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Abstrakt

Self-agency experiment zkoumá jeden z hlavńıch př́ıznak̊u schizofrenie, a to zkreslené vńımáńı
sebe sama. V této práci jsou výsledky experimentu zanalyzovány pomoćı analýzy nezávislých
komponent a voxelové analýzy. Oba př́ıstupy jsou dále porovnány z hlediska detekce rozd́ıl̊u
mezi skupinou pacient̊u se schizofreníı a skupinou zdravých kontrol a jsou použity v klasifikačńı
úloze. Výsledky prokázaly významné rozd́ıly zejména v oblastech mediálńıho frontálńıho
gyru, posteriorńıho cingulárńıho gyru a precuneu. Bylo zjǐstěno, že výsledky obou analýz
jsou efektivńı pro klasifikačńı úlohu, ale také že se výsledky lǐśı při jejich použit́ı na jiných
nezávislých datasetech. Tato zjǐstěńı dopomohou lépe pochopit vńımáńı sebe sama u pacient̊u
se schizofreníı, ale také přisṕıvaj́ı k rozvoji využit́ı těchto dat pro rozlǐseńı zdravých subjekt̊u
a pacient̊u se schizofreníı.

Kĺıčová slova: schizofrenie, Self-agency experiment, analýza nezávislých komponent, stati-
stické parametrické mapováńı, support vector machine

Abstract

The Self-agency experiment explores one of the main symptoms of schizophrenia, namely
the distortion of self-perception. In this thesis, the results of the experiment are analyzed
using the independent component analysis and the voxel-wise analysis. Both approaches are
compared in terms of detecting differences between the group of schizophrenia patients and
the group of healthy controls and are used in a classification task. Results proved significant
differences especially in the areas of the medial frontal gyrus, posterior cingulate gyrus, and
precuneus. It was found that the results of both analyses are effective for the classification, but
also that they are different when applied to other independent datasets. These findings help
to better understand the perception of self in schizophrenia patients and also contribute to the
development of the use of these data for the differentiation between healthy and schizophrenia
patients.

Key words: schizophrenia, Self-agency experiment, independent component analysis, sta-
tistical parametric mapping, support vector machine
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1 Motivation

Schizophrenia is a chronic psychiatric disorder that affects about one percent of the world’s
population [1]. It has a major negative effect on the patient’s life and the lives of his family
members [2]. Although schizophrenia has been researched by scientists for the past century,
some of its processes and associated effects are still not fully understood.

The motivation behind this thesis is to help to a better understanding of this disorder and
to provide insight into how the Self-agency experiment can be used for the classification of
schizophrenia patients. This includes conducting a replication study of [3] by evaluating the
independent component analysis and the voxel-wise analysis. The two approaches are then
compared and used in a classification task in order to find out, whether any of them is efficient
for the classification of schizophrenia patients based on the Self-agency experiment.
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2 Theoretical foundations

2.1 Schizophrenia

Schizophrenia is a complex psychiatric disorder that profoundly affects the patient’s pro-
cessing of perception, emotion, and judgment. It changes the personality, experience, and
perception of reality and impacts the ability to work as well as the social integration of the
affected person [2]. The prevalence of schizophrenia is about 0.6 and 1.9%. The prevalence
seems to be equal in males and females; in males, it usually occurs in their early 20s, and for
women, it is usually in their late 20s or early 30s, and it is heritable [1]. From what has been
found so far, it appears to be caused by a dysfunction of dopaminergic neurotransmission,
variable involvement of several brain areas, and disturbances of synaptic functions [4].

Schizophrenia is a heterogeneous syndrome, and it manifests in many symptoms – there
occur psychopathological changes such as delusions, loosening of connection of thoughts, hal-
lucinations, and/or changes in behavior [1]. The characterization of symptoms is based on
defining positive and negative symptoms. Positive symptoms, also referred to as psychotic
symptoms are, e.g., suspiciousness, delusions, hallucinations, and grandiosity [5]. Negative
symptoms include, e.g., diminished emotional expression and reaction, apathy, loss of energy
and interest, social withdrawal [1]. The positive symptoms tend to relapse, and the negative
and general tend to be chronic [4]. The symptoms can be evaluated using the PANSS scale [5],
in which individual positive, negative, and also general psychopathology including depression
and anxiety is captured.

One of the core markers of schizophrenia is the disturbance of the sense of self. Patients
perceive some thoughts and actions to be under the control of an external agent. It has been
confirmed that self-related processing is mediated by anterior and posterior cortical midline
structures. The aberrant activity of underlying regions may result in feelings of thought
insertion or delusions of control [3]. The delusions of control come from the pathology of the
motor system. It seems that the actions move in one step from desire to execution with no
control of the action. Even though these actions are being executed correctly, the affected

2



person does not feel in control [6].
This study works with patients with first-episode schizophrenia spectrum disorders (FES).

Although the conceptual framework of schizophrenia by Kraepelin was set in 1919 [7], and
schizophrenia has been the subject of research since, the precise nature, location, and origin
of this disorder are still not certain. Nevertheless, accumulated knowledge suggests that
already at the onset of symptoms, suggesting that the process of anatomical changes has been
ongoing for several years, volumes of frontal and temporal areas are decreased in patients with
schizophrenia [8]. However, these changes are not as pronounced as in chronic patients, and
first-episode schizophrenia thus constitutes a window of opportunity for effective therapeutic
interventions and predictions [9].

2.1.1 Regions of interest

While many brain regions have been reported to be affected in patients with schizophrenia,
the current thesis focuses particularly on the alteration of the sense of agency. Thus, in this
section, I review the core regions involved in this mental function.

The perception of self has been confirmed [10] to be mediated by cortical midline structures
(CMS), especially anterior and posterior CMS (medial prefrontal cortex, anterior cingulate;
posterior cingulate and precuneus). According to the prevailing view [10], the medial pre-
frontal cortex seems to account for the representation of self-related stimuli. Stimuli appear
to be monitored in the anterior cingulate and evaluated in the dorsomedial prefrontal cortex.
This can be integrated with the emotional and autobiographical context, and this is executed
in the posterior cingulate cortex.

2.1.2 Functional brain networks

Functional brain networks can be detected using many approaches, e.g., the independent
component analysis. [11] showed that up to 12 resting-state brain networks can be differenti-
ated using the ICA.

In the context of self/other-agency, we are interested in activity, that can lead to the
misattribution of the stimuli origin. Such aberrant activity can originate in central midline
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Figure 1: Processing of self-referential stimuli is concentrated in the cortical midline structures
(CMS). Orbitomedial prefrontal cortex (OMPFC), dorsolateral prefrontal cortex (DMPFC),
anterior cingulate cortex (AC), and posterior cingulate cortex (PC). Figure adapted from [10].

structures and related networks, such as the default mode network (DMN) [3]. The DMN is a
brain network with properties that set it apart from the other brain systems. It exhibits the
activation during mental explorations and thinking to oneself. It is linked with remembering,
considering social interactions, and self-related events [12]. It comprises the dorsal medial
prefrontal cortex, posterior cingulate cortex, precuneus, and angular gyrus [12].

2.2 Independent component analysis

2.2.1 Definition

Independent component analysis (ICA) is a method for finding a linear transformation of
non-Gaussian data that minimizes the statistical dependence between its components [13]. It
captures the essential structure of the data and can be used for feature extraction or signal
separation [14].
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Let x1, . . . , xn be n linear mixtures of n independent components ([13]):

xj = aj1s1 + ... + ajnsn, (1)

where sn are the original (unknown) signals, xn are the observed signals, and ajn are the
(unknown) parameters to be estimated. This so-called cocktail-party problem can be solved by
several approaches; ICA assumes that sn are statistically independent, which allows estimating
the parameters ajn and separating the signals.

In vector-matrix notation, we get x as the vector of mixtures x1, . . . , xn, s as the random
vector with elements s1, . . . , sn. Then we denote by A the matrix with elements ajn . The
ICA model of the mixture is then represented as

x = As. (2)

The ICA model can be estimated when the following is satisfied:

1. Original signals s1 . . . sn are statistically independent.

2. Original signals s1 . . . sn have non-Gaussian distributions.

3. The matrix A is square.

The process of the model estimation itself can be summarized as estimating the matrix A,
then finding its inverse – let us denote it by W – and using it to obtain the independent
components according to ([13]):

s = Wx. (3)

In the case of fMRI analysis, ICA identifies prominent BOLD signal sources. The indepen-
dent components are then used to construct spatial maps and the corresponding time courses.
A spatial map represents the distribution of a specific component across the brain’s voxel
space. It highlights the regions where the component was the most influential. Then, the
time course of an independent component represents the temporal dynamics associated with
a specific spatial map.
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2.2.2 Algorithms for ICA estimation

FastICA The assumption of non-Gaussianity can be used as a principal in ICA estimation.
A commonly used measure of Gaussianity is the fourth standardized moment, i.e., kurtosis.
For a random variable y, kurtosis is defined as:

kurt(y) = E{y4} − 3(E{y2})2. (4)

And since the fourth moment for y with a Gaussian distribution equals 3(E{y2})2, the kurtosis
is zero for a Gaussian random variable. For most non-Gaussian random variables, kurtosis is
non-zero [14].

