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Abstract
Mobility-on-demand (MoD) systems are systems that provide the transportation of passen-
gers on-demand instead of using a fixed schedule. Examples of such systems are transporta-
tion network companies (TNCs) like Uber or Lyft, conventional taxi services, or future
systems of autonomous self-driving cars being developed by companies such as Waymo,
Cruise, or Motional. So far, the most studied MoD systems are small MoD systems fo-
cused on servicing people with disabilities or the elderly, these have been studied for several
decades, mostly in the field of operational research. In this thesis, we focus on large-scale
MoD systems operated by TNCs, which are a relatively new research area. These systems,
while formally similar to the small MoD systems, have different characteristics and require
different methodologies and algorithms for their study and optimization.

In this thesis, we identified several research gaps in the field of large-scale MoD systems
and developed new methodologies and algorithms to address them. First, there are no
standardized benchmark instances for large-scale studies available in the literature. We
researched the existing benchmark instances and combined the acquired knowledge with
our previous experience with simulations of MoD systems. Based on that, we developed a
methodology for creating instances from historical travel data and created a set of large-scale
instances for three areas: New York City, Chicago, and Washington D.C.

Second, there are several research questions about the operation of MoD that were still
unanswered when we started our research. We developed a new simulation methodology
that allows for performing large-scale simulation studies of MoD. With that methodology,
we deliver answers to three research questions about the operation of MoD: a) what is the
impact of replacing private cars with MoD, b) how can we benefit from ridesharing, i.e.,
by transporting multiple passengers in one vehicle simultaneously, and c) how much we can
benefit from dispatching the vehicles optimally. We found out that a) the MoD deployment
can generate a significant increase in the total distance driven, despite reducing the fleet
size dramatically, b) ridesharing reduces the total distance driven significantly, far below the
travel distance of private cars, and c) we can significantly improve the performance further
by dispatching the vehicles optimally.

Finally, no algorithm for the optimal dispatching of vehicles in MoD systems is scalable
to all practical instances. We have identified a weak point of the optimal method: it fails
on instances with a long time horizon, i.e., with travel requests spread over a long time.
Based on this finding, we developed a new algorithm that splits such instances into sub-
instances covering a shorter time horizon, solves them optimally, and then chains the vehicle
plans together. We formulated the plan chaining problem with time windows, developed a
method to solve it and proved that it is optimal, and performed a computational study that
compares the new dispatching method with the optimal dispatching method, a construction
heuristic, and a metaheuristic. For instances that cannot be solved optimally, our method
delivered the best solutions among the evaluated methods in the majority of the cases.

Keywords Mobility-on-demand, simulation, ridesharing, DARP, plan chaining
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Abstrakt
Systémy dopravy na vyžádáńı (anglicky Mobility-on-demand, MoD) jsou systémy, které

zajǐsťuj́ı přepravu cestuj́ıćıch na vyžádáńı namı́sto použit́ı pevného j́ızdńıho řádu. Př́ıkladem
takových systémů jsou společnosti jako je Uber nebo Lyft, běžné taxislužby nebo bu-
doućı systémy autonomńıch samoř́ıd́ıćıch vozidel, které vyv́ıjej́ı společnosti jako Waymo,
Cruise nebo Motional. Dosud nejv́ıce studovanými MoD systémy jsou malé MoD systémy
zaměřené na obsluhu osob se zdravotńım postižeńım nebo starš́ıch osob, ty jsou studovány již
několik desetilet́ı, většinou v oblasti operačńı analýzy. V této práci se zaměřujeme na MoD
systémy velkého rozsahu, které jsou relativně novou oblast́ı výzkumu. Tyto systémy jsou
sice formálně podobné malým MoD systémům, ale maj́ı odlǐsné charakteristiky a vyžaduj́ı
odlǐsné metody a algoritmy pro jejich studium a optimalizaci.

V této práci jsme identifikovali několik mezer ve výzkumu rozsáhlých MoD systémů a
vyvinuli nové metody a algoritmy pro jejich zaceleńı. Za prvé, v existuj́ıćı literatuře nejsou k
dispozici žádné standardizované referenčńı instance pro studie velkého rozsahu. Prozkoumali
jsme tedy existuj́ıćı instance a źıskané poznatky jsme zkombinovali s našimi předchoźımi
zkušenostmi se simulacemi MoD systémů. Na základě toho jsme vyvinuli metodiku pro
vytvářeńı instanćı z historických mobilitńıch dat a vytvořili soubor instanćı velkého rozsahu
pro tři oblasti: New York, Chicago a Washington D.C.

Za druhé, existuje několik výzkumných otázek týkaj́ıćıch se fungováńı MoD, které byly
v době zahájeńı našeho výzkumu stále nezodpovězené. Vyvinuli jsme proto novou metodiku
simulace, která umožňuje provádět rozsáhlé simulačńı studie MoD. Dı́ky této metodice
přináš́ıme odpovědi na tři výzkumné otázky týkaj́ıćı se provozu MoD: a) jaký by byl dopad
nahrazeńı osobńıch automobil̊u MoD, b) jak můžeme těžit ze sd́ıleńı j́ızd, tj. z přepravy v́ıce
cestuj́ıćıch v jednom vozidle současně, a c) jak velká je výhoda optimálńıho dispečinku
vozidel. Zjistili jsme, že a) nasazeńı MoD může přinést výrazné zvýšeńı celkové ujeté
vzdálenosti, a to i přes výrazné sńıžeńı velikosti vozového parku, b) sd́ıleńı j́ızd výrazně
snižuje celkovou ujetou vzdálenost, a to hluboko pod hodnotu v př́ıpadě použit́ı osobńıch
automobil̊u, a c) optimálńım dispečinkem vozidel můžeme effektivitu dále výrazně zvýšit.

Nakonec jsme řešili problém, že žádný algoritmus pro optimálńı dispečink vozidel v
MoD systémech neńı škálovatelný na všechny realistické instance. Identifikovali jsme tedy
slabé mı́sto optimálńı metody: selhává na instanćıch s dlouhým časovým horizontem, tj. s
požadavky na j́ızdu rozloženými do dlouhého časového obdob́ı. Na základě tohoto zjǐstěńı
jsme vyvinuli nový algoritmus, který takové instance rozděĺı na menš́ı instance pokrývaj́ıćı
kratš́ı časový horizont, optimálně je vyřeš́ı a poté plány vozidel zřetěźı. Formulovali jsme
problém řetězeńı plán̊u s časovými okny, vyvinuli jsme metodu pro řetězeńı plán̊u a dokázali
jsme, že je optimálńı, a provedli jsme výpočetńı studii, která porovnává novou metodu pro
dispečink vozidel s optimálńım metodou, konstrukčńı heuristikou a metaheuristikou. U
př́ıpad̊u, které nelze řešit optimálně, poskytla naše metoda ve většině př́ıpad̊u lepš́ı řešeńı
než ostatńı testované metody.

Kĺıčová slova Poptávková doprava, simulace, sd́ılené j́ızdy, DARP, řetězeńı plán̊u
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CHAPTER1
Introduction

In densely populated cities, private cars are considered an unsustainable mode of trans-
portation. Typically, parking capacity is insufficient to accommodate all private vehicles,
while the parking spaces occupy a significant portion of the urban space. According to
the 2010 estimation by Davis et al. (2010), almost 5% of the urban area in the Upper
Great Lakes region of the United States was occupied by parking spaces. Later, Shoup
(2014) analyzed the impact of minimum parking requirements and found that they reduce
the average number of units in apartment buildings in Los Angeles by 13%. On top of
that, the existing parking spaces are clearly insufficient, as the drivers spend a significant
amount of time searching for parking spaces. An average time among ten large US cities
was estimated to be 17 hours per year (INRIX, 2017). Similarly, the current road capacity is
insufficient for all private vehicles, as we can see from the congestion levels in metropolitan
areas. According to the 2017 study among US cities, drivers lost on average 41 hours of
their time in congestion (Cookson, 2018), and the recent study of the year 2022 increased
this number to 51 hours (Bob Pishue, 2023). And all this is happening while the government
spends more than $100 billion on road infrastructure per year (International Transport Fo-
rum, 2024), part of which is spent on the expansion of the road capacity. Also, apart from
the cost, we have to consider that the road capacity is hard to expand in the cities due to
the lack of urban space. Finally, cars are also a significant source of air pollution, which
has proven to be a significant factor in the development of various diseases and increased
mortality (Boogaard et al., 2022). Although we have observed these problems for many
years, the situation does not seem to be improving. In fact, it is expected to worsen in the
future, as the number of people living in cities is expected to grow (68% of the world’s pop-
ulation is expected to live in urban areas by 2050 (United Nations, 2018)), and the number
of vehicles per capita is expected to grow as well. Only from 2016 to 2020, the number of
vehicles per capita in the EU grew by more than 7% (Vehicles in Use Europe 2022, 2022),
and in India by as much as almost 36% (Road Transport Year Book, 2023).

One of the proposed solutions to address these problems is the deployment of metropoli-
tan mobility-on-demand (MoD) systems providing an alternative to traveling in a private
vehicle designed to be as comfortable as traveling in a private car but with smaller parking
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capacity and road capacity requirements (Alonso-Mora et al., 2017; Čáp & Alonso-Mora,
2018; Miller & How, 2017; Spieser et al., 2014). These MoD systems consist of a fleet of
shared passenger vehicles that jointly serve the travel requests of the system’s users. For
each incoming travel request, the MoD system assigns the request to one of the vehicles
and alters its route such that the passenger is picked up and transported to the drop-off
location. MoD systems sequentially transport multiple passengers with the same vehicle,
so they can serve the existing transportation demand with a smaller, highly-utilized vehicle
fleet and thus, significantly reduce the need for urban parking space. To further improve the
system’s efficiency, the provider can implement ridesharing, where multiple passengers can
be transported in one vehicle simultaneously (Alonso-Mora et al., 2017). Efficient rideshar-
ing increases vehicle occupancy, which consequently reduces the required fleet size and total
distance driven by the vehicle fleet, resulting in ecological and economic benefits.

However, these systems do not exist only in the visions presented in the literature but
are available for a long time all around the world. An example of such service is the classical
taxi service, emerging on the streets of London at the beginning of the 17th century in the
form of horse-drawn carriages (Sir Walter Gilbey, 1903) (see Figure 1.2a). Later, these
carriages were replaced by motorized vehicles and other modes of transportation, such as
planes, also started to be used for on-demand mobility (Gower & Spicer, 1932). In the latest
decade, we can see a rise of a new form of MoD operated by large companies such as Uber or
Lyft (Figure 1.2b). These companies leverage the latest digital technologies to provide more
efficient dispatching of vehicles, more transparent and accurate pricing, and faster and more
convenient ordering of the service. Although the recent coronavirus pandemic has been a
significant setback for these companies, the MoD is again on the rise, as we can see from the
number of MoD trips per day in New York City displayed in Figure 1.1. In the future, MoD
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Figure 1.1: Number of MoD trips per day in New York City (Data source: (“Aggregated
Reports - TLC”, n.d.)).
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(a) Early horse-driven car-
riage (Sir Walter Gilbey,
1903).

(b) Modern digital MoD (front) and classical
taxi service (back) operating in NYC (Annie Mc-
Donough, 2019)

(c) Autonomous MoD operated in San Fran-
cisco. (Cano, 2023)

Figure 1.2: History of the vehicular MoD.

is expected to be one of the first applications of autonomous vehicles (Aditya Ambadipudi et
al., 2017). In fact, these systems of autonomous MoD, typically called AMoD or robo-taxi,
are already being put into operation in some cities. The first such system was launched in
2016 in Singapore by the company nuTonomy (now Motional) (Bhagat, 2016). The system
was free of charge and the safety driver was present in the vehicle at all times. However,
in 2023, the companies Waymo and Cruise received approval to offer autonomous MoD
services in San Francisco without a safety driver at all hours of the day and charge a fare for
the service (Public Utilities Commission of the State of California, 2023a; Public Utilities
Commission of the State of California, 2023b). As of 7th August 2023, these two companies
operated more than 550 AMoD vehicles in San Francisco (Cano, 2023) (an example Waymo
vehicle is in Figure 1.2c).

With the growing share of modern digital MoD systems operated by large companies,
there is an unprecedented potential to increase the efficiency of MoD. However, to measure
and maximize the benefits of such systems, it is necessary to understand their behavior
and performance and to develop new algorithms and methodologies to optimize them. As
this field is relatively new, there are still many open questions and there is a significant
potential for optimization. In this thesis, we summarize our research on MoD systems. We
developed a set of benchmark instances for MoD systems, evaluated them in a set of case
studies, and published them together with the methodology for creating them. Using our
methodology for simulation studies of MoD systems, we have been able to answer several
research questions about the operation of MoD systems. Based on the findings, we have
developed a new algorithm that can be used to improve the MoD systems’ performance
both in terms of total distance driven and fleet size. Mostly, this thesis is focused on the
operation of MoD systems, i.e., on the assignment of travel requests to vehicles and the
routing of vehicles in the road network. To get a broader picture of the research challenges
related to MoD systems, refer to the review by Zardini et al. (2022).
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1.1 Research Goals

The goals of the research summarized in this thesis can be divided into two main groups: a) to
answer research questions about MoD systems operation using simulation studies and b) To
optimize MoD systems using new algorithms and methodologies. Each particular research
goal is listed in Table 1.1 together with the corresponding article and the chapter where the
research goal is addressed. In the remainder of this section, we provide a brief overview of
each research goal.

Code Group Goal Article Chap.

RG1 a, b Create and publish realistic large-
scale MoD benchmark instances

(Fiedler & Mrkos, 2023a) 3

RG2 a Analyze the impact of empty trips
in MoD systems

(Fiedler et al., 2017) 4

RG3 a Quantify the benefits of rideshar-
ing in MoD systems

(Fiedler et al., 2018) 4

RG4 a Quantify the benefits of optimal
ridesharing

(Fiedler, Čertický, Alonso-
Mora, et al., 2022)

4

RG5 b Optimize vehicle dispatching in
MoD

(Fiedler et al., 2024)1 5

1 Manuscript titled “Optimal Chaining of Vehicle Plans with Time Windows” submitted to the
journal Transportation Research Part C: Emerging Technologies.

Table 1.1: Research goals with corresponding articles and chapters where they are ad-
dressed. The research goals are divided into two groups: a) answering research questions
with simulation studies and b) optimizing MoD systems.

RG1: Create and publish realistic large-scale MoD benchmark instances: As
for most domains, we need to have a set of problem instances (input data) to perform the re-
search on analysis, or algorithms for MoD systems. During the research, we have discovered
that the existing instances are either small-scale, uniformly generated with characteristics
that do not correspond to the current large-scale MoD systems (operational research in-
stances (Cordeau, 2006; Cordeau & Laporte, 2003)), or they are not publicly available and
therefore, the research is obstructed by the inability to compare or reproduce the results.
Moreover, in the latter case, a significant proportion of the instances are located in the
same area, Manhattan, New York (Alonso-Mora et al., 2017; Beirigo et al., 2022; Fiedler,
Čertický, Alonso-Mora, et al., 2022; Haliem et al., 2021; Santi et al., 2014; Seo & Asakura,
2022; Thangaraj et al., 2017; Vazifeh et al., 2018; Wallar et al., 2019b; W. Zhang et al.,
2023), which can lead to biased results. To address these issues, we decided to develop
a methodology for creating large-scale MoD instances based on historical travel data and
publish this methodology together with a set of instances located in various areas.

RG2: Analyze the impact of empty trips in MoD systems: In most cities, MoD
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systems are already available, operated by various companies. However, they typically
form only a small fraction of the total transportation. In our research, we want to use
simulation studies to analyze the impact of large-scale MoD systems deployment, specifically,
we analyze a scenario where all the private cars are replaced by MoD. When private cars are
replaced by MoD, the total number of vehicles needed is much lower(Bischoff & Maciejewski,
2016; Fagnant & Kockelman, 2014; Spieser et al., 2014), and we want to quantify the benefits
of this replacement. However, the MoD systems also generate empty trips between individual
passengers and also to compensate for unbalanced travel demand. Therefore, apart from
quantifying the benefits of reducing the number of vehicles like in (Spieser et al., 2014) and
(Bischoff & Maciejewski, 2016), we also want to analyze the negative effects of empty trips:
a) on total vehicular traffic, b) on traffic congestion and c) on passenger delay.

RG3: Quantify the benefits of ridesharing in MoD systems: To compensate
for the empty trips in MoD systems, we can implement ridesharing, i.e., transport multiple
passengers in one vehicle simultaneously. Nevertheless, it is not clear how much ridesharing
reduces the total travel distance and the number of vehicles needed. This research goal
is therefore to extend the simulation methodology from RG2 with the support of dynamic
ridesharing and use it to quantify the benefits of ridesharing in large-scale MoD systems.
Unlike Alonso-Mora et al. (2017) who analyze the scenario of replacing taxis in Manhattan,
we want to analyze a scenario of replacing all private cars with MoD systems. Also, apart
from the travel distance reduction, we want to analyze the impacts on the fleet size, traffic
congestion, and the delay of passengers.

RG4: Quantify the benefits of optimal ridesharing: Most of the existing rideshar-
ing studies use heuristic methods for vehicle dispatching. A logical question is how much we
can benefit from using optimal methods instead. In this research goal, we want to extend
the simulation methodology from RG3 with optimal an ridesharing algorithm and use it
to quantify the benefits of optimal ridesharing in large-scale MoD systems. In addition to
the study by Alonso-Mora et al. (2017), we want to test an optimal method without any
resource constraints or relaxation, providing an upper bound on the benefits of ridesharing.
On the other hand, in contrast to Čáp and Alonso-Mora (2018), who use the optimal variant
of VGA as well, we want to evaluate the method on a much larger scale and on realistic
instances. Finally, we, want to compare an optimal method to both resource-constrained
variants of VGA and the insertion heuristic, efficiently quantifying the benefits of optimal
ridesharing and also its cost in terms of computational time. This comparison, still missing
in the literature, could provide insights into the trade-offs between the solution quality and
the computational time.

RG5: Optimize vehicle dispatching in MoD: Our ultimate goal is to use our
insights on MoD systems to make progress in the optimization of vehicle dispatching. In
our simulation studies, we have identified instances that are impossible to solve optimally
using the existing methods, and, at the same time, have low-quality solutions when using
relaxed variants of the methods. Our goal is to develop a new heuristics algorithm that
can provide high-quality solutions for these instances while being able to solve them in a
reasonable time.
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1.2 Why to Read This Thesis

As most of the key findings present in this thesis have been already published as separate
articles, it is appropriate to explain what it can offer to the reader. First, the thesis provides
extra content not present in any of the published articles. The Chapter 5 dedicated to MoD
optimization is based on the article that is currently under review. Next, we provide an
extensive terminology section that helps to distinguish between similar terms related to MoD
in Chapter 2. Finally, as the articles are limited in length, the thesis provides extra content
even in the chapters that are based on the published articles. This includes an extended
related work (e.g., Section 3.1.3), more details about the methods (e.g., Section 4.2.3), or
analysis of algorhitms (e.g., Section 2.3.1, 2.3.2, or 5.3.1).

Second, this thesis puts the results of the articles into a bigger context. Based on the self-
contained articles, the thesis provides a comprehensive body of knowledge about simulations
and optimization of mobility-on-demand systems. It unifies the notation and terminology
used in the articles, and it also explains the terminology choices and alternatives.

1.3 Outline

The content of this thesis is organized in the logical order of the research to be easily
accessible to the reader, not in the chronological order of the publication of the articles.
We start with the terminology, notation, and problem formulations in Chapter 2. Then,
we discuss the possibilities of obtaining input data for modeling MoD systems and present
a methodology for creating large-scale instances based on historical travel data (Chapter
3). In Chapter 4, we describe our simulation methodology and present the results of the
simulations which answer the research questions about MoD systems operation. Finally, in
Chapter 5, we present a new algorithm for optimizing dispatching in MoD systems with
ridesharing which is inspired by the results of the simulation studies.



CHAPTER2
Preliminaries

In this chapter, we provide the background material on which the rest of this thesis is
built. Specifically, we provide the terminology, notation, and problem formulations that are
common for the following chapters. Further extensions of the introduced concepts specific
to each chapter are discussed in the respective chapters.

2.1 Background and Terminology

In this section, we lay down the terminology used in the rest of this thesis. Besides the
introduction of each term, special care is taken to explain and justify the choice of the term,

This chapter is based on the journal article:

Fiedler, D., Čertický, M., Alonso-Mora, J., Pěchouček, M., & Čáp, M. (2022). Large-scale online
ridesharing: The effect of assignment optimality on system performance. Journal of Intelligent
Transportation Systems, 0 (0), 1–22. https://doi.org/10.1080/15472450.2022.2121651

the following conference papers:

(Fiedler et al., 2017) Fiedler, D., Čáp, M., & Čertický, M. (2017). Impact of mobility-on-demand on
traffic congestion: Simulation-based study. 2017 IEEE 20th International Conference on Intelligent
Transportation Systems (ITSC), 1–6. https://doi.org/10.1109/ITSC.2017.8317830

(Fiedler et al., 2018) Fiedler, D., Čertický, M., Alonso-Mora, J., & Čáp, M. (2018). The Impact of
Ridesharing in Mobility-on-Demand Systems: Simulation Case Study in Prague. 2018 21st
International Conference on Intelligent Transportation Systems (ITSC), 1173–1178.
https://doi.org/10.1109/ITSC.2018.8569451

(Fiedler & Mrkos, 2023b) Fiedler, D., & Mrkos, J. (2023b). Large-scale Ridesharing DARP Instances
Based on Real Travel Demand, 2750–2757. https://doi.org/10.1109/ITSC57777.2023.10422146

and the manuscript titled “Optimal Chaining of Vehicle Plans with Time Windows” submitted to the
journal Transportation Research Part C: Emerging Technologies. Preprint:

Fiedler, D., Difonzo, F. V., & Mrkos, J. (2024, February 24). Optimal Chaining of Vehicle Plans with Time
Windows. arXiv: 2401.02873 [cs, math]. https://doi.org/10.48550/arXiv.2401.02873

For all author’s publications together with the citation counts and research contributions, see Appendix A.
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as the terminology in the field of MoD is not consistent and sometimes even ambiguous.

2.1.1 Mobility-on-demand Systems

The term mobility-on-demand (MoD) emerged at the end of the first decade of the 21st
century in the documents of MIT Smart Cities group1. At first, the term referred to ve-
hicle sharing systems, where the vehicles (car, bicycle,...) are shared among multiple users
who can pick up and drop off the vehicle at MoD stations without the need to reserve it
in advance (Mitchell et al., 2010). However, later, the meaning of the term has been ex-
tended to include also systems operated by transportation network companies (TNCs) such
as Uber or Lyft (Vazifeh et al., 2018), or for future systems of autonomous self-driving
cars (AMoD) (Beiker, 2016). Nowadays, the term MoD is used to refer to any system that
provides on-demand transportation service to its users (Susan Shaheen & Adam Cohen,
2020).

2.1.2 Carsharing, Ridesharing, Carpooling, and Ride-pooling

The key feature of MoD systems is that a single vehicle can transport multiple passengers
sequentially. This is true both for vehicles operated by transportation network companies
like Uber or Lyft and for vehicle sharing systems (Nair et al., 2013) functioning essentially
as short-term rental services (In the case of cars, this concept is called carsharing (Shaheen
& Cohen, 2013)).

Reaching vehicle occupancy greater than one person per vehicle is the single most im-
portant component of the future MoD systems if we want to optimize the efficiency (Fiedler
et al., 2018). Unfortunately, this concept of transporting multiple passengers in one ve-
hicle simultaneously has inconsistent and ambiguous terminology. The most used term to
describe it is ridesharing. In the most general sense, the term ridesharing describes a sit-
uation, system, or setting, where a part of a trip (in a vehicle) is shared between multiple
passengers (Alonso-Mora et al., 2017; Fiedler et al., 2018; S. Ma et al., 2015). This is the
meaning we use in this thesis.

However, in older articles, ridesharing usually translates to sharing the ride with someone
with an equal or similar start/end location, for example, while commuting (Hartgen, 1977).
Today, this is usually called carpooling (Ferguson, 1997; J. Li et al., 2007). To complicate
it even more, the term carpooling is also sometimes used in a broader sense, to describe
any form of shared ride (i.e., interchangeably with the term ridesharing). However, in this
thesis, we will never use the term carpooling in this broader sense.

Finally, another term that is used interchangeably with ridesharing as described above
is ride-pooling (Engelhardt et al., 2019; Santi et al., 2014). Nevertheless, to avoid confusion,
we will refrain from using the term ride-pooling in this thesis.

1https://smartcities.media.mit.edu

https://smartcities.media.mit.edu
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2.1.3 Transportation Network Companies and Ridehailing

Most of the on-demand transportation is realized by transportation network companies
like Uber and Lyft. These companies evolved as a more up-to-date alternative to well-
established taxi services. They offer a centralized service through users’ cell phones app
instead of waiting to be hailed on the streets, or requested by a phone call. Because the
centralization, the service can be optimized and the price is usually known before the ride
itself. TNCc are sometimes incorrectly referred to as ridesharing companies, despite the
users of these services do not share rides (with some exceptions like Uber Pool).

The traditional service provided by TNCs, i.e., servicing each user with a dedicated
vehicle, is called ride-hailing (Banning-Lover, 2021). Sometimes even ridesharing service
(as described in the previous section) is called ride-hailing if operated by TNCs. However,
we will refer to such service as ridesharing, even if it is operated by a TNC.

2.1.4 Dial-a-ride Problem and Its Relation to MoD

A long time before the term MoD and the other terms explained in this chapter were
established, the concept of transporting passengers with fleets of vehicles was known as
a dial-a-ride (DAR) service or a dial-a-ride system (Guenther & Givens, 1970; National
Research Council (U S. ), Highway Research Board, 1971). At that time, the considered
fleets were much smaller and the system was mostly designed to transport elderly or people
with disabilities (Toth & Vigo, 2014). However, the main principle of dial-a-ride systems is
the same as the principle of MoD systems: to offer a platform for requesting transportation
on-demand.

Although the terms dial-a-ride service and dial-a-ride system have become obsolete due
to the technology change used to order the service, they left their legacy in the form of
another term: dial-a-ride problem (DARP). The DARP is a problem of finding optimal
vehicle plans for a fleet of vehicles transporting passengers between their pickup and drop-
off locations (Toth & Vigo, 2014).

So far, we have described the static variant of the DARP. However, there exists also
dynamic (online) variant. In dynamic DARP, requests arrive over time and the system has
to react to them immediately or within a short time horizon. This means that instead of
computing the solution for a long time period (day), we compute the solution only for a
short time period (seconds or minutes) iteratively, solving a new DARP instance for each
time period. Formally, these DARPs are almost the same as the static DARP but there are
differences in the problem characteristics. Most importantly, the requests in one dynamic
DARP instance have similar time constraints, usually much tighter than in static DARP
instances.

2.1.5 Fleet-sizing and Rebalancing

One of the key problems regarding MoD systems is to determine the minimal vehicle fleet
able to serve all travel requests: the fleet sizing problem. In the ideal MoD system design, the
fleet size and the operating policy of the system are obtained by solving a multiobjective
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optimization problem, where the objectives are the total distance driven, fleet size, and
the passengers’ discomfort. However, in the vast majority of the research works on MoD
systems, these problems are solved separately, i.e., the fleet size is determined first and then
the operating policy is designed for the given fleet size.

Another challenge of MoD systems is the disbalance of the transportation demand.
The demand is usually not uniformly distributed in space and time, which results in the
imbalance of the number of vehicles in different parts of the city. For instance, during the
morning peak, the vehicles are typically requested for pickup in residential areas, but they
subsequently end up in business districts. As a result, the stock of vehicles in residential
areas is shrinking, while unused vehicles are accumulating in business areas. To tackle this
problem, the MoD system provider can use rebalancing, i.e., the relocation of vehicles from
areas with a surplus of vehicles to areas with a shortage of vehicles. (Spieser et al., 2014).

