
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of control engineering

Branch Prediction with Visualization for
RISC-V Educational Simulator

Jiří Štefan

Supervisor: Ing. Pavel Píša, Ph.D.
Field of study: Cybernetics and robotics
May 2024

ii

Acknowledgements
I would like to thank both Ing. Pavel
Píša, Ph.D. and Ing. Jakub Dupák, for
their help and patience, especially during
the final weeks of the semester. I would
also like to thank all my colleagues, for
their extensive moral support, and con-
stant motivation. Lastly, I would like to
thank my parents for their kindness and
understanding.

Declaration
I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.
Prague, 24. May 2024

iii

Abstract
The aim of this thesis is to implement
branch prediction and its visualization to
the QtRvSim simulator software. Branch
prediction is an important part of pro-
cessor design, as it helps reduce stalling
of the processor pipeline, by predicting
results of jump and branch instructions,
before they are executed. The branch
predictor component and its visualization
are implemented and tested against other
similar implementations.

Keywords: QtRvSim, RISC-V, branch
prediction, C++, Qt

Supervisor: Ing. Pavel Píša, Ph.D.

Abstrakt
Cílem této práce je implementovat predik-
tor skoků a jeho vizualizaci do simulátoru
procesoru QtRvSim. Predikce skoků má
důležitou roli v návrhu procesoru, protože
pomáhá redukovat pozastavení pipeline
procesoru předpovídáním výsledku skoko-
vých instrukcí, předtím než jsou vykonány.
Komponenta predikce skoků a její vizuali-
zace jsou implementovány a porovnány s
podobnými implementacemi.

Klíčová slova: QtRvSim, RISC-V,
predikce skoků, C++, Qt

Překlad názvu: Návrh a vizualizace
prediktoru skoků pro výukový RISC-V
simulátor

iv

Contents
Project Specification 1
1 Introduction 3
2 RISC-V Architecture 5
2.1 Instruction set and registers 5

2.1.1 Jump and link instruction 6
2.1.2 Jump and link register

instruction . 7
2.1.3 Branch instructions 7

2.2 Pipelined processor 8
2.2.1 Branch and jump instructions

in pipelined processor 9
3 Branch prediction 11
3.1 Branch Target Buffer 11
3.2 Predictors 12

3.2.1 Static predictors 12
3.2.2 Smith predictors 13
3.2.3 Branch History Register 15

4 Existing implementations 17
4.1 MARS and RARS 17
4.2 QtMips-Di 18
5 Implementation 21
5.1 Code structure 21
5.2 Existing implementation 22
5.3 Internal implementation 22

5.3.1 Interface to the implemented
class . 22

5.3.2 Branch Predictor components 23
5.4 User Interface implementation . . 26

5.4.1 Configuration dialog 26
5.4.2 Dock widgets 27
5.4.3 Branch Predictor and BHT
Widget . 28

6 Testing 31
6.1 For loop . 31
6.2 Nested for loops 31
6.3 If conditions 32
6.4 Results . 33
7 User manual 35
8 Conclusion 39
8.1 Future work 39
Bibliography 41

v

Figures
2.1 RISC-V base instruction formats,

taken from [1]. 6
2.2 Structure of the JAL instruction,

taken from [1]. 7
2.3 Structure of the JALR instruction,

taken from [1]. 7
2.4 Structure of branch instructions,

taken from [1]. 8
2.5 Diagram of pipelined instruction

execution, taken from [2]. 9

3.1 States and state transitions of
Smith 1-bit predictor. 13

3.2 States and state transitions of
Smith 2-bit predictor. 14

3.3 States and state transitions of
Smith 2-bit hysteresis predictor. . . 14

4.1 Branch predictor UI widget of the
MARS simulator 17

4.2 . 18
4.3 QtMips-Di BTB (left) and BHT
(right) implementation. 19

5.1 Main window of the QtRvSim
processor simulator [3]. 21

5.2 Simulator configuration dialog . . 26
5.3 Menu with available dock widgets. 27
5.4 Widget showing the contents of the

Branch Target Buffer. 28
5.5 Widget showing the contents of the

Branch History Table, as well as
other important predictor
information. 28

7.1 Configuration dialog with
highlighted branch predictor
settings. 35

7.2 Menu where the branch predictor
widgets can be enabled. 36

7.3 The branch predictor widgets
highlighting rows used for prediction
during the fetch stage. 37

7.4 The branch predictor widgets
highlighting rows that were updated
during the memory stage. 38

Tables
3.1 Earliest state where information

about jump or branch instruction is
available. 12

6.1 Sumary of the 1-bit and 2-bit
predictor accuracy in the performed
tests. 33

vi

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

474468 Personal ID number: Štefan Jiří Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Control Engineering

Cybernetics and Robotics Study program:

II. Master’s thesis details

Master’s thesis title in English:

Branch Prediction with Visualization for RISC-V Educational Simulator

Master’s thesis title in Czech:

Návrh a vizualizace prediktoru skoků pro výukový RISC-V simulátor

Guidelines:

The QtRvSim is the world wide used educational RISC-V simulator.
1) Familiarize with already achieved functionality and implementation of the simulator
2) Implement branch target and branch history table and branch predictor logic
3) Design illustrative graphic widgets to visualize single-bit and two-bit Smith predictor states, branch history, and target
table content.
4) Document implemented code and prepare instructions for future B35APO Computer Architectures course students

Bibliography / sources:

[1] Czech technical University in Prague Computer Architectures guidepost page https://comparch.edu.cvut.cz/
[2] Dupák, J.; Píša, P.; Štepanovský, M.; Kočí, K. QtRVSim – RISC-V Simulator for Computer Architectures Classes In:
embedded world Conference 2022. Haar: WEKA FACHMEDIEN GmbH, 2022. p. 775-778. ISBN 978-3-645-50194-1.
[3] PATTERSON, David A. a John L. HENNESSY. Computer organization and design RISC-V edition: the hardware/software
interface. Second Edition. Cambridge: Elsevier, [2021]. ISBN 978-0-12-820331-6.