Another measure of Gaussianity is negentropy. Since variables that have Gaussian distri-
bution have the largest entropy among all random variables of equal variance, negentropy
was designed to provide the opposite. It is a modification of the entropy calculation and is
equal to zero for Gaussian variables and is positive for Gaussian variables. The entropy of a
continuous random variable y follows the equation [15]:

H(y) = −
∫

f(y) log f(y)dy, (5)

where f(y) is the density of y. Negentropy is then defined as:

J(y) = H(yg) − H(y), (6)

where yg is a Gaussian random variable with the same covariance matrix as y.

Infomax Mutual information serves as a measure of dependence between two random vari-
ables. Its definition uses the above-described entropy. When y is a vector of random variables,
the mutual information between the variables yi holds:

I(y1, y2, . . . , yn) =
n∑

i=1
H(yi) − H(y). (7)

I is zero if and only if the variables are statistically independent, and is always non-negative.
Thus, it can be used as a criterion for ICA estimation. The transformation matrix W in the
eq. 3 is, in this case, found by minimization of mutual information of si [16].
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Another approach for ICA estimation is maximum likelihood estimation. This approach is
essentially equivalent to already-described minimization of mutual information [14].

2.2.3 ICASSO

The application of ICA brings several problems. One of the key issues is that the opti-
mization can get stuck in local minima. Since the convergence to the global minima is not
guaranteed, it leads to low reliability of the estimated independent components. ICASSO is
a method that runs the ICA algorithm several times with differently bootstrapped data sets
or different initial values. It provides an insight into the reliability of components – reliable
estimates correspond to tight clusters and unreliable ones to points that do not belong to
any such cluster. A commonly used decision boundary for determining component stability
is the stability index (SI) equal to 0.9. Above this threshold (0.9 included), the component is
considered stable [17].

2.3 Statistical Parametric Mapping

Statistical Parametric Mapping (SPM) is a statistical technique used to identify regionally
specific effects in neuroimaging data [18]. It uses a voxel-based approach to describe signif-
icant changes in activity over time during various experimental factors. SPM involves data
preprocessing, usually realignment, and normalization into some standard anatomical space,
described in more detail in [18].

SPM connects the general linear model (GLM) and random field theory (RFT) when GLM
is used to estimate parameters explaining the data, and RFT is used to resolve the multiple
comparison problem. The general linear model is defined as:

Y = β0 + β1X1 + β2X2 + . . . + βpXp + ϵ, (8)

The observed response variable Y is expressed as a linear combination of explanatory variables
X and an error ϵ. The matrix that contains the explanatory variables is called the design

matrix. Its columns are also referred to as regressors. In terms of an experiment analysis, the
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regressors can represent different conditions of the experiment. Each column of the design
matrix has an associated unknown parameter βx. As it is partially shown in Figure 2, the
design matrix includes condition-specific effects but also confounding effects and constant
term.

Retrieved regressors and their coefficients can be used to run a range of statistical analyses.
E.g. to test the null hypothesis, that some linear combination of the estimates is zero, using
t-test. The statistic is obtained by using contrasts – weight vectors – to compare the difference
in responses to conditions.

Figure 2: Image representation of the design matrix addapted from [18]. Contrasts are the
vectors of weights defining which compounds of parameters are tested.

2.4 SLIC superpixels

Simple linear iterative clustering (SLIC) is a clustering algorithm that generates superpixels
by clustering pixels based on their color similarity and proximity in the image plane [19]. The
process is performed in the five-dimensional space given by CIELAB color space [lab] and pixel
coordinates [xy]. The authors of the algorithm introduce a distance measure, that enforces
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color similarity as well as pixel proximity. The distance Ds(i, k) between two points i, k with
coordinates i = (li, ai, bi, xi, yi) and k = (lk, ak, bk, xk, yk) is given by [19]:

Ds = dlab + m

S
dxy

dlab =
√

(lk − li)2 + (ak − ai)2 + (bk − bi)2

dxy =
√

(xk − xi)2 + (yk − yi)2,

(9)

where the variable m is introduced as the compactness parameter (the greater the value, the
more spatial proximity outweighs the color proximity). Ds is thus the sum of the lab and xy

plane distance normalized by the grid interval S. The grid interval is defined by the number of
desired clusters K (given by the user) and the number of pixels N in the image S =

√
N/K.

At the onset of the algorithm, the number of clusters, i.e., the number of cluster centers at
regular grid intervals S, is chosen. The search area for each cluster center is then defined by
its 2S × 2S neighborhood area. Then, each pixel in the image is associated with the nearest
cluster center. When all the pixels are associated, new centers are computed as the average
of all the pixels belonging to the cluster. The process is iteratively repeated until convergence
[19].

2.5 Partial Least Squares

Partial Least Squares (PLS) is a supervised learning method used to find latent variables
(components) that are linear combinations of the input variables (X) and the output variables
(Y) [20]. It is used to transform the original predictors into lower-dimensional space. In
comparison to another commonly used method of dimensionality reduction, PCA, which finds
a transformation such that it explains the maximum variance in X, PLS maximizes the
covariance between the X and Y [21].

The general formulation of PLS in matrix notation is as follows [20]:

X = TPT + E

Y = UQT + F,
(10)

9



Figure 3: Example of an image segmented using the SLIC algorithm into superpixels. Figure
adapted from [19]

where T, U are projections of X, Y, P, Q are loading matrices and E, F are the error terms.
The solution of PLS then is based on singular value decomposition.

Note that the above-described method is used when X is a set of independent variables and
Y is a set of dependent variables. When Y is a set of categorical response variables (labels),
there applies the variation of PLS, i.e., PLS-DA, Partial Least Squares-Discriminant Analysis
[22].

2.6 Support Vector Machine

Support vector machine (SVM) is a supervised machine learning algorithm used for both
classification and regression tasks [23]. The algorithm finds an optimal hyperplane with the
consideration of a margin, that is defined depending on the nature of the task – whether it is
a classification or regression problem.
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2.6.1 Classification

Support vector machine algorithm for classification finds a hyperplane that maximizes the
distance of data points of the classes. Let

w · x + b = 0 (11)

be a linear classifier given by parameters (w, b), w is normal to the hyperplane given by
the classifier, |b|/∥w∥ is the perpendicular distance from the hyperplane to the origin. x is
a vector of training data, each belonging to either positive or negative class: {xi, yi}, i =
1, . . . , l; yi ∈ {−1, 1}; xi ∈ Rd. The margin m of the hyperplane is defined as the sum of the
shortest distances from the hyperplane to the closest positive (d+)/negative (d−) data point
[24]:

m = d+ + d−; sign(d(x, y)) = y(w · x + b)
∥w∥

. (12)

The SVM algorithm looks for the separating hyperplane with the largest margin. The problem
(for separable data) can be formulated as [24] [23]:

yi(xi · w + b) − 1 ≥ 0 ∀i. (13)

Since the two hyperplanes H1, H2 defining the borders of the margin m are parallel, we get
to the simplification: sign(d) = 1/∥w∥. Hence the margin

m = 2/∥w∥. (14)

The optimization formulation for the maximum margin m∗ is a quadratic programming
problem defined as:

m∗ = (w∗, b∗) = max
w,b

2
∥w∥

= min
w,b

1
2∥w∥2,

s.t. : y(w · x + b) ≥ 1, ∀(x, y).
(15)
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Figure 4: Linear separating hyperplanes for separable data. The support vectors are circled.
Figure was adapted from [25].

Non-separability of the data If the data are linearly separable with some noise, the
algorithm is extended with slack variables ξi. If the data point does not fulfill the condition
y(w · x + b) ≥ 1, the condition is relaxed to y(w · x + b) ≥ 1 − ξ and penalty C · ξ is paid. The
problem formulation is changed to:

(w∗, b∗) = min
w,b

1
2∥w∥2 + C

N∑
i=1

ξi,

s.t. : yi(w · xi + b) ≥ 1 − ξi,

ξi ≥ 0,

∀i = 1, . . . , N.

(16)

If the data are not linearly separable, the data can be mapped to a higher-dimensional
space by a nonlinear transformation, where it becomes linearly separable. Find more details
in [23].

