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160 00 Prague 6
Czech Republic

Copyright © July 2023 Ing. Tomáš Vintr
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Abstract

Robots are expected to help people with many different tasks. We hypothesise
that apart from the ability to solve the task, service robots need also integrate
into society to provide a service in an acceptable way. Human society has rules
that follow working routines, traditions, and derived habits. Breaking the rules
by any entity, including autonomous robots, spoils the psychosocial atmosphere
and leads to the consequent exclusion of a maladjusted entity - in the case of the
robot, refusal of its assistance.

In this work, we propose a way how an autonomous service robot could, at
least, blend into human society - applying spatio-temporal maps allowing for
human-induced dynamics forecasting into its planning module. We defined and
evaluated spatio-temporal models suitable for autonomous service robots in var-
ious scenarios. We proposed a methodology for defining a miscellaneous collec-
tion of criteria for evaluating and comparing diverse spatio-temporal maps from
the point of usability in specific robotic tasks. We derived a specific criterion
for evaluating spatio-temporal maps for human-aware trajectory scheduling and
planning. Using this criterion, we compared an exhaustive collection of simplified
approaches to spatio-temporal mapping, providing a reader with an insight into
their differences, and the current state-of-the-art methods, including the pro-
posed one, providing a complex assessment of their strengths and weaknesses.
We also evaluated the impact of integrating the proposed spatio-temporal map
into the planning module in a field robotic experiment that analysed reactions of
uninformed human subjects.

The results of the field experiment showed a radical difference in reactions
towards robot that was and was not able to forecast human flows. A robot not
using a spatio-temporal map annoyed some people, and one human got angry,
while the robot able to blend into the human flows solved its task unnoticed.
The proposed spatio-temporal modelling method successfully competed with its
competitors. It proved its qualities when integrated into a public application. It
provided forecasts covering country-wide area from very sparse data.

Keywords: spatio-temporal forecasting, long-term autonomy, human-aware task
scheduling, comparing spatio-temporal maps, chronorobotics, maps of dynamics
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Anotace

Od robot̊u se očekává, že budou pomáhat lidem s mnoha r̊uznými úkoly. Předpo-
kládáme, že kromě schopnosti řešit úkol se servisńı roboti potřebuj́ı také začlenit
do společnosti, aby poskytovali službu přijatelným zp̊usobem. Lidská společnost
má pravidla, která se ř́ıd́ı pracovńımi rutinami, tradicemi a odvozenými zvyky.
Porušeńı pravidel jakoukoliv entitou, včetně autonomńıch robot̊u, kaźı psychoso-
ciálńı atmosféru a vede k následnému vyloučeńı nepřizp̊usobivé entity – v př́ıpadě
robota k odmı́tnut́ı jeho pomoci.

V této práci navrhujeme zp̊usob, jak by se autonomńı obslužný robot mohl
alespoň začlenit do lidské společnosti – aplikováńım časoprostorových map u-
možňuj́ıćıch předpovědi dynamiky vyvolané člověkem do jeho plánovaćıho mod-
ulu. Definovali a vyhodnocovali jsme časoprostorové modely vhodné pro au-
tonomńı servisńı roboty v r̊uzných scénář́ıch. Navrhli jsme metodiku pro defi-
nováńı r̊uznorodého souboru kritéríı pro hodnoceńı a porovnáváńı r̊uzných ča-
soprostorových map z hlediska použitelnosti v konkrétńıch robotických úlohách.
Odvodili jsme specifické kritérium pro vyhodnoceńı časoprostorových map pro
rozvržeńı a plánováńı trajektoríı s ohledem na lidi. Pomoćı tohoto kritéria jsme
porovnali vyčerpávaj́ıćı sb́ırku zjednodušených př́ıstup̊u k časoprostorovému ma-
pováńı, které čtenáři poskytly náhled na jejich odlǐsnosti, a současných nej-
moderněǰśıch metod, včetně té navrhované, poskytuj́ıćı komplexńı posouzeńı je-
jich silných a slabých stránek. Hodnotili jsme také dopad integrace navržené
časoprostorové mapy do plánovaćıho modulu v polńım robotickém experimentu,
který analyzoval reakce neinformovaných lidských subjekt̊u.

Výsledky polńıho experimentu ukázaly radikálńı rozd́ıl v reakćıch na robota,
který byl a nebyl schopen předpov́ıdat lidské toky. Robot, který nepouž́ıval časo-
prostorovou mapu, některé lidi naštval a jednoho člověka rozzlobil, zat́ımco robot
schopný následovat lidské toky sv̊uj úkol nepozorovaně vyřešil. Navržená metoda
časoprostorového modelováńı úspěšně konkurovala svým konkurent̊um. Své kva-
lity prokázala při integraci do veřejné aplikace. Poskytla předpovědi pokrývaj́ıćı
celou zemi z velmi ř́ıdkých údaj̊u.

Kĺıčová Slova: časoprostorové prognózováńı, dlouhodobá autonomie, plánováńı
úkol̊u s ohledem na člověka, porovnáváńı časoprostorových map, chronorobotika,
mapy dynamiky
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Starting Point

Thanks to computer hardware advances in recent years and the consequent ad-

vances in artificial intelligence, society expects robots to help people with many

different tasks. They are supposed to work in changing conditions for long pe-

riods and replace humans in repetitive tasks and tasks where humans fail due

to their emotional nature, slow reactions or low dexterity. They are expected to

excel in tasks requiring long-term focus for rapid and precise reactions to rare

and unexpected situations. Due to the massive data flow and progress in the

databases, autonomous systems are now understood as knowledge providers that

can help inexperienced humans reason in unusual situations or choose the best

solution before more experienced humans arrive.

Robots can operate in controlled and precisely mapped environments. The

current aim is to make them work in an unknown and unaccustomed environment

for a long time. Such a general environment evinces various irregularities - changes

over time due to natural processes or human activity. These changes in the

environment lead to the gradual worsening of the static maps, and it is not

possible only to change the obsolete static map with the new one [1]. The explicit

representation of these changes over time prolongs the time an autonomous robot

can carry out its duties [2]–[8] and rises the quality and performance in long-term

tasks [9]–[13].

This doctoral thesis summarises the latest advances in modelling the dynamics

of the robot operational area. It describes and discusses methods proposed during

my study. Those methods address issues that robots face when operating in

dynamic, human-populated environments. An integral part of this work was a

collection of long-term datasets used to evaluate developed methods.

Original Research Objectives

The original goal of my dissertation thesis was to create a general tool to model

spatio-temporal phenomena useful for robots operating in large, human-populated

areas for long periods.

We expected that a human-populated environment would typically incorpo-

3



rate changes in structure derived from open or closed doors, the number of peo-

ple present, visual appearance due to diurnal rhythms, dominant directions of

pedestrian flow, and the crowdedness of different areas. It was known that pre-

dicting such phenomena and adapting a robot to the actual state leads to bet-

ter performance in accomplishing its tasks [9]. However, different predictions of

different variables in different scenarios lead to different machine-learning-based

approaches. Therefore we wanted to define the universal method applicable to:

• Binary Classification (robotic maps often consist of components with binary

states),

• (Event) Frequency Analysis (for densities and flows estimation),

• Multiclass Classification (for regular activity recognition),

• Regression (for forecasting a value of a quantity, like speed and crowdedness,

at a given location),

• and Novelty Detection (to deal with rare events and changes of dynamics)

for long-term spatio-temporal mapping. To achieve the goals, we decided to

extend the existing collection of datasets:

• long-term person presence locations [14],

• and long-term open/closed door detection [15],

by collecting new ones:

• long-term spatial human detection on a 24/7 basis,

• navigation maps in changing outdoor environment,

• and long-term spatio-directional human detections

for a complex evaluation of the method. Finally, we wanted to deploy the method

on a real robot and prove its usability in a field experiment.

4



Text Organisation

The body of the text is divided into three chronologically ordered parts. The first

part concerns modelling mid-to-long-term spatio-temporal dynamics of human-

populated, office-like environments. Described methods proceed from Frequency

Map Enhancement [5], expand an idea of its continuous extension, Hypertime [16],

and address technical details of Hypertime implementation.

The main issue during the development of these methods was comparing and

evaluating the predictive abilities of different spatio-temporal methods and maps.

The second part concerns a methodology for the quality of spatio-temporal maps

comparison regarding expected robotic tasks [17]. This part includes state-of-

the-art methods comparison and provides a complex analysis of their differences,

strengths and weaknesses. It also provides an overview of different methods

for long-term spatio-temporal modelling and mapping from various fields and

compares simplified approaches derived from them.

Previous and actual data collection is covered in the third part. The data

collection is generally costly and time-consuming. At the same time, the success,

especially in collecting month-to-year-long datasets, is uncertain. However, the

methods developed on existing datasets are prone to overfitting, usually in unex-

pected and unnoticeable ways. This part describes our expectations on the new

resulting dataset and technology used for collection until now.

Almost the whole text in this thesis is a copy of texts from reviewed papers

where I was the first author. The proposed ideas result from discussion and coop-

eration with co-authors of original works. All the authors edited those texts, and

(usually unknown) reviewers gave the reader the final impression. The first part

is a collection of texts from [18]–[22], the second part consists of text from [17],

[23], and the third part is mainly a copy of [24]. Two paragraphs from [22] were

also used in the Conclusion.
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Part II

Long-Term Spatio-Temporal

Mapping for Human-Aware

Autonomous Robotics
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1 Outline

The rise of autonomous mobile robotics is intertwined with the development of

their ability to understand the surrounding world. More recent works have shown

that the maps and models representing the environment benefit from including

temporal dynamics and the capability of these models to predict future environ-

ment states [25]. Such an extension has posed the question of how best to explore,

capture, represent, and exploit dynamics and discover periodic patterns and rare

cyclical events while ignoring trends with negligible mid-term impact. The topic

is complicated because while these robots are autonomous, they operate in the

real world and are subject to real-world technical limitations. For example, down-

time for battery charging can create gaps and nonuniformities in observations.

Nevertheless, it has been shown that modelling and consequent predictions of

changes to estimate the state of maps in the future give robots the ability to

operate in their environment for a longer time with better task efficiency than

when using static maps [2], [3], [6].

One of the most common constraints for autonomous robots modelling the

dynamics of their environments is computational efficiency due to power and

time limitations. As a result, one of the most successful ways to model these

changes is to use a Fourier transform approach (or Fourier transform derived),

denoted Frequency Map Enhancement (FreMEn), for an implementation applied

to predictive robotic maps [5]. This is a logical choice, given that the primary

drivers of changes in the natural environments are periodic, whereas trends seem

unimportant in the midterm.

FreMEn introduced frequency analysis into the spatio-temporal mapping and

hypothesised that the periodicities of human habits (sleep, going to work) and

human-induced dynamics in an environment are dominant compared to progress
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or evolution in the horizon of months and years. However, FreMEn is a spatially

discrete model. Its main issue is the spatial independence of the neighbouring

cells. Modelling spatial dependencies in the dynamic environment and problems

related to the choice of the model spatial resolution [26] led to an idea of continu-

ous spatio-temporal representation of the environment. Although the continuous

models of the environment changes are computationally demanding, they out-

perform the discrete ones in terms of storage memory efficiency [27], which is a

necessary requirement for the ability to store large spatio-temporal maps.
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2 Related Work

Many robotic methods assume that environmental uncertainty comes primarily

from the imperfection of the sensory input [28] and ignore the fact that the envi-

ronment itself can change over time [29]. Some methods consider environmental

changes that significantly influence the deployment of a robot. For example, illu-

mination changes during the day can be mitigated by filtering the received data

in the photometric domain [30], [31] or by utilising environment structure [32].

Some changes in the scenes can be modelled using Bayesian probability [33], and

seasonal changes can be suppressed by sophisticated forecasting of visual appear-

ance [34], [35].

Philosophically different approaches to environmental changes emerged from

the idea that localisation and mapping methods used by autonomous robots need

not focus only on accuracy but, more importantly, on flexibility, robustness and

adaptability [1], [6]. The idea evolved during the STRANDS project [9], focusing

on the long-term deployment of autonomous robots in natural, human-populated

areas, and then expanded during the project STROLL [36]. The STRANDS

consortium argued that environmental changes should not be understood as an

inevitable source of the gradual degradation of well-established static models

(occupancy grids, visual landmarks, edges in topological maps). Instead, the

natural dynamics of the environment can be learned and exploited by long-term

running autonomous systems. The STRANDS team pointed out that a large

part of the dynamics relates to natural cycles, and they determined that the

uncertainty in the models can be represented as a function of time. Through the

identification of these routines, autonomous robots can learn from and adapt to

the changes rather than trying to neglect or suppress them.
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2.1 Non-FreMEn Approaches to Spatio-Temporal

Mapping

The most usual way to model periodical events in the spatio-temporal maps

is to include a priori known periods derived from the authors’ expertise in the

model’s architecture. The straightforward way is to create seasonal windows

that include time-specific maps [26], [37]–[41]. Another approach is based on

kernel warping. The map includes a continuous Gaussian mixture model with

predefined periodical kernels [42]–[46]. There also exist approaches of manual

preprocessing the data to find dominant periods using auto-correlation [47]–[49]

and then applying the found periods into the architecture of the spatio-temporal

maps.

Automatic estimation of periods in the data was targeted in [50] by applying

Gaussian processes to the data of continuous media flow. The model included

a covariance matrix constituted by separately calculated spatial and temporal

components. Temporal components included temporal decay and periodical com-

ponents estimated from the data iteratively using frequency analysis. The same

group then expanded the idea by proposing Hilbert maps [51], their incremen-

tal update [52], Fourier Feature Approximations for Periodic Kernels [53] and

its multidimensional variant [54]. However, the mathematical and computational

complexity limits its usage in autonomous robot systems.

2.2 Fourier Transform in Long-Term Autonomy

In [55], the authors apply the Fast Fourier Transform (FFT) to the past ob-

served binary states of an occupancy grid and define the occupancy states by

a periodical function of time. Spectral Mapping acquired the ability to predict

the states in the map. Compared to the classical occupancy grid, Spectral Map-

ping lowered the prediction error by 60%. They optimised the occupancy map

by combining Spectral Mapping with an octree-based spatial model [56] into a

4-dimensional model of the environment, FROctomap [57], and integrated that

within the Robotic Operating System (ROS). Spectral Mapping was also applied
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to the topological localisation task [15]. The robot visited 8 different places every

10 minute for one week and captured the visual appearance of its surroundings

at every place. The images were processed into image features, and the FFT

then modelled the visibility of those features. The robot created a map of fea-

tures specific to a place and time. The experiments proved the ability of the

robot to localise itself using the feature map even after 3 months. The authors

found a correlation between the prominence of periods used in the model and the

persistence of the map.

The Spectral Mapping method proved that temporal prediction gives au-

tonomous robots an edge, but inherent FFT principles require a stable obser-

vation rate without interruption. It is hard to attain such observations outside

a laboratory, especially with autonomous mobile robots. Additionally, Spectral

Mapping cannot be updated by adding new data from later observations, limit-

ing long-term deployments. Those problems were addressed by Frequency Map

Enhancement [5], [58], which is based on the definition of the Non-Uniform Dis-

crete Fourier Transform (NUDFT) [59] rather than FFT and allows building and

updating models with irregular data.

FreMEn was applied to the edges of a topological map [60] as a part of the

Time-Indexed Navigation Markov Decision Processes. During the experiment,

the robot gathered data over 2 months and proved a significant improvement in

planning the optimal time to navigate through the environment. To prove the

dominance of the proposed approach in planning tasks, FreMEn was applied to

a robotic search task [61]. The robot modelled the presence of people at dif-

ferent places in 3 different environments. During the experiment, it planned a

path through the environment, intending to find a person as quickly as possi-

ble. Compared to the strategy based on the static map, which did not consider

human habits, the strategies exploiting the model of usual human behaviours de-

creased the search time by 25% and the number of visited places by 33%. Aiming

to model the number of people in certain areas instead of binary states or the

probability, the authors of [62] redefine FreMEn, which resulted in an iterative

approach denoted as Addition Amplitude Model (AAM). Recently, FreMEn was

used to build a map that considered not only the human presence but also their

direction [63], [64]. Such a map provides information that allows for planning
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navigation in a crowd while adhering to human flows [23]. A nontraditional ap-

plication of FreMEn can be found in [65], where FreMEn ensured the optimal task

division between multiple robots operating in a human-populated environment.

FreMEn proved its superiority to the classic robotic approaches in mapping

for navigation and provided original insights into the dynamics of the environ-

ment. The question of whether it is possible to utilise FreMEn’s qualities in

exploration tasks arose. The initial experiments on life-long spatio-temporal ex-

ploration provided a hypothesis that the best time and place to explore correlates

with the uncertainty of FreMEn [66]. That led to developing the information-

based Monte-Carlo scheduler for spatio-temporal exploration [10]. However, vis-

iting places when the robot is still determining what to expect can be contrary

to the robot’s aims, for example, avoiding busy human flows. This contradiction,

known as the exploration-exploitation dilemma, was thoroughly studied in [67].

The effort was crowned by defining the life-long spatio-temporal exploration of

dynamic environments [12]. Various exploration strategies were later studied over

the spatio-temporal-directional maps [64].

The success of FreMEn, when applied to various robotic tasks, led to its

integration into the STRANDS system [9]. The STRANDS system controlled

two robots deployed to 2 different environments with different roles. One of them

was a security robot operating in an office building in the UK. The second one

was operating in an Austrian care home with an overall autonomous deployment

of 8 months. As the robot had to fulfil its task while simultaneously building

and updating its map, the most promising exploration-exploitation strategy was

successfully integrated into the STRANDS system. The gradual growth of its

performance in real deployments proved the theoretical conclusions [68]. It should

be noted that FreMEn, as a mapping, navigation, and planning system, fulfilled

the strict requirements of the privacy policy as it did not need visual input.
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3 Frequency Map Enhancement

Although many applications use FreMEn, and it is possible to meet with derived

words like ‘fremenisation’, we feel that the definition(s) found in the related ar-

ticles do not describe the method identically to its implementation [69]. As our

work proceeds from it and follows the evolution of ideas related to it, we believe

it is necessary to define FreMEn accurately and clarify its features.

Generally, FreMEn [5], [66] replace stationary uncertainty models of binary

states in robotics maps with functions of time, represented by their frequency

spectra. For example, the probability of grid cell occupancy is not modelled by

a single probability value, updated only by direct observation. Instead, each oc-

cupancy grid cell contains a frequency spectrum-based time series model derived

from the NUDFT over previous observations. As the time series decomposition is

not used for reconstruction but for prediction, only a few of the most prominent

coefficients of the Fourier spectrum are chosen to serve as parameters of the time

series model. The number of these prominent coefficients is referred to as the

order of model.

The difference between FreMEn’s decomposition and the decomposition using

NUDFT lies in the ability of FreMEn to incorporate new observations incremen-

tally, thus being able to provide predictions at any time during the robot opera-

tion. This feature enables FreMEn’s on-the-fly learning from sparse and irregular

data [70]. Let us have a set of candidate angular frequencies ωk ∈ Ω and the

model order o. Starting with n = 0 observations, FreMEn updates the model

parameters by adding a new measurement s(t) in the following way [69], [70]:
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• update mean probability

µ← 1

n+ 1
(nµ+ s(t)) ,

• ∀ωk update state spectrum

αk ←
1

n+ 1

(
nαk + s(t)ejtωk

)
,

• ∀ωk update observation spectrum

βk ←
1

n+ 1

(
nβk + ejtωk

)
,

• update number of observations

n← n+ 1.

Then it can perform a prediction at any time t0 considering all previous measure-

ments:

• ∀k calculate predictive spectrum γk ← αk − µβk,

• choose o components {γc}o1 with highest |γk|,

• and predict state s(t0):

s(t0) =

{
1 if µ+ 2

∑o
1 |γc| cos (t0ωc − arg (γc)) > 0.5

0 otherwise.

FreMEn was also defined as an estimator of the probability of occupied state

occurrence P (s(t) = 1) [5], [10] in a way that the prediction (3) was transformed

into:
P (s(t0) = 1) =

= min

(
max

(
µ+ 2

o∑
1

|γc| cos (t0ωc − arg (γc)), 0

)
, 1

)
.

