Master Thesis

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Control Engineering

Head-to-Head Racing with F1/10
Autonomous Car

Tomas Nagy

Supervisor: Ing. Jaroslav Klapalek
Field of study: Cybernetics and Robotics
May 2024

ii

Acknowledgements

I would like to express my deep gratitude
to my supervisor, Ing. Jaroslav Klapalek,
for his guidance and valuable advice re-
garding this thesis. Moreover, I would
like to extend my thanks to my family,
friends, and colleagues for their support
throughout my study.

iii

Declaration

I declare that the submitted thesis was de-
veloped individually and that I listed all
used information sources in accordance
with Methodical Guideline on Ethical
Principles for College Final Work Prepa-
ration.

In Prague, 24. May 2024

Abstract

This thesis focuses on the detection of
overtaking zones on a racing track when
competing against one opponent. A re-
view of the current solutions and overtak-
ing rules was conducted. Based on this
review, we developed and implemented a
planner that computes dynamically fea-
sible overtaking manoeuvres. The ma-
neuvers were planned with respect to the
competition racing rules. By planning
multiple trajectories on different parts of
the track, we were able to successfully
identify possible overtaking zones. The
method was tested on multiple tracks with
different opponent trajectories and vehicle
parameters. To validate the feasibility of
the planned manoeuvres, we executed a
few of them in the simulation and real-life
using the FITENTH platform.

Keywords: overtaking, trajectory
optimization, racing, FITENTH

Supervisor: Ing. Jaroslav Klapdalek

iv

Abstrakt

Tato diplomova praca sa zaobera detek-
ciou vhodnych miest na predbiehanie jed-
ného sipera na pretekarskej drdhe. Na
zéklade prieskumu stucasnych rieseni da-
nej problematiky, sme navrhli a implemen-
tovali planovac¢ predbiehacich manévrov.
Planovanim viecerych trajektorii na roz-
dielnych miestach na trati, sme tspesne
identifikovali vhodné miesta na predbie-
hanie. Aby sme ukéazali realizovatelnost
naplanovanych manévrov, niektoré z nich
sme otestovali v simulécii, ako aj v realite
za pouzitia modelu vozdila F1TENTH.

Klacové slova: pretekanie,
predbiehanie, optimalizacia trajektoérie,
F1ITENTH

Preklad nazvu: Pretekanie so siperom
pre autonémne auto F1/10

Contents

1 Introduction 1
2 Literature review 3
2.1 Reactive methods.............. 3
2.2 Learning-based methods
2.3 Local planning
2.4 Overtaking-related rules in racing
competitions 7l
2.4.1 Defending a position
2.4.2 Contact with the opponent ... [9|
2.4.3 Overtaking 9]
3 Metodology 11
3.1 Scenario definition [11]
3.2 Marking convention
3.3 Platform description
3.3.1 Hardware stack
3.3.2 Software stack [14]
3.4 Trajectory optimization
4 Method description 19
4.1 Algorithm improvements.
4.1.1 Trajectory evaluation

4.1.2 Track progress calculation. . .
4.1.3 Detecting a collision with the

opponent, 20|
4.1.4 Interaction between cars 21
4.2 Implementation details
4.2.1 Initial conditions and final state
feasibility
4.2.2 Handling uncertainty
4.2.3 Data gathering
5 Experimental evaluation 25|
5.1 The design of the experiments . .
5.1.1 Racing tracks description ...
5.2Results 28]
521 Track 1...................
522 Track 2 30/
523 Track 3 131
524 Track 4 33
525 Track 5 ... 134
526 Track 6 136/
5.3 Maneuver validation 38|
5.3.1 Maneuver 1 138
5.3.2 Maneuver 2 39
5.3.3Maneuver 3
5.3.4 Maneuver 4 41

5.3.5 Maneuver 5

5.3.6 Maneuver 6
5.3.7 Maneuver 7

6 Future work
7 Conclusion
A Bibliography

B Project Specification

G288 EE

Figures
2.1 A comparison between FTG and

Disparity Extender...............
2.2 Local planning methods
2.3 Defending a position............
2.4 Overtaking in a corner
3.1 FITENTH platform top view. ..
3.2 FITENTH platform photo
3.3 Track segmentation example . ..
3.4 Matryoska mapping example . ..
4.1 Example of an overtake with and

without interaction.
4.2 Example of overtake positions ..
5.1 Images of racing tracks used for

simulation experiments
5.2 Track 6 used for real-life

experiments 28|
5.3 Overtaking zones on Track 1 with

different opponent trajectories

5.4 Overtaking zones on Track 1, while

the ego car has increased friction .
5.5 Overtaking zones on Track 2.. ..
5.6 Overtaking zones on Track 3 with

different opponent trajectories
5.7 Overtaking zones on Track 3 with

optimal opponent trajectory......
5.8 Overtaking zones on Track 3 with

ego’s top speed change
5.9 Overtaking zones on Track 3 with

ego’s friction change.............

5.10 Overtaking zones on Track 4 with
different opponent trajectories
5.11 Overtaking zones on Track 4 with
ego’s vehicle friction change
5.12 Overtaking zones on Track 5 with
different opponent trajectories
5.13 Overtaking zones on Track 5 with

ego’s vehicle friction change
5.14 Overtaking zones on Track 4

while the opponent is driving its

near-minimum time trajectory, and

the ego vehicle has increased top

speed. ...
5.15 Overtaking zones on Track 6. . .
5.16 Maneuver 1 execution 38

vi

5.17 Maneuver 2 execution
5.18 Maneuver 3 execution
5.19 Maneuver 4 execution
5.20 Maneuver 5 execution
5.21 Execution of manoeuvre 6 in the

simulation
5.22 Execution of manoeuvre 7 in the

simulation and in real life
5.23 Comparison between simulated

and real-life

Tables

3.1 Measurements of the FITENTH
platform

.......................
5.1 Vehicle parameters.
5.2 List of scenarios 26

vii

Chapter 1

Introduction

Efficient and safe overtaking is a fundamental skill all drivers must have,
particularly in the racing domain. While following the fastest racing line is
crucial for a quick lap time, sticking to it alone does not secure a victory
in a race. In comparison to a highway scenario where all drivers share the
common goal of reaching their destinations safely, racing drivers compete
for the first place. Moreover, in racing, the vehicles use higher speed, while
competing against each other. Therefore, planning and executing efficient
overtaking manoeuvres in racing is much more complex, making this an
interesting problem to explore.

We study this problem in the context of the FITENTH Autonomous Racing
Competition [I]. This international event features 1:10 scale autonomous
cars competing for first place. There are currently two types of races. In
the time trial, the vehicle is supposed to complete a lap as fast as possible
while racing alone on the track. To win this race, a lap time needs to be
minimized, which is usually done by following a predetermined optimal race
line. On the other hand, during a head-to-head race, two cars compete
against each other on the track. This format adds more complexity since
vehicles need to interact with each other to execute safe overtakes. However,
many competitors utilize avoidance algorithms where the opponent is usually
treated as a static obstacle. Therefore, most of the overtakes happen only as
a result of avoiding the collision.

In this thesis, we aim to develop an algorithm that can identify possible
overtaking zones on a track. This enables the development of future algorithms
which can take advantage of this additional information. Therefore, they can
plan manoeuvres only at parts of the track where the overtake is possible.

The structure of this thesis is as follows: In Chapter |2, we review common
approaches for overtaking within the literature, followed by a discussion of
overtaking rules used in various competitions. In Chapter [3, we specify the
target scenario, describe the testing platform, and explain the algorithm we
used as a base for our method. In Chapter |4, we introduce the changes made
to the original algorithm and explain some important implementation details.
In Chapter |5, we present the test results of our approach on various tracks

The implementation of the developed method, videos from experiments, and additional
images can be found at: https://github.com/CTU-F1T/DP-0Overtaking-Zones.

1. Introduction

in simulation and real life. Finally, in Chapter [6, we propose some ideas for
future improvements of the approach.

Chapter 2

Literature review

In this chapter, we discuss methods used in autonomous racing to overtake the
opponent vehicle. We split these methods into three categories: (i) reactive
methods, (ii) learning-based methods, and (iii) local planners. Afterwards,
we review the rules for overtaking in various car racing competitions.

. 2.1 Reactive methods

Reactive methods utilize only the information available from the latest sensor
measurements; therefore, they do not use any historical data. The advantage
of these methods is their low computation time, fast response, and robustness.
On the other hand, they typically result in a sub-optimal behaviour.

Follow the Gap. Follow the Gap [2] (FTG) method works by finding the
deepest gap (largest distance) from the current distance measurements. The
algorithm then steers the vehicle towards that gap. This method was quite
popular in the FITENTH community due to its simplicity and robustness.
Even though it was created for static obstacle avoidance only, it can be also
used for dynamic obstacles by treating them as static obstacles in a single
frame. In the FITENTH races, it is usually used by itself or in combination
with a reference trajectory tracking, where the algorithm switches to the
FTG in case there is an obstacle blocking the progress on the reference
trajectory. However, this approach only avoids the obstacles without planning
the trajectory ahead. This can result in conservative overtakes.

Disparity Extender. Disparity Extender [3] is an extension of the FTG
method. In contrast to the prior work, it augments the vector of lidar
measurements. It starts by finding all disparities (disparity is a jump in value
between two consecutive measurements in a single lidar scan) in the current
lidar scan. Then, for every disparity, it finds a measurement with a lower
value and overwrites a number of measurements in the direction of the bigger
measurement so it covers at least half of the width of the vehicle. This method
basically performs an inflation of obstacles in the lidar scan. After this, it
continues as a standard FTG by finding the deepest gap. The difference
between the FTG and the Disparity Extender can be seen in Fig. [2.1]

3

2. Literature review

(a) : The FTG fails in this scenario be- (b) : The Disparity Extender shifts the
cause by following the deepest gap, it disparity (blue line) and can avoid the
crashes into the side of the track. crash into the track boundary.

Figure 2.1: A comparison between FTG and Disparity Extender. LiDAR scan
values are red lines, and the travel direction is a green line.

| Learning-based methods

Learning methods can be utilized for autonomous racing in various ways.
They can be used in different stages of the pipeline (e.g., perception, opponent
prediction, decision-making, trajectory tracking) or for the whole pipeline
(end-to-end). A comparison between these learning-based architectures can
be found in [4].

Curriculum Reinforcement Learning. In [5], an end-to-end three-stage
Curriculum Reinforcement Learning was used. At first, the agent was trained
for racing with no other car on the track. Then, the same agent was retrained
using scenarios for overtaking and avoidance. The method was verified in a
popular video game, Gran Turismo Sport, which contains realistic modelling of
vehicles and tracks. The agent was able to learn racing strategy and behaviour
with performance comparable to an expert driver while outperforming vanilla
reinforcement learning and a built-in Al

Deep Latent Competition. Another end-to-end reinforcement learning
method called Deep Latent Competition (DLC) was introduced in [6]. DLC
works by imagining multi-agent interaction sequences in the compact latent
space of a learned world model. The method was evaluated in a simulator
designed for learning competitive visual control policies.

