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Abstract

Robotic manipulation using cameras is a
critical advancement in the automation
industry, enhancing the flexibility and ef-
ficiency of robotic systems. This thesis in-
vestigates the integration of camera-based
robotic manipulation within virtual and
physical environments, focusing on the
capabilities of NVIDIA Omniverse to im-
prove simulation accuracy. The study
begins by choosing and implementing a
6D pose estimation algorithm using a
static RGB camera. A robotic cell is
designed and tested in both virtual and
physical settings, with the virtual envi-
ronment created using Process Simulate
and KUKA.OfficeLite, and subsequently
refined in NVIDIA Omniverse for high-
fidelity rendering.

A major component of the thesis in-
volves developing tools within NVIDIA
Omniverse, a dataset generation tool for
machine learning model training, and an
interactive application serving as a Digital
Model. The proposed modular architec-
ture includes a high-level controller and
a unified interface, ensuring scalability.
Experimental results demonstrate that
synthetic datasets can be used to effec-
tively train object detection models. The
consistency of performance across virtual
and physical domains validates the digital
model’s authenticity. Recommendations
for enhancing setup performance include
using a higher zoom camera lens or re-
designing the cell with a robot-mounted
camera.

Keywords: robotic manipulation,
industrial metaverse, digital twin, 6D
pose estimation
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Abstrakt

Roboticka manipulace s vyuzitim kamer
predstavuje pokrok v automatizaci, ktery
zvysSuje flexibilitu a efektivitu robotic-
kych pracovist. Tato diplomova prace
zkoumd integraci manipulace s objekty
pomoci kamer ve virtualnim a fyzickém
prostredi, pricemz se zaméruje na schop-
nosti platformy NVIDIA Omniverse zlep-
Sit presnost simulaci. Prace zacinid re-
Sersi a implementaci algoritmu pro 6D
odhad polohy pomoci statické RGB ka-
mery. Roboticka burika je navrzena a tes-
tovana ve virtualnich i fyzickych podmin-
kach, pricemz virtualni prostiedi je vytvo-
feno pomoci nastroju Process Simulate a
KUKA.OfficeLite a nésledné rozsitené o
simulaci v platformé NVIDIA Omniverse
pro vérné a autentické vykreslovani.

Hlavni soucasti prace je vyvoj nastroji
vyuzivajicich platformy NVIDIA Omni-
verse, nastroj slouzici ke generovani data-
setl pro trénink modelid strojového uceni
a interaktivni aplikace slouzici jako digi-
talni dvojce. Navrhovand moduldrni ar-
chitektura se sklddd z nadrazeného kon-
troleru a unifikovaného rozhrani, coz za-
jistuje skalovatelnost. Experimentalni vy-
sledky ukazuji, ze synteticky tvorené data-
sety mohou byt vyuzity pro efektivni tré-
novani modelt pro detekci objekti. Kon-
zistentni vykon napfti¢ virtudlnimi a fy-
zickymi doménami potvrzuje vérnost di-
gitalntho modelu. Doporuceni pro zlep-
seni vykonu zahrnuji pouziti kamery s
vétsim priblizenim, popripadé prepraco-
vani bunky s kamerou namontovanou na
rameni robota.

Kli¢ova slova: roboticka manipulace,
prumyslovy metaverse, digitalni dvojce,

vii

odhad 6D pozice

Pteklad nazvu: Robotickd manipulace s
objekty ve virtualnim a fyzickém
prostiredi
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Chapter 1

Introduction

Robotic manipulation of objects using cameras represents a pivotal task in the
automation and robotics industry. This technology involves the use of visual
data captured by cameras to guide and control robotic actions such as picking,
placing, assembling, welding and other manipulation tasks. The integration
of cameras in robotic systems enhances their ability to interact with dynamic
and unstructured environments, leading to an increase of versatility and
efficiency. In the context of various industries like automotive and aerospace,
the application of robotic manipulation using cameras ranges from precise
assembling of components to part inspection for the task of quality control,
utilizing the ability to perceive the environment through camera lens to
significantly enhance the operational capabilities and flexibility.

In the aforementioned industries, deploying new production lines typically
involves a long process of designing and testing, which results in long down-
times. Introducing simulation and virtual commissioning into the process of
designing such production line can help speeding up the development and
reducing the downtimes to a bare minimum, while also providing tools for
optimization of the processes before their physical implementation, which
saves funds otherwise spent on rebuilding the physical constructions. A digital
twin, a virtual replica of the physical system, plays a crucial role in this
process by allowing to monitor the efficiency and make radical changes in
real-time.

However, a significant limitation has been the inability to accurately sim-
ulate robotic manipulation of objects using cameras in simulation software
used by industry leaders. Traditional simulation tools struggle to replicate



1. Introduction

the complexities of visual perception and the dynamic interactions between
robots and their environment. This gap makes it difficult to fully test and
improve robotic systems in a virtual environment, causing possible issues
when transitioning to physical implementation.

Recent advancements have started to bridge this gap, most notably with
the development of NVIDIA Omniverse. Omniverse is a platform designed to
allow, beside other things, integration of the ray-tracing technology allowing
real-time simulation capable of high-fidelity rendering[I]. Through the concept
of Connectors, it natively offers compatibility with existing industrial software
used for line design and simulation enabling industrial companies to create
more reliable digital twins overcoming previous limitations and accurately
reflecting the performance of robotic systems in real-world conditions.

The primary objective of this thesis is to explore and evaluate the capa-
bilities of robotic manipulation of objects using cameras within both virtual
and physical environments. This thesis aims to demonstrate the potential
of NVIDIA Omniverse in improving the accuracy and reliability of such
simulations. The key objectives of this thesis include:

® Identifying and selecting appropriate algorithms for 6D pose estimation
using an RGB camera.

B Designing a virtual robotic cell with a camera using the provided simula-
tion software.

® Implementing the selected algorithms and systems in the digital copy
of the physical cell. This involves programming a robot, developing a
high-level controller, camera calibration and implementation of the pose
estimation pipeline itself.

® Deploying the solution onto a physical cell.

B Testing and comparing the performance of the chosen pose estimation
algorithm in both environments.

By addressing the limitations of current simulation techniques and lever-
aging NVIDIA Omniverse, this thesis seeks to enhance the field of virtual
simulations, leading to improvement of the design, testing phases of robotic
systems and physical deployment, thereby reducing costs and increasing
efficiency.



Chapter 2

Background

This chapter summarizes the background information necessary to understand
the thesis context around implementation and results. It starts by defining the
pick-and-place task in the context of robot object manipulation in section
An explanation of the 6D poses estimation task, and a description of the
MegaPose method used in the thesis follows in section 2.2 The concept and
definition of Digital Twin is discussed in section (page 8), highlighting its
applications and benefits in optimizing efficiency. The next section (page
E[) describes the simulation software used in detail in the context of industrial
automation. After that, the Kuka educational robot cell and the Testbed

Dataset are introduced respectively in chapters (page and (page
13).

B 2.1 Robot object manipulation

Robot object manipulation has become a core part of the automation industry,
which relies heavily on consistency and high precision, leading to higher
productivity. As a task, it consists of a robot interacting with its environment
and objects within its workspace, such as picking and placing objects, welding,
painting, screwing, and others[2].

In this thesis, a pick-and-place task is implemented and utilized to demon-
strate and test the functionality and compare the possibilities and constraints
in virtual and physical environments. As the name suggests, it consists of

3
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Figure 2.1: Robot object manipulation scheme

two main parts - picking an object and placing it somewhere else. This task
was chosen because the manipulated objects generally do not destructively
change their state and thus allow for a high number of repetitions, which does
not hold for the other tasks mentioned above, such as welding and painting.
For further description of the used setup, refer to chapter [2.5.

Various topics related to robotic manipulation are currently being explored,
including optimization of movement planning, collaboration of robots with
human workers, collaboration of multiple robots, and many more. This
thesis focuses on implementing computer vision algorithms for perception
into robotics, simulating robotic cells in a virtual environment, and finally
testing the solution in real-world conditions.

. 2.2 6D Pose estimation state of the art

6D (6 Degrees of Freedom) pose of an object in 3D space is a set of values
defining the object’s position and rotation with respect to a given coordinate
system[4]. For this, various types of data are used, such as descriptions of the
geometry of detected objects, their color, and textures, which all stem from
apriori knowledge of the object. These are then used with data gathered from
sensors such as RGB images, RGB-D images with depth information, or point
clouds[5]. Research is currently being put into developing and improving
methods to make such a process as quick and precise as possible.

Learning-based methods use the given information, such as 3D CAD models
of given objects during training[6]. This goes directly against the growing
need for flexibility in working with newly introduced objects as training
can take up to days to produce sufficient results[7]. Some methods focus
on grouping objects into known classes, such as printed circuit boards or
cardboard boxes, which partly solves the problem of having to learn weights
each time a new object is added to the process. However, all objects must be

4
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subject to the groups defined at the learning stage[8]. Other methods rely
on components that are not learned; however, they lack the same level of
potential robustness to any changes in the environment, such as lightning
conditions, that models with learned weights have[7].

Bl 2.2.1 Megapose6D

In this thesis, a method called MegaPose is used for 6D pose estimation. It
takes a single RGB (or RGB-D) image, a bounding box of the object’s position
in the image and the object’s CAD model representation. Considering the
object’s detection in the image is not part of the method itself, the process
can be divided into two separate parts, the coarse pose estimation and pose
refinement [7].

The coarse pose estimator is used to give an initial pose estimation, which
can be refined. It takes an image and the object detection as input. Next, it
estimates distance from the camera based on the input bounding box size
and creates a given number of randomly sampled poses called hypotheses of
the object and renders synthetic views using the object’s CAD model. Each
hypothesis is scored using the model to decide whether it can be further
refined in the next step, which uses the highest scoring sampled pose as its
initial pose[7].

For pose refinement, it leverages a method called render & compare. Using
the initial pose from the coarse pose estimator and the rendered images
together with the original image, it iteratively predicts and updates the
pose estimation. After a given number of iterations, it gives the best pose
estimation by score[7]. The process overview can be observed in figure 2.2,

To tackle the previously mentioned problems of either needing to know
used objects during training or lacking robustness, MegaPose was trained on
a large synthetic dataset of images spanning a diverse set of models[7].

B 2.2.2 FoundationPose

FoundationPose is a state of the art 6D pose estimation method. It uses RGB-
D images and, on top of model-based pose estimation, supports model-free
estimation, which uses neural implicit representation when no CAD model
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but only a few images of the object are available. FoundationPose training
used novel large language models (LLM) technologies and transformer-based
architecture to reach better generalization capabilities [9].

After the input of an image with depth and a bounding box is passed
to the model, it uses the median of the depth for translation initialization
and samples rotations from an icosphere for initial pose hypotheses. Then,
the model iteratively improves the pose using a pose refinement network
utilizing a single view rendering method, a dynamic cropping strategy and
tokenization together with a transformer encoder to predict the translation
update. A hierarchical pose ranking network is used to compute scores
for each hypothesis, and a pose with the highest score is selected. The
ranking is done using a two-level strategy. First, each pose hypothesis’ render
is compared against the cropped image. Second, the context of all pose
hypotheses is observed and evaluated to get more information about the pose
to be estimated[9].