(3.1)
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The considered angular frequencies ωk and the order of the model o have

to be chosen wisely in advance. The original advice for the set of candidate

angular frequencies was proposed in [10] as ωk ∈ Ω24 = {2πk/86400}24k=1 (note

that one day consists of 86400 seconds). The set Ω24 served well in robotic

applications where the most significant dynamics came from day/night changes,

like topological localisation [15] based on the visibility of features in the video

frames, or models of human behaviour calculated over few days long datasets

that do not cover week routines [10]. However, it is possible to deduce that

the set of candidate angular frequencies used by FreMEn includes the angular

frequency 2π/604800, for example, from notes in results [66], from the graphs [60],

or by finding a back-reference from one article [10] to another [66]. From the

associated source code [69], one can uncover that the standard set of candidate

angular frequencies in FreMEn and FreMEn-derived methods is ωk ∈ Ω168 =

{2πk/604800}168k=1. The set Ω168 ⊃ Ω24 includes the frequencies once-per-week

and once-per-day, which reflects the environmental dynamics derived from the

fact that the social system forces the majority of the population to work on a

daily and weekly basis [16]. Ω168 is the best known and verified in the field set

of candidate angular frequencies for robots deployed in human, calendar-based

working environments. Deployment of the algorithm in an environment with

different nature of underlying dynamics would require manual construction of

the frequency set [40] derived from the domain knowledge.
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4 Hypertime

The most popular environmental model in robotics is the occupancy grid [71],

which is both for localisation and motion planning. Thus, most spatio-temporal

models build spatial representations on the occupancy grid paradigm. In [4], the

authors model the typical direction of change in every cell based on the previous

and current state of the measured phenomenon in the neighbouring cells. Another

model can be found in [72], where authors predict the path of the measured

phenomenon based on the actual situation in the grid using the input-output

Markov model. The long-term model of the changes in the occupancy grid is

based on the spectral analysis of occupancy changes in every cell during the long

period [5]. The authors then extended this spatio-temporal model to predict also

the direction of the movement through the cell in the specific time [63]. The

STRANDS project [9] indicated that the periodicities of human habits (sleep,

going to work) are dominant compared to trends, and modelling the periodicities

is beneficial for robots.

However, the occupancy grid is memory-consuming, resulting in quantisation

noise. This drawback led to the first methods representing the space in a contin-

uous domain [27]. Although the continuous models are computationally intensive

to build and maintain, specific optimisations can be used to speed up the model

building so that they could be applied in robotics [51]. For example, the authors

of [4] showed that using continuous models built by expectation-maximisation

methods allows them to model the movement of crowds and the flow of the wind

[73]. They also showed that the model of the movement of people could be used

to improve the efficiency and safety of navigation [74]. As in the case of spatial

models, authors like [75] showed that using continuous models of time periodicity

results in better performance than dividing the timeline into arbitrary intervals,
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like hours of a day or days of a week. Inspired by the success of periodic models of

time to represent environmental changes and the efficiency of continuous models,

we proposed a continuous version of FreMEn, of which the main idea lay in a

specific transformation of the time domain intended to represent the long-term

periodical dynamics of human-populated environments [16].

4.1 Concept

In [76], we proposed a concept of modelling human activities over time in their

natural environment. We hypothesised that there are some patterns of human

behaviour over the timeline. The conventional approach to time series forecasting

divides time-dependent events into three components – trend, seasonal and cyclic

patterns – and analyses them separately [77]. Cyclic patterns are generally not

predictable changes in the time series, seasonal patterns are periodical changes,

and the trend is continuous growth or decrease of measured values. However, as

these patterns are derived from the routines and habits of humans, we hypothe-

sised that the patterns show periodical nature with no or negligible trends.

We hypothesised that people’s different habits form time-dependent events

that occur on a regular basis with some randomness (morning hygiene, lunch).

We need to estimate their distribution parameters to create the model of the

periodical time-dependent patterns of human behaviour. However, the timeline

unfolds indefinitely, and it is not possible to repeatedly observe random events at

the same time. Thus, infinite, continuous linear time is not suitable as a domain

for time-dependent feature parameters estimation, especially for short-duration

and rare events - the continuous nature of time does not allow for a description

of such events in a classical statistical way.

A popular approach in robotics to model periodical events is to create sea-

sonal windows of a predefined length, usually one day [37], [38]. The distribution

of periodical events with a periodicity matching the length of a window is then

represented by a histogram over the window. However, seasonal windows pro-

duce discontinuity on their borders, which contradicts human behaviour. Let us

consider these examples outlined in [18] to explain the periodicity and continuity

of human behaviour:
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Figure 4.1: An example of the Hypertime projection. Positive detections dur-
ing three days are summed up and projected into a Hypertime with the one-day
periodicity. The parameters of the distribution of a random time-dependent phe-
nomenon that exhibits a periodic behaviour can be easily estimated.

• the human behaviour is very similar during every morning as opposed to the

difference in behaviour during the morning and afternoon of one randomly

chosen day,

• human behaviour five minutes before midnight and five minutes after mid-

night is probably very similar, although we compare behaviour on two dif-

ferent days,

• and, in contrast, human behaviour during Sunday afternoon probably differs

from behaviour on Monday afternoon.

To ensure the continuity on the borders of the time intervals induced by the

natural periodicities, we project the time into a set of circles, where every circle

is derived from a periodicity detected in a measured phenomenon. In this way,

similar time-dependent events matching the periodicity are projected into simi-

lar positions of the circle, causing the distances of periodically-occurring events

to be low even if significant time intervals separate these events, see Figure 4.1.

The projection naturally clusters similar time-dependent events and preserves

continuity while ensuring that the domain of time-dependent phenomena is con-

strained. The measured phenomenon projected into this vector space can then be

analysed using standard statistical and machine-learning tools, and therefore, it
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is possible to estimate the parameters of the time-dependent periodical patterns’

distributions.

4.2 Modelling Binary Data

4.2.1 HyT

A proposed method supposes periodical patterns in the observed phenomenon –

functions derived from human habits – over the timeline. Prominent periodicities

in the data define a projection of time into a constrained vector space. In this

1.0

0

time

o
cc

u
rr

e
n

ce
 p

ro
b

a
b

il
it

y

0.75

0.50

0.25

0 1 2 3
0

1

Day Day Day time

o
b

se
rv

e
d

 o
cc

u
rr

e
n

ce
s

0 1 2 3
0

1

Day Day Day time

o
b

se
rv

e
d

 o
cc

u
rr

e
n

ce
s

0 1 2 3
0

1

Day Day Day time

o
b

se
rv

e
d

 o
cc

u
rr

e
n

ce
s M(t )i

M(t )i

Figure 4.2: HyT iterations: The method input are observed occurrences of a
given phenomenon over time (top left). Then, a model of the data is established
(top right). Then, a dominant frequency of the model error is found by Eq. 4.1,
the data points are projected into a unit circle, and their distribution is modelled
(bottom left). The model is then compared to the original data (bottom right),
and the process is repeated until the model error decreases.
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vector space, we estimate distributions of patterns in human behaviour, providing

a model of human customs.

The most influencing periodicities in the data can be detected using the Spec-

tral analysis [78], and parameters of the mixture of distributions can be gathered

using the Expectation-Maximisation model for Gaussian mixtures [79]. Thus, the

presented method combines spectral analysis and clustering. The method has to

determine the number and length of the periodicities from the non-uniformly

sampled data. Doing so in one step would be susceptible to spectral aliasing [80]

with the consequence of finding wrong periodicities. Thus, we choose an iterative

approach that comprises three steps:

1. identification of the most prominent periodicity,

2. projection of time into more dimensional vector space, and consequent clus-

tering of occurrences of the phenomenon over the vector space,

3. and building a model.

Identification of the Most Prominent Periodicity

Let us have time series R (ti), i = 1 . . . n, where R (ti) = 1 for detected and

R (ti) = 0 for not detected occurrence of the studied phenomenon in the time ti.

Let the function M (ti) be a default model, an estimation of the expected value

of R (ti): M (ti) =
1
n

∑n
i=1R (ti).

First, we apply the spectral decomposition derived from non-uniform Fourier

transform[5], [81], [82] on the difference between this time series and the model

to find prominent periodicities. In particular, for every considered period Pk, we

calculate components of the frequency spectrum and select the most prominent

periodicity PP as follows:

PP = argmax
Pk

1

n

n∑
i=1

(R (ti)−M (ti))e
(−1j)2π ti/Pk , (4.1)

where M (ti) is the actual model of the time series.
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Projection and Clustering

Then, for the chosen period PP we project occurrences of phenomenon into a 2d

vector space (Figure 4.2) as follows:

ti →
(
cos

2πti
PP

, sin
2πti
PP

)
, (4.2)

where
(
cos 2πti

PP
, sin 2πti

PP

)
forms a circle in 2d plane which represent the periodicity

and continuity of the occurrences. The time values of occurrences with a similar

position relative to periodicity PP are projected on a similar position on the circle;

see Figure 4.2. Then, we apply clustering over the projected occurrences. We

call the projection of time into the multiple circles Hypertime.

Model Building

We assume that the time-dependent occurrences of the phenomenon projected

into the Hypertime, denoted as @ti, are distributed in a way which allows mod-

elling their distribution by Gaussian mixtures. By building the mixture models

of occurrences GMM(@ti), we obtain a model characterised by a membership

ui,j, cluster centres cj and covariances Σj. These allow us to determine the prob-

ability that a given projected sample @t0 belongs to a particular cluster using a

χ2 distribution:

Pr0,j = 1− Pr
[
Q
(
@t0 − cj

)T
Σ−1

j (@t0 − cj)
]
, (4.3)

where Q ∼ χ2(d − 1) and d is dimensionality of the constructed vector space.

Then the prediction of the expected value of a Bernoulli random variable at a

given time, the occurrence at time t0, is given by the following equation:

E[R (t0)] =
c∑

j=1

u0,jPr0,j. (4.4)
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The model M (ti) for equation (4.1) in the next iteration is calculated as follows:

M (ti) =
c∑

j=1

ui,jPri,j. (4.5)

Repeating the Process

Once we know the new M (ti), the process is repeated using Eq. 4.1, and each

iteration extends the vector space with another couple of dimensions. We denote

these additional projections of ti as
@ti, where:

@+1ti =

(
@ti, cos

2πti
PP@+1

, sin
2πti
PP@+1

)
, (4.6)

in particular 2ti =
(
1ti, cos

2πti
PP2

, sin 2πti
PP2

)
=
(
cos 2πti

PP1
, sin 2πti

PP1
, cos 2πti

PP2
, sin 2πti

PP2

)
,

and 1ti =
(
cos 2πti

PP1
, sin 2πti

PP1

)
. The iterations stop, and the final model is chosen

when the model reaches chosen criterion – more on choosing the proper criterion

can be found in the following part, Section III. The whole method is denoted by

the abbreviation HyT.

4.2.2 HyTS

The previous method modelled a given phenomenon over time domain only. How-

ever, in [16], we also hypothesised the possibility of extending traditional spatial

models with the Hypertime projection. We call this projection Hypertime Space,

and the method HyTS.

Let us have spatio-temporal detections of occurrences and non-occurrences

{(xi, ti)}ni=1 constituting spatio-temporal series R (xi, ti). Let us have a default

model M (xi, ti) =
1
n

∑n
1 R (xi, ti). Similarly to Equation (4.1), we calculate the

most prominent periodicity PP :

PP = argmax
Pk

1

n

n∑
i=1

(R (xi, ti)−M (xi, ti)) e
(−1j)2π ti/Pk . (4.7)

Then we project every measurement (xi, ti) into the new vector space as follows:
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(xi, ti)→
(
xi, cos

2πti
PP

, sin
2πti
PP

)
, (4.8)

denoted as @xi. Similarly to the previous case, we perform clustering GMM(@xi)

over the extended space to obtain the model and recalculate the model:

M (xi, ti) =
c∑

j=1

ui,jPri,j, (4.9)

where

Pri,j = 1− Pr
[
Q
(
@xi − cj

)T
Σ−1

j (@xi − cj)
]
. (4.10)

This allows us to repeat the process, extend the vector space with two additional

dimensions, and create a more dimensional Hypertime Space, where:

@+1xi =

(
@xi, cos

2πti
PP@+1

, sin
2πti
PP@+1

)
, (4.11)

and 0xi = xi,
1xi =

(
xi, cos

2πti
PP1

, sin 2πti
PP1

)
, etc.

4.2.3 People Density Prediction over Occupancy Grid

One of the most desired spatial models used in robotics is an occupancy grid,

and, therefore, our model should be able to predict the occupancy of grid cells at

a particular time. For that, one has to determine a basic volume element, which

defines the resolution (granularity) of the discrete model.

The volume b of the basic element of the space-time has to be chosen accord-

ingly to the purposes of the model (for example, 1 squared meter hour [m2h]).

Thus, we define a histogram H with bins of volume b. Spatio-temporal positions

of bins are defined by vectors (bh, th), where h are meaningful indices. Vectors

(bh, th) should lie inside the area of bins, preferably in the spatio-temporal cen-

tres of bins. The values vh connected to each bin are then calculated as a sum

of values R (xi, ti) assigned to every (xi, ti) that lies inside of the volume of the

corresponding bin. Using the histogram H, we modelled the most likely number

of occurrences of the measured phenomenon per chosen volume unit b as follows:
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1. Assumming that every measure R (xi, ti) is one or zero, apply a clustering

method to @xi for every (xi, ti) : R (xi, ti) = 1,

2. using a given clustering method, calculate centroids cj and covariance ma-

trices Σj of every cluster, and membership ui,j of every
@xi to every cluster,

where j is index of clusters,

3. using cj and Σj calculate membership uh,j of every
@bh to every cluster,

4. calculate cluster weights αj as

αj =

∑
i ui,j∑
h uh,j

(4.12)

.

5. Then the function

ρ (x0, t0) =
c∑

j=1

αj u0j Pr0,j (4.13)

estimates the number of occurrences of the observed phenomenon in the

neighbourhood with volume b around (x0, t0).

4.2.4 Metaparameters

The quality of the model is based on two parameters, the number of clusters

and the set of chosen periodicities to create the Hypertime. Typically, we create

several models with different parameters and choose the one with minimal error.

Unfortunately, we did not find any elegant heuristic to estimate these parameters.

However, using only one cluster when building HyT simplifies the algorithm com-

putationally and, in most cases, such models provide comparable (and sometimes

better) results.
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4.3 Modelling Data that Include Only Occur-

rences

The proposed method can be applied to the data that does not need information

about events that did not happen - non-occurrences, s(ti) = 0. It is beneficial for

higher-dimensional tasks like building maps of human flows, where it is pretty

memory and computationally demanding to create an exhaustive set of possible

values that never happened. Moreover, some sensors, like LiDARs, and some

detection methods, like person detection and localisation method [83], do not

produce non-occurrences - and the proposed method can be applied directly to

the data without its preprocessing.

The training process is similar to those modelling the binary data, except the

step Identification of the Most Prominent Periodicity in Section 4.2.2. We do not

know the whole spatio-temporal series R (xi, ti) . Therefore, we need to define a

histogram H with bins (bh, th) of meaningful volume b and calculate values vh

connected to each bin as a number of occurrences belonging to each bin. Then

we define spatio-temporal series R (bh, th) :

R (bh, th) =
vh ∆tmin |{(bh, th)}|

∆twhole

, (4.14)

where ∆tmin is an estimation of minimal time between consecutive measurements

derived from a sensor frequency of gauging, ∆twhole the length of time the sensor

collected the data, and |{(bh, th)}| is a number of bins in histogram H. The ratio
∆twhole

∆tmin
can be understood as a theoretical maximum of occurrences the sensor

can detect, and, therefore, equation (4.14) normalises the number of occurrences

in each bin to a value between 0 and 1. That allow us to directly apply actual

model M ((x), t) into a calculation the most prominent periodicity PP :

PP = argmax
Pk

1

n

n∑
i=1

(R (bh, th)−M (bh, th)) e
(−1j)2π th/Pk . (4.15)
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4.3.1 Note on Size of Bins

Although the size of volume b impacts the computational complexity, it looks like

the impact on the quality of a model is insignificant when the temporal size of the

bins is between ∆tmin and half of the shortest considered periodicity. Therefore, I

would recommend half of the shortest considered periodicity as a default setting –

usually half an hour. I usually set the spatial size up to one meter when modelling

human-centred data, as this looks meaningful considering human personal space.

However, the size of the bins was not tested exhaustively, and researchers should

take this statement with caution.

4.4 Regression-Like Models

In previous sections, 4.2 and 4.3, we expected that the measured value would

reflect not only a position in space but also a fact that the phenomenon occurred.

There are phenomena like temperature, pressure, or the number of people in an

area that can be measured anytime and always provide some actual value. We

cannot understand a measurement as an occurrence of the phenomenon - it is

an occurrence of gauging. In such a case, we know that the occurrence of the

phenomenon is a certain event, while gauging occurs randomly in time.

The training process is similar to the one described in a section about mod-

elling data that includes only occurrences of a phenomenon, Section 4.3. How-

ever, as we expect heteroscedasticity and multimodality of the variable v, the

final model MF (t) needs to provide a robot with an estimation of the conditional

distribution of variable v in any specific time t0 (Figure 4.3):

MF (t0) = Mv|t=t0 (v, t) . (4.16)
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π(a, cos(2   t/T), sin(2   t/T))π
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Figure 4.3: Left: Regression method overview. The data points (a,t) observed
over time (top, black) are first processed by frequency analysis to determine a
dominant periodicity T . Then, the time t is projected onto a Hypertime Space
and the vectors (a, t) become (a, cos(2π t/T ), sin(2π t/T )) (bottom, left). The
projected data are then clustered (bottom, centre, blue) to estimate the distri-
bution of a over the Hypertime Space (bottom, right, green). Projection of the
distribution back to the linear time domain allows us to calculate the conditional
distribution estimation of a for any past or future time (top, green). Courtesy
of [5]. Right: Conditional distribution detail. Courtesy of [84].

4.5 Use Cases

4.5.1 Anomaly Detection

This use case was motivated by the security scenario of the STRANDS project [9],

where a regularly-patrolling robot observes the presence of people in a given area

and reports anomalous behaviour. A robot needs to consider the temporal context

of a given activity or person’s presence. For example, being present during late

hours in an office is an unusual event. In contrast, people’s occurrence in an office

during the day is common.
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Figure 4.4: Longer training dataset. Three weeks of detections of one person
in his office. Time series values acquire 1 when the person is detected and 0
otherwise.

Dataset

We evaluated HyT on the real-world dataset from Lincoln University. It consists

of twenty weeks of detection of one person in his office. We divided this dataset

into the training part, which consists of the first three weeks (Figure 4.4), and

the test part, which consists of the eighteenth week (Figure 4.5). The eighteenth

week was chosen intentionally - it contains a relatively high number of anomalous

events. We labelled the outliers in the test dataset manually. Namely three

situations: on Tuesday evening, the human subject returned after leaving his

office; on Wednesday evening, the subject worked until night; and the last labelled

situation was on Saturday when he was working on a non-working day. From the

training dataset, we created twenty-one new training datasets. The first consists
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Figure 4.5: Test dataset. The eighteenth week of detections with highlighted
outliers (black) on Tuesday, Wednesday, and Saturday. The outliers were labelled
manually.

of the first day’s measurements, the second one consists of the first two days’

measurements, and so on. Using such a set of training datasets, we can compare

the gradual improvement of the outlier detection ability and speed of the learning

of the studied methods.

Methods

We compare our method, HyT, with four different methods. The first of them is

Prophet, an open source time series forecasting tool created by Facebook [85], the

second is FreMEn [5] with a model order o = 5, and the last two are histograms

Hist24 and Hist168. Hist24 calculates the mean of occurrences in every hour of all

days in a training dataset, and Hist168 calculates one-hour means over the whole
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Figure 4.6: Evolution of Matthews correlation coefficient using L = 0.90. On the
x-axis are the numbers of days used to train the models; on the y-axis are the
values of Matthews correlation coefficient ⟨−1; 1⟩. A coefficient of value 1 means
correct labelling of outliers by the corresponding method.

week. Note that the chosen time windows correspond to the most prominent

periodicities found by FreMEn applied to the whole (training and test together)

dataset. Contrary to histograms, HyT and FreMEn automatically calculate the

most prominent periodicities from individual training datasets.

Methodology

To quantify the outlier detection ability of the tested methods, we chose the

Matthews correlation coefficient [86], which is suitable to measure the quality of

binary classifications, in our case, inliers and outliers. We created models for all

of 21 training datasets consisting of data from the first day, the first two days, ...,

the first twenty-one days of measurements (Figure 4.4), and detected outliers in

the 18th week of measurements (Figure 4.5) using the models’ prediction of the
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Figure 4.7: Evolution of Matthews correlation coefficient using L = 0.99. On the
x-axis are the numbers of days used to train the models, and on the y-axis are the
values of Matthews correlation coefficient ⟨−1; 1⟩. A coefficient of value 1 means
correct labelling of outliers by the corresponding method.

behaviour of the studied subject. The values of Matthews correlation coefficients

for different methods and different training datasets ordered by the length of

these datasets for L = 0.90 and L = 0.99 are shown in Figure 4.6 and Figure 4.7

respectively.

Results

We can see in Figure 4.6 and Figure 4.7 that HyT needed a shorter time to learn

features of the studied subject behaviour than the original FreMEn. The ability

of HyT to detect anomalous events in the test dataset is significantly better than

FreMEn’s. Compared to the other methods, HyT exhibits robustness to the choice

of significance level. Moreover, HyT is better than the popular robotics technique,

the histograms, even if these histograms use predefined periodicities. Hist168 with
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L = 0.99 is able to maximise its ability to predict outliers. However, it needed two

and a half weeks to train fully. HyT was adequately trained during the first ten

days. With its default setting, Prophet represents up-to-date commercial tools

for time series analysis. It was unable to learn the model as fast as the others.