2.6.2 Regression

Support vector regression (SVR) uses the same concept of fitting a hyperplane using a
margin as a criterion. The difference is in the definition of the margin – in SVR, the margin is
a error tolerance of the model, which allows the data points to be deviated from the hyperplane
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Figure 5: Linear support vector regression example. The given example is a non-feasible case,
the slack variables ξi are introduced. The support vectors are circled. [27]

and not counted as errors if they are inside the margin. The objective function stays the same;
the change is visible in the constraints [26]:

(w∗, b∗) = min
w,b

1
2∥w∥2,

s.t. : yi − w · xi − b ≤ ϵ

w · xi + b − yi ≤ ϵ

(17)

where ϵ is the deviation of the model from the targets.
Equation 17 describes the basic idea of SVR and holds for feasible problems. The case of

non-feasibility can be solved with similar methods as in the case of classification tasks. There
can be slack variables introduced to allow for some errors with a penalty, or the data can be
transformed to higher-dimensional space [26].
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3 Data and methodology

In my thesis, I first conduct a replication study in which I try to verify the results of Spaniel
and others [3] using independent component analysis (ICA) and the voxel-wise analysis. The
study is not replicated exactly, in some parts, the methodology is modified due to unnecessary
complexity in the original study (particularly analyzing stimulation blocks separately), which
led to lower interpretability of the results. In the study, authors compared neural activity
in patients with first-episode schizophrenia-spectrum disorders (FES) and healthy controls
(HC). The functional connectivity during the Self-agency experiment was analyzed using ICA.
Results showed lower cortical activation of the medial frontal gyrus and posterior cingulate
gyrus in FES compared to HC. They also reported that the self/other-agency judgment is
related to the dynamic switching of the default mode network (DMN) and the central executive
network (CEN). After replication of the ICA analysis, I complement the results by voxel-wise
analysis and compare the outcomes.

Notably, the replication is further extended by applying the machine learning approach. In
particular, both analyses’ results are further used in a classification (FES/HC) and regression
(clinical symptom severity) task. The replication and the classification task are subsequently
performed on an independent dataset from a different MRI center, to assess reproducibility
of the results.

3.1 Data collection

Subjects whose data are used in this study were evaluated with MINI Internation Neuropsy-
chiatric Interview [28]. The exclusion criteria included a history of seizures or significant head
trauma, mental retardation, a history of substance addiction, and MRI contraindications.
First-episode schizophrenia patients (FES) were at the initial stage of second-generation an-
tipsychotic therapy. Healthy subjects (HC) did not have any major psychiatric disorder in
their past or family history. All subjects were right-handed.
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3.1.1 Replication study and classification task

In the study of Spaniel and others [3], the data consisted of thirty-five FES patients and
thirty-five HC. For replication, I have a larger sample available – it consists of 81 schizophrenia
patients and 55 controls, in total 136 subjects (more details are listed in Table 1). Subjects
from the previous study are included in the enlarged sample to provide a larger dataset for the
classification task. Validation of the methods and classifier is then performed on a different,
independent dataset.

group n age: mean age: std

FES, M 41 28.6 7.3
FES, F 40 30.2 7.2
HC, M 24 26.6 5.2
HC, F 31 25.2 3.6

Table 1: Table of representation of groups FES and HC, males (M) and females (F) in the
IKEM dataset. n column specifies the number of subjects, in the columns age: mean and
age: std are the group’s mean age and the standard deviation of age.

All subjects underwent the Self-agency experiment in the Institute for Clinical and Exper-
imental Medicine (IKEM) while their brain activity was measured using the same magnetic
resonance machine – 3 Tesla Siemens Trio scanner equipped with a 12-channel head coil.
Functional images were obtained using the T2-weighted gradient echo-planar imaging se-
quence sensitive to the blood oxygenation level-dependent (BOLD) signal with parameters:
repetition time (TR) of 2000 ms, echo time (TE) 30 ms, flip angle 90°, voxel size 3×3×3 mm3,
field of view (FOV) 192 × 192 mm, matrix size 64 × 64, each volume with 30 axial slices (slice
order: sequential decreasing), 240 volumes in total.

3.1.2 Testing on an independent dataset

In addition to the dataset from IKEM, the analyses and the classification task are also
performed on another separate dataset obtained from the National Institute of Mental Health
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(NIHM). The dataset contains 165 subjects: 97 FES patients and 68 HC; more details are
listed in Table 2. Subjects underwent the same experiment, the only difference being the
MRI machine, which was a 3 Tesla Siemens Prisma scanner equipped with a standard 64-
channel/20-channel head coil. Functional images were obtained using the T2-weighted (T2)
gradient echo-planar imaging sequence sensitive to the BOLD signal. Parameters of the
sequence were: TR of 2000 ms, TE 30 ms, flip angle 90°, voxel size 3 × 3 × 3 mm3, field
of view (FOV) 192 × 192 mm, matrix size 64 × 64, each volume with 30 axial slices (slice
order: alternating increasing), 240 volumes in total. Note that while the parameters were
kept intentionally the same (apart from the order of slice acquisition), the difference in the
scanner and head coil is likely to affect the signal parameters; in general, the NIHM dataset
should have a better signal-to-noise (SNR) ratio, however, it can also be differentially affected
by various artifacts.

group n age: mean age: std

FES, M 59 27.5 7.2
FES, F 38 30.4 7.3
HC, M 27 32.0 5.3
HC, F 41 31.8 9.8

Table 2: Table of representation of groups FES and HC, males (M) and females (F) in the
NIHM dataset. n column specifies the number of subjects, in the columns age: mean and
age: std are the group’s mean age and the standard deviation of age.

3.2 Self-agency experiment

All research in the context of this thesis is based on the self and other-agency judgment
during a specifically designed experiment. During fMRI, stimuli in the form of a moving
cursor in a square, as shown in Figure 6, are presented to the subject. Subjects are instructed
to move the cursor using a joystick to the outer corridor if they believe the cursor’s movement
is fully under their control and to move the cursor to the center of the square if they feel
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like the experimenter influences the cursor movement. In reality, the cursor is not influenced
by the experimenter, but its motion is during selected experimental blocks (time segments)
driven by software that introduces angular distortions.

The paradigm consists of 24 blocks – 12 blocks of other-agency (OA) and 12 blocks of self-
agency (SA). Blocks are in an alternating sequence, each block lasting 20 seconds. Throughout
the OA blocks, the cursor movement is influenced by the software-based angular distortions.
Throughout the SA blocks, the cursor movement exactly matches the joystick movement
initiated by the subject.

Figure 6: Illustrative screenshot example of the display projected in fMRI during the Self-
agency experiment [3].

For the purposes of fMRI analysis in this study, the paradigm is simulated as a series of zeros
(in the case of the OA condition) and ones (in the case of the SA condition) convolved with
the canonical hemodynamic response function (HRF) as implemented in the SPM (Statistical
Parametric Mapping) software toolbox [29].

3.3 Preprocessing

The data must undergo several preprocessing steps before being analyzed or used for clas-
sification. The preprocessing steps are similar when working with both datasets. First, the
images are converted from DICOM to NIFTI format using the dcm2niix tool [30]. Then, a
bias field correction is applied, followed by functional realignment and unwarping, slice-timing
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correction, direct segmentation and normalization, and smoothing. This pipeline is labeled as
the ‘default preprocessing pipeline for volume-based analyses (direct normalization to MNI-
space)’ in the CONN toolbox [31]. The preprocessed data were provided by the diploma thesis
consultant Ing. David Tomeček.

The dataset is further analyzed to check whether all subjects’ volumes are in the field of
view (FOV) – the area that is imaged during scanning – and are sufficiently covered. An
overlap of each subject’s FOV and regions of the Automated Anatomical Labeling (ALL)
atlas [32] is computed and then used as a criterion for selection. The number of regions that
are less than 50% covered is computed. The selection criterion is subsequently set so that
subjects with the number of uncovered regions above the 95th percentile are discarded.

3.4 Analyses

3.4.1 Independent component analysis

Independent component analysis (ICA) is computed to find the key functional brain net-
works responsible for self and other-agency judgment. It is performed using the Group ICA
(GIFT) toolbox by Calhoun et al. [33], [34]. In the case of this study, the independent compo-
nents are found with the approach of minimizing mutual information, the Infomax algorithm
described in Section 2.2.2. The number of required estimated independent components was
set to 35, according to the study by Spaniel et al. [3].

As a part of the replication study, the ICA is evaluated three times. Once on the IKEM
dataset, once on the independent NIHM dataset, and once on the merged IKEM and NIHM
datasets. The resulting beta weights of IKEM and merged dataset analyses are further used
to classify FES and HC.

ICASSO To obtain a more reliable estimate of the independent components, ICA is re-
peated for each subject twenty times – with different initial values and differently bootstrapped
datasets. The best result is chosen from the twenty runs of ICA and considered the indepen-
dent component. This method is called ICASSO [17], and it is a part of the GIFT toolbox
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[33], [34].

ICASSO provides an insight into the components’ stability. Based on standard procedures
[17], components with a stability index larger than 0.9 are considered reliable, but the rest
are excluded from further analysis.

Selection of relevant components To determine which of the estimated components
are essential in the context of the Self-agency experiment, I set several conditions that must
be met. First, the components should be reliable in terms of ICASSO. Second, there has to be
a substantial correlation (|r| > 0.5) between the time course of the experiment and the mean
component time course component across patients. And third, there must be a significant
difference between the FES and HC groups in that component’s activity. To explore the
last criterion, a two-sample t-test is evaluated. The level of significance is set to α = 0.05.
(The two-sample t-test is not applied when the components are selected as features for the
classification task.)