B 2.2.3 CosyPose

CosyPose introduces a robust framework for 6D pose estimation that focuses
on multi-view and multi-object scenarios. CosyPose addresses the complexities
associated with estimating the 6D poses of multiple objects from multiple
views with unknown camera positions[6].

The approach begins with single-view 6D pose estimation using a render-

6
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and-compare method inspired by DeepIM[I0]. This method generates initial
6D pose hypotheses for each object in individual images. CosyPose then
employs a robust matching procedure to correlate these hypotheses across dif-
ferent views. This is achieved through an object-level matching process using
RANSACI1I], which optimizes the overall scene consistency by minimizing
reprojection errors.

A key feature of CosyPose is its global scene refinement stage. This stage
refines the poses of both objects and cameras by solving an object-level bundle
adjustment problem, ensuring a consistent and accurate reconstruction of
the entire scene. CosyPose explicitly handles object symmetries, is robust
to missing or incorrect object hypotheses, and does not require depth mea-
surements. It has demonstrated significant performance improvements on
benchmarks such as YCB-Video and T-LESS, surpassing existing single-view
and multi-view pose estimation methods[6].

B 2.2.4 Comparison and selection of 6D Pose algorithm

FoundationPose and MegaPose are both state-of-the-art methods for 6D
object pose estimation. FoundationPose is known for its innovative use
of foundational models and transfer learning techniques, which allow it to
achieve high performance with relatively less training data[9]. This approach
is advantageous in scenarios where data acquisition is challenging or costly.
FoundationPose leverages a robust framework that integrates deep learning
with traditional pose estimation methods, providing a balanced solution that
performs well across a range of conditions.

CosyPose, with its strong performance in multi-view scenarios and robust
handling of object symmetries, offers an excellent solution for complex scene
reconstruction, which is not the main focus of this thesis. Additionally,
it is not applicable in a setup with a static camera, which is the desired
configuration of the cell.

While FoundationPose seems to yield better results on 6D pose estimation
of unseen objects[12], it actually requires depth for its functionality, making
the method not suitable for the used cell design. The only suitable method,
which is both allowing for RGB estimation and using a stationary camera is
MegaPose, which is actually also very competitive according to [12].

7
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B 23 Digital Twin, Digital Model

A simulated robot cell is often called the Digital Twin. Digital Twin is a
technical term with many definitions currently being used. One of the original
ones defines a Digital Twin as a set of information fully describing a physical
product where any information obtainable by inspecting a physical product
should, in an ideal world, be also obtainable from the Digital Twin[13].

However, this proved not to be as unambiguous as many applications and
research papers, which use different definitions. [I4] proposes to divide the
definition into three, the Digital Model, the Digital Shadows, and the Digital
Twin (shown in figure 2.3)), depending on whether or not changes in physical
or digital objects are automatically reflected onto the other. A proposed
definition of a Digital Model is a virtual representation that does not use
automatic synchronization with the physical product. Any reflecting changes
require manual work. This thesis proposes a methodology for developing a
Digital Model representation of a physical cell.

r__M_an_uJ__l r__M_arEJ__I
’’’’’ \ //,—

N v
\ \-~ RES

\\ \\ (]

Digital Dlgltal

Model Shadow

'._I___L_‘

} ]l Physical Physical ! Physical
—————— Object e Object Object

A
! .
| Manual | Automatlc Automatlc

Figure 2.3: Difference among the three definitions proposed by [14]

The development of a Digital Model has many applications and can bring
advantages in every step of the Product Lifecycle. For example, the first
version of a robotic cell’s Digital Model can be used for a case study of
configurations using different robot models and tools. The second iteration
can help when designing individual parts of the cell. Layout and all geometries
can be fine-tuned to achieve the best efficiency and tested with, among other
things, collision and reachability checks. Finally, a fully developed Digital
Model can be used as a reference when a physical cell is being built and
serviced.

Research in this direction is attractive to companies of any scale. For
smaller companies, the difference in cost of modeling a production line instead
of building it and adjusting construction afterward can be a question of
future existence. For large corporate companies, it is more of an opportunity
to optimize the cost of developing and implementing needed changes into

8
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already functioning production lines while minimizing production downtimes.
Currently, there is no solution to link the industrial simulation platform and
the types of robots used by industry together with photorealistic camera
simulation, which plays a key role in the process. This limits most companies
to completing the robotic workstation with the camera system virtually. This
thesis, on the other hand, presents a solution to this problem.

Although rendering software has been used for the creation of synthetic
datasets for many years now, currently, one of the main limitations of any vir-
tual representations of industrial applications is the use of rendering software
to produce authentic and photo-realistic camera images in real-time. Together
with the growth of popularity of using cameras as sensors in the automation
industry, this proved to be a strong point of interest for companies, both from
the industry of 3D rendering software and the automation industry.

. 2.4 Simulation software

In the industry of automation, simulation software can serve as a virtual
testing ground. It allows companies to create digital representations of
production lines, which results in an opportunity to test and rework parts of
the system without needing the physical equipment. This process is called
virtual commissioning[I5]. A vast number of simulation software exists, each
of which is specialized at a different set of goals. Most of this software works
on the principle of rigid body simulation and allows engineers to create and
solve the kinematics and dynamics of a system of bodies.

Some software is focused on emulating individual pieces of hardware, which
can then be plugged into larger systems if they are supported, bringing
an upside of usually letting the engineers program them using integrated
development editors (IDE) used for programming their physical counterparts.
This makes it a lot easier for a company to get people from the field to switch
to programming digital models. Also, the transition of a program from a
simulated environment to a physical device is usually a lot easier as it requires
doing very little to zero changes to the code itself[16]. An example of such
simulation software would be KUKA.OfficeLite virtual robot controller (VRC)
which emulates the physical KUKA robot controller with everything that
comes with it, such as TeachPendant, an IO device used for programming
KUKA robots, as well as an option to include any add-on package.

Another area of interest is 3D visualization and simulation of the process.

9
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Software of this type usually allows importing robots with their kinematics,
writing robot programs with an option of exporting such operations to the
physical controllers, checking for collisions, power consumption estimation,
and many more. In this subset of simulation software, another distinction can
be made to compare different software - the scope the software is made for.
While RoboDK or KUKA.Sim are mainly used for virtual commissioning of
robot cells usually consisting of up to three robots, Siemens’ Process Simulate
can be used for modelling of an entire production factory. The latter is
described, together with the reasoning behind the choice, in more depth in
chapter 2.4.1

B 2.4.1 Process Simulate

Process Simulate is a simulation software currently being developed by
Siemens. It allows for testing of an entire production process, from robot
cells through assembly lines to whole factory processes[17]. In addition to
simulation processes already described in the previous section Process
Simulate offers many other possibilities, such as simulating the autonomous
ground vehicles (AGV) resulting in a simulation of the whole product flow or
simulating human workers with very detailed information about ergonomics
and evaluation of work zones.

Figure 2.4: Comparison of the scene with and without photo realistic rendering

However, the main reason behind choosing Process Simulate as one of the
key parts of this thesis is its native connectivity to NVIDIA Omniverse, a
simulation software discussed in the next chapter and KUKA.OfficeLite
VRC. This proved to be a crucial fact as creating connectors between these
two given simulation software programs is out of the scope of this thesis
and choosing any other combination of simulation software programs would
result in the thesis not using the tools used in the automation industry.
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Process Simulate offers a variety of options for connecting to other platforms,
including both simulation software and physical devices.

Connecting the Kuka VRC to any other simulation software can be done
using one of two options mentioned in the products’ documentation. One of
them is KUKA.VRC Interface, which is used for connecting to other KUKA
simulation software, such as aforementioned KUKA.Sim. The other is called
Y200Interface, which can be used with other simulation software, such as
WinMOD, or, Process Simulate. The interface is used in place of PROFINET,
an industrial communication protocol based on the technology of Ethernet
usually used to connect devices in the physical automation lines and cells[18].
Y200Interface sends data about the I/O signal values of a robot and also the
current position of all the robot’s axes in order to synchronize the robot’s
position.

The Process Simulate to NVIDIA Omniverse connection is natively sup-
ported since the 2307 version of Process Simulate[19]. It was introduced as a
technology aimed at the Industrial Metaverse and allows transfering projects
(studies) from Process Simulate to NVIDIA Omniverse’ Nucleus database
(see chapter [2.4.2), including geometry and simulations, together with the
ability to update between the two mentioned software programs real-time,
meaning changes done in Process Simulate are immediately reflected in the
NVIDIA Omniverse stage]20].

B 2.4.2 NVIDIA Omniverse Isaac Sim

In many cases where companies want to simulate a given automation process,
before-mentioned simulation (Process Simulate) software fully fits the needs
as other sensors are used instead of a camera. However, there is a growing
need for the use of cameras in the automation industry and so does the need
for generation of authentic images taken from a simulated camera. This is
where NVIDIA’s Omniverse Isaac Sim (Isaac Sim) comes in. Isaac Sim is
a robotics simulation toolkit built on top of the NVIDIA’s platform called
Omniverse which, beside other things, handles rendering using raytracing[21].
This presents a convenient way of developing Digital Models using camera
sensors as Omniverse takes care of everything in terms of producing photo-
realistic rendering and an engineer developing such application only has to
provide textures and lighting.

NVIDIA Omniverse is a platform consisting of tools for virtual simulation
of processes with a support for accurate real-time physics model. Its extensive
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2. Background

documentation creates an environment, in which designers and engineers
can create not only large and detailed studies, but also tools and extensions,
which further broaden the possibilities and create a whole of an ecosystem.
The Omniverse platform is made of five main components[22]:

# Omniverse Nucleus serves the purpose of a central database used for
collaboration of multiple users. It can be used in a form of a cloud service
or installed directly on a workstation for teams of up to two users[23].

® Omniverse Connect gives users an opportunity to use third party
software as main content creation tools while leveraging the benefits of
working with the NVIDIA Omniverse[24].

® Omniverse Kit is a toolkit allowing to develop extensions and whole
applications using the fully customizable UI engine[25].

® Omniverse RTX Renderer is a renderer build on top of the existing
NVIDIA RTX ray-tracing technology[22].

® Omniverse Simulation is a collection of tools made for simulating a
physical world, such as a physical simulator PhysX or robotic simulator
toolkit Isaac Sim[26].

Omniverse RTX Renderer is made of two render modes for different uses.
The first one is called RTX - Real-Time mode and it is used, as the name
suggests, for rendering the scene view in real-time. In general, it produces
a higher frame rate, which is why this method is suitable for interactive
applications, such as virtual reality (VR) application. It is able to render
more details as opposed to traditional rasterization methods, however, isn’t
as accurate as RTX - Interactive mode, which is the most accurate one.
The latter mentioned mode generates a lower amount of frames per second,
which suits better for creating pre-rendered scenes. In this thesis, the RTX -
Interactive mode is used, as it is not required to have a high framerate, as
the camera is stationary and the real camera also needs to wait a given time
period for the image to get stale. On the other hand, it is a goal to come as
close to the physical world visually, as possible.

B 25 Experimental Workplace Setup

KUKA ready2_educate (KUKA Educate) is a mobile robot cell made to be
used as a training tool for people seeing KUKA industrial robot programming
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Figure 2.5: Kuka Educate dimensions [3]

for the first time. It comes with a PLC, KR C4 compact robot controller and
a KR3 R560 robot preconfigured with a tool and preprogramed for various
tasks, such as writing with a marker on a paper, building with plastic cubes
that come with the cell, or continuous path motion tasks[3].