2.2 Notation and Problem Formulations

In this section, we provide a unified notation for this thesis and we also formulate two most
important problems in MoD: the dial-a-ride problem and the fleet-sizing problem. Other
more specific notation and problem formulations are introduced through the rest of the
thesis as needed.

2.2.1 MoD Notation

Transportation Demand

The key input to any problem related to MoD systems is the transportation demand. The
demand D is a set of travel requests representing users that want to travel from some origin
point to the desired destination, respecting some time constraints.

The most general form of these time constraints are the so-called time windows that
restrict both minimum and maximum times for origin and for destination. Each request is
thus defined as a pair (o, d) where o (origin) and d (destination) are triples (l, tmin, tmax)
where l is the location and tmin and tmax are minimum and maximum pickup (or drop off)
times.

In online scenarios, however, we usually assume that there is no restriction on the min-
imum drop-off time (users want to be transported as soon as possible). Also, instead of
separate maximum times for origin and destination, we assume that each user is willing
to delay his travel by the same max delay constant δmax. As a result, the request can be
simplified as a triple (o, d, t), where o and d are origin and destination locations, and t is
the desired pickup time of the request. In this thesis, we will use this simplified notation.
Note that the delay δ can be caused by two factors: late pickup or detour while the request
is already on board. The total delay is computed as:

δ = t′d − ftt(o, d)− to, (2.1)

where t′d is the actual drop-off time of the request.
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Locations and Time

In the previous section, we defined a request as a triple (o, d, t), where o and d are locations
and t is a time. However, the domain for locations and time is not specified yet. In fact,
we will not specify the format for locations at all, as it is not important for the problems
discussed in this thesis. We only use locations to measure the travel time or travel cost
between two locations and for that, the location can have any form as long as the travel
time/cost function is defined.

We assume that travel times between any two locations a and b are known in the form
of a travel time function ftt(a, b). Note that the function parameter order matters here, as
in real road networks, it frequently holds that ftt(a, b) ̸= ftt(b, a). Analogously, we define
the travel cost function ftc(a, b), which represents the travel cost. Note that if we optimize
for minimum travel time, we can set ftc = ftt.

Similarly to locations, we do not specify the unit of time. We only assume that each
time property (pickup time, travel time, etc.) is specified using the same unit and that the
codomain of the travel time function ftt(a, b) represents the same unit of time.

Vehicles and Vehicle Plans

Every request in an MoD system is served by one of the available vehicles; we denote the
sequence of all available vehicles as v. In traditional DARP problems, vehicles are parked
in single or multiple depots (Toth & Vigo, 2014), but in general, vehicles can start at any
location. Another important parameter for vehicles is capacity: the number of users that
can travel in the same vehicle simultaneously. Therefore, we define a vehicle as a pair (l, c),
where l is the initial location of the vehicle, and c is its capacity.

The plan of a vehicle is represented as a sequence of locations p = l1, l2, . . . l|p|, where
each location is either an origin location or, or a destination location dr of request r that is
scheduled to be serviced by the plan. A vehicle plan is valid only if a) for each request r
serviced by the plan, the plan contains the origin location or, and the destination location
dr exactly once, and b) for each request r, or appears before dr in the plan. An important
property of a valid vehicle plan is its feasibility. A vehicle plan is feasible if it respects the
time constraints of all requests and the capacity constraint of the vehicle. The (operating)
cost of a vehicle plan p denoted as ftc(p) is defined as the sum of travel costs between
consecutive locations in the plan (l1, · · · , l|p|), starting with the vehicle location lv:

ftc(p) = ftc(lv, l1) +

|p|−1∑
i=1

ftc(li, li+1). (2.2)

There can be multiple valid plans for a single vehicle. We denote the set of all valid plans
for a vehicle v as Pv. This set is never empty as the empty plan with no requests is by
definition valid for any vehicle.

To explain some methods and algorithms, it is also convenient to define a system plan
as a set of one plan for each vehicle. A system plan π is each set of plans for which the
following holds:

∀v ∈ V : ∃!p ∈ Pv, p ∈ π. (2.3)
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An extended formulation for vehicles is required for the dynamic DARP problem, as we
need to consider the state resulting from the previous DARP instance. Here, we extend the
vehicle definition with a property R which is the set of requests that are currently being
transported by the vehicle.

2.2.2 DARP Instances

With the introduced notation we can finally define the problem instance for the DARP. A
DARP instance is composed of:

• a set of requests D,

• a sequence of vehicles v,

• a travel time model whose most basic example is the travel time function function
ftt(a, b),

• and a travel cost model whose most basic example is the travel cost function ftc(a, b).

Various instance parameters can be used to further constrain the problem, so for each
set of instances, we need to specify which parameters are used. Typical some subset of the
following parameters is used:

• maximum allowed delay δmax, if not specified individually for each request,

• service time at each request, which represents the time needed to pick up and drop
off the MoD user,

• requirement for vehicles to return to the initial location (depot) after the last request,

• the max ride time, i.e., maximum allowed travel time for request,

• and the max route time, the maximum allowed travel time for any vehicle plan.

The max ride time limiting the travel time of a request is usually needed for instances with
loose time constraints, to prevent a flexible passenger from spending too much time in the
vehicle. The max route time represents the maximum time a driver can work without pause
imposed by contractor law.

Apart from the instance definition, each instance has some important properties that can
be directly derived from its components. The first of such properties is the time horizon,
denoted as τ . This interval represents either the allowed operating time of the vehicles
or the time interval between the earliest pickup time and the latest drop-off time in case
the vehicle operating time is not limited. The second property is the time window length,
denoted as ω. It represents the time flexibility of the requests’ pickup and drop-off times. If
the δmax is specified for the whole instance, the window length is equal to it. Otherwise, we
know the interval of the possible values of ω and we can also compute the average window
length ω̄. As we have explained, both these two properties can be directly derived from the
instance definition. The reason why we mention them separately is that they are the most



2.2. NOTATION AND PROBLEM FORMULATIONS 13

significant indicators of the instance combinatorial complexity. Therefore, when describing
or comparing some instances, it is usually sufficient to list these properties together with
the number of requests and vehicles, instead of specifying the instance definition.

2.2.3 Dial-a-ride Problem

The DARP problem consists of assigning a vehicle to each request and computing feasible
plans for all vehicles. Note that in order to receive optimal or high-quality sub-optimal so-
lutions, these two aspects need to be solved together. Unfortunately, this is not always clear
in the MoD literature, where DARP is frequently referred to as request-vehicle assignment
or trip-vehicle assignment, despite the process result in vehicle plans, not just in matches
between passengers and vehicles (Alonso-Mora et al., 2017; Čáp & Alonso-Mora, 2018).

There are multiple criteria that can be optimized. Usually, we optimize the operation
cost, service quality, or both. For simplicity, these two criteria are usually reduced to the
total travel distance and the total delay, respectively.

To state the above more formally: when solving DARP, we try to find the optimal system
plan (set of vehicle plans) such that: 1) every request is served, 2) all plans are feasible,
and 3) the total cost is minimized. Below, we define the DARP for the case of optimizing
for the minimal total travel distance.

Problem 2.1. Find the set of feasible plans P that minimize∑
p∈P

ftc(p) (2.4)

subject to

∃!p ∈ Pv, p ∈ P ∀v ∈ V (2.5)

∃!p ∈ P, or ∈ p ∀r ∈ D (2.6)

Note that the above problem formulation is not the classical DARP formulation. Typi-
cally, DARP is formulated as a mixed-integer program (MIP). However, for this thesis, the
above formulation is sufficient, as we do not solve DARP directly using MIP solvers. For
the classical MIP formulation, refer to Cordeau (2006) or Ropke and Cordeau (2009).

Finally, let us discuss the complexity of the DARP. A special case of the DARP with
unbounded time constraints is the capacitated vehicle routing problem (CVRP) (Toth &
Vigo, 2014). If we consider even more special cases with unbounded capacity, the prob-
lem becomes the vehicle routing problem, and by considering only one-vehicle instances, it
becomes the traveling salesman problem (TSP), which is a generalization of the Hamilto-
nian cycle problem. As the Hamiltonian cycle problem belongs among the 21 NP-complete
problems introduced by Karp (1972), we can immediately prove, by restriction, that the
DARP is NP-hard. Since the DARP has time and capacity constraints, it is interesting to
look at the problem of finding any solutions to the DARP. In fact, an optimal solution can
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be also the only solution, or there can be no solution at all. Therefore, even determining
the feasibility of a DARP instance is NP-hard, as proved by Savelsbergh (1985). This has
important implications: even heuristic methods for solving DARP can be computationally
expensive or not capable of finding a solution for solvable instances.

2.2.4 Fleet-sizing Problem

The fleet sizing problem is a problem of determining the fleet size |V |. As we mentioned
in Section 2.1.5, the fleet-sizing problem is usually solved separately from the MoD system
operation optimization (DARP problem). Therefore, we define it here as a single-objective
optimization problem, where the objective is to minimize the fleet such that the MoD service
level is acceptable. There are multiple possible definitions of the acceptable service level.
Here, we define it as the maximum number of unserved requests ϵ when solving DARP for
a given demand or a set of demands. In some works, the threshold ϵ is set to zero, i.e.,
the fleet size is minimized such that all requests are served (Fiedler, Čertický, Alonso-Mora,
et al., 2022), while in others, dropped requests are allowed (Alonso-Mora et al., 2017).

2.3 DARP Solution Methods

Through all chapters of this thesis, we use DAPR solution methods for various tasks. In
Chapter 3, we use them to determine the fleet size for the given demand (fleet-sizing) and also
for the demonstration experiments. In Chapter 4, we simulate various MoD systems, some
of which require DARP solutions methods for vehicle dispatching. Finally, in Chapter 5,
we use existing DARP solution methods as a building block for new solution methods, and
as a baseline for comparison. Therefore, in this section, we present two DARP solution
methods that we use the most in this thesis: the Insertion Heuristic and the Vehicle-group
Assignment (VGA) method.

2.3.1 Insertion Heuristic

The Insertion Heuristic (IH) is a simple and fast heuristic introduced by Jaw et al. (1986) in
1986. To this day, it is one of the most used heuristics for solving the DARP (Bischoff et al.,
2017; Campbell & Savelsbergh, 2004; Fiedler et al., 2018; Kalina et al., 2015). Also, IH is
often used as a subcomponent of more sophisticated algorithms. For example, in ridesharing
with demand prediction (van Engelen et al., 2018), when integrating ridesharing with public
transport (T.-Y. Ma et al., 2019), or as an initial solution generator for metaheuristic
methods (Muelas et al., 2013).

The IH logic processes the requests one by one, typically in the order of their desired
pickup time (arrival in online DARP). For each request, the IH attempts to insert the
request into the plan of some vehicle so that the resulting overall cost of all plans is the
lowest. To compute this minimum cost increment, the algorithm tries all vehicles, and for
each vehicle, it tries all possible pickup and drop-off insertion points. In other words, the
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IH inserts a request into the system plan optimally, the suboptimality comes from the fact
that the requests are processed one by one.

The pseudocode of the IH is presented in Algorithm 1. The inputs of the algorithm
are the set of requests D and a set of vehicle plans p, one for each vehicle. These initial
vehicle plans are empty in static DARP, but in the dynamic DARP, these plans contain the
requests that are already being transported by the vehicles. Note that when adding a new
request into a plan pi, the relative ordering of all locations from pi remains unchanged in
the new plan, and therefore, optimality is not guaranteed.

Algorithm 1 Insertion Heuristic

Input: set of requests D, sequence of empty vehicle plans p, one for each vehicle

for r ∈ D do
δmin
c ←∞ ▷ minimum cost increment
p∗ ← null ▷ best plan
i∗ ← 0 ▷ index of the best plan
for i ∈ 1, . . . , |p| do

for j ∈ 1, . . . , |pi|+ 1 do
for k ∈ j + 1, . . . , |pi|+ 2 do

pnew ← pi
insert or to pnew on index j and dr on index k
if pnew is feasible then

δc ← ftc(p
new)− ftc(p)

if δc < δmin
c then

δmin
c ← δc
p∗ ← pnew

i∗ ← i
if p∗ not null then

pi∗ ← p∗

In the remainder of this section, we discuss the complexity of the IH. For each request,
the IH tries all possible combinations of pickup and drop-off insertion points for each vehicle
plan.

Assumption 2.1. A single step in the IH algorithm is to try to insert a pair of
pickup/drop-off actions into a plan.

We also assume a realistic ratio of vehicles to requests:

Assumption 2.2. |V | ≤ c · |D|, where c is constant

With these assumptions, we can show that the asymptotic worst-case complexity of IH is
cubic to the number of requests, as stated in the following theorem:
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Theorem 2.1. Under the Assumptions 2.1 and 2.2, the asymptotic worst-case com-
plexity of Algorithm 1 is O

(
|D|3

)
.

Proof. In IH the requests are processed one by one, and the algorithm is greedy, i.e., previous
requests cannot be reordered. The number of possible pairs of pickup/drop-off positions is
the sum of possible insertions in two categories: 1) insertion to empty plan, and 2) insertion
among already inserted requests. For 1), the number of possible combinations is |V |, as a
drop-off has to be inserted after the pickup, so there is only one possible pickup/drop-off
combination for each plan, and there is exactly one empty plan for each vehicle. For 2), we
need to understand that we can only insert a new action after an already inserted action or
at the beginning of the plan. Otherwise, we are inserting it into an empty plan, which is
already covered in 1). For i-th request, there are 2(i − 1) possible pickup/drop-off indices
(positions) after already inserted actions and one at the beginning of the plan, in total
2(i − 1) + 1 = 2i − 1 possible indices. The number of ordered pairs of pickup and drop-off
indices is therefore:

(2i− 1)2 (2.7)

However, the drop-off has to be inserted after the pickup, so the index of the drop-off has
to be equal to or greater than the index of the pickup. Given n possible indices, this means
that for i-th pickup index, there are n− i+1 possible dropoff indices. We can now compute
the number of possible ordered pairs as a sum:

n∑
i=1

n− i+ 1 =

n∑
i=1

n−
n∑

i=1

i+

n∑
i=1

1 = n2 − n(n+ 1)

2
+ n =

n2 + n

2
(2.8)

In our case, n = 2i− 1, so the number of valid pairs for i-th request is:

(2i− 1)2 + 2i− 1

2
=

4i2 − 4i+ 1 + 2i− 1

2
= 2i2 − i (2.9)

Now, we can compute the total number of possible ordered pairs for all requests as a
sum over requests:

|D|∑
i=1

|V |+ 2i2 − i = |V ||D|+
|D|∑
i=1

2i2 −
|D|∑
i=1

i (2.10)

= |V ||D|+ 2|D|3
3

+ |D|2 + |D|
3
− |D|

2

2
− |D|

2
(2.11)

= |V ||D|+ 2|D|3
3

+
|D|2
2
− |D|

6
(2.12)

The asymptotic complexity resulting from the above is O
(
|V ||D|+ |D|3

)
. However, we

may simplify it further by applying the assumption 2.2 Given that, the complexity can be
rewritten as:

O
(
k|D|2 + |D|3

)
= O

(
|D|3

)
(2.13)
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Algorithm 2 VGA method. The sequence γ consists of sets of feasible groups, one set for
each vehicle. The optimal system plan is denoted as π∗.

Input: set of requests D, sequence of vehicles v

γ ← ( generate groups(D, vi) )
|v|
i=1 ▷ group generation

π∗ ← Solve Problem 2 using γ ▷ vehicle-group assignment

To conclude the complexity analysis, we wish to highlight two facts that might contradict
initial intuition: a) the complexity is one order lower than the number of loops in the
Algorithm 1, and b) if the number of vehicles is proportional to the number of requests, the
asymptotic complexity is independent of the number of vehicles.

2.3.2 Vehicle-group Assignment Method

The Vehicle-group Assignment (VGA) method is an optimal method for solving the DARP.
It was introduced by Alonso-Mora et al. (2017) as a method for solving large-scale online
ridesharing problems. Later, it was used by Čáp and Alonso-Mora (2018) for static DARP.

The main principle of the VGA method is first to compute all feasible plans for each
vehicle, the group generation phase, and then solve the problem of assigning plans to ve-
hicles, the vehicle-group assignment phase. The overall pseudocode of the VGA method
operation is in Algorithm 2, and the whole procedure is demonstrated by an example in
Figure 2.1. First, we use the group generation procedure (the group generation function
in Algorithm 2) described in the following section to generate sets of all feasible plans for
each vehicle. A sequence of these sets is denoted as γ. Then, we obtain an optimal system
plan π∗ by solving Problem 2, the vehicle-group assignment, with γ as an input. This is
described in Section 2.3.2.

Group Generation

The group generation process consists of generating groups of requests that can be served
by a vehicle, and the corresponding vehicle plans. We define a group R as a set of requests
such that R ⊆ D. We say that a group R is feasible for vehicle a if there exists a feasible
plan for a that can serve all the requests in R. We denote the set of all feasible groups for
a as γa ⊆ P(D).

The group generation procedure is shown in Algorithm 3. It leverages the fact that for a
group R to be feasible, all subgroups R′ ⊂ R must also be feasible. It first computes feasible
groups of size one, and then it iteratively creates larger groups by combining the feasible
groups from the previous iteration with the feasible groups of size 1. The critical parts of
the function are the calls to the f function. Note that to compute an optimal system plan,
we need to implement the f procedure to not just check the feasibility but also to return
an optimal plan for the given group, although it is not explicitly shown in the pseudocode
of Algorithm 3. However, this has no impact on the worst-case complexity, as in the worst
case, there will be no or only one feasible sequence of pickup and drop-off actions for each
group.
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Figure 2.1: Example of the VGA method solving DARP with three passengers and two
vehicles. In Figure 2.1a, we show all groups of requests for each vehicle. The lines between
the request (left) and the group (middle) denote the membership in the group. The lines
between the groups and vehicles denote feasible group assignments. In Figure 2.1b, the final
assignment between vehicles and groups is shown (bold lines).
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Algorithm 3 Function generate groups that generates groups for vehicle a. The boolean-
valued function f(R, a) evaluates to true if a feasible plan serving all requests in group R
exists for vehicle a.
Input: A vehicle a and the set of requests D.

for r ∈ D do ▷ generate groups of size 1
if f({r}, a) then

γ1a ← {{r}} ∪ γ1a
k ← 1
while γka ̸= ∅ do ▷ generate remaining groups

γk+1
a ← ∅

checked← ∅ ▷ not check groups repeatedly
for R ∈ γka , {r} ∈ γ1a do

if (R ∪ {r}) /∈ checked and ∀R′ ⊂ (R ∪ {r}), |R′| = k : R′ ∈ γka then
if f(R ∪ {r}, a) then

γk+1
a ← (R ∪ {r}) ∪ γk+1

a

checked← checked ∪ (R ∪ {r})
k ← k + 1

γa ← {∅} ∪ γ1a ∪ γ2a ∪ · · · ∪ γka

At the end of the group generation step, we have a set of feasible groups for each vehicle,
as it is illustrated in Figure 2.1a.

Vehicle-group Assignment

In the second part of the VGA method, we need to assign the vehicles to groups such that:
a) each vehicle is assigned to no more than one group, b) each request is a part of exactly
one group, and c) the total traveled distance is minimized. We formulate this problem as
an integer linear program (ILP) with binary variables x for each feasible group resulting
from the group generation procedure. If xR = 1, then all requests in the group R are served
by the vehicle to which this group belongs following the associated plan. The problem is
formulated as follows:

Problem 2.2 (Vehicle-group Assignment).

min
∑
R∈γ

ftc(pR
∗)xR,

subject to
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∑
R∈γi

xR = 1 ∀i = 1, · · · , |V | (2.1)

∑
R∈γ

1R(r)xR = 1 ∀r ∈ D. (2.2)

Constraint 2.1 ensures that only one group can be assigned to each vehicle. Con-
straint 2.2 guarantees that each request is served by exactly one vehicle plan. The indicator
function 1R(r) is equal to 1 if the request r is a member of the group R and 0 otherwise.

By solving the above-described ILP, we obtain an optimal assignment of vehicles to
feasible groups (see Figure 2.1b for example assignment).

Complexity

The exact complexity of the VGA method is the sum of the complexities of its two sub-
problems: group generation and vehicle-group assignment. We do not try to analyze the
complexity of the vehicle-group assignment part of the algorithm, as the algorithmic com-
plexity of solving the ILP can vary depending on the ILP solver used. However, as the
ILP problem is an NP-hard problem (again, a generalization of one of the 21 NP-complete
problems (Karp, 1972)), we know that the complexity of vehicle-group assignment is su-
perpolynomial (supposing P ̸= NP). Regarding the ILP formulation of the vehicle-group
assignment, we can at least remark here on the number of binary variables and the number
of constraints. The number of binary variables is equal to the number of feasible groups

generated by the group generation procedure:
∑|V |

i=1 |γi|. The number of vehicle constraints
(Constraint 2.1) is equal to the number of vehicles, and the number of request constraints
(Constraint 2.2) is equal to the number of requests.

We will now focus on the complexity of the group generation procedure. The group gen-
eration complexity is dominated by the need to verify the feasibility of a group, represented
by the call of function f(R, v). Solving this function, in fact, equals solving a single-vehicle
DARP, which is an NP-hard problem (see Section 2.2.3). For each group, we need to, in the
worst case, check the feasibility of all permutations of actions for which it holds that each
drop-off action is after the corresponding pickup action. The total number of permutations
of actions is (2|R|)!. However, the overall complexity is much lower, as most of the permuta-
tions have at least one drop-off action before the corresponding pickup action. To quantify
this, we need to realize two facts: 1) for each request half of the permutations have the
drop-off action before the pickup action, and 2) the misordering of actions is independent
between requests. Knowing this, we can now compute the number of valid permutations as
the number of all permutations divided by half by each request:

(2|R|)!
2|R| (2.11)

The feasibility function is called for each group. The number of possible groups of size
n is

(|D|
n

)
(all combinations of requests of size n). In the worst case, the maximum group



2.4. CLASSICAL AND MOD DARP 21

size is |D|, so the complexity of the group generation procedure is:

O

 |D|∑
n=1

((|D|
n

)
(2n)!

2n

) (2.12)

Finally, we will discuss the practical complexity of the VGA method. The DARP prob-
lem instances appearing in the context of large-scale MoD systems tend to have structural
properties that are beneficial to the VGA algorithm. Specifically, since large-scale MoD
systems are designed to provide quality of service comparable to using a private vehicle,
the maximum waiting at pick-up is usually constrained to be less than a few minutes, and
similarly limited is the maximum delay at destination. Such tight pick-up and drop-off time
window constraints are used by the VGA algorithm to prune the feasible solution space.
Moreover, the instances typically have a short time horizon. Therefore, in practice, the max-
imum group size that requires a feasibility check tends to be relatively small. Even more
importantly, the maximum feasible group size is independent of the number of requests as
we increase the number of requests by enlarging the operational area and not by creating
unrealistically dense demand in a small area. As a result, we can say that in practical large-
scale DARP instances of short time horizon, there is a constant K such that the maximum
feasible group size is less than K, and the complexity is then:

O

(
K∑

n=1

((|D|
n

)
(2n)!

2n

))
(2.13)

Additionally, limited group size means the total number of feasible groups that result from
the group generation and need to be processed by the vehicle-group assignment tends to
be within the grasp of existing ILP solvers. Under such conditions, the VGA method can
generate optimal results in practical computation time, which is demonstrated by the VGA
application results presented in this thesis (in Chapter 4, but also in Chapters 3 and 5).

2.4 Classical and MoD DARP

Originally, the DARP was formulated to solve vehicle dispatching in the context of Dial-a-
ride (DAR) systems, which are on-demand systems to solve elderly people or people with
disabilities (Guenther & Givens, 1970; National Research Council (U S. ), Highway Research
Board, 1971). This is still the dominant application of the DARP in the operational research
community (Ho et al., 2018). So how can we claim to solve DARP in the context of MoD
systems? As we mentioned before, the DAR systems are principally the same as MoD
systems. Both systems provide on-demand transportation services and use the same basic
constraints and objectives. There can be small differences in the formulation of the service
quality constraints (e.g., time windows vs maximum delay), but these are not fundamentally
bound to the real problem, they are rather research community conventions.

However, apart from minor formulation differences, which were discussed in Section 2.2.3,
there are big differences in the instance characteristics. First, in MoD systems, instances
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usually have only short time horizons τ , especially the more typical online instances. While
the classical DARP instances usually cover a whole day (Cordeau, 2006; Cordeau & Laporte,
2003; Ropke & Pisinger, 2006), in MoD, the instances are usually solved online and thus the
time horizon is limited to minutes or even seconds (Alonso-Mora et al., 2017; Fiedler et al.,
2018; Jung et al., 2015). Second, the demand in DAR systems is usually much smaller than
in MoD systems. In New York City, for example, there can be as many as 100 000 (NYC Taxi
& Limousine Commission, 2018) active taxis during peak traffic hours, at least three orders
of magnitude more than in the largest traditional DARP instances (Cordeau, 2006; Cordeau
& Laporte, 2003; Ropke & Pisinger, 2006). Finally, the time window length ω is usually
much shorter in MoD systems than in classical DARP instances. In MoD, passengers’ time
constraints are much more strict because MoD systems are usually focused on the general
population who assumes immediate service. Compared to that, a typical DAR system user
is expected to be more flexible.

We discuss these differences here because they have far-reaching consequences for the
complexity of the DARP. It is clear that the larger demand scale in MoD systems leads to
a higher combinatorial complexity compared to the classical DARP. However, it is not so
intuitive that the remaining two differences also impact complexity significantly, this time,
in the opposite direction. The long time windows create more flexibility: with longer time
windows, more requests can be served by the same vehicle, and higher occupancy increases
the complexity dramatically. The long time horizon, on the other hand, increases the number
of requests that can be served sequentially by the same vehicle. Moreover, while each request
can be transported simultaneously only with a limited number of other requests that are
geographically close, sequentially, the number of requests that can be served by the same
vehicle is virtually unlimited. Therefore, a long time horizon has also drastic consequences
for the complexity of the DARP.

To summarize, the large scale of the demand in MoD systems increases the complexity
compared to the classical DARP, but the shorter time horizon and time windows act in the
opposite direction. Although we do not provide any mathematical analysis of the impact
of these factors, they can be observed in the sensitivity analysis of the MoD simulation
studies presented in Chapter 4. These results show that even large instances can be solved
optimally and thus, the MoD DARP instances are less complex than the classical DARP
instances, despite being many orders of magnitude larger.



CHAPTER3
Instances for MoD-related problems

Most problems or problem areas require some benchmark instances to evaluate new methods,
perform case studies, or experiment with new ideas. Mobility-on-demand (MoD) systems are
no exception: many MoD-related problems like dispatching or fleet-sizing require problem
instances in the same form that is needed for DARP (specified in Section 2.2.2). In this
chapter, we show that currently, there are no established publically available instances
suitable for modeling large-scale MoD systems. Moreover, we describe the challenges related
to the creation of such instances which can explain the lack of them. Finally, we propose
a methodology for creating large-scale MoD instances based on real travel demand data,
present the instances created using this methodology, and evaluate them using two known
established methods for solving the dial-a-ride problem (DARP).