Additionally, there is a visual check of mean independent components. According to [11],
components are assessed and eventually marked as artifacts. Components identified as arti-
facts are excluded from further evaluation.

3.4.2 Voxel-wise analysis

Statistical Parametric Mapping (SPM) was chosen as the analysis of the Self-agency ex-
periment data, according to [3]. The analysis is performed using the SPM12 toolbox [29]. It
is performed twice, once on the IKEM dataset and once on the independent NIHM dataset.
The beta weights obtained from the IKEM dataset are then learned by the classifier, which is
then used for the classification of the NIHM data.

First, the general linear model is fit to the time course of the brain activity at each voxel,
according to the equation 8. As described in Section 2.3, the design matrix includes condition-
specific effects but also confounding effects and constant term. Following the chosen approach
of one time series describing the course of the experiment, and to simplify for further expla-
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nations, there is, in principle, one regressor, and the equation simplifies to:

Y = β0 + β1X1 + ϵ, (18)

where Y is the vector whose individual elements correspond to individual activity measure-
ments in time, and X1 is the time course of the experiment. β0 and β1 are coefficients, β1 is
hereafter referenced as beta weight. Regressor X1 was generated by the convolution:

X1 = C ∗ f, (19)

where C is an alternating sequence of blocks of zeros and ones corresponding to the design
of the experiment - sequences of zeros representing the first condition (OA) and sequences
of ones representing the second condition (SA); f is the canonical hemodynamic response
function (HRF). The number of zeros/ones at each series corresponds to the number of scans
during that experiment block.

After the model estimation, SPM provides an analysis mask image for each subject. It
is an image of zeros and ones indicating which voxels were included in the analysis. When
generated implicitly, the mask is based on excluding voxels with intensity below a certain
threshold, which is used to exclude artifacts caused by motion or noise. All masks are visually
checked and if a substantial visible uncovered area exists, the subject is excluded from the
dataset. Note that this is an additional quality control step on top of removing subjects with
too many regions with less than 50% coverage as described in Section 3.3.

Then, the data undergo the group analysis (second-level analysis in the SPM terminology).
In this case, the one-sample t-test is computed separately for both groups – FES and HC –
to test whether the mean activation of each voxel in the group is significant. A two-sample
t-test is also calculated to see if there is a significant difference between the two groups.

3.5 Feature selection

In this section, I describe the methods of feature selection used for the classification task.
In both classification tasks, whether performed on the results of ICA or the results of voxel-
wise analysis, classification is based on utilizing the beta weights β1 obtained from the initial
analysis. In both cases, β1 are coefficients in the simplified general linear model:
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Y = β0 + β1X1 + ϵ, (20)

where X1 stands for the time course of the experiment. Y is a time course of BOLD signal in
a particular region that is given by the analysis type.

3.5.1 ICA

In the context of the ICA results, GLM is fit to the activity course (time series) of each
component. In equation 20, Y is the time course of the independent component, X1 is the
time course of the experiment. In summary, we get a matrix of beta weights B of size [number

of subjects, number of components].
Feature selection then depends on the previous examination of estimated independent com-

ponents, described in 3.4.1. Components found to be reliable by the ICASSO method, signif-
icantly correlated with the experiment’s time course, and not labeled as artifacts are selected
as features for the classification task. The two-sample t-test is not applied in the case of
feature selection for the classification task to prevent data leakage.

3.5.2 Voxel-wise analysis

In the case of voxel-wise analysis, I get the 3D matrix of beta weights B directly from the
SPM procedure, as described in Section 3.4.2. However, B is a three-dimensional matrix of
size [109, 91, 109] for each subject, and it is necessary to effectively reduce its size so that I
can use it as a matrix of features for the classifier.

Before any dimensionality reduction, it is useful to check whether the masks created during
SPM sufficiently cover the volume of the brain. Non-covered areas of the brain may appear in
the mask and then propagate to B as a not-a-number value. The coverage is checked visually
by displaying the subjects’ SPM masks as described in Section 3.4.2.

Clustering As for dimensionality reduction, I decided to approach it via clustering and
projection to low-dimensional space. I chose simple linear iterative clustering (SLIC) [19] as
a clustering method.
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First, I create a mask M0, that is equal to 0 at every voxel, which was not-a-number for
any of the subjects, and that is equal to 1 otherwise. Every data point is multiplied with this
mask; let’s denote the result containing all subjects as B0. Then, I construct a similar mask,
except that instead of zeros, the not-a-number values are replaced with number 10, since it
is a significantly larger value than the values of beta weights. Let’s denote the mask as ML

and the result of its multiplication with the data as BL.

BL is then split into two matrices, one containing only the data of HC and one only the
data of FES patients. Each matrix is then averaged along subjects, and we get BL,HC and
BL,FES. BL,HC and BL,FES are concatenated to form a matrix BL,avgs of shape [x, y, z, 2].

Next, BL,avgs is used as an input to SLIC. As described in detail in Section 2.4, this method
performs k-means clustering restricted to parts of the image and, using the information of
image channels, prefers clustering pixels with the same color (channel values). In this case,
BL,HC and BL,FES serve as two channels of an image BL,avgs.

SLIC requires filling several parameters that determine the clustering result: number of

superpixels (approximate number of clusters), compactness (a parameter that balances color
proximity and space proximity), and enforce of connectivity parameter (determines, whether
the generated superpixels are connected or not). The number of superpixels is set to 500
based on my previous experience with this algorithm when applied to MRI images. The same
applies to the compactness parameter, which was set to 0.2 since lower values (default = 10)
give more weight to color proximity. Enforce connectivity parameter was set to True.

Once found, clusters are applied to each subject in B0. Then, the mean across all corre-
sponding voxel beta weights is calculated in each superpixel.

Partial least squares The number of potential features was reduced with SLIC to ap-
proximately 500. Since the dataset size is much smaller and I aim to have a low-dimensional
model, the number of features must be further reduced.

A way to reduce the number of features is by transforming superpixels’ means into a low-
dimensional space. In this particular case, it is useful to reach for a transformation that will,
besides explaining the maximum variance, preserve differences between groups. This can be
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achieved by the Partial Least Squares method (PLS), described in more detail in Section 2.5.

The only parameter to be set is the number of features to which one wants to reduce the
data. The number of features optimization is described in the next paragraph.

Optimal number of features The optimal number of features for the classification
task based on the beta weights obtained from the voxel-wise analysis (described in detail in
Section 3.5.3) is searched by repeating the leave-one-out cross-validation process on the IKEM
dataset for the number of features f ∈ [1, 2, 4, 6, . . . , 60]. Note that the search is performed
on the whole IKEM dataset, which introduces a risk of overfitting. Thus, a further described
classification of the independent dataset is performed for several options of the number of
features. Since I aim for a low-dimensional model, one of the options of this hyperparameter
is given by a local maxima of accuracy for the number of features below f ≤ 20, if there is
any.

3.5.3 Classification

The comparison of tested methods is approached by comparing the performance of a classi-
fier, once trained and tested on the beta weights obtained from ICA, once on the beta weights

obtained from the voxel-wise analysis.

Support vector machine with linear kernel was selected as the classifier. To get an idea
of its performance, it is trained and validated within leave-one-out cross-validation on the
whole dataset. In particular, in the leave-one-out cross-validation, the dataset is divided
into training and validation parts, where the validation part consists of a single data point
(subject), and the validation part consists of the rest of the dataset. Before the features enter
the classifier, their values are normalized with z-score normalization.

3.5.4 Compensating for imbalanced dataset

Since the representation of FES and HC classes in the dataset is not balanced, weights are
pre-computed to compensate for this problem and to ensure that learning is not biased. The
weights enter the classifier during the training process and are used in the classifier’s perfor-

23



mance measurement. The weights assigned to the data from one class wclass are computed in
the following way:

wclass = 1
2 · sall

sclass
, (21)

where sclass is the number of subjects in the class, and sall is the number of all subjects
(subjects in both classes).

3.5.5 ICA

The classification into FES and HC classes for the independent component analysis outputs
is based on the beta weights corresponding to the selected independent components. These
values enter the classifier as a set of features. The whole process of the classification based
on ICA beta weights is carried out within the leave-one-out cross-validation.

3.5.6 Voxel-wise analysis

When the classification is based on the results of voxel-wise analysis, the only part of the
process that is outside the leave-one-out cross-validation loop is the loading of the data and
masking it to get B0 and BL as described in the Section 3.5.2.

Then, the data in the form of matrices B0, BL are split into training and validation parts.
On training data, clustering with the SLIC superpixels method is computed, and the PLS
transformation is found. Both are then applied to the validation part of the data. Afterward,
training and validation sets with the desired number of features are fed to the classifier.