There is two main reasons behind the decision to choose KUKA Educate
for the physical realization of the simulated environment. The whole setup
comes in a chassis with windows surrounding the working space of the robot.
During the planning phase of this thesis, it was not obvious, whether or not
it will be possible to get the lighting setup in a simulated scene to match
the ligthing conditions of a real lab. In such case, it would simply require to
install strong light sources into the cell and if not sufficient enough, install
tinted windows as well.

Secondly, as KUKA puts it, it can be easily moved using a pallet truck and
fit into spaces of smaller size[3], the dimensions can be observed in figure 2.5|
together with an image of the physical cell in figure 2.6l Combined with
the first advantage, KUKA Educate becomes suitable to be used as a cell
presented at various expositions, which is the planned use case of the cell
together with its virtual counterpart.

. 2.6 Testbed Dataset

The selection of an object dataset is an important step in the development
and validation of algorithms for 6D pose estimation. This chapter describes

13



2. Background

Figure 2.6: Physical robotic cell

the reasonings and process for selecting the Testbed Dataset, modelled and
manufactured in Testbed for Industry 4.0 and developed by [27], as the
primary dataset for this research.

The Testbed Dataset comprises of an RC car model made from a combi-
nation of 3D printed parts and printed circuit boards (PCBs). This dataset
comprises high-resolution 3D scans of these parts, which are representative
of industrial parts thanks to their complex geometries and textures. The
selection of this dataset tests the robustness of these algorithms and also
ensures the research is applicable to real-world industrial robotics scenarios.

Additionally, using this dataset keeps continuity of the work and the
research done within the Testbed lab, building upon the already established
foundations and knowledge base gained during this previous work. This is
beneficial because it makes setting up experiments faster and easier since
the dataset is ready to use. The objects and their comparison in both the
physical and virtual environment can be observed in figure
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Figure 2.7: Testbed Dataset

B 27 Object detection model

In the development of an automated pick-and-place robot cell, precise and
efficient object detection is critical. The methods for estimating the objects’
6D pose generally expect the detection to be done separately, which is why
part of this thesis is devoted to learning weights of a detection model using
the synthetic dataset.

This thesis implements the YOLOv8 model developed by Ultralytics due
to its promising speed and accuracy[28][29]. Also, the model comes with a set
of tools for training and evaluating the model without a need for developing
such tools from scratch, and pretrained weights for general object detection,
which help with reaching high performance with less training done. Using this
approach, it gives an opportunity to observe the ability to create a solution
with a limited dataset and aligns with the industry standard of developing
working solutions as quickly as possible.

15



16



Chapter 3

Methodology

This chapter outlines a comprehensive approach to developing and simulating
a digital model of a robotic cell using advanced simulation software and tools.
The methodology is presented in a step-by-step manner, starting with the
initial system setup and progressing through critical stages of simulation and
development. The final goal is to deploy the solution onto a physical robotic
cell.

1. Design a scene, define the geometries, robot’s kinematics using Process
Simulate.

2. Connect the simulating software to ensure future functionality.
3. Set-up a visually authentic scene in NVIDIA Omniverse.

4. Create tools for simulating the cell’s behaviour consisting of image dataset
generator and an interactive simulation application.

5. Develop all program parts.

6. Deploy the solution onto a physical cell.

This workflow leads to a data flow displayed in figure The chosen object
dataset serves as an input to the dataset generation tool, which is then used
to train the object detection model. With MegaPose and object detection
model, the application controls the virtual robot and receives its real-time
axis’ positions.
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Figure 3.1: Data flow used in this thesis

B 31 System setup

The computer used for development and also running the simulation software
is PC Dell Precision 3650 with a cpu 11th Gen Intel(R) Core(TM) i7-11700K
@ 3.60GHz and a gpu NVIDIA GeForce RTX 3060 and 32 GB of RAM.
The whole setup of using a personal computer to support a robotic cell or a
production line in the industrial settings resembles a setup using an industrial
computer, which is what has been used for many years. However, it is good
to keep in mind that the standards are shifting more towards the cloud
computing technologies, hence, the implementation is made in a scalable
way. The advantage of running the system setup as an industrial computer
is that it shows the flexibility of the implementation even if there is not an
opportunity to use cloud computing.

In terms of the simulation software used, the Process Simulate of version
2307 released in the August of 2023 or newer needs to be used, as they
introduce the Omniverse Connector, a tool for synchronizing both simulation
projects real-time. It is worth noting, that the Omniverse Connector license
does not come with the default license of Process Simulate and needs to
be bought as an add-on. The documentation of Process Simulate does not
directly state what version of NVIDIA Omniverse are supported, however,
as it is still a relatively new product undergoing intensive development and
functionality of different libraries are changing, should the code be ran as it
is, it is recommended to use the same version of IsaacSim, 2023.1.0-hotfix.1,
which was used while developing the simulation project of this thesis.
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Figure 3.2: Workspace graphic containing the workspace envelope and the
dimensions of the robot [30]

B 3.2 Process Simulate study

The foundation of the Process Simulate Study is made of a STEP file of the
robotic cell distributed directly from KUKA. It can be downloaded at a site
My.KUKA and contains every part of the geometry of the cell. The only
requirement is to define the robot’s kinematics, that means defining each
individual joint axis of the robot.

The KUKA documentation for the robot contains a workspace graphic
(figure containing the workspace envelope and all the dimensions that are
needed for placing the axis in their respective exact positions. The process of
defining the joints’ axis in Process Simulate is as follows:

1. Select the robot in the 3D viewer or the Object Tree.
2. Enter the Modeling Scope by clicking the button in the Modeling tab.

3. With robot selected, open the Kinematics Editor window in the Modeling
tab.

4. Select Create Link in the Kinematics Editor window, select an individual
part of the robot and confirm.
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5. When at least two Links are created, they can be connected using a joint
by dragging a selected link on top of another.

6. For each joint, select two points defining the axis, the limits and the
joint type (in this case all joints are Revolute).

Figure 3.3: Robot kinematics setup in Process Simulate

The result of the process of defining the robot’s kinematics can be observed
in the figure To confirm the right configuration of the joints, especially
their orientations, clicking the Joint Jog button in the Kinematics Editor
window opens up a new window letting the user to change the current values
of all joints.

Same process needs to be applied to the gripper as well. In this case,
the presence of the KUKA Educate cell in the lab was used to measure the
gripper’s open and closed positions. Also, as it can be observed from the
figure [3.4], the links are connected using joints in a parallel, which would be
expected as both moving parts are moving synchronously in relation to the
static part of the gripper.

Figure 3.4: Gripper kinematics setup in Process Simulate

In the development of the physical cell, it is important to consider pos-
sibilities regarding the gripper type choice and the gripper design. After a
thorough decision-making process, it was decided to use a suction gripper
over a gripper with parallel fingers. The proposed solution consists of two
main parts. The first part is a suction cup ESS-20-EN and its holder ESH-
HCL-4-QS made by Festo together with a part designed and 3D printed in
the Testbed for Industry 4.0. For generating a vacuum, the solution uses a
vacuum pump MINI L14 made by Piab. The solution can be observed in
figure 3.5

20



3.2. Process Simulate study

The main reason for selecting a suction gripper is the characteristics of the
object dataset. Multiple objects are made of printed circuit boards (PCB)
which are flat. Suction grippers provide an advantage when such flat objects
are lying on a flat surface as they can use bigger area for gripping the objects,
hence, requiring less precision to manipulate them.

Furthermore, a question needed to be addressed of whether to develop a
new gripper from scratch or to adapt to the cube-based tooling system of the
KUKA Educate cell. The proposed solution uses the cube design as it, firstly,
prevents from making permanent changes to the already existing setup, and
secondly, offers flexibility allowing the cell to use various gripping tool types.
By utilizing this design, the system can adapt to different tasks and different
object datasets without a need for offline reconfiguration, which is a feature
needed for the cell’s future use.

Figure 3.5: Vacuum end effector setup in Process Simulate

In this thesis, both the simulated robot controller program and the physical
robot program run in the Automatic (AUT) mode which is designed for
robots running without higher-level controllers (PLC)[31]. At the physical
cell, the PLC is solely used for management of safety, and in the virtual
environment, the safety is not modelled. Hence, defining the robot’s signals
can be skipped. This makes the next step of connecting the Process Simulate
to KUKA.OfficeLite VRC a lot easier.

For the Process Simulate part, it is needed to, first, select the robot in
the Object Tree and then go to the Robot ribbon and choose Controller
Settings in the Setup part of the ribbon. A window opens up (figure 3.6 for
illustration purposes) where the IP address of the VRC virtual machine and
port of the VRC Server needs to be filled in, together with Motion Planner
set to VRC' and correctly filled in version of the Controller. After all has
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Controller Settings

(Validate Connection )

Robot Name Controller Motion Planner VRC
Name | Version Host Port
kukakr3r540PS Kuka-Krc [ v8.6.6 VRC 10.10.10.10 | 8523
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Figure 3.6: Controller settings window in Process Simulate

been set, the Validate connection button will test the connection. If done
correctly, the a window will pop up saying it connected successfully (the steps
in the section need to be done after the starting the Tecnomatix VRC Server
Kuka Real Time in 3.3). Starting the simulation in the Line Simulation Mode
(event-based simulation) automatically connects to the VRC and the robot
can be jogged to check the correct functionality.

The same way as above in the case of connecting to the VRC, connecting
Process Simulate to NVIDIA Omniverse is quite straightforward and most
of the steps happen on the side of NVIDIA Omniverse. After setting up an
NVIDIA Omniverse’ Nucleus database and connecting to it, the two software
programs can be connected. In ribbon View, go to the section Omniverse
and click on Connector for Omniverse. A window opens up, where there is a
directory tree structure of the connected Nucleus servers and two buttons,
Live Connect and Export Scene. Export Scene generates a USD file which can
be used anytime and anywhere, without the Process Simulate running. In this
thesis, exported scene is used for offline generation of synthetic datasets as
well as testing setting up a scene in NVIDIA Omniverse. On the other hand,
Live connect creates a file of extension .live and the window for Connector
for Omniverse goes grey signaling an ongoing real-time connection into the
file. Opening up the .live file in the NVIDIA Omniverse any changes done to
the scene in Process Simulate are directly visible in Process Simulate.

B 3.3 KUKA.OfficeLite VRC and programming of
the robot

KUKA distributes its VRC in the form of a system image which can be
installed using a hypervisor, software used for creating and running virtual
machines. In the case of KUKA.OfficeLite, it is directly recommended in the
product’s documentation to use Microsoft Hyper-V[16]. After performing all
the steps required to correctly setup the VRC, such as licensing, the user is
met with a user interface of the KUKA’s teach pendant called smartPAD as
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a window inside of a virtualization of Windows 10.
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Figure 3.7: Screenshot of the KUKA.OfficeLite VRC

Firstly, a robot has to be set in the VRC to match the one that is used in
the physical KUKA Educate cell. This can be done via KUKA.WorkVisual, an
engineering suite offering tools for configuration, programming and diagnosis
of robot controllers. Along with replacing the robot, an add-on package
of KUKA.OPC UA was installed onto the VRC. With correct dimensions
and limits set in the VRC as well as the OPC UA package installed, it is
possible to connect the VRC to the Process Simulate study and start with
the programming of the robot.