4

2.3. Local planning

Opponent prediction with Deep recurrent neural network. Authors in [7]
used a deep recurrent neural network to predict positions, velocities and
headings of multiple opponents on a racing track using a single camera. The
approach was demonstrated using a virtual camera in a testing environment
DeepRacing [8] built on the Formula One simulation racing game.

Opponent prediction with Gaussian Processes. In [9], a Gaussian Process
(GP) is trained to predict the opponent’s behaviour. In contrast to the
previous method, this one considers only one opponent on the track. On the
other hand, it uses GP, which is trained on many different laps of the same
opponent. Therefore, it can predict the opponent’s position as well as the
variance.

B 23 Local planning

Local planning methods work by planning a local trajectory up to some
horizon. These methods can be used to traverse an unmapped environment
or to avoid a new obstacle in a known one. In racing, it can be used in
combination with a global reference to plan an overtaking or avoidance
manoeuvre while deviating from global reference as least as possible [10].

Many of the algorithms mentioned in this section generate a path; however,
tracking algorithms usually require a trajectory. We can create a trajectory
from a path by assigning a velocity to each position on the path, e.g., using
the algorithm described in [I1]. Moreover, if an algorithm works by evaluating
paths to choose the best one, it can do so by, e.g., assigning velocities to
create trajectories and choosing the fastest.

Stochastic model predictive control. As mentioned in Section 2.2 the GP
is trained to predict the opponent’s behaviour [9]. The predictions are then
used in a stochastic model predictive control (MPC). The method was tested
in a simple simulation scenario. The stochastic MPC generates optimistic,
safe trajectories to overtake an opponent vehicle.

Rapidly exploring random trees. Rapidly exploring random trees (RRT)
or its optimal version, RRT*, can be used to generate local paths. Using
random sampling, a tree of paths is generated. Each tree node is evaluated,
and the path is backtracked from a tree node with the best cost. This method
is asymptotically optimal. An example of this method is on Fig. [2.2al

Motion primitives. Motion primitives [12, [I3} 14] method is similar to local
planning using the RRT method. However, instead of growing the tree each
time a new plan is needed, motion primitives are generated once in a vehicle’s
local frame (Fig. 2.2b). When a new local plan is needed, motion primitives
are evaluated based on the current vehicle state to pick the best one.

2. Literature review

Lattice planning. Lattice planning from [I5] works by creating a graph
where each node represents a position on the track, and each edge represents
a path between two points of the track (nodes). During an offline phase,
points are sampled in a pattern to cover the whole racing track. Paths are
then created to connect together points that are close to each other. This
way, the whole track is covered with a graph of paths (Fig. 2.2¢). During the
execution, first the current position in the graph is found. In the end, a path
that avoids obstacles and minimizes distance up to some horizon is found
using a graph search algorithm.

Lane switching. The lane-switching algorithm was used in [16]. This
algorithm is also popular in FITENTH races due to its simplicity. First, a
few global trajectories are generated, e.g., time optimal trajectory together
with a centerline, a centerline shifted towards the left wall, and a centerline
shifted towards the right wall (Fig. [2.2d). During the execution, the car first
follows the optimal racing line. After an obstacle or an opponent is detected
on the current trajectory, the vehicle switches to another free trajectory to
avoid a collision. When possible, it switches back to the optimal trajectory.

Spacial policies. In [17], authors developed an algorithm to learn spacial
policies and use them during racing. Their setup consists of a non-interactive
obstacle vehicle (opponent) following a curvature-optimal racing line. Firstly,
the track is divided into the following high-level segments: Straight, Sweeper
Curve, Hairpin Curve and Chicane. Then, simulations are performed while
varying certain simulation parameters, such as the starting positions of the
opponent and ego vehicles and the opponent’s speed. The ego vehicle utilizes
Model Predictive Contouring Control (MPCC) with obstacle avoidance to
plan dynamic trajectories. The algorithm counts a number of overtakes from
each of the four high-level start zones: left close behind, left far behind, right
close behind, and right far behind. During racing, this information is then
used to encourage the ego vehicle to the position relative to the opponent
that resulted in a high number of successful overtakes during simulations.

Game theory. A game theoretical approach was used in [I8]. One of
the assumptions of the used method is that the ego vehicle has m and the
opponent has n trajectories to choose from. The trajectories are generated
locally up to some horizon. These trajectories are then evaluated to choose
the best trajectory pair. In this work, three different strategies were used:
(i) a sequential game, where only the ego vehicle is responsible for the collision,
(ii) a cooperative game, where both vehicles are responsible for the collision
and the progress of the vehicle is used in the cost function, and (iii) a blocking
game, where there is an additional cost for staying ahead at the end of the
horizon. The results showed that the sequential game requires the least
computational resources while resulting in the least amount of overtakes. The
most overtakes happened during the cooperative games. During the race, the
games are played in a moving horizon fashion.

6

2.4. Overtaking-related rules in racing competitions

(a) : Rapidly exploring random trees. (b) : Motion primitives.

Ml o

(c) : Lattice planner. (d) : Lane switching.

Figure 2.2: Examples of a few local planning methods on a straight with a
simple obstacle. Possible paths are blue, infeasible paths are red, and the chosen
path is green.

B 24 Overtaking-related rules in racing competitions

In this section, we examine regulations from various FITENTH and full-
scale car racing competitions. Each competition has a specific set of rules
drivers need to follow. Not following the racing regulations can be unsafe
and can result in penalization, disqualification or even a crash. However,
overtaking rules are not exactly defined. These rules are in a grey area;
therefore, stewards have to decide on the cause and penalization based on
their judgment if an accident occurs. If there is no apparent cause, no driver
or even both drivers can be penalized. Even without an apparent cause, the
racing incident is still a disadvantage. This is not a big issue in the FITENTH
competitions because the race is restarted from the last checkpoint. Moreover,
these cars are pretty robust, so they usually end up without any damage.
On the other hand, this may cause a huge issue in Formula 1 (F1) races. In
the F1, any incident can easily cause damage to the vehicle, resulting in an
unnecessary pit stop or even the inability to continue in the race. Therefore,
to minimize the risk of an accident, we will also consider the unwritten rules

7

2. Literature review

and common racing etiquette.

Many of the car racing events are governed by the Federation Internationale
de I’Automobile (FIA) [19] established in 1904. These events include the
Formula One World Championship (F1), World Rally Championship, Inter-
continental Drifting Cup, GT World CUP, various Karting competitions and
many more. Their purpose is to represent motoring organizations, provide
licensing, specify competition rules, etc. Many of the independent events,
such as racing clubs during their private events, sim-racing sessions, and even
FITENTH events, have many of their rules based on the rules and guidelines
developed by the FIA.

We split relevant rules and guidelines into three categories: (i) defending
a position, where we discuss what kind of manoeuvres are usually allowed
to prevent overtakes, (ii) contact with the opponent, where we discuss what
kind of contact is allowed between vehicles within competition rules and
what the penalties are for bumping into an opponent, and (iii) overtaking,
where we discuss guidelines that both vehicles should follow during overtaking
manoeuvre.

B 2.4.1 Defending a position

Defending a position can be done by taking a race-line that forces the opponent
to take a worse trajectory through a corner. However, a sudden change of
direction and blocking by going from side to side is generally not allowed.
The latest FIA Code of Driving Conduct on Circuits states [20]:

“More than one change of direction to defend a position is not
permitted. Any driver moving back towards the racing line, having
earlier defended his position off-line, should leave at least one car
width between his own car and the edge of the track on the approach
to the corner. However, manoeuvres liable to hinder other drivers,
such as deliberate crowding of a car beyond the edge of the track or
any other abnormal change of direction, are strictly prohibited.”

12} to > t3
X \
\ — T \
AL

Figure 2.3: Example of a one defensive move rule. In time to, the red car can
no longer block the blue car (dashed line) and must remain in its line.

In summary, it says that a car should not push the opponent off the track,
should not go from side to side, and only use at maximum one defensive

8

2.4. Overtaking-related rules in racing competitions

manoeuvre. This rule is also used in a similar form, e.g. by The Sim Racing
Collective (TSRC) in [2I], Sports Car Club of America (SCCA) [22], and
in the FITENTH rules [I]. However, some competitions may not allow any
blocking move. An example of a defensive move is shown in Fig. [2.3]

B 2.4.2 Contact with the opponent

Deliberate crashing into an opponent is not allowed [21] 1, [20]. However,
minor accidental bumps can be considered as a part of the racing during
some events.

In F1, penalties for race incidents such as bumping into an opponent are five
seconds, and a ten-second time penalty served during the next pit stop [23].
However, it is not exactly defined when to give which penalty. It depends
on the cause, severity of the collision, and other factors. The F1 sporting
regulations specify the following [23]:

“It shall be at the discretion of the stewards to decide if any driver
involved in an Incident should be penalised. Unless it is clear to the
stewards that a driver was wholly or predominantly to blame for an
Incident no penalty will be imposed.”

In sim racing events by TSRC, it is not allowed to bump into an opponent
and pass him. If the overtaking car would benefit from the bump, it should
give back the position to avoid a potential penalty [21].

On the other hand, in the FITENTH, only larger crashes are penalized. Mi-
nor bumps into an opponent are generally tolerated. The rule-book states [1]:

“Touching the opponent is not penalized unless one of the cars
significantly diverges from its expected trajectory.”

Bl 2.4.3 Overtaking

As discussed in previous sections, overtaking incidents are a grey area of rules.
There are no exact definitions of these manoeuvres, and incidents are decided
by stewards. However, the following two documents are great sources for
overtaking guidelines: (i) Racing Room & Passing Guidlines [24] by Randy
Pobst (SCCA Hall of Fame member and professional driver champion) and
Terry Earwood (professional driver champion and professional driver’s coach),
and (ii) Overtaking Guidelines [25] for F1 by FIA. However, it is important
to note that these are not rules. For example in FIA overtaking guidelines
for F1 is written [25]:

“For the avoidance of doubt, these are merely guidelines to assist
the stewards in their decision-making and are non-binding.”

The main purpose of overtaking is to pass the opponent safely and without
a collision. It is important to communicate the intentions by the vehicle
movement clearly and without sudden changes of direction. Moreover, the
most important part is the following [24]:

9

2. Literature review

Figure 2.4: In the left image, the blue car does not have a significant portion of
the car alongside the red vehicle. It is the responsibility of the blue car to avoid
the accident. On the other hand, in the right image, the blue car has a significant
portion of the car alongside the red vehicle. It is now the responsibility of both
vehicles to avoid the crash. The red car cannot take the same path as in the left
image (red dashed line) and has to leave space for the blue car. Moreover, on
the corner exit, the blue car cannot use the whole track (blue dashed line) and
has to leave enough space for the red car.

“Safe, successful passing depends on what a driver can see. Do not
hit what you can see!”