3.6 Regression

The regression task was set to predict values of the PANSS scale using the same features as
for classification. It is focused on predicting PANSS values that summarize different categories
of symptoms: positive, negative, general, and total summary of all symptoms.

The prediction procedure was very similar to the classification task. In the case of ICA,
features are beta weights of selected independent components. In the case of voxel-wise ana-
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lysis, there is the very same process of dimensionality reduction of beta weights, as described
in Section 3.5.2. In both cases, the dataset is weighted to compensate for its imbalance, and
the data are normalized.

As a model, support vector regression was chosen. It was tested with linear kernel, radial
basis function kernel, and polynomial kernel. The regression is performed within the leave-
one-out cross-validation to get an insight into the model performance.
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4 Results

4.1 Replication study

The replication study was conducted on two separate datasets – the IKEM dataset and
the NIHM dataset (see Section 3.1). As the first part of the replication study, I preprocessed
the data from both datasets and checked the brain volume coverage of each subject. In the
case of the IKEM dataset, this step excluded 5 subjects who were outside the 95th percentile
of the number of under-covered brain regions. A histogram showing the distribution of the
number of under-covered areas for each subject is shown in Figure 7.

Figure 7: Histogram of the number of brain areas that were less than 50% covered in subjects
from the IKEM dataset. Above the exact threshold of the 95th percentile would be the
top seven subjects, but since a precise threshold in the number of under-covered areas was
required, the threshold was moved to the nearest whole number of under-covered areas, i.e.,
14, and the top 5 subjects were excluded.
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In the case of the dataset obtained from NIHM, from the original dataset of size 165 subjects,
seven subjects were excluded, and the dataset further consisted of 158 subjects – 66 HC and
92 FES patients. A histogram of the number of under-covered areas for each subject is shown
in Figure 8.

Figure 8: Histogram of the number of brain areas that were less than 50% covered in subjects
from the NIHM dataset. Above the exact threshold of the 95th percentile would be the top
8 subjects, but since a precise threshold in the number of under-covered areas was required,
the threshold was moved to the nearest whole number of under-covered areas, i.e., 26, which
excluded the top 7 subjects.

4.1.1 ICA of the IKEM dataset

On the remaining subjects from the IKEM dataset, exactly 131, group independent com-
ponent analysis was computed. The ICA was run 20 times following the ICASSO method.
ICA was used to extract 35 independent components.

The selection of relevant components identified the following: ICASSO excluded one com-
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ponent with a stability index below 0.9. A substantial correlation (|r| > 0.5) between the
time course of the experiment (convolved with the canonical hemodynamic response kernel)
and the mean (across subjects) activity of the component was present in 11 components - 6
with positive correlation and 5 with negative. According to the two-sample t-test, 2 of the
remaining components were not significantly different in the HC and FES groups. The two
components are not considered when evaluating the results of the analysis but are included
in the classification task. Finally, a visual evaluation of results identified one artifact among
the significant components that was also subsequently excluded. The results of the relevant
components selection can be found in Table 25 in the Appendix.

In Figure 9 are depicted the components that were positively correlated with the time
course of the experiment. On the other side, the negatively correlated components are shown
in Figure 10. All selected components are listed in Table 3.

C no. r brain area function

5 + visual cortex processes visual information
10 + artifact -
20 + visual cortex processes visual information
22 + middle frontal gyrus cognitive control, language, motoric
24 + inferior parietal lobule cognition and somatosensory processes
31 + superior frontal gyrus cognitive control, self-awareness, motor planning

7 - medial prefrontal cortex, ACC self-identity, social cognition
15 - precuneus, parietal lobe, ACC self-awareness, self-reflection
16 - primary auditory cortex processing of auditory information
19 - precuneal and cuneal cortex self-awareness, self-reflection, visuospatial p.
30 - precuneus self-awareness, self-reflection

Table 3: Table of relevant components estimated from the IKEM dataset, including their
identification number (C no.), that were positively (+) or negatively (-) correlated with the
time course of the experiment, their localization, and likely function. (ACC stands for the
anterior cingulate cortex.)
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Figure 9: Components estimated from the IKEM dataset, positively correlated with the
time course of the experiment, displayed in the axial, sagittal, and transversal planes. The
component loadings are thresholded at z > 3 for easier visual localization of most involved
brain regions. See Table 3 for more details.
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Figure 10: Components estimated from the IKEM dataset, negatively correlated with the
time course of the experiment, displayed in the axial, sagittal, and transversal planes. The
component loadings are thresholded at z > 3 for easier visual localization of most involved
brain regions. See Table 3 for more details.
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4.1.2 ICA of the NIHM dataset

Independent component analysis was computed on the NIHM dataset. Same as in the
previous case, the ICA was run 20 times following the ICASSO approach, and 35 components
were estimated. Components with a stability index below 0.9 were categorized as unstable
based on the standard ICASSO convention [17] and excluded from further processes.

The selection of significant components resulted in the following: A substantial correlation
(|r| > 0.5) was found in 9 components – 4 showed a positive correlation with the time course of
the experiment, 5 showed a negative correlation. An additional two-sample t-test excluded 2
other estimated components since there was not a significant difference between HC and FES
groups in these components. A visual evaluation revealed 2 artifacts among the significant
estimated components. The overall results of the selection are shown in Figure 25 in the
Appendix.

Relevant components were identified according to Section 3.4.1 and are listed in Table 4.
Figure 12 shows components positively correlated with the time course of the experiment.
Figure 11 shows negatively correlated components.

C no. r brain area function

20 + artifact -
22 + sec. somatosensory cortex somatosensory processes
23 + sec. somatosensory cortex (right) somatosensory processes
30 + superior parietal lobule visuospatial processes

2 - cuneal cortex visual processing
3 - somatosensory and motor cortex somatosensory processes, motoric
5 - artifact -
12 - precuneal cortex, ACC self-awareness, self-reflection
18 - medial prefrontal cortex, ACC self-identity, social cognition

Table 4: Table of significant components (C no.) estimated on the NIHM dataset that
were positively (+) or negatively (-) correlated with the time course of the experiment, their
identification, and function.
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Figure 11: Components estimated from the NIHM dataset, negatively correlated with the
time course of the experiment, displayed in the axial, sagittal, and transversal planes. The
component loading are thresholded at z > 3. See Table 4 for details.
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Figure 12: Components estimated from the NIHM dataset, positively correlated with the
time course of the experiment, displayed in the axial, sagittal, and transversal planes. The
component loadings are thresholded at z > 3 for easier visual localization of most involved
brain regions. See Table 4 for more details.

4.1.3 ICA of merged IKEM and NIHM datasets

For the purposes of the classification task, ICA was also computed for merged IKEM and
NIHM datasets. The selection of significant components resulted in the following: A significant
correlation (|r| > 0.5) was found in 13 components – 6 showed a positive correlation with the
time course of the experiment, 7 showed a negative correlation. An additional two-sample
t-test excluded 2 other estimated components since there was not a significant difference
between HC and FES groups in these components. A visual evaluation revealed 2 artifacts
among the significant estimated components. The overall results of the selection can be found
in Table 25 in the Appendix.

Relevant components were again identified according to ref. Figure 13 shows components
positively correlated with the time course of the experiment. Figure 14 shows negatively
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correlated components. All relevant components are listed in Table 5.

C no. r brain area function

8 + middle frontal gyrus (left) cognitive control, language, motoric
16 + artifact -
18 + V5, middle temporal gyrus auditory and visual processes, language
20 + superior frontal gyrus cognitive control, self-awareness, motor planning
22 + middle frontal gyrus (right) cognitive control, language, motoric
34 + inferior parietal lobule cognition and somatosensory processes

5 - medial prefrontal cortex, ACC self-identity, social cognition
6 - cuneal cortex visuospatial processes
17 - precuneus, V5 self-reflection; visual processes
21 - primary auditory cortex processes auditory information
26 - precuneus, parietal lobe self-awareness, self-reflection
30 - artifact -
31 - visual cortex processes visual information

Table 5: Table of significant components (C no.) estimated on merged IKEM and NIHM
datasets that were positively (+) or negatively (-) correlated with the time course of the
experiment, their identification, and function.
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Figure 13: Components estimated from the merged IKEM and NIHM datasets, positively cor-
related with the time course of the experiment, displayed in the axial, sagittal, and transversal
planes. The component loading are thresholded at z > 3 for easier visual localization of most
involved brain regions. See Table 5 for more details.
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Figure 14: Components estimated from the merged IKEM and NIHM datasets, negatively cor-
related with the time course of the experiment, displayed in the axial, sagittal, and transversal
planes. The component loadings are thresholded at z > 3 for easier visual localization of most
involved brain regions. More details are listed in Table 5.
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4.1.4 Voxel-wise analysis of the IKEM dataset

According to the previous study, as a second commonly used analysis, voxel-wise analysis
obtained from statistical parametric mapping was evaluated. The general linear model was
fit to the brain activity time course in each voxel for each subject, using the SPM12 toolbox.
This yielded beta weights that are later used for classification in Section 4.3 in this Chapter.
In addition to checking brain coverage within the FOV as described above and shown in
Figure 7, the masks created during the SPM analysis were checked to exclude subjects with
potentially undercovered brain volumes due to motion artifacts. Following this check, one
FES patient was removed; the mask is displayed in Figure 15.