Tecnomatix VRC Kuka Server Real-Time

Po:  [8523] [ _sop O {3

Service is running at: ...
KukaVrcTecnomatixService (172.25.219.227)

| Clear || Export |

Figure 3.8: Tecnomatix VRC Server window

The KUKA VRC part of connecting to Process Simulate also consists of
only a few steps. First, the correct version of the Tecnomatix VRC Server
Kuka Real Time needs to be downloaded from the Siemens’ download centen.
Next, it needs to be installed in the virtual machine. As a part of the
installation process a shortcut icon is created on the desktop. Starting the
application opens a window (figure 3.8) where a port of the connection is
set. Clicking on a button Start opens up the connection and an IP address
is logged into the text field under the button. It is important to match
these with the Controller settings in previous section [3.2| on page [19. After

"https://support.sw.siemens.com/en-US /product /288782031
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openning up the connection, it is finally possible to run the Process Simulate
study. If connected successfully, there is going to be a circle flashing in green
color next to the button Stop.

As previously mentioned in section the robot itself runs in the AUT
mode. This means that the robot is not controlled using a PLC connected
by a typical industrial communication bus. Instead, it is controlled using a
communication protocol OPC UA which utilizes the aforementioned OPC
UA package. It is a cross-platform communication protocol which is a di-
rect response to Industry 4.0’s demand for flexibility[32]. It doesn’t rely on
manufacturers’ internal standards of communication and instead allows com-
municating with devices of different manufacturers using a unified interface.
As such, using the OPC UA library in a robot controller does not require any
additional work to be done to create and add signals and variables into the
communication interface. Instead, declaring a variable in the Kuka Robot
Language (KRL) code using the keywords DECL GLOBAL <type> <varname>
automatically by default results in the variable being writable and readable
from the OPC UA interface.

Figure 3.9: Tool and base settings

Before starting to create code for the robot, the base and tools need to be
correctly defined. In the intended task, the base frame of the robot is used
as the base of the coordinate system. Setting up the robot’s tools is a more
complex process. It involves transforming three coordinate systems: from the
flange robot frame to the gripper frame and to the suction cup frame. This
can be seen in [3.9.

The design and creation of the suction end-effector was done in order to be
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able to grasp all objects in the dataset, since the original gripper on the robot
only allows grasping objects of the cube type with a cylindrical centering hole.
The gripper therefore works on the principle of a simple tool changer. The
advantage of working with the simulation software is the possibility to obtain
all the described transformations and entering them directly into the virtual
robot controller. To compensate for the inaccuracies of the real end-effector,
it is still possible to perform a four-point calibration method, which consists
in moving the robot in different orientations on a fixed point in its workspace.

The robot program’s pseudocode can be observed in algorithm [1. The
code is quite simple and consists of a loop waiting for a rising edge of
Command_Request variable and a switch case branching depending on the
value of Command_Number. In case of value 2, the robot calls a sub-program
called PickOperationRoutine (algorithm 2). It is expected that in the case
of sending the robot to the picking position, the picking position is sent before
the Command_Request.

The pick routine consists of momentarily setting the base to PickPosition
frame and performing all operations in such base. This allows the robot to
first arrive at a point PrePickOffset, which is defined as

PickPosition + {z = —50.0} [mm], (3.1)

without a need to do any frame arithmetic. The robot is then moved to the
gripping position using LIN operation, and afterwards applying a correction of
a millimeter in the z-axis per cycle in a loop of defined number of corrections,
until the gripper signalizes a successful gripping. Applying the correction
can be done thanks to the design of the suction gripper, which allows a
contraction of a total of 20 millimeters giving some margin for error of the
pose estimation.

B 34 Scene setup in NVIDIA Omniverse

The setup of the scene in NVIDIA Omniverse starts with one of two options
depending on the use case and the method used when exporting the study
from Process Simulate. In this section, the Universal Scene Descriptor (USD)
file exported from the Process Simulate study is used. For future reference,
this is what is referred to when speaking about a default scene setup in this
thesis.

As can be seen in figure 3.10, the default scene setup has close to no
textures. The only textured parts are single colored parts, such as KUKA
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Algorithm 1 A pseudocode algorithm of the robot program

: INIT_MOVES > Base, Tool and other variables are set here
: PTP HOME

1

2

3:

4: while TRUE do

5: INIT_VARIABLES
6 WAIT FOR (£ of Command_Request)
7 Command_Running < TRUE

8 Command_Ready < FALSE

9

Ack_Result
10: switch Command_Number do
11: case 1 > Go Home
12: PTP HOME
13: WAIT FOR $ASYNC_STATE = #IDLE
14: case 2 > Go to Pick position
15: PickOperationRoutine ()
16: WAIT FOR $ASYNC_STATE = #IDLE
17: case 3 > Start calibration
18: for ITER = 1 to Calibration_Length do
19: PTP CalibrationPose [ITER]
20: WAIT FOR $ASYNC_STATE = #IDLE
21: Calibration_RenderRdy <— TRUE
22: WAIT FOR (4 of Calibration_RenderDone)
23: end for
24: default > Unknown Command Number
25: Command_Error <—TRUE
26: end switch
27: if Command_Error = TRUE then
28: WAIT FOR (£ of Command_Ack_Result)
29: end if

30: end while

logos or cubes originally used for one of KUKA Educate training scenarios.
Fortunately, for the task of this thesis, most of the surfaces’ colors are not
needed to reach the amount of the authenticity required. Before changing the
textures, however, it is reasonable to work on the environment and lighting
of the scene, as any reflective materials have potential to work diametrically
different in an empty default scene as opposed to a fully developed scene,
where the surroundings can be reflected by shiny materials. There are two
options to choose from when designing the environment setup.
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Algorithm 2 Pick Routine
1. def Pick_Routine()

2: DECL INT PreviousBase

3: DECL INT ITER

4: DECL FRAME Origin

5:

6: PreviousBase <— CURRENT_BASE_IDX

7 Origin + {X 0.0, Y 0.0, Z 0.0, A 0.0, B 0.0, C 0.0}
8: BASE_DATA[1] < PickPosition

9: CURRENT_BASE_IDX «+ 1

10: if Is_Reachable(Origin) then

11: PTP PrePick(Offset

12: WAIT FOR $ASYNC_STATE == #IDLE
13: Gripper < CLOSE

14: LIN Origin

15: WAIT FOR $ASYNC_STATE == #IDLE
16: for ITER = 1 to NumberOfCorrections do
17: LIN_REL Correction

18: WAIT FOR $ASYNC_STATE == #IDLE
19: if Gripper_Closed then

20: break

21: end if

22: end for

23: LIN PostPickOffset

24: WAIT FOR $ASYNC_STATE == #IDLE
25: else

26: Command_Error < TRUE

27: end if
28: CURRENT_BASE_IDX < PreviousBase
29: end def

B 3.4.1 Scene lighting

First uses a full-scale 3D model of the lab with all its robot cells and work-
stations. This approach comes with a disadvantage of requiring significantly
more computational power to produce the same amount of realism as the next
one due to the presence of vast geometries. Not only does this pose a problem
for future potential use of a virtual reality headset or even a computer screen
rendering for immersing the user into the simulation as significant drops in
frames per second can start to occur making it inconvenient to interact with
the simulation. It also prolongs rendering of each individual frame, which
would result in great delays when creating synthetic datasets for learning
weights of neural networks. The advantage is that, given enough computa-
tional power, a single NVIDIA Omniverse scene can be used for simulating
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Figure 3.10: The default NVIDIA Omniverse scene as exported from Process
Simulate

the whole factory as this is also supported by Process Simulate, enabling to
simulate the whole production line together with the so-called material flow
between separate cells.

The second method leverages a high dynamic range image map (HDRI)
which is a photographic image capturing a view of a location in every direction
from a single viewpoint. It is usually taken either as a panorama or a
photosphere taken with a 360° camera. A standard bitmap image, sometimes
also called low dynamic range image, stores brightness values as an 8-bit value
ranging from 0 to 255, whereas the HDRI image will describe brightness values
using 32-bit number which better describes the range in which real-word
brightness levels appear. This helps capturing a consistent lighting in a scene
where one picture is taken in direction of a light source and one the opposite
direction. Also, it helps to identify the brightest spots on the photos and
making them the light sources used in the scene.

HDRI images are easy and quick to take. Nowadays, applications for mobile
phones with cameras exist on both Android and iOS. They are created by
tens of pictures in different angle and the applications help with stitching
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them together. This thesis follows the approach of taking an HDRI image,
the process of taking the pictures and the results can be seen in figures 3.11
and (page 29| to . To import the HDRI map into the scene, a
light of type Dome is created, which takes Texture file as a parameter, as
well as Intensity and Ezrposure, which are the only two parameters tuned to
portray the amount of light generated by the HDRI map.

28 of 51 310f 51

Figure 3.12: Preview of materials with given HDRI background map

B 3.4.2 Object texturing

Texturing the scene consists of texturing a ground plane inside of the robot
cell and adding glass windows to the sides of the cell.

The ground plane of a physical cell has a surface of a brushed stainless
steel with cross shaped holes in a grid of 5x5 cm. The almost exact same
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Figure 3.13: The created HDRI image as an image

type of material is directly in the Omniverse’ material asset library. The
only difference being the shape of the holes which varies slightly and can be
tuned to match the dimensions using following parameters: punching grid size,
cutout size, cutout roundness, cutout bevel width and cutout bevel strength.
When it comes to the texture itself, a number of parameters can be tuned for
best resemblance of the physical material, such as reflectivity, emissivity or
roughness. The last parameter is the nly parameter changed, as the roughness
had to be raised to about double of the default value, resulting in softening
the reflections. In other words, items farther away from the plane appear
with softer outlines. The material texture to its physical counterpart can be
observed in figure 3.14

(a) : Photo of stainless steel plane (b) : Stainless steel texture render

Figure 3.14: Comparison of stainless steel textures

For the glass windows, a clear glass asset is used. The only change applied
to the asset is setting the Thin Walled attribute to True. This results in
the incoming light not being refracted, which is not a trait needed to be
simulated and results in lower computational power needed. The main reason
for putting the glass windows into the scene is to simulate whether or not
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are reflections of the objects going to be wrongly detected as extra objects in
the scene (figure . This could potentially lead to robot crashing into the
window and breaking either the gripper or the window itself. Should there be
a problem with the reflections being detected as objects themselves, it will be
needed to limit the area of interest (AOI) of the image of the camera so that
the outside of the cell is not seen in the detection part of the pose estimation
pipeline. However, it should not be cropped out right away as the camera
itself is not installed directly next to the window, hence, cropping the image
would result in limiting the workspace even further than it already is. The
complete and finalized scene is shown in figure [3.16| on page

Figure 3.15: An object with its reflection in the glass

B 3.5 Virtual camera setup

While the rest of the robot cell Digital Model could rely on its physical
counterpart being present throughout its development, the camera parameters
were not known until the moment of transition to the physical cell. That
means the default camera setup was used for the rest of the chapter. This
section talks about setting up the camera image rendering to mimic a real
camera image with the subsection introducing the process of measuring
the intrinsic parameters of a camera and comparing them to calculated
intrinsic parameters from the set of parameters of the simulated camera used
in the Omniverse environment.

