
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of master’s thesis

WooWoo Language Server

Bc. Michal Janeček

Ing. Tomáš Kalvoda, Ph.D.

Informatics

Software Engineering

Department of Software Engineering

until the end of summer semester 2024/2025

Instructions

The aim of this thesis is to implement a Language Server Protocol (LSP) for the WooWoo

language, which is used at FIT CTU in Prague for creating study materials in several

courses.

 1. Familiarize yourself with the syntax of the WooWoo language and the document

templates for creating study materials.

 2. Familiarize yourself with the domain of language servers and LSP.

 3. Design a WooWoo language server that provides autocompletion, go-to-definition,

syntax error detection and other common features.

 4. Implement and test the language server designed in the previous task.

 5. Integrate the language server into a VSCode extension and ensure that it is easy to

use and install.

Electronically approved by Ing. Michal Valenta, Ph.D. on 5 December 2023 in Prague.

Master’s thesis

WOOWOO LANGUAGE
SERVER

Bc. Michal Janeček

Faculty of Information Technology
Department of Software Engineering
Supervisor: Ing. Tomáš Kalvoda, Ph.D.
May 7, 2024

Czech Technical University in Prague
Faculty of Information Technology
© 2024 Bc. Michal Janeček. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Janeček Michal. WooWoo Language Server. Master’s thesis. Czech Technical
University in Prague, Faculty of Information Technology, 2024.

Contents

Acknowledgments viii

Declaration ix

Abstract x

Introduction 1

1 The WooWoo Language 3
1.1 Introduction to WooWoo . 3

1.1.1 The Need for WooWoo . 3
1.1.2 Inspired by PreTeXt . 4
1.1.3 Present and Future . 4

1.2 Syntax and Semantics . 5
1.2.1 Indentation and Whitespace . 5
1.2.2 Document . 5
1.2.3 Document Part . 5
1.2.4 Include Statement . 6
1.2.5 Meta Block . 6
1.2.6 Wobject . 6
1.2.7 Block . 7
1.2.8 Text Block . 7
1.2.9 Outer Environments . 7

1.3 The Building Blocks of WooWoo . 8
1.3.1 Dialect . 9
1.3.2 Templates . 12
1.3.3 Project . 13

2 Language Server Protocol 15
2.1 The Need for LSP . 15
2.2 LSP Foundations . 16

2.2.1 JSON-RPC . 17
2.2.2 LSP Specification . 17
2.2.3 Document Synchronization . 19
2.2.4 Workspace Synchronization . 19
2.2.5 Language Features . 19

3 Requirements 23
3.1 Functional Requirements . 23
3.2 Non-functional Requirements . 24

ii

Contents iii

4 Design & Technologies 26
4.1 Overview of Existing Language Servers . 26

4.1.1 TypeScript Language Server . 27
4.1.2 Rust-Analyzer . 27
4.1.3 Bash Language Server . 27

4.2 High-Level Language Server Architecture . 27
4.3 Parser . 28

4.3.1 Existing WooWoo Parsers . 28
4.3.2 Parser Generators . 29
4.3.3 Parser Choice . 30

4.4 Analysis Engine . 30
4.4.1 Technology . 31
4.4.2 Architecture Overview . 32
4.4.3 WooWooAnalyzer . 33
4.4.4 Parser . 35
4.4.5 WooWooDocument . 36
4.4.6 DialectManager . 36
4.4.7 Feature Components . 37
4.4.8 Enabling Python Integration . 39

4.5 Communication Layer . 40
4.5.1 Pygls . 40

4.6 VSCode Extension Integration . 42

5 Implementation 43
5.1 Parser Implementation . 43

5.1.1 Defining Grammar Rules . 43
5.1.2 External Scanner . 46
5.1.3 Parser Integration . 48

5.2 Analysis Engine Implementation . 48
5.2.1 Build Configuration with CMake . 49
5.2.2 WooWooAnalyzer . 50
5.2.3 DialectManager . 51
5.2.4 Reference Mapping in DialectedWooWooDocument 52
5.2.5 Feature Components . 53
5.2.6 Python Bindings . 55

5.3 Communication Layer Implementation . 56
5.3.1 Utility Functions . 56
5.3.2 WooWooLanguageServer Implementation 56
5.3.3 Feature Registration and Launching the Server 57

5.4 VSCode Extension Implementation . 58
5.4.1 Extension Manifest . 58
5.4.2 Starting the Language Server Process . 59

5.5 Future Work . 60
5.5.1 Tree-sitter Grammar . 60
5.5.2 Working with Woofiles . 60
5.5.3 Expanding Current Features . 61
5.5.4 Adding New Features . 61

Contents iv

6 Distribution 62
6.1 Distributing wuff . 62

6.1.1 Cross-Platform Wheel Building . 63
6.1.2 Supported Systems . 64

6.2 Extension Distribution . 65
6.2.1 VSCode Marketplace . 65
6.2.2 Open VSX Registry . 65

7 Testing 67
7.1 Grammar Tests . 67

7.1.1 Test Corpus . 67
7.1.2 Manual Grammar Validation with Existing Projects 68

7.2 User Testing . 69
7.2.1 Methodology . 69
7.2.2 Results . 70

7.3 Performance Tests . 70
7.3.1 Datasets . 70
7.3.2 Methodology . 70
7.3.3 Replication . 71

7.4 Unit Testing wuff . 72
7.4.1 Testing Framework . 72
7.4.2 Structure . 72
7.4.3 Use in Wheel-Building Pipeline . 73

8 Conclusion 74

A Installation Guide 75

B Feature Demonstration 78
B.1 Diagnostics . 78
B.2 Completion . 80
B.3 Go To Definition . 81
B.4 File Rename . 82
B.5 Folding Range . 83
B.6 Rename Symbol . 84
B.7 Semantic Tokens . 85
B.8 Hover . 85
B.9 Find All References . 85

Contents of the Enclosed Medium 90

List of Figures

1.1 Illustration of syntactic variations in expressing the Pythagorean identity equation
using PreTeXt, LaTeX, and Write Only Once, Write Only Once (WooWoo). . . . 4

1.2 Examples of Inner Environment Forms . 8
1.3 Difference between classic and fragile outer environments 9
1.4 The structure of the WooWoo ecosystem, its dialects, and the specific templates

designed for the FIT-Math dialect. 10
1.5 Output generated using the fit-pdf template. 12
1.6 Output generated using the fit-html template. 13
1.7 Output generated using the fit-knowledge template. 13
1.8 Output generated using the fit-words template. 14
1.9 Example folder structure of a WooWoo project 14

2.1 A comparison between the pre-Language Server Protocol (LSP) fragmented setup
and the post-LSP unified approach, adapted from the conceptual illustration pro-
vided in [11]. 16

2.2 Example of communication between a tool and a language server during a routine
editing session [12]. 17

2.3 Communication between LSP client and language server upon user renaming files. 20
2.4 Demonstration of the Find All References feature in Visual Studio Code (VSCode)

for a WooWoo document part label. 21
2.5 Demonstration of the Completion feature: Suggestion and placeholder insertion . 22

4.1 Key Components of the WooWoo Language Server 28
4.2 Comparison of average workspace initialization times between Python and C++

implementations across projects containing sources for various subjects at Faculty
of Information Technology, Czech Technical University in Prague (FIT CTU). For
further description and sizes of the datasets, see Table 7.1. 32

4.3 Feature-wise comparison of average durations, highlighting the time required for
Hover and Completion features in Python and C++ implementations. Analysis
conducted on sources for the BI-MA1 course. 33

4.4 Comparison of average durations for processing Semantic Tokens in Python and
C++. The analysis encompasses all projects referenced in Figure 4.2. 34

4.5 The core classes present in the wuff analysis engine. 35
4.6 Components of the Dialect Class . 38

5.1 Directory tree of the wuff analysis engine . 49
5.2 Obtaining the description of the Question environment defined by the FIT-Math

dialect. 54

6.1 GitHub Actions pipeline jobs for cross-platform wheel generation and Python
Package Index (PyPI) upload. 63

6.2 Summarization of the steps that cibuildwheel takes on each platform. [53] . . . 64
6.3 The WooWoo extension listed in the VSCode Marketplace, accessible from within

the editor. 65

v

7.1 Structure outline of the corpus folder . 69
7.2 Unit Tests Directory Structure . 72

B.1 Demonstration of the Diagnostics feature, specifically focusing on error reporting
based on the detection of Tree-sitter MISSING nodes. 78

B.2 Demonstration of the Diagnostics feature, specifically focusing on error reporting
based on the detection of Tree-sitter ERROR nodes. 79

B.3 Demonstration of the Completion feature for inner environments capable of refer-
encing, focusing on body completion. 80

B.4 Demonstration of the Go to Definition feature, illustrating how users are directed
to labeled structures within the FIT-Math dialect. 81

B.5 Demonstration of the Rename Files feature, illustrating the process from initiation
to review of proposed changes. 82

B.6 Demonstration of the Folding Range feature, which allows users to fold document
parts, blocks, and wobjects. 83

B.7 Demonstration of the Rename Symbol feature, enabling project-wide refactoring
of references. 84

List of Tables

4.1 DialectManager Class Public Interface . 37

6.1 Supported Systems for the wuff Package . 64

7.1 Testing Datasets Used for Performance Measurements 70

List of code listings

1.1 Start of a document part in WooWoo . 6
1.2 Use of include statements in WooWoo . 6
1.3 An example Question wobject from the FIT-Math dialect 6
1.4 Example of a text block containing math environments 7
1.5 Simplified excerpt illustrating the structure of the FIT-Math WooWoo dialect . . 11
2.1 Example of composing basic JavaScript Object Notation (JSON) structures in

LSP, represented in TypeScript. 18
4.1 Example of WooWooAnalyzer use within C++. 34
4.2 Use of the WooWooAnalyzer within Python, equivalent to the sequence in Listing 4.1 40
4.3 Instantiating LanguageServer with a TextDocumentCompletion LSP feature. [43] 41
4.4 Example of decorated feature functions used for registration and delegating re-

quests to the WooWooLanguageServer. 41
5.1 The rule in tree-sitter-woowoo capturing wobject. 44

vi

List of code listings vii

5.2 Setting right associativity in the block rule to resolve ambiguity. 45
5.3 Failed parser generation due to ambiguity in the grammar. 45
5.4 Structure of the scanner.cc file . 48
5.5 Redirecting Requests to Feature Components . 50
5.6 Finding projects folder by scanning for Woofiles. 51
5.7 Snippet from the Dialect class’s deserialization method. 52
5.8 Query (S-expression) for finding key:value pairs within meta blocks. 53
5.9 Verifying the presence of a meta block at feature execution position. 54
5.10 Project-wide search for references. 55
5.11 Defining Python bindings. 55
5.12 Converting Position from the wuff module to Position from lsprotocol.types. 56
5.13 Typical method of WooWooAnalyzer, constructing parameters for wuff, and then

returning the result in pygls-compatible type. 56
5.14 The structure of the server.py file. Instantiating WooWooLanguageServer, regis-

tering methods, and providing the start function for client to launch the server. 57
5.15 Defining the WooWoo Language and Grammar Contributions within the Exten-

sion Manifest. 58
5.16 Snippet from the createServer function showing how the server and LanguageClient

are configured and instantiated. 59
7.1 An example of a Tree-Sitter WooWoo test case (simple nesting.txt). 68
7.2 Testing Completion suggestions (snippet from test complete.py) 72

I would like to express my deepest thanks to my supervisor, Ing.
Tomáš Kalvoda, Ph.D., for the incredible opportunity to contribute
to the WooWoo project. His dedication to the faculty is truly in-
spiring, and I am honored to have been involved in his meaningful
work. His guidance and support throughout this thesis have been
invaluable.

viii

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated by the Act
No. 121/2000 Coll., the Copyright Act, as amended. In accordance with Section 2373(2) of Act
No. 89/2012 Coll., the Civil Code, as amended, I hereby grant a non-exclusive authorization
(licence) to utilize this thesis, including all computer programs that are part of it or attached to
it and all documentation thereof (hereinafter collectively referred to as the ”Work”), to any and
all persons who wish to use the Work. Such persons are entitled to use the Work in any manner
that does not diminish the value of the Work and for any purpose (including use for profit). This
authorisation is unlimited in time, territory and quantity.

In Prague on May 7, 2024

ix

Abstract

This thesis enhances the authoring experience for the WooWoo language, extensively used at the
Faculty of Information Technology at CTU to create mathematical study materials.

It offers a comprehensive exploration of WooWoo’s history, vision, syntax, and semantics,
and introduces the concept of ’WooWoo Dialects’—a crucial abstraction for developing language
tools for WooWoo while preserving its domain-agnostic nature.

The core contribution of this work is the design and implementation of a Language Server
Protocol (LSP) developed specifically for WooWoo, featuring a Tree-sitter grammar that under-
pins an efficient parser. This Language Server is equipped with several features, including syntax
error detection, auto-completion, and go-to-definition.

Furthermore, the thesis details the integration of the Language Server into a Visual Studio
Code extension and its deployment on popular marketplaces, ensuring easy accessibility and
installation. As of the publication of this thesis, the developed tools are already being actively
used by WooWoo authors.