Figure 15: SPM-generated mask of the subject that was excluded due to a substantial uncov-
ered area of the brain, which was probably caused by the subject’s movement.

In addition, statistical tests were performed to determine: first, which voxels were statisti-
cally significantly active in each group (HC, FES) during each condition (OA, SA) and then
whether there was any difference between the HC and FES groups during either OA or SA
condition.

Group analysis A one-sample t-test was evaluated in every voxel to determine whether
the mean activation was significantly stronger during OA compared to SA and vice versa for
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FES and HC groups. It was computed separately for each group and for each condition. The
t-maps are shown in Figure 16.

The FES group exhibited strong increased activity in the visual cortex and anterior insula
during the OA blocks compared to the SA blocks of the experiment. During the SA blocks,
there was an increased activation in the visual cortex and anterior DMN area in comparison
to OA blocks.

HC showed extended activity, especially in the dorsal lateral prefrontal cortex, during the
OA condition when compared to the SA condition. During the SA condition, there was a
prominent activity in the areas of anterior and posterior DMN in comparison to the OA
condition.

Group comparison A two-sample t-test was evaluated to determine whether there was
a significant difference between the group of HC and the group of FES patients during the
Self-agency experiment. The test showed a marked difference between the two groups: HC
exhibited extended activation in the region of the premotor cortex during OA when compared
to the SA condition. During SA, there was a stronger activation in the case of HC than FES
in the anterior and posterior parts of the DMN in comparison to the OA condition. This
applies to FES the other way around. FES had a stronger activation than HC in the anterior
and posterior DMN during OA compared to SA blocks; during SA blocks, there was a marked
activation in the premotor cortex in comparison to OA blocks.

4.1.5 Voxel-wise analysis of the NIHM dataset

Voxel-wise analysis was computed for the NIHM dataset, too. The general linear model was
fit to the data using the SPM12 toolbox. Next, the masks created during the analysis were
checked to exclude potential undercovered brain volumes. In this case, none of the subjects
was removed.

Obtained coefficients – beta weights – underwent a statistical test to determine significant
activities in each group (HC, FES) during each condition (OA, SA) and also any potential
differences between the groups during each condition.
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Figure 16: Results of one sample t-test (FWE corrected, voxel level, P < 0.05) showed as
colormaps on MNI template in the axial, sagittal, and transversal plane for the IKEM dataset.
The test was computed for both groups (FES and HC) and both conditions (OA and SA). The
FES group exhibited the stronger activity in the visual cortex during the OA condition than
SA condition and in anterior DMN during the SA condition more than the OA condition. HC
showed significant activation in the dorsal lateral prefrontal cortex during the OA condition
in comparison to the SA condition and in the anterior and posterior parts of DMN during the
SA condition more than during OA.
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Figure 17: Results of two-sample t-test displayed as colormaps on MNI template in the axial,
sagittal, and transversal plane for the IKEM dataset. The results show that the HC group
exhibited stronger activation more than FES during the OA condition rather than the SA
condition. During the SA condition, the area of anterior and posterior DMN exhibited stronger
activation than during the OA condition.

Group analysis One-sample t-test was computed on beta weights to answer whether the
mean activation is significantly greater than zero at any voxel. The test was calculated for
each group and each condition separately, FWE was corrected on voxel level, P < 0.05.

The FES group exhibited marked activity in the anterior insula during the OA condition
when compared to the SA condition. During the SA condition, there was stronger activity in
the anterior and posterior parts of DMN and precuneus than during the OA condition.

HC showed activity in areas similar to the FES group, but the activation was much higher.
During OA, there was activation in the somatosensory cortex more than during SA; the areas
of anterior and posterior DMN were the most active during SA. Results are displayed in
Figure 19.
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Group comparison The group comparison was performed as a two-sample t-test sepa-
rately for OA and SA conditions. The test revealed a great difference between FES and HC
during SA condition when compared to the SA condition, especially in posterior and anterior
DMN, where the HC group showed higher activations. During the OA condition, when com-
pared to SA, there was almost no significantly higher activation in the HC group than in the
FES group. Results of the two-sample t-test are shown in Figure 18.

Figure 18: Results of two-sample t-test computed on NIHM dataset, displayed as heat maps
on MNI template in the axial, sagittal, and transversal plane. The results show that the HC
group exhibited stronger anterior and posterior DMN activation during the SA condition than
during the OA condition. During the OA condition, there was almost no greater activation
more prominent than during the SA condition in HC more than in FES.
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Figure 19: Results of one sample t-test computed on NIHM dataset, showed as heat maps
on MNI template in the axial, sagittal, and transversal plane. The test was computed for
both groups (FES and HC) and both conditions (OA and SA). The FES group exhibited
significant activation in the somatosensory cortex during OA more than SA and anterior and
posterior DMN during SA more than OA. The same applies to the HC group, except that the
activations were of higher values.
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4.2 Comparison of the ICA results

The independent component analyses showed that for the IKEM and NIHM datasets and
subsequently for their combination, we obtained quite different results. When comparing
the results of the IKEM and THE NIHM datasets, as matching components were identified,
number 2 from IKEM and number 19 from NIHM, corresponding to the cuneal cortex; then
numbers 12 and 18 from IKEM were similar to numbers 7 and 15 from NIHM that together
comprise posterior and anterior parts of the DMN.

The ICA, which was additionally performed on the merged IKEM and NIHM datasets,
revealed components:

• 5 corresponding to 7 from IKEM, labeled as the medial prefrontal cortex and ACC,

• 6 corresponding to 19 from IKEM, as precuneus and cuneus,

• 26 similar to 15, comprised of precuneus, parietal lobe, and ACC,

• 20 labeled as part of the superior frontal gyrus as number 31 from IKEM,

• 34 was similar to 24, as interior parietal lobule.

Since the difference between the two datasets was apparent already from the histograms 7
and 8, it is unsurprising that the analyses results differ. These results are further elaborated
in the discussion 5.1.

4.3 Classification of the IKEM dataset

4.3.1 ICA

SVM classifier was chosen for the classification task. Its performance was evaluated based
on the results of leave-one-out cross-validation executed on the whole dataset (131 subjects).
The results are listed in Table 6; all values are computed with consideration of weights that
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were pre-computed to compensate for the imbalanced representation of groups in the dataset.
The receiver operating characteristic curve is displayed in Figure 20 to give a better idea of
the classifier performance.

Accuracy (%) 78.16
Sensitivity (%) 76.32
Specificity (%) 80.00
AUC 0.85

Table 6: Performance of SVM classifier on the IKEM dataset, obtained from the results of
leave-one-out cross-validation on the beta weights from ICA. The listed values were calculated
with the consideration of weights.

Figure 20: ROC curves obtained from leave-one-out cross-validation performed on the IKEM
dataset. On the left, the result of the classification of ICA beta weights. On the right, the
result of the classification based on the beta weights from the voxel-wise analysis.

4.3.2 Voxel-wise analysis

Classification based on voxel-wise analysis was conducted on 130 subjects – 55 HC and
75 FES patients. In this case, the classification can only be performed after dimensionality
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reduction of beta weights, as described in section 5.2. The first step of the dimensionality
reduction was to cluster the data with the SLIC algorithm. The result of clustering is shown
in the form of several slices through the brain volume in Figure 24.

The optimal number of features was searched as described in Section 3.5.2. It was found
that the function describing the dependence of the model accuracy on the number of features
is rather noisy; see Figure 21. Therefore, the performance of the model is reported for several
values of this hyperparameter. First, for the global optimum of the function in the interval
[1, 20], i.e., 18 features, which was chosen since we were aiming for a low-dimensional model.
Second, the global optimum of the function found at 48 and 52 features is reported. Lastly,
the performance for 2 features is reported since the performance is already quite high for
this very low number of features. After, partial least squares transformation was applied and
produced the input for the classifier (for each of the mentioned number of features).

Figure 21: The weighted accuracy of the model in relation to the number of features. The
stated accuracy was obtained from the leave-one-out cross-validation based on the beta weights

from the voxel-wise analysis. The listed values were calculated with the consideration of
weights.
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f 2 18 48

Accuracy (%) 76.18 80.67 82.85
Sensitivity (%) 76.28 81.33 81.33
Specificity (%) 73.57 80.00 83.64
AUC 0.84 0.87 0.88

Table 7: Performance of SVM classifier on the IKEM dataset with a different number of
features (f). The performance measures were obtained from the results of leave-one-out
cross-validation on the features from the voxel-wise analysis.