The Render Settings panel contains a number of different parameters to
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Figure 3.16: Visualization of the final version of the NVIDIA Omniverse envi-
ronment

set which are divided into three categories - Common, Path Tracing and
Post Processing. This thesis changes only the settings of the post-processing
section.

Firstly, an Auto Fxposure functionality is turned on. Auto Fxposure dy-
namically balances camera settings to produce a well-exposed image. This
is convenient because changing the lighting conditions of the scene does not
change the rendered image brightness as much as it would have without
this functionality, which is also a standard functionality of industrial cam-
eras. With the plans of using the robot cell in various lighting conditions,
auto-exposure is a must for the correct functioning of the camera. Several
attributes of Auto Exposure can be changed in the NVIDIA Omniverse.

Namely, Adaptation speed is set to the lowest possible value, which does
not change much as even with the lowest value, the adaptation process does
not take more than a second; it may, however, result in a need for waiting for
a number of rendered images until the correct image is rendered. This means
any scripts working with the renderer will have to implement wait periods,
which are expected to be needed for working with the physical camera, as
well.

The second attribute worth the attention is Exposure Clamping with its
sub-attributes Min & Max Fxposure Value. Without setting limiting values
to these attributes, a scene with any lighting conditions is going to appear in
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the camera view without a change, which is not how a physical camera works
due to its limits of exposure times.

White Point Scale is the last tuned attribute, setting the desired brightness
of the resulting image after the auto-exposure.

For the same reason as in the case of Auto Exposure, the Motion Blur effect
is used with the highest value of number of samples. It might not seem to
be too important to have the Motion Blur effect enabled, as the pictures are
meant to be taken when the scene appears to be static, however, sometimes,
especially when the framerate of a camera is low due to the exposure times,
it is better to keep in mind that if the waits are not implemented, a camera
shot might produce more of a smudge than a correct static picture.

The last effect added in the renderer’s settings is Film Grain. Film Grain
applies a layer of noise onto the image. This mimics the effect of gain which
digitally amplifies the physical camera’s sensor’s signal to brighten images in
low light, however, also introduces unwanted noise.

B 3.5.1 Camera intrinsic parameter calibration

Camera calibration is an essential part of all computer vision applications
and techniques. It uses a detection of predefined patterns in images taken
by a camera with some given setup. This thesis uses a chessboard pat-
tern of predefined sizes, a commonly used pattern due to its high-contrast
characteristics.

A methodology using the Digital Model is proposed. The first part of
the process consists of calculating the parameters usually obtained by tools
like OpenCV or Matlab consisting of calibration parameters in a from an
intrinsic matrix and distortion parameters from the parameters that are set
in the Omniverse in a form of an f-theta model physical units for the camera’s
sensor_size and focal_length, see listing 3.1l

With the camera_matrix’ calculated ground-truth values, the next step
is to estimate the camera intrinsic values. The process starts with taking
images of a chessboard placed in the camera’s view in as many configurations
as possible, with the position of the chessboard changing in both translation
and rotation changing with respect to the image plane. It is generally a good
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practice to place the chessboard so that it occupies each of the four corners of
the camera image, where the strongest effects of distortion can be observed.

# Convert from cm to mm
focal_length_isaac = camera.get_focal_length() * 10.0

hor_aperture_isaac = camera.get_horizontal_aperture() * 10.0

vert_aperture_isaac = camera.get_vertical_aperture() * 10.0

focus_distance_isaac = camera.get_focus_distance() # meters
; lens_aperture_isaac = camera.get_lens_aperture() / 100.0

;. # Calculate pixel size, f-stop, and camera matrix
# assuming the pixel area is a square

pixel_size = horizontal_aperture_isaac / width
f_stop = lens_aperture_isaac

2 focal_length_x = focal_length_isaac
focal_length_y focal_length_isaac

5 # Calculate camera matrix

fx = focal_length_x / pixel_size
fy = focal_length_y / pixel_size

s ¢cx = width / 2.0

cy = height / 2.0

# Create the camera matrix
camera_matrix_opposite = [[fx, 0.0, cx], [0.0, fy, cyl, [0.0,
0.0, 1.011

Listing 3.1: Code for retrieving OpenCV-like calibration parameters from the
f-theta model

Next, the chessboard corners are detected in each image, allowing for 6D
pose estimation of the chessboard target with respect to the coordinate frame
of the camera. Reprojecting the chessboard corners’ 3D positions back onto
the image plane gives the reprojection error in a form of an Euclidean distance
to the corners’ initial position in the picture.

This leads to an optimization problem of fitting parameters of a chosen
camera model so that the reprojection error across all the calibration images
is the lowest possible. Defining and solving the problem formally is outside
of the scope of this thesis and can be found together with the script for
measuring the intrinsic values using the OpenCV library at [33].

B 36 Developing offline dataset generation tools

In this part of the thesis, an emphasis is put on developing a tool, which
will be able to generate an image dataset of all the objects of any given
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3.6. Developing offline dataset generation tools

object dataset. A script called offline_generation.py was created, which
follows the workflow of a template script proposed by [34]. With NVIDIA
Omniverse and all its subsidiaries being still under heavy development, a lot
of the code from the template script simply does not work in the same way it
was proposed. This, together with a need for adjustments in the process of
itself, is the reasoning behind going into an in-depth description of developing
a new script.

The original script in the tutorial opens up an already prepared scene,
which could be done by opening up the exported .usd scene exported from
the Process Simulate. However, due to internal settings of the scene in the
exported file itself, some Omniverse functionality and modules tend to work
differently or not at all. Hence, the script starts with initializing the scene
by, first, creating a new empty scene, and then adding the exported file as a
prim object reference (listing 3.2).

References are mainly used for reusing assets from some shared database of
objects so that changing the object in one place ends up updating the objects
in all the projects they are used in. Leveraging this functionality allows using
the reference to a .1live object file together with its real-time updates and
additionally keeping the scene set-up in the same way any other scene made
directly in Omniverse is.

from omni.isaac.kit import SimulationApp
from omni.isaac.core.utils.stage import create_new_stage

; from omni.isaac.core.utils import prims

# starts up the Isaac Sim environment

simulation_app = SimulationApp(
launch_config=config["launch_config"])

# create a new empty scene

create_new_stage ()

# load the Kuka Educate robot cell model

prims.create_prim(
prim_path="/World/r2e",
usd_path=config["server_url"] + config["env_url"])

Listing 3.2: Creating a scene using the Omniverse Python API

The next part of the script leverages Isaac Sim Replicator, a collection
of tools made specifically for synthetic data generation. To prevent the
randomization process from changing the scene it is applied on, the usual
workflow starts with creating a new Replicator layer and using its context
(keyword with) for the rest of definitions using the Replicator functionality.
listing |3.3| shows creating a new Replicator layer together with creating object
of a camera which is positioned in a uniformly distributed volume and aimed
at a coordinate mean of randomly positioned objects from the dataset. The
listing also creates a lighting dome which changes its randomly chosen HDRI
map texture during the creation of the dataset, and defines a set of materials
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3. Methodology

used for texturing the plane on which the objects are placed on. When
creating a synthetic dataset, it is needed to change the scene’s appearance in
the background of the objects, so that the models used for object detection
do not over-fit to the background.

Creating the first two mentioned objects is straightforward. With the
limitations of the version of Isaac Sim used, referencing a material, however,
comes in two steps. First, it is needed to create an empty scene with a material
in question, a step where attributes of the material can be set beforehand,
and exporting it as a .usd file. Only then it is possible to reference the
file. In this instance, the USD file contains multiple of materials that will be
randomly chosen with a uniform distribution.

import omni.replicator.core as rep
with rep.new_layer():
cam = rep.create.camera(
focal_length=[...], clipping_range=[...])
render_product = rep.create.render_product(
cam, config["resolution"])
# [...]
light_prim = rep.create.light(
light_type="dome",
texture=[...],
rotation=(.0, .0, 190.),
intensity=5000.0)
plane_steel_materials = rep.create.from_usd([...])\
.get_output_prims () [’prims’][0]\
.GetChildren () [0].GetChildren ()
with rep.trigger.on_frame(interval=1):
with cam:
rep.modify.pose(position=[...])
rep.randomizer.rotation ()
rep.modify.material(
plane_steel_materials,
input_prims=steel_plane)
with light_prim:
rep.randomizer.texture ([texture_url_list])
rep.modify.pose(rotation_z=[...])
rep.modify.attribute("intensity", [...])

Listing 3.3: Initializing the scene inside of the Replicator layer

Prims of objects meant to be randomized and detected are created in a
similar fashion with only a few differences. When creating the prim of the
detected objects, a semantics parameter is passed to the creator function
rep.create.from_usd. This is later used when data needs to be annotated.
Each prim has a class named the same way its CAD model is. This aligns
with what the MegaPose expects as it uses mesh called the same way the
class of the object is, to render hypotheses.
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When it comes to the positioning, it is called in the context of rep.trigger.
on_frame, which results in the operation of setting a pose and rotation in
every frame. Furthermore, to place the object randomly in the given subspace,
rep.modify.pose is given an argument of rep.distribution.uniform. This
can be seen in the first part of the listing 3.4], while the second part shows
how rotating between the selected objects is done.
with rep.new_layer ():

# [...]
with rep.trigger.on_frame():
with new_prim:
rep.modify.pose(position=rep.distribution.uniform

(C...1))
rep.randomizer.rotation ()
with rep.trigger.on_frame(interval=[...]):
for i, rep_item in enumerate (input_prims_rep):
sequence = [False] * len(input_prims_rep)
sequence [i-num_obj_in_frame:i] = [True, True, True]

with rep_item:
rep.modify.visibility (
rep.distribution.sequence (sequence))

Listing 3.4: Creating object prims and rotating between them

Each object is assigned an array of Boolean values of the same length as is
number of objects. Then IV elements of an array are set to True, while others
are set to False. Every time the number of frames triggered reaches a given
number, a pointer to this array is incremented and based on the Boolean
value in every object’s array sets the visibility of the object resulting in IV
objects being in the frame.
from MegaPoseWriter import MegaPoseWriter
rep.WriterRegistry.register (MegaPoseWriter)
with rep.new_layer():

# [...]
writer = rep.WriterRegistry.get(config["writer"])
writer.initialize (
xxconfig["writer_config"],
camera_prim=cam.get_output_prims () [’prims’][0].
GetAllChildren () [0,
prims=input_prims
)

writer.attach([render_product])

Listing 3.5: Initializing writer using the Replicator layer

Finally, a writer is assigned to the replicator layer context. Writers are
used for processing the sensors’ values and data from annotators into a format
suitable for training of neural networks and other machine learning models.
It is initialized with a list of annotators to be used and an output path, which
can be a local directory or a cloud storage in form of a Nucleus database.
Annotators are used for generating labeled annotations of the sensor inputs,
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namely camera images. The writer used in this thesis uses the rgb annotator
to produce RGB images taken from the camera placed in the scene and the
bounding_box_2d_tight which gives bounding box coordinates of objects’
positions in the image.

d01_controller

Figure 3.17: Two iterations of random pose generation output with one object

B 3.7 Interactive application development

The offline generator script is suitable for generating a large amount of images
in short time and storing them specifically for later use in form of training
machine learning models. However, running the whole simulation exclusively
by using Replicator’s functions is not suitable for creating a simulation which
needs to mimic the real-time behaviour of the robot cell. Such simulation
needs to process some form of a user input and also provide some form of
visualization, both of which require asynchronous handling. On top of that,
the simulation has to also show the real-time geometry of the robot which, of
course, does not move in discrete steps from one position to another, since
the whole simulation pipeline uses a VRC.