3.1 Existing Public Instances

Before we start with the description of the proposed instances, we first describe the currently
used instances. In the next section, we describe the classical instances, which are small-scale
randomly generated instances containing points in the Euclidean plane. These instances are
typically used in the operational research literature. Next, we describe the modern instances
used in the transportation literature (including the MoD-related research), which are much
larger and typically based on real travel demand data1. We will discuss the problems and

1The classical and modern specifiers here are not established terms and we introduce them purely to easily
distinguish between those two instance types/groups. Calling the instances used in MoD transportation as
MoD instances could be confusing here, as the classical DAR systems also belong to the category of on-
demand systems. However, later in the paper we consider only modern instances and refer to them as MoD
instances or just instances

This chapter is based on the following conference paper:

(Fiedler & Mrkos, 2023b) Fiedler, D., & Mrkos, J. (2023b). Large-scale Ridesharing DARP Instances
Based on Real Travel Demand, 2750–2757. https://doi.org/10.1109/ITSC57777.2023.10422146

For all author’s publications together with the citation counts and research contributions, see Appendix A.

https://doi.org/10.1109/ITSC57777.2023.10422146
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Publication Instances Requests Vehicles ω [min] τ [min]

Cordeau and Laporte (2003)a 20 24–144 3–13 15-90 1440

Cordeau (2006) & Ropke et al.
(2007)b

42 16–96 2–8 15 480-720

a https://chairelogistique.hec.ca/data/darp/tabu/
b https://chairelogistique.hec.ca/data/darp/branch-and-cut/

Table 3.1: Classical DARP instances. Here ω is the time window length and τ is the time
horizon (see Section 2.2.2 for the definitions). Other instances for special DARP variants
are usually based on the second set of instances. Examples of such specialized instances can
be heterogenous DARP instances by Parragh (2011) or multi-depot heterogenous DARP
instances by Braekers et al. (2014).

challenges related to these instances. Finally, we describe an alternative approach to creating
realistic large-scale DARP instances from generated travel demand data.

3.1.1 Classical DARP Instances

The emergence of research related to the DARP in the 1970s brought the first DARP
instances (Psaraftis, 1980). These hand-made instances were located on the Euclidean
plane and contained less than 20 requests.

At the beginning of the 21st century, a handful of new DARP instance datasets were
published (see Table 3.1). Each of those datasets contains tens of instances and the instances
are an order of magnitude larger than the instances by Psaraftis (1980), containing tens of
requests. However, the main properties of the instances stayed the same: the instances are
located on the Euclidean plane, so there is no road network or travel time model considered,
all vehicles start from a single depot, and the requests are generated randomly without con-
sidering any real travel demand data. Because of this and the popularity of these datasets,
we call them classical DARP instances. We can see an example instance from the dataset
by Cordeau and Laporte (2003) in Figure 3.1.

In the last twenty years, more sophisticated large-scale instances based on real demand
were developed to provide better insights into real-world MoD problems. These instances
are described in the following section. Nevertheless, a large amount of the articles from the
last two decades still use the classical instances (Cordeau, 2006; Cordeau & Laporte, 2003;
Gschwind & Drexl, 2019; Ham, 2021; Kirchler & Wolfler Calvo, 2013; Masmoudi et al.,
2020; Parragh, 2011; Ropke & Cordeau, 2009; Ropke & Pisinger, 2006). However, these
articles study the original MoD systems for the transportation of people with disabilities
(DAR systems), and therefore, at least the instance size is realistic.

3.1.2 Modern Instances for Modeling Mobility Problems

With the emergence of large-scale mobility-on-demand (MoD) systems operated by trans-
portation network companies (TNCc), the need for new instances arose because the charac-

https://chairelogistique.hec.ca/data/darp/tabu/
https://chairelogistique.hec.ca/data/darp/branch-and-cut/
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Figure 3.1: Example of a classical DARP instance from the dataset by Cordeau and
Laporte (2003). The instance contains 24 requests and 3 vehicles.
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teristics of MoD DARP are different from the classical DARP. In fact, all main properties
(scale, τ , and ω) differ from the classical DARP. In this section, we discuss these differences,
the current state of MoD problem instances, and the problems and challenges related to
the creation of such instances. Note that while modern instances are rarely referred to as
DARP instances, they still have the same structure as the DARP instances as defined in
Section 2.2.2.

Difference between Classical and Modern Instances

The first notable difference between the instances representing MoDs operated by TNCs
and the classical instances is size. In New York City, for example, there can be as many as
100 000 active taxis during peak traffic hours, at least three orders of magnitude more than
in the largest classical instances (NYC Taxi & Limousine Commission, 2018).

Because of the large scale and also to be in line with the real operation, the vehicles do
not start in a single depot in modern instances. Vehicles are instead distributed throughout
the area to serve the demand with the shortest possible delay while supporting large areas.
At the same time, having a fleet of thousands of vehicles concentrated in one depot like in
classical instances would be unrealistic. Therefore, in modern instances, there are usually
many vehicle depots or the vehicles are free-floating, i.e., each vehicle has its own initial
position.

Modern instances also differ from the classical ones in two key properties. First, the
instance horizon τ is usually shorter. For the transportation of elderly or disabled people,
which is the original application of DARP, the time horizon is usually 24 hours. In other
words, it was assumed that the users of the system order the transportation no later than
the day before the trip. In contrast, the TNC-operated MoD systems are usually used for
immediate transportation, so the time horizon is usually much shorter. In fact, most of the
MoD systems work in an online mode, where the request’s desired pickup time equals the
request’s announcement time. Even instances with a very short time horizon are sufficient
to experiment with these online DARP problems.

Second, the time windows ω are much shorter in modern instances. The reasons for
that are the same as in the case of the time horizon: these systems are used for immediate
transportation, so the users do not have the flexibility. At the same time, unlike the classical
DAR systems operated by municipalities, the current MoD systems are operated by private
companies and thus are much more expensive for the users. Therefore, there are higher
requirements regarding the quality of service, resulting in shorter time windows.

Finally, due to these different characteristics of modern MoD systems, we do not need
some parameters/constraints present in classical instances. The limit on the maximum
duration of vehicle plans is not necessary, as the time horizon of the instance is short.
Similarly, we do not need the maximum ride time of passengers because the time windows
are short.

Emergence of Instances Based on Real Data

Apart from the large-scale MoD systems operated by TNCs, the digitalization of transporta-
tion systems has also brought large-scale datasets of travel demand and other transportation-
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related data. Because of this, many research works related to MoD systems now use large-
scale instances based on real travel demand datasets (Alonso-Mora et al., 2017; Beirigo et
al., 2022; Beojone & Geroliminis, 2021; Bischoff et al., 2017; Burns et al., 2013; Choi et al.,
2023; Fiedler, Čertický, Alonso-Mora, et al., 2022; Guo et al., 2021; Hyland & Mahmassani,
2018; Kondor et al., 2022; Kumar et al., 2023; Lokhandwala & Cai, 2018; Los et al., 2022;
S. Ma et al., 2015; Santi et al., 2014; TU et al., 2019; Tuncel et al., 2023; Vazifeh et al.,
2018; Wallar et al., 2019b; Wollenstein-Betech et al., 2021; B. Yu et al., 2017; Zhan et al.,
2022).

Creating MoD instances using real demand data offers several advantages. Firstly, it
provides a realistic representation of both the scale and distribution of the demand. Sec-
ondly, incorporating the temporal changes in demand into the problem instances allows for
a more accurate reflection of dynamic patterns and variations in service requirements over
time. Lastly, by utilizing road network travel times instead of relying solely on Euclidean
distance, the computed travel cost aligns more closely with actual transportation conditions,
enhancing the realism of the instances.

Nevertheless, even with the availability of large-scale demand datasets, there are many
problems and challenges related to the creation of modern instances. These problems and
challenges are described in the following section.

Problems and Challenges

Apart from apparent advantages, the large realistic problem instances present new chal-
lenges. Instead of a simple random instance generation which we know from the classical
instances, we must process and transform the travel demand datasets into the instance data.
Moreover, in recent years, data providers started to obfuscate the published travel demand
datasets to protect the privacy of users and drivers. This means that the request origin
and destination locations and, sometimes, even request times are not specified precisely.
Instead, locations are binned into zones and times into time intervals. Thus, we must first
generate trip locations and times to create instances from obfuscated data. The absence of
a standardized format for open data across various cities further complicates the situation;
a procedure for creating instances from one dataset cannot be applied to other datasets
without significant changes. Finally, we need other datasets for every location where we
wish to create a problem instance. At the very least, researchers must process the road
network data and, possibly, some dataset of travel speeds to obtain realistic travel times.

To avoid some of these pitfalls, many works use the NYC travel demand datasets pub-
lished before the introduction of privacy protection rules in 20162. However, the Manhattan
dataset has a highly distinctive geography and unusually high demand density. Moreover,
due to the 2016 cutoff, new phenomena, such as the displacement of traditional taxi services
by transportation network companies or the COVID pandemic, are not captured in datasets

2In (Fiedler & Mrkos, 2023a), we claimed that the change took place in 2014. We made this mistake
most likely because the 2014 dataset is the most used one in the transportation studies. Note that the exact
date is hard to determine as the NYC Taxi and Limousine Commission replaced the previously published
data with the obfuscated ones even for the years before the new privacy policy. However, recently, we have
found the original csv datasets with both precise origins/destinations (March) and with origins/destinations
specified by zones (July) for 2016, so we believe that this is the year when the policy has changed.
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based on the pre-2016 Manhattan demand data. This is important since many new methods
are evaluated only using the NYC/Manhattan demand dataset (Alonso-Mora et al., 2017;
Beirigo et al., 2022; Fiedler, Čertický, Alonso-Mora, et al., 2022; Haliem et al., 2021; Santi
et al., 2014; Seo & Asakura, 2022; Thangaraj et al., 2017; Vazifeh et al., 2018; Wallar et al.,
2019b; W. Zhang et al., 2023). As a result, the field of DARP research runs the risk of over-
fitting specific problem instances that lack generalizability to different locations or current
travel patterns. This can result in misleading conclusions and unrealistic expectations when
evaluating DARP solution methods.

The last issue with modern instances is standardization. At first glance, it may appear
that using old Manhattan instances at least provides the standardization we know from
the classical instances (Cordeau, 2006; Cordeau & Laporte, 2003; Ropke et al., 2007).
The ability to compare methods to previously established ones without the need for re-
implementation is a crucial factor for productivity. However, there are no publicly available
instances for Manhattan or other cities. Instead, every work presents its own instances based
on the demand datasets (private, or public) without publishing them; thus, their results are
hardly comparable or replicable.

3.1.3 Generated Travel Demand

The last option for creating MoD instances is to use generated travel demand. Unlike clas-
sical instances where the travel demand is generated uniformly, researchers also investigate
the generation of realistic travel demand. This is useful for performing realistic case studies
if we cannot use real travel demand data. The historical travel demand data are available
only for a limited number of cities, therefore, it is likely that a researcher will not be able
to obtain the data for the city or area of interest. Moreover, even if the researchers have
access to the data, they may not be able to use it in their publications due to privacy
concerns(ATOCKAR, 2014; Culnane et al., 2019). It was repeatedly demonstrated that
it is possible to infer real travel diaries even when some privacy-preserving measures like
anonymization or obfuscation are applied (Fiore et al., 2020; Gambs et al., 2014; Srivatsa
& Hicks, 2012). For these two reasons, it makes sense to develop methods for generating
realistic travel demand, even in the era of big data.

Traditionally, demand models were centered around individual trips which were gener-
ated in stages. The dominant approach was the four-step model whose stages are a) trip
generation: the generation of incoming and outgoing demand for each zone, b) trip distri-
bution: the generation of the number of trips between each pair of zones, c) mode choice:
the assignment of the mode of transport, and d) route assignment : the decision of the
route (Hensher, 2007).

Nowadays, the trip-centric approach is considered obsolete (Ben-Akivai et al., 1996;
Hensher, 2007) and most of the literature is focused on users and their daily activities or
travel itineraries (Kapp et al., 2023). Activity-based models (Hensher, 2007) play a promi-
nent role in this family of models. Activity-based models employ so-called activities (e.g.,
work, shop, sleep) and their sequences to represent the transport-related behavior of the
population (Čertický et al., 2015). Travel demand then occurs due to the agents’ necessity
to satisfy their needs through activities performed at different places at different times.
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These activities are arranged in time and space into sequential daily schedules. Trip origins,
destinations, and times are endogenous outcomes of activity scheduling. The activity-based
approach considers individual trips in context and therefore allows representing realistic trip
chains. In recent years, many activity-based models were studied (Auld & Mohammadian,
2012; Auld et al., 2016; Bassolas et al., 2019; Bösch et al., 2016; Čertický et al., 2015; Drchal
et al., 2016; Lu et al., 2015; Neumann et al., 2012), see for example the survey by Tajaddini
et al. (2021) for more details.

Finally, there are now great opportunities to use big data from transportation network
companies, mobile phone operators, navigation applications, or social networks. With the
recent advances in machine learning (ML), it is possible to replace some expert-defined
parameters or parameters calibrated by small survey datasets and improve the realism of
the generated travel demand. Many recent studies propose to use of ML instead of expert-
designed components of activity-based models (Drchal et al., 2019; Widhalm et al., 2015;
Yin et al., 2018). Other studies also propose to use of ML to create user-centric demand
models but they do not use the activity-based approach(Badu-Marfo et al., 2022; Berke
et al., 2022; Ouyang et al., 2018; Pang et al., 2017; Toole et al., 2015). For a comprehensive
overview of these generative demand models, see the survey by Kapp et al. (2023)

To conclude this section we look at the use of generated travel demand in transportation
studies. Compared to the massive amount of research that uses historical travel demand
data (see Section 3.1.2), the use of generated travel demand is less common, and to our best
knowledge, limited to the activity-based models (Balac et al., 2019; Bischoff & Maciejewski,
2016; Hörl et al., 2019; Maciejewski & Bischoff, 2018; Marczuk et al., 2015; Najmi et al.,
2017; X. Yu et al., 2022)3. Pure ML models, while trending in ML research, are yet to
be adopted by the transportation community. Moreover, the generated instances, similarly
to the instances based on historical demand, lack the standardization necessary for the
comparison of methods and reproducibility of results.

3.2 New Large-scale DARP Instances Based on Real

Demand

In this section, we present new large-scale DARP instances based on real travel demand
data from three cities: New York, Chicago, and Washington, DC. The instances are based
on recently collected data, capturing the latest developments in the MoD field. Moreover,
we present a detailed description of the process of creating these instances, supported by
the source code needed to create them. Finally, we evaluated the instances using two known
methods for solving DARP to demonstrate the advantages of using multiple areas and in-
stance configurations. The methods used are 1) a simple construction heuristic: the insertion
heuristic (Campbell & Savelsbergh, 2004), and 2) an optimal solution method: the vehicle-
group assignment method (Alonso-Mora et al., 2017). Together with the proposed instances,
we distribute full solutions computed by these methods in the instance repository 4.

3Simple uniform models or arbitrary toy examples are not considered here
4https://github.com/aicenter/Ridesharing DARP instances

https://github.com/aicenter/Ridesharing_DARP_instances
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Figure 3.2: Flow chart of the instance creation process.

3.2.1 Methodology

The instances we present are large ridesharing DARP instances based on real travel demand.
Each instance contains a) demand in the form of a list of requests for transportation between
two points in the road network, b) a set of vehicles represented by their starting locations,
and c) a model of travel time between any two locations in the road network.

We present the travel time computation for the travel time model ft in Section 3.2.1. We
use open travel data specific to each city to generate the demand D and vehicles V . This
is described in Section 3.2.1. Finally, in Section 3.1.2, we explain the differences between
classical DARP instances and the proposed instances for ridesharing DARP. The flow chart
covering the whole process of creating an instance is in Figure 3.2.

Computing Travel Time

In classical DARP instances, the request origin and destination locations, as well as the start
locations for vehicles, are coordinates in Euclidean space. The travel time between any two
points is then the distance between these points. However, real travel times are much more
complex: they are not symmetric and cannot be calculated purely from origin-destination
coordinates. To approximate the real travel time, we use a road network with assigned
speeds for each road segment and compute the shortest path between locations in the road
network. Note that we cannot use the demand data for a more precise approximation of
travel times (like, for example, Santi et al. (Santi et al., 2014)) because the recent demand
datasets are obfuscated, and thus, we cannot match the trip origin/destination points to
the nearest intersection.

We base the travel time model on two datasets: the OpenStreetMap5 for the road
network, and the UberMovement dataset6 for speeds. The shortest-path computations are
expensive, which is exacerbated by the fact that most methods for solving DARP need to

5https://www.openstreetmap.org/
6https://movement.uber.com/. Unfortunately, this open dataset is no longer available.

https://www.openstreetmap.org/
https://movement.uber.com/
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compute travel times frequently. Therefore, the travel times are usually precomputed in a
distance matrix to reduce the overhead. However, to keep the size of the matrix manageable,
we need to discretize the road network to limit the number of origin-destination pairs. In
this work, we use intersections as locations.

Note that in Section 2.2.1, we concluded that the travel time function can accept directly
the pickup and drop-off actions, which would result in a much smaller distance matrix. This
is definitely possible in this case as well. The reasons why we modeled travel times for the
whole road network are purely technical: we used an existing program for the distance matrix
computation that accepts the whole road network as an input. Nevertheless, modeling travel
times for the whole road network has also an advantage: it allows us to use the same travel
time model for all instances located in the same area, regardless of the demand locations.

The travel time model for each area was created through the steps shown in light blue
in Figure 3.2. The crucial parts of the process are:

1. Speed data preparation for the area, date, and time of interest.

2. Area specification: the instance area is specified as a convex shape such that all the
demand in the instances we plan to generate lies inside this shape,

3. Import of the selected map from the OpenStreetMap dataset according to the
map state at the time when the speed dataset was created,

4. Filtration of the map so that it contains only road network,

5. Speed assignment to roads according to the speed dataset,

6. Road graph contraction by elimination of all nodes that are not intersections.

7. Largest strongly-connected component selection to remove unreachable “islands”
either real or artifacts of map filtration.

After the largest strongly connected component computation, the road network processing
is finished, and we can produce the travel time model ftt(a, b).

Demand and Vehicles Processing

This section provides a brief description of the process for transforming a travel demand
dataset into demand D and vehicle data V for the DARP instance.

The initial step in the creation of the demand component D involves selecting the date,
start time, and end time. These parameters are then used to extract the relevant records
from the travel demand dataset for a specific city.

As previously mentioned, the travel demand data are now obfuscated by all data providers
due to privacy concerns. Consequently, to generate the instance, we must devise a method
for generating the demand locations and, in some cases, the demand origin time. In both
cases, we sample a uniform distribution across nodes in the processed road network (Section
3.2.1) within the designated zone specified in the dataset and across the dataset’s pickup
time interval, respectively. As neither the zones nor the time intervals are large (see Ta-
ble 3.2), the uniform distribution should not cause an excessive error.



3.2. NEW LARGE-SCALE DARP INSTANCES BASED ON REAL DEMAND 32

Finally, we also need to generate vehicles and determine their starting positions. To
accomplish this, we sample from the demand dataset drop-off points. This approach ensures
that we obtain realistic vehicle positions, while not exploiting the knowledge of the demand.
The vehicle fleet size in each instance is chosen as the lowest number of randomly selected
vehicles that can service all requests when solving by insertion heuristic. This number is
then increased by 5% to introduce a buffer for cases where the insertion heuristic would
find the unique optimal solution.

3.2.2 DARP Instances

We generated instances for four areas: New York City, Manhattan, Chicago, and Washing-
ton, DC. The data sources for those areas are listed in Table 3.2. Each of the generated

Table 3.2: Demand and zone data sourcesa

Area Demand
data source

Zone
data source

Req.
times

Req. per h
per km2

Avg. zone
area [km2]

NYC NYC Taxi
and
Limousine
Commis-
sion

NYC taxi
zones

exact

27.52 3.01

Manhattan 475.21 1.04

Chicago City of Chicago Census tracts and
community areas

gen. 1.17 1.34

DC City of
Washington, DC

Master Address
Repository

gen. 3.65 0.01

a The download links for all data sources can be found in the instance repository: https:
//github.com/aicenter/Ridesharing DARP instances

areas has different characteristics of the travel demand. In Figure 3.3, we can see a com-
parison of the areas using two quantities: demand density and trip length. Note that the
characteristics differ significantly between the areas. A typical travel request in Manhat-
tan originates in a zone with about 10 000 requests per km per day. In Chicago, a typical
request originates in a zone with a demand density of two orders of magnitude lower. A
similar difference can be seen in the average trip length, which is low in Manhattan and
Washington, DC, and high in Chicago.

For each area, we determined the boundary differently. For Manhattan and Washing-
ton, DC, we used the administrative boundary. However, the administrative boundaries
of the remaining areas do not match the demand zones, so we generated the boundary as
convex hulls around the demand zones. For Chicago, we only considered zones with at least
30 requests to reduce the area and increase the density of the demand. The area boundaries
and zones for all areas are presented in Figure 3.4. Note that the DC zones have irregular
shapes. This is because the demand zones in DC are specified as Master Address Repository

https://github.com/aicenter/Ridesharing_DARP_instances
https://github.com/aicenter/Ridesharing_DARP_instances
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(a) New York City and Manhattan

(b) Washington, DC (c) Chicago

Figure 3.4: Area boundaries (blue) and zones (gold). Only the zones within the area
boundary are used to generate the instances.
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(a) New York City (b) DC

Figure 3.5: Example road networks

Table 3.3: Road network statistics.

Area Node Count Edge Count Road length [km] Area [km2]

NYC 113411 281278 27721 1508

Manhattan 6382 13455 1329 87

Chicago 152653 413830 31982 1004

DC 33230 84788 5877 181

zones7. As we do not have access to boundaries for these zones, only their centroids, we
generated the zone boundaries as Voronoi cells based on these centroids.

The road networks were processed according to the steps described in the methodology
section. Only the roads within the area boundary (see Figure 3.4) were used to generate
the road network for each area. Two example road networks are visualized in Figure 3.5.
The statistics for these road networks are summarized in Table 3.3.

Each edge in the road network of all instances has speed associated with it. The speed
data were sourced from the Uber Movement8 dataset for the New York City and Manhattan
areas. This data is visualized in Figure 3.6. We lacked a data source with a similar level of
detail for Chicago and Washington, DC, so we associated an average speed from the Uber

7Method of address standardization used in DC, https://octo.dc.gov/node/715602
8https://movement.uber.com/

https://octo.dc.gov/node/715602
https://movement.uber.com/
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Figure 3.6: Speed map of New York City. The lighter color translates into higher speeds.

Movement dataset with all edges.
Finally, by combining the road graph with the speed data and shortest path planner, we

generated a distance matrix for each area that determines the travel time between any two
locations (intersections in the road graph) and comprises the travel time model ftt(a, b).
This matrix is enough to very quickly provide any necessary travel time information for
DARP solvers and similar algorithms; the map itself is an intermediate product provided
as supplemental material for visualization purposes and the user’s convenience.

The dataset we present currently contains 96 instances, 24 for each area. The parameters
according to which these instances were generated are listed in Table 3.4. Note that instances
with different parameters can be generated by following our methodology; this is just an
example set with parameters set to values relevant (to our best knowledge) to MoD.

In addition to the travel time model in the form of distance matrix ftt(a, b), each
instance contains a list of travel requests D, a list of vehicles V , and its configuration.
An example of the proposed instance is in Figure 3.7. The instances are complemented by
additional meta-data, such as the timestamp of the start time of the demand, location name,
road graph, travel speed data, and other supporting information useful for visualization and
analysis.
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Figure 3.7: Example of a Manhattan instance. The purple areas mark demand: darker
color translates to higher travel demand from the area. The Black circles mark vehicles at
their initial positions. This particular instance contains 10 362 requests spanning 30 minutes
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Table 3.4: Parameters for instance generation

Start time 2022-04-05 18:00:00 (07:00:00)a

Duration [min] 0.5, 1, 2, 5, 15, 30, 120, 960

Maximum delay (δmax) [min] 3, 5, 10

Vehicle capacity (c) [persons] 4

Location NYC, Chicago, Manhattan, DC

a For the longest 960min instances

As the existing MoD DARP instances are not standardized nor publicly available, we
cannot compare the proposed instances with them. However, we can compare the proposed
instances with the classical DARP instances: this comparison is in Table 3.5.

3.2.3 Experiments

We run a series of experiments to showcase the potential usage of our instances. These
experiments use two DARP solution methods to solve DARP problems defined by our
instances.

Solution Methods

We evaluated two existing methods for solving the DARP problem:

• the well-known Insertion Heuristic (IH),

• and an optimal solution method, the Vehicle-group Assignment method (VGA) (Alonso-
Mora et al., 2017).

IH is a standard heuristic for vehicle routing problems, including DARP. Because of its good
tradeoff between solution quality and computational requirements, it is frequently used as
a default or baseline method (Bischoff et al., 2017; Campbell & Savelsbergh, 2004; Fiedler
et al., 2018; Kalina et al., 2015). Moreover, many metaheuristic methods use it to compute
the initial solution (Muelas et al., 2013). The VGA method is an optimal solution method.
Based on the existing research, one cannot expect it to solve all instances, especially those
with large maximum time delays (Fiedler, Čertický, Alonso-Mora, et al., 2022).

Implementation and Configuration

We implemented both solution methods in C++ using Gurobi solver9 to compute optimal
vehicle-group assignments in the VGA method. We set the time limit for each experiment
to 24 h and ran each on AMD EPYC 7543 CPU with between 1GB and 300GB of memory
and between 1 and 32 threads, depending on the location and solution method (VGA multi-
threaded, IH single thread).

9State-of-the-art commercial MILP solver, https://www.gurobi.com/

https://www.gurobi.com/
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Table 3.5: Comparison of selected proposed instances and classical DARP instances

Instances Instance
Horizon (τ )

Requests Vehicles Mean Trip
Dur. ± SD [min]

Time Window
(ω) [min]

DC 30 s 4 18 25.0±7.5 3, 5, 10c

DC 15min 163 121 15.8±8.7 3, 5, 10c

DC 16h 3297 218 16.1±8.3 3, 5, 10c

Chicago 30 s 5 7 7.3±4.0 3, 5, 10c

Chicago 15min 274 198 13.4±15.1 3, 5, 10c

Chicago 16 h 3794 388 17.8±17.9 3, 5, 10c

Man. 30 s 140 124 7.9±3.7 3, 5, 10c

Man. 15min 5113 1672 7.7±3.8 3, 5, 10c

Man. 16 h 90 533 2011 8.0±4.0 3, 5, 10c

NYC 3 s 329 336 10.3±6.2 3, 5, 10c

NYC 15min 10 567 5085 9.9±6.6 3, 5, 10c

NYC 16h 198 727 6461 10.5±6.7 3, 5, 10c

classic Aa 24 h 16-96 2-8 10.6±4.9 15mind

classic Bb 24 h 24-144 3-13 6.8±3.6 15-45 mind

or 30-90 mind

or 15-90mind

a (Cordeau, 2006), 48 instances
b (Kirchler & Wolfler Calvo, 2013), 20 instances
c one instance for each
d Combined with full 24 h time windows on same instances, e.g. 15min window for pickup and
24 h for drop off of the same request.



3.2. NEW LARGE-SCALE DARP INSTANCES BASED ON REAL DEMAND 40

N
YC

M
an

C
hic

D
C

0

500

1000

1500

2000

N
YC

M
an

C
hic

D
C

N
YC

M
an

C
hic

D
C

N
YC

M
an

C
hic

D
C

N
YC

M
an

C
hic

D
C

N
YC

M
an

C
hic

D
C

N
YC

M
an

C
hic

D
C

N
YC

M
an

C
hic

D
C

0

500

1000

1500

2000
0

500

1000

1500

2000

method ih vga

0.5 1.0 2.0 5.0 15.0 30.0 120.0 960.0

600
300

180
tr

av
el

 t
im

e 
pe

r 
re

qu
es

t 
[s

]

instance length [min]

m
axim

um
 delay [s]

Figure 3.8: Average vehicle travel time per request.

We assume that travel requests are fixed and independent of the travel delay imposed
by the solution methods, and all vehicles are operational for the whole time frame of the
instance.

Results

We ran both methods on all instances. You can inspect the full results as a part of the
instance repository10. The main results showing the average cost (vehicle travel time) per
travel request are in Figure 3.8. As expected, the VGA method could not solve all instances
within the time limit. Another trend is that the cost decreases with the increasing max
allowed delay. The same is true for the instance duration. All these trends correspond to
findings from previous works (Alonso-Mora et al., 2017; Fiedler, Čertický, Alonso-Mora,
et al., 2022).