It should be noted that Prophet could predict outliers similarly to FreMEn when

the models were trained over five and more weeks. Contrary to other tested

methods, Prophet models a trend. This ability, however, did not give it an edge

in this kind of scenario. Based on our experiments, the assumption that the trend

can be neglected for the human behaviour analysis over several weeks was not

disproved.

4.5.2 Pedestrians Density

Dataset

To evaluate our method, we utilised a dataset of people’s presence collected at

the University of Lincoln. The data were collected by a mobile robot equipped

with a Velodyne 3D laser rangefinder. The robot was driven to a location which

provided a good overview of one of the T-shaped corridor junctions (Figure 4.8).

To localise people in the measurements provided by the laser 3D scanner, we used

a reliable and efficient person detection and localisation method [83]. Since the

robot batteries need to be recharged on a daily basis, we could not collect the

data in a continuous, 24/7 manner. We had to remove the robot from the obser-

vation spot every night when the building was vacant, and no people were in the

corridors. The collected dataset contains detections from early mornings to late

evenings on weekdays over several weeks. A typical day contains approximately

32000 people detection measurements, which correspond to a large number of

people walking or standing in the monitored corridors. The method [83] provides

human detection results as a single vector, e.g., a point in space. However, for

mobile robot path planning, a human represents an obstacle with a particular

spatial volume. For this reason, we preprocessed the dataset by substituting ev-

ery detection vector with a set of vectors in its spatial neighbourhood with a

diameter of 0.5m.
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Figure 4.8: Model compared to the data. Black dots represent detections from
the test dataset, and grey areas represent the model (darker area means more
predicted occurrences). Black lines represent walls of corridors.

Methods

We compare HyTS to three other spatio-temporal models. These models repre-

sent the space in a discrete way. In particular, they associate each cell of the

spatial 2d grid with a temporal model: Mean, which is simply an average of all

past measurements occurring within a given cell, Hist, which splits each day into

h intervals and predicts the number of occurrences as an average for the relevant

time of a day, and FreMEn, which extracts o spectral components from the people

occurrence history and uses these periodic components for future predictions. To

predict the number of occurrences at a particular location at a particular time,

we select the grid cell that corresponds to the location and use the cell’s temporal

model to perform the prediction. More precisely, to generate the 3-d histogram

M representing a model’s spatio-temporal prediction, we first calculate a separate

temporal model for each cell of the predefined spatial grid G. Then we create 1-d

histogram of each temporal model in every cell and generate a spatio-temporal

histogram of predictions M. On the contrary, HyTS represents the space in a

continuous, and to generate the histogram M, it simply calculates the cell value

according to (4.13). As the corridor is T-shaped, we decided to follow the natural

spatial structure of an environment and set c = 3 clusters for HyTS.

Methodology

The primary purpose of the evaluation is to estimate the predictive capability of

HyTS models. We split the gathered data into training and test sets and only
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learned the models from the training set. The training dataset consists of two

weeks of measurements, and the test dataset consists of two days of measurements

from another week (Wednesday and Thursday). Out of the test data, we created

a 3-d, spatio-temporal histograms H with various basic volumes b ranging from

0.1 to 1.0 meters and 10 to 60 minutes. In particular, we count the number of

detections for each bin from the test data.

The error of a method at a specific resolution is calculated as a root-mean-

square deviation [87] between histogram H and matching histogram M:

RMSDcurrent =

√∑
bin

(Mbin −Hbin)
2, (4.17)

with bin defined according to procedure in section 4.2.2. The prediction error

differs between different resolutions, Figure 4.9. It was discussed in later work

in detail [26].

To better visualise the comparison of prediction capabilities of different meth-

ods on different resolutions, we calculate the ratio between the RMSD of predic-

tion of every compared method to the RMSD of prediction gathered from Mean,

which can be understood as a representant of the classical occupancy grid:

ratio = 1−RMSDmethod/RMSDMean. (4.18)

The experimental evaluation is performed by an automated system similar

to the one presented in [88]. This system first optimises each method’s (HyTS,

Hist, and FreMEn) parameters (Hypertime dimension @, number of bins per day

h, and model order o). Then it runs pairwise t-tests to determine which of the

compared methods performs statistically significantly better than the others.

Table 4.1: Model Size of Compared Methods
resolution
[cm x cm]

HyTS
c = 3, @ = 2

HyTS
c = 3, @ = 3

FreMEn
o = 5

Hist
h = 24

Mean

100 x 100 1.7 KiB 2.4 KiB 1.1 MiB 19.3 KiB 3.3 KiB
50 x 50 1.7 KiB 2.4 KiB 4.4 MiB 307.3 KiB 12.9 KiB
20 x 20 1.7 KiB 2.4 KiB 27.2 MiB 1.9 MiB 80.1 KiB
10 x 10 1.7 KiB 2.4 KiB 108.9 MiB 7.7 MiB 320.1 KiB
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Results

We can see in Fig. 4.9 that HyTS significantly outperformed the other ones. It is

usually more than 5% better than FreMEn and Hist. Fig. 4.8 also demonstrates

that the distributions of the people predicted by HyTS depend on time and follow

the shape of the corridor even when the algorithm did not force it.

Moreover, the proposed model is much more memory efficient than FreMEn

or the other discrete models. This is because our model is continuous, and its

complexity is unaffected by the number of cells in the underlying grid. HyTS

consists of the positions of clusters {cj} , their weights {αj} , covariance matrices

{Σj} , and a set of used periodicities {Pp}. With @ = 2 prominent periodicities

and c = 3 clusters, HyTS occupies 1.7 KiB of memory space - independently of

the grid resolution. In contrast, FreMEn needs several numbers for each modelled

periodicity in every cell of the grid-based representation. Thus, on our dataset,

where the spatial grids have resolutions of 100, 50, 20, and 10 cm, the FreMEn

model occupies 1.1, 4.4, 27.2, and 108.9 MiB of memory respectively, see Table

4.1. In addition, the resolution of HyTS is derived from the cluster weights αj.

Therefore it is possible to store different resolutions of one model at almost no

memory cost.

The downside of HyTS is its computational complexity, caused by the method

being iterative and the growth of dimensionality of Hypertime in every iteration.

Comparing runtimes of our implementations, when FreMEn calculates a temporal

model of all the grid cells in about a minute, HyTS builds the spatio-temporal

model in an hour. Moreover, during the parameters optimisation phase, HyTS

has to discretise the time-space to calculate the histogram M, which occupies

memory space comparable to the discrete methods (Mean, Hist, and FreMEn).

However, once the model building is finished, the histogram is not stored, and

the model consists only of the cluster parameters and periodicities.
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Figure 4.9: Comparison of the predictive power of different methods. The graph
shows the prediction error reduction compared to the Mean, which neglects the
temporal properties of the people’s presence. The indicated values (y-axes) are
calculated using Equation (4.18). On the x-axis, there are spatio-temporal sizes
of basic volumes. The white bar shows the prediction power of HyTS using three
clusters, grey bar Hist and black bar FreMEn.
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4.5.3 Pedestrian Flows

Dataset

The approach described above was evaluated using a dataset collected at the

Department of computer science at the University of Lincoln. The data recording

was performed by a Pioneer 3-AT mobile robot equipped with a 3d lidar (Velodyne

VLP-16) and a 2d lidar (Hokuyo UTM-30LX), using a reliable person detection

method [83].

During the data collection, the robot remained stationary in a T-shaped junc-

tion, which allowed its sensors to scan the three connecting corridors simultane-

ously, covering a total area of around 75 m2 (Fig. 4.10). However, since the robot

could not stay in the corridor overnight due to safety rules, and it was needed by

other researchers occasionally, we did not collect the data on a whole, 24/7 basis.

Instead, the data was collected during ten-hour sessions covering the usual work-

ing hours. Recharging the batteries was performed overnight when the building

was vacant, and no people were on the corridors.

The resulting dataset is composed of 9 data-gathering sessions recorded over

four weeks. A typical session contains approximately 30000 detections of people

walking in the monitored corridors. Every detection is represented by a vec-

tor (t, x, y, ϕ, v) – the detected human’s position, orientation, and speed in time.

Similar to [27], we added 70000 “no detection” vectors of the positions, orienta-

tions, and speeds, where no human was detected (such as random vectors during

the night and people walking in the opposite direction than detected ones). As

some of the methods in comparison do not model the speed, this value was set

to v = 1.0 for every measurement. For detailed information about particular

methods used in the comparison, see section 4.5.3. The structured overview of

the properties of individual methods can be seen in Table 4.2.

The 3d lidar has 16 scan channels with a 360◦ horizontal and 30◦ vertical

field-of-view and was mounted at the height of 0.8 m from the floor on the top

of the robot (Fig. 4.10 left), which allows us to have a perspective that covers

the entire environment for data collection (Fig. 4.10 right). All people appearing

in the corridor are detected and tracked in the 3d lidar’s frame of reference.
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More specifically, the 3d point cloud generated by the Velodyne lidar was first

segmented into different clusters using an adaptive clustering method [83], then

an offline trained SVM-based classifier was used for human classification. The 2d

positions of the people are subsequently fed into a robust multi-target tracking

system [89] using Unscented Kalman Filter (UKF) and Nearest Neighbour Joint

Probability Data Association method (NNJPDA), and the human-like trajectories

(in XY-plane) are eventually generated and recorded.

Figure 4.10: Photo of the UoL dataset data collection setup: Robot location in
the corridor and example of a person walking as seen by the 3D lidar.

Methodology

Following [90], we divided the dataset into a training and testing subset, where

the training dataset consisted of seven days from three weeks, and the test dataset

consisted of two days measured out of the time interval of the training dataset.

We chose two different criteria to measure the quality of the model. The first

is root-mean-square error (RMSE) [87] between model predictions M(xi, ti) and

test dataset values D(xi, ti)

RMSE =

√√√√ 1

n

n∑
i=1

(M(xi, ti)−D(xi, ti))
2, (4.19)

which is widely used in time series forecasting [91].

The second criterion used is the level of similarity between human motion

distributions, occurring at certain times and positions, obtained from the 2 test
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days and the ones predicted by the model. This metric is focused on how well the

model can predict how a person would move if detected rather than how likely

the robot would find one.

In order to do that, we have defined a spatial and temporal grid to cover the

entire map and the whole 2 test days. The different approaches can provide a

probability motion distribution for any point in time-space. However, obtaining

this same distribution with the ground truth data to make the comparison at a

single time instance is not possible. The reason is that we do not have enough

detections for an instance of time to build a meaningful distribution. Instead, the

idea is to compare the distribution obtained from the test data during a defined

time interval. In our evaluations, we have used a spatial grid, taking points every

1 meter in x and y directions and 10-minute long time intervals. When there are

no detections at nighttime, we assume equal probability for each orientation.

We used the Chi-square distance to compare the predicted and ground truth

histograms for each interval and position. This distance indicates the level of

similarity between two discrete distributions or histograms, so the higher the

distance, the less accurate is our model prediction compared with the test data.

The total Chi-square distance of the map for a single interval is defined as:

distancemap =
n∑

i=1

k∑
b=1

(xb − yb)
2

(xb + yb)
, (4.20)

where n is the number of positions, k is the number of angular bins for the

direction of people motion in the cells (in our case, we have chosen k = 8 taking

the angles 0, 45, 90, 135, 180, 225, 270 and 315 degrees as values for each bin),

xb is the value of bin b in the predicted orientation histogram, and yb is the value

of the same bin b obtained from the ground truth.

Methods

HyTS Two parameters affect the quality of HyTS - the number of clusters c and

the set of periodicities forming the Hypertime. The recent experiments showed

that the number of clusters could be relatively small (usually up to 9) [16], and

it seems that the number of clusters is related to the topological structure of
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the space [20]. For this dataset from T-junction, we chose c = 3 clusters. The

second parameter can be derived from data iteratively, but recent experiments

showed [16], [20], that the quality of prediction does not usually grow with more

than @ = 3 added Hypertime ‘circles’. We selected the basic set of periodicities

as proposed in [5] and discovered three prominent components in the training

data (six, twelve, and twenty-four hours), which we used in our method.

STeF-Map STeF-Map [64], which stands for Spatio-Temporal Flow Map, is a

representation that models the likelihood of motion directions on a grid-based

map by a set of harmonic functions, which capture long-term changes of crowd

movements over time. The underlying geometric space is represented by a grid,

where each cell contains k temporal models corresponding to k discretised ori-

entations of people’s motion through the given cell over time. Since the total

number of temporal models, which are of a fixed size, is k×n where n is the total

number of cells, the spatiotemporal model does not grow over time regardless of

the duration of data collection. The temporal models, which can capture pat-

terns of people’s movement, are based on the FreMEn framework [5]. FreMEn is

a mathematical tool based on the Fourier Transform, which considers the prob-

ability of a given state as a function of time and represents it by a combination

of harmonic components. The idea is to treat a measured state as a signal, de-

compose it using the Fourier Transform, and obtain a frequency spectrum with

the corresponding amplitudes, frequencies and phase shifts. Then, transferring

the most prominent spectral components to the time domain provides an analytic

expression representing the likelihood of that state at a given time in the past or

future.

This model assumes that it is provided with people detection data, compris-

ing the person’s position, orientation and timestamp of the detection (x, y, α, t).

When building the model, the x, y positions are discretised and assigned to the

corresponding cell, and the orientation α is assigned to one of the k bins, whose

value is incremented by 1. After a predefined interval of time, the bin values

are normalised, and the results are used to update the spectra of the temporal

models. Then, the bin values are reset to 0, and the counting starts again.

In order to retrieve the behaviour of human movement through a given cell at
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a certain time t (which can be in the future or the past), the likelihood for each

discretised orientation associated with a cell can be computed as:

pθ(t) = p0 +
m∑
j=1

pjcos(ωjt+ φj), (4.21)

where p0 is the stationary probability, m is the number of the most prominent

spectral components, and pj, ωj and φj are their amplitudes, periods and phases.

The spectral components ωj are drawn from a set of ωs that covers periodicities

ranging from 14 h to 1 week with the following distribution:

ωs =
3600 · 24 · 7

s
, s ∈ 1, 2, 3, ..., 12. (4.22)

Directional grid maps Directional grid maps (DGM) [92] are designed to

model the directional uncertainty of dynamic environments. The inputs to the

model are directions of objects at different locations of the environment, and the

outputs are a set of continuous probability density functions indicating the most

probable directions dynamic objects move at various locations of the environ-

ment. In order to build a DGM, firstly, the 2D or 3D environment is divided

into a fixed-sized grid. Then, a mixture of von Mises distribution is assigned to

each cell to model the multimodal angular uncertainty. Analogous to a Gaussian

distribution, however, with a limited [−π,+π] support, a von Mises distribution

is controlled by its mean angle and concentration (inverse variance) parameters.

The number of von Mises components for each mixture is determined by the num-

ber of density-wide clusters using the DBSCAN algorithm. Having initialised the

von Mises distributions with the cluster centres, the parameters are learned us-

ing Expectation-Maximization (EM). In experiments, it takes 1 to 4 iterations to

converge the EM. Since the directional grid maps are not designed to deal with

the spatiotemporal domain with periodic patterns, in this experiment, the tem-

poral domain is also discretised every 15 minutes in addition to the 2 m × 2 m

spatial discretisation. For this experiment, as a proxy, we attempt to estimate the

people density by considering the cells where the initial set of mixture parameters

changes with time. Therefore, the proxy count probabilities are always either 0 or

1 and not the exact people density. In the future, it is possible to replace the von
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Mises distribution with a Gaussian distribution or replace the Bernoulli likeli-

hood in [52] with a Gaussian likelihood to model such spatial density estimations

accurately.

CLiFF-Map Model Circular Linear Flow Field map (CLiFF-map) [73] is a

technique for encoding movement patterns as a field of Gaussian mixtures. They

can be combined with semi-wrapped Gaussian mixture models (SWGMM) to

model multimodal motion.

p(VVV |ξξξ) =
J∑

j=1

πjN SW
µµµj ,ΣΣΣj

(VVV ) (4.23)

with
∑J

j=1 πj = 1.

This uses a semi-wrapped normal distribution distributed along the circum-

ference and height of a cylinder. It is represented as a semi-wrapped normal

distribution. It can be derived from:

N SW
µµµ,ΣΣΣ (VVV ) =

∑
k∈Z

Nµµµ,ΣΣΣ

([
θ

ρ

]
+ 2π

[
k

0

])
. (4.24)

where VVV = (θ, ρ) represents the instantaneous velocities, θ ∈ [0, 2π) is the direc-

tion, and ρ ∈ R+ the speed.

LSTM We also implemented a deep-learning model for a point of comparison.

A long short-term memory [93] neural network was built using Keras atop the

TensorFlow library. It consisted of 4 layers of 50 LSTM units followed by a fully

connected layer with 72000 trainable parameters.

Results

The evaluation results, summarised in Table 4.3, indicate that HyTS achieved the

lowest root mean squared error, but for the χ2 distance, STeF presents the lower

score. We believe that the reason behind that is because STeF represents each

orientation in each position by its own temporal model. Although DGM is not

designed to estimate the probability of occurrence and only returns 0 or 1, and
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Table 4.2: Qualitative Comparison Of Methods

Method Time Representation Complexity
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]

HyTS [19] ✓ × C C C C C 2 60
STeF [64] ✓ × C D × D × 140 20
DGM [92] ✓ × D D C C × 20 72
CLiFF [73] × × × D C C C 6k 104

LSTM [93] × ✓ C C C C C 900 106

Note 1: In the ‘Representation’ columns, C stands for the
continuous, and D is for the discrete representation of vari-
ables the method provides.
Note 2: CLiFF-map was developed using Matlab; other
methods are written in Python.

therefore RMSE is not a proper measurement for this method, it was comparable

with HyTS in χ2 statistics.

To fit the evaluation procedure, CLiFF-map was discretised into eight orienta-

tion bins. CLiFF-map predicts directions on specific positions better than HyTS

during the day, but as this model does not consider the temporal dimension, its

night results are worse.

Low values of RMSE in Table 4.3 show that HyTS can accurately model both

movement directions and human occurrences. Modelling the joint probability of

occurrences and directions is the crucial property of the HyTS, which is supposed

to provide apriori knowledge of the dynamics of human-populated environments

to autonomous robots.

We also include an LSTM model, commonly considered a state-of-the-art

method for temporal predictions. The LSTM model was trained using four

NVIDIA Tesla V100 SXM2 32GB for 10 hours, and its model size was 900 KiB.

However, as the LSTM is tailored for short-term predictions (compared to the pre-

diction horizons of STeF or HyTS), its predictions quickly converge to the mean

probability of people’s directions across the entire training dataset (spatially and

temporally). Therefore, LSTM predicts that the distribution of people’s move-
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Table 4.3: Prediction errors of the evaluated models and datasets

Testing sets Days Nights Days and nights
Criterion RMSE χ2 RMSE χ2 RMSE χ2

HyTS 0.50 23.4 0.00 0.2 0.40 23.6
STeF 0.57 10.6 0.02 8.1 0.46 18.7
DGM 0.70 25.5 0.83 0.0 0.75 25.5
CLiFF 0.60 15.5 0.16 9.2 0.50 24.7
LSTM 0.57 25.5 0.22 0.0 0.48 25.5

ment directions will be uniform in the long-term horizon. DGM and HyTS predict

very low probabilities of people’s presence during the night, which corresponds

to uniform distribution of walking directions. Thus, the χ2 metric for these three

methods for the night data is lower than STeF and CLiFF.

HyTS, STeF and DGM were developed in Python language, their training on

regular personal notebooks lasted about one minute, and the model sizes are 2

KiB, 140 KiB, and 20 KiB respectively, which indicates that they could be applied

in a field robotic tasks. It should be noted that the model created by HyTS is

smaller by magnitude(s) than its competitors, which is an essential attribute for

building models over large areas, see Table 4.2.
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5 Summary

We developed a continuous version of FreMEn denoted as HyTS. We apply HyTS

to different datasets, representing people’s presence over several weeks. The eval-

uations demonstrated that the proposed representation allows for capturing peo-

ple’s habits. Their model can predict future people’s presence and flows across

corridors and identify unusual occurrences of persons within a given area.

The proposed method successfully competed with or outperformed state-of-

the-art methods in chosen scenarios. It can be used in a wide variety of au-

tonomous robotic tasks while the size of a model is significantly smaller than

that of its competitors. It is comparable in computational time with the most

efficient state-of-the-art methods. These attributes indicate its applicability in

long-term autonomous robotic systems.