A decision was made early-on to make this interactive simulation in a
form of a control script which can be later used to control the physical cell,
as well. This ensures that the simulated cell and the physical cell can be
developed in a single application and any changes made in the simulation can
be immediately observed in the physical cell. However, this introduces some
additional challenges, such as writing an API wrapper for the Omniverse
script so that its I/O workflow works the same way as working with a physical
industrial camera.

The proposed architecture can be seen in figure It is a star-shaped
architecture, where the main script starts up and communicates with every
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other script, each running in a different thread. Each thread child of the main
thread running a main script uses a different type of communication due to
each type’s advantages and limitations. The benefit of an option to automate
tests of each separate part’s functionality stems also stems from the modular
approach. This allows multiple of people to work on the project in the future,
ensuring scalability and longevity, since each part of the application only
needs to be given expected input and output format and the inner logic can
stay separated.

MegaPose6D
]
events
1l
Omniverse | socket/_| Main Scriot | OPCUA
(Camera) [~ /pipe T P Client
]
queue
1l
User IO

Figure 3.18: Scheme of the proposed star-shaped architecture

The Omniverse/camera script synchronizes with the main script using
python’s multiprocessing.connection socket wrapper. It provides high
level messaging API which allows for bidirectional communication between
two running scripts. The main advantage offered to this application, and,
the main reason it is used, is the connection using an IP address, port and
authentication key. Starting up a stand-alone Omniverse application requires
to run a bash script which sets and modifies the environment variables,
meaning, it can’t be simply ran by calling the script directly in Python.
Instead, it is started using the subprocess.run with parameter shell to
True. Calling this function opens up a new shell and executes a given
command. Using this setup results in the inability to pass any objects such
as Queue to the script by memory address, hence, sockets are used.

The MegaPose script is executed in a never-ending for loop inside of its
own thread. The execution is synchronized using threading.Semaphore and
threading.Event objects. In early development stage of the application,
semaphores were used exclusively. However, semaphores, as they are imple-
mented in the threading module, come with a disadvantage. They do not
provide an option to check if they are acquire-able without actually trying
to acquire the semaphore. A possible solution would be to use semaphore
implementation from module asyncio, however, this thesis proposes to use
the Event class for its potential to create a better and more readable code.
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The part of the application taking care of reading the user inputs communi-
cates with the Main Script using the Queue object. Processing the inputs in
the order they were inserted, or, possibly with a given priority, can be crucial
for the correct functionality. Furthermore, the main script might sometimes
decide to ignore the first-in-queue command and in such case, thanks to the
functionality of the queue object, it can be put back into the queue and
processed later.

The OPC UA client is imported directly as a class from a module previously
described in section 3.3, Thread is created to monitor the connection and
reconnect to the robot as soon as possible after a connection dropout.

B 3.7.1 Modifying the offline generator script

With the generator script already prepared, the Omniverse part of the inter-
active application is its direct iteration. Some changes need to be worked
into the script to fulfill the additional requirements. First and foremost, the
stand-alone Omniverse application needs to run asynchronously to allow the
user to be able to control the graphical interface (GUI) while it is running.
The second requirement is to simulate physics. Lastly, it is needed to setup
the communication with the main script.

To achieve asynchronicity, after preparing the replicator layer, which is
used in this part for it’s writer and annotator support, a World object needs
to be referenced from the running application. After that, it is needed to
periodically call the my_world.step function with the parameter render set
to True. Each time this line executes, the GUI of the Omniverse application
renders a frame. It is important to ensure this line is called with high
enough frequency, otherwise the user experience inside of the GUI will appear
unresponsive.
from omni.isaac.core import World, PhysicsContext
my_world = World(stage_units_in_meters=1.0)

physics_context = PhysicsContext(set_defaults=False)
physics_context.set_gravity(-9.81e2)

while simulation_app.is_running():
my_world.step(render=True)

Listing 3.6: Defining scene’s physics properties

Referencing the PhysicsContext as well as setting the gravitational con-
stant can be observed in the listing 3.6l It is needed to define the gravitational
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constant in order to match the scene units. It is worth noting that the scene
in this thesis uses units of millimetres (mm) which is the same unit the robot
controller uses for its poses, hence, the gravitational constant needs to be
adjusted accordingly. To apply the physics rules to the object instances
created with the replicator module, the physics needs to be applied in
the replicator’s layer context using the replicator.physics submodule
(listing |3.7. First step is to define some sort of a surface with the collider that
the objects can fall onto. After that, each object is given the rigid_body
and collider properties. Rigid bodies allow the objects to accelerate under
gravity and other applied forces. Colliders are used for calculating the objects’
collisions using simplified models.

with rep.new_layer ():
with rep.create.plane(position=(0,0,config["ground_z"]),
scale=123, visible=False):
rep.physics.collider ()

with new_prim:
rep.physics.rigid_body ()
rep.physics.collider ("convexDecomposition")
Listing 3.7: Defining the collider approximation and rigid body of an object
using the Replicator module

Choosing the right method for mesh approximation depends on the use
case. In most cases, it is a good idea to try to lower the computational
requirements as much as possible. However, some use cases require a close
geometric representation for fulfilling a task, such as assembling multiple parts
together, which is the case of this thesis. figure|3.19|shows the comparison
of different methods and their representations of the gamepad’s model from
the Testbed dataset. This thesis uses a convex decomposition with variable
number of convex hulls used for different objects in the Dataset.

B 3.7.2 Main script overview

The main script works as a communication bridge between all the other
parts of the application and also as a control system giving out requests and
expecting responses. It starts with starting all of the threads and also takes
care of connecting by sockets to the other scripts and OPC UA to the robot
controller. After that, two process state machines are initiated for a process
called Generation Process and a process called Calibration Process. The
Generation Process switches among states Not Running, Running, Waiting
for a camera, Waiting for MegaPose and Done. The process describes
which step of generating an image is currently active. The same goes for
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(a) : Triangle mesh approximation

(d) : Convex decomposition approxi-
(c) : Convex hull approximation mation

Figure 3.19: Comparison of different mesh approximations for collisions

the Calibration Process, however, without the waiting states. The simplified
process is described in a form of a pseudo-code in the algorithm

B 3.8 Camera extrinsic parameter calibration

The completion of work on the interactive simulation application finally allows
doing tasks that require moving the robot and processing the input from a
camera. In this case, it is important to do the camera’s extrinsic parameter
calibration which starts with moving the robot’s tool center point (TCP) in
a number of locations with a pattern attached to its tool and taking pictures
with the pattern in recognizable positions.

For this purpose, a robot’s program was developed so that the whole
process of calibration can be automated. It consists of manually created
sequence of 18 poses (figure which are rotated around all three axes
and in different distances to the camera to capture the space as evenly as
possible. After arriving at a pose, the robot signalizes that it is ready for an
image to be taken by raising the variable called Calibration_RenderRdy to
TRUE, which is acknoledged by bringing a rising edge to the variable named
Calibration_RenderDone. In the interactive application, acknowledging is
done by the main script communicating with the robot. Before the acknowl-
edgment, it first requests an image from the camera (or Omniverse) script
and, also, saves the robot’s pose into a JSON-formatted file.
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Algorithm 3 Main script rundown using pseudocode

1: Establish connection through socket wrapper

2: Start all threads

3: CPS < Not Running > Calibration Process State
4: GPS < Not Running > Generation Process State
5: while True do

6: Command < Check socket message buffer

7 if Command = Empty then

8: Command < Pop I/O Queue

9: end if

10: if Command = Generate Data and GPS = Not Running then

11: Send Socket <— Request Image and Annotations)

12: GPS < Running

13: else if Command = Generation Done then

14: if CPS = Running then

15: Send robot to next calibration pose

16: else

17: Start MegaPose script on generated data

18: GPS + Waiting for MegaPose

19: end if

20: else if Command = Start Calibration and CPS = Not Running then
21: Start Robot Calibration Program

22: Send Socket < Calibration Mode

23: else if MegaPose Event Done then

24: Send Picking operation with new pose to the robot

25: end if
26: end while

The initial step of the extrinsic calibration is to detect the pattern’s features
in the image and then estimate the objects pose using the knowledge about
patterns dimensions.

The relation between the perspective projection in the image plane X = (u, v, 1)
and the point’s location in the world coordinate frame W (figure 3.21)),
WX = WX, WY, V7)) is

x=K-II -°T) - WX, where (3.2)

K is the camera intrinsic parameters matrix of shape 3 x 3, Il is the projection
matrix of shape 3 x 4 and °T)y is the transformation matrix from the world
coordinate system W to the camera coordinate system C:

43



3. Methodology

Figure 3.20: Two of eighteen calibration poses from the process of extrinsic
camera calibration

Assuming the intrinsic calibration matrix is already known, the equation
can be simplified putting x = K~ 'x:

x; = Ty, "VX;. (3.3)

Knowing the geometry of the object, this leads to a system of equations made
of Solving this system of equations gives us *X, meaning the objects
position in camera coordinate system.

Next, the transformation matrix from the camera coordinate system to
the robot base can be obtained. This can be done using OpenCV’s func-
tion calibrateHandEye. Its use is straight-forward for the case of using a
hand-eye calibration. If the assumptions given in the documentation of the
library are true, the function needs to be given a transformation from the
gripper coordinate system to the robot base coordinate system BTg and
a transformation matrix from the target coordinate system to the camera
coordinate system CTT and it returns the transformation matrix from the
camera coordinate system to the gripper coordinate system 9T¢.

However, in this case, it is needed to transform the task so that it is
applicable to the eye-to-hand configuration (figure . Instead of B Tg we
pass to the first parameter a matrix representation of transformation from
the robot base coordinate system to the gripper coordinate system 9T g while
the second parameter is passed correctly the matrix of T This leads to a
system of equations
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KUKA

Figure 3.21: The relation between the perspective projection in the image plane
and the point’s location in the world coordinate frame

QTB(l) B, CTT(l) — QTB(Q) B, CTT(Q),
(gTB(Z))—l gTB(l) BTC — BTC CT’T(2) (CT’T(l))_l,
A; X = XB;.

The output of the method, and the solution X of the system, is the desired
matrix of BTe.

9T

9T,(2)

Figure 3.22: Eye-to-hand configuration schema
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. 3.9 Pose estimation

The pose estimation pipeline starts with taking a picture of an object placed
in the camera’s field of view and detecting it along with its position the image.