During an overtake, the overtaking car bears the largest percentage of re-
sponsibility [24] 2T]. This is because the vehicle in the front cannot always
see cars behind. Moreover, in FITENTH, vehicles cannot see behind at all
since these cars consist only of one front-facing LiDAR. However, guidelines
state that the car being overtaken must leave enough space (more than one
width of the car) if the overtaking car has a significant portion of the car
alongside [25] [24]. If this is the case, then it is the responsibility of both
vehicles to pass through a corner without an accident. This can be seen in

Fig.

10

Chapter 3
Metodology

In this chapter, we start by introducing the problem we aim to solve. Then,
we continue by defining the target scenario and the rules of overtaking
(Section 3.1). Next, we introduce our algorithm’s target platform (Section 3.3)),
which we also use for the evaluation. In the end, we describe a method on
which we base our algorithm (Section 3.4). We also list the specific changes
that need to be done to this method in order to use it for our purpose.

Competitors in the FITENTH competition are usually using simple over-
taking methods. The most common ones are motion primitives, Follow the
Gap and lane switching due to their simplicity and low computational cost.
However, these algorithms are usually utilized only as an avoidance algorithm.
They are used when an obstacle is detected a few meters ahead of the vehicle
on the reference trajectory. Therefore, overtakes only happen as a result of
avoiding collisions.

We aim to develop a method that can identify possible overtaking zones
on the racing track when we know the opponent’s trajectory. To achieve this,
we create an algorithm that can plan overtaking trajectories. We run this
planner multiple times with different initial conditions, vehicle parameters,
and opponent trajectories. In the end, we analyze the successful manoeuvres
to create a map of possible overtaking zones on the track. The opponent’s
trajectory can be known in advance because of, e.g., previous laps or because
it is using common racing strategies.

Other algorithms that can take advantage of the additional information
about the possible overtaking zones can be later developed to plan better
manoeuvres and make better decisions. Therefore, the future methods do not
need to make spontaneous decisions, as in the case of avoidance methods.

. 3.1 Scenario definition

Since overtaking is a difficult problem, especially in racing, we narrow it down
by specifying the target scenario. Moreover, to have a fair and safe race, all
vehicles need to follow certain racing rules. Since we aim to use the method
in the FITENTH setting, we have to consider the FITENTH competition
rules [1I]. However, the FITENTH competition does not have well-defined
overtaking rules. Therefore, we specify the considered racing rules ourselves

11

3. Metodology

below.
The scenario we consider is defined as follows:

The goal of the ego vehicle is to overtake the opponent.

B The racing track is a flat surface with walls on each side as a boundary.

The opponent’s trajectory and current position are known.

Only one opponent is considered.

Both cars have to follow the racing rules.

Only simple closed tracks are considered (no intersections or splits of the
track).

Racing rules. As was previously mentioned, the FITENTH competition

does not have well-defined overtaking rules. Therefore, the considered rules

are additionally based on the common racing rules from other competitions

as well as racing guidelines and etiquette, which we discussed in Section |2.4)
We consider the following racing rules:

® Vehicles cannot crash into the opponent on purpose.

® The vehicle about to be overtaken cannot make a blocking move since
FITENTH cars usually do not have a rear-facing sensor.

® The vehicle cannot push the opponent to the track boundary.
® Vehicles cannot change directions suddenly.

® [f a vehicle is trying to overtake on the inside of a corner, it has to have a
significant portion of the vehicle alongside the opponent’s vehicle during
the corner entry.

B 3.2 Marking convention

Ego vehicle. A vehicle that is trying to overtake the opponent is called the
ego vehicle. We use the blue color to depict this vehicle.

Opponent vehicle. A vehicle that is being overtaken is called the opponent
vehicle. We use the red color to depict this vehicle.

Position (z,y). The Cartesian coordinates of a vehicle. As we consider the
car driving on a flat surface, the z-axis is omitted.

Orietation 6. Orientation, also called heading, is the rotation of the vehicle
around the z-axis.

Pose. A tuple of the position and the orientation of the vehicle.

12

3.3. Platform description

Path. A sequence of Poses that compose a line the car is driving on.
Trajectory. Path where each Pose has an assigned time.

Closed trajectory. A trajectory where the first pose and the last pose are
the same.

Occupancy grid. A 2D array of cells. Each cell can be unknown, empty,
occupied, or something in between. If a cell is occupied, it has a value of 100,
and free if it has a value of 0.

Racing track. A road made for the racing of vehicles. We represent the
racing track as an occupancy grid.

Corner apex. The apex is a point on the inside of a corner that is the closest
to the vehicle’s trajectory.

Corner entry. The part of the corner before the corner apex.

Corner exit. The part of the corner after the corner apex.

B 3.3 Piatform description

In this section, we describe the platform, which is the primary aim of our
algorithm. We briefly explain the platform’s hardware (Section 3.3.1)) and
the relevant parts of the software stack (Section 3.3.2) used to perform the
real-life experiments in Section |5.3.7.

B 3.3.1 Hardware stack

Mechanics. We use the FITENTH [26] race car as a platform for real-life
experiments as well as its model for simulation experiments. The platform
chassis is the Traxxas Slash 4x4 which is a front-wheel steering and all-wheel-
drive 1:10 scale model of a car. It contains a single Velineon 3500 BLDC
motor, which is driven using a Vedder Electronic Speed Controller (VESC).
The motor provides torque to the centre shaft that drives the front and
rear differentials. For the steering it utilizes a Traxxas 2075R servo motor.
Dimensions of the vehicle can be seen in Fig. [3.2) and Table 3.1l

Sensors. The most important sensor on the platform is the Hokuyo UST-
10LX LiDAR sensor. It has a 270° angular detection range with an angular
resolution of 0.25°, 10m detection range, and 40 Hz scanning frequency.
The next sensor is a SparkFun 9DoF Razor IMU. It contains a three-axis
accelerometer, gyroscope, and magnetometer. And finally, the VESC includes
an observer of the motor speed, which uses a back EMF from the BLDC
motor.

13

3. Metodology

Figure 3.1: FITENTH platform top view.

Description Symbol | Value | Unit
Vehicle width w 0.3 m
Vehicle length L 0.55 m
Track-width Wy 0.25 m
Wheelbase L 0.32 m
CoG to front wheel axis Ly 0.16 m
CoG to rear wheel axis L, 0.16 m
LiDAR angular detection range | Gapr 270 deg

Table 3.1: Measurements of the FITENTH platform

Onboard computer. The NVidia Jetson TX2 is used as an onboard comput-
ing unit. It contains a Dual-Core NVIDIA Denver 2 64-bit CPU, Quad-Core
ARM® Cortex®-A57 MPCore, and NVIDIA Pascal™ GPU architecture with
256 NVIDIA CUDA cores. Most of the necessary algorithms run on the CPU.

The GPU is utilized only for a part of the localization.

B 3.3.2 Software stack

The software stack uses ROS2 Humble and can be divided into: (i) an offline
part, which includes algorithms used to prepare for the race beforehand and
(ii) an online part, that includes algorithms used during the deployment in the

14

3.3. Platform description

race. The offline part includes mapping and global racing line optimization
algorithms, while the online part includes perception, local planning, and
control algorithms.

B Offline part

Mapping. We use the SlamToolbox [27] as a mapping algorithm. It is a
SLAM algorithm that uses the odometry of the vehicle and merges it with the
lidar scan measurements to create a map representation of the environment.
The resulting map is represented as an occupancy grid with values containing
the probability of a cell being occupied.

Global trajectory optimization. An ng_trajectory [28] optimization tool-
box was used for generating global time-optimal, curvature-optimal, and
length-optimal trajectories. This toolbox is also a base for the local planning
algorithm used to plan overtaking manoeuvers in this work. Therefore, we
describe this algorithm in more detail in Chapter 4.

B Online part

Localization. For the localization on the track during the experiment, we
use a particle filter from [29]. At first, it samples vehicle poses over the track,
so-called particles, based on the current belief. Next, it uses odometry to get
the future state. In the end, it compares the predicted laser scan with the
measured one to update the belief of the vehicle’s state.

Figure 3.2: A photo of the FITENTH platform.

Trajectory tracking. We use a Pure Pursuit algorithm for tracking the
trajectory. It works by finding a look-ahead point on the trajectory in front
of the vehicle, which is in the distance defined by a look-ahead value. The
look-ahead value changes based on the current speed. The algorithm then
uses inverse kinematics to calculate a steering angle that guides the vehicle
towards the look-ahead point.

15

3. Metodology

Odometry. The odometry, sometimes also called the dead reckoning, is
a method of estimating the movement of a vehicle from sensors such as
wheel encoders, speed sensors, etc. It is used by mapping and localization
algorithms described above. The odometry is calculated using data from the
IMU and the motor speed sensor. The measurements are propagated through
a kinematic single-track vehicle model to estimate the movement of the car.

B 34 Trajectory optimization

In this section, we describe the method on which we base our algorithm
and list all of the changes that need to be done to use it as a planner
for the overtaking manoeuvres. The method is a tool for global trajectory
optimization called ng_trajectory described in [28]. This tool uses the
DoubleFastGADiscreteOnePlusOne method from the Nevergrad [30] library
to perform the optimization.

25 26 2728 29 0 11

Figure 3.3: Example of a track segmented into 30 zones.

It works by first splitting the track into a predefined number of zones,
such as in Fig.[3.3. Then, in every iteration of the optimization algorithm, it
generates one point per zone using the Matryoska mapping from [28]. The
Matryoska mapping uses a homeomorphism from a square to a track zone,
which can be seen in Fig.|3.4. The mapped points are interpolated using a
cubic spline, resampled, and checked if they are feasible. If this is not the
case, the candidate is rejected by setting its fitness value to a large number.
Otherwise, it continues by computing a speed profile for this path using the
forward-backward method based on [II]. In the end, the fitness value is
computed for this candidate and passed back to the optimization algorithm.
The algorithm then samples the next generation of candidates based on the
success of the candidates from the previous generation. The optimization
algorithm repeats these steps to minimize the fitness value.

To use this global trajectory planner as an overtake manoeuvre planner,
we need to extend it with the following:

16

3.4. Trajectory optimization

8 Trajectory evaluation that calculates the fitness value based on the
success of the overtaking manoeuvre (Section [4.1.1),

8 Track progress calculation to accurately determine which vehicle is ahead

(Section 4.1.2),
m Collision detection with the opponent (Section 4.1.3), and

® [nteraction between cars (Section 4.1.4).

These changes to the algorithm are described in detail in the following chapter.