Keywords WooWoo, Language Server Protocol, Language Server, Tree-sitter grammar, cross-
language development, VSCode extension, developer tools

Abstrakt

Tato diplomová práce vylepšuje proces tvorby obsahu v jazyce WooWoo, který je hojně využ́ıván
na Fakultě informačńıch technologíı ČVUT ke tvorbě matematických studijńıch materiál̊u.

Práce poskytuje ucelený přehled historie, vize, syntaxe a sémantiky jazyka WooWoo a zavád́ı
koncept ”WooWoo dialekt̊u“—kĺıčovou abstrakci pro vývoj jazykových nástroj̊u pro WooWoo,
při zachováńı jeho doménově agnostické povahy.

Hlavńım př́ınosem této práce je návrh a implementace jazykového serveru pro WooWoo,
který implementuje protokol Language Server Protocol (LSP) a zahrnuje Tree-sitter gramatiku,
tvoř́ıćı základ pro efektivńı parser. Vytvořený jazykový server nab́ıźı několik funkćı, včetně
detekce syntaktických chyb, auto-doplněńı a funkce přechodu k definici.

Práce dále podrobně popisuje integraci jazykového serveru do rozš́ı̌reńı pro Visual Studio
Code a jeho distribuci na populárńıch platformách, což zajǐst’uje snadnou dostupnost a instalaci.
V době zveřejněńı této práce jsou již tyto nástroje aktivně využ́ıvány autory ve WooWoo.

Kĺıčová slova WooWoo, protokol jazykového serveru, language server protocol, jazykový
server, Tree-sitter gramatika, vývoj např́ıč jazyky, rozš́ı̌reńı pro VSCode, vývojářské nástroje

x

Acronyms

ANTLR ANother Tool for Language Recognition.

API Application Programming Interface.

AST Abstract Syntax Tree.

CI Continuous Integration.

CST Concrete Syntax Tree.

DSL Domain-Specific Language.

ERB Embedded Ruby.

FIT CTU Faculty of Information Technology, Czech Technical University in Prague.

IDE Integrated Development Environment.

JSON JavaScript Object Notation.

JSON-RPC JavaScript Object Notation - Remote Procedure Call.

LSP Language Server Protocol.

PDF Portable Document Format.

PyPI Python Package Index.

RLS Rust Language Server.

RPC Remote Procedure Call.

TCP Transmission Control Protocol.

URI Uniform Resource Identifier.

VSCode Visual Studio Code.

Wasm WebAssembly.

WooWoo Write Only Once, Write Only Once.

XML eXtensible Markup Language.

YAML YAML Ain’t Markup Language.

xi

Introduction

Write Only Once, Write Only Once (WooWoo) has become the preferred standard for producing
math study materials at Faculty of Information Technology, Czech Technical University in Prague
(FIT CTU). Created in 2017 by Ing. Tomáš Kalvoda, Ph.D., a deputy head at the Department of
Applied Mathematics, WooWoo’s core strength lies in its content-centric approach. Authors de-
fine the structure and meaning of their material once, and WooWoo’s output generators produce
consistent presentations across a wide variety of outputs.

WooWoo’s positive impact is evident in the enthusiasm of students, who appreciate the avail-
ability of materials in formats ranging from classic PDFs to interactive HTML and Anki cards.
This enthusiasm, reflected in post-semester surveys1, has even inspired community contributions
such as Bc. Matěj Frnka’s Mind Map template [1], adding another output generator alongside
the existing ones.

Necessity of Language Tooling for WooWoo
While WooWoo offers significant advantages for authoring study materials, its potential for wider
adoption is hampered by the lack of robust language tooling. For a language community to thrive
and gain acceptance beyond its initial creators, essential tools like syntax error detection, go-to
definition, and code completion are crucial. Without these, new authors face a steep learning
curve, and even experienced authors contend with ongoing inefficiencies.

Past efforts, such as Bc. David Straka’s Wootom extension [2] for the since-discontinued
Atom editor, provided valuable support. However, its editor-specific nature and the editor’s
discontinued status severely limit its utility, highlighting the need for a more flexible, long-term
solution for WooWoo language tooling.

Introducing the Language Server Protocol
To address the need for WooWoo language tooling that surpasses the limitations of single-editor
solutions, this thesis leverages the Language Server Protocol (LSP), which was introduced in 2016
by Microsoft, Red Hat, and the Eclipse Foundation’s Che project. The LSP standardizes the
way language-aware tools, like Integrated Development Environments (IDEs), communicate with
language smartness providers (Language Servers), which are equipped with a deep understanding
of specific languages.

This standardized communication protocol allows a single WooWoo Language Server to inte-
grate seamlessly with a variety of editors. The development of a WooWoo Language Server using

1As evidenced by frequent mentions in the CTU Surveys at https://anketa.is.cvut.cz/html/anketa/results

1

https://anketa.is.cvut.cz/html/anketa/results

Introduction 2

the LSP forms the central focus of this thesis, aiming to provide the basis for efficient, accessible
and editor-agnostic language support.

Goals & Summary
The goal of this thesis is the design, implementation, and testing of a Language Server for
WooWoo, with the ultimate goal of integrating it into a publicly available Visual Studio Code
(VSCode) extension. This extension is intended to simplify the setup and usage process for new
authors and to showcase the functionality of the developed language server.

Chapter 1 provides a comprehensive overview of WooWoo’s history, its current state, syntax,
semantics, and the tools available. It also introduces the concept of “WooWoo Dialects,” an
important abstraction designed to ensure that the tooling can be adapted to specific domains
without being restricted to any single one in particular. Chapter 2 covers the necessary technical
background of the LSP, setting the foundation for subsequent developments. Chapter 3 outlines
the specific requirements for the language server.

Chapters 4 and 5 cover the entire development process, from the initial design and selection of
suitable technologies to meet the performance and usability needs of the language server, to the
implementation of the server itself. Chapter 5 also includes a section on future work, discussing
potential enhancements and extensions.

Establishing distribution channels and ensuring that the language tooling is functional and
accessible for all potential users are addressed in Chapters 6 and 7.

Chapter 1

The WooWoo Language

Write Only Once, Write Only Once (because why write it twice?)

1.1 Introduction to WooWoo
Current tools for authoring structured study materials often constrain authors to specific formats
or embed presentation-focused instructions into the content itself. WooWoo is a markup language
designed to overcome these limitations, focused on being content-centric while being extendable
and not locked on to a specific domain.

1.1.1 The Need for WooWoo
WooWoo was created in 2017 by Tomáš Kalvoda, a deputy head at the Department of Applied
Mathematics with extensive experience in teaching and authoring math textbooks at FIT CTU.
Traditionally, departmental textbooks were written in LaTeX for generating Portable Document
Format (PDF) versions.

Limitations of LaTeX
While LaTeX excels at typesetting and producing visually consistent PDFs, it presents challenges
in addressing modern learning preferences. Students increasingly favor dynamic and interactive
formats over static PDFs, desiring options like web-based textbooks or mind maps to personalize
their learning experience.

Furthermore, LaTeX’s focus on layout means the source documents contain styling instruc-
tions intertwined with the content. This limits its flexibility in generating diverse outputs and
would introduce complexity when targeting multiple formats.

WooWoo Approach
While technically possible, generating fundamentally different outputs from a single LaTeX docu-
ment is impractical. LaTeX’s primary purpose is to facilitate high-quality typesetting for written
materials. Accommodating diverse outputs would require extensive markers and format-specific
instructions, leading to increased complexity and reduced maintainability of the source files.

To address these limitations, WooWoo offers a cleaner, content-oriented approach. WooWoo
documents prioritize describing the structure and meaning of the content, not its visual presen-
tation. This separation of concerns allows for easier generation of different outputs from the

3

Introduction to WooWoo 4

same source. The same source code can be used to generate multiple views of the same material,
without the need to clutter the source with instructions tailored to specific output generators.

1.1.2 Inspired by PreTeXt
WooWoo shares its vision with several projects aimed at simplifying the creation of educational
materials. A prominent example is the PreTeXt project [3], previously known as MathBook XML.
Embracing the “Write Once, Read Anywhere” philosophy, PreTeXt has significantly influenced
WooWoo’s development. It allows authors to craft content in a singular source format, from
which various outputs like interactive websites, static PDFs, and ePubs can be generated. This
flexibility was a key inspiration during WooWoo’s initial development phase.

Despite its innovative approach, PreTeXt faces challenges, particularly in its user experience
for authors. The necessity to write documents in eXtensible Markup Language (XML) [4] format
adds a layer of complexity and can diminish the readability of extensive texts. In response,
WooWoo introduces a streamlined syntax that capitalizes on whitespace and indentation to
enhance document clarity and author-friendliness. This is especially advantageous for content
dense with mathematical expressions. Unlike the cumbersome markers required in LaTeX or
PreTeXt, WooWoo simplifies the process by employing indented blocks to denote equations and
similar structured elements, thereby eliminating the need for explicit markers and making the
authoring process more intuitive for math-intensive documentation, as can be seen on Figure 1.1.

1 The Pythagorean identity equation:
2 <me>
3 \sin ˆ2(x) + \cos ˆ2(x) = 1
4 </me>

(a) PreTeXt Representation [4]

1 The Pythagorean identity equation :
2 \begin{ equation }
3 \sin ˆ2(x) + \cos ˆ2(x) = 1
4 \end{ equation }

(b) LaTeX Representation

1 The Pythagorean identity equation :
2
3 \sin ˆ2(x) + \cos ˆ2(x) = 1

(c) WooWoo Representation

Figure 1.1 Illustration of syntactic variations in expressing the Pythagorean identity equation using
PreTeXt, LaTeX, and WooWoo.

1.1.3 Present and Future
WooWoo offers inherent flexibility, with dialects providing a powerful tool for tailoring its syntax
and vocabulary to specific domains. Currently, the FIT-Math dialect is the foundation of the
WooWoo ecosystem, enabling the creation of mathematical textbooks and supporting a variety
of output formats (traditional textbooks, interactive websites, flashcards, etc.).

Syntax and Semantics 5

Tools supporting the WooWoo ecosystem are continually evolving, including new output
generators (templates) and the Language Server developed as part of this thesis. Notably,
the WooWoo Catalogue (currently in its alpha version) automatically analyzes projects in the
FIT-Math dialect and creates a centralized index of entities (Definitions, Lemmas, Exercises,
etc.). This enables authors to easily search across projects by label and assists students in
finding definitions and concepts across mathematical subjects [5].

The future of WooWoo is promising. A core goal of this thesis is to provide tools that will
make authoring in WooWoo easier. This has the potential to attract new contributors interested
in creating custom dialects, expanding the WooWoo ecosystem and its applications beyond the
current focus on mathematics.

1.2 Syntax and Semantics
This section provides an overview of WooWoo’s syntax and semantics, focusing on the practical
use of its constructs rather than a full presentation of formal grammar rules. Examples and
explanations will illustrate how these constructs are used to organize and define content. For
a complete formal specification, refer to the WooWoo Tree-sitter grammar1 , which is part of
this thesis. The grammar and this section is sourced from and paraphrases from the WooWoo
Specs document [6] as well as numerous discussions with the core developer of WooWoo, Tomáš
Kalvoda.

Importantly, apart from the include statement, WooWoo itself does not define keywords.
These are determined by specific WooWoo dialects. The examples in this section use the currently
popular FIT-Math dialect. This means that dialect-specific keywords are used for construct
names, but the syntax remains the same, more on dialects in Section 1.3.1.

Each construct in this section also includes its formal name (corresponding to the grammar
rules) for clarity and easy referencing throughout the thesis.

1.2.1 Indentation and Whitespace
Inspired by the readability of Python, WooWoo utilizes indentation and whitespace to structure
and separate content within a document.

Indentation: 2-space indentation is used to organize components into hierarchies, indicating
nesting within other elements.

Empty lines: Serve as content separators and have two primary uses:

Single empty line: Separates elements within a structure.
Two or more empty lines: Signal a transition to a new block or structural element.

1.2.2 Document
A WooWoo document (source file) is a single file with a .woo extension. It consists of a series
of document parts, include statements and optional comments. Comments are marked by the %
character at the beginning of a line and are ignored during processing.

1.2.3 Document Part
A document part (document part) is a top-level construct for organizing content within a
WooWoo document. Start of a document part is marked by a dot, followed by a document

1Available at: https://gitlab.fit.cvut.cz/woowoo/lsp/tree-sitter-woowoo.

https://gitlab.fit.cvut.cz/woowoo/lsp/tree-sitter-woowoo

Syntax and Semantics 6

part type, which has to start with capital letter, followed by a title (.Type Title). On the next
line, an indented meta block may follow. The body contains a series of blocks and wobjects
and is terminated by a start of another document part.

1 . Section Natural , Integer , and Rational Numbers
2 label: sec -NIR
3
4 Body.

Code listing 1.1 Start of a document part in WooWoo

1.2.4 Include Statement
The include statement (include) allows authors to organize their work across multiple files by
including the content from one file into another. It comprises the .include keyword, followed by
a relative or absolute path to the file whose content is to be included. A line with this statement
must not contain any other elements.