Figure 3.23: MegaPose estimation render & compare visualization

This detection output joined with the original image is then given to
the MegaPose algorithm which, in turn, returns the transformation matrix
CTr. Visualizations of MegaPose render & compare results can be observed
in figure Depending on whether an OpenCV’s or OpenGL’s camera
coordinate system is being used, a correction matrix is applied

1 0 0 0
¢ |0 -1 0 0f¢
0 0 0 1

which translates between the two mentioned coordinate systems visualized in

figure [3.24,

Xyz
OpenGL%ncv

Figure 3.24: Difference in the camera coordinate system definition between
standards of OpenGL and OpenCV

Next, offline-defined gripping poses of the detected object are iterated
through, until a viable pose is found. The plausibility of the given gripping
pose is checked in the robot controller itself using a function Inverse. If
such position exists, the robot immediately goes to that position to pick the
object, otherwise the pipeline return an error and awaits another command
from the user (or planning system). The algorithm is further explained using
a pseudocode
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Algorithm 4 Pose estimation pseudocode

Object is placed in front of a camera
User executes Generate Data command
image, object, bbox < Camera with a detection model generates data

T + MegaPose estimates the 6D pose of the given object

i1
while i < N do
GP < GP; € (GP1,....,GPN), GP is a gripping pose coord. system
BTgp « PT¢ ‘T, TTgp
if IKT solution for path to GP results in error then
i+—i+1
else
Found suitable GP <+ True
break
end if
: end while

e e T e e
I ST A Gl ral

. if Found suitable GP then
return ® Tgp
. else

throw Exception
. end if

NN NN

B 3.10 Setting up physical camera

In the previous sections of this thesis, a virtual camera model was developed
and tested to simulate the process of taking an image, however, without
optical distortions. This section talks about the process of setting up a real
imaging system to test and compare the results with the Digital Model and
produce high-quality images in various lighting conditions.

The physical cell uses an industrial camera Basler acA2440-20gc equiped
with Basler Lens C23-0816-2M-S f8mm. The lens allows to change the
aperture stop size in range of F1.6 to F16. It is needed for the objects at
the other end of the robot cell to be as sharp as the objects that are almost
directly under the camera, hence, the highest F number is set-up on the lens.
The downside is that this results in the lowest amount of light reaching the
camera’s chip and thus the images require longer exposure times. It is very
important to perform the test of the F-stop setup before any of the parameter
calibrations, intrinsic in particular, as changing the camera’s F-stop and the
focus distance changes the parameter values, as well.
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i vt =( tx, ty, tz) 5(3.6Q56°
/e=R = (Rx,Ry,R2) =( 90, h

Figure 3.25: Absolute and gripping transformation for the object

Basler cameras come with pylon software development kit (SDK) offering
programming interfaces for various programming languages. This thesis uses
an open source Python wrapper called pypylon to comply with the code of
the rest of the thesis which is also done in Python. A class was created,
which connects to the camera using its serial number as an identificator.
The first step after connecting to the camera is to set the Gain, Exposure
time and Balance White values. The setup in this thesis uses camera’s Auto
Functions that set the mentioned values automatically accordingly to given
constraints. The given camera has two profiles, one which minimizes gain
and one minimizing exposure time. In this thesis, a profile minimizing the
gain is used. This results in a lower frame rate, however, the images have
close to no noise, unless the image is taken in very dim circumstances, such
as in the night.

B 311 Defining the gripping positions

The reconstructed objects used in the used object dataset come in .obj files,
which contain information about a coordinate system with an origin. Position
of this origin is what the MegaPose algorithm returns estimation of. It is
highly improbable that this origin together with the coordinate system’s
orientation would align with the gripping positions needed for gripping the
objects. This stems from the fact that every gripper prefers a bit different
gripping poses, depending on its geometry, as well as geometry of the object
in question. In order for the robot to be able to move to the object and grasp
it with the end effector, suitable positions need to be defined. This can be
done opening any 3D rendering software able to open .o0bj file and creating a
coordinate system with respect to the default one. With NVIDIA Omniverse,
it is possible to do exactly that, the setup can be seen in figure [3.25.
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Chapter 4

Experiments

B a1 Evaluating the object detection model

Assessing the object detection model’s performance uses a range of metrics to
provide valuable insights. These metrics give an understanding of how well the
model works under given conditions, both in the simulated environment, which
is the same as the synthetic image dataset was created in, and at the physical
cell.

One set of metrics consists of precision and recall. Precision is defined as

TP B TP
TP + FP  all detections

Precision = , Where

TP is a number of true positive dectections and FP is a number of false
positive detections. Recall is defined as

TP TP

11 = =
Reca TP +FN  all ground truths’

where

FN is false negative detection. Precision shows the model’s ability to identify
relevant objects, while recall describes the sensitivity with which the model
predicts a given label. Together with these metrics comes precision-recall
curve metric which plots precision and recall values concerning probability
confidence threshold. Selecting such a threshold can be challenging, hence,
average precision (AP) is introduced to evaluate the performance without
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a dependency on the threshold. AP is the area under the precision-recall curve

1 1.0
Average Precision (AP) = / p(r)dr = 1 Z p(r), where

r=0 3
p stands for precision and r stands for recall. Furthermore, AP values
are computed for each class. To understand the model’s performance over
the whole dataset, the AP values can be averaged to get mean average
precision (mAP):

1 k
mAP = %;APZ-.

To learn weights as well as evaluation of methods, a synthetic dataset
was created using the tools created in section |3.6| on page |34. The dataset
consists of 40’000 labeled images, which was split to three different groups -
the training set, the validation set and the test set. Training batch can be
seen in figure 4.1

The training set is directly used for learning the weights of the used model
and consists of 34’000 images which equals to 85 % of the whole dataset.

The validation set is used for evaluating the performance of the model dur-
ing training, allowing for spotting the model’s tendencies to overfit to training
data. The phenomena of overfitting occurs when the model’s weights start to
fit the training data and stop working on newly introduced data[35]. The val-
idation set consists of 6’000 images which equals to 15 % of the dataset.
In the case of bad results on the validation set, a method of learning
the weights, or the model itself can be changed.

To accurately evaluate the model’s performance in the real use case scenario,
a curated testing set is usually used once at the end of the whole process[36].
For this purpose, a set of 3’000 images of the scenario in virtual environment
using the prepared scene is used, as well as 100 images from the physical cell.
The performance of the model on the images from the virtual environment
and the physical cell are shown separately and compared.

B a2 Evaluating methods in simulated environment

Evaluating the pose estimation process accuracy in simulated environment
with a digital model comprises of comparing results of different parts of the
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image_rgb_27411.png

Figure 4.1: One of training batches

pipeline to the ground truth values taken from the simulated environment.
Accuracy of three main areas of the pipeline are evaluated: the calibration of
camera intrinsic parameters, the calibration of camera extrinsic parameters,
and the performance of the MegaPose pose estimation algorithm.

Accuracy of the calibration of camera intrinsic values in the simulated
environment can be directly compared to the values set in the simulating
software. The comparison is quantified using relative errors

__ UGT — Umeas
UGT

for each of the values, where vgT represents ground truth value and vyeas
represents the measured value.

Following the evaluation of the intrinsic calibration, accuracy of the cam-
era’s extrinsic parameters is evaluated using metrics of Euclidean distance
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and angular differences to compare the measured coordinate frames against
the camera’s position in the object scene coordinate system. Using these
metrics, 7 different methods of calibrating the camera’s extrinsic parameters
implemented in openCV are compared.

For performance review of the pose estimation algorithm, the same metrics
as for the camera’s extrinsic parameters are used. A total of 100 images
is taken of the objects from the object dataset, together with their respective
ground truth values. Then MegaPose algorithm is used for estimating the pose
and then those values are compared.

B a3 Evaluating methods at the physical cell

The evaluation of the aforementioned methods in a physical robot cell presents
an additional challenge as the ground truth values are not present anymore.
In the real-word industry setting, alternative evaluation techniques are used
for measuring the accuracy of different parts of the pipeline.

The accuracy of the pose estimation algorithm together with extrinsic
calibration is evaluated using a two-step process. First, the robot is moved
to what is estimated by the algorithm as the optimal gripping pose. Then,
the robot is moved by hand to what is expected to be the correct gripping
pose. The Euclidean distance between these frames is used as a metric.
Evaluating the accuracy of the angle estimation by hand is challenging as
matching a precise angle with round suction gripper is nearly impossible.
Hence, instead of using difference in angle, only a success rate of gripping
after performing the correction is recorded.
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Chapter 5

Results

B 51 Object detection using YOLOvS

Performance of the object detection model on both the virtual and physical
testing set is separately presented using a table (tables and and a con-
fusion matrix (figure on page 55| and figure on page . The tables
show the number of instances in which objects from the dataset represented
by a row appear in the test set, precision, recall, mAP calculated at an IoU
of threshold of 50 % and at a threshold of 50-95 %. The confusion matrices
consist of rows and columns representing labels and predictions, respectively.
A perfect scenario would consist of a convolution matrix with the only nonzero
elements lying on the diagonal, meaning all predictions would be equal to
the ground truth label.

The results of predicting on the testing set from the simulated environ-
ment are almost perfect, with only 4 of 3’000 images being predicted wrong.
This, of course, hints at an underlying problem. Even though the training
data set was created using randomized camera position, textures of the cell
and also textures in the background, and the test set pictures being unseen,
with the size of the dataset of 40’000 images, the randomization of the scene
is not broad enough, resulting in the model correctly predicting vast majority
of images.

More interesting results can be observed with the physical cell testing set.
As can be seen in the table 5.2 the precision of the model is relatively high,
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Class Instances P R mAP50 | mAP50-95
all 3000 0.999 | 0.999 0.995 0.975
dO01__controller 500 0.999 | 1.000 0.995 0.991
d02_servo 500 1.000 | 1.000 0.995 0.934
d03__main 500 0.996 | 0.992 0.995 0.969
d04__motor 500 0.999 | 1.000 0.995 0.984
d05__axle_ front 500 0.999 | 1.000 0.995 0.985
d06__battery 500 0.999 | 1.000 0.995 0.989

Table 5.1: Image detection metrics on the testing set from virtual environment

with the lowest value of 93.3 % for the d03_main object, while recall seems to
drop a bit lower, with the lowest value of 79.7 % for the object of d0/__motor.
In most cases, trying to reach a higher recall results in lowering the precision
as a trade-off which would go directly against the needs of an industrial setting,
where most of the applications are rather sensitive to precision, than to recall,
due to safety reasons. It is much better for an object to go undetected, leading
to a pipeline being stopped in the beginning and allowing to reconfigure,
than miss-classifying an object as some other one, resulting in the equipment
possibly colliding unexpectedly, creating all sorts of hazards.

Class Instances P R mAP50 | mAP50-95
all 92 0.964 | 0.868 0.93 0.656
d01_ controller 26 1 0.844 0.914 0.695
d02__servo 16 0.991 | 0.875 0.954 0.575
d03__main 12 0.933 1 0.995 0.873
d04_motor 11 1 0.797 0.943 0.612
d05 axle front 12 1 0.89 0.938 0.656
d06__battery 15 0.862 | 0.8 0.836 0.522

Table 5.2: Image detection metrics on the testing set from physical cell

. 5.2 Pose estimation using MegaPose in simulated
environment

With the ground truth values of camera matrix as well as the estimated values
of camera matrix obtained through camera calibration, difference of the values
can be calculated (equation 5.3). With the pinhole model projection equation

Ar=f-Z=|z=03m, 2z=1m,f =747-10"% m| = 2.241mm,
z

where x is distance of an object from the optical axis, z is distance of the object
from the camera, the error of an observed position on a given axis can be
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Figure 5.1: Confusion matrix of labels and predictions on the virtual environment
testing set

calculated. With the objects in the scene being roughly in the distance
of 1 meter from the camera and up to 0.3 metres from the optical center,
we can expect an error of 2.2 millimeters due to the intrinsic calibration error
only.