A more interesting comparison is that between different areas. We can see that area is
a more significant predictor of cost than instance duration or max delay. One can argue
that this is just an effect of different demand densities but a quick look at Table 3.2 does
not support this simple conclusion. The Washington DC instances have greater average
costs than the Chicago instances, while the demand density is four times greater. When we
compare the costs from New York and Manhattan instances, the less dense New York area
indeed shows higher costs. However, the cost difference is not that high if we consider that
the demand density is more than ten times lower in NYC. Both these comparisons suggest

10https://github.com/aicenter/Ridesharing DARP instances

https://github.com/aicenter/Ridesharing_DARP_instances
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Figure 3.9: The increase of cost when solving by a suboptimal method (IH) relative to
the optimal solution (VGA). Instances with duration 2 h and 16 h are omitted. The crosses
signalize missing values (missing results of the VGA method).

that there is no simple relation between the demand density and solution cost. Most likely,
other more complex area properties, like those examined in Figure 3.3, affect the solution
quality as well.

Another important question is how the area affects the cost of the heuristic solution
compared to the optimal one. We can see that the difference is not consistent between
areas. Figure 3.9 brings more insight into this problem showing the relative difference
between the optimal and the heuristic solution for each instance. Again, we can see that
the difference between optimal and heuristic solutions increases with instance flexibility
(greater duration and maximum delay). Nevertheless, the differences among areas are even
greater, suggesting that area-specific properties are an important factor in determining the
performance of heuristic methods.

For the final comparison, we show the histogram of occupancies on selected scenarios
in Figure 3.10. Again, the occupancy is more impacted by the area than by the other
parameters. Manhattan has the highest average occupancy, and the lowest is in Washington
DC instances. But the instance length also has a considerable impact on occupancy. We
can observe that the occupancy is low in the short instances, most likely due to the inability
to match multiple requests to a single vehicle in such a short time.
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Figure 3.10: Occupancy histogram on selected instances when the problem is solved by
the suboptimal method (IH). The red bars mark zero occupancy (empty vehicles), and the
blue then start from 1 on the left to 4 (vehicle capacity) on the right.

3.3 Summary

In vehicle routing problems with time windows, and specifically dial-a-ride problems (DARP),
significant efforts are dedicated to developing new methods that strike a better trade-off be-
tween solution cost and computational requirements. With the emergence of new technolo-
gies and the digitalization of transportation, these problems have gained relevance in the
context of large-scale mobility-on-demand (MoD) systems. These systems are operated by
transportation network companies, some of which already offer ride-sharing options. This is
reflected in research where many works analyze the sharability and fleet-sizing and provide
DARP solution methods for these systems.

To evaluate these solution methods, we need problem instances containing the travel
demand, expected travel times, and vehicles. However, the traditional DARP instances
fall short when evaluating methods intended for large-scale MoD systems, even though the
problem formulation remains largely identical. Substantial differences in instance character-
istics, such as demand density or time window sizes, are the reason. Because of that, works
that present solution methods for large-scale DARP usually use different problem instances.
Those instances are, however, neither standardized nor publically available. Additionally,
most of them are located in the Manhattan area, which can hardly be seen as a represen-
tative area due to its abnormally high demand density. To make matters even worse, the
obfuscation of the publicly available datasets (including NYC) leads researchers to reuse the
datasets released prior to the establishment of the privacy protection measures, which are
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now about ten years old.
In this chapter, we introduce a comprehensive collection of large-scale instances de-

signed explicitly for evaluating solution methods tailored to large-scale MoD systems with
ridesharing capabilities. We have carefully crafted instances with varying characteristics
in four areas: New York City, Manhattan, Chicago, and Washington, DC. All instances
use actual demand data from these regions, including real travel times for New York City
and Manhattan. In total, the dataset contains 96 distinct problem instances. With these
instances, new DARP solution methods can be compared with the existing ones without
reimplementing them. Moreover, the methodology and implementation described in this
chapter can be used to generate additional instances tailored for representing current or
future problems.

To showcase the intended usage, we evaluated all instances using two methods, the Inser-
tion Heuristic (IH) and the optimal Vehicle-Group Assignment method. Overall, the results
align with findings from previous works: the solution cost per request is decreasing with
both the instance duration and the maximum delay for request, and the IH suboptimality
is mostly below 20%. However, an interesting finding is the heavy dependence of all results
on the characteristics of the specific areas. Thus, we conclude that evaluating new methods
in multiple cities is crucial for methods intended for use within large-scale MoD systems.
This contrasts with the current research practice.

Apart from its direct applicability to static DARP, our instances hold great potential
for evaluating solution methods addressing online DARP and other MoD-related problems,
such as fleet sizing, vehicle depot positioning, pricing, and future demand estimation. Unlike
classical DARP instances, which often rely on fictional data, the proposed instances are
derived from real-life demand data and road networks and could be used to estimate the
real-life performance of DARP solution methods.



CHAPTER4
Simulation Studies of Large-scale

Mobility-on-demand Systems

At the time when this doctoral research was initiated, a lot of research questions related to
mobility-on-demand (MoD) were still open. A logical tool to answer these questions and to
direct further research was to use traffic simulations. In transportation research, including
intelligent transportation systems (ITS), traffic simulation is a well-established and widely
used tool (Agatz et al., 2011; Balac et al., 2019; Bischoff et al., 2017; Engelhardt et al., 2019;
Hörl et al., 2019; Oke et al., 2020; R. Zhang et al., 2016a). The main advantage of traffic
simulation is that it can measure various quantities of interest, without a prior knowledge
of the relations in complex traffic systems. With a simulation, it is enough to define the
(transportation) entities and their behavior and interactions to analyze the behavior of the
whole system and obtain the answers to the research questions.

In this chapter, we demonstrate the use of traffic simulation to answer the research
questions related to MoD systems. These questions are presented in Section 4.1. Then we
describe the methodology used to answer these questions in Section 4.2. Finally, we present
the results of each research question in Section 4.3.

This chapter is based on the journal article:

Fiedler, D., Čertický, M., Alonso-Mora, J., Pěchouček, M., & Čáp, M. (2022). Large-scale online
ridesharing: The effect of assignment optimality on system performance. Journal of Intelligent
Transportation Systems, 0 (0), 1–22. https://doi.org/10.1080/15472450.2022.2121651

and the following conference papers:

(Fiedler et al., 2017) Fiedler, D., Čáp, M., & Čertický, M. (2017). Impact of mobility-on-demand on
traffic congestion: Simulation-based study. 2017 IEEE 20th International Conference on Intelligent
Transportation Systems (ITSC), 1–6. https://doi.org/10.1109/ITSC.2017.8317830

(Fiedler et al., 2018) Fiedler, D., Čertický, M., Alonso-Mora, J., & Čáp, M. (2018). The Impact of
Ridesharing in Mobility-on-Demand Systems: Simulation Case Study in Prague. 2018 21st
International Conference on Intelligent Transportation Systems (ITSC), 1173–1178.
https://doi.org/10.1109/ITSC.2018.8569451

For all author’s publications together with the citation counts and research contributions, see Appendix A.
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An important aspect of our work is that we ask our research questions in the context of a
hypothetical large-scale deployment of MoD systems. Currently, the MoD systems account
for only a small fraction of the total transportation in most cities. However, their share is in-
creasing and for example in Manhattan’s central business district, the MoD systems already
account for more than 50% of total transportation (NYC Department of Transportation,
2019) Therefore, in our simulation studies, we consider a complete replacement of all private
cars by MoD vehicles. Another important aspect of our work is that we simulate the MoD
systems in an online setting, i.e., the travel requests appear continuously. For users of the
system, this means that they can request a ride at any time and expect to be served within a
reasonable time (limited by the maximum allowed delay δmax). We have chosen this setting
because it represents most of the current MoD systems, provided by TNCs like Uber or
Lyft. For the dispatching method, dealing with online ridesharing translates into solving
dynamic DARP.

Two other clarifying notes are in order. First, we note that MoD systems are ultimately
envisioned also to include high-capacity transportation modes (e.g., trains, subway, buses)
and to allow for transfers between different vehicles (Susan Shaheen & Adam Cohen, 2020).
However, we focus on MoD systems that transport each passenger from their pick-up to
their destination in one vehicle. Second, we focus on MoD systems, where each vehicle
is driven by a for-hire driver who transports travelers between their desired pick-up and
drop-off locations. Alternatively, in the future, these vehicles may be self-driving. Apart
from that, there is a distinct concept called peer-to-peer ridesharing, where the vehicle is
typically owned and driven by one of the travelers, whose primary motivation is to reach
his/her intended destination. Readers interested in peer-to-peer ridesharing are referred to
the growing body of research devoted to this model, for example, the work of M. Li et al.
(2020) that studies the impact of high occupancy toll lane configurations on the willingness
of (peer) drivers to share a ride, or J. Ma et al. (2020) and Yan et al. (2019) who study the
ridesharing user equilibrium in the context of peer-to-peer ridesharing.

4.1 Research Questions

In this section, we present the three research questions that we have answered using traffic
simulation. Each question was addressed in one of our papers; The papers together with the
corresponding research questions and their main contributions are summarized in Table 4.1.
For each question, we first present the motivation and importance of the question and then
we describe the basic metrics that we use to answer the question.

4.1.1 Research Question 1: What are the impacts of large-scale
MoD system deployment?

The main advantage of MoD systems compared to private cars is that they can serve the
same travel demand with fewer vehicles since a typical shared vehicle serves more passengers
daily than a typical personal vehicle. A combined effect of the reduction of the number
of vehicles and their higher utilization has the potential to drastically reduce demand for
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Table 4.1: Summary of the research questions. In the second column, there is a reference
to the paper that answers the question. In the third column, we list all papers that simulate
the particular scenario. This is important as we simulated scenarios related to already
answered questions in later papers to provide a comparison with the new scenarios (as the
details of the simulation experiments changed between papers).

Research question Answered in Addresed in

What are the impacts of large-scale
MoD system deployment?

(Fiedler et al., 2017) (Fiedler et al., 2017; Fiedler,
Čertický, Alonso-Mora, et al.,
2022; Fiedler et al., 2018)

Research Question 2: How much
ridesharing can improve the perfor-
mance of large-scale MoD systems?

(Fiedler et al., 2018) (Fiedler, Čertický, Alonso-
Mora, et al., 2022; Fiedler et
al., 2018)

Research Question 3: How signif-
icant is the gap between optimal
ridesharing assignment and simple
heuristic?

(Fiedler, Čertický, Alonso-
Mora, et al., 2022)

(Fiedler, Čertický, Alonso-
Mora, et al., 2022)

urban parking space. however, despite having the clear benefit of reducing the parking space
requirements, it is also important to understand the impact of large-scale vehicle sharing on
total traffic intensity and traffic congestion. Indeed, to transport all the passengers, shared
vehicles need to cover at least the same distance as conventional personal vehicles. However,
unlike personal vehicles, shared on-demand vehicles must also travel empty between the
individual passengers, i.e., from the destination of the current passenger to the origin of the
following passenger. On top of that, passenger demands are not distributed uniformly in
time and space, which causes vehicles to accumulate in some parts of the city while other
areas may suffer from the shortage of vehicles. To ensure that each region of a city has a
sufficient number of available vehicles, the rebalancing has to be implemented. Therefore,
on-demand transportation increases the total amount of traffic in the system.

To wrap it up, we want to analyze a) the positive effect of vehicle reduction, and b) the
negative effect of empty trips between customers and rebalancing trips on total vehicular
traffic and traffic congestion.

Existing Research

The properties and performance characteristics of MoD systems have been previously stud-
ied either using simulation or by formal analysis of mathematical models of such systems.
In (Fagnant & Kockelman, 2014), for example, a multi-agent simulation was used to analyze
the impact of deployment of a small fleet of MoD vehicles, and the results suggest that the
fleet can be reduced nearly twelve times, but the total distance traveled increases by 10.7%.
The authors also analyze the environmental impacts such as the number of cold starts,
finding that the emission savings would be significant. The study by Spieser et al. (2014)
considers a replacement of all private vehicles in Singapore by a fleet of shared vehicles.
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Their result suggests a more modest reduction of the fleet size: they conclude that approx-
imately one-third of the current number of private vehicles is needed to serve the existing
travel demand. Another Singapore study by Marczuk et al. (2015) compares the number
of cars needed when using different vehicle rebalancing methods. In results for offline and
online rebalancing, 28% and 23% fewer cars are needed compared to the system without
rebalancing. The idea of replacing all private vehicles with a fleet of shared vehicles was
also studied by Bischoff and Maciejewski (2016) in a Berlin simulation scenario. This study
suggests that the fleet size can be reduced tenfold from about 1.1million private vehicles to
90 000−100 000 shared vehicles.

The congestion effects of rebalancing in MoD systems have been numerically explored
in (R. Zhang et al., 2016a) leading to the following structural insight: Although the need
for rebalancing in MoD systems generates a significant amount of extra traffic, the rebal-
ancing vehicles travel in the opposite direction than the vehicles carrying passengers, and
thus they use lanes that are currently underutilized. Numerical experiments in simple syn-
thetic networks indeed confirm the observation, suggesting that if the demand traffic flows
(vehicles carrying passengers) are below the road capacity limit, then the rebalancing flows
(rebalancing vehicles) will also not exceed the capacity and consequently they will not in-
troduce new congestion. Then in (R. Zhang et al., 2016b) the problem of vehicle routing in
congested networks was modeled to formally study the impact of rebalancing on formation
on congestion. Assuming a symmetric network and time-invariant demand, the authors
proved that if the demand flows can be routed without exceeding free-flow capacity, then
the rebalancing vehicles can be also routed through the network without exceeding road
capacities. Further, they performed experiments demonstrating that the method remains
effective even in real-world networks that are not perfectly capacity-symmetric. Also, the
authors analyzed the system in a steady state, i.e., they work with the assumption that the
travel demand is time-invariant. Clearly, real-world travel demand changes over time (e.g.,
compare travel demand in the morning peak and the demand at night), but, as the authors
point out, if the demand intensities change slowly relative to the average trip duration, the
model remains reasonably valid. In large urban areas, however, the traffic intensity may
rise drastically over the time of a single trip. Consider, for example, a 30-minute car trip
and the difference between traffic intensities at 6:00 and 6:30, i.e., during the onset of the
morning peak.

Contribution

We analyze the impact of large-scale MoD system deployment using a multi-agent simu-
lation. Unlike Fagnant and Kockelman (2014) who consider only a small fleet of vehicles,
we evaluate a hypothetical large-scale MoD system that replaces all private vehicles in a
city. Moreover, we not only quantify the benefits of reducing the number of vehicles like
in (Spieser et al., 2014) and (Bischoff & Maciejewski, 2016), but we also quantify the nega-
tive effects of empty trips and rebalancing trips on total vehicular traffic and we also analyze
the impact on traffic congestion by analyzing traffic density increase. Finally, the road net-
work we use is not capacity symmetric, which can challenge the results by R. Zhang et al.
(2016b)
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4.1.2 Research Question 2: How much ridesharing can improve
the performance of large-scale MoD systems?

In the previous research question, we explained that the deployment of MoD systems reduces
the number of vehicles needed to serve the existing travel demand, but at the same time, it
increases the total amount of traffic in the system due to empty trips between passengers
and rebalancing trips. A possible solution to the increased traffic is to implement large-scale
ridesharing, i.e., to transport multiple passengers in one vehicle simultaneously. Efficient
ridesharing can increase vehicle occupancy and consequently reduce the total driven distance
and the required fleet size. The objective of this research question is to quantify the potential
of ridesharing to reduce vehicular traffic in a large-scale MoD system. Analyzing ridesharing
in the context of on-demand systems is essential because it can answer the question of
whether the MoD system can be, in fact, deployed without overloading the capacity of
existing road infrastructure.

Existing Research

Ridesharing was traditionally formalized in the framework of Vehicle Routing Problems (VRP),
typically as a specific variant of VRP with Pickup and Delivery or, most precisely, a Dial
a Ride Problem (DARP) (Cordeau & Laporte, 2007; Toth & Vigo, 2014). Yet, as ex-
plained in Section 3.1.2, the existing VRP methods focus on instances with very different
characteristics than the instances that appear in large-scale MoD systems.

The potential for large-scale ridesharing within MoD systems was studied using the
shareability network model in (Santi et al., 2014). This analysis of taxi trips in Manhattan
revealed that up to 80% of the trips could be pairwise shared such that the travel time is
increased by no more than a couple of minutes. The analysis was later extended to other
cities (Tachet et al., 2017). The assumption of the maximum of two passengers in a vehicle
was later lifted in (Alonso-Mora et al., 2017), where the authors proposed a technique for
dynamic assignment of requests to vehicles in the fleet and applied the technique to analyze
the potential of ridesharing within NYC taxi dataset.

Contribution

In contrast to the above work by Alonso-Mora et al. (2017) that analyzes the scenario of
replacing all taxis in Manhattan with a fleet of 3000 shared taxis, we analyze the scenario of
replacing all private vehicles with a fleet of 50 000 shared MoD vehicles and study the impact
of large-scale ridesharing. Specifically, we quantify the potential of ridesharing to reduce
the total distance traveled, but also traffic load, fleet size, and the delay of passengers.

4.1.3 Research Question 3: How significant is the gap between
optimal ridesharing assignment and simple heuristic?

In the last research question, we ask how much more efficient can the MoD system with
ridesharing be if the vehicle plans are computed optimally. If the optimal solutions are
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significantly better compared to the solutions computed by simple heuristics used in the
previous research question, it would be reasonable to invest the effort to deploy the optimal
solvers in real-world MoD systems. On the other hand, the difference can be negligible,
in which case the simpler heuristics would be sufficient. The objective of this research
question is to quantify the difference between the optimal and heuristic solutions in terms
of the total vehicle distance traveled, and also to measure other properties like the number
of used vehicles or the impact on traffic congestion.

Existing Research

Recently, a number of mobility-on-demand system models have been developed with the
aim of providing quantitative insights into the potential of large-scale ridesharing to improve
the efficiency of urban transportation. The ridesharing problem is commonly formulated
as a Vehicle Routing Problem with Pickup and Deliveries (VRPPD) or, more specifically,
as Dial-a-Ride Problem (DARP) (Cordeau & Laporte, 2007; Toth & Vigo, 2014). These
formulations can be solved optimally using off-the-shelf Integer Linear Programming (ILP)
solvers or domain-tailored ILP solution techniques. However, the applicability of these
methods is limited to small-scale instances with at most tens of requests and vehicles.
Large-scale MoD systems typically require the ability to find routes for many more vehicles
and requests. For example, in New York City (NYC), there are almost 100 000 active taxis
per hour during peak traffic (NYC Taxi & Limousine Commission, 2018). Therefore, DARP
instances appearing in large-scale MoD systems are typically solved using heuristic methods.

A popular heuristic method for large-scale DARP is the Insertion Heuristic, described
in Section 2.3.1.

The metaheuristic methods, which are effective in solving conventional DARP problem
instances (Ho et al., 2018), typically target scenarios with less than twenty vehicles (Mas-
moudi et al., 2016; Pfeiffer & Schulz, 2022) and suffer from scalability issues when applied
to large-scale DARPs. However, in the last decade, there has been some progress with meta-
heuristic approaches enabling solving larger instances. Jung et al. (2015) used simulated
annealing to solve scenarios with 600 operating vehicles. Another popular metaheuristic is
the Greedy Randomized Adaptive Search Procedure (GRASP) used by Santos and Xavier
(2013). The authors were able to solve instances with up to 750 requests. They also tested
an online setting with 78 000 requests per day, and later, they improved the results signif-
icantly (Santos & Xavier, 2015). Muelas et al. (2013) also solved four types of specialized
DARP scenarios with up to 90 vehicles using Variable Neighborhood Search. Later, Mue-
las et al. (2015) modified this approach to a distributed version which was able to solve
scenarios with up to 1668 vehicles and 16 000 requests. Another metaheuristic, a modi-
fied artificial bee colony algorithm, was used by Zhan et al. (2021). The method was able
to solve an instance of 3661 requests and 2400 vehicles. Later, this method was used in a
simulation-optimization framework for an MoD system with electric vehicles (Zhan et al.,
2022).

Apart from heuristics and metaheuristics, there has been a new research path of de-
veloping exact methods for large-scale DARP instances motivated by large MoD systems.
A systematic and scalable approach for pairwise ridesharing based on bipartite matching
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in the so-called shareability network was proposed by Santi et al. (2014). The analysis re-
vealed that up to 80% of the trips could be pairwise shared while keeping the travel delay
lower than a couple of minutes. Later, Alonso-Mora et al. (2017) proposed a new method
that lifted the limit of two passengers per car and evaluated this method on the NYC taxi
dataset. Finally, Čáp and Alonso-Mora (2018) utilized this method to study the trade-offs
between the quality of service and the operation cost inherent in ridesharing.

Contribution

In this research question, we analyze the impact of passenger-vehicle assignment optimality
on MoD system performance. To do this, we use a variant of the vehicle-group assignment
(VGA) method used by Alonso-Mora et al. (2017) and Čáp and Alonso-Mora (2018). We
chose this method because it was previously demonstrated to be able to efficiently solve large-
scale DARP instances with tight pick-up and drop-off time windows that are characteristic
of current large-scale MoD systems. Moreover, it is less complex than the classical exact
methods for DARP, and it can be easily modified to a resource-constrained version, which
we also evaluate in this work.

The contribution of this paper is 3-fold:
1) Optimality : We took special care to ensure that all ridesharing assignments and routes

are computed optimally. This is in contrast to Alonso-Mora et al. (2017), who used a similar
solution algorithm to evaluate shareability within the NYC taxi dataset, but to maintain
computational tractability, the actual implementation used in the experiment resorted to
heuristics and time-outs, leading to suboptimal performance of the system. Moreover, it
remained unclear how far are the reported performance metrics from optimum. In this work,
we identified and solved several algorithmic bottlenecks, and consequently, we were able to
obtain optimal ridesharing assignments for the majority of the evaluated scenarios.

2) Scale: We implemented performance optimizations that enable us to significantly scale
the algorithm and compute optimal ridesharing assignments for instances of unprecedented
size peaking at more than 21 000 active travel requests and 11 000 vehicles. This is in
contrast to Čáp and Alonso-Mora (2018) who proposed the optimal version of the VGA
method but were only able to solve problem instances with a bit less than 500 requests.

3) Impact of Assignment Optimality : With an 1) optimal and 2) scalable implementation
of a ridesharing algorithm, we are able to achieve the main objective of this work: to quantify
the impact of using an optimal ridesharing method on system performance in comparison to
the performance achieved by sub-optimal ridesharing methods. We quantify the reduction in
vehicle distance traveled, travel delay, used vehicles, and traffic density (vehicles per meter
of the road) for different ridesharing strategies. This allows us to give a quantitative answer
to the question of how much we gain by actually making the effort to compute optimal
assignments.

4.2 Methodology

To answer all three research questions, we use multi-agent simulation. The methodology
of our simulation experiments can be divided into three parts: a) the simulation inputs,
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b) the MoD system design, and c) the simulation itself. The demand data and the travel
time model we use are described in Section 4.2.1. Next in Section 4.2.2, we present the
evaluated MoD system design. Finally, in Section 4.2.3, we describe the simulation tool and
the simulation process itself.

4.2.1 Input Data

Our simulation research preceded the development of large-scale DARP instances based on
historical data, described in Section 3.2. Because of this, we had to create our own instances
based on other data sources.

For all our simulation studies, we use the synthetic demand for the city of Prague, the
Czech Republic, generated by the multi-agent activity-based model described in Drchal et
al. (2019). We used the Prague demand because a) we have access to the synthetic travel
demand model for the area and b) because its demand density, demand structure, and
road topology are representative of a large European city. This is in contrast to previously
considered urban areas, such as Manhattan or Singapore, which due to an extremely high
density of travel demand, lead to overly optimistic estimates of the benefits of ridesharing.
The details of the Prague travel demand and the travel time model are described in the
next section (4.2.1). To provide at least partially comparable results to other studies, we
also extended our simulation research to the Manhattan area in the last study (Fiedler,
Čertický, Alonso-Mora, et al., 2022). We describe the Manhattan demand and travel time
model in Section 4.2.1.

As for the road network, we use the road networks extracted from OpenStreetMap1 to
cover the area of interest. For Prague, the network consists of 158 674 edges and 63 995
nodes, for Manhattan, the network consists of 9676 edges and 4467 nodes.

Prague Demand and Travel Time Model

For Prague, we used the synthetic travel demand generated by a multi-agent activity-based
model described in Drchal et al. (2019) (see Section 3.1.3 for context on the generated
demand). The model covers a typical workday in the metropolitan area of Prague. The
population of over 1.3million is modeled by the same number of autonomous, self-interested
agents, whose behavior is influenced by their sociodemographic attributes, current needs,
and situational context. Individual decisions of the agents are implemented using four mod-
ules responsible for choosing the activity type, duration, location, and mode. Each module
uses a dedicated machine learning model (such as neural network, decision trees, regression
tree) trained so that its output matches various real-world data sets such as travel diaries
and other transportation-related surveys, demographic data, points of interest, and trans-
port network structure. Planned activity schedules are simulated and tuned, and finally,
their temporal, spatial, and structural properties are validated against additional histori-
cal real-world data (origin-destination matrices and surveys) using the six-step validation
framework VALFRAM (Drchal et al., 2016).

1https://www.openstreetmap.org/

https://www.openstreetmap.org/
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The model consists of over three million trips by all modes of transport in one 24-hour
scenario, out of which there are roughly one million trips realized by private vehicles (Fig-
ure 4.1). Tables 4.2, 4.3, and Figure 4.2 show example activity schedules for two agents.
In this work, we select only the trips realized by private vehicles in two representative time
intervals: the peak dataset includes trips that start at 06:30 and 08:00, and the off-peak
dataset includes trips that start between 10:30 and 12:00. The two datasets contain about
130 000 and 45 000 trips, respectively. The duration of trips ranges from 1 to 37 minutes;
the histogram is in Figure 4.3.

Figure 4.1: Demand for personal vehicle traffic in Prague. The start positions of all vehicle
trips are discretized to squares of 200 square meters. A darker color translates to higher
demand, and the color bar has a logarithmic scale.

The travel time model is based on the maximum speed limits on each road segment, i.e.,
the vehicles travel at the maximum speed allowed by the speed limit. The speed limit for
each road segment was taken from OpenStreetMap data, and missing entries were generated
according to the following rules based on the local legislation: highway: 130 kmh−1, living
street: 20 kmh−1, otherwise: 50 kmh−1.
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Table 4.2: Example trips. Each trip connects two activities, shown in Table 4.3. We
can identify each activity by Person column and From/To columns that correspond to the
Activity column in Table 4.3

Trip Person From To Mode

4 500 942 50 719 0 1 PT

4 500 943 50 719 1 2 PT

4 500 944 50 719 2 3 WALK

4500 945 50 719 3 4 PT

4 789 903 450 277 0 1 CAR

4 789 904 450 277 1 2 CAR

4 789 905 450 277 2 3 CAR

Table 4.3: Example activities.

Person Activity Start End Type Lat Lon

50 719 0 00:00 04:06 SLEEP 50.084 294 14.490 635

50 719 1 06:56 07:42 LEISURE 50.110 286 14.496 852

50 719 2 10:31 13:49 WORK 50.086 623 14.461 201

50 719 3 15:01 16:04 LEISURE 50.076 027 14.439 032

50 719 4 17:17 00:00 SLEEP 50.084 294 14.490 635

450 277 0 00:00 07:22 SLEEP 50.131 751 14.423 139

450 277 1 07:54 15:43 WORK 50.084 170 14.360 924

450 277 2 16:00 16:35 SHOP LONG 50.059 205 14.420 547

450 277 3 17:26 00:00 SLEEP 50.131 751 14.423 139
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Figure 4.2: Two example trips from the generated demand. The filled circles represent
activities, while the arrows represent trips between those activities. Next to each activity, we
can see the person and activity IDs in the format person id-activity id. The activities
corresponding to these IDs can be found in Table 4.3.