PRl B B S I R R R U XXX x
XXXXKHXXAXAXXXXAXX XXX 522(X
XX XXXAXAXXXXXXXXXXXX XX x X
XXXXXXXXXXXXXXXXXX XX ;(X)Zeé(
XXXXXXXXXXXXNXXXXXXX x,’f;‘
XEXXXXRXXXXXXXXXXXXXXX X X x
XXXXXXXXXXXXHXXXXXXXX X X X % ¥
XXXXXXXXXXXXXXXXXXXX x:)’(‘,’f;‘(
XXXXXXXXXXXXXXXXXXXX xXx))é
AXXXKHHXKXX XXX XXX XX "xix
XXXXXXXXXXXXXXXXXXXX > Xx)()):
EXXXXAAXXAXXXXAXAXXXXX XX
XXXXXXXXXX XXX XXX XXX
XXXXXXXXXXXXNX XXX XXX

XXX XXXXXXKXXNXXXXXXX
XXXXXXXXKKXKNX XXX XXX
XXXXXEXXXXXXXXXXXXXXX

XXX HXXHXXHXXHXX XXX XX
EXXKXRXAXAXXAXAXXAXXXXXX XX

KPR PR R RN RN R KRR RRR K

Figure 3.4: Example of the Matryoska mapping from a square to a track zone.[28]

17

18

Chapter 4
Method description

In this chapter, we explain in detail the algorithm changes introduced in
Section In the end, we show a few implementation details needed for the
correct functionality of the planner.

. 4.1 Algorithm improvements
In this section, we explain the changes in the ng_trajectory algorithm.

B 4.1.1 Trajectory evaluation

After a trajectory is generated, it is checked whenever it is valid. At first,
we check for curvature limits, track boundary violations, and acceleration
limits. These checks can be performed fast, so they can quickly reject a lot
of invalid candidate solutions. Next, we need to check for a collision with
the opponent. Collision checks are described in detail in Section Ifa
collision with the opponent is found, it needs to be decided if it is the ego’s
or the opponent’s fault. Vehicle interaction and determining the fault of the
crash is described in Section If the crash was ego’s fault, we return the
penalty. Equations for all the penalties are

100 - Ny - P if out of track bounds,

100 - N, - P if curvature limit violation,
penalty = . . (4.1)
P - |al if acceleration limit violation,

Nipw - P if collision (EGO’s fault),

where N;; is number of points that violate track boundaries, N;. is number
of points that violate curvature limits, a is the acceleration, and P is a fixed
penalty parameter. A valid trajectory was found if no penalty was applied.
If the trajectory is valid, the cost is calculated in the following way:

cost = tN + CN + (1 — yc) . (1 - yo) . (fn + 2Cfo) + Ye - (fn + Cfo)v (4'2)

where ¢y is the final time of the manoeuvre, C'y is the final state cost, Cy, is
parameter to help favor overtaking, f, is an average progress difference, and
y. and g, are variables defined as follows

19

4. Method description

1 if collision occured (not EGO’s fault),
Ye = . . . (43)
0 if no collision,
1 if opponent was overtaken,
Yo = . (4.4)
0 otherwise.
The average progress difference is defined as
N—l(s. ..
fo===0 = 5@1 p’), (4.5)

where N is the number of trajectory points, p; and p; are the opponent’s and
ego’s progress on the track, respectively. The progress calculation is described
below.

B 4.1.2 Track progress calculation

We need to calculate the trajectory progress for both vehicles to determine
which of them is ahead. This can be done using a centerline and searching for
the closest point to the vehicle. Then, the progress is calculated as the length
of the centerline from the beginning of the track to that point. However, if
the centerline is not smooth, the closest point can jump a lot, even during
small changes in the vehicle’s position. We found that a more reliable way is
to use the opponent’s trajectory for the progress calculation.

B 4.1.3 Detecting a collision with the opponent

To determine if a collision occurred, we need to check for an intersection
between vehicles. However, the vehicles are nonconvex; therefore, the intersec-
tion check would be hard to compute. To simplify the problem, we represent
the vehicle’s geometry by an oriented rectangle. We use the hyperplane
separation theorem [3I] to decide if the two rectangles are colliding. The
theorem works by finding a separation axis onto which the two rectangles are
projected. There is no collision if sets created by this orthogonal projection
are disjoint.

However, this does not have to be checked all the time. If vehicles are far
away or too close, we can easily determine the collision by calculating the
distance between vehicles. There is always a collision if

< Wy + WZ'
- 2

where d is the distance between centres of cars, and W7, Wy are the widths
of the first and the second vehicles, respectively. On the other side, there is

no collision if
Wi + Wa\ 2 Ly + Lo\ 2
1> (T’ (Lot (47

20

d (4.6)

4.1. Algorithm improvements

where L1, Ly are the lengths of the first and the second vehicle, respectively.
Moreover, in our case, we consider both cars to be the same, so W7 = Wy =W
and L1 = Lo = L. Therefore, the theorem needs to be used only if

VW2 4+ L2 <d<W. (4.8)

B 4.1.4 Interaction between cars

To plan effective overtakes, we need to model the interaction between vehicles.
It would be almost impossible to perform an overtake with no interaction
between cars at all. In the Fig. 4.1al the opponent is following a minimum
length trajectory. This is a very slow trajectory through a corner; moreover,
it leaves a lot of space for the ego car. In this case, it is possible to make an
overtake without disrupting the opponent’s trajectory. On the other hand, in
Fig. the opponent follows a trajectory that goes throughout the whole
width of the track. Therefore, the ego vehicle would need to be much faster
than the opponent to make an overtake without forcing him to choose a
different trajectory.

(a) : No interaction between cars. (b) : Interaction between cars.

Figure 4.1: Example of an overtake with and without interaction. In the
left figure (a), the ego car (blue) overtakes the opponent car (red) without a
simulated collision. Therefore, we assume no interaction between cars. However,
in the right figure (b), the simulation shows that the collision would occur if
the opponent continued on its trajectory. However, at the time of the collision,
more than half of the length of the ego car is along the opponent. Therefore, we
assume that the opponent would choose a different trajectory to avoid causing a
collision.

As written in Section the opponent vehicle is not allowed to make
a blocking move since the platform does not contain a rear-facing sensor
Section Therefore, the interaction between cars starts happening only
after the ego car gets into the opponent’s field of view (the side on the

21

4. Method description

opponent’s car).

As was mentioned in the rules (Section 2.4)), if the overtake happens on the
inside, the ego car needs to have a significant portion of the vehicle alongside
the opponent during the corner entry. The opponent then has to leave space
for the ego car so it does not push the ego car into the wall. Therefore, the
simulated collision in Fig. 4.1b/ would be the opponent’s fault, and we assume
that the opponent is going to deviate from his original trajectory to give
the ego vehicle enough space. We can now conclude that the overtake was
successful. Moreover, we know the side that the opponent is on during the
modelled crash. Therefore, the ego has to leave enough space on that side
during the following few corners (red zone in Fig. 4.1b) since the opponent
might drive alongside.

If the manoeuvre does not disrupt the opponent’s trajectory, we assume
no interaction between cars.

B a2 Implementation details

In this section, we explain the important implementation details of our
method.

B 4.2.1 Initial conditions and final state feasibility

We assume that before the start of an overtake, the ego vehicle is already
following the opponent for some time. As mentioned in Chapter [3, this is
one of the ways to obtain the opponent’s trajectory. Therefore, the initial
position, orientation, and speed of the ego vehicle are determined based on
the opponent’s trajectory at a certain distance behind the opponent’s current
position.

To fix the initial position and orientation, we fix the first two consecutive
points of the manoeuvre. Therefore, we do not optimize the trajectory points
in the first two track segments that were described in Section [3.4.

To make sure that the final state of the manoeuvre is feasible, we compute
the trajectory for 10 more meters. The chosen distance is enough for the car
to stop from its maximum velocity. During these final 10 meters, the ego
car cannot overtake. Therefore, if this final part of the trajectory is feasible,
we can conclude that the final state of the manoeuvre is feasible as well.
Moreover, we force the last position and the orientation of the manoeuvre to
be close to the reference trajectory using additional cost. This way, the vehicle
can continue on the reference trajectory after the manoeuvre is finished.

Another method to ensure the final state feasibility is to optimize the
manoeuvre as a closed trajectory throughout the whole track. This automati-
cally ensures the final state feasibility without a need for additional cost or
increased horizon. On the other hand, this method does not scale well with
the increasing size of the track. Therefore, we did not use this method.

22

4.2. Implementation details

B 4.2.2 Handling uncertainty

The uncertainties in the opponent’s trajectory can be caused by an imperfect
measurement of the opponent’s position or by the opponent’s imprecise
trajectory tracking. We need to consider this uncertainty to be able to
perform real-world experiments. We handle this uncertainty by inflating the
rectangles that represent the vehicles by a constant value. The improvement
to this method is described in Chapter [6

B 4.2.3 Data gathering

As we described in Chapter [3| our main goal is to find possible overtaking
zones on a track. After a manoeuvre is successfully found, we have the data
about one possible overtake. However, during the optimization, the algorithm
tries many different candidate solutions to find the optimal one (Section [3.4).
Moreover, some of the candidate solutions can contain successful overtaking
manoeuvres, even if they are not the best ones. Therefore, we save all of the
candidate solutions that contain a successful overtake to collect much more
data about the possible overtaking zones from a single optimization.

Figure 4.2: Example of different overtake positions of different manoeuvres
gathered from a single optimization. Overtake positions are green (darker means
more overtakes at that point), the ego vehicle is blue, which follows the manoeuvre
with the best cost (yellow line), and the opponent is red. The positions of vehicles
are drawn in one-second intervals.

23

24

Chapter 5

Experimental evaluation

In this chapter, we evaluate the developed method (described in Chapter 4)
on multiple tracks. We use multiple opponent trajectories and ego vehicle
parameters on each track to showcase how different vehicle parameters and
trajectories affect overtaking with FITENTH vehicles. To show the feasibility
of the planned manoeuvres, we validate the results both in simulation and
real-life experiments. The design of experiments is described in Section [5.1],
racing tracks are introduced in Section |5.1.1, experimental results are shown
in Section [5.2] and finally, the maneuver validation is in Section [5.3

B 51 The design of the experiments

In this section, we describe the design of experiments used to test the method.
Furthermore, we introduce all of the tracks used for the experiments.

Each experiment consists of running the overtake planner (described in
Chapter 4)) 60 times while changing the initial position of the vehicles. We
use the successful overtakes to create a map of possible overtaking zones. The
opponent’s initial positions are sampled uniformly on its racing trajectory.
The initial position of the ego vehicle is always behind the opponent in a
constant-time distance on the opponent’s trajectory. The opponent’s vehicle
parameters are the same across all of the simulation experiments, and they
are shown in Table 5.1, The default parameters of the ego vehicle are the
same as the opponent’s parameters; however, in each experiment, we change
up to one parameter to show its effect on overtaking ability. We chose these
parameters since we expect them to have a major effect on the overtaking
zones. Moreover, these parameters can be easily changed on the real vehicle
in the following way:

® The top speed (vVpmqz) of the vehicle can be changed by changing the
setting of the top speed limiter as well as switching to a battery with a
different voltage.

® The weight (m) of the vehicle can be increased by adding additional
mass. However, reducing the weight can be quite challenging due to the
necessity of the used components.