Name and workplace of master’s thesis supervisor:

Ing. Pavel Píša, Ph.D. Department of Control Engineering FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 09.01.2024 Date of master’s thesis assignment: 04.09.2023

Assignment valid until: 16.02.2025

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Michael Šebek, DrSc.

Head of department’s signature
Ing. Pavel Píša, Ph.D.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1

2

Chapter 1
Introduction

QtRvSim is a graphical RISC-V processor simulator [3] [4], based on QtMips
simulator, an older implementation with the MIPS architecture [5]. It is
used for courses, education, and practical examples of how a processor works
and how it executes instructions. The current implementation lacks branch
prediction functionality, which this thesis aims to implement.

A simple implementation of a processor only executes one instruction at
a time and only starts executing the next one, after finishing all execution
steps of the first instruction. This approach was improved by splitting the
execution of instructions into several stages, called a pipeline [2]. To ensure
instructions progress through each pipeline stage without stalling, several
mechanisms are implemented. One of these is branch prediction, which allows
the processor to continue executing instructions, even when it encounters a
jump or a branch in the program.

This thesis describes important parts of theory behind RISC-V architecture
and pipelined processors in Chapter 2 and branch prediction, in Chapter
3. Then other processor simulators and their predictor implementations are
reviewed in Chapter 4. The implementation of the predictor into the QtRvSim
simulator is documented in Chapter 5. Finally, the implementation is tested
and the results are compared to those of other simulators, in Chapter 6. The
user manual describing the intended usage of the newly added features is in
Chapter 7.

3

4

Chapter 2
RISC-V Architecture

The RISC-V is an open-standard instruction set architecture (ISA) [1]. The
RISC-V ISA defines the types, encoding, and function of instructions. Based
on this specification, anyone can implement a processor compatible with this
architecture. This text focuses on the RV32I 32-bit implementation.

2.1 Instruction set and registers

The processor works by executing instructions read from memory. These
instructions are 32-bit long chunks of data, and they carry information about
a single operation the processor should perform. Since these instructions
can encode a wide array of functionality, like arithmetic operations, program
control, and memory access operations, there are several ways to write an
instruction, depending on what it does, called instruction types.

The ISA specifies, that in the processor, there are 32 data registers, that
can be used to store and access 32-bit chunks of data. The basic use of these
registers is to store data loaded from memory, store results of logical and
arithmetical operations, and source data to be written into memory.

There is also one more register, called the Program Counter, or PC, which
contains the current address in program memory, from where the next in-
struction will be read. Most of the time, after reading the instruction, the PC
is simply incremented by four, to move the counter by four bytes, and arrive
at the address of the next instruction in program memory. Some instructions,
namely jumps and branches, can modify this counter by overwriting it with
a specific address, causing the execution to jump to another part of the
program.

Each instruction is split into parts, depending on its type. The basic parts
are:. opcode which has seven bits, and contains information about the in-

struction type, or in other words, how the remaining 25 bits of the
instruction should be interpreted.. rd is the 5-bit index of the destination register, for operations that need
to be able to store their result.

5

2. RISC-V Architecture
067111214151920242531

opcoderdfunct3rs1rs2funct7 R-Type

06711121415192031

opcoderdfunct3rs1imm[11:0] I-Type

067111231

opcoderdimm[31:12] U-Type

067111214151920242531

opcodeimm[4:0]funct3rs1rs2imm[11:5] S-Type

Figure 2.1: RISC-V base instruction formats, taken from [1].

. rs1 and rs2 are 5-bit indexes of source registers, which provide 32-bit
chunks of data used in the execution of the instructions.. imm is the immediate value used to encode constants directly in the
instruction, which are also used during instruction execution, much like
the source registers.. funct3 and funct7 are 3-bit and 7-bit chunks that can be used to further
specify the type of instruction, in addition to the opcode.

The immediate value encoding might be scattered over multiple parts of the
32-bit instructions but is always resolved into a single integer value.

There are four base instruction types and two derived types. The structure
of the four base instruction types can be seen in Figure 2.1. Of these types,
three are used to encode jump and branch instructions:. U-type variant is used to encode the unconditional JAL instruction.. I-type is used to encode the unconditional JALR instruction.. S-type variant is used to encode the conditional branch instructions.

It is important to note, that technically, the JAL instruction is J-type encoded,
and branch instructions are B-type encoded, but these variants are based
on the above-mentioned encodings and do not change the structure of the
instruction, besides the ordering of the bits in the immediate part.

2.1.1 Jump and link instruction

The jump and link instruction, or JAL, is an unconditional jump instruction,
with J-type encoding, which is a variant of the U-type encoding. The
instruction is composed of two parts, not counting the instruction code,
and its structure can be seen in Figure 2.2. The first part is the destination
register rd, the other part is the immediate offset value. When the instruction
is executed, the address of the next instruction after the jump instruction is
saved into the rd register, to serve as a possible return address. The use of
the return address provided by the instruction is optional. To get the target

6

.............................. 2.1. Instruction set and registers

address where the program execution should jump, the address of the jump
instruction is summed with the offset. This means the instruction can only
jump to an address that is relative to its location in the memory, in the range
of ±1MiB.

067111231

opcoderdimm[20|10:1|11|19:12]

7
JAL

5
dest

20
offset[20:1]

Figure 2.2: Structure of the JAL instruction, taken from [1].