A common application is to create a separate file for each chapter of a textbook and then
include these files in a root document to compile the entire textbook.

1 . include bi -ma1 -01-real - numbers .woo
2
3 . include bi -ma1 -02- functions .woo
4
5 . include bi -ma1 -03- sequences .woo

Code listing 1.2 Use of include statements in WooWoo

1.2.5 Meta Block
A meta block (meta block) provides additional information associated with a WooWoo construct.
Formatted in YAML Ain’t Markup Language (YAML), it is positioned beneath the construct
and indented relative to it. The specific content and structure of a meta block are entirely
determined by the active dialect.

An example of its application is shown in Listing 1.1, where a meta block is utilized to assign
a label to a document part. In Listing 1.3, a meta block is used to provide various metadata
about the Question wobject.

1.2.6 Wobject
A wobject (wobject) is an atomic environment, meaning it cannot contain other wobjects. Its
declaration starts with a capitalized type name surrounded by a dot and colon (.Type:) and
can optionally include a meta block. The wobject’s content is indented and consists of blocks
separated by at least two consecutive empty lines. An example of wobject containing a single
block is demonstrated in Listing 1.3.

1 . Question :
2 label: que:simple - addition
3 title: Simple addition
4 solution : 5
5
6 What is the sum of 2 and 3?

Code listing 1.3 An example Question wobject from the FIT-Math dialect

Syntax and Semantics 7

1.2.7 Block
A block (block) serves as a container for organizing textual content and structural elements
within a WooWoo document. It consists of a series of consistently indented text blocks and
outer environments.

1.2.8 Text Block
A text block (text block) is a series of consistently indented lines of text. A text line consists of
plain text without special meaning and may include inline environments (inner environment)
and math environments (math environment). Optionally, a text block can be accompanied by
a meta block.

1.2.8.1 Inner Environments
Inner environments (inner environment) are used to annotate segments of text by assigning
each segment a specific type and, optionally, metadata. These environments can reference fields
from a meta block associated with the same text block or any parent structure.

When searching for a field, the search begins in the innermost structure containing the inner
environment, proceeding to parent structures in ascending order. The first matching field found is
used, allowing fields to be overridden by redeclaring them in a descendant structure’s meta block.

There are three different forms of inner environment, which are visually compared in Fig-
ure 1.2 and described below:

Verbose Form Text surrounded with quotation marks, followed by the type and optional meta-
data (providing a way to reference information in an accompanying meta block).

Short Form Begins with a dot, followed by the type, a semicolon, and the environment body
(which must contain no whitespace).

Shorthands WooWoo provides shorthanded versions using the # or @ characters as placeholders
for the environment type. The specific meaning of these shorthands is defined within each
WooWoo dialect. For instance, in the FIT-Math dialect, @ is used when referencing external
web pages, instead of using the reference inner environment in the verbose form.

1.2.8.2 Math Environment
Another tool for text annotation is the math environment (math environment), indicated by the
$ symbol. Its content can span multiple lines. Importantly, the interpretation of this environ-
ment’s content is entirely determined by the active WooWoo dialect. In the FIT-Math dialect,
the environment is conveniently used for mathematical expressions and inline equations.

1 The set of real numbers along with the symbols $+\ infty$ and $ -\infty$,
2 i.e., the set $\R \cup \{+\ infty , -\infty \}$, is called the extended
3 set of real numbers and it is denoted by the symbol \eR.

Code listing 1.4 Example of a text block containing math environments

1.2.9 Outer Environments
Outer environments (outer environment) are structural elements used for annotating larger
portions of text within a WooWoo document. They begin with a dot, for classic environments,
or an exclamation mark for fragile environments, followed by a lowercase environment name and

The Building Blocks of WooWoo 8

1 We will talk more about natural , integer and rational numbers
2 in Chapter . reference :sec -NIR.

(a) Text containing the short form of inner environment

1 " Pythagoras ". reference .1 (570 -- 495 B.C.) was a Greek philosopher .
2 1:
3 link: https :// en. wikipedia .org/wiki/ Pythagoras

(b) Verbose form of inner environment, with additional information provided in a meta block

1 " Pythagoras "@1 (570 -- 495 B.C.) was a Greek philosopher .
2 1:
3 link: https :// en. wikipedia .org/wiki/ Pythagoras

(c) Shorthanded form of an inner environment

Figure 1.2 Examples of Inner Environment Forms

a semicolon (.name:). An outer environment may include a meta block. The body of an outer
environment is always indented and its structure depends on the environment type:

Classic The body of a classic outer environment consists of a block. Classic environments can
be nested, allowing for complex hierarchical structures. (See Figure 1.3a for an example.)

Fragile The body of a fragile outer environment contains raw text. This text is not parsed as
WooWoo content and is typically intended as input for other tools. The end is indicated by
a decrease in indentation (dedent) or two or more empty lines. Fragile outer environments
often include metadata to guide further processing (see Figure 1.3b).

Implicit Outer Environment
Outer environments can also be declared implicitly, meaning the environment name can be
omitted. The specific environment name is determined by the active dialect. For example, the
FIT-Math dialect designates the equation outer environment as implicit. This enhances the
conciseness of math-focused documents and provides convenience for authors (see Listing 1.1c).

1.3 The Building Blocks of WooWoo
To leverage the options of the WooWoo ecosystem, it is important to understand the difference
between WooWoo syntax, WooWoo dialects, and dialect templates. The relationships between
these components are captured in Figure 1.4.

WooWoo syntax defines how the documents should be written. It is defined by a formal gram-
mar and introduces language constructs like wobjects and blocks, described in Section 1.2.

WooWoo dialect can be thought of as a set of specific instances of constructs defined by the
grammar. It is typically designed for a specific domain. For example, in a Math dialect, you
might find predefined wobjects such as Definition, Theorem, and Equation, designed to make
writing math-related content more straightforward.

The Building Blocks of WooWoo 9

1 . itemize :
2
3 .item:
4
5 We say that a formula F is "true under evaluation ". notion v,
6 if and only if $v(F) = 1$.
7
8 .item:
9

10 We say that a formula F is "false under evaluation ". notion v,
11 if and only if $v(F) = 0$.

(a) Example of use of nested classic outer environments.

1 !tikz:
2 filename : fig_diagram_relace_diag1p
3 options : ’d/. style ={ circle ,draw}’
4
5 \draw (0 ,0) node[d](a){a} (1.5 ,0) node[d](b){b };
6 \draw (a) edge[->,thick ,out =10,in =170] (b);
7 \draw (b) edge[->,thick ,out =-170,in = -10] (a);

(b) Example of a tikz (FIT-Math) fragile environment with metadata intended for a template.

Figure 1.3 Difference between classic and fragile outer environments

Template is an output generator operating with a specific dialect. An example could be the
fit-pdf template, which generates PDF version of a textbook given a valid WooWoo project
written in accordance with the FIT-Math dialect.

1.3.1 Dialect
Apart from the include statement, the WooWoo language itself does not define any keywords.
Instead, keywords are introduced through dialects, which extend the base WooWoo syntax. Au-
thors are encouraged to write WooWoo documents following a specific dialect. While it is tech-
nically possible to create WooWoo documents without conforming to a dialect, this approach is
impractical due to the absence of templates for output generation.

Each dialect must clearly define a list of instances available for use with WooWoo constructs.
The dialect serves as a guideline for both document authors and template (output generators,
further discussed in Section 1.3.2) creators. Authors refer to the dialect to understand the
available options, while template creators ensure their templates can accommodate all elements
defined within the dialect.

The term “dialect” in the context of WooWoo was first defined by this thesis, as previously,
templates and dialects were not clearly separated and the term “template” was used to reference
both, which lead to confusion.

1.3.1.1 Dialect Structure
A dialect can be represented by a file in YAML format. The formalization was created as part of
this thesis. This format was chosen because it is easily readable by both computers and humans,
and the format is already widely used within the WooWoo ecosystem. The following list provides
a structural overview of a dialect, illustrating the types of elements it includes.

The Building Blocks of WooWoo 10

WooWoo Language

Dialect 1
FIT-Math Dialect

Dialect 3

FIT-HTMLFIT-Anki FIT-Knowledge

Anki Cards HTML Mind Map

Figure 1.4 The structure of the WooWoo ecosystem, its dialects, and the specific templates designed
for the FIT-Math dialect.

name: A string representing the name of the dialect.

version code: An integer denoting the version code of the dialect.

version name: A string indicating the semantic versioning of the dialect. Example: ”1.0.0”.

description: A string providing a description of the dialect’s purpose and usage.

implicit outer environment: Specifies the default outer environment for the dialect. Exam-
ple: ”equation”.

document parts: An array of objects defining the different parts of a document, such as chap-
ters, sections, and subsections. Each object contains:

name: The name of the document part.
description: A brief description of the document part.
meta block: An object listing required and optional metadata fields that may be present
in a document part’s meta block.

wobjects: An array of objects representing different wobjects. Each object contains:

name: The name of the wobject.
description: A description of the wobject’s purpose.
meta block: An object listing required and optional metadata fields that may be present
in a wobject’s meta block.

environments: An array of objects representing different environments. Each environment has
the following properties:

name: The environment name.

The Building Blocks of WooWoo 11

description: What the environment is used for.
fragile: A boolean flag indicating how the environment’s content should be processed.
meta block: An object listing required and optional metadata fields for the environment.
references: (If applicable) Metadata fields to which the environment refers.

shorthands: Contains one object for each shorthand:

at:
description: Explains what the shorthand does and how to use it.
references: (If applicable) Metadata fields to which the shorthand refers.

hash: Same as the previous shorthand.

1.3.1.2 FIT-Math Dialect
The FIT-Math dialect, created by WooWoo’s core developer, Tomáš Kalvoda, is designed specif-
ically for authoring mathematical documents. It is currently used for courses such as BI-DML,
BI-LA1, BI-LA2, BI-MA1, and BI-MA2 at the FIT CTU, with plans to extend its application to
additional courses. These courses collectively engage over a thousand students each semester.

The dialect’s formal specification is outlined in the fit-math.yaml file,2 which was composed
as part of this thesis after consulting with Tomáš Kalvoda, and various available sources [6, 7].
A simplified excerpt can be seen in Listing 1.5.

1 name: "FIT Math"
2 version_code : 1
3 version_name : "1.0.0"
4 description : |-
5 Dialect used in math courses on FIT CTU.
6 implicit_outer_environment : " equation "
7

8 document_parts :
9 - name: " Chapter "

10 description : "Top -level document part with the chapter ’s textual
content and list of sections ."

11 ...
12 wobjects :
13 - name: " Definition "
14 description : " Mathematical environment containing a definition ."
15 ...
16 environments :
17 - name: equation
18 description : "A simple math equation "
19 ...
20 - name: eqref
21 description : " Equation reference ."
22 references :
23 - structure_type : outer_environment
24 structure_name : equation
25 meta_key : label
26 - name: cite
27 description : " Citation of a bibliography source ."

Code listing 1.5 Simplified excerpt illustrating the structure of the FIT-Math WooWoo dialect

2See the up-to-date version here: https://gitlab.fit.cvut.cz/woowoo/lsp/woowoo-language-server/-/
blob/main/dialects/fit_math.yaml

https://gitlab.fit.cvut.cz/woowoo/lsp/woowoo-language-server/-/blob/main/dialects/fit_math.yaml
https://gitlab.fit.cvut.cz/woowoo/lsp/woowoo-language-server/-/blob/main/dialects/fit_math.yaml

The Building Blocks of WooWoo 12

1.3.2 Templates
Templates are the key to WooWoo’s versatility. In the context of WooWoo, a template serves as
an output generator, processing a WooWoo project authored in a specific dialect. The primary
requirement for a template is compatibility – it must be able to correctly interpret any valid
document that conforms to the designated dialect. Beyond this, template authors have full
freedom in terms of implementation and internal structure.

The term template is used because most of current WooWoo templates are using the Embed-
ded Ruby (ERB) 3 templating system to generate the output.

FIT-Math Templates
There are many templates available for the FIT-Math dialect. This allows authors to generate
wide variety of outputs from just one source, leveraging the power of WooWoo.

What follows is a brief overview of currently used templates as of February 2024. It is
worth noting that as per Tomáš Kalvoda, other templates are currently being developed, like
fit-slides for generating lecture slides, but there is not a stable version yet.

fit-html Generates interactive websites with clickable elements and seamless reference naviga-
tion within the content.

fit-pdf Produces traditional, static PDFs in both desktop and mobile optimised versions.

fit-anki Creates Anki flashcards for memorization, extracting content from structures like Def-
inition, Lemma, Question wobjects, and others.

fit-knowledge Generates an interactive website in mind-map format. It extracts key concepts
(Definitions, Theorems, etc.) and their relationships from a WooWoo project, providing a
visual representation to aid navigation and understanding. It was created by Matěj Frnka in
2022 [1].

fit-words Generates a single-page visual word cloud, highlighting the frequency of terms within
the WooWoo project.