25

5. Experimental evaluation

® The friction coefficient (1) can be changed by changing a driving surface
or using a different tire type.

However, during the testing of the algorithm on Track 6, we specified a
different set of parameters to make these manoeuvres safe for real-life ex-
periments. Additionally, in each experiment, we choose one of the following
opponent’s reference trajectories: (i) near-time-optimal, (ii) near-curvature-op-
timal, (iii) near-length-optimal, and (iv) Follow the Gap. The full list of
performed experiments can be found in Table [5.2]

Parameter Symbol | Value | Unit
Coefficient of friction W 0.3 -

Top speed Umaz 7.0 m/s
Weight m 3.68 kg

Table 5.1: Parameters of the opponent’s vehicle and the default parameters of
the ego’s vehicle.

D Ego’s changed Value | Unit Change Opppnent’s
parameter (%] trajectory
0 - - - 0 near-time-optimal
1 weight 2.95 kg -20 near-time-optimal
2 weight 4.42 kg +20 near-time-optimal
3 friction 0.315 - +5 near-time-optimal
4 friction 0.33 - +10 near-time-optimal
) friction 0.36 - +20 near-time-optimal
6 top speed 7.35 | m/s +5 near-time-optimal
7 top speed 7.7 m/s +10 near-time-optimal
8 top speed 84 | m/s +20 near-time-optimal
9 - - - 0 near-curvature-optimal
10 - - - 0 near-length-optimal
11 - - - 0 Follow the Gap

Table 5.2: List of scenarios.

We use the FITENTH gym [32] simulator to validate some of the manoeu-
vres planned by the overtaking planner. To communicate with the simulator,
we use a ROS wrapper from [33]. Both vehicles run the exact same pipeline
and have access to their as well as to the opponent’s full state (x,y, 8, v).

Furthermore, we choose one manoeuvre that we execute on the real cars,
which were described in Section [3.3l During the real-life experiment, the
whole pipeline runs on an onboard computer. Both vehicles localize only
using onboard sensors, and the opponent shares its position with the ego
vehicle over the WiFi.

26

5.1. The design of the experiments

S

(a) : Track 1. (b) : Track 2.
U (d) : Track 4.
(c) : Track 3. (e) : Track 5.

Figure 5.1: Images of racing tracks used for simulation experiments.

Bl 5.1.1 Racing tracks description

In this section we describe what kind of racing tracks we used to perform the
experiments. We chose six tracks in total, from which we used five of them
only in simulation and one for real-life experiments.

Track 1. This track (Fig. [5.1a)) is a scaled-down, simplified version of the
Motorsport Arena Oschersleben. This track was chosen since it was already
used, in slight variations, multiple times at the FITENTH competitions. It
contains many 90° and 180° turns and a few straight sections. The width of
this track is 2.7m, and the length is 98 m.

Track 2. This track (Fig.|5.1b) contains many consecutive left and right
corners while also being narrow; therefore, it is expected to be quite hard to
perform an overtake. It also contains two straight sections with lengths of
around 10m. The width of this track is 2m, with a length of 98 m.

Track 3. This track (Fig.|5.1c) has a width of 4.2m and a length of 256 m,
making this the widest and the longest of the tested tracks. It contains many
high-speed corners between a lot of long straight sections. This track was
selected so the cars would have a lot of overtaking opportunities since we
expect it to be easier to overtake on a wider track.

27

5. Experimental evaluation

e o S

(a) : The layout of Track 6. (b) : A photo of Track 6.

Figure 5.2: Track 6 used for real-life experiments.

Track 4. This track (Fig. has a lot of curves and two 10-meter-long
straight sections. It is the narrowest track, with a width of 1.8 m and a length
of 126 m. Because this track contains many consecutive left and right corners
while being narrow (similar to Track 2), we expect it to be quite hard to
overtake the opponent on this track.

Track 5. This track (Fig. is a simple round track with a long straight.
It was chosen to show how different parameters affect overtaking on a straight
and during a simple 180° corner. It contains one corner with a width of 3.3 m,
one corner with a width of 2m, and two straights, each 28 m long. The whole
length of this track is 83 m long.

Track 6. This track (Fig. is used for real-life experiments. It contains a
15-meter-long straight, one long, fast corner, one hairpin, and two 90-degree
turns. It was designed to contain many different features while still being
able to fit inside a conference room. The track is 50 meters long, and the
width is 1.95 meters.

. 5.2 Results

In this section, we show the results of the experiments described in Section
We present the results in the form of a so-called heat map, where parts of
the racing track are coloured based on the number of overtakes. The used
heat map has four main colours:

® red — most of the overtake happened at this place,

B green — some overtakes happened at this place,

B blue — only a few overtakes happened at this place, and

B grey — no overtakes happened at this place.

Every image contains the opponent’s racing line drawn using a purple dotted
line.

28

5.2. Results

B 521 Track1l

The effect of different opponent trajectories on overtaking on Track 1 while the
vehicles are equal is shown in Fig.[5.3. The opponent can be easily overtaken on
the inside when following the near-minimum curvature trajectory (Fig. [5.3b)).
When the opponent uses the FTG algorithm, it takes up a lot of space on
the track because it is driving in the middle of it. This behaviour blocks the
ego vehicle, and therefore, the algorithm finds fewer overtakes. However, the
FTG algorithm cannot drive that fast, and the ego vehicle can still overtake
easily. Overtaking zones when the opponent follows a near-minimal length
trajectory can be seen in Fig. |5.3c.

(c) : Near-minimum length trajectory.

Figure 5.3: Overtaking zones on Track 1, while both vehicles are the same
and the opponent drives different trajectory types. We can see that the most
overtakes happen when the opponent follows a near-minimum curvature racing
line.

(a) : Increase by 10% (p = 0.33). (b) : Increase by 20% (u = 0.36).

Figure 5.4: Overtaking zones on Track 1, while the ego car has increased friction,
and the opponent drives its near-time-optimal trajectory.

When the opponent follows its near-time optimal trajectory, we did not
find any overtakes when the vehicles are the same or even when the friction

29

5. Experimental evaluation

coefficient of the ego vehicle increased by 5%. We found some overtakes
in one part of the track when we increased the friction coefficient by 10%
(Fig. |5.4a). Naturally, most overtakes were found with the highest friction
coefficient (20% increase); however, still only in three corners (Fig. |5.4a).
Moreover, we also found no overtakes when we changed the weight of the ego
vehicle. Moreover, even the increase in the top speed of the ego vehicle by
20% did not result in any overtakes.

B 522 Track?2

As we described in Section [5.1.1], we do not expect a lot of overtakes to happen
on this track since it is narrow and contains many consecutive left-right turns.
This hypothesis turned out to be true. The most overtakes on this track
happen when the opponent follows a near-minimum curvature trajectory and
the vehicles are equal; however, still only in two corners.

(a) : The opponent is driving on the near- (b) : The opponent is driving on
minimum time trajectory while both ve- the near-minimum curvature trajectory
hicles have the same parameters. while both vehicles are equal.

(c) : The opponent is driving its near-
minimum time trajectory. The ego vehi-
cle has improved friction coefficient by
20% (p = 0.36).

Figure 5.5: Overtaking zones on Track 2.

Interestingly, we found a few overtakes at one point on the track, even
when both cars are equal, and the opponent follows a near-minimum time
trajectory (Fig. 5.5a). But it is hard to show that the opponent’s trajectory
is, in fact, the minimum time trajectory. Therefore, we cannot conclude if
this overtake would be possible even when the opponent follows the true time
optimal trajectory. On the other hand, this demonstrates that even a small
mistake can result in an overtake.

30

5.2. Results

When the opponent follows his near-minimum time trajectory, even increas-
ing the friction of the ego vehicle by 20% did not result in many overtakes
(Fig. [5.5c)). Moreover, changing the weight of the ego vehicle did not result
in an increase or decrease in overtakes when compared to the number of
overtakes with equal vehicles. A change in the top speed also did not change
overtaking zones as the cars did not reach it for a long enough time.

(c) : Near-minimum length trajectory.

Figure 5.6: Overtaking zones on Track 3, while both vehicles are the same and
the opponent drives different trajectory types.

B 523 Track 3

As we discussed in Section [5.1.1, we chose this wide track as an example of a
track where it should be easy to overtake. In fact, many overtakes were found
when both vehicles were the same and the opponent used the FTG algorithm,
followed a near-minimum curvature trajectory, or followed a near-minimum
length trajectory. Since this track is very wide, the near-minimum length
trajectory and the FTG algorithm, even though it drives in the middle of the

31

5. Experimental evaluation

track, cannot effectively block the ego vehicle.

When the opponent drives near-time optimal trajectory, some overtakes
were found in the case of increasing ego’s vehicle friction coefficient by 20%,
10%, 5% (Fig. 5.9), or even in the case of equal cars (Fig. 5.7).

Increasing the top speed of the ego vehicle by 5% while the opponent
follows its near-time optimal trajectory did not result in an increased number
of overtakes. Some overtakes started occurring at the end of the long straight
when the top speed of the ego vehicle was increased by 10% (Fig. 5.8a). An
increase of the ego’s top speed by 20% resulted in many overtakes on the long
straight (Fig. 5.8b).

Changing the weight of the ego vehicle while the opponent follows its
near-time optimal trajectory did not affect the number of overtakes on this
track.

(a) : Overtaking zones. (b) : Example of a planned maneuver.

Figure 5.7: Overtaking zones on Track 3 while both vehicles are the same and
the opponent drives near-minimum time trajectory.

(a) : Increase by 10% (b) : Increase by 20%
(Vmas :7.7m~s_1). (Vmas :8.4m-s_1).

Figure 5.8: Overtaking zones on Track 3 while the ego vehicle has increased top
speed and the opponent is driving its near-minimal time trajectory.

32

5.2. Results

(c) : Increase by 20% (u = 0.36).

Figure 5.9: Overtaking zones on Track 3 while the opponent is driving its
near-minimum time trajectory, and the ego vehicle has increased friction.

B 524 Track 4

As discussed in Section [5.1.1, we do not expect it to be hard to perform an
overtake on this track (similar to Track 2). Moreover, the FTG algorithm we
used was not able to finish this track because of the sudden left-right turn in
the middle of the track.

We show the effect of different opponent trajectories on the overtaking
zone while the vehicles are equal in Fig. [5.10. When the opponent follows
the near-minimum curvature trajectory, the overtakes always happen on
the inside of the corners in various parts of the track (Fig. |5.10a). On the
other hand, when the opponent follows a near-minimum length trajectory,
overtakes happen only in one part of the track (Fig. [5.10b)). This is because
the opponent always takes the inside line, and this track contains many
consecutive left-right turns. Therefore, it does not leave enough space for the
ego vehicle to perform an overtake in other parts of the track.

33

5. Experimental evaluation

(a) : Near-minimal curvature. (b) : Near-minimal length.