2.1.2 Jump and link register instruction

The jump and link register, or JALR, is an unconditional jump instruction,
with I-type encoding. The instruction is composed of three parts, not counting
the instruction code and the function selector, which is always zero, and its
structure can be seen in Figure 2.2. As with the JAL instruction, the first
part of the instruction is the rd register, used for storing the next instruction
address before the jump. The use of the return address provided by the
instruction is also optional. The second part of the instruction is the index of
the rs1 register, which provides the 32-bit base of the destination address.
The third part is the offset, which can be used to change the address stored
in the rs1 register without having to change the value in the register itself.
This means that the instruction allows a jump to an absolute address, which
can be offset by ±2KiB.

06711121415192031

opcoderdfunct3rs1imm[11:0]

7
JALR

5
dest

3
0

5
base

12
offset[11:0]

Figure 2.3: Structure of the JALR instruction, taken from [1].

2.1.3 Branch instructions

All branch instructions are implemented using the same instruction opcode
and have the B-type encoding, which is a variant of the S-type encoding.
The instruction is composed of four parts, not counting the instruction code,
and its structure can be seen in Figure 2.4. The first part is the function
selector, which denotes the type of comparison to be done. Then there are
two registers rs1 and rs2 which contain indexes of registers with values to be
compared. Then there is the immediate value which, similarly to the JAL
instruction, contains the offset relative to the instruction address, where the
instruction should jump. This means the instruction can only jump to an
address that is relative to its location in the memory, in the range of ±4KiB.
There are six types of jump instructions:. BEQ - Branch if the values in the two registers are equal

7

2. RISC-V Architecture
. BNE - Branch if the values in the two registers are not equal. BLT - Branch if value if rs1 is less than value in rs2. BLTU - Unsigned variant of BLT. BGE - Branch if value if rs1 is greater than or equal to value in rs2. BGEU - Unsigned variant of BGE

067111214151920242531

opcodeimm[4:1|11]funct3rs1rs2imm[12|10:5]

7
BRANCH
BRANCH
BRANCH

5
offset[4:1|11]
offset[4:1|11]
offset[4:1|11]

3
BEQ/BNE
BLT[U]
BGE[U]

5
src1
src1
src1

5
src2
src2
src2

7
offset[12|10:5]
offset[12|10:5]
offset[12|10:5]

Figure 2.4: Structure of branch instructions, taken from [1].

2.2 Pipelined processor

To speed up the execution of sequences of instructions, and increase the
processor clock frequency, pipelined execution is used [2]. The execution of
instruction is separated into stages, where each instruction moves from one
stage to the next in each clock cycle. There can be as many or as few of these
stages as desired, but in general, the simplest pipeline implementation that
allows for significant speed improvement, and the one that is generally used
in courses and textbooks, is one with five stages, which are described below.
Figure 2.5 shows how instructions pass through the pipeline during several
clock cycles.

Instruction fetch: In this stage, the only information available is the
value of the program counter register (PC) which contains the address in
memory where the next instruction to be read and executed is stored. This
stage accesses the program memory, reads the instruction, and stores it in a
buffer to be used in the next stage, during the next clock cycle.

Instruction decode: In the next clock cycle, the instruction is broken
down into parts, where each part denotes some information about the action
to be executed. The main part of the instruction is the opcode, which contains
the instruction type. If the instruction provides a register whose value should
be read, it is read in this stage and stored in a buffer to be used in the next
stage. Lastly, any immediate value stored in the instruction is also decoded
and passed into the next stage, similarly to the register values.

Execute: In this stage, there is the Arithmetic Logical Unit (ALU) which
handles operations between register(s) and immediate values, like addition,
subtraction, or logical operations. The source for these operations is two
register values, the immediate value from the decode stage, and the address
of the instruction read from the program counter during instruction fetch.

Memory Access: In this stage, memory read and write access is done.
The input is two register values, one for the memory address, and in case

8

.................................. 2.2. Pipelined processor

of write access, one containing the value to be written to the memory. The
output of this stage is the value read from memory or a value that bypassed
this stage.

Write back: In this stage, any required values are written back to the
appropriate register, the input is either the value read from memory or the
value passed into the ALU.

Figure 2.5: Diagram of pipelined instruction execution, taken from [2].

2.2.1 Branch and jump instructions in pipelined processor

Branch and jump instructions introduce so-called control hazards into the
processor pipeline [2]. This is caused by the fact, that when the PC is
incremented, and another instruction is fetched, but the branch or jump
causes a jump to another address, all instructions fetched before this point
have to be removed, or flushed, from the pipeline. If this does not happen,
instructions that should not have been executed will overwrite values in the
memory, or in processor registers, causing unexpected behavior. This is why
the processor needs to keep track of the jump and branch instructions, their
targets, and the currently fetched instructions.

9

10

Chapter 3
Branch prediction

In a pipelined processor, it is important to know which instruction to read
from program memory in the fetch stage. In a program with no branches
or jumps, the next instruction address is obtained by simply incrementing
the program counter by four, to receive the address of the next four-byte
instruction. In the event of a jump, however, the next instruction is unlikely
to be immediately after the jump instruction.

The jump instruction itself is first fetched, then decoded and executed.
The earliest stage where both the jump result and target are known, for all
jump instructions, is the start of the memory stage. For branch instructions,
both the result and the target are known after the execute stage, as both are
the result of addition or comparison. The JAL and JALR instructions have
their target known after the address is summed with the offset, earliest at the
beginning of the memory stage. Their result, however, is known immediately
after decode, at the beginning of the execute stage. This information could
be used to optimize the update of prediction. For simplicity, however, it was
decided to update results and targets for all instructions in the memory stage.
The stage where the jump result and the target address are available can be
seen in 3.1.

3.1 Branch Target Buffer

When a jump is predicted as taken, is it necessary to know the target address.
However, because the target is always computed in the execute stage, it is
not known during the fetch stage of the instruction following a jump or a
branch. This means, that after the address is computed, it should be stored
in a buffer, where it can be accessed during the fetch stage next time the
jump instruction is fetched from memory. This buffer is called the Branch
Target Buffer (BTB).