Manhattan Demand and Travel Time Model

In the last study, we also experimented with the Manhattan area. For that, we used the
Manhattan taxi demand dataset a favorite dataset in the transportation community. Specif-
ically, we use the same demand and road network as used by Alonso-Mora et al. (2017).
We tried to mimic the setup of Alonso-Mora et al. (2017) in order to provide comparable
results, as this work presents the method that we use as an optimal solution method for
our DARP instances. It may seem superfluous to evaluate the same method on the same
dataset again. However, as explained in Section 4.2.2, the Alonso-Mora et al. (2017) used a
relaxed version of the method in the experiment.

Identically to our Prague experiment, we simulated the system for one hour with a 30-
minute warm-up period. While Alonso-Mora et al. (2017) run the simulation for one week’s
worth of data, here, for simplicity, we selected the day and hour with the largest number
of requests, which was Friday, May 10, 2013, between 19:00 and 20:00. There are 137 202
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Figure 4.3: Histogram of fastest path travel times for each trip.

travel requests in the selected period, Figure 4.4 shows the spatial structure of the demand.
Like Alonso-Mora et al. (2017), we use travel speeds along individual road segments

derived from historical data. However, instead of computing the speeds from the travel
demand, we use the speeds from the Uber Movement2 open data project.

4.2.2 MoD System Design

For MoD systems design, we adopt a station-based methodology described by Pavone et
al. (2012) or by Wallar et al. (2019a), which means that idle MoD vehicles are parked in
dedicated parking facilities instead of parking on-street or cruising. This setup is typical in
carsharing or bike-sharing systems because curb parking would take valuable urban space,
and cruising for parking would increase fuel consumption and congestion. Further, in the
case of electric vehicles, stations will provide charging infrastructure. Finally, the stations
can be used as a base for vehicle maintenance and cleaning.

Vehicles are initialized in stations and leave a station only to serve travel requests.
Whenever a vehicle becomes idle, it starts driving to the nearest station to park there, till
it is dispatched again.

The dispatching of vehicles to serve travel requests is realized by one of the developed
dispatching methods, these are described in Section 4.2.2. To distribute the stations in
the road network, we use the station positioning method described in Section 4.2.2. To
ensure that there are always enough vehicles in each station, we use a rebalancing method
that continuously redistributes vehicles from stations with a surplus of vehicles to stations
with a shortage of vehicles. This is described in Section 4.2.2. Finally, it was necessary to
determine the number of vehicles in each station, this is described in Section 4.2.2.

2https://movement.uber.com/

https://movement.uber.com/
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Figure 4.4: Manhattan taxi trip requests on Friday, May 10, 2013, between 19:00 and
20:00. The start positions of all vehicle trips are discretized to squares of 200 square meters.
A darker color translates to higher demand, and the color bar has a logarithmic scale.
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Dispatching

In an MoD system, new requests dynamically arrive and need to be served. When planning
how the users of the MoD system should be served by the vehicles, we desire to minimize the
total operational cost of the system, such that the discomfort of every passenger is bounded
by δmax. This translates to solving the dynamic DARP problem. We deal with the dynamic
aspect by running DARP solution methods periodically, we refer to such planning period as
a batch. During one batch, we collect all newly announced requests and execute a planning
procedure that computes request-vehicle matching and corresponding vehicle plans. We
make the following assumptions: a) travel time on each road segment is constant over time
and does not depend on the number of vehicles on the segment, b) the execution of the
vehicle schedule is perfect (there are no random delays), and c) the mode choice is fixed in
the demand model and customers accept any plan that satisfies the max delay constraint
(which is guaranteed in our setup, as explained in Section 4.2.2).

We implemented and compared two methods for solving dynamic DARP. The first one
is the Insertion Heuristic (IH), and the second one is the Vehicle-Group Assignment (VGA)
method. Both methods are described in Section 2.3. In the remainder of this section, we
will describe the modifications we have made to those two methods in order to work with
dynamic DARP and also, we present two heuristic variants of the VGA method we have
evaluated.

To adapt the IH to dynamic DARP, we simply start with the set of existing plans
for each vehicle instead of empty plans, like it is described in Section 2.3. For the VGA
method, we need to modify the group generation procedure. Here the modifications are more
complex: we need to keep track of what generated groups contain all onboard requests and
consider only those groups in the assignment ILP. The modified group generation procedure
is described in Algorithm 4.

Finally, we also evaluated two heuristic variants of the VGA method. While the abil-
ity to compute optimal ridesharing assignments is essential to understanding the limit of
performance gains that can be achieved by ridesharing (and the gap between the optimal
performance and the performance of the heuristic solutions), a practical deployment may
impose constraints on the maximum run time of a ridesharing algorithm. Therefore, we also
tested two resource-constrained versions of the VGA method. The first one limits the ILP
solver optimality gap set to 0.5% and the group generation time to 60ms per vehicle. We
refer to this version as VGA limited. The second one is a reimplementation of the method
proposed by Alonso-Mora et al. (2017). We refer to this version as VGA PNAS.

Station Positioning

The vehicle stations were generated such that every location on the road network (excluding
roads without travel requests such as tunnels or highways) can be reached from one of the
stations within 210 s, and the number of stations is minimized. We compute the station
positions using an integer program with binary variables sl for each location l in the set of
serviced locations Ls, where each variable sl indicates if there is a station at location l (1)
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Algorithm 4 Function generate groups described in Section 2.3.2 modified for dynamic
DARP. The boolean-valued function f(R, a) evaluates to true if a feasible plan serving all
requests in group R exists for vehicle a. The set of temporary groups αa contains all feasible
groups for vehicle a, while the set of final groups γa contains only those groups that contain
all onboard requests.

Input: A vehicle a and the set of requests D and a set of onboard requests Da.

for r ∈ D do ▷ generate groups of size 1
if f({r}, a) then

α1
a ← {{r}} ∪ α1

a

if Da ⊆ {r} then
γ1a ← {{r}} ∪ γ1a

k ← 1
while αk

a ̸= ∅ do ▷ generate remaining groups
αk+1
a ← ∅

checked← ∅ ▷ not check groups repeatedly
for R ∈ αk

a, {r} ∈ α1
a do

if (R ∪ {r}) /∈ checked and ∀R′ ⊂ (R ∪ {r}), |R′| = k : R′ ∈ αk
a then

if f(R ∪ {r}, a) then
R′ ← R ∪ {r}
αk+1
a ← R′ ∪ αk+1

a

if Da ⊆ R′ then
γk+1
a ← R′ ∪ γk+1

a

checked← checked ∪R′

k ← k + 1
γa ← {∅} ∪ γ1a ∪ γ2a ∪ · · · ∪ γka

or not (0). We minimize ∑
l∈Ls

sl, (4.1)

subject to ∑
l′∈Pl

sl′ ≥ 1 ∀l ∈ Ls, (4.2)

where Pl is a set of nodes from which l is reachable within 210 s.
Solving this optimization problem for the Prague Instance resulted in 73 stations shown

in Figure 4.5. Because the historical speeds from the Uber Movement dataset used for the
Manhattan travel time model are on average approximately half of the posted speed and
there are a lot of one-way streets in Manhattan, we need 236 stations to provide the required
quality of service there, even though Manhattan is about five times smaller than Prague.
Figure 4.6 shows the locations of Manhattan stations.
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Figure 4.5: MoD system stations in the city of Prague. There are 73 stations in total,
shown as red circles.
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Figure 4.6: MoD stations on Manhattan. Each red circle represents a single MoD system
station.

Rebalancing

The stock of vehicles at each station is stabilized by a vehicle rebalancing process that
continuously sends empty vehicles from stations with a surplus of vehicles to stations that
have a shortage of vehicles. We use the rebalancing policy introduced by Pavone et al. (2012)
and later evaluated by Spieser et al. (2014) in the Singapore MoD case study. In one-minute
intervals, we generate an integer program for transferring vehicles from stations with more
vehicles compared to the initial state to stations with fewer vehicles compared to the initial
state such that the number of vehicles in each station s is kept above a corresponding
threshold βs, and the total length of all rebalancing trips is minimized. We experimentally
determined that in order to compensate for driving vehicles, the βs should be no more than
85% of the initial number of vehicles parked in s. Also, we use only stations with at least
5% more vehicles over the initial state as source stations in order to prevent rebalancing
instabilities, i.e., rebalancing flows in the opposite directions.

Fleet Sizing

Our objective is to achieve full service availability during the entire experiment, i.e., every
request should be served. Specifically, to determine the number of vehicles in each station,
we first created a dedicated vehicle for each request in the station closest to the requested
pickup location. Then, we started iteratively reducing the number of vehicles by the same
factor in each station until the first vehicle shortage event occurred in any station. Then,
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we used the vehicle counts from the last iteration without any shortage. This procedure
guarantees that there is a sufficient number of vehicles to serve all requests from the nearest
station. We experimentally determined that in order to be able to serve every request during
the morning peak without ridesharing, the MoD system requires a total of 68 201 vehicles3.
We used the same fleet size for other scenarios (off-peak, ridesharing). In practice, we can
use a lot fewer vehicles, especially for the ridesharing scenarios. However, since the fleet-
sizing problem is not the focus of this article, we used this fleet-sizing method to ensure that
the size of the fleet is not the limiting factor. The number of vehicles that were actually
used in each experiment is in our experimental results.

4.2.3 Simulation

To answer the research questions given the inputs described in Section 4.2.1 and the system
design described in Section 4.2.2, we use the transportation simulation software stack dis-
played in Figure 4.7. All listed tools Except Gurobi solver are written in Java and licensed
under the LGPL license. We have chosen this software stack because it a) handles large-
scale simulations containing tens of thousands of agents, and, at the same time b) it can be
easily extended not only by its inputs and configuration parameters but also by customizing
the behavior of agents.

The simulation itself runs in Alite4, a framework for multi-agent simulations with an
event-based simulation engine (Komenda et al., 2013). The simulation tools and entities
for urban mobility are part of the AgentPolis5. Agentpolis is a multi-agent event-based
transportation simulation framework (Jakob et al., 2012). For the MoD experiments, we
developed an extension of AgentPolis called SiMoD (Simulation of Mobility-on-Demand)6.
In this extension package, we implemented the IH and the VGA method. Also, rebalancing
and fleet-sizing are developed in SiMoD. Most parts of SiMoD are implemented in Java, some
parts are implemented in Python (e.g., station positioning). The ILPs used in the station
positioning, rebalancing and inside the VGA method are solved using Gurobi 7 (Gurobi
Optimization, LLC, 2023). Finally, AgenPolis uses the Grap Importer8 library to import
the road network and the Geographtools 9 library for the geography data structures and
operations.

In the simulation, every travel request is represented by a passenger agent, and every
vehicle is represented by an on-demand vehicle agent. Every crossroad has a corresponding
road network node in the simulation, and every road segment has a corresponding edge.
At every time, each agent in the simulation has an exact position on the road network.
The execution of the simulation is perfect, e.g., there are no random delays. This includes
traffic congestion, which is not simulated. In other words, when we talk about congestion

3The number of vehicles is smaller than the number of trips. This is possible because even without
ridesharing, one vehicle can serve more travel requests sequentially.

4https://github.com/aicenter/alite
5https://github.com/aicenter/agentpolis
6https://github.com/aicenter/simod
7http://www.gurobi.com/
8https://github.com/aicenter/graph-importer
9https://github.com/aicenter/geographtools

https://github.com/aicenter/alite
https://github.com/aicenter/agentpolis
https://github.com/aicenter/simod
http://www.gurobi.com/
https://github.com/aicenter/graph-importer
https://github.com/aicenter/geographtools
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Figure 4.7: The simulation software stack.
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in the results, we mean the observed congestion in the form of traffic density on each road
segment. However, there are no interactions between the vehicles and no driving model. This
simplification has a strong consequence: the (traffic peak) travel times are not realistic, and
the simulation results do not represent a real-world deployment. However, we believe that to
answer the research questions, this simplification is acceptable, as all research questions are
related to the relative performance of the evaluated scenarios. These relative differences can
be, of course, also affected by the simplifications. But, as we will show in Section 4.3, the
differences are so significant that we believe that the conclusions cannot be affected by the
missing congestion modeling. The dispatching procedure runs together with the simulation
sequentially, and thus from a simulation perspective, the vehicle plans computation is an
instantaneous event. In the case of practical deployment, one needs to achieve sufficiently
low wall-clock running time by computing on a computational cluster with many CPU cores.

Simulation Environment, Events, and Lifecycle of the Agents

The simulation environment consists of a) a road network composed of nodes (crossroads)
and edges (road segments), b) vehicle stations, c) on-demand vehicle agents, and d) pas-
senger agents. In Figure 4.8, we show a screenshot of the AgentPolis visualization captured
during one of the simulation experiments.

The simulation events can be described as follows. During initialization, the simulation
creates vehicle stations, each filled with the pre-determined number of vehicles (see Sec-
tion 4.2.2). Then, as the simulation runs, the simulation creates passenger agents for each
request at its announcement time and origin point. Periodically, the simulation executes the
dispatching procedure (see Section 4.2.2), which assigns passengers to vehicles and computes
the corresponding vehicle plans. Note that each passenger can be either matched to one
of the empty vehicles parked in a station or to a vehicle already serving some previously
assigned requests. Each passenger is picked up by the assigned on-demand vehicle, driven
to the desired location, dropped off, and finally released from the simulation. Each vehicle
executes its plan until it becomes empty (i.e., all assigned passengers have been dropped
off), and then it drives to park itself at the nearest station. In the simulation, any request
that would be delivered to its destination with a greater delay than the maximum allowed
delay δmax is considered a rejected request. However, as mentioned before, we configured
the system so that these quality of service bounds are always satisfied, and consequently,
there are no rejections during the simulation experiment.

Configuration and Scenarios used to Answer the Research Questions

In our experiments, we considered the following six scenarios:

• Present state: All the requests are served by private vehicles. The vehicles are parked
at the request’s start location, i.e., there is no delay. The number of used vehicles is
equal to the number of requests, and the total distance traveled is equal to the sum
of the shortest paths between the origins of all requests and their destinations.

• MoD w/o ridesharing : MoD system without ridesharing, the plans are computed using
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(a)

(b)

Figure 4.8: AgentPolis visualization of the simulated traffic in Prague during the traffic
peak. Figure 4.8a (top): the entire city of Prague in the simulation. A more detailed
(zoomed-in) view can be seen in Figure 4.8b (bottom). Vehicles are represented as blue
triangles, with a number indicating the onboard passenger count. Red circles represent
passengers. Some vehicles are highlighted, and their current plan is drawn with a yellow
line. The pick-up and drop-off locations of the remaining actions are marked with cyan and
pink circles, respectively, with a number indicating passenger ID. Note that in Figure 4.8b,
there are some passengers already driving in two of the vehicles, so the number of drop-off
locations is greater than the number of pick-up locations. The green triangles are vehicles
that travel empty between stations (rebalancing).
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IH, and the vehicle capacity is set to one, i.e., the passengers are not allowed to share
rides.

• MoD w. IH Ridesharing : mod system with ridesharing computed by the IH.

• MoD w. VGA Ridesharing (optimal): mod system with ridesharing computed by the
VGA method to optimality.

• MoD w. VGA Ridesharing (runtime limited): mod system with ridesharing computed
by the VGA method, with the group generation time-limited to 60ms per vehicle and
the ILP solver maximum optimality gap of 0.5%.

• MoD w. VGA Ridesharing (PNAS): mod system with ridesharing computed by the
vga method, with a set of timeouts/heuristics as described in Alonso-Mora et al.
(2017), which we have reimplemented for this article.

In Manhattan, we do not evaluate the present state scenario, as the Manhattan dataset
represents taxi trips, and therefore, the scenario with an MoD system without ridesharing
is, in fact, also the “present state” scenario.

We simulate a morning peak time interval of 7:00-8:00 and an off-peak time interval of
11:00-12:00. To avoid the “cold start” artifacts, the simulation begins 30minutes before the
analyzed time interval, at 6:30 and 10:30, respectively, but for subsequent analysis, we only
use the data captured after the thirty-minute start period. Including the 30min warm-up
time, there are 122 473 requests in the morning peak, and 42 633 requests in the off-peak
experiment. The request-vehicle matching procedure is run every 30 s of the simulation.
The maximum delay constraint δmax is set to 4min, and the vehicle capacity is set to five
passengers. The ILP solver in the VGA method computes the optimal solution with the
maximum optimality gap of 0.02%.

4.3 Results

We present the results here organized into six sections. We start with summary tables
that contain the main results of the experiments, including the optimization criterion: total
distance traveled by all vehicles (Section 4.3.1). Then, we discuss different aspects and
quantities in detail, and we conclude with a performance analysis of the VGA method
(Section 4.3.6). To run the experiments, we used a desktop system with Intel Core i7-8700K
CPU (3.7GHz, 6/12 physical/virtual cores) and 64GB RAM.

4.3.1 Operating Cost and Computational Time

Tables 4.4 and 4.5 summarize the main results of the experiments. As explained in Sec-
tion 4.2.2, we computed the size of the fleet to always guarantee full service availability.
Since the service level is always 100%, we do not show this metric in result tables and plots.
The first row shows the value of our optimization criterion, i.e., the system operation cost
measured in terms of total distance driven by the fleet vehicles. We can see that when using
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Present
State

Mobility-on-Demand

No Ridesh. IH VGA VGA lim VGA PNAS

Optimal - - no yes no no

Total veh. dist. (km) 758 001 1 002 766 539 793 429 172 451 978 475 378

Avg. delay (s) - 132 190 180 178 161

Avg. density (veh/km) 0.0077 0.0085 0.0053 0.0046 0.0048 0.0049

Congested seg. 8 25 1 1 1 0

Heavily loaded seg. 163 291 31 10 17 20

Used Vehicles 122 473 33 066 15 685 13 787 14 449 14 607

Avg. comp. time (ms) - 181 18 192 903 27 714 15 598

Table 4.4: Main results from the considered scenarios during the morning peak (7:00-
8:00). Congested segments are segments on which traffic density is above critical density,
and heavily loaded segments are segments with density above 50% of the critical density.

the VGA method instead of IH during the morning peak, we can save more than 110 000 km
of vehicle distance driven, which represents more than 20% reduction. Compared to the
“no ridesharing“ scenario and to the present state, the VGA method saves over 573 000 km
(57%) and 328 000 km (43%), respectively. Even in off-peak time, the VGA method can
save about 17% of the total distance driven compared to the IH, and about 48% compared
to the “no ridesharing” scenario.

The VGA method is considerably slower than IH. The average computational time per
one optimization batch in the peak scenario was about 193 s, compared to 18ms for the IH.
Such a difference in the computational time may look extreme, but we have to consider the
scale of the scenarios that were solved to optimality using the VGA method. The largest
assignment problems (batches) contained more than 3000 waiting requests, 21 000 active
requests (including passengers already driving to their destination), and 11 000 vehicles.

The runtime-limited experiment shows that we can speed up the VGA method signifi-
cantly by merely limiting the computational time for the group generation and the solver.
In the VGA limited experiment, we reduce the computation time more than six-fold over the
unconstrained version of the VGA method while still reducing the total traveled distance by
more than 16% over the IH. The VGA PNAS experiment reduces the computational time by
another 42% at the cost of being closer to IH in the traveled distance (12% improvement).
In the off-peak scenario, the VGA limited performs almost the same as the unconstrained
version because the time limits are rarely reached. Note, however, that there is more than
a 5% increase of traveled distance in VGA PNAS, despite similar computational times
suggesting that this method is not suitable for scenarios where sufficient computational
resources are available.

In Table 4.6, we can see the results of the Manhattan experiments. Our optimal im-
plementation of the VGA method was able to compute the optimal assignments while the
average computational time for a 30 seconds batch was less than 7 seconds. This is in con-
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Present
State

Mobility-on-Demand

No Ridesh. IH VGA VGA lim VGA PNAS

Optimal - - no yes no no

Total veh. dist. (km) 283 483 344 613 211 285 175 865 176 957 186 520

Avg. delay (s) - 131 191 179 179 165

Avg. density (veh/km) 0.0045 0.0047 0.0034 0.0032 0.0032 0.0032

Congested seg. 0 1 1 0 0 0

Heavily loaded seg. 5 10 3 1 2 2

Used Vehicles 42 633 7727 4646 4746 4802 5180

Avg. comp. time (ms) - 4 1 5438 4408 4113

Table 4.5: Main results from the considered scenarios, off-peak (11:00-12:00). Congested
segments are segments on which traffic density is above critical density, and heavily loaded
segments are segments with density above 50% of the critical density.

trast to results reported in Alonso-Mora et al. (2017) that were not computed to optimality
and required more than 21 seconds to compute the most similar configuration (qmax =
5minutes, vehicle capacity of four passengers, 3000 vehicles). This may be because the al-
gorithm by Alonso-Mora et al. (2017) was developed and optimized to allow evaluation of
scenarios with even larger delays of 7 minutes and with vehicle capacities of up to 10 pas-
sengers; such configurations result in an exponentially larger number of potential passenger-
vehicle assignments and consequently, cannot be computed to optimality even with our
performance-optimized VGA method.

Because the Manhattan experiment is less complex compared to the Prague experiment,
we can observe a similar effect as in the Prague off-peak experiment: the VGA limited
method computes only slightly worse solutions than the optimal method, and the computa-
tional times are similar as well. This is because the time limits of the VGA limited method
were not reached in the majority of iterations.

Our re-implementation of the PNAS method gives a rather surprising result: the per-
formance metrics are worse than the IH while using more computational time than the
optimal method. We investigated this surprising result and found out that the cause is one
of the heuristics that limits the number of vehicles considered for assignment to a particular
request to the 30 nearest vehicles. This heuristic can limit the exploration so much that the
solution can be worse than the IH solution. Moreover, for less complex scenarios, the time
needed to compute the 30 nearest vehicles can dominate the total computational time, as
it happened in our case, probably because this heuristic was not optimized. This observa-
tion suggests that in order to achieve acceptable performance, one may need to vary the
parameters of heuristics based on the complexity of the problem instance at hand. We also
performed another experiment using the VGA PNAS method with this heuristic turned off.
For results, see numbers in parentheses in the last column of result tables (4.6, 4.7).

Table 4.7 shows another set of results of experiments with qmax = 7minutes and the
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No Ridesh. IH VGA VGA lim VGA PNAS*

Optimal - no yes no no

Total veh. dist. (km) 868 899 362 387 334 195 334 737 377 563 (344 057)

Avg. delay (s) 109 117 109 109 83 (110)

Avg. density (veh/km) 0.0183 0.0085 0.008 0.008 0.0089 (0.0082)

Congested seg. 220 9 9 8 14 (10)

Heavily loaded seg. 692 129 117 112 152 (115)

Used Vehicles 46 186 20 272 19 714 19 712 22 545 (20 293)

Avg. comp. time (ms) 918 57 6646 6650 24 717 (7170)

Table 4.6: Main results from the Manhattan scenarios during the peak (19:00-20:00)
with a maximum passenger delay of 4minutes. Congested segments are segments on which
traffic density is above critical density, and heavily loaded segments are segments with a
density above 50% of the critical density. For the VGA PNAS method, we also tested a
version that does not limit the vehicles considered for each request to 30 nearest vehicles
(in parentheses).

capacity of 10 persons per vehicle, which corresponds to the most complex configuration
in Alonso-Mora et al. (2017). In this experiment set, we only evaluated the three sub-optimal
ridesharing methods to see how they behave under such parametrization. Interestingly, for
this scenario, the IH achieves the best performance: The IH finds plans with a total travel
distance that is 12% smaller than plans found by both sub-optimal versions of the VGA
method using only a fraction of computational resources. This experiment demonstrates
the limit of applicability of the VGA method for routing in large-scale MoD systems. The
relaxed time windows and increased vehicle capacity increase the number of feasible groups
and the maximum group size to a level that cannot be solved by the ILP solver and the
single-vehicle solver, respectively, in practical time. Consequently, the VGA algorithm is
unable to return an optimal solution to such instances.

4.3.2 Trade-off Between Operating Cost and Passenger Discom-
fort

Another metric that we tracked is the service quality, represented by the passenger delay
relative to transportation by the private vehicle. From Tables 4.4 and 4.5, we can see that
the optimal VGA method saves about 5% time over the IH in both peak and off-peak
experiments. The trade-off between the operating cost (distance traveled) and the service
quality (average delay) is depicted in Figure 4.9.

A more detailed overview of the passenger delays with a delay histogram for the four
MoD scenarios in both time windows is in Figure 4.10. It is clear that for both peak and
off-peak, the VGA method reduces the passenger delay resulting from ridesharing compared
to the IH. Nevertheless, even in the case of the VGA method, there is a noticeably greater
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IH VGA lim VGA PNAS*

Optimal no no no

Total veh. dist. (km) 233 859 275 028 267 471

Avg. delay (s) 227 224 217

Avg. density (veh/km) 0.006 0.0067 0.0066

Congested seg. 0 1 0

Heavily loaded seg. 24 53 48

Used Vehicles 13 319 16 517 16 025

Avg. comp. time (ms) 25 57 554 139 811

Table 4.7: Main results from the Manhattan scenarios during the peak (19:00-20:00) with
a maximum passenger delay of 7minutes and vehicle capacity of 10 persons per vehicle.
Congested segments are segments on which traffic density is above critical density, and
heavily loaded segments are segments with a density above 50% of the critical density. For
the VGA PNAS method, we used the version that does not limit the vehicles considered for
each request to 30 nearest vehicles.

delay compared to the no ridesharing scenario, where the delay can occur only before the
passenger is picked up or over the present state, where there is no delay because a car is
assumed to be available at the origin of each passenger trip.

4.3.3 Impact of MoD on Congestion

In addition to the operational cost, we analyzed the impact of the MoD system on congestion.
We consider road segments with traffic density above the critical density of 0.08 vehiclem−1 (Tadaki
et al., 2015) as congested. Segments with density above 0.04 vehiclem−1 are considered as
heavily loaded. As you can see in Table 4.4, in the morning peak, using the optimal VGA
method reduces the average traffic density by 13% over the ridesharing that uses IH, and by
46% and 40% over the MoD without ridesharing and the current state, respectively. We can
see the same trend when we look at the number of congested and heavily loaded segments.
In the off-peak experiment, the situation is similar, but the absolute numbers indeed show
that there is no congestion in any of the scenarios. Finally, Figures 4.11 and 4.12 depict
traffic densities on every road for all five scenarios.

4.3.4 Fleet Size and Vehicle Occupancy

Also, for each scenario, we recorded the number of vehicles that were used at least once
during the simulation. For the present state scenario, we consider a dedicated vehicle for
each request. Therefore, the number of used vehicles is equal to the number of requests. The
results confirm that the VGA method indeed makes the mod system more efficient. During
the peak hour, the optimal VGA used 1898 (12%) fewer vehicles than the IH. Compared to
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Figure 4.10: Histograms of delays. The present state scenario is omitted as the delay is
always zero.

Figure 4.11: Traffic density map of the four scenarios during the morning peak. Darker
colors signalize higher traffic density. The black color means that the road segment is
congested. We omit the density map for the VGA PNAS experiment from this figure as it
is very similar to the density map for the VGA limited experiment.
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Figure 4.12: Traffic density map of the four scenarios during the off-peak time. Darker
colors signalize higher traffic density. The black color means that the road segment is
congested. We omit the density map for the VGA PNAS experiment from this figure as it
is very similar to the density map for the VGA limited experiment.

the MoD system without ridesharing, the MoD system with optimal ridesharing used about
one-third of the vehicle fleet, and compared to the present state system, the reduction is
almost thirteen-fold.

In the off-peak time, however, we registered that the optimal VGA method uses about
2% more vehicles than IH. By analyzing the simulation output, we found an explanation
for this perhaps surprising result. First, counterintuitively, it is possible that a suboptimal
vehicle assignment (generating plans with longer total distance) can lead to fewer vehicles
being used, as illustrated in Figure 4.13. Second, by analyzing the vehicle trips in both
IH and VGA scenarios, we found that such situations occur frequently due to unbalanced
demand. In other words, the optimal method uses more vehicles not despite, but because its
plans are more operating cost-efficient: the vehicles simply serve requests too quickly, which
increases the chance of ending up in the areas with lower demand, where they need to wait a
long time before another request appears nearby. This reminds us that to fully understand
MoD systems, we need to study not only operation cost vs. service quality trade-offs but
also operation-cost vs. capital cost trade-offs associated with different design and control
strategies.