SVM classifier with linear kernel was chosen for the classification task, as in the ICA-based
classification. Its performance was evaluated based on the results of leave-one-out cross-
validation executed on the whole dataset (130 subjects). The evaluation was run for the
number of features f = 2, 18, 48. The results are listed in Table 7, all values are computed
with consideration of weights that were pre-computed to compensate for the imbalanced
representation of groups in the dataset. In Figure 20, the receiver operating characteristic
curve is displayed to give a better idea of the classifier performance.

4.4 Classification of the NIHM dataset

The classification was performed using SVM with a linear kernel. I attempted to test the
application of the already-trained classifier on an independent dataset. The actual process
was that the SVM classifier was trained on the beta weights obtained from the IKEM dataset,
and then subjects from the NIHM dataset were labeled by feeding the trained classifier with
their beta weights.

4.4.1 ICA

Classification based on the results from ICA operated with the ICA components that were
estimated for the merged IKEM and NIHM datasets (total of 289 subjects – 121 HC and
168 FES patients). The beta weights corresponding to the NIHM subjects are fed to the
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classifier trained on the IKEM dataset. The classification results are listed in Table 8; all
values include the consideration of weights that were pre-computed to compensate for the
imbalanced representation of groups in both datasets. ROC of the classifier performance is
displayed in Figure 22.

Accuracy (%) 65.53
Sensitivity (%) 75.00
Specificity (%) 56.06
AUC 0.75

Table 8: Performance of SVM classifier on the beta weights from ICA. The classifier was
trained on the IKEM dataset and used to classify the beta weights of components from the
NIHM dataset. The listed values were calculated with the consideration of weights.

4.4.2 Voxel-wise analysis

The classification based on the voxel-wise analysis required several steps to be performed on
beta weights obtained from SPM on 158 subjects – 66 HC and 92 FES. First, the clustering of
voxels to superpixels using SLIC learned on the training dataset is applied to the testing data.
For each cluster, there is a mean of corresponding beta weights computed. Then, superpixel-
means are transformed with the PLS transformation found on the training dataset.

The result of dimensionality reduction steps is then labeled by the classifier trained on
the IKEM dataset. The classifier performance is listed in Table 9, and ROC is displayed in
Figure 22.
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f 2 18 48

Accuracy (%) 66.49 64.64 64.95
Sensitivity (%) 66.30 64.13 58.70
Specificity (%) 66.67 65.15 71.21
AUC 0.69 0.68 0.69

Table 9: Performance of SVM classifier with a different number of features (f).The classifier
was trained on the IKEM dataset and used to classify the features obtained from the NIHM
dataset. The performance measures were obtained from the results of leave-one-out cross-
validation on the features from the voxel-wise analysis. The listed values were calculated with
the consideration of weights.

Figure 22: ROC curves obtained from the classification of the NIHM dataset when the clas-
sifier was trained on the IKEM dataset. On the left, the result of the classification of ICA
beta weights. On the right, the result of the classification based on the beta weights from the
voxel-wise analysis.
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4.5 Regression

The regression task dealt with the explanation of the PANSS scale values with the beta

weights obtained from the ICA or voxel-wise analysis. The prediction accuracy is measured
with the coefficient of determination (R2), and root mean squared error (RMSE) calculated
with the leave-one-out cross-validation results. The best performance was achieved with a
polynomial kernel. Results of SVR with a polynomial kernel based on ICA beta weights are
summarized in Table 10, and voxel-wise analysis-based results are listed in Table 11.

ICA

symptoms R2 RMSE

positive 0.04 3.82
negative 0.05 5.49
general 0.04 7.93
total 0.08 14.03

Voxel-wise analysis

symptoms R2 RMSE

positive -3.95 8.34
negative -4.87 13.62
general -3.08 16.17
total -1.1 20.82

Table 10: Tables of regression results on ICA and voxel-wise analysis beta weights expressed
as R2 and RMSE values for each symptom category.

The regression was approached with another method to check the previous results. In this
case, the distance of each data point (beta weight) from the classification hyperplane was
considered a feature. This procedure confirmed the previously obtained results, respectively
it did not improve the prediction of PANSS values in any way.

symptoms R2 RMSE

positive -0.06 4.01
negative -0.17 6.09
general -0.06 8.32
total -0.02 14.77

Table 11: Table of regression results on ICA beta weights’ distances from the SVM classifica-
tion hyperplane expressed as R2 and RMSE values for each symptom category.
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Figure 23: The result of the SVR with a polynomial kernel applied on the beta weights obtained
from the ICA analysis to explain the PANSS scale. Left: PCA projection of the original data;
the 0 values correspond to the HC group. Right: SVR predictions of the PANSS values (the
HC group was not included in the regression process).

In addition, after taking the results into account, the hypothesis of the prediction of individ-
ual positive symptoms using beta weights was established and tested. The positive symptoms
include delusions, conceptual disorganization, hallucinatory behavior, excitement, grandios-
ity, suspiciousness, and hostility. Neither this hypothesis was confirmed; the regression model
behaved similarly as in the case of the sums of symptoms.
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Figure 24: Demonstration of the clustering result using the SLIC superpixels. The result of
the clustering of the two-channel image obtained as the mean of the beta weights across each
group (FES, HC) separately is depicted as 3 slices (S) of the brain in the sagittal, frontal, and
transversal plane. The yellow lines mark the borders of superpixels.
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5 Discussion

5.1 Replication study

First, the replication study of [3] was conducted. Note that some of the replication methods
were not exactly similar to the previous study due to their unnecessary complexity, as was
mentioned in Section 3.

First, we shall discuss the results of the replication on the IKEM dataset. The independent
component analysis (ICA) found a substantial correlation (|r| > 0.5) between the time course
of the experiment and the mean (across subjects) activity of the component in 11 out of 35
estimated components. An additional two-sample t-test excluded another two components
since there was no significant difference between the group of schizophrenia patients (FES)
and healthy controls (HC). The components were subsequently identified, and the results were
as follows: Positive correlation with the experiment was present for the visual cortex, middle
frontal gyrus, inferior parietal lobule, and superior frontal gyrus. Besides the visual cortex,
where the visual information is processed, the rest of the areas are responsible for cognitive
control, motoric planning, and self-awareness. A negative correlation was found in the case of
the medial prefrontal cortex, precuneal and cuneal cortex, anterior cingulate cortex (ACC),
and parietal lobe. The precuneus, medial prefrontal cortex, and ACC are centers of self-
awareness and self-reflection, and except for the auditory cortex, the components are parts of
the default mode network (DMN).

In comparison to the study by Spaniel et al., there were estimated more significant inde-
pendent components (3 in the case of the previous study, 9 in the replication with the IKEM
dataset). The components that seemed to be very similar were:

• 2, marked as the anterior part of the DMN in the case of the study by Spaniel et al.,
and 7 – medial prefrontal cortex and ACC – also the anterior part of the DMN in the
replication,

• 9, labeled as the posterior DMN in the previous study, and 15 in the replication study,
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labeled as the precuneus, parietal lobe, and ACC are parts of the posterior and anterior
DMN too,

• 23, identified as a part of the central executive network (CEN) in the case of the previous
study, and 22, identified as the middle frontal gyrus (part of CEN) in the case of the
replication.

The three components exhibited similar activations during the experiment. Both of the con-
clusions of the previous work were replicated on an enlarged dataset with a slightly different
methodology. The conclusions stated that there was a significant difference between the FES
and HC groups in the medial frontal gyrus and posterior cingulate gyrus; precisely, FES
showed lower cortical activation in these areas. Another reported conclusion was that the
self-other agency judgment is related to the dynamic switching of the DMN and CEN.

Nonetheless, there were differences in the results of [3] and the replication study. In the
context of ICA, in the previous study, there were several significantly different components
missing, e.g. the visual cortex. Besides the number of significant components from ICA,
there were differences in the results of voxel-wise analyses. The previous study found signif-
icantly stronger activation only during the self-agency (SA) condition in the group of HC in
comparison to FES. In the replication study, during the SA condition, HC exhibited stronger
activation than FES in areas of posterior and anterior DMN in comparison to the OA con-
dition. And during the OA condition, HC exhibited stronger activation than FES in the
premotor cortex when compared to the SA condition.

After the evaluation of the IKEM dataset analysis, the same methods were applied to the
NIHM dataset. The results of ICA were very different from the results obtained in the previous
study and from the IKEM dataset. There were different brain areas positively correlated with
the time course of the experiment estimated. In the case of negatively correlated components,
there were a few components identified as similar brain areas as in the previous study.

As in the case of the IKEM dataset, the results of the voxel-wise analysis differ from the
previous study. There was a stronger activation during the OA condition compared to the
SA condition in the HC group than in the FES group. The difference between the IKEM
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and NIHM datasets could be easily seen since, in the case of the NIHM dataset, there were
very small significant clusters of voxels found, and in the case of the IKEM dataset, the
clusters aligned with a sufficient part of the premotor cortex. During the SA condition, when
compared to the OA condition, HC exhibited stronger activation than FES in the anterior
and posterior DMN on smaller areas than in the IKEM dataset.