Refer to Figures 1.5, 1.6, 1.7, and 1.8 to view how different templates influence the output.
Each figure illustrates the result of applying a unique template to the same source content,
showcasing variations in presentation and style.

Figure 1.5 Output generated using the fit-pdf template.

3Learn more about ERB here: https://docs.ruby-lang.org/en/2.3.0/ERB.html

The Building Blocks of WooWoo 13

Figure 1.6 Output generated using the fit-html template.

Figure 1.7 Output generated using the fit-knowledge template.

1.3.3 Project
A WooWoo project consists of source files (text files with a .woo extension) and a Woofile. Source
files located in the same directory or its subdirectories as the Woofile are considered part of the
project. This setup is important because files often refer to each other through environments
and may include one another. Including files from outside the project directory is technically
possible but is generally discouraged. An example of a WooWoo project’s folder structure is
shown in Figure 1.9.

Woofile
A Woofile is a YAML configuration file containing various data about the project, including:

root file: The main file of the project, usually including other files and serving as the entry
point.

document: Metadata about the project such as list of authors, title, subject code, semester,
language, etc.

dialect specifics: Specifies the dialect used in the project. As dialect formalization is a
recent development (see Section 1.3.1.2), the Woofile currently defines the dialect inline.
This might change in future versions.

The Building Blocks of WooWoo 14

Figure 1.8 Output generated using the fit-words template.

bibtex (optional): Specifies the location of the file that holds bibliographic references
utilized in the project.

textbook/...The root folder
Woofile.......................................YAML file containing project metadata
textbook.woo Main WooWoo file including content files
references.bib .. Optional BibTeX file
chapters/ ... Folder containing content files

chapter1.woo..................................WooWoo file for Chapter 1 content
chapter2.woo..................................WooWoo file for Chapter 2 content
chapter3.woo..................................WooWoo file for Chapter 3 content
... .. Additional WooWoo content files

Figure 1.9 Example folder structure of a WooWoo project

Chapter 2

Language Server Protocol

“The Language Server protocol is used between a tool (the client) and a language smartness
provider (the server) to integrate features like auto complete, go to definition, find all refer-
ences and alike into the tool.” [8]

Having robust language support is crucial for a thriving language ecosystem. Historically, pro-
viding advanced language-specific tooling often required customized solutions for each individual
tool [9]. People like to use all kinds of different editors and IDEs, and having each of them
support a language required a significant development effort and maintenance. This creates an
obstacle especially for small and starting projects like WooWoo.

To address these challenges, the LSP emerged as a solution. It defines a standardized commu-
nication mechanism between language-aware tools (editors, IDEs, etc.) and language servers. A
language server possesses in-depth knowledge of a specific programming language or structured
text format. By adhering to the LSP, a single language server can provide rich language support
to a wide range of compatible tools.

This chapter introduces the LSP, exploring its underlying principles, architectural design,
and the key features it defines.

2.1 The Need for LSP
Traditional practice involved building highly customized, language-specific plugins for each editor
to provide features like syntax highlighting, code completion, and navigation. Since there was
no unified interface, supporting M languages in N editors led to M × N complexity. The LSP
addresses this by introducing a standardized interface for both clients and servers, effectively
reducing the complexity to M + N [9, 10]. Figure 2.1 shows a comparison of the setup before
and after the introduction of LSP [11].

“The idea behind the Language Server Protocol is to standardize the protocol for how tools
and servers communicate, so a single Language Server can be re-used in multiple development
tools, and tools can support languages with minimal effort” [12].

The LSP resulted from a collaboration between the Eclipse Che project, Microsoft, and Red
Hat. Initially supported by Microsoft’s Visual Studio Code and the Eclipse Che IDE, it was
released publicly in 2016 [13]. Rapid adoption by other tools and providers followed.

As of February 2024, nearly every major programming language has its own language server,
a tool implementing the LSP. Many languages boast multiple alternative language server imple-
mentations, often written in different programming languages. LSP adoption is also widespread
among IDEs, with most major IDEs providing support. The official Microsoft LSP website lists

15

LSP Foundations 16

over 30 different editors that implement the protocol [14].

VS Code

Sublime

Vim

NeoVim

Ruby

TypeScript

Go

Rust

(a) Before the introduction of LSP, each editor required a distinct plugin for every programming language.

VS Code

Sublime

Vim

NeoVim

Client

Client

Client

Client

Ruby

TypeScript

Go

Rust

(b) With the adoption of LSP, editors utilize a unified client layer that can interface with any language server.

Figure 2.1 A comparison between the pre-LSP fragmented setup and the post-LSP unified approach,
adapted from the conceptual illustration provided in [11].

2.2 LSP Foundations
The LSP employs JavaScript Object Notation - Remote Procedure Call (JSON-RPC) as its
underlying communication protocol. A language server that implements the LSP is typically
initiated by the IDE or other development tool at the beginning of a coding or editing session as
a separate local process. It is common for a user to work with multiple languages simultaneously,
leading to the operation of several distinct language server processes. Although theoretically
possible, running a language server remotely would be impractical due to the potential network
latency. [12]

Communication is initiated with an Initialize request from the tool to the language server.
Upon successfully processing this request, the language server should be prepared to handle
subsequent requests for language support. The client notifies the server of every significant

LSP Foundations 17

user action, such as document changes, deletions, or action executions, requiring the server
to continually update its internal state to provide accurate responses. An illustration of this
communication process is depicted in Figure 2.2. [12]

Figure 2.2 Example of communication between a tool and a language server during a routine editing
session [12].

2.2.1 JSON-RPC
JSON-RPC is a simple, stateless protocol designed to facilitate Remote Procedure Calls (RPCs).
It leverages JavaScript Object Notation (JSON) as the data format for communication, ensuring
compatibility between different software components, even if they are implemented in different
programming languages. [15]

RPC is a programming mechanism that allows a program to seamlessly execute a procedure
(or subroutine) in a different address space. This could be on a remote machine or, as with
the LSP, in a separate process on the same computer. RPC mechanisms abstract away the
complexities of inter-process communication. [16]

The communication in JSON-RPC relies on the following structured message types [15]:

Request A JSON object sent from a client to a server to invoke a method. The Request object
must contain the following fields: method (a string containing the name of the method to
be invoked), params (a structured value holding the parameters for the method), and id (an
identifier that matches the response with the request; it can be a number, string, or null).

Response A JSON object sent from a server to a client in reply to a Request. The Response
object includes result (the data returned by the invoked method) in case of successful
execution, or error (an object describing the error) if the method failed or couldn’t be
executed. Every Response must also contain the id field, matching it to the original Request.

Notification A special kind of Request sent from a client to a server or vice versa, intended to
inform about events. Notifications are similar to Requests but do not have the id field, as
they do not require a Response.

2.2.2 LSP Specification
The LSP Specification, maintained by Microsoft, defines the set of JSON-RPC messages used in
the protocol. It outlines the types of requests a client can make, the responses a server should

LSP Foundations 18

provide, and the notifications used. As of March 2024, the latest version is 3.17, and it is the
version used in this thesis. This section and its subsections, unless otherwise noted, are sourced
from the specification [8].

The specification is designed to be flexible, with numerous configuration options for both the
client and server. Capabilities are exchanged during the initialization phase. Neither clients nor
servers are required to support all defined features, as some might not even be applicable to
a given language. Most language server projects list their implemented features in the project
description.

The following subsections provide an overview of the core message categories and structures
defined by the specification.

2.2.2.1 Basic JSON Structures
The LSP Specification defines various basic JSON structures that are reused as building blocks
within different requests, responses, and notifications. An example (see Listing 2.1) is the
Location object, which represents a text range within a resource, such as a specific word in
a text file. The specification uses TypeScript interfaces to strictly describe the structures.

1 export type uinteger = number ;
2 type DocumentUri = string ;
3 interface Position {
4 line: uinteger ;
5 character : uinteger ;
6 }
7 interface Range {
8 start: Position ;
9 end: Position ;

10 }
11 interface Location {
12 uri: DocumentUri ;
13 range: Range;
14 }

Code listing 2.1 Example of composing basic JSON structures in LSP, represented in TypeScript.

2.2.2.2 Lifecycle Messages
The lifecycle of a language server, from start to termination, is managed by a client. For example,
in VSCode, opening a file with a specific extension might trigger server startup, while a user
command could initiate a shutdown. In addition, the LSP supports dynamic feature registration
and configuration changes, such as setting log tracing levels.

The initialization process begins with the client sending an Initialize request (providing its
capabilities and workspace information), and the server responds with an InitializeResult
object, indicating its own capabilities. This exchange allows clients and servers to negotiate the
features they will use during the session. Finally, the client sends an Initialized notification to
signal the completion of the handshake.

Following initialization, the client and server interact throughout the session, exchanging
messages related to language features and the workspace state. The session concludes when the
client sends a Shutdown request to initiate termination. After processing the Shutdown request,
the client then sends an Exit notification to instruct the server to fully exit.

LSP Foundations 19

2.2.3 Document Synchronization
The LSP recognizes two document types: text and notebook. Each has a specific set of syn-
chronization messages. While notebook documents offer advantages for interactive computing
with programming languages, WooWoo, as a markup language, does not support this format.
Therefore, this thesis focuses exclusively on text documents.

Document synchronization relies on notifications sent to the server to track user actions on a
specific document. Some actions have paired “will” and “did” notifications to signal their status.

Examples of key document synchronization messages include (see the LSP Specification1 for
a complete list):

textDocument/didOpen Indicates a newly opened text document. Upon sending, the docu-
ment’s content is managed by the client, and the server should not fetch it using the Uniform
Resource Identifier (URI). Subsequent synchronization relies solely on notifications.

textDocument/didChange Signals changes made to a text document. The server updates its
state based on the included change information (e.g., edits, deletions, additions).

textDocument/willSave and textDocument/didSave Sent before/after a document save.
This allows the server to perform actions like applying formatting and performing linting.

2.2.4 Workspace Synchronization
In the LSP, a workspace provides the project-level context within which documents exist. It
often corresponds to a folder opened in an editor, but the LSP also supports multiple root
folders per workspace. Workspace synchronization employs notifications to maintain consistency
between the client and server regarding the workspace’s structure, contents, and configuration.
This includes informing about user actions like creating, deleting, or renaming files and folders.

Similarly to document synchronization, most actions use paired “will” and “did” messages.
For example, when a user renames one or more files, the following sequence occurs (as illustrated
in Figure 2.3):

1. The client sends a workspace/willRenameFiles request to the server, providing old and new
URIs of files to be renamed.

2. The server can apply changes to the workspace before the files are renamed (for exam-
ple, refactoring references to the renamed files from other documents). It responds with
a WorkspaceEdit detailing these changes.

3. The client applies the edits from the WorkspaceEdit included in the response and then
proceeds with the file renaming.

4. The client sends a workspace/didRenameFiles notification to the server to inform it that the
files have been renamed. The server can now update its internal state to reflect the changes.

2.2.5 Language Features
Language features form the core of the protocol, as they provide the actual smartness and
language tools, which are the motivation for the LSP in the first place. As opposed to lifecycle
management and workspace document synchronization, all language features are optional and
every implementor simply chooses what they want to support. Currently, there are more than

1Available at: https://microsoft.github.io/language-server-protocol/specifications/lsp/3.17/
specification/#textDocument_synchronization

https://microsoft.github.io/language-server-protocol/specifications/lsp/3.17/specification/#textDocument_synchronization
https://microsoft.github.io/language-server-protocol/specifications/lsp/3.17/specification/#textDocument_synchronization

LSP Foundations 20

Figure 2.3 Communication between LSP client and language server upon user renaming files.

30 features with new being added with newer versions. Which features are being used at runtime
is negotiated during initialization, as described in Section 2.2.2.2. Language features can be
divided into two types, described in following subsections.

2.2.5.1 Code Comprehension Features
Code comprehension features focus on understanding existing code, with the goal of helping
the user navigate and understand the relationships within the codebase. A typical example is
the Find All References feature introduced in the first version of the protocol. It is a widely
supported functionality among language servers, as evidenced by listings on langserver.org [9].
Within the context of WooWoo, this feature is commonly used to locate all references of a specific
label, as illustrated in Figure 2.4.

Closely related to Find All References is the Go to Definition/Declaration feature. This
functionality enables users to navigate directly to the declaration of a symbol from its reference.
Additionally, the Hover feature enhances code understanding by providing detailed information
about symbols under the cursor when the user hovers over them. This is achieved by the client
sending a request containing the text document URI and the cursor position. In WooWoo
documents, the Hover feature displays dialect-specific descriptions of structure types.

LSP Foundations 21

Figure 2.4 Demonstration of the Find All References feature in VSCode for a WooWoo document
part label.

2.2.5.2 Coding Features
On the other hand, coding features are mostly focused on assisting the user at the moment of
typing and on making it easier to refactor and make changes to the document. Key features in
this category include Completion, Diagnostics, and Rename Symbol.