Figure 5.10: Overtaking zones on Track 4, while both vehicles are the same and
the opponent drives different trajectory types.

Moreover, it is also difficult to find overtaking manoeuvres when changing
vehicle parameters. When the opponent follows its near-minimum time
trajectory, we had to increase the ego’s friction coefficient by 20% to find
some overtakes (Fig. |5.11). Changing the weight of the ego vehicle again
did not result in any overtakes. Moreover, this track does not contain any
straights that are long enough to result in an overtake even when the top
speed was increased by 20%.

Figure 5.11: Overtaking zones on Track 4 while the opponent is driving its
near-minimum time trajectory, and the ego vehicle has increased friction by 20%
(1 =0.36).

B 525 Track5

As discussed in the Section [5.1.1| this track was specifically designed to show
the difference between overtaking on straights and in the corners.

In the Fig. |5.12] we can see the difference in overtaking zones when the
opponent drives different trajectories, and both vehicles are equal. When the
opponent uses the FTG, most overtakes happen on the straight (Fig. [5.12al).
This is because the FTG algorithm is slow during straight sections since it
is a reactive algorithm and cannot achieve the top speed. However, because
the FTG drives in the middle of the track and the left corner is narrow, it
effectively blocks the ego vehicle, which is unable to perform an overtake there.
On the other hand, when the opponent follows a near-minimum curvature
trajectory, no overtakes happen on the straight, and all of the overtakes
happen in the corners (Fig. 5.12b). This happens because the minimum
curvature trajectory is slower in corner sections. However, during the straight,
the opponent’s speed is the same as the ego’s, so the ego car cannot catch up to
it. The fewest overtakes happen when the opponent follows a near-minimum

34

5.2. Results

(c) : Near-minimum length.

Figure 5.12: Overtaking zones on Track 5, while both vehicles are the same and
the opponent drives different trajectory types.

length trajectory (Fig. 5.12c).

(c) : Increase by 20% (1 = 0.36).

Figure 5.13: Overtaking zones on Track 5 while the opponent is driving its
near-minimum time trajectory, and the ego vehicle has increased friction.

When we increased the vehicle’s friction coefficient by only 5%, while the
opponent follows its near-minimum time trajectory, the algorithm already
found some overtakes, as shown in the Fig.|5.13a. When the friction coefficient
was increased by 20% (Fig. [5.13c)), overtakes happened during the corner, on
the corner entry, and on the corner exit. However, no overtakes happened in
the middle of the straight since the vehicles have the same maximum speed,
and the friction coefficient does not have a significant effect anymore.

On the other hand, the opposite situation happened when we increased
the maximum speed of the ego vehicle while the opponent followed its near-
minimum time trajectory (Fig. 5.14). Since the maximum speed has an effect
on the straights, no overtakes happened during corners. Even after the ego
car reaches a higher maximum speed, it still takes some time to catch up to
the opponent. Therefore, when we increased the top speed by 5%, we only
observed overtakes at the end of the straights, where the ego vehicle had
enough time to catch up to the opponent (Fig. 5.14a). The more we increased

35

5. Experimental evaluation

(a) : Increase by 5% (b) : Increase by 10%
(Vmaz = 7.35m -s71). (Vmaz = 7.7m-s7 1),

(c) : Increase by 20%
(Vmaz = 84m - sfl).

Figure 5.14: Overtaking zones on Track 4 while the opponent is driving its
near-minimum time trajectory, and the ego vehicle has increased top speed.

the top speed, the sooner the ego vehicle caught up to the opponent and
performed the overtake.

No overtakes were observed on this track when the cars were equal, and the
opponent was tracking its near-time optimal racing line. Moreover, changing
the weight of the vehicle also did not result in any overtaking.

B 526 Track6

As previously mentioned in Section [5.1.1,, we aim to validate an overtaking
manoeuvre performed on this track in real life. Therefore, we have to slightly
adjust the vehicle parameters to make it safe for real-life experiments. We
performed three different experiments on this track.

The first experiment consists of the opponent following near-minimum
curvature trajectory while the vehicles are equal (Fig. |5.15a)). The method
found two possible overtaking zones in two different corners. As mentioned in
the previous experiments, the minimum curvature trajectory is locally slow
during corner sections, and the ego can perform the overtake on the inside.
We successfully executed an overtaking manoeuvre from this experiment in
the simulation as well as in real life (Section [5.3.7)).

The second experiment consists of the opponent following the near-minimum
time trajectory while its friction coefficient is reduced by 30%. One possible
overtaking zone was found as shown in Fig.|5.15bl We successfully executed an
overtaking manoeuvre from this experiment in the simulation (Section [5.3.5).

The final experiment on this track consists of the opponent following the
near-minimum time trajectory while his top speed is decreased by 30%. A
possible overtaking zone was found at the end of the straight section, as the
ego can achieve a higher top speed. We successfully executed an overtaking
manoeuvre from this experiment in the simulation (Section /5.3.6)).

36

5.2. Results

(a) : Overtaking zones while the vehicles (b) : Overtaking zones while the oppo-

are exactly the same and the opponent nent has reduced the friction coefficient
follows near-minimum curvature trajec- and follows its near-minimum time trajec-
tory. tory.

(c) : Overtaking zones while the opponent
has reduced top speed and follows its near-
minimum time trajectory.

Figure 5.15: Overtaking zones on Track 6.

37

5. Experimental evaluation

. 5.3 Maneuver validation

In this section, we validate some of the manoeuvres found during the experi-
ments in the previous section. We execute them in the simulation and in real
life to show that it is possible to execute them and, therefore, to show their
feasibility.

B 5.3.1 Maneuverl

In this manoeuvre, both cars are equal, and the opponent is following a
near-minimum curvature trajectory.

Even though both vehicles are equal, the opponent’s trajectory throughout
the corner is so wide that we can easily find a faster trajectory.

There is no interaction between vehicles in this manoeuvre, and the ego
vehicle overtakes the opponent successfully. This is an easy manoeuvre to
execute because of the large distance between vehicles during the manoeuvre.

(a) : Planned trajectory. (b) : Trajectory executed in the simulator.

| — Ego
6.5 1 — Opponent

— Ego
304 —— Opponent 3.0

0 2 1 6 8 10 0 2 i 6 8 10
¢l ti

(c) : Planned vehicle speed. (d) : Vehicle speed in the simulator.

Figure 5.16: A comparison between the planned manoeuvre and the manoeuvre
executed in the simulation. The manoeuvre is planned on Track 3 while both
vehicles are equal and the opponent is following a near-minimum curvature
trajectory. Vehicle positions are shown every second. The green line connects
vehicles at the same time instance.

38

5.3. Maneuver validation

B 5.3.2 Maneuver 2

In this manoeuvre, the opponent follows its near-minimum time trajectory
while the ego vehicle has its top speed increased by 20%.

From the planned speed in Fig. [5.17h], it can be seen that both vehicles have
similar speeds up to the point of reaching the top speed of the opponent’s
vehicle in around 7s. At this point, the ego vehicle starts catching up to the
opponent and the overtake starts. No collision was detected in the planned
manoeuvre. However, in Fig. 5.17d| in a time around 13.5s the opponent
vehicle slows down to avoid a collision. This can be caused by the imperfect
execution of the planned manoeuvre in the simulation. However, the overtake
was successful in the simulation.

(a) : Planned trajectory. (b) : Trajectory executed in the simulator.

— Ego — Ego
54 —— Opponent s —— Opponent

T T T T T T T T T T T
8 10 12 14 0 2 1 6 8 10 12 14
£l sl

o

(c) : Planned vehicle speed. (d) : Vehicle speed in the simulator.

Figure 5.17: A comparison between the planned manoeuvre and the manoeuvre
executed in the simulation. The manoeuvre is planned on Track 3 while the
opponent is following its near-minimum time trajectory, and the ego vehicle has
increased top speed by 20%. Vehicle positions are shown every second. The
green line connects vehicles at the same time instance.

39

5. Experimental evaluation

B 5.3.3 Maneuver 3

In this manoeuvre, the opponent is following its near-minimum time trajectory,
while the ego vehicle has its friction coefficient increased by 20%. The ego
vehicle takes advantage of it by taking the outside line throughout the corner
and overtaking the opponent on the outside without a collision.

This manoeuvre showcases the ability of the algorithm to always prioritize
the overtaking manoeuvres without collision.

The positions of the vehicles, as well as velocities in the simulation, are
close to the planned ones (Fig. 5.18).

-
-
-
-
|
-
--

.--..-4-’-"13-' -
=
=

(a) : Planned trajectory. (b) : Trajectory executed in the simulator.

[E G
i, i
3 3

2+ — Ego 2 — Ego

—— Opponent —— Oppenent
0 3 i G s 10 12 0 3 i i s 10 12 Y 16
[tlsl
(c) : Planned vehicle speed. (d) : Vehicle speed in the simulator.

Figure 5.18: A comparison between the planned manoeuvre and the manoeuvre
executed in the simulation. The manoeuvre is planned on Track 3 while the
opponent is following its near-minimum time trajectory, and the ego vehicle has
increased friction coefficient by 20%. Vehicle positions are shown every second.
The green line connects vehicles at the same time instance.

40

5.3. Maneuver validation

B 5.3.4 Maneuver 4

In this manoeuvre, both vehicles are the same; however, the opponent is
following a near-minimum length racing line. The minimum length trajectory
is fast on the straights but suboptimal in the corners. The ego vehicle follows
a trajectory that goes from the outside of the corner to the inside and then
again to the outside. This trajectory has smaller curvature which allows the
ego vehicle to go faster, and in this case, it is enough to overtake the opponent
even though the vehicles are exactly the same.

The vehicle positions in the simulation, as well as velocities, are close to
the planned ones.

e =
-‘ ----i“
¥
; C
(a) : Planned trajectory. (b) : Trajectory executed in the simulator.
6 £
B 1 B 4
3 3
— Ego — Ego
24 —— Opponent 24 —— Opponent
0 3 1 ; 8 10 0 2 1 G 5 10
fll s
(c) : Planned vehicle speed. (d) : Vehicle speed in the simulator.

Figure 5.19: A comparison between the planned manoeuvre (left) and the
manoeuvre executed in the simulation (right). The manoeuvre is planned on
Track 3 while both vehicles are equal and the opponent is following a near-
minimum length trajectory. Vehicle positions are shown every second. The green
line connects vehicles at the same time instance.

41

5. Experimental evaluation

B 5.3.5 Maneuver 5

In this manoeuvre, the opponent is following its near-minimum time trajectory
while its friction coefficient is reduced by 30%. The ego vehicle is able to take
advantage of an increased friction coefficient and overtake the opponent on
the inside on the small straight on the top of the track (Fig. [5.20)).

The ego vehicle successfully executed the manoeuvre in the simulation and
overtook the opponent. The vehicle velocities in the simulation are close to
the planned ones, as can be seen in Fig. |5.20.

(a) : Planned trajectory.