[886.93 0.0 512.0
Kor=| 0.0 886.93 512.0|, (5.1)
0.0 0.0 1.0

[879.52 0.0 515.86
Kot = | 0.0 878.65 527.65], (5.2)
0.0 0.0 1.0

[7.47 0.0 9.37
AK = Kgr — Kest = | 0.0 7.56 2.62] , (5.3)
100 0.0 0.0

Calibration of the camera’s extrinsics was done using a total of 7 meth-
ods, with the first 5 implemented in OpenCV’s calibrateHandEye method
and the last two implemented in calibrateRobotWorldHandEye. Two meth-
ods, namely method number 3 [37] and method number 6 [38], give results
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Figure 5.2: Confusion matrix of labels and predictions on the physical cell

testing set

with accuracy of less than a millimeter and no angular error. For this reason,
an error of the resulting pose estimation of 1 millimeter is given by the
extrinsics calibration. The other methods, except for method 4 [39], give
accuracy of up to 5 millimeters. Method 4 [39] is very far off with 66 milime-
tres of an error in the translational part of the extrinsics, which hints at a
faulty implementation in the OpenCV library. The results can be observed

in table 5.3l
Il:/IOethod Ax [mm] | Ay [mm] | Az [mm] | Ae [mm] | A0 [°]
0 1.30 -2.28 -4.20 4.95 0.15
1 0.05 -0.94 1.28 1.59 0.00
2 0.05 -0.93 1.30 1.60 0.00
3 -0.18 0.46 -0.17 0.52 0.00
4 -5.46 48.04 -45.27 66.23 0.12
5 -0.21 0.72 2.63 2.73 0.02
6 0.00 -0.73 0.62 0.96 0.00

Table 5.3: Comparison of 7 different methods of camera extrinsics calibration

MegaPose estimation errors are presented in table First column shows
average error per-axis i and also a standard deviation value o, while the second
shows the average Euclidean distance error. The third shows the same metric
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5.2. Pose estimation using MegaPose in simulated environment

as the first one, only with an angle difference. The angles are shown in Euler
intrinsic Z — Y — X format, which directly maps to the a, b, ¢ corrections
of the robot’s tool center point frame in the robot’s controller. The fourth
column shows the average angle error around a vector.

The results of the estimation using the camera setup from the simulated
environment clearly show, that the setup is not suitable for the problem.
An interesting phenomena of the highest errors appearing in the z axis,
which is the case for 5 out of 6 objects tested. This means that the model
shows a problem with estimating the objects’ distance from the camera.
However, there is a possible explanation, as the probability of the rendered
CAD model moving significantly out of the bounding box made by the object
detector is lower than positioning the rendered model closer to (or, further
from) the camera and rotating it in a way such that the outline of the object
matches the outline of the object in the scene (figure [5.3). This is further
supported by the high error values in the rotational part of the 6D estimation.

(a) : 2D image plane projection (b) : 3D side-view

Figure 5.3: Visualization of faulty object estimation appearing correct in the
image plane (magenta object is the rendered model in the estimated pose, green
is the ground truth pose)

The tendency to rely on the object’s outline can be observed in one of two
scenarios - using a CAD model without a texture or the objects being too
small in the context of the picture. With 5 out of 6 used objects being textured
with very distinctive features, such as April tags, it hints to the other option.
In that case, opting out for a camera lens with higher zoom and smaller field
of view would be advisable.
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HAaz £ OAx HAR; £ OAR,
Hay T oAy HBae £ 0ad | BARy £ OARy
Class paz £ oa; [mm)] nary £ oary | A + oo
foom) ]
q01 2.65 + 4.07 10.09 £+ 26.15
COIH;"OH@I" 4.30 £+ 8.06 10.60 &£ 11.30 | 7.67 &£ 18.19 | 55.38 £ 105.87
8.61 £ 7.67 5.04 + 13.43
402 2.05 4+ 4.42 1.97 £ 3.54
Serv; 2.32 + 3.95 15.28 £+ 26.15 2.52 £+ 3.57 22.04 + 44.44
14.68 £+ 25.63 5.25 + 13.84
403 4.74 + 5.97 11.65 £+ 25.29
maig 5.05 £+ 6.82 16.32 + 15.54 2.54 + 3.56 57.40 + 88.40
12.86 £+ 14.57 9.00 4+ 15.01
404 3.48 + 6.48 30.41 £ 63.55
motgr 2.76 + 4.49 16.54 £+ 22.23 1.38 £+ 1.52 96.99 4+ 198.91
15.60 £ 21.04 0.99 + 1.07
do5 3.73 £ 7.38 11.12 £+ 25.75
axle 7.18 + 14.22 | 20.87 + 19.26 5.05 £ 7.79 70.44 4+ 132.95
front 17.40 £+ 13.47 18.32 £+ 45.33
406 10.29 £+ 25.09 22.07 + 56.58
battTary 2.20 &+ 3.20 16.79 £ 24.55 0.78 £ 0.88 75.07 + 184.64
8.21 4+ 8.16 23.28 4+ 58.94

Table 5.4: Object estimation errors using MegaPose

B 53 Pose estimation using MegaPose at the
physical cell

Real-world environment experiment results are presented using the same met-
rics (table 5.5) as in the previous case of the simulated environment. There
is one major difference, however, as in the case of table |5.4, the axes of z, y,
z and their respective error values were in the coordinate system of a camera,
while in this case, the experiment uses the coordinate system of the object
estimation. Hence, the same conclusions cannot be drawn in terms of the
z-axis, as the effect of wrongly estimating the objects’ distance to the camera
randomly distributes into all three values, depending on the estimated orien-
tation of the object. It can be seen, that the magnitude of the error values is
comparable to that of the simulated environment testifying the authenticity
of the developed simulation setup.

o8




5.4. Transition from Digital Model to physical cell

HAz + OAx
Class Z iz i Ziz ag £ oag | Success rate
jmm)
q01 0.10 £ 0.24
Conaoller 0.71 £ 1.75 2.84 £+ 3.09 100.0 %
2.15 £ 3.06
402 2.86 £+ 3.35
Servg 4.03 4+ 5.48 13.06 &+ 9.57 62.5 %
10.14 + 9.67
403 20.08 £+ 21.01
mai; 19.24 + 21.04 | 31.12 £+ 27.87 25.0 %
7.25 £ 5.92
404 5.29 £ 3.70
motgr 25.43 £ 15.37 | 39.02 £+ 15.99 20.0 %
27.38 £ 10.19
406 6.89 £+ 4.19
battTery 7.94 £+ 3.97 18.68 £ 8.38 50.0 %
14.67 £ 7.75

Table 5.5: Object estimation errors of the whole pipeline (intrinsic, extrinsic,
MegaPose)

B 5.4 Transition from Digital Model to physical cell

Four separate programs were created in the simulation development part
of the thesis - an industrial PC control script acting as high-level controller,
a robot program and an Omniverse interactive application together with
an offline dataset generation script. Three of which are meant to be deployed
into the physical environment.

The control script itself allows transitioning to the physical environment
and back with a flip of a switch. The modular design with which it has
been developed together with the communication protocols of sockets and
OPC UA allows for seamless transition between the two worlds. A possible
improvement in this area would be changing the script in a way allowing
for concurrent running of the simulated and physical setup.

The robot program implemented in the KUKA.OfficeLite VRC can be
transferred without any changes to the real controller. However, with the cur-
rent setup, it is required to manually download the program either using
a flash disk or KUKA.WorkVisual and then uploading it onto the real robot
using the same method. In the future, this could be improved using packages
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allowing for downloading and uploading robot program files through local
area network.

The interactive application is the only part, which cannot be directly trans-
ferred into the physical world, as physical world cameras require working
with their respective drivers. As such, every time a camera needs to be
used, a program taking care of its drivers and methods needs to be devel-
oped. However, in the case of reusing cameras from the same manufacturer,
there is a possibility these drivers are all controlled in the same, or very
similar, way, lowering the time spent on the deployment to the physical
world. Furthermore, the main control script comes with a universal interface
for any image generating module. This allows for an engineer to develop
the camera control script concurrently with the development of the Digital
Model, due to an already established expected behaviour.
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Chapter 6

Conclusion

This thesis has explored the process of developing a robotic pick and place
cell within both virtual and physical environments. By leveraging advanced
technologies and simulation platforms, most notably NVIDIA Omniverse,
the study aimed to enhance the current methodology of virtual commissioning
and robotic simulations in the automation industry.

The thesis begins with a review of the current state-of-the-art in 6D
pose estimation algorithms, selecting MegaPose for its compatibility with
using a static RGB camera without depth. This selection was followed
by the development of a virtual robotic cell scene using the chosen simulation
tools of Process Simulate and KUKA.OfficeLite.

After the initial setup of the scene, it was exported into NVIDIA Omniverse,
where textures and lighting were applied together with the camera renderer
effects to mimic the real camera view as closely as possible. With these
properties set-up, the thesis then moves on to create two separate NVIDIA
Omniverse tools - the image dataset generation tool used for creating a dataset
for training of a machine learning model, and the interactive application which
serves the true purpose of a Digital Model'l

The latter comes with a fully developed modular architecture consisting
of a high-level controller with a universal interface for working with any
image producing system and an OPC UA interface allowing for a unified

L All of the developed tools can be obtained at https://github.com/testbed CITRC/Robotic-
Object-Manipulation-in-Virtual-and-Physical-Environment
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manufacturer independent communication with the robot controller. Thanks
to these properties, the proposed system is scalable, flexible and invites
a workflow where multiple engineers can concurrently work on the divided
modules. Furthermore, the simulation software used for the implementation
enables very smooth transition from the virtual to physical environment,
with some parts needing no reconfiguration and a part requiring only a transfer
of files from one device to another, without a need to change any of the code.

The performance of the solution is assessed using various metrics on different
parts of the pipeline. The first part of the experimentation phase evaluates the
trained detection model YOLOvS. It was trained on a dataset of 34’000 purely
synthetic images of objects from a selected object dataset. With the average
precision of 96.4 % across the whole object dataset on images taken from
the physical cell’s camera, it was proved that the synthetic dataset can be
used to train the object detection model.

Pose estimation performance evaluation was done both in virtual and phys-
ical environments. The pose estimation experiments revealed that the pose
estimation accuracy with the current setup is far from reaching the required
values set by the design of the used object dataset. However, it also shows that
the developed Digital Model simulates the physical environment even with its
limitations, arriving at the same conclusions across domains. This was not
an expected outcome in the beginning of the development and is a success in
and of itself.

Hence, this thesis proposes a number ways that could potentially enhance
the performance of the setup. Firstly, using a camera lens with higher zoom
and smaller field of view to prevent the estimation method from relying
solely on the object’s outline in the image due to a lack of details caused
by the objects being too small in the captured images. Another possibility,
should it be impossible to change the camera lens, is to redesign the whole
cell and mount the camera to the robot’s flange. This comes with an upside
of being able to control how close the camera is to the estimated objects,
but also a downside of limiting the robot’s workspace, especially in the case
of such a small robot as the one used in this thesis.
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