwmac_ptp
projects using the File -> Import function. Then, both can be compiled using the all
build target. To test the drivers, an integration project for the TQ Systems MBa8MPxL
SBC must be created to include the compiled drivers from the custom Codeo pool.
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Appendix B

Contents of the attached DVD

dwmac ............................................ source codes of the dwmac driver
dwmac_ptp..................................source codes of the dwmac PTP driver
test.............................................source codes of the testing scripts
thesis

src................................... source form of the thesis in LATEX format
Satoplet-Jakub-MT-PTP.pdf..................text of the thesis in PDF format

README.................................................copy of this contents listing
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