(b) : Trajectory executed in the simulator.

— Ego
—— Opponent

— Ego
—— Opponent

(c) : Planned vehicle speed.

T T T T T T T
0 2 1 6 8 10 12 4
t[s]

(d) : Vehicle speed in the simulator.

Figure 5.20: A comparison between the planned manoeuvre (left) and the
manoeuvre executed in the simulation (right). The manoeuvre is planned on
Track 6 while the opponent is following near-minimum time trajectory while its
friction coefficient is decreased by 30% (1 = 0.19). Vehicle positions are shown
every second. The green line connects vehicles at the same time instance.

42

5.3. Maneuver validation

B 5.3.6 Maneuver 6

In this manoeuvre, the opponent follows its near-minimum time trajectory
while its maximum speed is reduced by 1m -s~! when compared to the ego
car. The overtake is happening on the straight.

The planning algorithm found a collision of vehicles during these manoeu-
vres, which can be seen in Fig. [5.21al on the left. However, the ego vehicle
correctly overtook the opponent, and the opponent would crash into the
ego vehicle from behind, causing the crash. Therefore, the algorithm cor-
rectly calculated that it would be the opponent’s fault and also classified
the manoeuvre as successful. During the execution of this manoeuvre in the
simulation, the opponent has to slow down to avoid the collision. The speed
reduction can be seen in Fig.[5.21d in time around 11.5s and 13s.

P S W

(a) : Planned trajectory. (b) : Trajectory executed in the simulator.

]
— Ego — Ego
—— Opponent —— Opponent

(c) : Planned vehicle speed. (d) : Vehicle speed in the simulator.

Figure 5.21: A comparison between the planned manoeuvre (left) and the
manoeuvre executed in the simulation (right). The manoeuvre is planned on
Track 6 while the opponent is following near-minimum time trajectory while its
top speed is decreased by 30% (Vmaz = 3.5). Vehicle positions are shown every
second. The green line connects vehicles at the same time instance.

B 5.3.7 Maneuver 7

We chose to verify this manoeuvre in a real-life experiment. Both vehicles have
the same parameters, however the opponent is following the near-curvature
optimal racing line.

The position of the vehicles in the simulation (Fig. |[5.22c) is close to the
planned position (Fig. 5.22a)). However, the position of the vehicles during
the execution of the manoeuvre in real life is a little bit different. The most

43

5. Experimental evaluation

noticeable difference is in the Fig. [5.22€] on the straight, where it looks like
the vehicles collided. However, as can be seen in Fig. |5.23], this is not the
case. The reason is that the position of the vehicles was measured using the
localization onboard the vehicles which is not perfect.

The velocity of the vehicles is close to the planned velocity in the simulation
as well as in the real-life experiment.

1.5 — Ego
—— Opponent

-
=

(a) : Planned trajectory. (b) : Planned vehicle speed.

154 — Ego
—— Opponent

P

(c) : Trajectory executed in the simulator. (d) : Vehicle speed in the simulator.

154 — Ego
—— Opponent

(e) : Trajectory executed in the real life. (f) : Vehicle speed in the real life.

Figure 5.22: A comparison between the planned manoeuvre and the manoeuvre
executed in the simulation. The manoeuvre is planned on Track 6 while both
vehicles are the same and the opponent is following a near-minimum curvature
trajectory. Vehicle positions are shown every second. The green line connects
vehicles at the same time instance.

44

5.3. Maneuver validation

Figure 5.23: Comparison between simulated (left) and real-life (right) overtake
on the Track 6. The opponent is following a near-minimal-curvature trajectory.
Both vehicles are the same.

45

46

Chapter 6

Future work

For future work, we aim to improve on the drawbacks of the method presented
in this work. The main drawback is the localization of the ego and the
opponent vehicles (Fig. 5.22¢)). This greatly affects the ability of the ego
vehicle to execute the overtake manoeuvre in real life and can cause a crash
with the opponent.

Runtime. For the runtime, we have a few options. Firstly, we can improve
it by optimizing the code (better use of Numpy vectorization), trying to
implement this method in another programming language (e.g. Julia), or
trying a different optimization method. However, a better solution would
be to develop a different method that can run in real-time and is able to
utilize the information about the possible overtaking zones computed by our
algorithm. This way, the possible zones could be computed in advance for
different types of opponents. Then, during the race, the algorithm would
identify the type of opponent and try to pass him at parts of the track with
a high chance of overtaking.

Uncertainty handling. The uncertainty within this method comes from
the localization of the ego vehicle as well as the opponent and imperfect
trajectory tracking. For example, due to imperfect trajectory tracking, the
opponent does not have to take the exact same route every lap. The current
handling of this uncertainty is inflating the size of the rectangles representing
the vehicles by a constant value. However, this is not optimal since the
opponent’s tracking can have different performances in different parts of the
track. Therefore, a possible improvement could be to record the opponent’s
trajectory over a few different laps and use inflation of vehicles based on the
disparity of trajectories.

Deployment in the race. To use the preplanned trajectories in the race, we
need to develop some safety methods. If an opponent goes off the expected
trajectory, e.g., due to an error in the localization, the algorithm needs to
detect the change and safely avoid the collision.

We can improve the odometry of the vehicle from Section [3.3.2| by using a
more complex vehicle model or data from additional sensors such as wheel

47

6. Future work

encoders. This can greatly improve the estimation accuracy of the vehicle’s
movement, which can further improve the accuracy of the localization.

Additionally, in the real race, the opponent won’t share its position with the
ego vehicle. Therefore, some methods to detect and estimate the opponent’s
position need to be used.

48

Chapter 7

Conclusion

In this work, we successfully implemented an algorithm that identifies over-
taking zones when the opponent’s trajectory is known in advance. To identify
these zones, we ran the planning of the overtaking manoeuvres multiple times
on each track and used the successful manoeuvres to create a heat map of
the overtaking zones. Our implementation of the overtake planner is based
on the ng_trajectory toolbox that uses non-gradient optimization to find
an optimal racing line on the track (Section |3.4). We improved this toolbox
so it can perform planning of overtaking manoeuvres with one opponent on
the track (Chapter [4)).

To test the method, we ran the algorithm on seven different tracks with
different opponent trajectories and vehicle parameters (Chapter |5). The
algorithm successfully identified possible overtaking zones. The results show
that changing the weight of the FITENTH vehicles does not change the
overtaking zones on the tracks. This can be because we do not use a good
enough model for manoeuvre planning, or the weight does not have that big
of an effect on overtaking in such a small car. Increasing the top speed of the
vehicles improved overtaking on straights when the top speed was achieved
for enough time (Section 5.2.5). However, the tracks in the FITENTH
races usually contain a lot more corners than straights. Therefore, the most
important of the tested parameters is the friction coefficient. Increasing it
allows vehicles to go faster through the corners, take tighter turns, accelerate
faster, and decelerate faster than the opponent (Section 5.2.2, Section 5.2.3).
Therefore, increasing the friction coefficient is the most important, from the
tested parameters, to increase the chance of the overtake. So good and clean
tyres should be the priority when racing.

When analyzing different trajectories of the opponent, we found that
the easiest one to overtake is usually the minimum curvature trajectory
(Section [5.2.1). This trajectory always takes the outside line in corners
while leaving enough space for the overtaking vehicle, resulting in a locally
slow trajectory and many overtaking opportunities. The Follow the Gap
algorithm is easy to overtake since it is a reactive algorithm and cannot utilize
the full power of the vehicle. However, sometimes, it can still be tricky to
overtake the FTG algorithm. Depending on the track, the FTG can block a
significant portion of it since the FTG drives in the middle of the road. The

49

7. Conclusion

minimum length trajectory is slow in the corners but fast on the straight. If
the track is wide enough, it is easy to overtake the opponent that follows
this trajectory (Section 5.2.3|). However, if the track is narrow with many
consecutive left-right turns, it can be extremely hard to overtake the opponent
(Section |5.2.2)).

To show the dynamic feasibility of the manoeuvres, we tested a few of them
in an F1Tenth gym simulator and in real life (Section |5.3). The vehicle could
perform the planned manoeuvres in the simulator without major problems.
On the other hand, in real-life experiments, the onboard localization and
imperfect trajectory tracking caused major problems during the execution of
the manoeuvres (Section [5.3.7)).

The biggest issue we had in this work was the localization of the opponent
and ego vehicles during real-life experiments. The vehicle position during
the execution of manoeuvres sometimes jumped by tenths of a meter, which
sometimes caused a collision with the opponent. This localization error needs
to be addressed to be able to execute more complex overtaking manoeuvres.
This could be solved by an algorithm that could change the manoeuvre
online to avoid unanticipated changes in the positions of both vehicles. Other
drawbacks of this method and some solution proposals are described in detail
in Chapter |6

50

Appendix A
Bibliography

F1ITENTH, “FITENTH Rules CPS-IoT 2024 https:
//cpsweek2024-race.fltenth.org/rules.html, 2024. Accessed:
2024-05-08.

V. Sezer and M. Gokasan, “A novel obstacle avoidance algorithm: “follow
the gap method”,” Robotics and Autonomous Systems, vol. 60, no. 9,
pp- 1123-1134, 2012.

N. Otterness, “The "disparity extender" algorithm, and fl/tenth.
https://www.nathanotterness.com/2019/04/the-disparity-extender-
algorithm-and.html, April 2019. Accessed: 2010-09-30.

B. D. Evans, H. W. Jordaan, and H. A. Engelbrecht, “Comparing deep
reinforcement learning architectures for autonomous racing,” Machine
Learning with Applications, vol. 14, p. 100496, 2023.

Y. Song, H. Lin, E. Kaufmann, P. Diirr, and D. Scaramuzza, “Au-
tonomous overtaking in gran turismo sport using curriculum reinforce-
ment learning,” in 2021 IEEE International Conference on Robotics and
Automation (ICRA), pp. 9403-9409, IEEE, 2021.

W. Schwarting, T. Seyde, 1. Gilitschenski, L. Liebenwein, R. Sander,
S. Karaman, and D. Rus, “Deep latent competition: Learning to race
using visual control policies in latent space,” 11 2020.

T. Weiss, J. Chrosniak, and M. Behl, “Towards multi-agent autonomous
racing with the deepracing framework.,” International Conference on
Robotics and Automation (ICRA) - Workshop on Opportunities and
Challenges with Autonomous Racing.

T. Weiss and M. Behl, “Deepracing: A framework for autonomous racing,”
in 2020 Design, Automation & Test in Furope Conference € Exhibition
(DATE), pp. 1163-1168, 2020.

T. Briidigam, A. Capone, S. Hirche, D. Wollherr, and M. Leibold, “Gaus-
sian processbased stochastic model predictive control for overtaking in
autonomous racing,” in 2021 IEEFE International Conference on Robotics

o1

https://cpsweek2024-race.f1tenth.org/rules.html
https://cpsweek2024-race.f1tenth.org/rules.html

A. Bibliography

[10]

[11]

[12]

[13]

[17]

and Automation (ICRA) Workshop on Opportunities and Challenges
with Autonomous Racing, 2021.