Completion can be triggered by events including typing a specific character or manual invo-
cation. Upon triggering, the user is displayed a list of possible auto-completions offered by the
server based on context-sensitive analysis. This helps the users to write faster and see which
symbols are valid at the given position. The text can be inserted in either simple PlainText
or Snippet mode, which allows for complex completions containing placeholder sections. For
example, see Figure 2.5, which shows a code completion in Snippet mode for the .include
keyword and a placeholder for a file to be included.

Diagnostics are managed by the textDocument/publishDiagnostics notification sent from
the server to the client. It is the server’s responsibility to re-compute the diagnostics when
needed. Diagnostics provide a list of errors, warnings, information, and hints, along with the
position to which they apply. This offers the user valuable insight about the code, like warning
them about an incorrect state. Note that since version 3.17, a functionality allowing the client
to request specific diagnostics for a specific document at any point in time was added.

The Rename Symbol feature enables consistent refactoring across a project. When executed,
the server finds all references to the selected symbol (such as a variable, function, or in the context
of WooWoo a meta-block field value) and allows the user to change its name. This maintains
code integrity throughout the document, saving time and preventing errors that manual renaming
might introduce.

LSP Foundations 22

(a) Initial code completion suggestion for .include keyword.

(b) Placeholder for filename after accepting .include suggestion.

Figure 2.5 Demonstration of the Completion feature: Suggestion and placeholder insertion

Chapter 3

Requirements

This chapter outlines the functional and non-functional requirements for the WooWoo Language
Server, serving as the technical foundation for its design and implementation. These requirements
were developed through discussions with Tomáš Kalvoda, the creator of WooWoo, focusing on
core authoring needs. They also incorporate insights from authoritative sources on language
servers (citations provided in relevant sections).

3.1 Functional Requirements
“Functional requirements are product features or functions that developers must implement to
enable users to accomplish their tasks [17].” They must be specific and measurable [18]. In
the case of a language server, which doesn’t have its own user interface, functional requirements
focus primarily on the expected core features of the server.

Dialect
F1.1 Dialect Independence: The server shall not be restricted to a single WooWoo dialect.

F1.2 Custom Dialect Selection: The user shall be able to provide their own WooWoo dialect
which the server will use.

Project Management
F2.1 Project Awareness: The server shall recognize the concept of a WooWoo project and

adjust language features accordingly. This includes adapting Completion, Go to Definition,
Find All References, and other relevant features to be sensitive to the project’s scope.

F2.2 Multiple Project Support: The server shall support workspaces containing multiple
WooWoo projects.

F2.3 Standalone File Handling: The server shall provide applicable language features for
WooWoo files that are not associated with a specific project.

Workspace Lifecycle
All the functionalities in this category must be aligned with the LSP.

23

Non-functional Requirements 24

F3.1 File Creation: The server shall recognize newly created WooWoo files, integrating them
into its analysis and providing appropriate language features.

F3.2 File Deletion: The server shall remove analysis data associated with deleted WooWoo
files.

F3.3 File Renaming: The server shall update its internal references and analysis when WooWoo
files are renamed.

F3.4 File Changes: The server shall re-analyze modified WooWoo files to ensure language
features remain accurate.

Language Features
All the functionalities in this category must be aligned with the LSP.

F4.1 Code Completion:

The server shall offer suggestions for file paths when completing the include statement.
The server shall suggest references within applicable inner environments.

F4.2 Find All References: The server shall be able to locate all references to a given refer-
encable symbol (meta-block field) within a project.

F4.3 Go to Definition/Declaration: The server shall be able to navigate directly to the
declaration of a symbol. This includes references within inner environments and meta-blocks,
as well as jumping to an included file via the include statement.

F4.4 Rename Symbol: The server shall be able to rename referencable symbols, with the
server updating all references consistently.

F4.5 Syntax Error Detection: The server shall identify and report syntax errors in WooWoo
files, providing the user with a best-effort indication of the error location.

F4.6 Hover Information: The server shall provide descriptions or documentation for WooWoo
structure types. Description content shall be obtained from the active dialect.

3.2 Non-functional Requirements
“Nonfunctional requirements detail the system’s operational qualities, focusing on how it per-
forms rather than what it does. These requirements are pivotal in ensuring the system’s efficiency,
reliability, and overall usability, thereby significantly influencing the user experience.” [17]

NF1 Performance: The server must exhibit minimal latency when responding to LSP requests
in standard operating conditions, ensuring a fluid user experience. For example, code com-
pletion suggestions should be presented promptly to avoid interrupting the user’s workflow.

NF2 Robustness in Invalid States: Most of the time, the code in the editor is incomplete
and syntactically incorrect [10]. Despite this, users expect the server to provide relevant
language features. The server shall handle these situations gracefully.

NF3 Platform Compatibility: The server shall be easily installable on Linux, Windows, and
macOS operating systems and support both x86 and ARM architectures.

NF4 Integration and Interoperability: The server shall adhere to the LSP, enabling inte-
gration with various LSP-compatible editors.

Non-functional Requirements 25

NF5 Extensibility: The design and architecture of the server should facilitate easy extension
and integration of new features and improvements without requiring significant changes to
the existing code.

NF6 Documentation: Adequate documentation, comprising README files and in-line code
comments, must be provided. This documentation should explain the server’s installation
process, basic operation, and provide a synopsis of its primary features, assisting users and
future developers in navigating and utilizing the server effectively.

Chapter 4

Design & Technologies

The LSP imposes constraints on a language server’s Application Programming Interface (API) to
ensure compatibility across different editors and tools. Beyond that, developers have broad flex-
ibility in design and implementation choices. This includes selecting the programming language,
determining the internal architecture, and choosing how the server analyzes code. These design
decisions, guided by the non-functional requirements established in the previous chapter, directly
influence how effectively the server can process files and provide language-specific features.

In practice, file analysis begins with an error-tolerant parser. The VSCode Language Server
Guide [10] emphasizes the importance of this component, as code within an editor often exists
in incomplete or partially incorrect states during development. The parser must be able to
continue analysis despite errors, making its best effort to parse the remainder of the file as
accurately as possible to create a Concrete Syntax Tree (CST). A CST (often called a parse
tree), as opposed to Abstract Syntax Tree (AST), preserves the exact syntax of the original
code, including formatting, whitespace, and the precise location of every token in the document.
This detailed representation is important for applications which manipulate the code itself and
not just extracting its abstract meaning [19]. The quality of the language features depends
directly on the accuracy of the CST.

Responsiveness is another key requirement for a smooth user experience. A language server
should feel like a natural extension of the code-editing process, offering guidance and suggestions
in real-time as the code evolves. Delays, even short ones, can disrupt the user’s thought process,
forcing them to break focus and wait for the tool. This hinders efficient coding and can even
lead to disengagement. If the tool feels consistently sluggish, the user might be less inclined to
utilize its features to their full potential.

Finally, cross-platform compatibility should be a key design consideration for language servers.
The goal is to support all common development environments where the target language is rele-
vant. For WooWoo, this means supporting popular desktop operating systems and architectures.
Additionally, the language server should be easy to install and configure, even for users with lim-
ited technical expertise.

4.1 Overview of Existing Language Servers
Existing language servers demonstrate diverse approaches to common design challenges. Some
leverage existing parsers for code analysis, often building upon infrastructure surrounding their
compilers and interpreters. Where suitable parsers are unavailable, language servers may either
integrate modified parsers or utilize ones specifically designed for efficient, error-tolerant parsing
within the server context. This section provides a brief overview of several language server

26

High-Level Language Server Architecture 27

architectures, highlighting these variations.

4.1.1 TypeScript Language Server
The TypeScript Language Server utilizes existing components to parse the code. It wraps a
component called tsserver [20]. “The TypeScript standalone server (aka tsserver) is a node
executable that encapsulates the TypeScript compiler and language services, and exposes them
through a JSON protocol. tsserver is well suited for editors and IDE support [21].” This
approach reduces the size of the language server’s codebase and allows it to focus primarily on
the LSP interface and adding additional features to existing infrastructure. The TypeScript
Language Server (including tsserver) is written in TypeScript.

4.1.2 Rust-Analyzer
The rust-analyzer, an LSP implementation for the Rust programming language, began devel-
opment in 2017 and eventually replaced the Rust Language Server (RLS), an earlier implemen-
tation of LSP for Rust. The original RLS was build upon infrastructure of rustc, Rust’s official
compiler. However, its architecture limited its ability to provide the low-latency, high-quality
responses required for interactive environment [22]. The underlying parser was not optimized for
code editor use and lacked the built-in error resilience needed in this context.

The rust-analyzer employs a custom-built, incremental, and error-resilient parser, specifi-
cally designed for Rust [23], enhancing its effectiveness over more general solutions, albeit at the
cost of substantial development efforts.

The language server itself is written in Rust. Precompiled binaries for Windows, Linux, and
macOS can be found on their releases page1.

4.1.3 Bash Language Server
The Bash Language Server adopts a mixed approach. It leverages existing tools like ShellCheck2

for linting and Explainshell3 for static analysis. Additionally, it also employs a parser generated
from the tree-sitter-bash4 grammar using the Tree-sitter parser generator [24]. Tree-sitter is
an incremental, error-tolerant parser generator specifically designed for language tooling within
code editors [25]. Not having to maintain a custom-made parser combined with the modular
approach simplifies development and improves maintainability.

The Bash Language Server is written in TypeScript and utilizes the WebAssembly (Wasm)
version of the tree-sitter-bash parser for cross-platform compatibility.

4.2 High-Level Language Server Architecture
A modular design approach was adopted for the WooWoo Language Server architecture. This
decision aligns with best practices observed in existing language servers and leverages the benefits
of maintainability, extensibility (NF5), and the potential for component reuse. The following
three main components are central to a language server:

Parser Responsible for efficiently parsing WooWoo source files and producing CSTs.
1Releases available at: https://github.com/rust-lang/rust-analyzer/releases
2For more on SchellCheck, visit: https://www.shellcheck.net/
3For more on Explainshell, visit: https://explainshell.com/
4Available at: https://github.com/tree-sitter/tree-sitter-bash

https://github.com/rust-lang/rust-analyzer/releases
https://www.shellcheck.net/
https://explainshell.com/
https://github.com/tree-sitter/tree-sitter-bash

Parser 28

Analysis Engine Leverages the CSTs generated by the parser for in-depth language analysis.
This component encapsulates comprehensive knowledge of WooWoo’s semantics and exposes
a custom API for client interactions.

Communication Layer Implements the LSP interface, translating client requests (e.g., from
VSCode) into Analysis Engine API calls and formatting responses according to the LSP.

This architecture (see Figure 4.1) offers significant advantages:

Component Reusability: The parser and analysis engine are not tightly coupled to the
LSP implementation. They could be used in other contexts, such as powering a standalone
WooWoo linter or serving as components within different LSP implementations.

Flexibility: The modular design facilitates adaptation to future requirements. Should a
different parser technology or LSP framework become necessary, the impact on the overall
system would be minimized compared to a tightly integrated architecture.

Maintainability: Clear separation of concerns enhances maintainability, making debugging,
updating, and extending individual components easier.

Figure 4.1 Key Components of the WooWoo Language Server

4.3 Parser
Parser choice is a foundational decision in language server design, as it is the essential building
block, forming the basis for all other language features. As outlined in the requirements, the
parser must be fast (NF1), error-resilient (NF2), and platform-independent (NF3). This section
describes the available options, presents the final design choice, and explains the rationale behind
it.

4.3.1 Existing WooWoo Parsers
As described in Section 4.1, language servers often leverage existing parsers or components from
other infrastructure, such as compilers. While WooWoo has two existing parsers, neither is
suitable for this use case. The reasons are outlined in the following sections.

Parser 29

4.3.1.1 The WooWoo Library Parser
The WooWoo library serves as the initial stage in a pipeline for generating outputs, processing
WooWoo projects before handing them off to output generators (templates) [26]. However, it is
not optimized for speed. Built with parslet, a Ruby-based parser engine, it can take seconds
to parse source files for a course like BI-MA1 at FIT CTU. This aligns with the official parslet
GitHub page: “Parslet is slow because of the way it is constructed internally . . . often resulting in
execution times in the second range instead of the subsecond range” [27]. Additionally, making
this parser error-resilient would be challenging. Therefore, while useful for referencing grammar
rules, this parser is not suitable for a language server.

4.3.1.2 The Wootom Extension Parser
Wootom is a package (extension) for the now-discontinued Atom text editor. Created by David
Straka as part of his 2021 bachelor’s thesis, it pioneered language support for WooWoo within a
text editor [2, 28].

Written in TypeScript, the Wootom extension utilizes a custom basic recursive descent parser.
These parsers can, in the worst-case scenario, have exponential complexity relative to the length
of the input [29]. Additionally, the implementation lacks support for incremental parsing and
error recovery. It also exhibits inconsistencies with the WooWoo specification, preventing it from
recognizing certain syntax errors. These factors, combined with its use of a high-level language
(TypeScript) which limits it’s performance, make it unsuitable for a use in a language server.