FreMEn and later HyTS showed that their ability to predict the future struc-

ture of an environment improves robotic mapping [5], [21], [55], [63], localisa-

tion [5], [15], [16], [94], path planning [17], [23], [60], exploration [10], [12], [64],

[66], [95], task scheduling [17], [23], [67], patrolling [66], [96], searching [61], nov-

elty detection [5], [18], [55], [97], activity recognition [98], human-robot interac-

tion [17], [62], [65], [68], demand forecasting [26], and helped people avoid crowded

places during the COVID19 outbreak in Czech Republic [99], [100].
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Part III

Methodology for Benchmarking

Long-Term Spatio-Temporal

Maps
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6 Outline

The last decade showed that the advances in robotics enable autonomous robots

to operate in human-populated environments [9], [101], [102]. Such the environ-

ment includes diverse types of dynamics, such as natural daily [55], and seasonal

changes [103], but most importantly, the dynamics imposed by human actions [3].

The robots that consider these dynamics and adjust their decisions provide better

performance of their human-centric tasks [9]–[13], [104]. Moreover, later works

assert that decisions of autonomous robots that consider human habits are cru-

cial for robots to be accepted by human society [23], [74], [101]. We claim that

robots, supposed to be part of human society, need to adopt the temporal struc-

ture derived from human customs to avoid polluting the psychosocial atmosphere

and achieve long-term acceptance of their services by people.

We state that long-term human-aware navigation needs to include spatio-

temporal maps in the navigation system to support the decisions before the navi-

gational task. The traditional approach to robot navigation in an uncontrolled en-

vironment combines static maps [28], [71] with a reactive approach to unexpected

events. However, many unexpected events are usually caused by human actions,

especially human movement through the robot’s operational environment. The

reactive replanning of a robot’s trajectory based on sense-plan-act frameworks,

used, for example, in Robot Operating System [105] move base, gives people an

impression of clumsiness [106] due to their slow response, which eventually leads

to negative emotions towards the robot [23]. This unwanted interaction is mainly

driven by the fact that by the time the robot can detect people walking around it

and replan its trajectories, the person is already taking evasive action. Therefore,

incorporating the expected human movement through the environment into the

robot’s navigation and planning is of high importance for the autonomous robots
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intended to help people in their environment [107]–[109]. To show the fundamen-

tal impact on human acceptance when incorporating spatio-temporal maps into

navigation, we provide a field robot experiment with an industrial-grade robotic

platform. The experiment studied how many people traversing the university hall

were irritated by the robot planning its navigation with and without the map.

As the spatio-temporal maps were used in different scientific fields, we created

a comprehensive overview of the spatio-temporal representations. They provide

various aggregations, like frequency, likelihood, probability, or relative weights.

The authors compare the methods in different ways, on different data, and us-

ing different metrics, making it difficult to assess their actual performance. To

overcome the difficulties in comparison of different approaches to mapping, we

proposed the methodology [17] to create different criteria from a chosen cost

function that suits the studied attributes of maps. We created an extensive set

of generalised and simplified approaches to represent the spatio-temporal phe-

nomena covering a large part of the current methods. We applied them to the

real-world dataset of one month of human detections and compared them using

criteria following the proposed methodology. The straightforward interpretability

of the results provides us with exceptional insight into the strengths and weak-

nesses of different approaches.
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7 Related Work

7.1 Static Maps

7.1.1 Discrete Maps

A straightforward way to include a historical knowledge of human behaviour into

the robotic map was proposed in [110]. The authors divided the map into the

crossings (nodes) and halls (vertices) and projected the map into the graph. A set

of cameras scanned every hall, and the visual system detected and counted people

in these halls. Each vertex of the graph created a dictionary of observed human

movements, which leads to a historical heat map. The field robot experiment

proved that navigation using historical knowledge leads to evading congestions.

The authors of [111] included in the classical grid-based map historical infor-

mation about the frequency of people in every cell, usual directions and speeds

and also acceleration. They could detect natural ways people use in larger areas,

where the usual paths are not apparent from the hall’s structure. They stated that

the knowledge of the acceleration distribution leads to a better understanding of

“smooth flows” in a human movement. In [92] the authors proposed a Direc-

tional grid map (DGM) that models the distribution of directions and speeds in

the occupancy grid. Each cell applies an expectation-maximisation algorithm to

estimate the mixture of von Misses distributions from historical data.

7.1.2 Spatially Continuous Maps

The authors of [27] argued that a continuous spatial map has better properties

for robot navigation than a classical grid map. They proposed Gaussian process
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occupancy maps (GPMOs) that overcome single-scaled maps’ problems and pro-

vide accurate maps even with relatively sparse and noisy data. However, such

an approach cannot be applied to modelling directions. It suffers from averag-

ing angles, leading to meaningless predictions when humans traverse positions in

both directions [112]. As a solution, they proposed a combination of the Kernel

Bayes’ Rule and the Gaussian mixture pre-image recovery method (KBR-GM).

Another approach to overcoming weaknesses of discrete occupancy maps was

proposed in [113]. The authors did not use Gaussian processes mainly because

they generally fail to model multi-modal distributions. Instead, they modelled

the continuous distribution of measured directions and speeds in every cell of a

grid using an expectation-maximisation method based on the Independent von

Mises–Gaussian distribution [114]. Then they defined an interpolation technique

that provides a distribution estimation at any position. They called it CLiFF-

map and applied that to the people tracking and wind data. In the following

work [73] they trained the CLiFF-map with sparse data (75% and 3%) and then

reconstructed it to the original resolution using Monte Carlo and Nadaraya Wat-

son methods. They proved that it is possible to gather relatively accurate models

from very sparse data. Later, they propose a robot motion planner over the

CLiFF-map based on RRT* [74]. They define the Extended Upstream Criterion

(EUC) as a cost function to favour the robot’s movement with the vector field.

The trajectory found in such a way is most likely to offer a good tradeoff be-

tween length and control effort against the dynamics of the environment. They

showed that the model of the movement of people could be used to navigate the

robot through the crowd effectively. In [115] CLiFF-map was extended with a

Down-The-CLiFF (DTC) cost function for trajectory planning, which explicitly

accounts for the environment’s dynamics and the uncertainty in the flow model.

The cost function incorporates observation and motion ratios, which, compared

to the previous EUC, favours the less crowded areas and provides information for

an exploration task.
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7.2 Short Term Dynamics in Maps

In the aforementioned approaches, historical knowledge does not provide any

information about the changes in the dynamics of an environment. One of the

approaches is to include the short-term changes in the map derived from the actual

observation of the situation. In [4], the authors proposed a Conditional Transition

Map (CTMap), which models in every cell the probability distribution of vehicle

transitions between the last and next cell. As the behaviour of the usual vehicle

is not random, the CTMap estimates the probability of the exit direction of the

vehicle from the entry direction. Using the Conditional Probability Propagation

Tree (CPPTree) graph representing all reachable transitions, the method can

predict the vehicle’s trajectory that entered the scene or provide a convenient

navigational plan for a robot. Another discrete short-term model can be found

in [72], where authors predict the path of a walking person based on his actual

position in the environment using the input-output Markov model. The model

that estimates a human’s future position directly from observations [116] allows

for reactive navigation that respects a human’s personal space without the need

of repetitive recalculations of robot’s trajectory. [117] proposed a static spatial

map that includes distributions of directions and speeds of the vehicles at the

crossroads. It is used as prior to the trajectory prediction, which is updated

based on the current observation. The current observation, for example, the

blinking of a car, is then used to estimate the new directional distribution and

eventually the most probable path of the vehicle. The authors of [118] propose

a graph that represents an environment and which edges were traversable or not

during a robot’s task. The model learns which edges were traversable together.

Based on this model, they can predict where the robot can go after observing

a small part of the environment. Then, the information is exploited to provide

better navigation plans. With the advancement of the neural networks that

include long short-term memory, one can find in the literature a vast amount of

the methods for short-term predictions derived from the actual observation [107].
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7.3 Partly Discrete Spatio-temporal Maps

7.3.1 Maps with Discrete Temporal Domain

Apart from modelling the directions of the movement of particles in the environ-

ment, the scientific community focuses on modelling the changes in the environ-

ment over time. A prevalent approach to model a time-dependent phenomenon

is to create seasonal windows (usually one day long) and to model the environ-

ment over the different parts of these windows [37], [38]. This approach models

patterns of the environment change, but it is necessary to define the principal

periodicity, i.e., the length and the resolutions of windows. In [40] the authors

analyse the flow of the wind. They proposed a continuous AirFlow Map and

called it stf-AFM. It is a set of spatio-(short)temporal models inserted into the

“calendar”. The authors are searching for periodical features over the calendar

using a combination of autocorrelation, fast Fourier transform and clustering over

the frequencies. They pointed out that “knowing periodicities could have some

impact”. The bachelor thesis [119] proposed a method of Time-window GMM

applied to the taxi demand prediction. Contrary to the previous article, the es-

sential periods were gathered from the data in advance and used for proper time

windows creation. The method then estimates the spatial distribution using EM-

GMM in every time window. The author showed that it is possible to predict

the demand for a few weeks to the future. A comparable method was also used

for ambulance calls forecasting [41]. The authors proposed a spatio-temporal log-

Gaussian Cox process. They divide the prediction task into multiple subtasks for

different temporal and spatial classes (7 days of the week, 4 seasons of the year,

and 5 regions). In those 140 subsets, they calculate a continuous one-day-long

model derived from historical data of several years.

7.3.2 Smoothing the Grid

However, the time intervals usage suffers from the discontinuity at the borders

of the intervals, which is necessary to overcome [75]. The bachelor thesis [120]

describes the system that was created to help people during the early times of
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the covid pandemic. The system predicts how crowded will be places like shops

and pharmacies [100]. As the learning data were highly sparse and unevenly

measured, the author employed a histogram-based temporal model smoothed

by spline at every tested place. Despite the meagre quality data, the system

could predict the ideal time for shopping in the next few days. The smoothing

of the spatio-temporal models is generally a complex task. For example, the

authors of [121] applied triangulation over the space of a discrete spatio-temporal

model and interpolated the distribution linearly over the sub-spaces so that the

distribution is piece-wise linear and continuous.

7.3.3 Continuous Modelling of Time over the Spatial Grid

A specific approach to spatio-temporal modelling is called Frequency Map En-

hancement (FreMEn) [5]. In one of the experiments, the authors created a topo-

logical map. Each place on the map is defined by a set of visual features detected

in the past. Every detection gets an ID, and if detected multiple times, it creates

a binary time series (detected during observation or not). Every time series is

then decomposed by frequency analysis. Each place at any time is then described

by a set of the most probably detectable features. It is also possible to represent

each place as an occupancy grid where each cell holds the binary time series that

specify the occupancy state. All modelled phenomena are understood as static or

periodic, which allows predicting future states of any feature at any time. There-

fore, it is also possible to predict the most probable position of static and dynamic

obstacles. The authors also define the persistence of the features, which allows

the map to include unpredicted obstacles that were actually detected. Moreover,

an open-source library integrated with ROS for long-term mobile robot mapping

called FROctomap [57] is available.

Experiments and applications of FreMEn provide the most complex insight

into benefits obtainable from incorporating spatio-temporal models into robotics.

FreMEn was applied in the task of mapping [55]. The experiments showed the

ability of the method to model binary states with very high precision. Applying it

to the occupancy grid map lowered the prediction error compared to the static ap-

proach by 60%. Then, it was applied to the localisation task [15]. The experiment
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was accomplished at eight places that were supposed to be distinguished using two

different approaches. The first approach described each place by a “fremenized”

occupancy grid, and the second approach modelled the places by image features

whose detection probabilities were also fremenized. The experiment proved that

incorporating the FreMEn improved the localisation ability of the robot. They

also stated that the most prominent period was most influential in a long-term ex-

periment as it persists over a more extended time. The authors of [60] proposed a

topological map in which was the traversability of the edges modelled by FreMEn.

They implemented the time-indexed Navigation Markov decision process that im-

proved planning the navigational tasks in the changing environment. In a robotic

search task [14], the performance of Frequency Map Enhancement based and Peri-

odic Gaussian Mixture based modelling were compared. The robot was supposed

to search for people and objects in three different environments. Compared to the

stationary models, the experiment showed a decrease in the search time of about

25% and a decrease of places of about 33% by both proposed methods. The au-

thors speculate that finding periods using FreMEn and approximating the events

with the mixture of Gaussian distributions can lead to a better output. Although

the fremenized occupancy grid holds the parameters of the binary time series in

every cell, it was successfully applied to a directional grid map over a large area

of mall halls [63]. FreMEn was also subsumed into the Human-Aware Allocation

proposed for cooperation between multiple robots in a human-populated area [65].

Its predictions were employed in the multilayer Map of Dynamics to ensure the

optimal division of tasks with human presence in the environment. Considering

the ability of a robot that uses FreMEn to recognise “when” it observed the most

informative situation, the novel information-based Monte-Carlo scheduler for ex-

ploration was proposed [10]. Eventualy, different exploration strategies [12], [64],

[66] and exploration-exploitation dilema [67] were studied. In [62], FreMEn was

redefined into the Addition Amplitude Model (AAM). The most significant fre-

quencies were iteratively discovered from learning data and actual reconstruction

differences, i.e., model errors. The main difference to the original FreMEn resides

when the frequency with the highest amplitude in the errors is part of the fre-

quencies that established the reconstruction. In such a case, the amplitudes of

those two (identical) frequencies are summed up, and the shift is averaged.
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7.4 Continuous Spatio-temporal Maps

The main problem of the approach above is the spatial independence of the

neighbouring cells. It can be addressed by spatial ordering [122], but the spatial

ordering has to be predefined a priori and cannot be changed during the learning

process [123]. The necessity to model spatial dependencies in the dynamic envi-

ronment leads to a continuous spatio-temporal representation of the environment.

Although the continuous models of the environment changes are computationally

demanding, they are beneficial due to their memory efficiency[20], [27] and ro-

bustness to the outliers [124].

7.4.1 Maps with Predefined Periods

The continuous spatio-temporal models were successfully used in ambulance de-

mand prediction. The authors of [39] proposed a time-varying Gaussian mixture

model. They created two-hour windows with a one-week periodicity, and in each

window applied GMM. Moreover, they apply constraints for the weights of each

Gaussian in a way that timely preceding and subsequent weights, and weights

from identical time windows of preceding and subsequent days, directly influence

the current weight. In this way, they include into their model also one-day period-

icity and smoothness to the model change, which they refer to as short-term serial

dependence. Later, they proposed a warped kernel density estimation model that

produces geometrically better density estimation than time-varying GMM [43].

The warping kernels are derived from spatial geometry. The spatial positions

of the ambulance demand constitute clusters projected to a weighted graph as

nodes. The edges are derived from the highways and roads, and weights corre-

spond to the usual traffic. The parameters of the graph then influence the shapes

of the spatial clusters. Such an approach provides a “fit to structure” distribu-

tion. The fundamental periodicity in the proposed model was one week. Due to

the computational complexity, the model used an 8 weeks-long sliding window for

learning while prediction was tested in consequent 4 weeks. Continual learning

also served as “forgetting” and provided different predictions in different seasons

(winter/summer). However, the model did not prove its improvement over initial
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methods when applied to a crime prediction in Bogota [45].

In the following work [46], kernel warping was applied to the homicide pre-

diction in Bogota. The authors explain the inefficiency of the model in several

ways: the relatively low amount of homicides, changes of positions of problem-

atic groups across historical data, and the direct impact of patrolling strategy

of police known as “runaway feedback loops”. They solve the known issues by

enriching the data with street fights, which are very connected to the homicides,

and including temporal decay components in the studied models. Temporal decay

helped all the models, and the kernel warping model provided the best predic-

tions. In [47], the spatio-temporal ambulance demand is modelled in a way that

the dataset is divided into spatio-temporal cells. By applying autocorrelation

to the data, the authors estimated two main periods. Then those periods were

exploited to create a continuous spatio-temporal model by applying kernel-based

GMM to the weighted aggregations in the cells. The weights were derived from

the distances of cells in time considering found periods. The method is referred to

as spatio-temporal kernel density estimation (stKDE). stKDE was also used for

a modelling ambulance intervention in Milan [48]. The authors pointed out that

it is possible to use fast Fourier transformation instead of autocorrelation to esti-

mate periods in the data. In [49], a spatio-temporal model based on stKDE with

one periodicity was used as a part of the method for an allocation of ambulance

bases.

Spatio-temporal models were also applied to the spread of disease prediction.

In [42], the authors modelled the propagation of influenza. They created a spatio-

temporal model based on Gaussian processes consisting of spatial, temporal and

spatio-temporal components. Except for the temporal decay, the model also

consisted of the one-year periodical temporal component. The periodicity was

chosen based on general knowledge. Similarly, a continuous spatio-temporal map

of disease spread over Turkey consisted of one year periodicity [44]. The authors

stated that the continuous spatio-temporal model could predict the disease spread

in unmeasured regions inside Turkey in the future.
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7.4.2 Periods Retrieved from the Data

Although the aforementioned models were continuous, spatio-temporal, and in-

cluded seasonality, only one or two periodicities were employed. In many cases,

the periodical component was obtained not from data but a priori knowledge or

expertise. In long-term robotics, a robot has to obtain the natural periodicities of

the dynamic environment from its observations, and some of them are likely out

of usual human expertise. Moreover, some human-populated environments do

not necessarily follow the day/week/year pattern. The flow of continuous media

was modelled in [50] by applying Gaussian processes to the measured data. The

algorithm used a covariance matrix formed by the spatial and temporal com-

ponents. The periodical temporal components were obtained iteratively using

frequency analysis over the model’s errors. The temporal components also in-

clude temporal decay. The spatial and temporal components of the covariance

function are calculated separately and multiplied at the end. Nevertheless, the

computational complexity of the Gaussian processes grows fast with the number

of data points [62], [125]. The extraction of multiple periodical features from the

data was targeted in [53] proposing Fourier Feature Approximations for Periodic

Kernels and its multidimensional variant [54]. Although it was not applied to the

spatio-temporal modelling, together with formerly proposed Hilbert maps [51]

that were subsequently improved to be updated incrementally [52], it should be

taken into consideration.

In [16], the authors proposed a continuous spatio-temporal model based on a

projection of linear time into the closed subset of higher dimensional vector space,

the Warped Hypertime. The projection has its roots in the seasonal windows,

but the windows are coiled into circles. Such an approach ensure continuity of

the model on the edges of a window. Projected circles form a multidimensional

Clifford hyper-torus [126]. The seasonality is obtained iteratively from an error of

the actual model. The error forms a time series that is analysed by FreMEn. The

FreMEn returns the most dominant periodicity found in error, and the periodicity

forms a new circle. The authors then showed in experiments that the proposed

method is equal to or better than FreMEn when applied to the robotics tasks.

In [18], Warped Hypertime was applied to the task of detecting anomalies. It
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was proved that the model learning on binary data is faster and converges to a

better quality model than other state-of-the-art methods. Later, it was applied to

the detection of novelties [97] in one-dimensional time series without any trend,

and it proved the similar quality of the model to the state-of-the-art regression

methods while performing better in modelling time series with multimodality.

Applied to a human presence prediction [20], it showed high memory efficiency

with a slight boost to the prediction compared to the discrete methods. Authors

of [127] applied a similar approach, but they use Gaussian mixture models with

periodic kernel for modelling the pedestrian frequencies in the ATC dataseti [128].

The data for the training were gathered by a simulation of the robot’s movement

through the environment. Only data in the simulated field of view of the robot

were taken into account. Experiments proved the ability of their continuous

spatio-temporal method to create a useful map from very sparse data. In [21], the

hypertime version derived from the binary version was applied to the directions

of people. To avoid ambiguity caused by averaging angles, the model’s spatial

part was four-dimensional - the method also modelled speeds, i.e., velocities, and

the resulting angles were calculated by integrating velocities over the angular

intervals. It was not computationally rational to calibrate the model using a grid

of aggregations similar to the previous work [21]. Instead, the authors extended

the data with “negative measurements”; they added random noise labelled as

“not a human”. Two models (humans and artificial nonhumans) were learned,

and the “calibration” was done similarly to the approach used for binary data [18].

Although the addition of artificial zeros is meaningful in some two-dimensional

spatial cases [27], generally, it is not a convenient approach - weigh how many

possibilities of “not detected velocity” one has to take into consideration.

7.5 Benchmarking Spatio-Temporal Maps

The authors that propose new mapping methods apply a wide variety of quality

measuring techniques. It is not uncommon to provide only a discussion about

the visual quality of the map regarding the most common directions [4], [113],

reconstructed signal [60], or changes of heat map over time [49], [76]. Such an

approach is usually used to provide insight into the proposed concept’s basic
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behaviour.

Very popular measure of the quality of discrete or discretized maps is mean

square error [16], [42], [83], [92] and rooted mean square error [21], [43], [50],

[62], [117]. Apart from the fact that, in general, the maps not providing the

frequency of measurements need to be normalised [44], the difference between

maps is very small [21], [23] which leads to the necessity to enhance the differences

of results [20], and the rank of methods is dependent on the coarseness of the

grid [119]. Similarly, a popular measure is an average (negative) log-likelihood

that can be applied to the continuous maps [43], [47], [92], [112], [124] but is only

meaningful when a probability measure can be derived. It suffers mainly because

the map is tested only against detections, i.e. in places with testing data points.