Next, we measured vehicle occupancy: Figure 4.14 shows the occupancy histogram for
the four compared scenarios. We can see that vehicle occupancy is the highest when using
the optimal method in both peak and off-peak scenarios.

4.3.5 Sensitivity Analysis of the VGA Method

We analyze the sensitivity of the variation in batch length, maximum delay, and capacity
with respect to total traveled distance, computation time, and average passenger delay. Note
that the time between a request announcement and the end of the batch, when the passenger-
vehicle assignment is recomputed, counts towards the delay of the request. Therefore, for
scenarios with longer batches, we also extended the maximum delay in order to keep the
average effective maximum delay of 4minutes. Also, note that we use the same stations and
fleet for all experiments, and consequently, some requests were rejected in configurations
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Figure 4.13: Example of the capital cost paradox. In Figures 4.13a and 4.13b, we can see
two iterations of the IH. In Figure 4.13a, there are three vehicles: vehicles A and B, and
vehicle C that resides in the station, representing a potentially unlimited pool of vehicles.
Also, there are two passengers (1 and 2), that request travel from their current locations P1
and P2 to their destinations D1 and D2 (denoted by dashed arrows). Solid arrows denote
the plans for both vehicles computed by the first iteration of the IH. In Figure 4.13b, there
is the same scenario in the next iteration. Both cars moved by five steps in the grid, and
also, a new request appeared. We can see the new plans generated by the second iteration of
IH too. The second set of Figures ((4.13c) and (4.13d)) shows the exact same two iterations
solved by the VGA method. Note that although we saved one segment of traveled distance
(vehicles traveled 14 segments in the grid combined compared to 15 segments in the case of
the IH), we used one extra vehicle (vehicle C) that was not needed in the IH scenario, thus
effectively increased the required fleet.
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Figure 4.14: Occupancy histogram of all five scenarios.

with shorter maximum delays or longer batch lengths. However, the service level remains
above 99% in all configurations, so the impact of rejected requests on the results is negligible.

We can see the results in Figure 4.15 (peak scenario) and Figure 4.16 (off-peak scenario).
In the peak scenario, we were able to compute the optimal solution only for batch length
of up to 30 seconds and for up maximum delay of up to 4minutes. For larger values, the
algorithm failed to terminate within 24 hours. As expected, the runtime of the optimal
method grows exponentially with maximum delay. This is best seen in the case of the off-
peak experiment, where the algorithm was able to find an optimal solution within 5 minutes
of runtime on average for the 6-minute maximum delay but failed to compute optimal
solutions within 24 hours of runtime for the 7-minute maximum delay. Clearly, the optimal
method would not scale to scenarios with larger limits on maximum delay, and one of the
resource-limited variants would have to be employed.

We can observe that the system’s efficiency (measured in terms of total distance driven)
monotonically increases with maximum allowed delay for all considered methods with the
exception of the VGA limited method, which achieves low runtimes by prematurely termi-
nating computation in several stages of the algorithm. As we can see, the values of cut-off
parameters that work well for a 3-5 minute maximum delay lead to inferior performance for
larger maximum delays. We can also observe that with the increasing maximum delay, the
gap between the optimal method and both resource-constrained VGA methods increases.
Remarkably, our experiments show that for high values of max delay, the IH achieves al-
most identical performance as the VGA PNAS algorithm while using only a fraction of
computational resources.

The batch length negatively impacts the average travel delay experienced by passengers
because they need to wait until the end of the batch for their request to be assigned to a
vehicle. The motivation for using longer batch lengths is to gather more requests and to
find a more efficient passenger-vehicle assignment. However, it appears that even in the off-
peak experiment, these efficiency gains are only realized using the optimal solution method.
For suboptimal solution methods, the efficiency gains are either negligible or straight-out
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negative. The higher vehicle capacity also increases the potential for ridesharing, which, in
turn, could improve the operational efficiency of the system. In the peak experiment, the
increased complexity prevented the computation of the optimal solution for vehicle capacity
set to 10 passengers. However, our results show that the resource-limited variants were not
able to improve the solution significantly. This can be caused by reaching the time limits
before the algorithm can generate high-occupancy plans, or it can indicate that the capacity
of 5 passengers per vehicle is sufficient. For reference, in the off-peak experiment, we were
able to compute optimal solutions, and our results show that the vehicle capacity of 5 is
sufficient for the off-peak demand intensity. However, it is still possible that high-capacity
vehicles would be better utilized when planning for peak-intensity demand.

Concerning the suboptimal versions of the VGA method, our VGA limited method com-
putes higher quality solutions for shorter batch lengths and shorter maximum travel delays,
while the PNAS version of the VGA method achieves better performance for longer batch
lengths and longer maximum delays. This is probably because the PNAS version uses IH to
compute plans for groups larger than four (see the supplemental material of Alonso-Mora
et al. (2017)). This will negatively affect solution quality for easier instances. However, for
harder instances, this approach may be beneficial compared to our strategy because it allows
forming larger groups with potentially suboptimal plans. This observation suggests that a
resource-constrained VGA method should use a heuristic to compute larger groups, but
the threshold for using this heuristic should be determined by the remaining computational
time.

Finally, we performed a sensitivity analysis for the Manhattan case study: the results
are reported in Figure 4.17. It tells a similar story as the sensitivity analysis for the Prague
case study. Some of the previously discussed phenomena are even more apparent in the
Manhattan sensitivity analysis. We can see that the computational requirements grow
with the maximum delay not only for the optimal VGA method but also for the resource-
constrained VGA methods. Also, we can clearly see that the efficiency (total distance
driven) gap between IH and the constrained VGA methods is shrinking for larger maximum
delays. For the maximum delay of 7 minutes, the IH method starts to outperform both
resource-constrained VGA methods.

4.3.6 Computational Time Analysis of the VGA Method

Finally, we inspect the computational requirements of the VGA method. In Figure 4.18,
we show the evolution of the number of active requests (top), maximum computed group
size (middle), and computational time for group generation and group-vehicle assignment
process (bottom) during the peak scenarios, including the warm-up period. Looking at the
maximum group size, we see that the 60ms limit for the group generation results in groups
of the maximum size of 5-7 in most batches, while in the optimal scenario, the maximum
group size has high variance and goes up to 11.

When we compare the maximum group size with the computation times, we can obtain
other valuable insights: a) the group generation time is strongly dependent on the maximum
group size, and thus it has low variance in the limited scenario and high variation in the
optimal scenario, b) the solver time does not depend on maximum group generation time
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Figure 4.15: Sensitivity analysis: peak. Each column represents one experiment set, and
inside each column, each value on the x-axis represents one experiment. Each row displays
a single measured quantity. The optimal VGA method is only computed for batch length
30 s, maximum delay of 3 and 4 minutes, and capacity of 2 and 5 persons per vehicle. For
other parameter values, the optimal VGA method did not terminate within 24 hours.
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Figure 4.16: Sensitivity analysis: off-peak. Each column represents one experiment set,
and inside each column, each value on the x-axis represents one experiment. Each row
displays a single measured quantity. The optimal VGA method is only computed for the
maximum delay of up to 6 minutes. For the maximum delay of 7 minutes, the optimal
ridesharing assignment cannot be computed within the 24-hour limit.
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Figure 4.17: Sensitivity analysis: Manhattan. Each column represents one experiment
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displays a single measured quantity. The optimal VGA method is only computed for the
maximum delay of up to 6 minutes. For the maximum delay of 7 minutes, the optimal
ridesharing assignment cannot be computed within the 24-hour run time limit.
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much, and it is highly variable in both limited and optimal variant, and c) the group gen-
eration time dominates in both scenarios. These findings suggest that further performance
optimization of the group generation process may lead to a more favorable trade-off between
the solution cost and computational time.

4.4 Summary

Mobility-on-demand systems represent a promising alternative to private car transport.
Already, there are many such systems in operation, mostly in the form of ride-hailing services
provided by Transportation network companies like Uber or Bolt. As more and more people
use these services and more operators are emerging, it becomes increasingly important to
understand the impact of these systems and likewise to understand how to operate them
efficiently. In this chapter, we try to answer three research questions related to the operation
of large-scale MoD systems. To answer these questions, we use a detailed multi-agent
simulation of a hypothetical large-scale MoD system that replaces all private cars in a city.

The first question is about the impact of the large-scale deployment of MoD systems.
This question is relevant even to the current MoD systems as there are areas where the
MoD systems already account for a significant part of the total transportation. The results
confirm that the MoD systems can reduce the number of vehicles needed to serve the existing
travel demand. The reduction is 4 to 6-fold, depending on the scenario. However, even the
risks of increased traffic intensity are confirmed: the total distance traveled by vehicles
increases by 20% to 30% compared to the current system with private cars. This extra
distance is caused by both empty trips between passengers and rebalancing trips. These
extra trips also increase traffic congestion, as we can see in the traffic density maps.

The second question asks how much ridesharing can improve the performance of large-
scale MoD systems. Current MoD systems are already experimenting with ridesharing, but
answering this question can help to understand its potential and accelerate its deployment.
As expected, the reduction in the total distance traveled is significant: the MoD system
with simple heuristic ridesharing reduces the total distance traveled by 46% compared to
the MoD system without ridesharing, and by 22% compared to the current system with
private cars. Moreover, there is an additional reduction in the number of vehicles needed
to serve the travel demand: in general, about half of the vehicles can be removed from the
fleet.

Finally, we asked how much we can further improve the performance of the MoD system
by computing the ridesharing assignments optimally. Most of the time, heuristic methods
are used to compute the ridesharing assignments. This makes sense because the problem is
fundamentally complex and consequently optimal methods are typically too slow. However,
knowing the optimal solutions has a benefit at least from the theoretical point of view: it can
help us to understand the potential of the improvement for the heuristic methods. When
answering the third research question, we were able to deliver an optimized implementation
of the Vehicle-group Assignment method that can compute even large instances to opti-
mality. The result shows that there is a significant gap between the optimal and heuristic
solutions: the optimal ridesharing assignments reduce the total distance traveled by about
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Figure 4.18: Computational efficiency analysis of the VGA scenarios during the peak time.
In the top figure, we show the evolution of the number of active requests over time. We can
see that after the warm-up time, the number of active requests in the system is stable, only
slowly decreasing. The middle figure displays the maximum group size that was computed
in each batch. The bottom figure demonstrates how the computational time, consisting of
the group generation time and the ILP solver time, changes during the simulation.
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20% compared to the Insertion Heuristic assignments, while simultaneously reducing the
average passenger delay by 5%. To test some method that represents a trade-off between the
optimal method and IH, we developed a resource-constrained VGA method. This method
provides more than 16% travel distance saving over IH while reducing the computational
time by almost 90% compared to the optimal solution. Moreover, we achieved further
important insights when applying sensitivity analysis.

To summarize the findings of this chapter, we can say that the MoD systems, while
having the clear benefit of reducing the number of vehicles needed, also increase the total
amount of traffic in the system due to empty trips. This can be, however, mitigated and even
reversed by implementing large-scale ridesharing. Finally, there is a significant gap between
heuristic and optimal ridesharing methods, so it makes sense to invest in improving the
dispatching methods. Specifically, the future heuristic methods should address the scenarios
for which the optimal method is slow: the scenarios with a long time horizon and wide time
windows.

Another important finding of this thesis is that even for very large transportation sce-
narios, a simulation is a viable tool to answer the research questions. Even with tens of
thousands of vehicles and requests at the same time, the simulation can be run on an or-
dinary computer much faster than in real-time. Additionally, this suggests that a higher
fidelity of the simulation achieved by using a more detailed traffic model may be viable.
Therefore the simulation can and should be used to answer future MoD-related research
questions.



CHAPTER5
Optimal Plan Chaining for

Mobility-on-Demand

Our last goal was to use the knowledge from our simulation studies to develop a new
heuristic method for vehicle dispatching in large-scale MoD systems. Specifically, we aimed
to develop a method that would be able to solve DARP instances that cannot be solved
optimally in a reasonable time, as the solutions of the resource-constrained methods and
other evaluated heuristics are significantly worse than the optimal solutions (as we showed
in the last chapter).

We were researching the possible directions based on both literature and analysis of
the characteristics of problematic DARP instances. We identified that one of the deciding
factors for the complexity of the DARP is the long time horizon of the instance. Based
on that, we developed a new heuristic method that is based on the principle of 1) splitting
the problem into subproblems with a shorter time horizon, 2) solving the subproblems
optimally, and 3) chaining the resulting plans to obtain the final solution. While the first
step is straightforward, and there are existing optimal methods for the second step, we have
not found any optimal method for the plan chaining problem. In fact, we have not found
even a plan chaining formulation that would consider the time windows that are crucial
for most vehicle routing problems. Therefore, we decided to formulate the plan chaining
problem with time windows and develop a method that would solve it optimally.

In this chapter, we present both our research on the plan chaining problem and also the
new DARP heuristic method that uses it as a subproblem. First, we introduce the plan
chaining problem and show that it appears as a subproblem of many MoD-related problems
(5.1). Next, we formulate the problem in Section 5.2. Then, we present our method for

This chapter is based on the manuscript titled “Optimal Chaining of Vehicle Plans with Time Windows”
submitted to the journal Transportation Research Part C: Emerging Technologies. Preprint:

Fiedler, D., Difonzo, F. V., & Mrkos, J. (2024, February 24). Optimal Chaining of Vehicle Plans with Time
Windows. arXiv: 2401.02873 [cs, math]. https://doi.org/10.48550/arXiv.2401.02873

For all author’s publications together with the citation counts and research contributions, see Appendix A.

https://arxiv.org/abs/2401.02873
https://doi.org/10.48550/arXiv.2401.02873
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solving the plan chaining optimally (Section 5.3). Finally, we present the DARP heuristic
method that uses the plan chaining as a subproblem, and demonstrate its capabilities on
case studies of four areas: New York City, Manhattan, Chicago, and Washington, DC
(Section 5.4).

5.1 Research on the Plan Chaining

One of the key problems regarding MoD systems is to determine the minimal vehicle fleet
able to serve all travel requests: the fleet sizing problem. In the well-known 2018 arti-
cle, Vazifeh et al. (2018) solves the problem optimally using two steps. First, they generate
a shareability network: a graph where the nodes are the plans for solving each request, and
edges are the possible connections between those plans. The second step is to minimize
the number of edges in the shareability network. The authors prove that the shareability
network is an acyclic graph, and thus, the problem can be solved in polynomial time by
the Hoptcroft-Carp algorithm applied to a bipartite graph corresponding to the shareability
network.

Inspired by this work, Wang et al. (2021) propose a method to solve the fleet-sizing
problem in a ridesharing context. The authors formalize the problem as finding a minimum
cover in the set of all possible dispatching graphs: the dispatching tree cover. They prove
that the dispatching tree cover problem is NP-Hard and propose a heuristic algorithm; then,
they evaluate its performance both analytically and on a case study in Shenzhen.

Xu et al. (2022) extend Vazifeh et al. (2018) by considering the limitation of the number
of available vehicles in particular zones. To achieve this, they transform the shareability
network into a min-cost flow problem, which also incorporates vehicles as network nodes.
The zone constraint is represented by edges between vehicles and requests: these exist only
if the request originates in the same zone where the vehicle is present. As the authors point
out, the formulated min-cost flow problem can be solved in polynomial time by the network
simplex algorithm.

Similarly to Wang et al. (2021), Qu et al. (2022) also propose to incorporate ridesharing
into the fleet-sizing problem. Contrary to their predecessors, however, they decouple the
problem: first, they solve the ridesharing (DARP) problem, and next, they apply the method
from Vazifeh et al. (2018) on the graph composed from the computed ridesharing plans.
Additionally, the matching phase computes the utility with regard to an anticipated travel
demand computed from an ensemble model. Decoupling the problem breaks the guarantee
of optimality. However, it means that the minimal path cover in the shareability graph can
be solved in polynomial time, as in Vazifeh et al. (2018).

Apart from fleet-sizing, shareability networks can be used to solve other problems related
to the MoD. The concept of the shareability network itself has been introduced in Santi et
al. (2014). The authors use a sharability network to study the pairwise sharability trips
in Manhattan. Note that, differently than in the fleet sizing articles, here the trips are
connected in a sharability network not only in case they can be connected consecutively,
but also if they can share the ride. In conclusion, we obtain an optimal solution for the
ridesharing (DARP) problem limited to two persons per vehicle, provided that we optimize
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the shareability network using the minimum-weighted matching, as the article proposes.
Alonso-Mora et al. (2017) then lift the two-passenger limit and propose an optimal

algorithm to solve the online ridesharing (DARP) problem. However, due to the computa-
tional complexity, they introduce several heuristic relaxations to compute the solution in a
reasonable time. Later, Čáp and Alonso-Mora have analyzed the trade-off between the op-
eration cost and service quality with this method, which they have called the vehicle-group
assignment method (VGA) Čáp and Alonso-Mora (2018).

Finally, in Chapter 4, we examine the optimal version of the VGA algorithm from the
perspectives of system efficiency and computational time. An important finding is that the
optimal assignments can be computed in practice only if we limit the time horizon of the
instance, i.e., if we try to match only requests with origin times within a short time. At the
same time, we show that the relaxed version performs poorly if the time horizon is longer,
being outperformed by the baseline method: the insertion heuristic. This leads us to a
question: could we obtain a better solution by computing the matching over a short time
horizon and then connecting the resulting plans by solving the min-weight matching over
the shareability network?

5.2 The Plan Chaining Problem

Here, we formulate the problem of chaining plans with time windows. The formulation is
independent of the “real-world” problem, i.e., we can use the same formulation for fleet-
sizing, dispatching, and potentially other problems with a similar structure. The main
difference between our formulation and the previous formulations (Qu et al. (2022) and
Vazifeh et al. (2018)) is that we allow plan delays that respect the given time windows. The
previous formulations chain plans with fixed plan start/end times, despite the underlying
problem being some variant of vehicle routing problem with time windows. Because the
time-windows extension makes the network formulation quite complex, we do not use the
network formulation, in contrast to previous works (Qu et al., 2022; Vazifeh et al., 2018;
Xu et al., 2022). Instead, in this section, we propose a more compact formulation (see
Problem 5.1 later in this section). However, the network formulation, loosely connected to
the shareability network introduced in Vazifeh et al. (2018), is a backbone of the proposed
method, and it is presented in Section 5.3.

We say that the chaining problem is a problem of transforming given vehicles and plans
to the minimum cost chains, that consist of one vehicle and one or more plans, such that
all the time constraints are met, each vehicle is at the beginning of no more than one chain,
and all plans are part of exactly one chain.

For the purpose of plan chaining, the internal structure of the plan (pickup and drop-off
times and locations) is irrelevant. Instead, each plan p from the set of plans P is defined by
the origin time top, destination time tdp , and maximum delay δmax

p which represent the plan’s
time window. Each vehicle v from the set of vehicles as V is determined by its start time
tsv.

We assume that travel times between all plans and vehicles a and b are known in the
form of a travel time function ftt(a, b), a, b ∈ P ∪ V . Note that the function parameter
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order matters here, as the travel time is often asymmetrical in real use cases. Analogously,
we define the travel cost function ftc(a, b), which represents the travel cost (if we optimize
for minimum travel time, we can set ftc = ftt).

To use the time flexibility offered by the plans’ maximum delay, we introduce delayed
plan variants. For each plan p, there is a set of possible delayed plan variants Φp. We denote
the union of all such sets as Φ. Each p′ in Φp is defined by the delay δp′ ≤ δmax

p over the

original plan. As consequence it holds that top′ = top + δp′ and tdp′ = tdp + δp′ .
We use the term chaining because we create sequences called plan chains.

Definition 5.1. A plan chain c = {ci}i∈N is a sequence such that:

c1 ∈ V (5.1)

∀ci ∈ c \ {c1}, ci ∈ P ∪ Φ (5.2)

tsc1 + ftt(c1, c2) ≤ toc2 (5.3)

∀i ∈ [3, |c|], tdci−1
+ ftt(ci−1, ci) ≤ toci (5.4)

A set of all plan chains that can be constructed from vehicles V plans P (and associated
delayed plans Φ generated from P ) will be denoted as C(P, V ).

Finally, we define the chaining problem:

Problem 5.1 (Plan Chaining). Given a set of plans P and a set of vehicles V , compute
the set of plan chains C for which the travel cost between consecutive elements is
minimal:

min
C⊂CV

P

∑
c∈C

|c|∑
i=2

ftc(ci−1, ci) (5.5)

such that exactly one variant per each plan is contained in exactly one chain and
each vehicle is at the beginning of no more than one chain:

∑
c∈C

|c|∑
i=2

1Φp(ci) = 1, ∀p ∈ P (5.6)∑
c∈C

[c1 = v] ≤ 1, ∀v ∈ V (5.7)

5.2.1 Chaining Problem Configuration for Solving Various Trans-
portation Problems

We can solve various problems related to on-demand systems by solving the chaining problem
with different configurations.
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Figure 5.1: Example of using the minimum path cover to solve the fleet-sizing problem.
On the left, there is a vehicle shareability graph. An arrow between any two plans signals
that these plans can be served sequentially. On the right, there is the minimum path cover.
Each color represents a chain of plans to be served by one vehicle. The connections (arrows)
between plans in the chain are bold.

For fleet-sizing, we create a dedicated vehicle for each plan and set the travel cost to a
constant for every used vehicle:

ftc(a, b) =

1, if a ∈ V,

0, otherwise.
(5.8)

This way, the number of vehicles will be minimized without considering the travel cost
between plans.

For minimum cost dispatching (DARP), we just set the ftc(a, b) to capture the cost of
travel between a and b; for example, we can set:

ftc(a, b) = ftt(a, b) ∀a, b ∈ V ∪ P ∪ Φ. (5.9)

To prevent long waiting times, we can set ftc(a, b) = ∞ for all a and b where the
tob − tda ≥ δ, where δ is the maximum waiting time. Analogously, we can penalize waiting
times gradually by increasing the travel cost function value proportionally to the waiting
time.

5.3 Proposed Method

In this section, we describe the proposed method and prove that it solves the chaining prob-
lem optimally. The fleet-sizing article by Vazifeh et al. (2018) formulates the fleet-sizing
problem as the minimum path cover (see Figure 5.1). Also, the authors conclude that the
minimum path cover is equivalent to the maximum bipartite matching (see Figure 5.2) and,
therefore, it can be solved in polynomial time by the Hoptcroft-Karp algorithm. Analo-
gously, we can minimize the cost of the plan chains by replacing the maximum matching
with the min-cost (perfect) matching, that is, by solving the assignment problem. This
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Figure 5.2: Example showing how the min path cover can be converted to the maximum
bipartite matching. We use the same example as in Figure 5.1; plans are now numbered for
clarity. Each color represents a chain of plans to be served by one vehicle. The connections
(arrows) between plans in the chain are bold.
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Figure 5.3: An example of plan chaining formulated as an assignment problem is a min-
weight matching of a specific cardinality. The cardinality is given by the number of vehicles
and plans: here, we have two cars available (below, in the circle) and three plans, resulting
in cardinality 1 (at least one connection between plans). The numbers on the arcs determine
the travel cost between the plans. Each color represents a chain of plans to be served by
one vehicle. The connection (arrow) between plans in the chain is bold.

problem can also be solved in polynomial time (e.g., by the Hungarian Algorithm). An
example of min-cost matching is shown in Figure 5.3. Note that, here, we also need to
represent vehicles. For simplicity, the example assumes zero travel cost between the vehicle
location and the start location of any plan.

However, even the assignment problem formulation is not suitable for optimal plan chain-
ing, as it misses an important aspect: the DARP time windows. The delayed plans have
a different shareability potential and, conclusively, delaying a plan results in a different bi-
partite graph. To solve the chaining Problem 5.1, we propose a two-step method. First, we
generate only those delayed plan variants that are necessary to guarantee the optimal solu-
tion to the chaining problem. This variant generation process that generates only a fraction
of all possible delayed plan variants is described in Section 5.3.1. Second, we formulate the
chaining problem as a constrained min-cost flow problem (MCFP). This way, we can com-
pute the optimal solution even for large instances despite the problem being NP-hard. In
Section 5.3.2, we briefly introduce the min-cost flow problem (MCFP) formalization. Then,
in Section 5.3.3, we present the constrained MCFP that represents the chaining problem
and we show that an optimal solution of the proposed MCFP is an optimal solution of the
corresponding chaining problem.

5.3.1 Generating Plan Variants

In the chaining formulation, we used a set of delayed plans Φ for each plan p ∈ P . In
theory, time is a continuous quantity, so the number of delayed plan variants for each plan
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is infinite. However, in real-world computations, we usually consider a discrete time, which
results in a finite number of plan variants. For example, with a resolution of one second and
a plan that can be delayed by 20 seconds, there exist 20 (delayed) plan variants.

Nevertheless, as we prove further in this section, generating all possible plan variants
is not necessary for guaranteeing the optimality of the plan chaining method. Instead, we
generate only the variants that have the potential to extend the number of possible plan
chains. The algorithm we propose for generating these variants is displayed in Algorithm 5.

Algorithm 5 Algorithm for generating plan variants.

Input:P : a set of plans, V : a set of vehicles

1: Φ← {}
2: X ← {}
3: variant queue ← empty queue

4: procedure try connect(a: plan or vehicle, b: plan)
5: if a ∈ P ∪ Φ then
6: min delay ← ftt(a, b)− (tob − tda)
7: else
8: min delay ← ftt(a, b)− (tob − tsa)
9: if min delay ≤ 0 then

10: X ← X ∪ (a, b)
11: else if min delay ≤ δmax

b then
12: ϕ← delay plan(b, min delay)
13: X ← X ∪ (a, ϕ)
14: Φ← Φ ∪ ϕ
15: variant queue.push(ϕ)

16: for a ∈ P ∪ V do
17: for b ∈ P \ a do
18: try connect(a, b)
19: while variant queue not empty do
20: ϕ← variant queue.pop()
21: for p ∈ P do
22: if ϕ not variant of p then
23: try connect(ϕ, p)

Apart from generating variants, the algorithm also generates possible connections be-
tween vehicles and plans. We define the connection as an (ordered) pair (a, b), where
a ∈ P ∪ V ∪ Φ and b ∈ P ∪ Φ. Plan or vehicle a can be connected to plan b only if: 1) a
is a vehicle or the non-delayed version of a is different than the non-delayed version of b:
Φa ̸= Φb; and 2) the time difference between a and b is less than or equal to the travel time
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between them:

ftt(a, b) ≤

tob − tda if a ∈ P ∪ Φ

tob − tsa if a ∈ V
(5.10)

The variant generation algorithm first tries to connect each plan and vehicle a with each
plan b ̸= a. If the connection is not possible, we compute a delay for plan b as

δb = ftt(a, b)−

(tob − tda) if a ∈ P ∪ Φ

(tob − tsa) if a ∈ V

If δb ≤ δmax
b , we generate a delayed plan variant of b with delay δb and the corresponding

connection.
Then, analogously, we try to connect each variant ϕ ∈ Φ with each plan p ∈ P and try

to delay the plan p if necessary:

δp = ftt(ϕ, p)− (top − tdϕ),

Variant Generation and Plan Chaining Optimality

It is clear that Algorithm 5 does not generate all possible plan variants. However, we can
prove that it generates all plan variants necessary to construct the optimal solution to the
chaining problem.

Theorem 5.1. There exists an optimal solution to the chaining problem that contains
only non-delayed plans and plan variants generated by Algorithm 5.

Before proving Theorem 5.1, we will analyze some properties of Algorithm 5. First, we
assume that the connection cost does not depend on time:

Assumption 1. All plan chains that differ only in the delay of their plan variants have equal
costs.

Next, note that when delaying the plan, the Algorithm 5 always uses the minimum
possible delay (see function try connect).

Lemma 5.2. The function try connect from the variant generation algorithm always
creates the connection from plan o to plan p, if possible, using the minimum possible
delay for plan p.