4.3.2 Parser Generators
Parser generators automate much of the work involved in creating a parser. They work by taking
a formal definition of a language’s grammar as input and automatically generating source code
capable of parsing text according to that grammar. This generated parser analyzes the input and
builds a structured representation called a parse tree. The parse tree organizes the components
of the input text in a way that reflects the grammar’s rules. [30]

Parser generators make parser creation and maintenance less complex. They benefit from
ongoing community contributions, leading to optimizations, resources, and extensive support.
Each parser generator offers its own strengths and trade-offs. Some of the most widely known
choices are described in the subsections below.

4.3.2.1 ANTLR
ANother Tool for Language Recognition (ANTLR) is a mature, powerful and widely-used parser
generator that helps developers build interpreters and compilers. It uses a specialized Domain-
Specific Language (DSL) for defining grammars. This, combined with its advanced LL(*) parsing
algorithm, enables ANTLR to handle a broad range of languages, even those with complex,
context-sensitive elements. Unlike simpler LL parsers, ANTLR can look ahead an arbitrary
number of tokens, giving it greater flexibility. [31]

The ability to generate parsers in multiple programming languages (like Java, C#, and
Python) makes ANTLR adaptable to various projects. It has extensive documentation and
resources available, including The Definitive ANTLR 4 Reference, a 300 page book dedicated
to it. Furthermore, ANTLR’s distribution under the BSD license makes it accessible for both
research and commercial use.

4.3.2.2 Bison
Bison is a classic parser generator with a long history (originally released in 1985) as part of
the GNU software suite. It takes a context-free grammar definition as input and generates a

Analysis Engine 30

deterministic LR or generalized LR (GLR) parser [32]. Bison’s established presence means it is
often used in projects where compatibility with legacy tools or YACC (Yet Another Compiler
Compiler) is important [32]. It is released under the GNU General Public License (GPLv3 or
later).

4.3.2.3 Tree-sitter
Tree-sitter is a relatively recent parser generator, originally released by GitHub in 2018 for
integration into the Atom text editor [33]. Specifically designed for use within text editors, it
describes itself as “An incremental parsing system for programming tools” [25]. Tree-sitter is
open-source and released under the MIT License.

While generated parsers are written in C, bindings are available for common programming
languages, enabling integration into a wide variety of applications [34]. The parsers produce
CSTs that retain token positions within the original document [19].

Tree-sitter employs a GLR parsing algorithm, providing the flexibility to parse any program-
ming language. This algorithm’s non-backtracking nature contributes to its speed. Additionally,
Tree-sitter supports incremental parsing, efficiently reusing portions of the syntax tree after code
edits. [35]

It also features a novel error-recovery technique, allowing the parser to produce useful results
even when the code is incomplete or incorrect [19].

Despite its relatively recent initial release, Tree-sitter has quickly gained popularity. As of
March 2024, its official website lists 138 grammars covering various programming languages. Its
found widespread use in projects, including prominently semantic-aware highlighting, folding,
and indentation-assistance within the Neovim community [36]. GitHub.com also employs Tree-
sitter for code highlighting of several languages [37].

4.3.3 Parser Choice
As previously discussed, reusing an existing WooWoo parser wasn’t viable.

Developing a new parser from scratch would demand extensive effort and time, beyond the
scope of this thesis, to achieve the desired error tolerance and performance for an effective
language server.

Therefore, a parser generator was the optimal choice, with Tree-sitter being the preferred
option. Tree-sitter was designed explicitly for use within programming tools. This focus and its
capabilities, particularly in error resilience and incremental parsing, align well with the needs of
creating a responsive language server. Tree-sitter’s design also simplifies the handling of context-
sensitive elements, like indentation level.

Furthermore, Tree-sitter’s growing adoption demonstrates its effectiveness and suitability for
this project. Notably, GitHub’s use of Tree-sitter for code highlighting, along with their de-
tailed rationale [38], underscores its strengths. The project’s momentum and active development
community provide further assurance of continued support.

Another advantage in choosing Tree-sitter is that the grammar itself becomes a contribution
to the WooWoo ecosystem, enabling its use in tools like Neovim and others.

4.4 Analysis Engine

The analysis engine (analyzer), referred to as wuff5, is a core component responsible for parsing
source code (using the Tree-sitter generated parser) and analyzing the resulting CSTs. This anal-
ysis enables language features such as Completion, Go to Definition, and Diagnostics, ensuring
a fluid and robust user experience (NF1, NF2).

5Inspired by the playful sound of the name ruff (https://github.com/astral-sh/ruff)

https://github.com/astral-sh/ruff

Analysis Engine 31

The first key design decision for this component involved selecting the underlying implemen-
tation technology. This choice was crucial for meeting performance requirements (NF1) and
ensuring platform compatibility (NF3).

The internal architecture needed to be designed to satisfy all functional requirements while
ensuring modularity, flexibility, and performance.

4.4.1 Technology
The performance requirements (NF1) and the need for platform compatibility (NF3) were key
factors in selecting the programming language and technology for implementing the analysis
engine. While Tree-sitter ensures efficient parsing, the analyzer’s responsibilities extend beyond
parsing. For example, it must accurately map and re-index references across the entire project
to support features like Find All References, even in the context of code changes.

To identify the most suitable technology, two implementations were explored and evaluated
through performance tests and design considerations.

4.4.1.1 Python Implementation
Python is featured on the official VSCode site as a popular choice for implementing the language
server communication layer [39], using the pygls library (a generic language server written in
Python). Implementing the analysis engine in Python, alongside its use in the communication
layer, would simplify development due to seamless integration between components.

The pygls official repository lists many concrete implementations [40]. Some less prominent
projects, like the Helios language server, use Python for both the LSP layer and analysis. Con-
versely, projects like ruff-lsp, a LSP implementation for ruff (a Python linter known for its
exceptional speed), delegate all analysis work to an external module written in Rust [41]. An-
other notable example is YLS, Avast’s LSP implementation for the YARA language. It employs a
hybrid approach, with some analysis performed by an external module written in C++ and other
parts handled in Python [42].

Given this information, it was worth exploring a Python implementation for the analyzer.
However, although sufficient in most situations, it sometimes exhibited noticeable lag.

4.4.1.2 Switching to Compiled Language
Given the noticeable lag of the Python-based analyzer, especially on less powerful machines,
it was deemed sub-optimal in terms of responsiveness. A second version of the analyzer was
developed in C++ to address these concerns. Performance tests were conducted to compare
initialization time and the speed of core features. These tests were performed on practical
samples, primarily existing projects used for generating math textbooks at FIT CTU.

Importantly, the tests were run on an Apple MacBook Pro with an M2 Pro chip and 32 GB
RAM, providing a realistic benchmark on the higher end of consumer notebooks. The test scripts,
testing datasets, results, and detailed version information related to the performance evaluation
are described in more detail in Chapter 7 and included in the attachment accompanying the
thesis.

The C++ implementation demonstrated significant performance advantages. Workspace ini-
tialization (the time it takes for the analyzer to become responsive) was almost 10 times faster
(see Figure 4.2).

Features like Hover and Completion6 were roughly 5 times faster in C++ (see Figure 4.3).
While absolute speeds for Hover were in the submillisecond range for both implementations, the
improvement in Completion times is particularly important for user experience. In the Python

6Completion testing involved repeated changes to force re-indexing, providing a realistic assessment of perfor-
mance under editing conditions.

Analysis Engine 32

Figure 4.2 Comparison of average workspace initialization times between Python and C++ imple-
mentations across projects containing sources for various subjects at FIT CTU. For further description
and sizes of the datasets, see Table 7.1.

version, Completion often took hundreds of milliseconds, leading to noticeable delays. The C++

implementation significantly reduces this delay.
Lastly, the Semantic Tokens feature saw a two-order-of-magnitude improvement in the C++

implementation (see Figure 4.4). This eliminates the delayed semantic highlighting observed in
the Python version.

Based on these results, the Python version was discontinued and C++ was adopted for the
analyzer, ensuring a smooth and responsive user experience for authors in WooWoo. Platform
compatibility is ensured through the distribution of precompiled wheels, discussed further in
Chapter 6.

4.4.2 Architecture Overview
The analysis engine’s architecture centers on three key principles: dialect-independence, cen-
tralized API including workspace management, and modular feature implementation. These
principles are driven by the requirements outlined in Chapter 3.

Firstly, language tooling for WooWoo is highly dependent on the currently used dialect. For
the purpose of dialect independence (F1.1) and custom dialect selection (F1.2), a DialectManager
component is introduced to handle all dialect-related work. The analyzer will get information
regarding a dialect only through this component, using its dialect-independent API.

Secondly, as the analyzer must manage the state and respond to lifecycle events (F3.1 -
F3.4), there will be a single stateful object exposing the API for this, for easy use by clients.
This component, WooWooAnalyzer, will be the entrypoint to the application and manage the
workspace state, including storing references to structures representing the individual WooWoo
documents.

Analysis Engine 33

Figure 4.3 Feature-wise comparison of average durations, highlighting the time required for Hover
and Completion features in Python and C++ implementations. Analysis conducted on sources for the
BI-MA1 course.

Finally, the language features (F4.1 - F4.6) will be realized by independent specialized com-
ponents (called Feature Components), to which the analyzer will redirect all the work. This
ensures modularity and easy extensibility (NF5), as the components can be replaced and new
ones easily added.

Figure 4.5 illustrates the structure and relationships between core components in wuff. For
clarity, some details have been omitted. This section describes these components, outlining their
responsibilities and how they interact.

4.4.3 WooWooAnalyzer
The WooWooAnalyzer is the heart of the analysis engine, serving as the primary interface for
client interactions. While it directly manages workspace-related tasks, it delegates dialect han-
dling to the DialectManager and uses feature components to provide language-specific function-
ality. This centralized design simplifies client interaction while ensuring a modular and flexible
architecture.

The WooWooAnalyzer is responsible for the following:

1. Dialect component: Maintains a reference to a DialectManager, enabling client-driven
dialect switching via the public setDialect function. Provides the DialectManager to other
components and documents as needed.

2. Project detection: Scans the workspace for WooWoo projects upon initialization. Auto-
matically associates .woo files with their respective projects and groups unassigned files into
an artificial project for management.

Analysis Engine 34

Figure 4.4 Comparison of average durations for processing Semantic Tokens in Python and C++.
The analysis encompasses all projects referenced in Figure 4.2.

3. Document management: Tracks open documents, determines reparsing logic, handles
project switching, and provides a document-related API for client interactions (such as re-
sponding to edits).

4. Feature components: Instantiates and manages feature components (Completer, Navigator,
Highlighter, etc.). Acts as the exclusive gateway for client interaction with these compo-
nents, exposing their combined API.

The following example demonstrates these concepts in practice, showing how to set a dialect,
load a workspace, and utilize language features. See Listing 4.1:

1 // Create an instance of WooWooAnalyzer
2 auto * analyzer = new WooWooAnalyzer ();
3 // Set a custom dialect
4 analyzer -> setDialect (" dialects / fit_math .yaml");
5 // Load the workspace
6 analyzer -> loadWorkspace ("file :///bi -ma1/ textbook ");
7 // Use language features
8 Location definitionLocation = analyzer -> goToDefinition (
9 DefinitionParams (

10 TextDocumentIdentifier ("file :///bi -ma1 -real - numbers .woo"),
11 Position {50, 150}));

Code listing 4.1 Example of WooWooAnalyzer use within C++.

Analysis Engine 35

Figure 4.5 The core classes present in the wuff analysis engine.

4.4.4 Parser
Component responsible for all parsing-related work. It will use the Tree-sitter parser generated
from the WooWoo Tree-sitter grammar (tree-sitter-woowoo). Parsing will produce CSTs,
realized by the TSTree structure from Tree-sitter.

Importantly, WooWoo documents are essentially multi-language, as they can contain an ar-
bitrary number of YAML sub-documents (meta blocks). The tree-sitter-woowoo parser will
not parse the meta blocks; instead, they will be recognized as single meta block nodes. The
Parser component will use tree-sitter-yaml, a publicly available Tree-sitter parser for YAML7,
released under the MIT License, to parse these meta blocks. Consistency motivated the choice
of a Tree-sitter parser for YAML.

Therefore, parsing a single WooWoo source file should result in one WooWoo CST and multi-
ple YAML CSTs, one for each meta block. Tree-sitter provides the following objects to represent
these structures:

TSTree Represents the CST of an entire source code file. It consists of TSNode instances. [34]

TSNode A single node within the TSTree. It tracks its start and end position in the source
code, as well as its hierarchical relationships to other nodes (parent, siblings, and children).
[34]

7Available at: https://github.com/ikatyang/tree-sitter-yaml/

https://github.com/ikatyang/tree-sitter-yaml/

Analysis Engine 36

4.4.5 WooWooDocument
The WooWooDocument class represents an up-to-date state of a single document within the
workspace. It contains the document’s source code, its CST representation, meta blocks (as
CSTs), its file path, and other relevant metadata.

The core function of this class is to maintain synchronization with source updates. When
the analyzer receives a notification of changes to the document, it will provide the new source or
relevant changes to the WooWooDocument, allowing it to update itself accordingly.

The analyzer manages instances of this class, grouping them by project. These instances
serve as the primary input for analysis by feature components, enabling the provision of language
features.