Many authors treat their maps as binary predictors and test their quality

using measurements derived from the confusion matrix. For the predictors with

predefined threshold, we can find a ratio of true positives [55], [129], ratio of

false positives [63], hit rate [45], [46], and accuracy [130]. Some authors do not

predefine the thresholds and use measures like an area under the curve [27].

We can find also unique measurements of a map quality like Pearson cor-

relation coefficient [44], Cramer-von-Mises criterion [40], Kullback-Leibler diver-

gence [107], and k-NN Universal Divergence Estimator [73]. Rarely, we can find

average probability density [92], [117], Chi-square distance [21], [64], [127].

In the robotic community, there exists also possibility to compare the maps in

simulations [74], [118], or simulated robotic tasks built on the real data [5], [14],

[15], [23]. The ultimately self-evident measures of the quality of the map then

come with real robot experiments [5], [110].
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8 Generalised Natural Criterion

for Benchmarking Spatio-Temporal

Maps

8.1 Original Idea

Previous work highlighted the question of the proper evaluation of spatio-temporal

models for service robotics in previous work [21], [23]. Some authors strongly im-

ply that generic criteria used to quantify the success of regression methods, for

example, mean squared error (MSE), are unsuitable for this task [21], [119], [131].

It is mentioned that these criteria struggle to differentiate between state-of-the-art

methods meaningfully and are not reliable. Small changes in the hyperparameters

of the testing procedures can cause significantly different results, even changing

the rank of the methods. More importantly, they do not provide a useful proxy

of the measure of how well the people in a robot’s environment perceive the

robot’s behaviour, i.e. some robot acceptance cost (RA), as they generally have

no connection to the application [131].

This work is built upon a criterion called expected encounters (EE) developed

in [23]. We considered it a natural criterion for comparing pedestrian flow fore-

casting models. However, spatio-temporal maps could and should be evaluated

from various perspectives [17]. Therefore, we propose a generalised definition

leading to a spatio-temporal maps’ benchmarking methodology. To make the

text uncluttered, we first define EE according to [23], and then we generalise

the ideas to get a universal framework for defining similar metrics for evaluating
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various robotic maps. Afterwards, we define the specific criteria used for the

methods’ comparison.

8.2 Expected Encounters

EE falls into the class of utility metrics, and its primary goal is to measure the

usefulness of the learned model for the robot’s navigation in human-populated

environments. The EE criterion specifically tests the method’s ability to model

the phenomena of human presence in time and space. It does so by presenting a

robot with a trained model and a set of navigational tasks that happen at different

times. The robot is then supposed to plan its path through the environment for

all these tasks minimising the number of people it expects would cross its path.

Path planning tests the method’s ability to model the phenomena in the spatial

domain. Another principal idea is introduced to test the temporal domain: the

servicing ratio. The robot is asked to select a specific percentage of times out

of all the times presented where it will execute the navigational task, again to

minimise the expected number of encounters with people. All the selected plans

are then executed and compared with the positions and movement of people in

the testing dataset. The testing environment calculates the encounters between

the ‘blind’ robot and ‘blind’ people—the system does not provide any artificial

reaction of any element involved.

To formally define the original EE criterion, we first define the service distur-

bance function SD(r) with the parameter r ∈ [0, 1], which we interpret as the

servicing ratio, i.e. the ratio of navigational tasks the robot is required to per-

form. The robot is given a set of navigational tasks at times {ti}Ni=1, and for each

one of them, it plans a path with cost ci defined by the spatio-temporal model of

human presence to be evaluated. The testing dataset then, for a given trajectory,

gives the number of weighted encounters ei (see Section 9.2.1) that would occur

for the given planned trajectory. The service disturbance function is then given

as

SD(r) =

⌊rN⌋∑
k=1

eπ(k), (8.1)

where π is a permutation which orders times ti so that ∀k : cπ(k) ≤ cπ(k+1), where
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ci corresponds to ti, as defined above.

The interpretability of the service disturbance function alone provides us with

quite an interesting insight into the performance of individual models. To arrive

at a single-value aggregation of this function, we adopt the interpretation where

we understand this function to be the quantile function of the ordered human-

robot encounters. The quantile function allows us to compute the expected value

of the distribution, which we denote expected encounters, and we compute it as:

EE =

∫ 1

0

SD(r)dr. (8.2)

Note that the service disturbance function satisfies the necessary conditions of

being cumulative and defined on the [0, 1] interval.

8.3 Generalised Definition

The criterion was explicitly developed for comparing different approaches to the

spatio-temporal modelling of pedestrian flows [21], [23] with the necessity of eval-

uating the predictions producing very different values. Consider the outputs of

histograms over seasonal windows [38], CLiFF-map using different cost functions

[74], [115], Time-window GMM [119] producing the values limited only from be-

low by zero, binary-map approaches based on Frequency Map Enhancement [5],

and probabilistic STeF-map [64]). However, the original criterion focuses only

on one specific aspect of human-aware navigation. There are a lot of different

opinions as to what criterion influences the acceptability of a robot in human

society most [132], [133]. Besides, the acceptability need not necessarily be the

only point of view that defines the quality of performing the task [14], [60], [67].

The general idea of comparing the spatio-temporal maps is applicable and

helpful in comparing different robotic models predicting diverse phenomena useful

in miscellaneous robotic tasks. There are two essential prerequisites needed for the

application of the idea of the criterion—a predictor producing (at least) ordinal

values that are tailored for the robot to decide on its task, and a measure of the

impact of the robot’s decision usually denoted as a cost.

To formalise the generalised definition, we start by having a specific task for
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the robot to perform, during which it relies on information provided by a model

and an observable measure of how expensive it was for the robot to perform its

task—the true cost. This true cost can but does not have to be directly tied to the

predictions of the model—a predicted cost. This task is supposed to be performed

under different values of the model’s explanatory variable (e.g. time or space)

{vi}Ni=1 and for every i the robot acquires a predicted cost c(vi) of its hypothetical

task from the predictor. Then, we define a true cost function C : {1, . . . , N} → R,
which for every i provides a true cost. Finally, we define a quantile function of

the distribution of the ordered true costs as:

Q(r) =

⌊rN⌋∑
k=1

C(π(k)), (8.3)

where π is a permutation, which orders indexes i so that ∀k : c(vπ(k)) ≤ c(vπ(k+1))

All interpretations like the servicing ratio hold in the generalised case as well and

it is again possible to compute the expected value of the ordered true costs:

EC =
∫ 1

0

Q(r)dr. (8.4)

8.4 Methodology

We strongly disagree with applying statistical tools developed to describe or com-

pare repeatable experiments to experiments involving people. The same applies

to other uncontrollable entities, like animals, wind, or traffic. For human-centred

robotics, we need to follow the general idea of natural experiments [134] and ap-

ply the methods in real-world situations. However, autonomous robotics is not in

the development stage in which the field robot experiments can be accomplished

securely in large enough repetitions to provide comparable results. We suggest

that the comparison should be performed (at least) in the simulations built on

the real-world data. In these simulations, we can repeat the same real situation

and apply the different methods.

The proposed generalised definition of the criterion can be applied to various

robotic tasks a robot performs. We need to specify the predicted costs c(vi) and
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the true cost function C that provides the true cost during the robot employment

in the simulated, real-data based experiment. Using the proper definition of the

true cost function, we can compare the approaches and specify which aspect of

the proposed approach is better than another. Moreover, we can also elaborate on

what aspects should be compared by designing new criteria following the gener-

alised one. As the proposed criterion and its usage is derived from the general idea

of natural experiments, we denote it the Generalised Natural Criterion, GNC.

The general template for applying GNC for a particular predictor then has

the following steps:

1. execute or simulate the experiment with different settings of the investigated

environment,

2. order the measured costs by the predictions of the method and accumulate

it, as described in Equation 8.3,

3. calculate the expected value of the cost of robot’s behaviour, as in Equation

8.4.

8.5 Application of GNC

GNC and the concept described above are generally applicable to the scenar-

ios where the robot can estimate what the cost of solving the task in different

situations is. The predictor providing the estimation uses as input some explana-

tory variables, like a relative position of a robot to an obstacle, the time of task

execution, or actual weather.

Then, we need to define a function, referred to as true cost function C, that
provides a measurement of the quality of the performed task. For example,

in [133], the quality of human-aware navigation is measured by the mean dis-

tance between the moving human and robot, the time spent in areas associated

with the personal zone, the human discomfort, and the total navigation time

needed for the robot to reach the desired goal. Such true costs are directly appli-

cable, and the different approaches to solving the problem can be compared. In

the case of testing different spatio-temporal maps [23], the authors defined the

true cost function as the cost of the optimal path.
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We mentioned that the predictor needs to produce at least ordinal values. The

optimal predictor produces real values with the probability of obtaining identical

values close to zero. The following sections discuss some scenarios where the direct

application of the methodology defined above is not straightforward because the

predictions are not real values. It needs some additional effort to utilise the

method entirely.

8.5.1 Binary States

Many environmental models in mobile robotics are composed of independent bi-

nary states, such as the presence or absence of people, the visibility of landmarks,

and the traversability of certain areas, see [5]. As an example, let us consider

the task of traversing an environment using its time-varying topological map as

quickly as possible [60], [118]. Although the robotic methods usually provide

more nuanced prediction than just 0 or 1, e.g. a probability of the state being

1, it happens that a confident predictor forecasts that the traversability in more

than one situation will be 0 or 1. In such a case, the ordering needed in Equa-

tion 8.1 would have several different solutions. We can divide the predictions into

successful (1) and unsuccessful (0) classes and understand the values of 0 and 1

as an ordinal variable. Inside those classes, the ordering can be done randomly,

and the expected cost value can be calculated as an average of multiple random

reorderings.

8.5.2 Ordinal Variables

When the target variable is ordinal, the ordering can be solved similar to the

binary states by multiple random reordering. If available, the predicted values

can also be weighted by the system’s confidence or the probability of each class.

Another approach consists of applying a regressor function to predict the targeted

value, as in the bachelor thesis [97]. Both approaches exploiting the confidence

provide a continuous output of the prediction, and therefore, it is possible to

order the costs with ease.
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9 Evaluation

9.1 Human Disturbance Experiment

The assessment of how the occurring people in the environment accept the robot’s

presence is not straightforward. In some robotic papers, we can see, for example,

an effort of the scientists to learn a robot to evade accessing human’s personal

space [133] or breaking pair-wise social relations [135]. However, the survey on

the experience of people with the long-term autonomous robot [106] shows that a

major disappointment is caused by the robot’s inability to adapt its behaviour to

the general pattern of human activity and learn that certain paths can be blocked

at given times [136]. Overall, the robot was expected to be intelligent and adap-

tive, rather than just repetitively performing the tasks. The lack of adaptation

results in breaking ongoing social interactions because of a more critical task (e.g.,

battery charging) or awkward evasion manoeuvres during human-robot encoun-

ters in crowded areas. From our observation, the inability of the robot to adapt

its activity to the temporal patterns of its workplace causes it to be perceived as

unintelligent, awkward, annoying and useless. Eventually, as a robot provides a

service nobody wants at the right time, people start to push it to stay away, turn

it off, or otherwise treat it as an unwanted entity.

While a robot certainly needs to adequately react to the arising situations

and avoid people in a socially-acceptable way, people perceive the robot better if

it can schedule and plan its activities to avoid socially inappropriate situations

altogether.

Our primary hypothesis states that the robot that can decide when to provide

a service disturbs people less than a robot without such ability. To prove the hy-
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pothesis, we run a robot in a human-populated environment using two types of

navigation systems. The first one used a traditional occupancy grid containing

static obstacles to plan the paths, which were traversed using an industrial-grade

reactive navigation system provided by the manufacturer of the HSR robot used

for the experiment – we call this Reactive navigation. The second one, named

Anticipative navigation, also used the build-in navigation of the HSR robot. How-

ever, the paths and times of navigation were planned using a spatio-temporal-

directional map of pedestrian flows.

We measured people’s discomfort during the experiment by counting only the

strong negative reactions toward the robot, which eventually led to an intentional

search for a way to complain. A human that goes and complains was, in our

interpretation, so distracted, that he changed his original plan and started to

solve the unexpected situation - similarly to the strong negative reactions that

led to pushing a robot out of society (as mentioned earlier).

9.1.1 Robotic Platform

As shown in Fig. 9.1, a Toyota HSR robot [137] was employed for experiments,

which is equipped with an Xtion RGB-D camera (for obstacle avoidance only),

a Hokuyo UST-20LX 2D LiDAR (for obstacle avoidance and global path plan-

ning), and other sensors that were not used in the experiment. The human-aware

navigation system was deployed on a laptop with an Intel i7-7700HQ processor

and 32GB RAM, wired to the robot and carried on its back. All the software was

implemented into the Robot Operating System (ROS) [105] with high modular-

ity using C++ and Python mixed coding, running in real-time on Linux Ubuntu

18.04 LTS (64-bit) and ROS Melodic.

9.1.2 Experimental Setup

The real-world experiments were conducted with the HSR robot on the afternoon

of the 12th of December and the morning of the 13th of December 2019, and both

in the same place, the hall of the UTBM building. The experiments were designed

by researchers who do not work at UTBM, and there was no advance notification

to anyone involved in the experiment. In each experiment, we allocated two
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Figure 9.1: Left: Toyota HSR robot including an Xtion RGB-D camera and a
Hokuyo UST-20LX 2D LiDAR. Upper right: experimental environment. Lower
right: occupancy grid map for robot navigation. The red points are representative
of the positions of the removable tags, and the blue points are the locations of
the waypoints.

40 minute slots to perform 10 patrols, during which HSR had to visit three

predefined waypoints. By integrating our spatio-temporal model with the HSR’s

own navigation system, the robot polled three waypoints in a counterclockwise

sequence while adapting its movement to the moving people using HSR’s built-

in collision avoidance. If people occupy a waypoint, the robot waits until the

waypoint is free.

Moreover, as shown in Figure 9.2, three paper sheets were placed with remov-

able tags near the three waypoints. These sheets asked people to remove a tag

if they felt that the robot was causing a nuisance by forcing them to avoid it.

The idea was to count how many people were distracted by the robot that they

performed an intentional operation due to the stressful situation.

9.1.3 Results of Human Disturbance Experiment

The robot was supposed to drive through the environment 10 times in every

time slot. Every run took approximately 2 minutes, which means that the task
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Figure 9.2: Three paper sheets placed with removable tags near the three way-
points.

Table 9.1: Comparison of reactive and anticipative navigation
Evaluated Time People People People
behaviour total involved annoyed

Anticipative 9:20-10:00 115 17 0
Reactive 10:00-10:40 132 46 2
Anticipative 16:00-16:40 43 6 0
Reactive 16:40-17:20 23 14 1
Control 9:20-10:40 211 - 0

took up 50% of the assigned time. The reactive navigation went through the

hall in uniformly distributed times, covering whole timeslots. The anticipative

navigation decided on the proper times by exploiting the predictions from the

spatio-temporal map of pedestrian flows (similar to FreMEn WHyTeS Clusters,

Section 9.2.3). In Figure 9.3, the graph represents the prediction of the robot

acceptance (RA) cost in the area, i.e., the disturbance to the people caused by

hypothetical execution of the patrolling task regarding the prediction of pedes-

trian flows [23]. A control experiment was also performed to evaluate how often

people would indicate they were annoyed with the robot regardless of its be-

haviour. The robot was removed from the vicinity of the experiment, but the

recording apparatus was left in place.

The experimental results are summarized in Table 9.1. The column ‘People

total’ describes the number of people passing through the area within the ap-

propriate time window. The number of people in the hall while the robot was

performing its task is listed in the ‘People involved’ column. The last column sum-

marizes a number of paper tags removed by people that considered the robot’s
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Figure 9.3: Forecasted (8 month horizon) robot acceptance (RA) cost and times-
lots allocated for the experiment. Note that the bottom of the troughs are sharp
due to the model not using sinusoids. Courtesy of [23].

behaviour annoying.

The morning timeslots chosen for the experiment included more people walk-

ing through the hall than evening timeslots. The observed distribution of people

was not uniform. For example, when the robot was performing its tasks, we manu-

ally counted that in the time (sub)slots 9:50–10:00, 10:00–10:15, and 16:00–16:10,

there were approximately 70, 90, and 20 people passing through, respectively. It

corresponds to the prediction of the RA cost, Figure 9.3.

While performing the control experiment, 211 people passed through the hall,

and none of them recorded that the robot was annoying them. That indicates

that the people passing through the hall were not distracted by the equipment so

that anybody would search for a way to complain. The robot taking advantage

of anticipative navigation decided to perform all the tasks during time slots 9:20–

9:40 and 16:20–16:40. Incorporating the spatio-temporal model into the robot’s

planning led to evading the most crowded time slots, as seen in the column ‘Peo-

ple involved’. The robot incorporating only reactive navigation and performing

its tasks, uniformly drove through the hall even in very crowded situations when

people were in a hurry. The robot’s presence inevitably affected the flow. People

were distracted by replanning their trajectories, which resulted in the intentional

change of their original plan from ‘to pass the hall’ to ‘to complain’ - as docu-

mented in the ‘People annoyed’ column.

We proved that the navigation system that follows human routines distracts
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people less than the one lacking this capability. We also showed that predictions

from the spatio-temporal maps of pedestrian flows provide good enough infor-

mation to evade socially inappropriate behaviour and strongly support reactive

navigation. The difference between the anticipative and reactive navigation was

so substantial that we did not need to use subtle quantitative metrics developed

for the assessment of human-aware navigation methods [133], [135].

9.2 Comparison of Spatio-Temporal Maps

9.2.1 Two Criteria for Spatio-Temporal Maps Compari-

son

We claim that human-aware navigation needs to include spatio-temporal maps

and use them for the decisions in advance of the navigational task. Therefore, we

want to compare the maps in their ability to support navigation systems.

The predictions produced by approaches in our comparison (Section 9.2.3) are

real values. They are interpreted as the likelihood of human presence at some

position in space and time in spatio-temporal scenarios and as the likelihood

of people moving with a specific velocity at some position and time in spatio-

temporal-directional scenarios. We created simulated scenarios at different times,

where the goal for the robot was to visit 3 distinct places in a university hall.

The predictions filled a spatial grid with the predictions, and Dijkstra’s algorithm

found the cheapest path considering the predictions. We let the system choose the

order of the visits in each run which lets the robot follow the predicted pedestrian

flow.

Following our previous work [23], we compare the quality of the spatio-temporal

map primarily by the expected encounters EE with the associated quantile func-

tion SD(r), referred to as service disturbance. The encounters are obtained

using simulated movement of the robot. The robot follows the path obtained

from Dijkstra and continually recalculates people in its predefined vicinity ev-

ery 10 centimetres. As we hypothesise that the disruption of people is highly

correlated with the unexpected replanning of their movement, the contacts with

people are weighted w by a mutual robot, and human direction of movement and
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referred to as encounters,

w = 1 +
vh · vr
||vh||||vr||

, (9.1)

where vh and vr are the velocities of a human and robot, respectively. The weight

w follows the idea of the upstream criterion [138] providing us with information

about whether the given model correctly predicts the directions of pedestrian

flows. The encounters represent the true costs, while the aforementioned method

to obtain them represents the true cost function.

During performing the comparison, we encounter the need for the differentia-

tion between models that force the robot to always go around the walls and the

models that additionally provide information about when it is possible to choose

a short path directly through the hall. Therefore, we defined a second true cost

function that provided us with the distance travelled by the robot in each run.

We denote the secondary measure of the quality as an expected length EL and as-

sociated quantile function as a travelled distance TD(r). It provides information

on the ratio of the chosen paths predicted as ‘safe’ regarding meeting people and

the ratio of safe and short paths. Such information can be exploited to estimate

the robot’s ability to decide on safe and fast traversals of the environment when

using a given model.

In general, the patio-temporal maps provide predictions to the navigation sys-

tems, while the reactive navigation solves the current situation a robot encounters.

As such, the criteria we used in our comparison are not focused on testing specific

manoeuvres like in pure human-aware navigation papers, for example [133], [135],

but cover the similar principles directly connected to the specialised human-aware

manoeuvres. If the scientist focusing on human-aware navigation recognise the

need for another, more specialised criterion to compare the predictive ability of

maps, they can follow the methodology proposed in Section 8.4.

9.2.2 Dataset Collection

The dataset collection was performed in a hall of approximately 500m2 on the

UTBM university campus. As shown in Figure 9.4, a Velodyne HDL-32E 3D

LiDAR was placed in the reception near the building door to ensure safe 24-

hour operation. The spatial placement of the LiDAR was carefully determined
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to ensure maximum field-of-view (i.e. approximately 200m2) of the hall beyond

the glass windows. The raw data of the LiDAR was recorded to ROS rosbags 24

hours a day.