In the memory stage, during the predictor update, the target address is
stored in the buffer, along with the address of the jump or branch instruction.
If the jump is resolved as not taken, the address is not stored in the buffer, to
not remove entries for jumps that are taken. The buffer is accessed using an
index which is taken from the lower bits of the instruction address. The two
lowest bits of the address are discarded, because the addresses are aligned in

11

3. Branch prediction...................................
Type Result Target
JAL Execute Memory
JALR Execute Memory
Branch Memory Memory

Table 3.1: Earliest state where information about jump or branch instruction is
available.

four-byte chunks. Then n lowest bits are taken from the address and used as
the BTB index, where n is the number of bits used to index the buffer. The
buffer has 2n entries. This means it is possible for one jump instruction to
overwrite another in the buffer. Most instructions compute the jump target
address using the immediate value and the instruction address only, but the
JALR instruction jumps to an address read from a register. This means the
target address can change, and the jump may be mispredicted, even if the
jump result prediction is correct and the destination is stored in the buffer.

3.2 Predictors

Another important part of branch prediction is guessing the result of the
jump or branch instruction. If the instruction causes a jump to the target
address, it is said the branch is taken, if the instruction does not cause a
jump, and the next instruction is memory should be loaded instead, it is said
the branch is not taken. There are many types of predictors and ways to
implement them, but the focus of this implementation is on so-called static
predictors and Smith predictors.

3.2.1 Static predictors

Static predictors have no memory, and decide the result of a jump only based
on data immediately available in the fetch stage. The simplest predictor
is one which always predicts the jump as not taken. This is equivalent to
no branch predictor implementation at all. A more complicated predictor
predicts all jumps as taken. This implementation needs to keep track of
target addresses, using the Branch Target Buffer. Prediction is impossible
for instructions not in the buffer.

Another example of a static predictor is the backward taken forward not
taken, or BTFNT predictor. This implementation compares the instruction
address with the target address stored in the buffer, and if the target address is
lower in the address space than the instruction address, the jump is predicted
as taken, otherwise, the result is predicted as not taken. The reason this has
benefits over the other mentioned predictor variants is that statistically, the
majority of jumps backward to instruction at lower addresses are taken, and
forward are not taken. A simple explanation is because of program loops,
where there is a jump at the end of a block of instructions, which jumps back
to execute the same block again. These loops usually run for several cycles,

12

...................................... 3.2. Predictors

not jumping back only once, when the loop is finished executing.

3.2.2 Smith predictors

The other kind of predictors are dynamic predictors which keep track of some
internal state. Of these, the simplest example is the Smith predictor.

1-bit

In its simplest form, the Smith predictor has an internal state represented by
a single bit, which tracks the result of the last jump or branch result, and
decides if the next prediction will be taken or not. This is called the 1-bit
Smith predictor, or a 1-bit saturating counter, and a graphical representation
of its state transitions can be seen in Figure 3.1. An example where this
predictor can work well is a for loop.

The initial jump back to repeat the loop will be guessed correctly or
incorrectly, depending on the initial state. Then the jump result will set
the predictor state to "Taken", and it will guess all other jumps correctly,
except for the last one, where the loop is finished, and the program will not
branch back to repeat the loop. When the for loop starts again, it typically
mispredicts due to the state being changed to "Not Taken" by the last result of
the previous loop. BTFNT predictor behaves better there since the program
execution typically jumps to a lower address after every loop iteration.

Figure 3.1: States and state transitions of Smith 1-bit predictor.

2-bit

The predictor can have more than one bit assigned to its memory, this is
called the 2-bit Smith predictor. In the case of two bits, there are four states,
namely "Strongly taken", "Weakly taken", "Weakly not taken" and "Strongly
not taken" and the predictor switches between these states with every update.
The 2-bit predictor states and their transitions can be seen in Figure 3.2.

The advantage of this predictor is that it takes two consecutive jumps with
the same result to change what the predictor will predict. This compensates
for the above-mentioned problem of the 1-bit predictor and has the same
success rate as BTFNT.

13

3. Branch prediction...................................

Figure 3.2: States and state transitions of Smith 2-bit predictor.

2-bit with hysteresis

A special case of the Smith 2-bit predictor is one where switching from the
"Weakly taken" or "Weakly not taken" always results in a change into the
"Strongly taken" or "Strongly not taken" states. This behavior can be seen in
Figure 3.3.

Figure 3.3: States and state transitions of Smith 2-bit hysteresis predictor.

Branch History Table

Using just one memory state for all predictions is problematic, as it means
that any two different jump or branch instructions will interfere with each
other. The result of one might change the state and cause a misprediction of
the other instruction, which otherwise would not have happened. For this
reason, Smith predictors use something called branch history table, or BHT.
It is a one-dimensional table of Smith predictors, as they were described in
previous chapters, where each row keeps track of its state. When it is time
to make a prediction, the appropriate row is selected, and its state is used
to choose the branch result. The primary way to select a row is by using an
index, obtained by selecting bits from the instruction address. The process is
similar to the indexing of the BTB.

14

...................................... 3.2. Predictors

3.2.3 Branch History Register

It is possible for a branch instruction to be dependent on the result of
previous branch instructions. That is, whether a branch is taken or not, may
be correlated to the result of previous branches.
int a;
...
int b = 0;
if (a > 0) {

b = 1;
}
...
if (b == 0) {

...
}

In the example C code, the first and second conditions are either both
executed, or neither of them are. This correlation can be accounted for by
keeping track of the global history of branch results and using this history to
select a predictor from the Branch History Table. There are two ways to use
the branch history register to select an index.

The simpler way is called Gselect, where the bits of the register are simply
appended as the more significant bits, to the bits provided by the instruction
address

The other way called Gshare, has the BHR bits XORed together with the
instruction address bits. This approach helps distribute the indexes more
evenly in the branch history table.