The meta blocks in the document will be stored in a vector and represented by the MetaContext
class.

MetaContext This class encapsulates a single meta block (YAML sub-document) within a
WooWoo source file (represented by the WooWooDocument). It contains the meta block’s
TSTree (CST representation), its position within the parent document, and the type/name
of the node it belongs to. This metadata is essential for targeted searches within meta blocks,
such as retrieving only ones belonging to a specific structure (e.g., document part) with a
given name (e.g., Chapter).

DialectedWooWooDocument
To optimize performance, it’s essential for documents to be processed with dialect-specific knowl-
edge. This includes tracking references and analyzing meta blocks for referencables (nodes, that
can be referenced). This information is frequently requested by individual feature components.
On-demand calculations would slow down responsiveness.

Therefore, the DialectedWooWooDocument subclass extends the base WooWooDocument. This
specialized class adds dialect awareness, tracking references within the document, and proactively
re-evaluating them as changes occur.

4.4.6 DialectManager
Class responsible for loading and processing a dialect definition file (YAML file describing syntax
and semantics of a specific dialect, as described in Section 1.3.1).

It will utilize the yaml-cpp library, released under the MIT License, to extract the dialect
information into structures representing the different node kinds, like Environment or Wobject.

The DialectManager stores all information about the active (loaded) dialect, but the dialect
is not accessible from outside classes. Instead, other components can obtain information only
via the interface described in Table 4.1.

4.4.6.1 The Concept of Reference
The concept of Reference is important for understanding the DialectManager’s design. A
Reference defines what a WooWoo structure can reference, based on structure types and
meta block) content. It consists of three attributes:

1. metaKey: The key within a meta block that identifies the target of the reference (e.g.,
label).

2. structureType: The type of WooWoo structure being referenced (e.g., outer environment).

3. structureName: The name of the WooWoo structure being referenced (e.g., equation).

Analysis Engine 37

Importance for Feature Components
Feature components, such as the Completer, rely on References to offer contextually relevant
suggestions. Structures can define multiple References. If structureType and structureName
are omitted, the Reference applies to any structure containing the specified metaKey in its
meta block.

Example (FIT-Math)
In the FIT-Math dialect, an eqref environment is used to reference mathematical equations.
Therefore, it includes a Reference targeting an equation outer environment, within which a
meta block contains the key label. The value associated with the label key represents the specific
target of the reference.

Table 4.1 DialectManager Class Public Interface

Function Name Parameters Return
Type Description

loadDialect string
dialectFilePath void

Loads and processes a
dialect from the specified file

path into the manager.
Replaces the current dialect

if already present.

getDescription string type,
string name string

Retrieves a description for a
given type and name
combination from the
current dialect (e.g.,

document part, Chapter).

getReferencing-
TypeNames None vector of

string

Returns a list of names that
are capable of referencing
(e.g., reference or eqref).

getPossible-
ReferencesBy-

TypeName
string name vector of

Reference

Returns possible references
for a given type name. For

example, eqref in the
FIT-Math dialect can only
reference equation outer

environments.

4.4.6.2 Dialect
The Dialect class serves as the primary data structure representing a complete dialect within the
analysis engine. The DialectManager maintains a single active instance of this class at a time,
stored in its activeDialect property. The Dialect class comprises various subclasses and directly
mirrors the structure of the YAML dialect-definition file. Figure 4.6 illustrates the hierarchical
composition of a Dialect object.

4.4.7 Feature Components
Feature components are responsible for delivering the language features. Each component spe-
cializes in a specific area of language tooling, and they are instantiated by the analyzer. The
analyzer coordinates feature component actions based on requests from the client.

Leveraging the Tree-sitter Query API is crucial to the mechanism of every component.

Analysis Engine 38

Figure 4.6 Components of the Dialect Class

TSQuery A core Tree-sitter object used for analyzing the structure of TSTrees. Queries are
compiled from strings of S-expressions, and they remain immutable after compilation. The
expression consists of one or more patterns that match a certain set of nodes in a syntax tree.
To execute a TSQuery, a TSQueryCursor object is used. Execution yields a list of matches
that can be easily iterated over. [25, 34]

All feature components share a common design pattern. Upon initialization, they pre-compile
TSQueries relevant to their specific functionality. These queries are stored for repeated use, since
their compilation is an expensive operation. Feature components also maintain a reference to
the analyzer for workspace-wide access. A typical language feature involves executing a query on
a document’s CST, often restricting itself to a specific range or position, analyzing the results,
and returning the outcome.

Common logic, such as query creation and lifecycle management, will be abstracted into a
parent class Component, which all feature components will inherit from.

Input parameters and result values will align with the LSP, potentially omitting optional fields
not needed for analyzing WooWoo documents. The full specification of LSP-related structures
used by the feature components can be found in the LSPTypes.h file. For precise interface

Analysis Engine 39

definitions of each component, refer to their corresponding header files. The list of components
and their responsibilities can be found below:

Completer Provides auto-completion functionality, including completion of include state-
ments and environment references.

complete: Suggests completions valid at the given file and position.

Hoverer Handles hover functionality. Works with DialectManager to obtain descriptions of
hovered elements.

hover: Returns a hover message for the specified file and position.

Navigator Class responsible for mapping, navigating, and manipulating references.

goToDefinition: Finds and returns the location of a symbol’s definition. If executed on
an include statement, navigates to the top of the included file.
references: Finds and returns all locations of symbols referencing a meta block field
(definition) at a given position.
rename: Renames all references to a definition (including the definition itself) at a given
position.
refactorDocumentReferences: Refactors document file references to new names, given
a list of old and new names. Applicable on include statements.

Highlighter Provides server-side code highlighting. Clients can configure token types and mod-
ifiers using the Highlighters API. This ensures compatibility with wide range of editor
environments. Highlighted tokens are specified using Tree-sitter queries.

semanticTokens: Generates a list of semantic tokens for a given document identifier,
respecting client-specified token types and modifiers.

Folder Returns folding ranges within a given document. Foldable WooWoo structures include:
block, document part, and wobject.

foldingRanges: Assembles and returns folding ranges for a given document.

Linter Class responsible for reporting syntax errors to the user. It leverages the Tree-sitter
capabilities for error detection, including identifying positions of the syntax errors and missing
nodes.

diagnose: Provides a list of error diagnostics for a given document.

4.4.8 Enabling Python Integration
While the core analysis engine is implemented in C++ for optimal performance, providing Python
bindings is essential to ensure seamless integration with the communication layer of the WooWoo
Language Server, which is described in the following section.

Additionally, it increases the engine’s usability for other potential projects that might prefer
to interact with it using Python. Pybind118 was chosen to create these bindings due to its proven
reliability in creating Python bindings for C++ code.

8For more on pybind11, visit: https://github.com/pybind/pybind11

https://github.com/pybind/pybind11

Communication Layer 40

Module API
The entire public API of the WooWooAnalyzer class will be exposed for use within Python. This
includes access to the class’s public methods and their parameters, making them callable and
usable within Python code. See Listing 4.2 for an example.

1 from wuff import WooWooAnalyzer
2 from wuff import DefinitionParams
3 from wuff import TextDocumentIdentifier
4 from wuff import Position
5
6 analyzer = WooWooAnalyzer ()
7 analyzer . set_dialect (" dialects / fit_math .yaml")
8 analyzer . load_workspace ("file :///bi -ma1/ textbook ")
9 definition_location = analyzer . go_to_definition (

10 DefinitionParams (
11 TextDocumentIdentifier ("file :///bi -ma1 -01-real - numbers .woo"),
12 Position (50, 150)
13))

Code listing 4.2 Use of the WooWooAnalyzer within Python, equivalent to the sequence in Listing 4.1

4.5 Communication Layer
The communication layer acts as a bridge between the LSP client and the analysis engine. It
handles communication with the LSP client using the JSON-RPC protocol, translating and
delegating requests and notifications to the analyzer. Responses from the analyzer are then
formatted according to the LSP Specification and relayed back to the client.

Developing a custom communication layer from scratch would be a significant and unneces-
sary effort. Generic language server implementations exist for various languages, providing the
communication logic and LSP-related objects.

4.5.1 Pygls
“Pygls (pronounced like ”pie glass”) is a pythonic generic implementation of the Language Server
Protocol for use as a foundation for writing your own Language Servers in just a few lines of
code.” [40]

Pygls was chosen for this project due to its proven reliability, extensive resources, active
community, and commitment to LSP compliance (NF4). It offers a lot of resources, including
official guides on the VSCode website [39]. This aligns well with the goals of this thesis, as one
of them is to integrate the WooWoo Language Server into a VSCode extension. Importantly,
Pygls remains flexible and is not focused on VSCode, making it a good choice for supporting
other editors as well.

As performance bottlenecks are primarily addressed by the analysis engine, Python’s ease of
installation and platform compatibility (NF3) make it a suitable choice for the communication
layer.

4.5.1.1 LanguageServer Class
The pygls LanguageServer class provides the base functionality for language servers, includ-
ing startup modes, logging, and feature registration. It also offers default implementations for
lifecycle-related LSP features (Initialize, Shutdown, Exit), which can be overridden if necessary
[43].

Communication Layer 41

Feature registration is facilitated using the LanguageServer.feature decorator. Pygls uti-
lizes the lsprotocol.types module to import standard LSP method names and types. To ensure
consistency, the implementation will employ these predefined pygls elements (see Listing 4.3 for
an example) [43].

1 from pygls. server import LanguageServer
2
3 server = LanguageServer (’example - server ’, ’v0.1’)
4
5 @server . feature (TEXT_DOCUMENT_COMPLETION , CompletionOptions (

trigger_characters =[’,’]))
6 def completions (params : CompletionParams):
7 """ Returns completion items."""
8 return CompletionList (
9 is_incomplete =False ,

10 items =[
11 CompletionItem (label=’Item1 ’),
12 CompletionItem (label=’Item2 ’),
13 CompletionItem (label=’Item3 ’),
14]
15)

Code listing 4.3 Instantiating LanguageServer with a TextDocumentCompletion LSP feature. [43]

4.5.1.2 WooWooLanguageServer
The WooWooLanguageServer class will extend the pygls LanguageServer class. It acts as an in-
termediary, wrapping the analysis engine (wuff) and managing the flow of requests and responses
between the client and the engine.

Importantly, the analysis engine will not be called directly from the decorated feature registra-
tion functions. Instead, these functions primarily register features and forward calls to specific
methods within the WooWooLanguageServer, where interactions with the analysis engine will
occur (as illustrated in Listing 4.4).

1 @SERVER . feature (
2 TEXT_DOCUMENT_COMPLETION , CompletionOptions (trigger_characters =

trigger_characters)
3)
4 def completions (ls: WooWooLanguageServer , params : CompletionParams) ->

CompletionList :
5
6 return ls. completion (params)

Code listing 4.4 Example of decorated feature functions used for registration and delegating requests
to the WooWooLanguageServer.

During server initialization, the WooWooLanguageServer will receive the path to the dialect-
definition file. This configuration will remain in effect for the server’s lifetime, requiring a restart
to change dialects.

4.5.1.3 Running the Server
There are three methods to start and establish a connection with a pygls server [43]:

1. TCP: Primarily used for debugging and development. This method allows the server to
run over a Transmission Control Protocol (TCP) connection, is easy to set up, and enables
remote access if needed.

VSCode Extension Integration 42

2. WEBSOCKET: Similar to TCP, but specifically used to expose the language server to
browser-based editors.

3. STDIO: The preferred mode for production. It is used when the server is started by the
client as a child process.

The WooWooLanguageServer will utilize STDIO mode. This choice aligns with its intended
use, where it is initiated as a child process by a VSCode extension or a similar client application.

4.6 VSCode Extension Integration
The WooWoo VSCode extension integrates the WooWoo Language Server to provide language
features directly within the VSCode editor. This design approach simplifies user setup by auto-
matically managing the language server, thereby facilitating seamless distribution and usage.

To accelerate development, Microsoft’s Python extension template was chosen as a founda-
tion. This decision benefits from established language server integration patterns and access to
Python tooling within VSCode [39].

The extension is written in TypeScript and utilizes the VSCode LanguageClient API to
interact with the LSP. It depends on the Python extension by Microsoft, which is automatically
installed if not already present. Notably, Python environment management is left to the user,
offering flexibility in setup.

Client-side Syntax Highlighting
The LSP does not directly define support for syntax highlighting; this task is typically handled
by the client. For example, VSCode utilizes TextMate grammars to parse and assign colors to
tokens [44].

However, the LSP offers the Semantic Tokens feature, which is used to enhance traditional
syntax highlighting. In contrast to TextMate grammars, which are constrained by the regex-
based parsing mechanism and single-file scope, the Semantic Tokens can leverage the project-
wide awareness and sophisticated parsing capabilities of semantic token providers (often language
servers). This allows for capturing finer-grained details and nuances within the code. Semantic
highlighting, powered by Semantic Tokens, is applied on top of the existing syntax highlighting
provided by tools on the client side. [45, 46]

While it would be technically possible to do all highlighting on the server-side, it is not ideal,
as language servers or other semantic token providers can take some time to load and cause the
highlighting to have delays. This option was also explored in the WooWoo Language Server, but
was deemed unsuitable due to the delays at launch and even during editing.