Our dataset consists of one month, March 2019, of continuous human detec-

tion used as the training set. The testing dataset consisted of 7 days from one

week in December. More than 6 million human detections were generated from

the LiDAR recordings. They were extracted using the FLOBOT human detec-

tion and tracking system [83]. The false positive detections were removed by

searching for extraordinarily stable and immovable human detections. Later, we

filtered out reflections of people by manual localisation of places producing those

reflections. Compared to the dataset used in our previous work [23], the training

dataset was twice as long, and the testing dataset did not immediately follow the

training period. We also utilised our experience in filtering out the false positive

detections, which led to more effective scripts.

Due to the temporal and spatial continuity of data, the dataset reflects peo-

ple’s regular activities, like students entering the building lobby at the beginning

of class, leaving after class, and eating and chatting in the lobby during lunch

break.

Figure 9.4: Left: A Velodyne HDL-32E 3D LiDAR placed in the reception near
the UTBM building door. Right: The occupancy map build by a Toyota HSR
robot [137] with a Hokuyo UST-20LX 2D LiDAR.
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9.2.3 Approaches in Comparison

Our comparison focuses on the general principles rather than the optimisation

of the parameters of the methods tailored directly to the analysed data. The

methods found in the literature can be divided into a few overlapping groups

of approaches. Compared to the related work section, we excluded a group of

methods incorporating short term dynamics and included time series forecasting

approach that estimates the number of people over the whole map at a specific

time:

1. Spatial-only models, (Section 7.1), that do not take time into account [92],

[113],

2. Time series forecasting methods that do not take the structure of the space

into account [18],

3. Partially discrete and partially continuous models, (Section 7.3.3), which

incorporate continuous models in the cells of predefined grid [57], [63].

4. Methods that model spatial and temporal features separately, (Section 7.3.1),

and understand them as independent [40], [119],

5. Continuous spatio-temporal methods, (Section 7.4.2), that model the spatio-

temporal phenomena together [16], [20],

6. Continuous spatio-temporal methods, (Section 7.4.1), that model the tem-

poral evolution of continuous spatial model [39], [43].

We implemented various predictive spatio-temporal maps deduced from state-

of-the-art principles. The names of the compared approaches are derived from

the names of the original methods to make the following text as readable as

possible. Our aim was not to systematise the names of the approaches but to

maximise the clarity and minimise the time a reader needs to learn and memorise

the differences between approaches’ internals. These names and abbreviations

are written in italics to avoid the reader’s confusion. The description of the

methods’ functioning is simplified, and readers who want to implement them

should follow the original proposals. Although some of the compared approaches
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were not published, they follow known principles and are not presented here as

newly proposed methods.

Spatial Models

As a representative of the discrete spatial models, we choose a spatial grid in-

cluding the ratio of detected people within each cell to all detections, denoted as

MeanGrid. We also included OccupancyGrid model as a fundamental robotics

domain way to represent a map. The occupancy grid captures the environment

structure only and neglects dynamic obstacles. Such an approach results in cells

with values close to 0 regardless of the number of people moving through them.

The continuous spatial model is represented by an expectation-maximisation al-

gorithm for fitting a mixture of Gaussian models [139] with its probabilistic pre-

diction, referred to as GMM.

Time Series Forecasting

We included 3 time series forecasting methods recently applied to forecasting

human presence and pedestrian flows. Those methods can be viewed as spatio-

temporal models, whose spatial map is OccupancyGrid. Frequency Map Enhance-

ment FreMEn [5] is derived from the Fourier transform and as it was initially

proposed for binary data containing binary states. It had to be reimplemented

for data that do not contain states but events. It should be noted that although

the computational effectiveness of our implementation was greatly enhanced, the

predictive ability was lowered due to the inaccuracy of the estimation of heights

of amplitudes. Authors of [16] proposed a method for time series forecasting re-

ferred to as hypertime. Based on the definition, we incorporated its two variants,

HyT and WHyTe. Those methods exploit the ability of FreMEn to detect promi-

nent periods in data. They project time into the multidimensional vector space

forming a Clifford torus, and apply GMM with one component to the projected

data. The most prominent periods are gathered iteratively by applying FreMEn

to the series of errors between reconstruction and the measurements. They differ

in the metric used for the distance calculation. While Hyt uses Euclidean metric,

WHyTe uses a metric derived from cosine metric, Section 9.3.1. We also wanted

82



to include Prophet [85] as a representative of a time series forecasting method

that cannot only analyse time series with an unequal step between measurements

but can also model trends. However, we faced difficulties applying Prophet on

such extensive data with predictions too far into the future, and we subsequently

removed it from the list of the compared methods. The only discrete forecast-

ing method used in the comparison was a histogram over the week-lengthy time

window with 168 bins, each covering an hour, HistWeek.

Continuous Models in the Grid Cells

Every aforementioned forecasting method can be employed in the spatial grid

forming spatio-temporal models similar to the original idea of the ‘map enhance-

ment’ in [55]. We included into the comparison FreMEnGrid as a representative

of continuous ones in temporal domain and HistWeekGrid as a fully discrete

spatio-temporal model. We omitted HyTGrid and WHyTeGrid as their compu-

tational demand in the stage of prediction was considerably higher than of the

previous two, and the straightforward optimisation of code would violate the de-

sign of the testing environment. The third not fully continuous model included

is time window GMM [119] which expands HistWeek with GMM connected to

each cell. Its prediction then consists of GMM predictions in each cell weighted

by HistWeek forecast.

Independent Modelling of Spatial and Temporal Features

Modelling space independently to time can sound illogical. On the other hand,

considering robotic topological maps, we can assume that different nodes will

show standardised behaviour that is sometimes more relevant and sometimes al-

most unnoticeable. We included 7 combinations of spatial and temporal models,

whose predictions are multiplication of their independently modelled components:

HistWeek X GMM with a discrete temporal and continuous spatial model, three

models including continuous model of time and discrete model of space, Fre-

MEn X MeanGrid, HyT X MeanGrid, and WHyTe X MeanGrid, and three con-

tinuous maps FreMEn X GMM, HyT X GMM, and WHyTe X GMM.
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Continuous Spatio-Temporal Models

The continuous maps that model the time and space together show significant dif-

ferences in the computational demand. The most demanding are spatio-temporal

models based on hypertime. Although they proved their ability to model space-

time effectively [20], [21], [23] by the mean of the model quality and size of

the model, their use on real robots is questionable since their iterative nature

consumes many recourses. We included FreMEn HyTS clusters derived from

the HyT algorithm and FreMEn WHyTeS clusters derived from the WHyTe al-

gorithm. Contrary to their time series forecasting variants HyT and WHyTe

that iteratively choose the best periodicity, our implementation of those spatio-

temporal variants first applies FreMEn to the data to gather the most prominent

periods and then project data to the hypertime-space. Both apply GMM over

the projected data to get the model regarding respective metrics. We also in-

cluded ‘lightweight’ versions that apply GMM using only one component and we

denoted them as FreMEn HyTS and FreMEn WHyTeS respectively.

Temporal Evolution of Continuous Spatial Model

We also included continuous spatio-temporal approaches that fit the space’s struc-

ture and then model the temporal changes, similar to [43]. WHyTened kMeans

divides the space into disjunct subsets using the k-means clustering algorithm

and applies FreMEn WHyTeS to every part. The second method, HyTted GMM,

applies GMM to the space and its every component defines the time series by the

measurements matched with it. Those time series are then modelled with HyT.

The predictions in both methods are calculated as a multiplication of the cluster-

ing algorithm prediction and the spatio-temporal or temporal model prediction.

The WHyTened kMeans can be understood as multiple disjunct spatio-temporal

models, while HyTted GMM represent continuous spatio-temporal models where

each component has its specific temporal characteristics.
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9.2.4 Testing Environment Setup

The experiments were conducted in a general testing framework with a unified

interface available for individual methods. The framework consisted of four

stages: training, prediction, pathfinder, and simulation.

The predictors were trained over spatio-temporal and spatio-temporal-directional

data during the training stage. There are approximately six million detections

of people in the training data. We also included scenarios where the training

dataset includes only one per mile randomly chosen detections to provide insight

into how robust different methods are to data sparsity.

During the prediction stage, the framework created a spatio-temporal grid

over the testing week. The week was broken into 40 second windows. For each of

these windows, the area of approximately 200m2 was broken into a grid of 0.25m2

cells. Each spatial cell consisted of 8 directional cells. The predictors filled the

directional cells with their estimations of how likely a human would go at that

time and place in that direction.

The pathfinder applies the Dijkstra search algorithm for each time window,

where the cost of a transition is determined by prediction from the tested method.

The cost for Dijkstra at a specific position is calculated as an estimation of the

cost of an encounter multiplied by the distance to the next state. The paths

chosen in each time window are saved together with their lengths and costs.

Note that the overall length of paths planned during the whole testing week was

hundreds of kilometres.

The last stage of the evaluation is a self-written kinematic simulator. The

simulation is done per time window for each model while saving the intermedi-

ate results for correctness verification and recording the runtime duration. The

robot moves by the chosen path at a predefined speed. The simulator calculates

weighted encounters with human detections on the robot’s trajectory. The sum

of weighted encounters is saved together with length and path cost, which allows

for criteria application.

The framework allows a parametrization of the robot’s movement and goal

placement for planning. The experiments were evaluated with the following set-

tings: the robot radius is 1 meter, which covers the hypothetical robot radius
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together with a human radius, and the robot speed is 0.5ms−1.

Some compared approaches also required parameter setting. The adjustment

of the parameters was not part of our investigation. The number of compo-

nents for algorithms applying GMM (and k-means) was set to 10 except for Fre-

MEn HyTS clusters and FreMEn WHyTeS clusters where we set 5 components

(to shortened the computational time). The number of periodical components

was set to 5 in every method employing FreMEn. We used a computational

(floating point) precision of 64 bits to compare and order continuous values.

9.2.5 Results of Comparison

The comparison of methods applied to spatio-temporal data can be seen in the

subgraphs in Figures 9.5 and 9.5. The predictors predicted how likely the robot

was to meet a person at a given space and time coordinates. In each row, we

have two subfigures, with the left one depicting a graph of the dependence of the

service disturbance on the servicing ratio and the right one the length of the path

on the servicing ratio.

In the top row of Figure 9.5, we compare the quality of the predictions of

the spatial-only models. None of them considers time, which leads to a random

ordering of the costs of the paths. Therefore, the dependence of the service

disturbance on the servicing ratio grows linearly. Similarly, as the space models do

not change in time, the travelled distances grow also linearly. The OccupancyGrid

predicts only zeros, and therefore its expected length of paths is the shortest

possible out of all models. GMM forces the robot to go closer to the walls than

MeanGrid, which leads to longer paths and lower expected encounters.

In the second-from-top row, we compare models that take into account only

time, which means that those models can order the costs of the paths, but they

always use the shortest path possible. Such predictions lead to linear growth of

the travelled distance identical to the OccupancyGrid, but non-linear growth of

the service disturbance. All methods can estimate the safest 10% of the time

windows to provide the service, while the most successful, HyT, can predict 50%

of the safest time windows. WHyTe and FreMEn perform similarly and HistWeek

is closer in performance to the HyT than to the other two models. The rank of

86



Figure 9.5: Comparison of different models in the spatio-temporal scenario. The
left column of graphs depict service disturbances, the quantile functions of the
ordered human-robot encounters. The right column of graphs depict traveled
distances, the quantile functions of lengths of paths. The labels in graphs consist
of names of models and the expected values.

the quality of prediction of the compared methods changes at 70% of servicing

ratio. At a servicing ratio of over 90%, FreMEn performs best.

In the third row, we compare spatio-temporal models that are fully or par-

tially discrete. HistWeekGrid performs similar to time window GMM. Both mod-

els force the robot to follow the shortest paths until almost a 60% servicing ratio.

Then, their predictions start to force robots to follow a longer path, evading the
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Figure 9.6: Comparison of different models in the spatio-temporal scenario -
continuation of Figure 9.5.

most critical parts of the hall. Similar to the spatio-only models GMM andMean-

Grid, time window GMM forces robot to travel longer paths than HistWeekGrid.
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Figure 9.7: Comparison of selected models under different scenarios. The left
column of graphs depict service disturbances, the quantile functions of the ordered
human-robot encounters. The right column of graphs depict traveled distances,
the quantile functions of lengths of paths. The labels in graphs consist of names of
models and the expected values. First row: models trained over the sparse, spatio-
temporal data. Second row: models trained over the spatio-temporal-directional
data. Third row: models trained over the sparse, spatio-temporal-directional
data.

The FreMEnGrid model is better than the other two models in scheduling until

more than 70% of servicing ratio, but at higher servicing ratios, it loses its edge.

In Figure 9.6, the top row provides a comparison of the continuous spatio-

temporal models. All of them have a linear growth of the travelled distance, and
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neither can provide predictions that would let the robot travel by the shortest

path. Moreover, the spatio-temporal model FreMEn WHyTeS clusters modelling

five Gaussians performs in expected encounters worse than the similar model

FreMEn WHyTeS with only one component. The loss of quality between Fre-

MEn HyTS clusters and FreMEn HyTS is not so drastic. However, the evalua-

tion of the continuous spatio-temporal models that apply GMM over the hyper-

time provides us with information that the robot always follows a long path. On

the other hand, FreMEn WHyTeS provides the best expected encounters between

methods already compared.

The following two rows of graphs compare the spatio-temporal methods that

model space and time separately as independent phenomena. Many of those

methods perform surprisingly well, especially in choosing the right time to go by

the shortest path. HyT X MeanGrid and HyT X GMM can lead the robot by

the shortest path in 35% of time while evading almost every encounter in 50%

of the time. Other methods exchange the performance in the length of the path

for safety. FreMEn X MeanGrid, FreMEn X GMM, and HistWeek X GMM were

unable to evade encounters.

Based on the results above, we combine the good qualities of the previously

tested ones. As the HyT X MeanGrid and HyT X GMM perform very well in raw

combinations of spatial and temporal models and extending FreMEn HyTS with

multiple components FreMEn HyTS clusters did not result in a positive change

of the quality, we combined HyT and GMM in a way that every component has

its own temporal model. The method is denoted as HyTted GMM. A similar pro-

cess led us to create WHyTened kMeans. FreMEn WHyTeS performed quite well

in the sense of expected encounters but did not find the shortest path. This be-

haviour led to the idea of “natural” divisions of space by k-means clustering while

applying the successful spatio-temporal method to the subsets. The comparison

of these two models with HyT X GMM and FreMEn WHyTeS can be seen in

graphs in the bottom row of Figure 9.6. We can see that the disturbance distri-

bution functions of HyT X GMM, FreMEn WHyTeS, and HyTted GMM are very

similar. Out of these three models, HyT X GMM provides the best expected en-

counters, and FreMEn WHyTeS the worst. WHyTened kMeans performs much

worse than others, and it did not even get the ability to provide the robot predic-
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tions that let it go through the environment with the shortest path. HyTted GMM

acquired the ability to predict short and safe paths more than 15% of times while

being a fully continuous spatio-temporal method.

We choose the three best-performing methods for the comparison in the sub-

sequent scenarios, HyT X GMM, HyT X MeanGrid, and HyTted GMM, together

with HistWeekGrid which provided the best ability to lead the robot by the short-

est path while performing exceptionally in evading encounters. On the top row of

Figure 9.7, we provided a comparison of chosen methods in the spatio-temporal

scenario when we randomly selected only one per mile of human detections from

the training dataset to train the models. The HistWeekGrid lost its ability to

provide predictions. In the previous scenario, predictions in each cell were calcu-

lated from approximately 2000 values, while in this scenario, only from 2. The

other three methods performed well. The HyTted GMM is the worst of the rest

of the methods in the range of 50 − 85%, but it can choose 25% of the safe

and short paths, which is almost similar to the other two functional models.

Moreover, HyTted GMM and HyT X MeanGrid found shorter “safe” paths than

HyTted GMM, which can be deduced from different inclinations of the traveled

distances.

In the second row of graphs in Figure 9.7, we compare the same four methods

in a spatio-temporal-directional scenario with the full amount of detections. The

methods predict when to go, what path to choose, and what direction is the

best to go with the flow of people. The HistWeekGrid provides us with an

inferior model that can model only the most frequent parts of the spatio-temporal-

directional grid. The HyT X GMM and HyTted GMM perform similarly until

up to a 70% servicing ratio, where HyTted GMM choses a more risky and shorter

path to follow. After following the shortest path, the HyT X MeanGrid chooses

the longest path out of the three well-performing models, which means it led the

robot in close vicinity to walls. The best performance by the mean of evading

people is provided by HyT X GMM.

In the bottom row, we can see the performance of the methods when pro-

viding predictions in the spatio-temporal-directional scenario obtaining only one

per mile of samples for the training. The grid-based methods HistWeekGrid and

HyT X MeanGrid were not able to provide a prediction. The continuous mod-
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Table 9.2: Comparison of the approaches using popular metrics
χ2d AUC RMSE MLL PCC

Section 9.2.3
MeanGrid 1.319811e+06 0.678204 1.131719e-07 -5.964167e-07 0.004277
OccupancyGrid 1.077451e+05 0.500000 1.107762e-07 -5.714333e-07 0.000000
GMM 1.895740e+06 0.661219 1.119760e-07 -5.838786e-07 0.006606
Section 9.2.3
FreMEn 1.088325e+06 0.708411 1.112586e-07 -5.764210e-07 0.017761
HyT 1.157291e+06 0.786832 1.115330e-07 -5.792680e-07 0.018118
WHyTe 1.896955e+06 0.735896 1.128428e-07 -5.929532e-07 0.021518
HistWeek 9.583215e+05 0.770708 1.112834e-07 -5.766781e-07 -0.010873
Section 9.2.3
FreMEnGrid 7.824628e+05 0.724162 1.113846e-07 -5.777281e-07 0.019364
HistWeekGrid 4.436296e+05 0.790896 1.109813e-07 -5.735518e-07 -0.019459
time window GMM 8.572676e+05 0.811935 1.256092e-07 -7.347102e-07 0.014281
Section 9.2.3
HistWeek X GMM 9.599045e+05 0.817996 1.112969e-07 -5.768189e-07 -0.011000
FreMEn X MeanGrid 7.703107e+05 0.745279 1.112063e-07 -5.758796e-07 0.006380
HyT X MeanGrid 8.180353e+05 0.816573 1.112772e-07 -5.766142e-07 0.005943
WHyTe X MeanGrid 1.318568e+06 0.768864 1.117257e-07 -5.812720e-07 0.009677
FreMEn X GMM 1.088325e+06 0.739453 1.111231e-07 -5.750178e-07 0.015433
HyT X GMM 1.154622e+06 0.829502 1.112700e-07 -5.765397e-07 0.013693
WHyTe X GMM 1.895740e+06 0.774540 1.141287e-07 -6.065450e-07 0.024228
Section 9.2.3
FreMEn HyTS clusters 1.578800e+06 0.808032 1.121873e-07 -5.860852e-07 0.023457
FreMEn WHyTeS clusters 1.857979e+06 0.788587 1.134001e-07 -5.988245e-07 0.021970
FreMEn HyTS 1.896951e+06 0.814097 1.140148e-07 -6.053347e-07 0.032425
FreMEn WHyTeS 1.896950e+06 0.772722 1.135045e-07 -5.999280e-07 0.027456
Section 9.2.3
HyTted GMM 1.152000e+06 0.817629 1.113172e-07 -5.770285e-07 0.013649
WHyTened kMeans 1.870547e+06 0.783438 1.136826e-07 -6.018122e-07 0.026585

els perform similarly in expected encounters but differ mainly in the paths they

choose. The HyT X GMM retain its behaviour from the previous scenario. How-

ever, HyTted GMM started with the shortest path in the first 10% of planned

services; then, it found out encounters can emerge and reacted to that ‘hyster-

ically’ forcing the robot to go around the walls. At about 30% of the servicing

ratio, it started to follow similar paths to HyT X GMM.

9.2.6 Comparison of Approaches Using Popular Methods

For the sake of comprehensiveness, we compare the approaches to spatio-temporal

mapping using measures of quality that appeared in the referenced literature (Sec-

tion 7.5). The most favoured measures of the quality of maps are mean square

error, rooted mean square error (RMSE), mean negative log-likelihood, and mean
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Table 9.3: Correlation of the popular metrics’ results
χ2d AUC RMSE MLL PCC

χ2d 1.00 0.29 0.14 -0.13 0.68
AUC 0.29 1.00 0.22 -0.21 0.18
RMSE 0.14 0.22 1.00 -1.00 0.26
MLL -0.13 -0.21 -1.00 1.00 -0.25
PCC 0.68 0.18 0.26 -0.25 1.00

log-likelihood (MLL). We choose RMSE and MLL as their representatives in the

comparison. We also included the area under a receiver operating characteristic

curve (AUC) [140] as a complex representative of popular measures derived from

the confusion matrix. We also included Chi-Square Distance (χ2d) [141], which

appeared in articles in the last few years as an alternative to RMSE. Some mea-

sures of the quality of maps appeared in the literature very rarely. Many of them

are hard to implement, and few are poorly defined. We included Pearson corre-

lation coefficient (PCC) [142] as a representative of rare measurements because

we found it the most traditional and feasible to implement.