J. Betz, H. Zheng, A. Liniger, U. Rosolia, P. Karle, M. Behl, V. Krovi,
and R. Mangharam, “Autonomous vehicles on the edge: A survey on
autonomous vehicle racing,” IEEE Open Journal of Intelligent Trans-
portation Systems, vol. 3, pp. 458488, 2022.

N. R. Kapania, J. Subosits, and J. Christian Gerdes, “A sequential
two-step algorithm for fast generation of vehicle racing trajectories,”
Journal of Dynamic Systems, Measurement, and Control, vol. 138, no. 9,
p. 091005, 2016.

A. Liniger, A. Domahidi, and M. Morari, “Optimization-based au-
tonomous racing of 1:43 scale rc cars,” Optimal Control Applications and
Methods, vol. 36, no. 5, pp. 628—647, 2015.

A. Liniger and J. Lygeros, “A viability approach for fast recursive feasible
finite horizon path planning of autonomous rc cars,” in Proceedings of
the 18th International Conference on Hybrid Systems: Computation and
Control, HSCC ’15, (New York, NY, USA), p. 1-10, Association for
Computing Machinery, 2015.

A. Gray, Y. Gao, T. Lin, J. K. Hedrick, E. H. Tseng, and F. Borrelli,
“Predictive control for agile semi-autonomous ground vehicles using

motion primitives,” 2012 American Control Conference (ACC), pp. 4239
4244, 2012.

T. Stahl, A. Wischnewski, J. Betz, and M. Lienkamp, “Multilayer graph-
based trajectory planning for race vehicles in dynamic scenarios,” in 2019
IEEFE Intelligent Transportation Systems Conference (ITSC), pp. 3149
3154, 2019.

Z. Zang, R. Tumu, J. Betz, H. Zheng, and R. Mangharam, “Winning
the 3rd japan automotive ai challenge - autonomous racing with the
autoware.auto open source software stack,” in 2022 IEEFE Intelligent
Vehicles Symposium (IV), pp. 1757-1764, 2022.

J. Bhargav, J. Betz, H. Zehng, and R. Mangharam, “Deriving spatial
policies for overtaking maneuvers with autonomous vehicles,” in 2022
14th International Conference on COMmunication Systems €6 NETworkS
(COMSNETS), pp. 859-864, 2022.

A. Liniger and J. Lygeros, “A noncooperative game approach to au-
tonomous racing,” IEEFE Transactions on Control Systems Technology,
vol. 28, no. 3, pp. 884-897, 2020.

Federation Internationale de 1’Automobile, “Organisation.” https://
www.fia.com/organisation) 2024. Accessed: 2024-05-09.

52

https://www.fia.com/organisation
https://www.fia.com/organisation

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

[28]

A. Bibliography

Federation Internationale de I’Automobile, “Appendix L to the interna-
tional sporting code.” https://www.fia.com/sites/default/files/
wmsc_appendix_1_2024_publie_le_28_fevrier_2024.pdfl 2024. Ac-
cessed: 2024-05-08.

The Sim Racing Collective, “Rules & Regulations.” https://wuw.tsrc|
club/rules. Accessed: 2024-05-08.

Sports Car Club of America, “General Competition Rules: SCCA Road
Racing,” 2024.

Federation Internationale de 1’Automobile, “Formula One Sport-
ing Regulations Issue 6.” https://www.fia.com/sites/default/
files/fia_2024_formula_1_sporting regulations_-_issue_6_-_
2024-04-30_v2.pdf], April 2024. Accessed: 2024-05-08.

R. Pobst, T. Earwood, “Appendix P. Racing Room & Passing Guidlines.”
https://cdn.connectsites.net/user_files/scca/downloads/000/
050/288/Appendix_P_Updated_Jan22.pdf71650377995| January 2022.
Accessed: 2024-05-08.

Federation Internationale de 1’Automobile, “F1 Driving Standard Guide-
lines.” https://www.fia.com/sites/default/files/doc_2_-_2022_
imola_event_-_fia_f1 driving standard_guidelines.pdf] April
2022. Accessed: 2024-05-08.

F1ITENTH, “Fltenth - build documentation.” https://fltenth.org/
build.htmll, 2023. Accessed: 2024-30-04.

S. Macenski and 1. Jambrecic, “Slam toolbox: Slam for the dynamic
world,” Journal of Open Source Software, vol. 6, no. 61, p. 2783, 2021.

J. Klapélek, A. Novak, M. Sojka, and Z. Hanzalek, “Car racing line
optimization with genetic algorithm using approximate homeomorphism,’
in 2021 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 601-607, 2021.

i

C. H. Walsh and S. Karaman, “Cddt: Fast approximate 2d ray casting
for accelerated localization,” in 2018 IEEE International Conference on
Robotics and Automation (ICRA), pp. 3677-3684, IEEE, 2018.

J. Rapin and O. Teytaud, “Nevergrad - A gradient-free optimization
platform.” https://GitHub.com/FacebookResearch/Nevergrad, 2018.

Stephen Boyd and Lieven Vandenberghe, “Convex Optimization,” Cam-
bridge University Press, 2004.

M. O’Kelly, H. Zheng, D. Karthik, and R. Mangharam, “F1tenth: An
open-source evaluation environment for continuous control and reinforce-

ment learning,” in NeurIPS 2019 Competition and Demonstration Track,
pp. 77-89, PMLR, 2020.

53

https://www.fia.com/sites/default/files/wmsc_appendix_l_2024_publie_le_28_fevrier_2024.pdf
https://www.fia.com/sites/default/files/wmsc_appendix_l_2024_publie_le_28_fevrier_2024.pdf
https://www.tsrc.club/rules
https://www.tsrc.club/rules
https://www.fia.com/sites/default/files/fia_2024_formula_1_sporting_regulations_-_issue_6_-_2024-04-30_v2.pdf
https://www.fia.com/sites/default/files/fia_2024_formula_1_sporting_regulations_-_issue_6_-_2024-04-30_v2.pdf
https://www.fia.com/sites/default/files/fia_2024_formula_1_sporting_regulations_-_issue_6_-_2024-04-30_v2.pdf
https://cdn.connectsites.net/user_files/scca/downloads/000/050/288/Appendix_P_Updated_Jan22.pdf?1650377995
https://cdn.connectsites.net/user_files/scca/downloads/000/050/288/Appendix_P_Updated_Jan22.pdf?1650377995
https://www.fia.com/sites/default/files/doc_2_-_2022_imola_event_-_fia_f1_driving_standard_guidelines.pdf
https://www.fia.com/sites/default/files/doc_2_-_2022_imola_event_-_fia_f1_driving_standard_guidelines.pdf
https://f1tenth.org/build.html
https://f1tenth.org/build.html
https://GitHub.com/FacebookResearch/Nevergrad

A. Bibliography

[33] FITENTH, “FITENTH gym ROS2.” https://github.com/fitenth/
fitenth_gym_ros|, 2024. Accessed: 2024-20-05.

o4

https://github.com/f1tenth/f1tenth_gym_ros
https://github.com/f1tenth/f1tenth_gym_ros

S MASTER'S THESIS ASSIGNMENT

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

I. Personal and study details

\

Student's name: Nagy Tomas Personal ID number: 483574
Faculty / Institute: Faculty of Electrical Engineering
Department / Institute: Department of Control Engineering

Study program: Cybernetics and Robotics

Master’s thesis details

Master's thesis title in English:

Head-to-Head Racing with F1/10 Autonomous Car

Master’s thesis title in Czech:

Zavodéni s oponentem pro autonomni auto F1/10

Guidelines:

1. Get familiar with ROS2 and F1/10 project.

2. Conduct a review of algorithms used for planning of overtaking maneuvers in the topic of autonomous racing.

3. Conduct a review of overtaking-related rules in racing competitions. Use them to define the rules for overtaking that are
applicable in an F1/10 competition.

4. Design an algorithm for planning overtaking maneuvers. Consider only one opponent on the racing track. In early stages
assume that the position and the trajectory of the opponent is known in advance.

5. Define a set of testing scenarios considering opponents with various control algorithms (e.g., tracking optimal trajectory,
reactive control, etc.) and parameters (e.g., same maximum velocity).

6. Evaluate your algorithm on the testing scenarios and demonstrate at least one of the scenarios on the F1/10 car.

7. Evaluate your results and document everything thoroughly.

Bibliography / sources:

[1] S. Macenski et al., "Robot Operating System 2: Design, architecture, and uses in the wild," Science Robotics vol. 7,
May 2022, doi: 10.1126/scirobotics.abm6074

[2] J. Betz et al., "Autonomous Vehicles on the Edge: A Survey on Autonomous Vehicle Racing," in IEEE Open Journal
of Intelligent Transportation Systems, vol. 3, pp. 458-488, 2022, doi: 10.1109/0JI1TS.2022.3181510

[3] J. Bhargav et al., "Deriving Spatial Policies for Overtaking Maneuvers with Autonomous Vehicles," 2022 14th International
Conference on COMmunication Systems & NETworkS (COMSNETS), Bangalore, India, 2022, pp. 859-864, doi:
10.1109/COMSNETS53615.2022.9668548

Name and workplace of master’s thesis supervisor:

Ing. Jaroslav Klapalek Department of Control Engineering FEE

Name and workplace of second master’s thesis supervisor or consultant:

Date of master’s thesis assignment: 16.02.2024 Deadline for master's thesis submission: 24.05.2024

Assignment valid until: 21.09.2025

Ing. Jaroslav Klapalek prof. Ing. Michael Sebek, DrSc. prof. Mgr. Petr Péata, Ph.D.

Supervisor's signature Head of department’s signature Dean'’s signature

CVUT-CZ-ZDP-2015.1

© CVUT v Praze, Design: CVUT v Praze, VIC

lll. Assignment receipt

The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

Date of assignment receipt Student’s signature

CVUT-CZ-ZDP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

	Introduction
	Literature review
	Reactive methods
	Learning-based methods
	Local planning
	Overtaking-related rules in racing competitions
	Defending a position
	Contact with the opponent
	Overtaking

	Metodology
	Scenario definition
	Marking convention
	Platform description
	Hardware stack
	Software stack

	Trajectory optimization

	Method description
	Algorithm improvements
	Trajectory evaluation
	Track progress calculation
	Detecting a collision with the opponent
	Interaction between cars

	Implementation details
	Initial conditions and final state feasibility
	Handling uncertainty
	Data gathering

	Experimental evaluation
	The design of the experiments
	Racing tracks description

	Results
	Track 1
	Track 2
	Track 3
	Track 4
	Track 5
	Track 6

	Maneuver validation
	Maneuver 1
	Maneuver 2
	Maneuver 3
	Maneuver 4
	Maneuver 5
	Maneuver 6
	Maneuver 7

	Future work
	Conclusion
	Bibliography
	Project Specification