Proof. We can prove this by inspecting the algorithm. On line 6, the minimum delay is
computed as a difference between travel time between o and p (ftt(o, p)) and the time
difference between these plans. We can see that this is indeed the minimum delay for
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a connection to be possible, as the delay is basically equal to the travel time minus the
already existing time difference between plans. On the following lines, we can see that
either:

• min delay ≤ 0: no delay is needed, so we keep the plan p as is. As each original plan
has the minimum possible delay (so we cannot assign a negative delay to a plan), this
is indeed the minimum possible delay.

• 0 < min delay ≤ δmax
p : in this case, we assign the minimum delay computed as

described above.

• min delay > δmax
p : connection is impossible as the time constraints of plan p would

be violated.

Thus, the claim is proved.

Finally, note that for a sequence of plans to be a plan chain, all its sub-sequences have
to be also plan chains, as stated in the following.

Lemma 5.3. If we remove a plan from the end of a plan chain, the resulting sequence
is also a plan chain.

Proof. It trivially comes from Definition 5.1.

Now, we can go back to Theorem 5.1:

Theorem 5.4. An optimal solution to the chaining problem exists that contains only
non-delayed plans and plan variants generated by Algorithm 5.

Proof of Theorem 5.1. We will proceed by induction and show that for each possible plan
chain, Algorithm 5 generates a set of connections that compose an equivalent plan chain
that differs only in the plan delays (and in conclusion, has an equal cost, see Assumption 1).

Let us start with a chain of length one: a vehicle. As the algorithm does not discard any
vehicles, it is clear that all chains of length one are covered. Let a chain of length two be
given. Thus, we have a vehicle v and a plan p, and we try to connect them by a connection
(v, p). There are two possible cases:

1. The connection (v, p) is not possible: we cannot generate the plan chain.

2. The connection (v, p) is possible: as we can see, all such connections are created by
Algorithm 5 (lines line 18 and 23).

Analogously, the chains of length 3 (a vehicle and two plans) are generated by Algorithm 5.
Let us now assume that Algorithm 5 generates all possible plan chains of length k ≤ n,
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and suppose we want to connect chain (p1, · · · , pn+1). On the account of Lemma 5.3, the
problem boils down to connecting the chain (v, p1, · · · , pn) to (possibly delayed) plan pn+1.
There are three possible cases:

1. The connection (pn, pn+1) is not possible: we cannot generate the plan chain.

2. The connection (pn, pn+1) is possible: as we can see, all such connections are created
by line 18 of Algorithm 5 in case that δpn+1 = 0; by line 23 otherwise.

3. The connection (pn, pn+1) would be possible only with an earlier variant of pn. How-
ever, according to Lemma 5.2 and by the induction hypothesis, we know that pn is
computed by the algorithm and is the earliest variant that can be connected to pn−1.
Therefore the chain (v, p1, · · · , pn, pn+1) is not possible.

Thus, the proof is complete.

Complexity

When analyzing the complexity of Algorithm 5, we have the following assumption:

Assumption 5.1. The function try connect has a constant time complexity.

With this assumption, we can only analyze the complexity of processing the variant queue.
We also build on the Assumption 2.2 about a constant ratio between requests and vehicles.
Finally, let us assume that there is a minimum duration for any plan:

Assumption 5.2. For each p ∈ P , tdp − top ≤ ∆, where ∆ ∈ R+

Below, we show that the complexity of the variant generation is finite and limited according
to the following theorem:

Theorem 5.4. If the Assumptions 2.2, 5.1, and5.2, the Algorithm 5 is finite and its

complexity is: O
(
|P | τ∆+1

)
.

Proof. First, let us present the first few iterations of the algorithm. We initialize the
variant queue with all plans and vehicles. For each of those plans and vehicles, we try to
connect them with all other plans and vehicles. In the worst case, after processing the initial
non-delayed plans, we generate a new delayed plan variant for each plan combined with each
other plan. The complexity, if the cycle is stopped after processing all non-delayed plans, is
O (|P |(|P | − 1) + |V ||P |). When going further, for each of these new delayed plan variants,
we can, in the worst case, generate a new delayed plan variant for each plan, except the
plan that generated the variant: |P | − 1 variants.
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We can see that this processing of the variant queue is potentially infinite. However,
we will show that using Assumption 5.2 hold, the number of generated plan variants is finite.
Let us divide the variant queue processing into generations, i.e., the first generation tries
to connect the plans among themselves, the second generation connects plans to the delayed
plan variants generated in the first generation, and so on. Then, we can write the complexity
as:

O
(
|P |(|P | − 1)a + |V ||P |(|P | − 1)a−1

)
, (5.11)

where a is the number of generations. Looking at how min delay is computed, we know that
a variant ϕ′ generated in generation i will start after the end of the variant ϕ generated in
generation i−1: tdϕ+δ < toϕ′ , even with the minimal plan delay δ → 0. Asumming 5.2 is true,
we can now bound the maximum number of generations by τ

∆ , where τ is the time horizon
of the DARP instance as defined in Chapter 2. The complexity of the variant generation
algorithm is then

O
(
|P |(|P | − 1)

τ
∆ + |V ||P |(|P | − 1)

τ
∆
−1
)
. (5.12)

Using Assumption 2.2, we can write the complexity as:

O
(
|P |(|P | − 1)

τ
∆ + |P |2(|P | − 1)

τ
∆
−1
)

= O
(
(|P |) τ

∆
+1 + |P | τ∆+1

)
= O

(
(|P |) τ

∆
+1
) (5.13)

From the analysis above, the following takeaways can be made. First, if we consider only
realistic plans that have a minimum duration, the complexity (and the number of generated
plan variants) is finite. Moreover, the complexity is polynomial relative to the input: the
exponent depends on the parameters of the problem rather than the size of the input. This
is an important consideration for estimating which problems can be solved by this chaining
method. Large problems may be easy to solve, while some small problems with a large time
horizon can be unsolvable in practice. This is a similar situation to the VGA method, which
also fails to solve some problems with a large time horizon. Therefore, it may seem that
the effort to deliver a method able to solve these hard instances was fruitless. Nevertheless,
as the results (Section 5.4) show, the optimal chaining can be applied to much longer time
horizons than the VGA method.

Finally, we should remark that the practical complexity is much lower than the above
presented worst-case complexity, as a) the maximum delay of plans is usually much smaller
than the time horizon, and b) a considerable time is usually needed to travel between plans,
which effectively limits the number of connections further.

5.3.2 Min Cost Flow Problem Formalization

The minimum-cost flow problem (MCFP, see Ahuja et al. (1993)) is an optimization problem
of finding a minimum set of flows through a flow network that is in total equal to a specified
amount of flow.
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Definition 5.2. A flow network is a directed graph G = (K,E). Each edge e from E
is defined as a 4-tuple (fe, le, ue, ce), where:

• fe is the flow of the edge e, a variable,

• le is the lower bound of the edge e, a constraint,

• ue is the upper bound of the edge e, a constraint,

• ce is the cost of the edge e, a constant.

Each vertex κ from a set K has an associated supply value sκ.

If sκ > 0, the node is called a source, if sκ = 0 it is a transshipment node, and if sκ < 0
it is called a sink. We mark the set of edges originating in the vertex κ as Oκ and a set of
edges with a destination in κ as Dκ.

The min-cost network flow problem is then formulated as:

Problem 5.2. Minimize: ∑
e∈E

cefe, (5.14)

subject to ∑
e∈Oκ

fe −
∑
e∈Dκ

fe = sκ ∀κ ∈ K, (5.15)

where fe ∈ [le, ue] ∀e ∈ E.

Here, Equation 5.15 is the flow conservation constraint.

5.3.3 Chaining as the Min-cost Flow Problem

To find an optimal solution to the chaining problem given the vehicles, plans, and delayed
plan variants and connections generated by Algorithm 5, we propose a constrained min-cost
flow problem formulation exemplified in Figure 5.4.
There are seven types of nodes:

• A single source and a single sink node,

• left and right plan nodes for each original plan,

• left and right variant nodes generated for plans with delayed variants.

• vehicle nodes



5.3. PROPOSED METHOD 94

1 1

2

2B

3

2B

3

2

2A

1

2
1

source Sink

1

1

2

2

43

1 2A

3
3

3

1 1

2

2B

3

2B

3

2

2A

1

2
1

source Sink

1

1

2

2

43

1 2A

3
3

3

Figure 5.4: Example of the final chaining formulation formulated as an MCFP. The vertices
are, from the left: the source, then left plan vertices for each plan, left variant vertices for
each variant (e.g., 2B translates to plan 2, variant B), and vehicle vertices, then right plan
and variant vertices, and finally, the sink. If a plan has no delayed variants, there is no
variant vertex. The travel cost is expressed by the number over the arc. Arcs without
numbers have zero cost. The inflow of the source is equal to the number of plans, and the
outflow of the sink is reversed to that. In the bottom image, there is the solution marked
by bold arcs (used arcs with active flow). For readability, vertices between solution arcs are
painted blue.
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Each node has a zero supply, with the exception of the source node, which has a supply
equal to the number of plans (three in the example), and the sink node, which has the
inverse supply. The edges are generated:

• from source to each left plan node and each vehicle node,

• from each left plan node to each of its corresponding variant nodes,

• from each right variant node to its corresponding right plan node

• from each right plan node to sink,

• and from vehicles and left plans/variants to right plans/variants according to the
output of the Algorithm 5.

Each edge has a direction from left to right. Also, for each edge e, le = 0, and ue = 1.
The cost of each edge is zero, with the exception of the edges between left plan/variant
nodes and right plan/variant nodes that have a cost equal to the travel time between the
destination of the previous plan and the origin of the next plan.

To solve the chaining problem optimally, we solve this min-cost flow problem and then
1) connect (chain) plans for each edge between the left plan/variant node and the right
plan/variant node with an active flow (flow = 1), and 2) assign vehicles to chained plans
according to the active flows outgoing from the vehicle nodes. For example, in the solution
illustrated in Figure 5.4 by bold lines, the edges (vehicle 2, plan 1), (plan 1, plan 2B), and
(plan 2B, plan 3) are part of the solution. Therefore, the resulting solution is a single plan
chain (vehicle 2, plan 1, plan 2B, plan 3).

To guarantee that this process results in a feasible system plan, we need to constrain
the min-cost flow problem such that a) only one variant has an active connection on the
left part of the flow problem, b) only one variant has an active connection on the right
part, and c) the connected variant on the left is the same as the one connected on the right.
Conveniently, conditions a) and b) are guaranteed by the flow conservation constraint. Next,
we have to introduce a constraint to guarantee the condition c). We need two symmetric
constraints:

f(κpl , κ
ϕ
l ) +

∑
ϕ′∈Φp

ϕ′ ̸≡ϕ

f(κϕ
′

r , κpr) ≤ 1 ∀p ∈ P,∀ϕ ∈ Φp (5.16)

f(κϕr , κ
p
r) +

∑
ϕ′∈Φp

ϕ′ ̸≡ϕ

f(κpl , κ
ϕ′

l ) ≤ 1 ∀p ∈ P,∀ϕ ∈ Φp (5.17)

Here κpl is the left plan vertex connected to the left variant vertex κϕl , and κpr is the right

plan vertex connected to the right variant vertex κϕr , As these constraints are generated for
each variant node, there are no such constraints for plans without delayed plan variants.

From the description above, it results that the proposed MCFP corresponds to prob-
lem 5.1. Therefore, by optimally solving the MCFP, we obtain an optimal solution to the
chaining problem.



5.4. NEW DARP HEURISTIC METHOD BASED ON OPTIMAL PLAN CHAINING 96

Note that with the additional constraints, we lose the ability to use the LP solver because
the flows could now be non-integer. Therefore, we have to solve this formulation using an
ILP solver, which is an NP-hard problem. In line with Section 2.3.2, will not analyze the
complexity of the ILP solver algorithm, but we will try to estimate the bound of the ILP
problem size. The number of binary flow variables can be computed as a sum of:

• edges from the source to vehicles: |V |,

• edges from vehicles to plans and variants. This can be bounded by: |V |(|P |+ |Φ|).

• edges from the source to plans and from plans to sink: 2|P |,

• edges from the plans to the variants and from the variants to the plans. This can be
bounded by: 2|Φ|,

• connection (chaining edges): (|P |+ |Φ|)(|P |+ |Φ| − 1).

Next, the number of flow conservation constraints is equal to the number of vertices, which
is |V |+ 2(|P |+ |Φ|) + 2. Finally, there are two variant conservation constraints (5.16, and
5.17) for each variant: 2|Φ|.

5.4 New DARP Heuristic Method Based on Optimal

Plan Chaining

In this section, we demonstrate how the proposed optimal chaining method can be used to
solve DARP. Specifically, we focus on DARP instances with long time horizons, where the
optimal solution is computationally intractable. We start by introducing the problem and
the scheme of the proposed method based on optimal chaining (Section 5.4.1). Next, we
present the formal changes to the VGA method compared to the formulation presented in
Section 2.3.2 (Section 5.4.2). Then, in Section 5.4.3, we described briefly the instance and
methods used in this demonstration, and finally, Section 5.4.4 presents the results.

5.4.1 Principle of the Method

As we show in the previous Chapter, one of the optimal methods for solving the ridesharing
DARP, the Vehicle-group assignment (VGA) method (Alonso-Mora et al., 2017), suffers
from high computational complexity when solving instances with long time horizon (more
than tens of seconds). Therefore, when solving instances spanning a longer time (for example
in offline ridesharing), a different method is required. In this demonstration, we propose
a new heuristic method that uses the VGA method as its component. Unlike classical
metaheuristics (see review in Ho et al. (2018)), which are iterative methods, the heuristic
proposed here is constructive: it creates a single solution and does not improve it afterward.
However, existing metaheuristics can be initialized by the solution created by the proposed
heuristic method as we demonstrate in the results section.
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Figure 5.5: The scheme of the proposed method.

The principle of the proposed heuristic method is to split the demand by time into short
time intervals (batches) that can be solved by the VGA method optimally. This is similar to
the classic VGA method operating in an online mode. Here, however, we know the content
of the batches in advance, so we can solve them simultaneously. Then, these batches are
joined by the optimal chaining method proposed in this chapter, resulting in plans that
cover the whole instance period. The simplified scheme of the method is in Figure 5.5. Note
that in this scheme, the VGA method can be replaced by any other optimal DARP solution
method.

5.4.2 Formal Changes to the VGA Method

The main difference from the original formulation is that, here, we cannot use the initial
position of vehicles, as we do not know it as a result of splitting the demand into batches
(except for the first batch) Therefore, instead of real vehicles, we use virtual vehicles. The
real vehicle assignment is done later in the chaining procedure. For group generation (see
Section 2.3.2) this affects the function f(G, v) which determines if a group G can be served
by vehicle v. Instead of the travel time from the vehicle position to the pickup location, we
use a single constant time ts, an estimate of travel time from the vehicle (unknown) position
to the origin of any request. This estimate is the parameter of the algorithm.

Because the constant ts is equal for all vehicles, we can simplify the VGA method further,
affecting the vehicle-group assignment (see Section 2.3.2) as well. We consider just a single
virtual vehicle for the whole problem. This way, we can run the group generation only for
one virtual vehicle. Next, in the vehicle-group assignment, instead of a maximum of one
plan per vehicle, we allow the virtual vehicle to serve the number of plans equal to the
number of real vehicles in the system. The modified vehicle constraint for the vehicle-group
assignment looks as follows: ∑

R∈γ
xR = |V | (5.18)
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Table 5.1: Used DARP instances and their parameters.

Instances Duration Requests Vehicles Trip Length [mean±std min]

DC 5 min 54 50 15.2±9.8min

DC 15 min 163 121 15.8±8.7min

DC 30 min 328 180 15.9±8.4min

Chicago 5 min 91 65 14.2±16.6min

Chicago 15 min 274 198 13.4±15.1min

Chicago 30 min 596 299 14.1±15.9min

Manhattan 5 min 1658 781 7.8±4.0min

Manhattan 15 min 5113 1672 7.7±3.8min

Manhattan 30 min 10362 1993 7.6±3.8min

NYC 5 min 3488 2384 10.1±6.8min

NYC 15 min 10567 5085 9.9±6.6min

NYC 30 min 20841 5905 9.9±6.5min

5.4.3 Instances, Evaluated Methods, and Experiment Configura-

tion

For the demonstration, we used large-scale ridesharing DARP instances presented in Sec-
tion 3.2. These instances are located in four areas (New York City, Manhattan, Chicago,
and Washington, DC) that vary not only geographically but are also very different in the
magnitude of both road network and travel demand (see Section 3.2.2). For each area, we
selected only instances with a maximum delay of 5minutes and instance duration of 5, 15,
and 30minutes. We consider the request to be served by conventional personal vehicles and,
therefore, we set the vehicle capacity to four persons. The parameters of all used instances
are displayed in Table 5.1

We compared the proposed heuristic method with three other methods for solving DARP,
each representing a single category of DARP solution methods:

• the vehicle Vehicle-group Assignment (VGA) method (Alonso-Mora et al., 2017; Čáp
& Alonso-Mora, 2018): an optimal solution method,

• the Insertion Heuristic (IH) (Jaw et al., 1986), implemented as in Fiedler, Čertický,
Alonso-Mora, et al. (2022), representing simple construction heuristics,

• and the Adaptive Large Neighborhood Search (ALNS) (Ropke & Pisinger, 2006),
configured as in Masmoudi et al. (2020)1.

1We omitted the “hybrid” part as implementing the genetic operators for free-floating vehicles would be
too complicated, considering that we use this metaheuristic only as one of three baseline methods.
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As the selected set of instances is challenging for the solution methods due to the large
scale, we cannot expect that all the solution methods will be able to compute all instances.
However, we include even the optimal method with exponential complexity to cover all major
types of DARP solution methods. Considering the proposed method, we tested multiple
of its configurations. First, we tried batch lengths of 30, 6, 120, 240, and 480 s. Second,
we also tried a time-limited version where the underlying VGA method does not solve the
individual batches optimally but is time-limited instead.

We implemented all methods in C++. For solving mixed integer programs, we used
the Gurobi (Gurobi Optimization, LLC, 2023). We ran the experiments on the AMD
EPYC 7543 CPU. The computation was limited to 24 hours. Because some of the methods
also require an extensive amount of memory, we limited the RAM usage to 80GB, not
including the memory used to store the distance matrix for travel time computation (which
varies dramatically between areas). As the proposed method can be easily parallelized,
we used multiple threads to solve the method. Note, however, that our parallelization is
limited to the trivially parallelizable algorithms (computing batches in parallel) or the library
calls with built-in parallelization (Gurobi solver). We believe that the evaluated methods
can be further parallelized to achieve a smaller computational time. Finally, we did not
spend extensive time with software optimizations of the evaluated methods. Therefore, the
computational time results should be taken with a grain of salt.

5.4.4 Results

We present the main results in four tables: one for each area. The areas are discussed from
the most complex (largest by demand). In each area table, only the methods that were able
to solve at least one instance for the area are included.

Table 5.2 shows the results for New York City. Only the variants of the chaining method,
together with IH, were able to solve any instance within the time limit. Moreover, some
of the variants of the proposed method were not able to solve the instance either, and the
30minute instance was solved only by the IH. However, for the remaining two instances,
the proposed method provides the best results.

Similarly, in the Manhattan instance, (Table 5.3), the proposed method beats the IH
in 2 of 3 instances. Here, the proposed method was able to compute even the instance
with the longest time horizon; however, the successful variants provide worse results than
IH. The ALNS variants were able to compute at least the 5minute instance here, but they
were outperformed by the proposed method. Note, however, that the ANLS-VGA variant
is outperformed only by the proposed method with the batch length of 480 s which actually
does not chain anything, as the batch is longer than the instance time horizon. The reason
why this method is able to compute the instance, while the VGA is failing is probably
because the proposed method computes the VGA part without considering the positions of
the vehicles, even for the first batch. This leads to suboptimality, but also to the reduction
of CPU time and memory requirements.

In the Chicago area, the shortest instance was solved to optimality, showing the limits
for practical application of the heuristic methods. All other methods were able to solve all
instances, with the exception of the 30 and 60 s variants of the proposed method. The best
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Table 5.2: NYC results. None of the NYC instances were solved by the optimal method
in time. The same is true for the metaheuristic variants

Total Cost [min] Used Vehicles Comp. time [s]

Method Batch [s] Lim. 5min 15min 30min 5min 15min 30min 5min 15min 30min

IH - no 30397 81486 157023 1613 3716 5031 5.76 39.55 91.87

P
ro
p
o
se
d
m
et
.

30 no 34607 100729 - 2061 4812 - 61.68 1004.12 -

60 no 31789 93646 - 1854 4572 - 43.26 709.80 -

120
no 29364 85486 - 1680 4269 - 249.57 897.20 -

yes 29372 85487 - 1680 4266 - 135.45 719.93 -

240 yes 27509 - - 1567 - - 224.84 - -

480 yes 25736 76832 - 1450 4308 - 223.54 1020.74 -

Table 5.3: Manhattan results. Here, almost all variants of all methods provide results for
at least one instance. The ALNS-IH method is ALNS initialized with the solution of the
insertion heuristic. The ALNS-prop is the ALNS initialized with the proposed method of
batch 120 s.

Total Cost [min] Used Vehicles Comp. time [s]

Method Batch [s] Lim. 5min 15min 30min 5min 15min 30min 5min 15min 30min

ALNS - no 8533 - - 516 - - 28891.51 - -

ALNS-IH - no 8371 - - 512 - - 25707.88 - -

ALNS-prop - no 7744 - - 505 - - 27655.04 - -

IH - no 9626 25386 48420 594 1306 1721 0.61 6.09 18.40

P
ro
p
o
se
d
m
et
.

30 no 10426 - - 738 - - 3.96 - -

60 no 9140 27686 55533 635 1648 1993 3.45 47.90 1706.07

120
no 8312 24360 48662 568 1504 1963 144.69 273.49 845.55

yes 8305 24360 48662 568 1504 1963 107.69 274.43 835.12

240 yes 7764 21646 - 547 1383 - 205.15 625.21 -

480 yes 7445 - - 562 - - 205.90 - -
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Table 5.4: Chicago results. Here, almost all methods compute all the instances. The
ALNS-IH method is ALNS initialized with the solution of the insertion heuristic. The
ALNS-prop is the ALNS initialized with the proposed method of batch 120 s.

Total Cost [min] Used Vehicles Comp. time [s]

Method Batch [s] Lim. 5min 15min 30min 5min 15min 30min 5min 15min 30min

ALNS-IH - no 1165 2998 6612 42 97 166 57.58 699.08 10049.92

ALNS-prop - no 1153 2982 6690 41 102 170 56.85 723.35 10467.21

IH - no 1200 3117 7090 46 114 209 0.01 0.04 0.15

VGA - no 1129 - - 42 - - 15.14 - -

P
ro
p
os
ed

m
et
h
o
d

30 no 1451 3940 - 57 165 - 0.12 0.62 -

60 no 1411 3825 - 55 153 - 0.11 0.40 -

120
no 1311 3613 8943 51 142 258 0.14 0.32 1.84

yes 1311 3613 8943 51 142 258 0.11 0.35 1.84

240
no 1234 3334 8246 48 129 240 0.12 0.42 1.38

yes 1234 3334 8246 48 129 240 0.13 0.46 1.35

480
no 1132 3107 7391 41 112 212 0.36 10.05 32.18

yes 1132 3107 7391 41 112 212 0.37 10.15 32.21

solution for the 15minutes and 30minute instances, is provided by ALNS. For the 15minute
instance, however, it is the ALNS variant initialized by the proposed method.

In the DC instance, we were able to solve all instances optimally. Therefore, comparing
the heuristic methods is irrelevant. However, we can observe that for the 5minute instance,
the cost of the heuristic solutions of some methods is very close to the optimal solution.
This signalizes that when the solution space is smaller, the heuristic methods perform well
compared to the more complex instances.

If we look at the computational time, it is clear absolute winner is the insertion heuristic.
We can see that with an increased instance time horizon, the computational time grows more
than linearly. Compared to it, the optimal method is slower, and the computational time
grows even faster, exponentially with the instance time horizon. When we compare VGA
and the proposed method, the proposed method is mostly faster, and the computational
time does not grow that fast. However, we can see differences between method variants:
longer batches result in a linear computation time growth, while shorter batches slow down
faster. This is a result of the chaining, which is not parallelized, and is much more difficult
when the batches are short. Finally, the metaheuristic is the slowest one, by far. It could
be probably sped up by reducing the number of iterations but with the cost of reducing the
quality of the solutions.

The last measured quality in the main result table is the number of used vehicles. This
represents the capital cost of the solution, and also somehow indicates the vehicle occupancy,
which is plotted separately in Figure 5.6 in the form of a histogram. To make the histogram
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Table 5.5: DC results. The ALNS-IH method is ALNS initialized with the solution of the
insertion heuristic. The ALNS-prop is the ALNS initialized with the proposed method of
batch 120 s.

Total Cost [min] Used Vehicles Comp. time [s]

Method Batch [s] Lim. 5min 15min 30min 5min 15min 30min 5min 15min 30min

ALNS - no 1062 2843 5252 39 85 127 19.21 149.25 979.12

ALNS-IH - no 1023 2789 5157 38 88 132 18.31 137.85 843.49

ALNS-prop - no 1029 2789 5159 38 87 129 18.25 150.52 1002.02

IH - no 1049 2934 5593 39 93 146 0.00 0.01 0.04

VGA - no 1009 2677 4821 38 82 122 0.09 2.31 457.56

P
ro
p
os
ed

m
et
h
o
d

30 no 1136 3545 6859 46 121 180 0.11 0.27 1.51

60 no 1122 3496 6744 45 120 180 0.10 0.36 1.29

120
no 1095 3373 6400 44 115 170 0.08 0.22 1.05

yes 1095 3373 6400 44 115 170 0.06 0.20 1.05

240
no 1023 3263 6095 39 113 169 0.06 0.22 0.61

yes 1023 3263 6095 39 113 169 0.09 0.23 0.72

480
no 1015 2983 5540 38 104 154 0.09 0.18 0.44

yes 1015 2983 5540 38 104 154 0.08 0.18 0.43
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Figure 5.6: Occupancy histograms for all city-exp. length combinations. The red bar
represents zero occupancy, and then the occupancy grows to the right up to the maximum
occupancy of four passengers.

clear, we included only one variant of the proposed heuristic and one ALNS variant. In
general, we can see that the demand in the Chicago and DC areas is not dense enough to
make significant savings by ridesharing. The vehicle hours with occupancy of two requests
are compensated by empty vehicle hours and only a small fraction of vehicle hours are driven
with more than two requests on board. However, in the NYC area, the effect of ridesharing
is already significant, and in Manhattan, we can see a high proportion of high occupancy,
even fully occupied vehicles. When comparing the occupancy between individual methods,
we can see a correlation with the solution cost: the methods with lower solution costs tend
to have higher occupancy.

We also examined delays for each individual travel request. The histogram of the delays
is in Figure 5.7. In general, the delays are higher for the methods that offer lower operational
costs, as the increased share of shared trips causes more delays. However, this relationship
is not strict. In the many histograms, we can observe that the IH and ALNS cause the
highest delays, but the most efficient is the proposed method, or VGA (compare, e.g., to
Table 5.3).

Overall, it is evident that we cannot choose a method that is best for all the instances.
Rather than that, one message of these results, also previously indicated in Fiedler and
Mrkos (2023a), is that it is essential to test the DARP methods on multiple instances with
different characteristics, before making any assumptions on the best method. For small
instances with low computational complexity, we can use the optimal method, even if the
time horizon is long. For the hardest instances, only the IH is applicable. Finally, for
the remaining instances with medium complexity, the proposed method is usually the best.



5.4. NEW DARP HEURISTIC METHOD BASED ON OPTIMAL PLAN CHAINING 104

0 1 2 3 4 5
0

10
20
30
40

0 1 2 3 4 5 0 1 2 3 4 5

0

20

40

60
0

200

400

600
0

500

1000

1500

Method: IH prop b120 ALNS-IH VGA

05 15 30

D
C

C
hicago

M
anhattan

N
YC

Re
qu

es
ts

Delay [min]

Figure 5.7: Delay histograms for all city-experiment length combinations. The prop b120

method is the proposed method with a batch length of 120 s.