5.2 Classification of the IKEM dataset

The two performed analyses (ICA and the voxel-wise analysis), the beta weights obtained
from them, respectively, were further used for the classification between the FES and HC
groups. The beta weights from ICA were used directly – they were fed to the classifier within
the leave-one-out cross-validation. The accuracy of the model was 78.16%, sensitivity 76.32%,
and specificity 80.00%. The area under the receiver operating curve AUC was 0.85. The
performance was subsequently compared to the performance on the beta weights obtained
from the voxel-wise analysis.

Before the second classification took place, there had to be several dimensionality-reduction
steps performed on the beta weights. First, clustering with the SLIC superpixels was carried
out. The superpixels’ means were then transformed with the partial least squares transfor-
mation. The optimal number of features was searched, and the classification was performed
for several values of this hyperparameter (2, 18, 48) for two reasons: first, the dependence of
the model accuracy on the number of features was a noisy function with several local optima;
secondly, the fact that the search is performed on the whole dataset that is further used for
the classification task implies a form of overfitting of the model. Nonetheless, there was no
dataset part set aside for this purpose because of the insufficient size of the IKEM dataset.

The features obtained from beta weights were fed to the classifier. The results of leave-
one-out cross-validation were reported for the number of features f = 2, 18, 48. The model
achieved a relatively high performance that was very similar for 18 and 48 features; the
accuracy, sensitivity, and specificity were about 80 − 83% in both cases. The performance for
only 2 features was surprisingly not much worse, all three measures about 75%.
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5.3 Classification of the NIHM dataset

The classification task was evaluated on the NIHM dataset such that the trained classifier
(trained on the IKEM dataset) was used to classify the NIHM data. The performance of both
models, whether it was the ICA classification model or the voxel-wise analysis classification
model, was worse than in the case of the leave-one-out cross-validation on the IKEM dataset.

The ICA beta weights were obtained on the merged IKEM and NIHM datasets for this
particular task in order to have the same independent components fed to the classifier from
both datasets. Another option would be to use the ICA transformation matrix found on
the IKEM dataset and apply it to the NIHM data. This would provide a simple way to
classify ’new’ subjects and also provide further insight into how transferable the results of the
analysis based on this experiment are between subjects. The question remains whether this
transformation would need to be obtained on a larger dataset than the IKEM dataset in this
study. This method is certainly worth further investigation. In the case of ICA beta weights,
the accuracy of the model was 65.53%, sensitivity 75.00%, specificity 56.06%, and AUC 0.75.

Before the classification based on the voxel-wise analysis, the beta weights had to be trans-
formed to lower-dimensional space. In this case, SLIC superpixels clustering trained on the
IKEM dataset was applied to the NIHM data. Then, the means of superpixels were calcu-
lated and transformed with the partial least squares transformation matrix learned on the
IKEM dataset. Obtained features were fed to the classifier trained on the IKEM dataset for
classification.

In the case of the voxel-wise analysis, the performance measures ranged in similar values
as for the ICA classification. For all tested numbers of features, the accuracy was about 65%.
Sensitivity and specificity were balanced for 2 and 18 features; for 48 features, the specificity
outweighed the sensitivity of the model.

The fact that the classifiers perform worse in the case of the NIHM dataset is apparent
from the results of the analyses themselves. It is evident that the estimated components differ
when comparing the IKEM and NIHM analyses results. This can be caused by a different
MRI machine, their different age range and sex representation, or other general factors that
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accompany the fact that the measurements took place in different centers, even though all of
the formal criteria of the experiment stayed the same.

5.4 Regression

Support vector regression was used to predict the values of the PANSS scale. The prediction
was performed based on the beta values obtained either from the ICA or the voxel-wise analysis
within the leave-one-out cross-validation. Although the prediction was tried with different
approaches, none of them led to a successful result.

The inability to predict the PANSS values using the described methods may arise from the
fact that simple models, such as support vector regression, are not sufficient to explain the
PANSS scale. On the other hand, it is also possible that even more complex methods would
not achieve the results either because the PANSS scale may not be explainable with fMRI
data.
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6 Conclusion

The replication study of [3] in which the group of first-episode schizophrenia patients (FES)
and healthy controls (HC) were compared using the Self-agency experiment was conducted.
The study was carried out on an enlarged sample and on another fully independent sample
that was, in addition, obtained from a different MRI center. The comparison was based on
the results of the independent component analysis and the voxel-wise (SPM) analysis. The
results of the replication were in some respects consistent with the previous study but differed
in other aspects. It managed to confirm that there exists a significant difference between
the FES and HC groups; FES patients exhibited lower cortical activation in the areas of the
default mode network (DMN). The explored self-agency judgment was found to be related to
the dynamic switching of the DMN and the central executive network. Nonetheless, in this
study, there were other significantly different areas of the brain identified; the most prominent
were areas of the cuneal and visual cortex.

The results of both analyses (ICA and voxel-wise) were subsequently used for classification.
When using only one (IKEM) dataset, the performance of models, once using the ICA results
and once using the voxel-wise analysis results, were approximately similar; the voxel-wise
based learning was slightly more sufficient. A solid accuracy of approximately 80% was
achieved. When the model trained on the IKEM dataset was used to classify the data from
the other (NIHM) dataset, the performance of the model was less sufficient. The reason may
be the different MRI machines used for the measurement or different groups’ distributions in
the two datasets.

Additionally, the results of the mentioned analyses were used to explain the PANSS scale
[5]. The used methods failed to explain the PANSS values. It is worth further exploration to
figure out whether there are methods that would help to solve this problem or whether the
PANSS scale is not explainable with fMRI data obtained from this experiment.
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correlate of the self-agency experience in first-episode schizophrenia-spectrum patients:
An fmri study. Schizophrenia Bulletin, 42:916–925, 7 2016.

[4] Michael J. Owen, Akira Sawa, and Preben B. Mortensen. Schizophrenia, volume 388.
Lancet Publishing Group, 2016.

[5] Chantelle J. Giesbrecht, Norm O’Rourke, Olga Leonova, Verena Strehlau, Karine Paquet,
Fidel Vila-Rodriguez, William J. Panenka, G. William MacEwan, Geoffrey N. Smith,
Allen E. Thornton, and William G. Honer. The positive and negative syndrome scale
(panss): A three-factor model of psychopathology in marginally housed persons with
substance dependence and psychiatric illness. PLoS ONE, 11, 2016.

[6] Chris D Frith, Sarah-Jayne Blakemore, and Daniel M Wolpert. Interactive report ex-
plaining the symptoms of schizophrenia: Abnormalities in the awareness of action 1,
2000.

[7] Daniel R. Weinberger and Paul J. Harrison. Schizophrenia. Wiley, 2010.

[8] R. S. Kahn and I. E. Sommer. The neurobiology and treatment of first-episode schizophre-
nia, 2015.

[9] Peter J Weiden, Peter F Buckley, and Michael Grody. Understanding and treating “first-
episode” schizophrenia. Psychiatric Clinics of North America, 30:481–510, 2007.

58



[10] Georg Northoff and Felix Bermpohl. Cortical midline structures and the self. Trends in

Cognitive Sciences, 8:102–107, 2004.

[11] Vesa Kiviniemi, Tuomo Starck, Jukka Remes, Xiangyu Long, Juha Nikkinen, Marianne
Haapea, Juha Veijola, Irma Moilanen, Matti Isohanni, Yu Feng Zang, and Osmo Ter-
vonen. Functional segmentation of the brain cortex using high model order group pica.
Human Brain Mapping, 30:3865–3886, 2009.

[12] Randy L. Buckner, Jessica R. Andrews-Hanna, and Daniel L. Schacter. The brain’s
default network: Anatomy, function, and relevance to disease, 2008.

[13] Pierre Comon. Signal processing independent component analysis, a new concept?*,
1994.

[14] A Hyvärinen and E Oja. Independent component analysis: algorithms and applications,
2000.

[15] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley, 2005.

[16] Zhenyi An. Different estimation methods for the basic independent different estimation
methods for the basic independent component analysis model component analysis model,
2018.

[17] Johan Himberg, Aapo Hyvärinen, and Fabrizio Esposito. Validating the independent
components of neuroimaging time series via clustering and visualization. NeuroImage,
22:1214–1222, 2004.

[18] Karl J. Friston, John T. Ashburner, Stefan J. Kiebel, Thomas E. Nichols, and William D.
Penny. Statistical Parametric Mapping. Elsevier, 2007.

[19] Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal Fua, and
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Appendix

Figure 25: Tables of results of the significant components selection performed on – from left –
IKEM, NIHM, and merged datasets. The criteria were stability index (SI), correlation value
(r), and t value obtained from a two-sample t-test (t). Components in blue passed all tests
as significant; components in orange did not pass the two-sample t-test but are included as
features in the classification task.