Table 9.2 provides the results of χ2d, AUC, RMSE, MLL, and PCC. The

slight differences between the values representing the quality of the models led us

to compare them with very high precision representations, even for our data con-

sisting of millions of detections. The best spatio-temporal map is OccupancyGrid

according to χ2d, RMSE, and MLL. We interpret the result so that the detection

of humans is quite a rare event. Therefore the best predictor is the one that

predicts almost zero probability everywhere. Other maps also consist of small

valued predictions but higher than ‘almost zero’. As the detection is one point

in space and time, the (hypothetically correct) predictions in the vicinity of the

detections raise the error of the whole model. Similarly, the output of PCC for all

the approaches gave us almost zero correlation between maps and the detections.

It is not reasonable to deduce any conclusions from such small values. Contrary

to previous ones, AUC provided a very reasonable ranking. We can deduce which

of the approaches gave us good predictions. However, the interpretability of the

outputs is very limited.

We also included the correlation between the metrics’ results, Table9.3. RMSE

and MLL are highly correlated, providing almost interchangeable information.
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There is also a rather significant correlation between χ2d and PCC. The correla-

tion between AUC and other techniques is insignificant.

9.3 Comparing State-of-the-Art Methods

The proposed methodology allowed us for State-of-the-Art methods comparison.

We contacted scientific teams focusing on spatio-temporal or directional mapping.

As the goal was not to portray one of the algorithms as the best but to discover

the good and bad attributes of different approaches, the teams were debugging

codes and tuning the models during a few-days-long preparatory stage. Every

team received the training data and was provided with the current results on a

rolling base. In the end, every team provided a model of its choice and described

it.

9.3.1 Methods Involved in the Experiments

WHyTeS

The abbreviation WHyTeS comes from Warped Hypertime Space. Its main idea is

the projection of time onto a Clifford torus. From a mathematical point of view,

the difference between HyT (Hypertime) and WHyTe (Warped Hypertime) lies in

a different calculation of distances between projected vectors. While HyT calcu-

lates Euclidean distance in Hypertime, WHyTe calculates Euclidean distance on a

surface of a Clifford torus constructed accordingly to Hypertime. WHyTeS, in the

default setting, uses only c = 1 cluster. The method combines density estimation

on a Clifford torus and the spectral decomposition derived from FreMEn [5].

WHyTeS models the flows of people in space-time (t, x, y, ẋ, ẏ), but for the

testing method, we need to estimate the weights in the space of (t, x, y, ϕ). There-

fore, we create a histogram of predictions over (t, x, y, ẋ, ẏ) and calculate a sum

of predictions in cells that lie between ϕ− π
8
and ϕ+ π

8
in every (t, x, y).
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CLiFF-Map

Circular Linear Flow Field Map (CLiFF-Map) [73] is a technique for encoding

motion patterns probabilistically. The probability density function (PDF) repre-

senting the CLiFF-Map is a semi-wrapped Gaussian mixture model (SWGMM)

for each point in the map.

The edge weights for the Dijkstra graph are computed using the Extended

Upstream Criterion (EUC) proposed in [74]. The EUC penalises paths that do

not conform to the underlying CLiFF-Map distribution. In the Dijkstra graph,

the weight of each directed edge is computed using the CLiFF-Map components

at the node’s location to which the edge leads.

STeF-Map

Spatio-Temporal Flow Map (STeF-Map) [64] is a representation that models the

likelihood of motion directions on a grid-based map by a set of harmonic functions,

which capture long-term changes in crowd movements over time. The underlying

geometric space is represented by a grid, where each cell contains K temporal

models, corresponding to K discretised orientations of people-motion through

the given cell over time. The temporal models, which can capture patterns of

people’s movement, are based on the FreMEn framework [5]. The edge weights

for the Dijkstra graph are calculated using the EUC analogous to the CLiFF-Map

application.

Other Models

In addition to the above-listed state-of-the-art methods, we include for compari-

son three historical average-based models and one time series forecasting model,

all of which are commonly used as baseline methods. The average-based mod-

els used were: Mean, which predicts an average of its past measurements for

each spatial segment, and two histograms, Hist24 and Hist168, that describe the

average day and week. Both histograms split their period into one-hour-long

segments and compute the average value for each segment. An industrial time

series forecasting tool Prophet [85] was trained with measurements condensed into

one-hour-long time steps. All these methods were trained on individual spatial
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Figure 9.8: Location where the experiments were performed. Photo and most
prominent pedestrian flows during the morning (left) and evening (right).

segments without accounting for spatial relations. The last model is denoted as

Occupancy grid. As this map does not include ‘walls’, which are static and define

borders of an area we are focusing on, this purely static model “predicts” at all

cells value 0, which is equivalent to “free”, and allows for the planning without

forecasting the flow.

9.3.2 Evaluation dataset

The approaches described above were evaluated using a dataset collected in Build-

ing M at the University of Technology of Belfort-Montbeliard (UTBM). The data

recording was performed by a Velodyne HDL-32E 3D lidar, using a reliable person

detection method [83]. During the data collection, the lidar remained stationary

in the reception room near the entrance of the building, which allowed to scan

the main activity area of the hall, covering a total area of around 500 m2 (Fig-
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ure 9.8). The data collection was performed on a full 24/7 basis for three months

in 2019, and the dataset also contains semantic information, including positions

of the entrance, elevator, stairs, and corridors.

We restricted the area of detections to cover only the main entrance hall

(approx. 150 m2). The training dataset includes eleven working days from March

2019, when the students regularly attended classes, and the test dataset is the

first Monday in April 2019. Each day contains approximately 300 000 human

detections. Every detection is represented by a vector (t, x, y, ẋ, ẏ, ϕ, v) – time of

detection, 2d position, 2d velocity, orientation, and speed of the detected human.

Note that (ẋ, ẏ) and (ϕ, v) are mutually convertible.

The 3D lidar was mounted in a reception office at a height of about 1.2 m, pro-

viding a good overview of the environment for data collection (Fig. 9.8). The 3D

point cloud generated by the Velodyne lidar was divided into separate sets using

an adaptive clustering method [83]. These clusters were then classified as human

or non-human using a support vector machine (SVM), and 2D positions of people

were processed by a multi-target tracking method [89] based on a combination of

Unscented Kalman Filter (UKF) and Nearest Neighbour Joint Probability Data

Association method (NNJPDA). The trajectories calculated by the tracker were

then examined manually, and outliers (e.g. static objects classified as people)

were removed from the dataset.

9.3.3 Details on path planning

We provide the robot with a set of navigation scenarios starting at ti. We do not

require that the robot performs every navigation task, but only a certain fraction

of them. With a lower servicing ratio, the robot has more freedom to decide when

to navigate through the area and when not. This reflects the situation when the

robot has to perform a certain number of tasks during the day, but it can choose

the best times to do so [60], [143].

The scenario is inspired by a security robot procedure, where the robot has to

visit a few predefined locations. In our case, there are one starting and finishing

position (A) and two goal positions (B, C); see Figure 9.8. The robot decides the

order in which it will check the positions B and C, i.e. if it visits the locations in
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order (A, B, C, A) or (A, C, B, A). This decision is deduced from the mean of

the costs of each possible path – the robot chooses the path from the prediction

of pedestrian flows.

To include people’s personal space and the robot’s size in results, the path

planning method assumes that the robot’s social distance radius is 1 m, and

encounter detection is triggered every 0.1 m along its trajectory. The robot speed

was set to 0.5ms−1. The robot performed 597 patrols during one day between

6:30 am and 8 pm starting every 80 s.

9.3.4 Chosen Criteria

Total Encounters and Expected Encounters

Except for the expected encounters criterion EE, we count all blind robot-human

encounters, referred to as total encounters (TE) during all planned passages

through the environment,

TE =

p∑
i=1

ei. (9.2)

The value TE reflects the model’s overall ability to support unobstructive plan-

ning by preventing the disruption of pedestrian flows. Lower total encounters

mean a better human flow model of the environment.

The main reason for introducing both criteria, TE and EE, lies in the difference

between time-averaged and time-sensitive models. For time-averaged models, EE

has no meaning, and its value lies around 1
2
TE (biased by the random ordering

of services). Although there is apparent reason to compare time-sensitive models

by TE, their sensitivity to the time-dependent changes should be compared by

their ability to correctly predict the (relative) number of people at specific times,

which leads to EE.

Other Criteria

In addition to the proposed criteria to measure the quality of models, we included

RMSE and Chi-square between the cost map predicted by the model and the

ground truth obtained from the testing dataset, following the earlier comparison
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of human flow models [21]. RMSE is widely used in time series forecasting:

RMSE =

√√√√ 1

p · n · a

p∑
i=1

n∑
q=1

a∑
b=1

(x′
i,q,b − y′i,q,b)

2, (9.3)

normalised as a distribution over the testing space-time

p∑
i=1

n∑
q=1

a∑
b=1

x′
i,q,b =

p∑
i=1

n∑
q=1

a∑
b=1

y′i,q,b = 1, (9.4)

and the Chi-square distance is used to compare histograms:

χ2distance =

p∑
i=1

n∑
q=1

a∑
b=1

(x′′
i,q,b − y′′i,q,b)

2

(x′′
i,q,b + y′′i,q,b)

, (9.5)

normalised over the angles in every cell

a∑
b=1

x′′
i,q,b =

a∑
b=1

y′′i,q,b = 1 (9.6)

where p is the number of scenarios, n is the number of positions, a is the number

of angular bins, x′
i,q,b, resp. x′′

i,q,b is the normalised value of estimated cost for

angle b at position q in scenario i, and y′i,q,b, resp. y′′i,q,b is the normalised value

obtained from the ground truth at the identical position.

9.3.5 Hypothesis on Results of Models

We propose two criteria to quantify the quality of models, total encounters TE

and expected encounters EE. The natural assumption is that time-averaged mod-

els (CLiFF-Map, Mean) should have higher values of TE and EE compared to

time-sensitive ones (WHyTeS, STeF-Map, Prophet, Hist24, Hist168), and the

difference should be much more significant when comparing EE. Models using

continuous time-forecasting (WHyTeS, STeF-Map, Prophet) should have a lower

EE than discrete ones (Hist24, Hist168). A simple Occupancy grid (planning

without forecasting the flow) should achieve the significantly worst rating, while

specialised CLiFF-Map should indicate better results than Mean. RMSE and
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Table 9.4: Performance of the Models
Evaluated Total en- Expected χ2 Model error
method counters encounters distance (RMSE)

Occupancy grid 7123 3993 8866 3.65e-06
Mean 4185 2353 147769 4.08e-06
CLiFF-Map 3105 1480 144486 3.76e-06
Hist168 5415 2857 80846 3.65e-06
Prophet 2637 596 59405 3.66e-06
WHyTeS 2835 385 82384 3.67e-06
STeF-Map 1548 332 70535 3.66e-06
Hist24 2898 323 49981 4.02e-06

Chi-square should not reflect the known attributes of the compared models and

should provide misleading results.

9.3.6 Evaluation results

The evaluation results are summarised in Table 9.4. TE is supposed to measure

the similarity between a given model and the spatial dynamics of the environ-

ment, while EE measures the similarity between a model and the spatio-temporal

dynamics of the environment. We can see that TE of Mean is significantly lower

than TE of Occupancy grid. The specialised CLiFF-Map is the best out of the

three models, which do not model the time. EE of these methods is close to

one-half of the total encounters, as expected. CLiFF-Map is better than Mean

in all the criteria presented in Table 9.4.

Except for Hist168, all models that predict the spatio-temporal dynamics of

the environment reach significantly lower values of EE than the time-averaged

models. Hist24 achieved the best EE, while Hist168 failed to learn a usable

model. To understand this result, we have to point out that the testing data

came from a working day and Hist24 benefits from that in the comparison. We

can speculate with confidence that its result during the weekend would be weak

- there are no lectures, and human flows indicate very different behaviour. On

the other hand, Hist168 can incorporate the difference between working days

and weekends. However, a large number of temporal bins, along with the short

training period, led to a poor model. WHyTeS and STeF-Map covered three
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Figure 9.9: The dependence of the number of encounters (service disturbance) on
the frequency of the traversals (servicing ratio) achieved by different pedestrian
flow models.

dominant periods in the data, including expected day and week. WHyTeS also

covered a period corresponding to the length of lectures during the working days;

see Figure 9.3. Prophet showed that, for relatively short-term predictions, we can

use regular time series forecasting methods and expect good results.

It is much harder, if not impossible, to interpret the characteristics of the pre-

dictors in the above way when analysing the results by RMSE or the χ2 distance.

Moreover, the traditional comparison between Occupancy grid and the other two

time-averaged models is counter-intuitive and misleading. This comparison sup-

ports our hypothesis that the proposed criteria characterise the predictive power

of the spatio-temporal human flow models in a useful way. The popular and most

common tools do not necessarily indicate how useful the analysed models are for

unobstructive and safe path planning.

More in-depth insight into the dependence of the service disturbance on the

servicing ratio (i.e. the dependence of encounters on the frequency of the traver-

sals) is provided in Figure 9.9. The graphs indicate that the service disturbance

achieved by the time-averaged models, which neglect the temporal variations of
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the flows, scales linearly with the servicing ratio. However, time-aware pedestrian

flow models can identify times when the given area is crowded, and traversing

through it will result in many encounters. Thus, these methods can choose not

to enter the areas during these busy times if allowed.

In Figure 9.9, the graphs indicate decreases of the service disturbance by

about 80% for time-aware methods allowing the robot to drop 10-20% of tasks.

Compared to traditional models, which capture the environment structure only,

the well-trained flow representation can reduce the number of encounters by one

order of magnitude at servicing ratio 90% and by an order of two magnitudes at

servicing ratio 50%.

The results also indicate that considering the spatio-temporal layout of the

pedestrian flows has a tremendous impact on the number of people encountered,

see TE of STeF-Map in Table 9.4, when compared to the human flow uninformed

baseline (Occupancy grid), which characterises only the static structure of the

environment and associates each free cell with a fixed cost. Consider that tradi-

tional criteria indicate the opposite.

102



10 Summary

Derived from our experiences with long-term deployments of autonomous robots,

we hypothesised that respecting essential human habits improved robot efficiency

and acceptability in the long term. Our field robotic experiment in the natural,

human-populated environment supported that hypothesis. We showed that our

mobile robot, which took into account pedestrian flows and their changes over

time, was considered less disturbing. It strongly indicated that scheduling and

planning the tasks using sophisticated temporal modelling methods like WHyTeS

and STeF-Map lead to more socially acceptable behaviour of a service robot. We

also showed that human flows could be forecasted even months after they were

learned due to their periodic nature.

We studied spatio-temporal modelling methods and provided their compre-

hensive overview. As those methods came from different fields and were intended

for different usages, it was impossible to compare their performance. However,

we proposed a methodology for defining a miscellaneous collection of criteria for

evaluating diverse spatio-temporal maps. As an example related to our exper-

tise, we compared simplified approaches derived from the studied models in their

ability to provide beneficial forecasts for long-term deployments of human-aware

autonomous robots.

We categorised known approaches to spatio-temporal mapping, defined cri-

teria for their comparison following the proposed methodology, and compared

them in a simulation built on real-world data. The results showed that simple

time series forecasting methods could not support path planning but could be

used to avoid peak times. The spatial-only maps allow the construction of paths

that avoid potentially crowded areas, but these paths are unnecessarily long when

people are unlikely to be present. Discrete spatio-temporal maps can provide rea-
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sonable predictions but require a relatively large amount of data. They are also

memory inefficient and not scalable enough to be deployed in large environments.

Continuous spatio-temporal maps modelling space and time together suffer from

high computational complexity. On the other hand, continuous maps that mod-

elled space and time independently were scalable, computationally efficient and

provided good predictions for the topologically uncomplicated area.

The comparison of state-of-the-art methods for robotic mapping showed that

proposed criteria derived from the methodology intuitively distinguish optimised

human flow models. Moreover, a detailed analysis of service disturbance provides

deep insight into the model’s strong and weak aspects. We also show that meth-

ods specialised in capturing the spatio-temporal distributions of pedestrian flows

allow for the planning of trajectories which generate substantially fewer human-

robot encounters than time-averaged ones. On testing dataset, the time-sensitive

models were able to reduce the number of encounters by order of magnitude if

the robot was allowed to drop 10% of the traversals during the busiest times and

places and by order of two magnitudes when dropping 60% of traversals.
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Part IV

Dataset for Complex Evaluation

of Spatio-Temporal Maps
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11 Outline

Hypertime, especially regression variant of WHyTeS , proved its usability in

human-focused tasks during the COVID-19 outbreak. It was an integral part

of a system that predicted the crowdedness of places like shops and pharmacies,

which people needed to visit regularly [100]. The idea behind the system lay in

the possibility of people taking advantage of it when planning their visits to such

places and avoiding long queues, crowded places, and hypothetical exposure to

the virus sources - other people.

During that time, a lot of observed places changed their behaviour. For ex-

ample, as ad hoc government rules changed over time, shops had to change their

opening hours or how they provided their services. We wanted our system to

react adequately, which led to searching for novelties in a data stream. This idea

was first targeted in a bachelor thesis [97] which I supervised. As the COVID-19

outbreak was not problematic to most of the population, the development was

abandoned, and this work was not finalised. However, partial results in novelty

detection in [97] led to a hypothesis that combining a suitable version of advanced

spatial outlier detector [144] with a continuous spatio-temporal model like HyTS

could lead to successful novelty detection in human presence and flows. Develop-

ment and evaluation of such a method need a human-dynamics-centred long-term

dataset that includes known outliers of different types. Collecting such a dataset

requires a complex setting of an experimental environment, known external in-

fluencers of human behaviour, and the possibility to artificially enforce a change

in people’s behaviour with expected impacts on human flows.
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12 Dataset Collection

12.1 Need for Data

During the last decade we have seen much development in the world of robotics,

but fully autonomous robotic deployments still remain elusive. One of the pri-

mary reasons for this is that while their navigation algorithms work well, their

robustness outside of lab conditions can be less-than ideal, and therefore they

still require some level of human oversight.

Traditional approaches to robot navigation in uncontrolled environments use

static maps combined with reactive planning for unexpected events. However,

many unexpected events are caused by human actions, especially movement

through the robot’s operational environment. Reactive re-planning using sense-

plan-act frameworks, such as those used in the Robot Operating System (ROS) [105]

move base package, can lead to a perception of clumsiness [106], slow response,

and frequent re-planning, resulting in negative emotions towards the robot [23].

Failing to navigate in human-populated or crowded environments is a major ob-

stacle to robotic deployments and their acceptance in the long-term. Therefore,

incorporating expected human movement into the robot’s navigation and plan-

ning is crucial for autonomous robots intended to help people in their environ-

ment.

Addressing this, several large projects attempted to work on autonomous

robots operating in human-populated environments [9], [101], [102]. These envi-

ronments tend to be dynamic, with natural daily and seasonal changes [55], but

more importantly, their dynamics are shaped by human actions [3]. A promising

way to achieve long-term human-aware navigation is to include spatio-temporal
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Figure 12.1: Tesla factory lidar scan. Red lines highlight the usual path of
people, while green ones are used less frequently. Green circles highlight the
most interesting crossroads - A is the nearest crossroad to the bathroom, and
B includes a resting area. Yellow circles highlight less frequent crossing with
expectedly strong temporal patterns, and orange circles highlight places where
people usually stay for some time.
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maps into the navigation systems to support decision-making in advance of the

navigational task. Robots which forecast the dynamics of human customs and

adjust their decisions accordingly perform better at human-centric tasks [9]–[13],

[104]. Furthermore, it has been shown that autonomous robots that take human

habits into account are more likely to be accepted by society [23], [74], [101].

Developing spatio-temporal predictive maps requires long-term datasets of

natural human environments. The most known dataset of this kind is the ATC

dataset of a shopping mall [128]. Although it consists of detections taken through-

out one year, the data is collected only during opening hours on Wednesdays and

Sundays. In addition, researchers from the Lincoln Centre for Autonomous Sys-

tems (L-CAS) gathered their own UoL dataset [63] that consists of several con-

secutive weeks of lidar point clouds and human detections [83]. However, local

security rules did not allow researchers to gather the data out of working hours.

Using a very similar system, researchers created the UTBM dataset [17] that was

supposed to be long-term, similar to the ATC one, and continuous. The effort

resulted in a dataset several months long covering entire days. However, due to

political problems in the country that led to the universities closing, a large part

of the dataset consists of empty halls. Changes in security rules and the following

COVID-19 epidemic led to an inability of researchers to continue collecting the

data. The meaningful data now includes one month and one week of continuous

data.