5.5. SUMMARY 105

Note also that the ALNS-prop method, which sometimes outperforms all configurations of
the proposed method, is initialized with the solution of the proposed method. Therefore,
we think that this demonstration of the possible application of the optimal chaining proves
its practical usability, and should be in the toolbox of future researchers focused on DARP.

5.5 Summary

In this chapter, we address the last research goal (RG5): to deliver a new heuristic method
for solving the DARP. Specifically, we build on the findings of our simulation studies (Chap-
ter 4) and focus on DARP instances that cannot be solved optimally in a reasonable time
and at the same time, have a large gap between the optimal and heuristic solutions (which
we can estimate from the sensitivity analysis trends). Based on these findings and related
work, we propose a new heuristic method for solving the DARP. The principle of the method
is to split the demand into short time intervals, solve them optimally, and then chain the
plans. The plan chaining is known to be a subproblem in MoD literature, namely in the con-
text of fleet sizing. However, after researching the work related to plan chaining, we found
that the chaining problem in literature is usually solved with fixed plan times, regardless
of the flexibility coming from the time windows. Typically, each travel request has some
time flexibility, called a time window. These time windows propagate to the vehicle plans.
Therefore, we provide a new formulation of the plan chaining problem with time windows.
Next, as the success of the method depends on the quality of the chaining, we focused our
efforts on delivering an optimal chaining method. We propose a solution method for solving
the chaining problem, significantly reducing the search space compared to naive solutions.
Moreover, we prove that the method is optimal. Finally, we evaluate the proposed DARP
heuristic on large-scale DARP instances presented in Chapter 3. The evaluation results
confirm the applicability of the proposed method, as it can solve instances that cannot be
solved optimally within the time limit while being better than other evaluated heuristics
in most of the evaluated instances. Moreover, it demonstrates that the optimal chaining
method we have developed is practically applicable, and therefore, it opens a new research
direction in using it in other MoD problems like fleet sizing.



CHAPTER6
Conclusion

In the research summarized in this thesis, we studied mobility-on-demand (MoD) systems,
with the main focus on the operation of large-scale MoD systems operated by transportation
network companies (TNCs). The general conclusion of this thesis is that we were successful
in fulfilling the goals we have set (see Section 1.1). The detailed results and conclusions
of each research question are summarized at the end of the corresponding chapter (see
Table 1.1). In the following section, we briefly summarize the main contributions of this
thesis, organized by the goals they address. Then, in Section 6.2, we discuss the possible
directions for future research.

6.1 Summary of the Contributions and Results

For analyzing MoD systems or developing new methods and algorithms for them, we first
need to obtain input data. The data instances for MoD or, in general, mobility contain
transportation demand, vehicles, and the travel time model. As we show in Chapter 3, there
were no standardized instances for large-scale studies available in the literature. Either the
instances are too small, uniformly generated and have different characteristics than the
current MoD systems operated by transportation network companies (TNCs), or they are
not standardized, and therefore, not comparable or reproducible. To address this issue, we
have developed a methodology for creating large-scale instances based on historical travel
data. Using this methodology, we have created and published a set of instances for three
areas: New York City, Chicago, and Washington D.C. We tested the instances by solving the
dial-a-ride problem (DARP) and showed that they are suitable for large-scale studies. The
results of this evaluation also show the importance of using instances from various areas, as
different algorithms perform better in different areas.

There are many research questions about MoD systems that were still unanswered when
we started our MoD research. We selected three of them and answered them using multi-
agent simulations. For all three research questions, we used the same simulation method-
ology and input data. We performed the simulations in two different areas: Prague and
Manhattan. This simulation research is described in Chapter 4.
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MoD systems remove the burden of personal car ownership and driving and have a clear
advantage of reducing the required fleet size and parking requirements. However, they also
produce empty trips, which are trips between one passenger’s drop-off location and the next
passenger’s pick-up location. Before the research summarized in this thesis, it was not clear
what is the trade-off between the reduction of the fleet size and the increase in the number
of empty trips. Our simulation results revealed this trade-off. While the fleet size can be
reduced 4 to 6 times, the total distance driven by the fleet increases by 20% to 30%.

To mitigate the increase in traveled distance, we can employ ridesharing, i.e., transport-
ing multiple passengers in one vehicle simultaneously. However, it is not clear how much
ridesharing can reduce the total distance driven by the fleet in a real-world MoD system.
With the help of our simulation, we were able to quantify the benefits of ridesharing. We
found that the total distance driven by the fleet can be reduced by 22% compared to using
private cars and by 46% compared to the MoD system without ridesharing. Moreover, there
is an additional reduction in the required fleet size compared to the MoD system without
ridesharing: in general, we only need half of the vehicles.

The last question we answered using simulation is how much we can benefit from dis-
patching the vehicles optimally, i.e., by finding an optimal solution to the Dial-a-Ride Prob-
lem (DARP). This is an important question, as computing the optimal solution is compu-
tationally expensive and even infeasible for some instances. Therefore, trying to find the
optimal solution only makes sense if the reduction in the cost (total distance driven) is sig-
nificant. With the simulation, we were able to quantify the benefits of optimal ridesharing
and we found that the gap between the optimal and heuristic solutions is significant. In the
case studies, the optimal ridesharing reduces the total distance traveled by about 20% com-
pared to the Insertion Heuristic, while simultaneously reducing the average passenger delay
by 5%. Moreover, we also developed a resource-constrained variant of the optimal method
and explored various trade-offs between the total distance traveled and the computational
requirements.

The final goal of the thesis was to develop a new heuristic optimization algorithm for
vehicle dispatching which translates the optimal solution of the DARP. In our simulation
studies, we identified the weak point of the optimal solution method: the method was failing
on instances with a long time horizon, i.e., with travel requests spread over a long time.
To produce good solutions for these instances, we developed a new heuristic algorithm that
splits instances with a long time horizon into smaller sub-instances, solves them optimally,
and then chains the optimal solutions together. As there was no suitable chaining method
in the literature that considers time windows, we developed such a chaining method and
proved that it is optimal. We evaluated the new DARP heuristic on the instances developed
for this thesis (RG1) and it proved to be very effective. It can solve instances that cannot
be solved optimally in the 24 h time limit while being better than other standard heuristics
in most of the evaluated instances. These results not only show the effectiveness of the
DARP heuristic developed to address the RG5 but also the quality and applicability of
the underlying optimal plan chaining method. As plan chaining is a subproblem of other
MoD problems, this opens the research opportunities for the application of the optimal plan
chaining method in other MoD problems.
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6.2 Future Work

Although we have developed new methodologies and algorithms for MoD systems, and we
have answered several research questions, there are still many research opportunities in this
area.

The first opportunity is to continue the work on the DARP instances. To maintain the
standardization, it is desirable to limit the number of instances and areas but still, we believe
that there is room for more variety. The instances we have developed cover large cities in
the US, but other countries and continents, potentially with different travel behaviors, are
not represented. Also, different types of areas, such as suburban or rural areas can be of
interest. Another aspect of the instances that can be improved is the travel time model. For
that, we use the UberMovement dataset1. However, this dataset covers only a few areas and
as of October 1, 2023, it is no longer available. Therefore, it is desirable to find or develop
new travel time models.

The next opportunity is to explore various extensions or specializations of MoD systems
that are yet extensively studied but represent real-world scenarios and trends. The first
extension is the integration of parcel or food delivery into the MoD systems. Although
there is some research in this area (Febbraro et al., 2018; Godart et al., 2018; Manchella
et al., 2021), the modification and evaluation of state-of-the-art dispatching algorithms for
this scenario are still missing. The second extension is the integration of public transport
into the MoD systems. In spite of a great amount of research in this area (e.g., Feng et al.,
2022; Lau and Susilawati, 2021; T.-Y. Ma et al., 2019), there are still some open questions,
for example, which public transport lines should be replaced by MoD systems to provide
a more comfortable and more efficient service? The third extension is enabling transfers
between vehicles in MoD systems. This can reduce the required fleet size and enable a high
level of service even in areas with low demand or penetration of MoD systems. Again, there
is an existing body of research on this topic (Lotfi & Abdelghany, 2022; Lyu & Yu, 2023;
Pierotti & van Essen, 2021; Voigt & Kuhn, 2022), but the studies are limited to small-scale
instances. Another extension can be replacing the relaxation of the door-to-door operation,
i.e., allowing the passengers to walk to the pick-up or from the drop-off location. This
healthy and environmentally friendly option can be beneficial especially when ridesharing is
employed, and it can, additionally to traveled distance, also reduce the requirement for on-
street parking. However, this extension makes the problem fundamentally harder. Although
some research focused on MoD with walking exists (Fielbaum, 2022; Fielbaum et al., 2021),
we believe that there is still room for improvement, e.g., using a flexible walking distance,
instead of hard constraints (walk towards the vehicle to prevent waiting even if it exceeds
maximum walking distance) or exploring the possibility to solve the problem optimally.
Also, with the extensively tested simulation stack, we can perform various case studies
related to MoD systems. These can be focused, for example, on the impact of large-scale
MoD systems on other modes of transport, evaluating different MoD operation policies,
the impact of various urban planning decisions on the MoD systems, or the analysis of the
trade-offs between capital cost, operational cost, and passenger comfort.

1https://movement.uber.com/

https://movement.uber.com/
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Finally, there is an opportunity to further research the optimization in MoD systems.
The optimal chaining method we have developed has been so far evaluated only for the
dispatching (DARP). However, it can be used for other problems, such as fleet sizing. An
evaluation study that would compare the optimal chaining method with other fleet sizing
methods, such as the one proposed by Vazifeh et al. (2018) could quantify the benefits of
considering users’ time constraints in the fleet sizing problem. Also, there is a big chal-
lenge in the optimization of the single-vehicle dial-a-ride problem (SVDARP). This problem
studied for more than forty years (Desrosiers et al., 1986; Psaraftis, 1980), is now a sub-
problem of many DARP methods, including the Vehicle-group assignment (VGA) method
described in Section 2.3.2. However, the SVDARP is NP-hard and therefore, it is a usually
bottleneck of the methods that use it. A typical implementation of the SVDARP is either
a dynamic programming algorithm with exponential time complexity (See Desrosiers et al.,
1986) or a heuristic that makes the whole method suboptimal (Alonso-Mora et al., 2017).
Therefore, any improvement that reduces the time complexity of the SVDARP solution
(even if it is still exponential) or a new heuristic that would be better than the current ones
would be a big contribution to the field. Among the possible candidates for improvement
here are parallelization of the dynamic programming algorithm, implementing of the latest
operational research techniques (see e.g. review by Costa et al. (2019)), or using machine
learning as a heuristic instead of traditional heuristics like the Insertion Heuristic. The last
idea for future research in MoD optimization is to compare the optimal DARP methods on
the MoD instances presented in this thesis. So far, we only evaluated the VGA method, as
it has a straightforward implementation. However, a huge amount of research exists in the
operational research field (Costa et al., 2019; Desaulniers et al., 2020; Gschwind & Irnich,
2014; Ropke & Cordeau, 2009; Sadykov et al., 2021). These methods were so far tested only
on classical DARP instances, but they can be potentially less computationally demanding
than the VGA method.
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This section lists the publications of the author of this thesis. They are divided into two main
categories: publications related to the thesis and other publications. Inside each category,
the publications are sorted according to the dean’s directive no. FEL SD 2024 05 V01 into
two categories: a) Journal articles for the impacted journals indexed in the Web of Science
(WoS) and b) Other WoS publications for other publications that are indexed in the WoS.
The rest of the categories from the directive are skipped, as they are not relevant to the
author’s publications.

If a publication has been cited, the citation count follows in the format (citations: WoS
IF, WoS, other), where:

• WoS IF is the number of citations from journals indexed in the WoS with impact
factor,

• WoS is the number of citations from other publications indexed in the WoS, and

• other is the number of citations from other sources.

For contributions, we use the CRediT author statement proposed by Brand et al. (2015).
The author statement categories are reproduced in A.1.

Table A.1: CRediT contribution cathegories (Brand et al., 2015).

1 Conceptualization 8 Data curation

2 Methodology 9 Writing – original draft

3 Software 10 Writing – review and editing

4 Validation 11 Visualization

5 Formal analysis 12 Supervision

6 Investigation 13 Project administration

7 Resources 14 Funding acquisition
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(Fiedler, Čertický, Alonso-Mora, et al., 2022) Fiedler, D., Čertický, M., Alonso-Mora,
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1,2,5,6,9,10,12; MS: 1,2,3,4,5,6,8,9,10,11,13; JV: 12,14)

https://www.scitepress.org/Link.aspx?doi=10.5220/0010261009070915
https://www.scitepress.org/Link.aspx?doi=10.5220/0010261009070915


Bibliography

Aditya Ambadipudi, Kersten Heinek, Philipp Kampsho, & Emily Shao. (2017, October
4). Gauging the disruptive power of robo-taxis in autonomous driving. McKinsey &
Company. Retrieved February 26, 2024, from https://www.mckinsey.com/industri
es/automotive-and-assembly/our-insights/gauging-the-disruptive-power-of-robo-t
axis-in-autonomous-driving?cid=other-eml-alt-mip-mck-oth-1710&hlkid=57ff2362
2f684cf692d61f51fabf1960&hctky=1320192&hdpid=fb1b0a28-a070-4013-b2b8-91d
421cb3623#0

Agatz, N. A. H., Erera, A. L., Savelsbergh, M. W. P., & Wang, X. (2011). Dynamic ride-
sharing: A simulation study in metro Atlanta. Transportation Research Part B:
Methodological, 45 (9), 1450–1464. https://doi.org/10.1016/j.trb.2011.05.017

Aggregated Reports - TLC. (n.d.). Retrieved February 26, 2024, from https://www.nyc.gov
/site/tlc/about/aggregated-reports.page

Ahuja, R. K., Magnanti, T. L., & Orlin, J. B. (1993, February). Network flows: Theory,
algorithms, and applications. Prentice-Hall, Inc.

Alonso-Mora, J., Samaranayake, S., Wallar, A., Frazzoli, E., & Rus, D. (2017). On-demand
high-capacity ride-sharing via dynamic trip-vehicle assignment. Proceedings of the
National Academy of Sciences, 114 (3), 462–467. https://doi.org/10.1073/pnas.161
1675114

Annie McDonough. (2019, June 13). New York isn’t letting up on ride-hail. City & State
NY. Retrieved February 26, 2024, from https://www.cityandstateny.com/policy/2
019/06/new-york-isnt-letting-up-on-ride-hail/177262/

ATOCKAR. (2014, September 15). Riding with the Stars: Passenger Privacy in the NYC
Taxicab Dataset. Retrieved January 25, 2024, from https://agkn.wordpress.com/20
14/09/15/riding-with-the-stars-passenger-privacy-in-the-nyc-taxicab-dataset/

Auld, J., Hope, M., Ley, H., Sokolov, V., Xu, B., & Zhang, K. (2016). POLARIS: Agent-
based modeling framework development and implementation for integrated travel
demand and network and operations simulations. Transportation Research Part C:
Emerging Technologies, 64, 101–116. https://doi.org/10.1016/j.trc.2015.07.017

Auld, J., & Mohammadian, A. (2012). Activity planning processes in the Agent-based Dy-
namic Activity Planning and Travel Scheduling (ADAPTS) model. Transportation
Research Part A: Policy and Practice, 46 (8), 1386–1403. https://doi.org/10.1016/j
.tra.2012.05.017

Badu-Marfo, G., Farooq, B., & Patterson, Z. (2022). Composite Travel Generative Adversar-
ial Networks for Tabular and Sequential Population Synthesis. IEEE Transactions

https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/gauging-the-disruptive-power-of-robo-taxis-in-autonomous-driving?cid=other-eml-alt-mip-mck-oth-1710&hlkid=57ff23622f684cf692d61f51fabf1960&hctky=1320192&hdpid=fb1b0a28-a070-4013-b2b8-91d421cb3623#0
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/gauging-the-disruptive-power-of-robo-taxis-in-autonomous-driving?cid=other-eml-alt-mip-mck-oth-1710&hlkid=57ff23622f684cf692d61f51fabf1960&hctky=1320192&hdpid=fb1b0a28-a070-4013-b2b8-91d421cb3623#0
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/gauging-the-disruptive-power-of-robo-taxis-in-autonomous-driving?cid=other-eml-alt-mip-mck-oth-1710&hlkid=57ff23622f684cf692d61f51fabf1960&hctky=1320192&hdpid=fb1b0a28-a070-4013-b2b8-91d421cb3623#0
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/gauging-the-disruptive-power-of-robo-taxis-in-autonomous-driving?cid=other-eml-alt-mip-mck-oth-1710&hlkid=57ff23622f684cf692d61f51fabf1960&hctky=1320192&hdpid=fb1b0a28-a070-4013-b2b8-91d421cb3623#0
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/gauging-the-disruptive-power-of-robo-taxis-in-autonomous-driving?cid=other-eml-alt-mip-mck-oth-1710&hlkid=57ff23622f684cf692d61f51fabf1960&hctky=1320192&hdpid=fb1b0a28-a070-4013-b2b8-91d421cb3623#0
https://doi.org/10.1016/j.trb.2011.05.017
https://www.nyc.gov/site/tlc/about/aggregated-reports.page
https://www.nyc.gov/site/tlc/about/aggregated-reports.page
https://doi.org/10.1073/pnas.1611675114
https://doi.org/10.1073/pnas.1611675114
https://www.cityandstateny.com/policy/2019/06/new-york-isnt-letting-up-on-ride-hail/177262/
https://www.cityandstateny.com/policy/2019/06/new-york-isnt-letting-up-on-ride-hail/177262/
https://agkn.wordpress.com/2014/09/15/riding-with-the-stars-passenger-privacy-in-the-nyc-taxicab-dataset/
https://agkn.wordpress.com/2014/09/15/riding-with-the-stars-passenger-privacy-in-the-nyc-taxicab-dataset/
https://doi.org/10.1016/j.trc.2015.07.017
https://doi.org/10.1016/j.tra.2012.05.017
https://doi.org/10.1016/j.tra.2012.05.017


BIBLIOGRAPHY 114

on Intelligent Transportation Systems, 23 (10), 17976–17985. https://doi.org/10.11
09/TITS.2022.3168232

Balac, M., Becker, H., Ciari, F., & Axhausen, K. W. (2019). Modeling competing free-
floating carsharing operators – A case study for Zurich, Switzerland. Transportation
Research Part C: Emerging Technologies, 98, 101–117. https://doi.org/10.1016/j.tr
c.2018.11.011

Banning-Lover, R. (2021). Is ride-hailing finally a profitable business? [newspaper]. Financial
Times. Retrieved November 26, 2021, from https://www.ft.com/content/bcd71e2a
-9ff2-4477-b995-ff82c5530bfb

Bassolas, A., Ramasco, J. J., Herranz, R., & Cantú-Ros, O. G. (2019). Mobile phone records
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ing Systems: Analysis of Vélib’. International Journal of Sustainable Transportation,
7 (1), 85–106. https://doi.org/10.1080/15568318.2012.660115

Najmi, A., Rey, D., & Rashidi, T. H. (2017). Novel dynamic formulations for real-time
ride-sharing systems. Transportation Research Part E: Logistics and Transportation
Review, 108, 122–140. https://doi.org/10.1016/j.tre.2017.10.009

National Research Council (U S. ), Highway Research Board. (1971). Demand-Actuated
Transportation Systems. The Board.

Neumann, A., Balmer, M., & Rieser, M. (2012). Converting a Static Macroscopic Model
Into a Dynamic Activity-Based Model for Analyzing Public Transport Demand in
Berlin. Proceedings of the 13th Conference of the International Association for Travel
Behaviour Research (IATBR).

NYC Department of Transportation. (2019). New York City Mobility Report. NYC Depart-
ment of Transportation. Retrieved November 7, 2023, from https://www.nyc.gov/h
tml/dot/downloads/pdf/mobility-report-2019-print.pdf

NYC Taxi & Limousine Commission. (2018). 2018 Factbook. NYC Taxi & Limousine Com-
mission.

Oke, J. B., Akkinepally, A. P., Chen, S., Xie, Y., Aboutaleb, Y. M., Azevedo, C. L., Ze-
gras, P. C., Ferreira, J., & Ben-Akiva, M. (2020). Evaluating the systemic effects
of automated mobility-on-demand services via large-scale agent-based simulation of
auto-dependent prototype cities. Transportation Research Part A: Policy and Prac-
tice, 140, 98–126. https://doi.org/10.1016/j.tra.2020.06.013

Ouyang, K., Shokri, R., Rosenblum, D. S., & Yang, W. (2018). A Non-Parametric Generative
Model for Human Trajectories, 3812–3817. Retrieved January 25, 2024, from https:
//www.ijcai.org/proceedings/2018/530

Pang, Y., Tsubouchi, K., Yabe, T., & Sekimoto, Y. (2017). Modeling and reproducing hu-
man daily travel behavior from GPS data: A Markov Decision Process approach.
Proceedings of the 1st ACM SIGSPATIAL Workshop on Prediction of Human Mo-
bility, 1–9. https://doi.org/10.1145/3152341.3152347

Parragh, S. N. (2011). Introducing heterogeneous users and vehicles into models and al-
gorithms for the dial-a-ride problem. Transportation Research Part C: Emerging
Technologies, 19 (5), 912–930. https://doi.org/10.1016/j.trc.2010.06.002

https://doi.org/10.1109/ICRA.2017.7989167
https://doi.org/10.1109/ICRA.2017.7989167
https://doi.org/10.7551/mitpress/8490.001.0001
https://doi.org/10.7551/mitpress/8490.001.0001
https://doi.org/10.1016/j.eswa.2013.04.015
https://doi.org/10.1016/j.trc.2015.02.024
https://doi.org/10.1080/15568318.2012.660115
https://doi.org/10.1016/j.tre.2017.10.009
https://www.nyc.gov/html/dot/downloads/pdf/mobility-report-2019-print.pdf
https://www.nyc.gov/html/dot/downloads/pdf/mobility-report-2019-print.pdf
https://doi.org/10.1016/j.tra.2020.06.013
https://www.ijcai.org/proceedings/2018/530
https://www.ijcai.org/proceedings/2018/530
https://doi.org/10.1145/3152341.3152347
https://doi.org/10.1016/j.trc.2010.06.002


BIBLIOGRAPHY 122

Pavone, M., Smith, S. L., Frazzoli, E., & Rus, D. (2012). Robotic load balancing for mobility-
on-demand systems. The International Journal of Robotics Research, 31 (7), 839–854.
https://doi.org/10.1177/0278364912444766

Pfeiffer, C., & Schulz, A. (2022). An ALNS algorithm for the static dial-a-ride problem with
ride and waiting time minimization. OR Spectrum, 44 (1), 87–119. https://doi.org
/10.1007/s00291-021-00656-7

Pierotti, J., & van Essen, J. T. (2021). MILP models for the Dial-a-Ride problem with
transfers. EURO Journal on Transportation and Logistics, 10 (100037). https://doi
.org/10.1016/j.ejtl.2021.100037

Psaraftis, H. N. (1980). A Dynamic Programming Solution to the Single Vehicle Many-
to-Many Immediate Request Dial-a-Ride Problem. Transportation Science, 14 (2),
130–154. https://doi.org/10.1287/trsc.14.2.130

Qu, B., Mao, L., Xu, Z., Feng, J., & Wang, X. (2022). How Many Vehicles Do We Need?
Fleet Sizing for Shared Autonomous Vehicles With Ridesharing. IEEE Transactions
on Intelligent Transportation Systems, 23 (9), 14594–14607. https://doi.org/10.110
9/TITS.2021.3130749

Resolution Approving Authorization for Cruise Llc’s Expanded Service in Autonomous Vehi-
cle Passenger Service Phase I Driverless Deployment Program (Resolution No. TL-
19145). (2023a, August 10). Public Utilities Commission of the State of California.
Retrieved February 26, 2024, from https://docs.cpuc.ca.gov/PublishedDocs/Publis
hed/G000/M516/K812/516812218.PDF

Resolution Approving Waymo Llc’s Application for Phase I Driverless Autonomous Vehicle
Passenger Service Deployment Program (Resolution No. TL-19144). (2023b, August
10). Public Utilities Commission of the State of California. Retrieved February 26,
2024, from https://docs.cpuc.ca.gov/PublishedDocs/Published/G000/M516/K812
/516812344.PDF

Road Transport Year Book. (2023, April 13). Goverment of India, Ministry of Road Trans-
portat & Highways. New Delhi.

Ropke, S., & Cordeau, J.-F. (2009). Branch and Cut and Price for the Pickup and Delivery
Problem with Time Windows. Transportation Science. https://doi.org/10.1287/trs
c.1090.0272

Ropke, S., Cordeau, J.-F., & Laporte, G. (2007). Models and branch-and-cut algorithms
for pickup and delivery problems with time windows. Networks, 49 (4), 258–272.
https://doi.org/10.1002/net.20177

Ropke, S., & Pisinger, D. (2006). An Adaptive Large Neighborhood Search Heuristic for the
Pickup and Delivery Problem with Time Windows. Transportation Science, 40 (4),
455–472. https://doi.org/10.1287/trsc.1050.0135

Sadykov, R., Uchoa, E., & Pessoa, A. (2021). A Bucket Graph–Based Labeling Algorithm
with Application to Vehicle Routing. Transportation Science, 55 (1), 4–28. https://d
oi.org/10.1287/trsc.2020.0985

Santi, P., Resta, G., Szell, M., Sobolevsky, S., Strogatz, S. H., & Ratti, C. (2014). Quanti-
fying the benefits of vehicle pooling with shareability networks. Proceedings of the
National Academy of Sciences, 111 (37), 13290–13294. https://doi.org/10.1073/pna
s.1403657111

https://doi.org/10.1177/0278364912444766
https://doi.org/10.1007/s00291-021-00656-7
https://doi.org/10.1007/s00291-021-00656-7
https://doi.org/10.1016/j.ejtl.2021.100037
https://doi.org/10.1016/j.ejtl.2021.100037
https://doi.org/10.1287/trsc.14.2.130
https://doi.org/10.1109/TITS.2021.3130749
https://doi.org/10.1109/TITS.2021.3130749
https://docs.cpuc.ca.gov/PublishedDocs/Published/G000/M516/K812/516812218.PDF
https://docs.cpuc.ca.gov/PublishedDocs/Published/G000/M516/K812/516812218.PDF
https://docs.cpuc.ca.gov/PublishedDocs/Published/G000/M516/K812/516812344.PDF
https://docs.cpuc.ca.gov/PublishedDocs/Published/G000/M516/K812/516812344.PDF
https://doi.org/10.1287/trsc.1090.0272
https://doi.org/10.1287/trsc.1090.0272
https://doi.org/10.1002/net.20177
https://doi.org/10.1287/trsc.1050.0135
https://doi.org/10.1287/trsc.2020.0985
https://doi.org/10.1287/trsc.2020.0985
https://doi.org/10.1073/pnas.1403657111
https://doi.org/10.1073/pnas.1403657111


BIBLIOGRAPHY 123

Santos, D. O., & Xavier, E. C. (2013). Dynamic Taxi and Ridesharing: A Framework and
Heuristics for the Optimization Problem. Proceedings of the Twenty-Third Interna-
tional Joint Conference on Artificial Intelligence, 2885–2891. Retrieved March 28,
2019, from http://dl.acm.org/citation.cfm?id=2540128.2540544

Santos, D. O., & Xavier, E. C. (2015). Taxi and Ride Sharing: A Dynamic Dial-a-Ride
Problem with Money as an Incentive. Expert Systems with Applications, 42 (19),
6728–6737. https://doi.org/10.1016/j.eswa.2015.04.060

Savelsbergh, M. W. P. (1985). Local search in routing problems with time windows. Annals
of Operations Research, 4 (1), 285–305. https://doi.org/10.1007/BF02022044
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