15

16

Chapter 4
Existing implementations

In order to implement the desired functionality, other implementations of
branch prediction in processor simulators were considered. The older version
of this simulator, the QtMips simulator, does not have a functioning branch
predictor implementation, so other simulators were checked.

4.1 MARS and RARS

The MIPS Assembler and Runtime Simulator [6], or MARS, is an extensive
simulator created at Missouri State University. Its last release was in 2014,
and it has since been replaced by the RARS [7], or RISC-V Assembler and
Runtime Simulator. The functionality and user interface of the two simulators
remains mostly the same, especially with regard to branch prediction. The
user interface can be seen in Figure 4.1.

Figure 4.1: Branch predictor UI widget of the MARS simulator

17

4. Existing implementations................................
The simulator seems to lack a view of the Branch Target Buffer and only

provides the Branch History Table view. In there, the user can select between
a 1-bit and a 2-bit local history-based predictor, its initial state, and the
number of BHT entries. During program execution, the fields on the left
update along with the table, and detailed description of what is happening is
contained in the log view. One interesting thing to note is, that the history
of the 2-bit predictor is shown as the result of two last jumps, instead of its
internal state. The BHT also keeps track of prediction statistics of individual
entries, but not the total statistics of the whole predictor.

4.2 QtMips-Di

A second example of branch predictor implementation was found in the older
fork of the QtMips project, the QtMips-DI [8] simulator. This implementation
contains a view of both the branch target buffer and the branch history table,
both can be seen in Figure 4.3. It also contains a configuration screen, shown
in Figure 4.2. In some respects, it is an improvement compared to the MARS
and RARS simulators, but the implementation contains some strange design
choices and it lacks visual clarity of the implemented widgets when compared
to the MARS BHT implementation.

Figure 4.2:

18

......................................4.2. QtMips-Di

Figure 4.3: QtMips-Di BTB (left) and BHT (right) implementation.

The user can again, only choose between 1-bit and 2-bit Smith predictor, but
this time, the smallest size of BHT is 5 bits, which can lead to unnecessarily
large tables when the simulator is only used to run short programs with few
jump instructions. Another missing feature is that the predictor does not
seem to keep track of how many predictions happened, and it does not keep
track of the accuracy of individual BHT entries. The only available statistic is
the total accuracy. The meaning of the "Resolution" selector is not clear from
the user interface alone. The implementation also seems to stall unexpectedly,
when running the pipelined version of the processor.

19

20

Chapter 5
Implementation

QtRvSim is an open-source RISC-V simulator [9]. It is implemented in C++
language extended by the Qt framework libraries. The main screen of the
simulator can be seen in Figure 5.1.

Figure 5.1: Main window of the QtRvSim processor simulator [3].

5.1 Code structure

The first task was to get familiar with the structure of the project. The first
code that is run is the main function in the main.cpp file. An instance of the
class MainWindow is created there, which contains all the internal logic, all
the user interface, and handles communication between the two. The first
relevant part of the user interface is a dialog window which is used to set up
and start the simulation.

Then, there are dock widgets, which contain information about various
parts of the simulated processor, like the value of registers, statistics of cache,
and so on. New dock widgets will have to be added to show the state and
statistics of the implemented predictor. In the internal logic of the program,
starting a simulation creates an instance of the Machine class, which in basic

21

5. Implementation....................................
terms serves as a wrapper for various parts of the simulated computer, like
memory, I/O, and the processor core itself. Of these parts, the core is most
important, because the predictor is implemented as part of the Core class.

5.2 Existing implementation

The simulator already contained a basic structure of the branch predictor, the
predictor.h file had a Predictor base class and a FalsePredictor derived
class. The FalsePredictor class was instantiated in the machine.cpp and
passed as an argument to an instance of the Core object. The FalsePredictor
class instance predicts every branch as not taken.

5.3 Internal implementation

The branch predictor was implemented as a new class which is instantiated dur-
ing the start of the simulation. The existing Predictor and FalsePredictor
classes were replaced by the BranchPredictor class. This class serves as
a wrapper for all of the implemented branch predictor functionality. The
main two functions which are used to provide this functionality, are the
predict_next_pc_address(...) and update(...) functions.

5.3.1 Interface to the implemented class

The predict_next_pc_address(...) is called at the end of the fetch stage,
and the result of this function is used to set the PC register. The call happens
every time, and the function evaluates that the instruction is not a jump, it
will return the address from the program counter, incremented by four. The
inputs to this function are:.The instruction itself, is used only to display the instruction as text in

the user interface..The instruction address, to index the BTB and BHT to get both predic-
tion and target address.

In the memory stage, the update(...) function is called. The inputs to
this function are:.The instruction itself, is used only to display the instruction as text in

the user interface..The instruction address, is used for updating both the BTB and BHT..The target address, used for updating the BTB..The branch result, is used for updating both the BTB and BHT.

22

................................ 5.3. Internal implementation

For JAL and branch instructions, the target address is taken from a separate
addition that happens in the execute stage, but for JALR instruction, the
target has to be retrieved as a result of the ALU. Similarly, for the branch
instruction, the result of the jump has to be retrieved from the ALU as the
result of a comparison, but for the JAL and JALR instructions, it is known
automatically.

Some types that are required outside of the BranchPredictor class were de-
fined in a separate file, preditor_types.h, to simplify importing in different
parts of the project.

5.3.2 Branch Predictor components

The BranchPredictor wrapper class contains three main parts:. BranchTargetBuffer keeps track of instruction-target address pairs.. Predictor implements the guessing of whether a branch will be taken
or not.. BranchHistoryRegister keeps track of global jump and branch history.