Despite the discontinuity in the ATC dataset, it is still commonly used [127],

[145], [146]. From our experience, a more complex dataset is needed for develop-

ing an autonomous system that includes service robots with various tasks. The

service robots do not only work during opening hours; they need to cooperate

with technical and service staff who work in public places outside of working

hours. For example, security robots need to understand differences in behaviour

between customers and utility workers. Therefore, we are starting to gather con-

tinuous long-term datasets from a factory (see Fig. 12.1). As the data gathering

and dataset preparation is planned for the next few years, we are looking for ad-

vice and possible cooperation with scientists from the long-term human motion

prediction community.
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12.2 Datasets

12.2.1 Available Datasets from Other Teams

The ATC dataset [128] covers an area of 900 m2 over one year. The tasks people

are performing are connected with shopping. We can find there different types of

behaviour like walking from one shop to another, reading some information, wait-

ing, chatting and so on. However, as was said earlier, the datasets consist only of

Thursdays and Sundays and only of working hours. The models developed over

such data need not comprise subtle differences between individual working days

and Saturday and Sunday. They cannot be tested in an ability to provide appar-

ent differences between days and nights. We had a similar experience working on

the UoL dataset [63], Figure 4.10. One can expect that out of the working hours,

there is nothing to care much about. However, an autonomous system should

be prepared to utilise the time when the halls are empty, and therefore it needs

to know what is happening during the night to schedule its tasks accordingly.

Moreover, during non-working hours, there is a higher possibility of a security

breach [20] that must be distinguished from rare but expectable events or regular

utility activities.

One can find complex, human-dynamics-centred datasets like L-CAS [83],

THÖR [147], or Magni [148] datasets. Although remarkable, these datasets do

not meet our concept of long-term datasets. They do not focus on human customs

nor model deterioration.

We usually use open data ‘MHT building lecturer office’ to test year-long fore-

casts of our models. The data was gathered during the STRANDS project [9].

They can be found on the project’s web pages [149]. The data consists of pre-

processed video frames with a frame rate of 0.2Hz. Every frame consists of a set

of depth values captured with a 320 × 240 RGB-D camera (see Fig. 12.2). The

length of the video is more than 2 years with several few-days-long gaps. The

video shows one of the lecturer’s offices at the University of Lincoln.
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Figure 12.2: MHT building lecturer office dataset: snapshots of the person present
and absent.

12.2.2 UTBM Dataset

The second dataset we usually use to test our models is the UTBM dataset [17],

which we collected during cooperation with Distributed Artificial Intelligence and

Knowledge Laboratory (CIAD) at Université de technologie de Belfort Montbéliard.

The data is not directly accessible to the public but only by request due to pri-

vacy concerns. It contains two long-term segments gathered during one year. The

first segment was collected in one of the UTBM building halls of approximately

500m2. As shown in Fig. 9.4, a Velodyne 32-layer lidar was placed in the recep-

tion near the building door to ensure safe 24h operation. The spatial placement

of the lidar was carefully determined to ensure maximum field-of-view (i.e., ap-

proximately 200m2) of the hall beyond the glass windows. The raw data of the

lidar was recorded to ROS rosbags 24 hours per day for several months. However,

due to political unrest, only one month (March 2019) includes normal student be-

haviour. The second segment, one week long, was collected in December 2019 in

a similar way. There is also the third segment, still in the post-processing stage,

collected in the same hall but with a 128-layer lidar outside but close to the

reception. The data collection was performed for three consecutive days during

March 2023.
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12.2.3 Dataset under Construction

The MHT dataset is two years long but includes only one significant phenomenon

connected to human customs. The dataset’s length allows us to test a model’s

deterioration over months-long periods. However, testing the models on one

phenomenon can lead to overfitting the chosen scenario. The UTBM dataset

consists of human flows in the entrance hall, but it is limited only to a few weeks.

Although the data consists of many different people, their usual behaviour is

walking through or waiting in the hall, with rare exceptions of utility workers

providing their services. Moreover, the usable data cover only one topologically

trivial area - the hall. Our experiences and needs led us to initiation of a new

dataset collection.

We made an agreement with the management and owners of a factory that we

have the freedom to place sensors usually used in mobile robotics. The factory

consists of two large sheds and multiple rooms with an overall area of approxi-

mately 2500m2, more than twice the area of the ATC dataset. Figure 12.1 shows

a cross-section of a lidar scan of the factory. Our team, in cooperation with the

factory management, chose and highlighted the best areas for data collection.

The lines highlight the frequent paths the employees usually use. The circles

highlight important crossings and places where employees assemble.

We aim to gather a new, similarly long or longer dataset than the MHT

building lecturer office composed of people working on multiple tasks in an envi-

ronment with a more complicated structure than the UTBM dataset. We expect

people to perform more types of tasks than in UTBM datasets. Besides walking,

waiting, and cleaning the area, we expect activities like resting, eating, refilling

their water containers, and, similarly to the MHT dataset, working in front of

their tables. That can give us a more generalised perspective in analysing the

deterioration of models over time and the rules of pedestrian flows. Contrary to

the ATC dataset, we also plan to gather the data continually during all days of

the week and outside the usual working hours.

The number of people present in the area will probably not exceed 50 peo-

ple, which is less than in UTBM and ATC datasets. However, two companies

are in the building fabricating different products while sharing changing rooms,
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bathrooms, and the official entrance. One company has been present there for

approximately three decades, while the second one is starting up, hiring new

employees, and preparing new operations. The building is positioned between

two cities, so a non-public bus for employees connects with public transporta-

tion. Such transportation is felicitous because the entry time of a large section of

employees is determined by the most prolonged delay in documented public tran-

sit. The delays are usually connected with weather changes that can be included

in the models and allow researchers to interconnect the predictions of human

customs with weather forecasting.

The management is in favour of the experiments. They see cooperation with

researchers as an opportunity to raise the working morale and moderate discom-

fort due to experiments as an acceptable price. On the other hand, the workers

positively perceive the experiments as a non-traditional event in an overall invari-

able work. As a result, it is possible to agree with the management to delay the

bus or move a shift a little bit to test the ability of models to detect unexpected or

anomalous events as a part of the experimental design. There is also a possibility

to perform field experiments with piloted or supervised robots.

12.2.4 Challenges in Data Gathering

The factory is a harsh environment. There is heavy machinery creating strong

magnetic fields. The data cables need to be carried through high-voltage pipes.

Computers need to be placed far away from heavy machinery and reactive chem-

icals. Nothing can be placed near the gas tubes or hydrogen tanks. The environ-

ment is dusty, and the air temperature in some places exceeds 40 degrees Celsius.

Multiple security fences around some machines block WiFi communication be-

tween the computers. On the other hand, the ceilings are 4 − 8 meters high,

which can give sensors the required scope.

Unlike in the UTBM dataset, human flows are not the only dynamics in the

environment. There are also chairs moving from one place to another. Some

cupboards are used, and some working positions are occupied only on different

days. Large machines are run occasionally, and some rooms are accessible only

for one or a few specific people during their particular tasks. Those dynamics
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differ from human flows but are tightly bound to people’s activity. Therefore,

the structure of the area is not purely static but ”reacts” and changes its shape

according to the actual organisation of the work. A successful autonomous system

should predict these small structural changes because they are connected with

the differences in human flows.

12.2.5 Privacy Issues

The privacy and data protection rules limit personal or otherwise sensitive data

manipulation only inside the building. Although the management does not plan

to use the personal data from the measurements, they find the sensors’ placement

as motivational components for the workers. The workers are used to working

with expensive products, and their only concern about the data gathering is not

to be identified by the sensors when they smoke near the hydrogen tanks.

The internet connection to the factory is stable but slow for data transfer.

The data must be transferred from the factory manually, but the computers

and sensors can be handled using a secure connection from outside. Personal or

sensitive data needs to be processed or anonymised inside the compound.

12.3 Data Collection

Our primary way to collect data of human motion tends to be with lidar sensors.

These have the advantage of being small, light-weight, and not intrusive on the

environment. They also yield more fruitful data than highly bespoke sensors such

as door position detectors, and detecting people passing through an area with a

single beam. Furthermore, compared to cameras, lidar data is much easier to

process as properties such as depth can be directly estimated (especially at long

range), they’re insensitive to lighting conditions, whilst also manipulation of raw

data does not open privacy issues. Moreover, they have a large field-of-view.

However this raises the question of whether the community would agree with

these assessments for the task of human detection, or perhaps whether it would

be advantageous to include other sensors in the data collection process.

The current arrangement for data collection involves having a series of com-
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puters set up running ROS. Each of these is running the necessary drivers of the

lidar sensor, in this case a 128-layer Ouster sensor giving 3D coverage of the envi-

ronment at 10Hz. The sensors have slightly overlapping fields-of-view, to ensure

the consistent ability to track individuals. The sensor is left running continuously,

with another ROS node collecting the data, compressing it, and saving it to disk.

The throughput of the raw lidar data amounts to just over 100MB per second

per sensor, an unwieldy size for this kind of usage. Consequently, the run-time

compression of the data is essential. While lossless lz4 compression offered ap-

proximately a 50% saving compared to the raw data, more than this kind of

compression is needed for long-term use. As a result, a bespoke lossy compres-

sion was added.

The compression algorithm works by taking a key-frame from the lidar, and

then in subsequent frames only storing lidar points with significant changes in

their spatial position. These are found by matching the corresponding lidar beams

between the frames, and finding the euclidean change in position. Jitter inevitably

is present in the data, so there is some thresholding, but the suppression of all

static background lidar points is not a significant challenge. Furthermore, when

storing only key-frames and the deltas, traditional compression algorithms can

still be used on the data to reduce the file-size further. As a result, the volume of

data being stored was able to be reduced to below 0.1% of the original file size.

The data that saved as a result of this process has been modified from the

raw data. Visibly, the jitter present on the walls of rooms is completely absent in

the data processed in this way, while people are still visible moving around the

environment. While very effective in making the dataset a manageable size, it

is not clear whether the community would appreciate the data being processed

in such a way. While generally the raw data has the benefit of being closer to

reality, some compromise needs to be found, so the question exists if this kind of

compression is acceptable for the community. We believe that such an approach

will not affect the quality or usability of the dataset, as the dynamic objects will

be captured in full, real-time detail, while static background objects such as walls,

less likely to be of interest, will still be captured, but less often.

The rest of the data collection pipeline is run offline. The compressed data

can be downloaded from each of the machines periodically, and then the data
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can be worked on. Firstly, they are decompressed individually back into a usable

form. As mentioned, the background lidar points will be completely static, but

any dynamic areas of the pointcloud will be present at the full frame rate.

Then, these dynamic points are passed to human detection algorithms to

extract the semantic data from the scene. The detection algorithms are those

used in the aforementioned UTBM data collection [83]. Specifically, the Adaptive

Clustering algorithm is implemented on each frame of the pointcloud to divide it

into different segments, ideally with each segment corresponds to an object. The

segmentation performance of the algorithm for pedestrians is considered to be

state-of-the-art [150]. Then the segments are filtered using a human volumetric

model. On the other hand, since the UTBM building is completely closed at

night and ensures that no one is stranded inside, we use the evening data as a

reference background and then match it with daytime data to remove any false

positive samples efficiently. As a result, human samples can be easily extracted

from the point cloud without using any machine learning methods. It is worth

noting that, there is an assumption here that the moving objects in the UTBM

building fitted in the human volume model are all human beings.

Once the raw human detections have been extracted from the dataset, a final

stage of filtering is applied before the final data is ready. This filtering process

removes any spurious detections of people from the scene, and fills in any missing

detections where otherwise there was continuous detections. As the raw data

was collected at 10Hz, data association for tracking is relatively straight-forward,

however as the original data is present, it is possible to verify this manually, or

apply different methods for human detection and tracking.

The data about human detections and tracking is therefore provided as a

convenience for people wishing to work with the dataset, however there is still

the option for people to try their own detection and tracking algorithms on the

data should they wish to.
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13 Summary

Nowadays, we are collecting exceptional, long-term dataset of human flows for

the complex evaluation of robotic spatio-temporal maps and the development

of their new capabilities. We have looked at why long-term datasets of people

will be important for the future of long-term autonomous robotics. Currently,

there is a lack of high-quality datasets available for this task. In an attempt to

correct this, we have started collecting our own dataset based on 3D lidars, to

be used for analysis of the typical presence and movement patterns of people,

and human-induced dynamics in their working environment. The dataset details,

along with the forms to provide potential feedback and suggestions, is available

at http://3l4ar.science.
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Part V

Conclusion
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Summary of thesis

In recent years, the main objective of the papers that replace stationary proba-

bility with a Fourier transform-based time series modelling of events in robotic

maps was to persuade the readers that using periodicities is beneficial for the au-

tonomous planning of different robotic tasks. Although the benefit was evident in

the long-term deployment of robots in a human society [9], the theoretical results

in the experiments were, sometimes, not too sound. For example, in [16], the

authors compare the quality of predictions of FreMEn and HyT with a classical

occupancy grid. The error reduction of FreMEn’s model was between 0 and 0.1%

while HyT was better by 1% - in a chosen spatio-temporal scenario and selected

parameters. Moreover, the model that predicts 0 everywhere was omitted, al-

though we can expect it to perform much better; see Table 9.4. The reason was

studied in [26] and discussed in [23] - when a human is understood as a point

in space and time, the event, human detected at coordinate (x, y, t), is very rare

compared to a large number of cells in 4D spatio-temporal map. As robotics is

very loosely connected to social studies, it was also sometimes hard to persuade

the community that it is not such an imprudent idea to model human behaviour

as a repetitive process with negligible progress.

We proposed a methodology for the quality of spatio-temporal maps compar-

ison [17]. Using this methodology, we derived a new type of criterion, Expected

Encounters [23], that evaluates the quality of these maps by verifying the abil-

ity of an autonomous system to plan and schedule its navigational tasks when

using their forecasts. Eventually, we showed the superiority of FreMEn-derived,

especially continuous methods, and supported that with a field experiment. As

of now, we believe that the question ‘whether the modelling of periodical events

in human-populated areas is beneficial for deployed autonomous robots’ is suc-

cessfully answered.

We developed a continuous version of FreMEn, denoted as HyTS. We proved

it is converging to a helpful model faster than FreMEn [18], and its size is by

two orders of magnitude smaller than its discrete competitors [20], [21], Fre-

MEn and STeF-Map. During the COVID-19 outbreak, we developed a com-

putationally simplified variant of HyTS denoted as WHyTeS, which success-
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fully served in the production version of our country-wide application https:

//kdynakoupit.cz [100]. This application estimates the crowdedness of user-

defined important places, with the original purpose of helping people to evade

crowds in shops and pharmacies when meeting other people led to a rise in the

probability of unfamiliar disease spread. Despite the successes of existing meth-

ods, developing continuous spatio-temporal maps should start afresh considering

the proposed methodology and the possibility of defining new specialised criteria.

I believe that the comprehensive overview and comparison of various approaches

to spatio-temporal modelling [17] could serve as a good starting point. How-

ever, the development also needs specialised, high-quality datasets. One of such

datasets we already started to collect [24].

Philosophically, we claim [17] that the human-populated environment does

not contain only spatial structures like walls but also temporal structures derived

from human routines. Those routines are based on work management, directly

connected to the human calendar and clock. Similarly to any worker, autonomous

robots need to be aware of other workers’ routines and customs to avoid spoiling

the psychosocial atmosphere. This “right time to serve” concept constitutes a

novel paradigm in robotic autonomy, studied, besides other things related to the

robotic perception of time, by a new robotic field Chronorobotics [70], [109].

Fulfilment of targets

Although the goal to create “a general tool to model spatio-temporal phenomena

useful for robots operating in large, human-populated areas for long periods” is

megalomaniacal, reflecting my youthful imprudence, it can be, with some level

of leniency, proclaimed as achieved. The proposed method and its variants were

applied to a diverse real-world dataset and successfully compared with state-of-

the-art methods [21], [23]. It proved its scalability when employed in an applica-

tion covering a country-wide area [100], and it successfully targeted an unheeded

quality of ‘master-servant’ interaction - the acceptance of provided service [17].

A better acceptance by human society of autonomous mobile robot that uses

spatio-temporal map for scheduling their task compared to the opposite was

proved in a field experiment with industrial-grade humanoid [17], [23]. Although
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human subjects of the experiment belonged to an academic milieu, they were

not warned in advance, did not know they were subjects of study, and did not

understand the purpose of the experiment. The difference in human subjects’

reactions surpasses our expectations.

The original specific goals were declared when we expected to work with data

that included occurrences and non-occurrences of the studied phenomenon [16].

However, for higher dimensional tasks like modelling the presence and velocity of

people together, the inclusion of non-occurrences in the data was computation-

ally infeasible [17], [21], [23]. Therefore, the development of HyTS changed its

expected direction, and, for example, further development of multiclass classifi-

cation was omitted in my work. Other specific goals were successfully targeted:

we applied HyT to binary, door state [16] and person presence classification and

novelty detection [18], and HyTS to human frequency analysis [16], [20], regres-

sion describing the crowdedness of specific places [100], and novelty detection in

time series [97]. Spatio-temporal novelty detection was not defined nor evalu-

ated. However, we are currently collecting a dataset that, as we expect, could

serve this purpose [24]. Above the original expectations, HyTS was successfully

applied to modelling the directions and velocities of human flows [17], [21], [23],

which was crowned with developing a methodology to compare miscellaneous

spatio-temporal representations [17].

Regarding the collection of the datasets, we collected months-long spatial and

spatio-directional human detections on a 24/7 basis [17]. However, for political

reasons, we possess only five weeks of a continuous window, with another one-

week window after eight months. Although extraordinary in many ways, those

data are not accessible to the general public and can be handed over only on

demand due to privacy concerns. As mentioned above, we currently collect new

dataset on a 24/7 basis, which is planned to be public from the early stages

of collection [24]. Besides the human-induced datasets, our laboratory collected

navigation maps covering natural changes in an outdoor environment [96], [151],

[152]. My assistance was very sporadic, with only one exception [99], where I

directed the efforts and actively cooperated on such a data collection.
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[128] D. Brščić, T. Kanda, T. Ikeda, and T. Miyashita, “Person tracking in large

public spaces using 3-d range sensors”, IEEE Transactions on Human-

Machine Systems, vol. 43, no. 6, pp. 522–534, 2013.

[129] S. T. O’Callaghan, S. P. N. Singh, A. Alempijevic, and F. T. Ramos,

“Learning navigational maps by observing human motion patterns”, 2011

Ieee International Conference On Robotics And Automation (Icra), 2011.

[130] E. O. Massey, Comparative Analysis of Techniques for Spatio-Temporal

World Modeling. Hochschule Bonn-Rhein-Sieg, 2019.

[131] Z. Wang and A. C. Bovik, “Mean squared error: Love it or leave it? a new

look at signal fidelity measures”, IEEE signal processing magazine, vol. 26,

no. 1, pp. 98–117, 2009.

[132] Z. Talebpour, I. Navarro, and A. Martinoli, “On-board human-aware navi-

gation for indoor resource-constrained robots: A case-study with the ranger”,

in 2015 IEEE/SICE International Symposium on System Integration (SII),

IEEE, 2015, pp. 63–68.

145



[133] I. Kostavelis, A. Kargakos, D. Giakoumis, and D. Tzovaras, “Robot’s

workspace enhancement with dynamic human presence for socially-aware

navigation”, in international conference on computer vision systems, Springer,

2017, pp. 279–288.

[134] T. Dunning, Natural experiments in the social sciences: a design-based

approach. Cambridge University Press, 2012.

[135] B. Okal and K. O. Arras, “Learning socially normative robot navigation

behaviors with bayesian inverse reinforcement learning”, in 2016 IEEE In-

ternational Conference on Robotics and Automation (ICRA), IEEE, 2016,

pp. 2889–2895.

[136] D. Hebesberger, T. Koertner, C. Gisinger, J. Pripfl, and C. Dondrup,

“Lessons learned from the deployment of a long-term autonomous robot

as companion in physical therapy for older adults with dementia a mixed

methods study”, in 2016 11th ACM/IEEE International Conference on

Human-Robot Interaction (HRI), IEEE, 2016, pp. 27–34.

[137] T. Yamamoto, K. Terada, A. Ochiai, F. Saito, Y. Asahara, and K. Murase,

“Development of human support robot as the research platform of a do-

mestic mobile manipulator”, ROBOMECH Journal, vol. 6, no. 4, 2019.

[138] I. Ko, B. Kim, and F. C. Park, “Randomized path planning on vector

fields”, The International Journal of Robotics Research, vol. 33, no. 13,

pp. 1664–1682, 2014.

[139] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from

incomplete data via the em algorithm”, Journal of the Royal Statistical

Society: Series B (Methodological), vol. 39, no. 1, pp. 1–22, 1977.

[140] J. A. Hanley and B. J. McNeil, “The meaning and use of the area under a

receiver operating characteristic (roc) curve.”, Radiology, vol. 143, no. 1,

pp. 29–36, 1982.

[141] Y. Dodge, “The concise encyclopedia of statistics”, in Springer Science &

Business Media, 2008, ch. Chi-Square Distance.
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