Branch Target Buffer

A fundamental part of the implementation is the BranchTargetBuffer class,
which implements the buffer as a vector of struct values, where each value
represents one entry, or one row, in the table. The interface of this class are
the functions get_instruction_address(...) and update(...). The first
two only take the instruction address as an argument and use it to index the
table to read the correct row and return the instruction or the target address
respectively. The update function also takes the instruction address as an
argument to index the table, but it also requires the corresponding target
address it should write back into the table.

The function used to calculate the index from the instruction address can
be seen in Listing 5.1. All bits of the address are first shifted by two bits to
the right since all instructions in the 32-bit RISC-V architecture are aligned
to 4-byte memory words, and so the two least significant bits hold no useful
information in this case. Then a mask is created by placing a single bit above
the most significant bit of the required part of the address, and subtracting
one from it, resulting in a mask that has n ones and then all zeroes. The
shifted address and the mask are then simply combined using the logical
AND operation, and the result is the index.

Listing 5.1: Index calculation for the BTB
1 uint16_t calculate_index(Address instruction_address) {
2 return (
3 (uint16_t)(instruction_address.get_raw() >> 2))
4 & ((1 << number_of_bits) - 1
5);

23

5. Implementation....................................
6 }

Branch History Register

Another component is the branch history register, which serves as a global
history of jump and branch results. The register is implemented as a 16-bit
integer, but during initialization, a lower number of bits can be set. To add a
value to the register, the update(...) function is used, which takes only one
argument, which is the branch result. The function shifts the entire register
one bit to the left, then it sets the lowest bit depending on the result of the
branch. In the end, a mask is applied to the register, to reset any bits that
are set outside of the register size. To read the value of the register, the
get_value() can be used.

Predictor

The predictor is implemented as a pure virtual class, which can be inherited
into specific predictor implementations. Because various implementations
need different inputs for prediction and update, the template functions for
prediction and update of the predictor were implemented with a single
argument - a structure containing all inputs needed across all predictors. This
approach means that some predictors will receive redundant information, but
they can simply ignore it, and these additional variables are hidden inside of
the structured value, and should not affect readability. These structs can be
seen in Listing 5.2 and Listing 5.3.

Listing 5.2: Struct used as input argument for prediction
1 struct PredictionInput {
2 Instruction instruction {};
3 uint16_t bhr_value { 0 };
4 Address instruction_address { Address::null() };
5 Address target_address { Address::null() };
6 };

Listing 5.3: Struct used as input argument for update
1 struct PredictionFeedback {
2 Instruction instruction {};
3 uint16_t bhr_value { 0 };
4 Address instruction_address { Address::null() };
5 Address target_address { Address::null() };
6 BranchResult result { BranchResult::UNDEFINED };
7 };

There were six types of predictors implemented, three static and three
dynamic.

24

................................ 5.3. Internal implementation

.Always taken predictor, will always predict all instructions stored in the
BTB to be taken..Always not taken corresponds to the original functionality.. Backward taken forward not taken, or BTFNT, will compare instruction
and target address, and if the jump is backward in memory, it will predict
it as taken, otherwise it will predict it as not taken.. Smith 1-bit. Smith 2-bit. Smith 2-bit with hysteresis

The Always taken, Always not taken and BTFNT predictors are static,
since they use only immediately available information to make a prediction.
The three Smith predictors are dynamic, since they keep track of branch
history, and use it to make the next prediction.

The index of the branch history table is created by combining bits from the
instruction address and the branch history register. The principle is similar
to the branch target buffer, shown in 5.1. The only difference is that the bits
of the BHR were added before the address bits using the OR logical operation
to create the index.

Machine Config

To simplify configuration by bundling all relevant configuration parameters
together, a MachineConfig is already provided in the simulator implementa-
tion. It was necessary to extend this class with branch predictor parameters.
The added parameters are. bool bp_enabled - To keep track of whether the branch predictor should

be enabled.. PredictorType bp_type - Stores the predictor type as an enumeration.. PredictorState bp_init_state - Stores the initial state and is based
on the predictor type.. uint8_t bp_btb_bits - Stores the number of BTB bits.. uint8_t bp_bhr_bits - Stores the number of BHR bits.. uint8_t bp_bht_addr_bits - Stores the number of BHT bits that are
to be extracted from the instruction address.. uint8_t bp_bht_bits - Stores the number of BHT bits, and is equal
to the sum of the number of BHR bits and the number of BHT address
bits.

25

5. Implementation....................................
5.4 User Interface implementation

The user interface was partly implemented using the QtCreator graphical
design tool, in the case of the configuration dialog, and partly implemented
directly as instances of Qt objects in code, in the case of both dock widgets.
The communication between the user interface and the internal implemen-
tation was done using the system of signals and slots provided by the Qt
framework.

The internal classes contain special functions labeled as "signals", which
act as events. They are usually called in the parts of the program where some
action has finished, and the user interface has to be notified, and/or has to
receive some updated data. An example is a signal which is called when a
prediction happens, to notify the interface that it should show the prediction
result to the user.

The other end of this data exchange is called a slot, and it is essentially a
handler function which is called every time the signal is called. Each signal
has to be connected to a relevant slot somewhere during interface setup, using
the connect(...) function.

5.4.1 Configuration dialog

When the simulator starts, a configuration dialog window opens, allowing
the user to set simulation parameters. In the "Core" tab a new section was
added dedicated to the branch predictor settings. An overview of this section
can be seen in Figure 5.2.

Figure 5.2: Simulator configuration dialog

26

............................. 5.4. User Interface implementation

The configuration dialog is used to set predictor values, as they are described
in Section 5.3.2.

5.4.2 Dock widgets

The user interface was implemented as a set of dock widgets. Two new entries
were added to the "Windows" menu to open the BTB and BHT widgets, called
"Branch Predictor (Target table)" and "Branch Predictor (History table)"
respectively. The entries are shown in Figure 5.3. Clicking on them opens
their respective widgets on the right side of the simulator window, similar to
the existing terminal and memory dock widgets.

Figure 5.3: Menu with available dock widgets.

BTB Widget

This dock widget contains a table that shows the contents of the BTB and
can be seen in Figure 5.4.

27

5. Implementation....................................

Figure 5.4: Widget showing the contents of the Branch Target Buffer.

5.4.3 Branch Predictor and BHT Widget

This dock widget contains a table that shows the contents of the BHT,
predictor information and statistics, and the last performed prediction and
update. It can be seen in Figure 5.4.

Figure 5.5: Widget showing the contents of the Branch History Table, as well
as other important predictor information.

28

............................. 5.4. User Interface implementation

At the top of the widget, the predictor type and its total statistics can be
seen. Both the last prediction and last update sections contain the instruction
shown as a string, its address, the index of the BHT, and the result of the
prediction or the branch. Below is the field containing the branch history
register value. At the bottom of the widget is the branch history table. The
"History" column shows the internal state of the predictor at that index, as
described in Section 3.2.2. Then, for each row, the number of correct and
incorrect predictions is tracked, as well as the accuracy of that specific entry.

29

30

Chapter 6
Testing

The implementation was tested on several example codes, against similar
code run in the RARS [7], MARS [6], and QtMips-Di [8] simulators. The
syntax of the programs was changed slightly, to make a version for the MIPS
architecture, but structurally it remained the same. The tests were run with
both the Smith 1-bit predictor and 2-bit predictor and with 5-bit BHT, as
that is both the largest value supported by the MARS and RARS simulators
and the smallest value supported by the QtMips-Di simulator. The initial
state was selected as not taken, for 1-bit, and strongly not taken, for the 2-bit
predictor, as the QtMips-Di does not allow configuring the initial state and
defaults to this configuration.

6.1 For loop

Shown in 6.1 is a simple for-loop with 10 jumps. It is expected the 1-bit
predictor will make a misprediction at the beginning when the condition is
taken, and at the end when the condition is not taken. This is confirmed
when running the test on all simulators, the result is 80% in all cases. A 2-bit
predictor starting at a strongly not taken state is expected to make one more
misprediction at the beginning, as it passes the weakly not taken state. This
is again confirmed in all implementations, with accuracy of 70%.

Listing 6.1: For loop
1 addi a0, zero, 10
2 loop:
3 addi a0, a0, -1
4 nop
5 bne a0, zero, loop
6 nop

6.2 Nested for loops

Shown in 6.2 is a nested for-loop with 5 jumps each. The 1-bit predictor
behaves as before, causing one misprediction at the beginning and end of each

31

6. Testing
loop, resulting in 80%. The 2-bit predictor improves the accuracy of the inner
loop, by not switching prediction immediately after the inner loop is finished.
Instead, it switches to a weakly taken state and predicts the beginning of the
second run of the outer loop correctly. The total accuracy is 86%, where the
inner loop had 88% accuracy and the outer loop had 70%, the same as in the
previous example.

Listing 6.2: Nested for loop
1 addi a0, zero, 10
2 nop
3 outer_loop:
4 addi a1, zero, 10
5 nop
6 inner_loop:
7 addi a1, a1, -1
8 nop
9 bne a1, zero, inner_loop

10 addi a0, a0, -1
11 nop
12 bne a0, zero, outer_loop
13 nop

6.3 If conditions

Shown in 6.3 is a for-loop with 10 jumps with three if conditions nested inside,
where the last one is dependent on the result of the first two. The dependency
of the if conditions is not important during this test, as the registers are
preloaded with constant values. Rather a larger number of branch instructions
in one program was tested. The result of this test was also the same for all
tested simulators, accuracy of 87.5%.

Listing 6.3: Dependent if conditions
1 addi a0, zero, 2
2 addi a1, zero, 2
3 addi a2, zero, 2
4 addi a3, zero, 10
5 loop:
6 nop
7 if1:
8 bne a1, a0, if2
9 nop

10 if2:
11 bne a2, a0, if3
12 nop
13 if3:
14 beq a1, a2, ifend

32

....................................... 6.4. Results

15 nop
16 ifend:
17 addi a3, a3, -1
18 bne a3, zero, loop
19 end:
20 nop

6.4 Results

All tested simulators provided the same results for the tested code, and the
summary of prediction accuracy can be seen in Table 6.1. These results match
the expectations of how the 1-bit and 2-bit predictors operate. It also serves
as a simple check of the correctness of the implemented predictor.

Program 1-bit 2-bit
For loop 80 % 70 %
Nested for loops 60 % 67 %
If conditions 93 % 88 %

Table 6.1: Sumary of the 1-bit and 2-bit predictor accuracy in the performed
tests.

33

34

Chapter 7
User manual

When starting the simulator, the user is greeted with a configuration dialog.
To use the branch predictor, open the "Core" tab, pictured in Figure 7.1, and
enable the "Branch Predictor" checkbox (1). When the branch predictor is
turned off, all branches are assumed to be not taken, and the next instruction
is loaded from the memory, every time.

Below, the predictor type can be selected (2) from six implemented types:.Always taken.Always not taken. Backward taken forward not taken. Smith 1-bit. Smith 2-bit. Smith 2-bit with hysteresis

Figure 7.1: Configuration dialog with highlighted branch predictor settings.

35

7. User manual
Depending on the type of predictor selected, the initial state can also be

selected (3). This field is only relevant for Smith predictors, as the first three
predictors are static, and do not keep track of history.

The branch target buffer will be used to keep track of destination addresses
for encountered jump and branch instructions. The user has to specify the
number of bits the table will have using the provided slider (4). If n is the
number of selected bits, the number of rows in the BTB will be 2n.

In case the Smith predictors were selected, the user can also select the
number of Branch History Register bits (5) and the number of bits from
the instruction address used to index the Branch History Table (6). Values
from the sliders (5) and (6) are summed, and the result is displayed below
(7). This value is the total number of Branch History Table bits, and the
number of rows is again 2n, where n is the number of bits. This is because
the predictor uses the Gselect principle, where the bits from the BHR and
the instruction address are simply appended to form the BHT index.

When the simulation is started, the branch predictor information can be
shown in the View section, by opening the Branch predictor (History Table)
and Branch predictor (Target Buffer) dock widgets, shown in Figure 7.2. The
target buffer is represented by a table where each row contains the appropriate
index, and then the instruction/target address pair.

Figure 7.2: Menu where the branch predictor widgets can be enabled.

The history table contains more information about the predictor. At the
top of the widget, there are total predictor statistics, that is how many correct
and incorrect predictions the predictor made globally. Below are two columns,
one for tracking information about the last prediction, and one for tracking
information about the last update. Below is the current state of the branch
history register. At the bottom, there is the branch history table, showing
the current state at a given index, and statistics for that state.

36

......................................7. User manual

Figure 7.3: The branch predictor widgets highlighting rows used for prediction
during the fetch stage.

When the user starts a program that encounters a jump or branch instruc-
tion, initially, no prediction will take place. This is because the target address
is not yet stored in the target buffer, and so not only the predictor would
not know where to jump, but it also does not know whether the currently
fetched instruction is a jump or a branch instruction. Once the instruction
reaches the memory stage, both the BTB and the BHT are updated using
the information from the resolved instruction. This update can be seen in
Figure 7.3. The appropriate rows and text boxes are highlighted, and the
information is updated. It is important to note that the branch target buffer
is only updated if the result of the instruction is for it to be taken. Otherwise,
only the BHT is updated, to not potentially overwrite another instruction
stored in the BTB, which was taken and is needed.

When the stored instruction is fetched next time, the BTB and BHT rows
are also highlighted, this time with the rows used to make the prediction and
get the target address. This behavior can be seen in Figure 7.4

37

7. User manual

Figure 7.4: The branch predictor widgets highlighting rows that were updated
during the memory stage.

38

Chapter 8
Conclusion

The aim of this project was to implement branch predictor into the exist-
ing codebase of the QtRvSim project. Several other simulators and their
branch predictor implementations were considered and tested. The explored
implementations were found to be lacking certain basic features desirable for
education and learning purposes. The new branch predictor was implemented
with these features in mind.

The result of this project is a working branch predictor implementation in
the QtRvSim open-source project. The implementation was documented and
consisted of two main parts. The internal implementation contains six types
of predictors, as well as necessary configurations, like their initial state or
addressing bits. The user interface consists of three main parts, the branch
predictor section in the configuration dialog window, a widget with BTB
contents, and a second widget, containing other predictor information, such
as statistics and the BHT.

A pull request was opened to merge the implementation into the project.
The code was reviewed, and several minor issues regarding the code quality
were pointed out. One major issue was found with the branch history register
implementation. The index created from the BHR is not in sync between the
fetch and the memory stage, causing any updates in between that change the
BHR to result in the wrong BHT row being updated. This issue will be fixed
before the feature is merged.

8.1 Future work

There is potential for future improvements in the implementation. Since the
Branch History Register was implemented as a part of this thesis, the feature
could be extended by allowing the user to select between the Gshare and
Gselect BHT index computation. Currently, only Gselect is available.

Another feature that might hold at least some value could be the possibility
of disabling control hazard detection. The reason is to showcase what happens
if the processor does not keep track of incorrect prediction results and does
not flush the pipeline when necessary.

39

40

Bibliography

[1] The RISC-V Instruction Set Manual, Volume I: Unprivileged ISA. 2019.

[2] D. A. Patterson and J. L. Hennessy, Computer organization and design
RISC-V edition: the hardware/software interface. Cambridge: Elsevier,
second ed., 2021.

[3] J. Dupák, P. Píša, M. Štepanovský, and K. Kočí, “QtRVSim - RISC-V
Simulator for Computer Architectures Classes,” Haar: WEKA
FACHMEDIEN GmbH, 2022.

[4] J. Dupák, “Graphical RISC-V Architecture Simulator - Memory Model
and Project Management.” https://dspace.cvut.cz/handle/10467/94446,
2021.

[5] K. Kočí, “Grafický simulátor činnosti procesoru a činnosti vyrovnávací
paměti.” https://dspace.cvut.cz/handle/10467/76764, 2018.

[6] “Mars.”
https://courses.missouristate.edu/KenVollmar/MARS/index.htm,
cited: 24.5.2024.

[7] “Rars.” https://github.com/TheThirdOne/rars, cited: 24.5.2024.

[8] “Qtmips-di.” https://github.com/kchasialis/QtMips-Di, cited:
24.5.2024.

[9] “Qtrvsim.” https://github.com/cvut/qtrvsim, cited: 24.5.2024.

41

https://courses.missouristate.edu/KenVollmar/MARS/index.htm
https://github.com/TheThirdOne/rars
https://github.com/kchasialis/QtMips-Di
https://github.com/cvut/qtrvsim

	Project Specification
	Introduction
	RISC-V Architecture
	Instruction set and registers
	Jump and link instruction
	Jump and link register instruction
	Branch instructions

	Pipelined processor
	Branch and jump instructions in pipelined processor

	Branch prediction
	Branch Target Buffer
	Predictors
	Static predictors
	Smith predictors
	Branch History Register

	Existing implementations
	MARS and RARS
	QtMips-Di

	Implementation
	Code structure
	Existing implementation
	Internal implementation
	Interface to the implemented class
	Branch Predictor components

	User Interface implementation
	Configuration dialog
	Dock widgets
	Branch Predictor and BHT Widget

	Testing
	For loop
	Nested for loops
	If conditions
	Results

	User manual
	Conclusion
	Future work

	Bibliography