For optimal user experience, the WooWoo Language Server will adopt a hybrid highlighting
approach. It will provide semantic highlighting limited to highly contextual parts of the lan-
guage, which would be hard or impossible to capture using TextMate grammar. The rest of the
highlighting will be done client-side using a TextMate grammar.

Chapter 5

Implementation

This chapter outlines the implementation of the WooWoo Language Server, starting with the
development of a Tree-sitter grammar for WooWoo. It then discusses the key components of the
analysis engine, including vital build files, and details the development of the communication
layer through pygls, which integrates the analysis engine.

Next, the chapter focuses on the integration of the language server into a VSCode extension,
including the setup of the extension manifest and local grammar configurations.

Finally, the chapter concludes with a discussion of potential future improvements to various
parts of the project.

5.1 Parser Implementation

The parser implementation resides in its own repository1, named tree-sitter-woowoo to align
with existing Tree-sitter grammar naming conventions.

Developing the Tree-sitter grammar involved two main components [47]:

1. Writing Grammar Rules: Tree-sitter grammar rules are defined within the grammar.js
file using JavaScript syntax. JavaScript offers familiarity and convenience for expressing
regular expressions. “Of course during parsing, Tree-sitter does not actually use JavaScript’s
regex engine to evaluate these regexes; it generates its own regex-matching logic as part of
each parser.” [47]

2. Implementing a Scanner: To recognize structures which are impossible or inconvenient
to describe with regular expressions, as well as for storing state (e.g., indentation levels),
it’s necessary to implement an external scanner. This part is optional, but needed for an
indent-based language like WooWoo.

A C parser (parser.c) is generated from the grammar rules defined in grammar.js. If
an external scanner is included, the parser relies on it to recognize specific tokens (these are
configured within the grammar). The external scanner is also crucial for accurate error recovery.
Poor scanner implementation can severely compromise the parser’s functionality.

5.1.1 Defining Grammar Rules
Each rule within the language is encapsulated within a distinct JavaScript function, and rules can
reference each other using the $ object. Terminal symbols are defined using JavaScript strings

1Available at: https://gitlab.fit.cvut.cz/woowoo/lsp/tree-sitter-woowoo

43

https://gitlab.fit.cvut.cz/woowoo/lsp/tree-sitter-woowoo

Parser Implementation 44

and regular expressions.
Tree-sitter facilitates rule composition through functions that allow the combination of other

rules into sequences (where rules must match consecutively), alternatives (where any one of the
rules must match), repetitions (either 0 or more times, or 1 or more times), and optional matches.

A challenge in defining Tree-sitter grammar, given Tree-sitter’s close adherence to the LR(1)
[47] parsing algorithm, was resolving conflicts between rules. Tree-sitter provides mechanisms
to resolve these LR(1) conflicts by setting precedences or defining left or right associativity for
rules. In the implementation of tree-sitter-woowoo, numerical precedences were unnecessary.
Such precedences are primarily useful in resolving operator precedence conflicts in programming
languages, a construct not present in WooWoo, which is a markup language.

5.1.1.1 Grammar Structure
The source file rule acts as the starting point or root symbol of the grammar. It is composed of
include statements, document parts, and empty lines. Each document part contains an optional
meta block, followed by a sequence of blocks and wobjects, each defined by their respective rules.
The structure and order of these elements reflect the syntax of the WooWoo language, as detailed
in Section 1.2.

The rule structure is exemplified by the wobject rule presented in Listing 5.1. The rule
begins with a “.”, followed by wobject type2, and a “:”.

It may, optionally, include a meta block, followed by an indented wobject body, which con-
tains one or more blocks, each separated by multiple empty lines. To accurately represent inden-
tation, ex indent and ex dedent tokens were introduced, signifying increases and decreases in
indentation levels, respectively. This method draws inspiration from other indentation-sensitive
languages, as evidenced by the tree-sitter-python grammar3.

It’s also important to mention the use of the ex prefix in the rules, which denotes external
tokens—those recognized by the scanner. This naming convention was specifically developed for
tree-sitter-woowoo to facilitate the identification of scanner-processed tokens.

1 wobject : $ => seq(
2 ’.’,
3 $. wobject_type ,
4 ’:’,
5 choice ($. _newline_char ,
6 $. meta_block),
7 $._ex_indent ,
8 $. _wobject_body ,
9 $. _ex_dedent

10),
11
12 wobject_type : $ => seq(
13 $. _uppercase_letter , // helper rule
14 repeat ($. _letter) // helper rule
15),
16
17 _wobject_body : $ => seq(
18 $.block ,
19 repeat (
20 seq(

2wobject type is constructed from helper rules that remain hidden in the parse tree to assist in defining
elements like letters, including any Unicode letter to accommodate Czech characters. Rules starting with an
underscore are not represented as separate nodes in the parse tree; instead, their characters are integrated into
the parent node [47].

3See the tree-sitter-python grammar at https://github.com/tree-sitter/tree-sitter-python/blob/
master/grammar.js.

https://github.com/tree-sitter/tree-sitter-python/blob/master/grammar.js
https://github.com/tree-sitter/tree-sitter-python/blob/master/grammar.js

Parser Implementation 45

21 $. _ex_multi_empty_line ,
22 $.block
23)
24)
25),

Code listing 5.1 The rule in tree-sitter-woowoo capturing wobject.

5.1.1.2 Setting Precedences
An LR(1) conflict arises when two rules overlap in a manner that creates ambiguity with one
token of lookahead [47]. Tree-sitter reports such conflicts during parser generation and provides
explanations of the ambiguous interpretations. Some LR(1) conflicts in tree-sitter-woowoo
could be resolved by specifying left or right associativity. See Listing 5.2 for an example of how
associativity is applied in the grammar.

1 block: $ => prec.right(seq(// specifying right associativity
2 choice ($. _outer_environment , $. text_block),
3 repeat (choice (
4 seq($. _ex_empty_line ,
5 choice ($. _explicit_outer_environment ,
6 $. text_block)
7),
8 $. implicit_outer_environment
9)

10)
11)),

Code listing 5.2 Setting right associativity in the block rule to resolve ambiguity.

In the example, without the specified right associativity, a conflict would arise due to two
possible interpretations for the same symbol sequence. Right associativity dictates that Tree-
sitter prefers the longer rule, which means it will continue with the block when encountering a
single empty line separator (ex empty line). Without this associativity, specifically, Tree-sitter
cannot determine whether to continue the repeat function in the block rule upon encounter-
ing an empty line—a situation that arises from the way the tree-sitter-woowoo grammar is
constructed. See Listing 5.3 for potential interpretations and solutions for the block rule, as
suggested by Tree-sitter, when associativity is not specified.

1 Unresolved conflict for symbol sequence :
2
3 ’.’ document_part_type ’ ’ document_part_title _ex_empty_line

text_block + _ex_empty_line ...
4
5 Possible interpretations :
6
7 1: ’.’ document_part_type ’ ’ document_part_title _ex_empty_line

(block text_block + block_repeat1)
8 2: ’.’ document_part_type ’ ’ document_part_title _ex_empty_line

(block text_block) + _ex_empty_line ...
9

10 Possible resolutions :
11
12 1: Specify a left or right associativity in ‘block ‘
13 2: Add a conflict for these rules: ‘block ‘

Code listing 5.3 Failed parser generation due to ambiguity in the grammar.

Parser Implementation 46

5.1.1.3 Allowing Conflicts
Some LR(1) conflicts are intended to exist in the grammar. These can be declared, and when
they occur at runtime, Tree-sitter will use the GLR algorithm to explore all of the possible
interpretations [47].

The conflicting rules are declared in the conflicts array of arrays, where each array specifies
a set of rules involved in an LR(1) conflict. In tree-sitter-woowoo, there are three conflict
sets, each containing one rule.

The first two conflicts involve the document part and document part body rules. Here, the
ambiguity occurs in certain cases when a structure separator is encountered (ex multi empty line),
making it unclear whether it signifies the start of a new document part or just separates elements
within the existing document part.

The last conflict is within the body of an inner environment (verbose inner environment body
rule). With only one token of lookahead, it is ambiguous whether a quotation mark (”) in the
body of a verbose inner environment marks the end of the environment or the start of another,
nested verbose inner environment.

5.1.1.4 External Symbols
The grammar file contains an externals array, which lists all the tokens recognized by the
external scanner. “If a token in the externals array is valid at a given position in the parse,
the external scanner will be called first before anything else is done. This means the external
scanner functions as a powerful override of Tree-sitter’s lexing behavior, and can be used to solve
problems that can’t be cracked with ordinary lexical, parse, or dynamic precedence. [47]”

Within the tree-sitter-woowoo grammar, external symbols are used for tracking the in-
dentation level using special ex indent and ex dedent tokens, emitted whenever an increase
or decrease in indentation is detected. In addition to that, it handles the emission of newlines
and empty lines, as these tokens have to be managed carefully within the context.

Additionally, the external scanner is used to disambiguate text-related tokens, particularly
the dot character. This character could represent the start of a short inner environment, signify
a start of meta-information of a verbose inner environment, or hold no special meaning. The
scanner leverages lookahead to make the correct distinction.

5.1.2 External Scanner
Tree-sitter’s external scanner mechanism enables custom, language-specific parsing logic for to-
kens whose structure is complex or inefficient to define using regular expressions alone. Imple-
menting a scanner involves defining five C functions, with names derived from the language’s
name. In the tree-sitter-woowoo implementation, a custom Scanner struct encapsulates the
parsing logic and state management, with these core functions delegating work to it. Tree-sitter’s
parser calls these functions as needed:

tree sitter woowoo external scanner create Called only once, used to instantiate and re-
turn a pointer to the Scanner object, which maintains parsing state. For stateless languages,
this function can return NULL.

tree sitter woowoo external scanner destroy Simply frees any memory used by the scan-
ner. It receives the pointer returned by the create function.

tree sitter woowoo external scanner serialize Receives a pointer to the scanner and a byte
buffer. Stores the scanner’s entire current state within the buffer, allowing Tree-sitter to
restore this state later.

Parser Implementation 47

tree sitter woowoo external scanner deserialize Used to deserialize the scanner’s state.
It’s called with a pointer to the Scanner object and the byte array obtained from the serialize
function.

tree sitter woowoo external scanner scan The function responsible for recognizing exter-
nal tokens, as detailed in the following section.

The scanner implementation is located in scanner.cc and is written in C++.
Important Note: In February 2024, Tree-sitter deprecated C++ for scanner development,

favoring C4. While the tree-sitter-woowoo implementation was completed prior to this an-
nouncement, migration to C should be straightforward if needed for future versions.

5.1.2.1 Scan Method Overview
The scan method within the Scanner struct is the core function responsible for recognizing exter-
nal tokens. It has two important parameters, briefly described below, with the full specifications
available in the Tree-sitter documentation [25, 47],

TSLexer * lexer This struct contains methods for accessing the current parsing state. It allows
lookahead by one character, advancement to the next character, and marking the end of the
current token. It cannot go back; every advanced character is considered part of the current
token unless mark end was called beforehand.

const bool * valid symbols This array contains information about which tokens (as defined
in the externals array) are valid at the current position. It also includes a marker token
indicating whether the parser is in error recovery mode.

The scan method returns either FALSE (no token found) or TRUE (token found). If TRUE,
the token type is indicated to the lexer by setting its result symbol property. The function can
only return one token at a time. Its implementation is divided into segments with comments for
guidance, and it branches based on the lexer’s position, valid symbols, and the Scanner state
(including the current indentation level and unprocessed tokens).

Unprocessed tokens refer to a situation where the previous scan detected an indentation
level change of more than one level. Due to the scanner returning only one token at a time,
unprocessed tokens are emitted immediately upon the next call to the scan method.

5.1.2.2 Scanner Structure and State Management
The WooWoo external scanner maintains parsing state primarily by tracking indentation levels.
The mechanism of serializing the state, along with the file’s overall structure, is illustrated in
Listing 5.4.

The five functions mandated by Tree-sitter are located within the extern "C" block. Func-
tionality is delegated to the custom Scanner class, which handles state tracking and serialization.
The remaining functions discussed in Section 5.1.2 are handled in similar manner.

Because WooWoo does not allow for variable indentation length (unlike Python for example),
there is no need to store the indentation in a stack. It is sufficient to store just one numerical
value representing the current indentation level. Spaces needed for one indentation level can be
easily configured in the Scanner by setting the INDENT LEN variable. However, if indentation of
different lengths within the same source file was allowed, it would require significant changes to
the scanner’s detection of ex indent and ex dedent tokens.

4C++ deprecation commit: https://github.com/tree-sitter/tree-sitter/commit/
74812ced1b0bec57f010bb240f35742fdcf1d20a

https://github.com/tree-sitter/tree-sitter/commit/74812ced1b0bec57f010bb240f35742fdcf1d20a
https://github.com/tree-sitter/tree-sitter/commit/74812ced1b0bec57f010bb240f35742fdcf1d20a

Analysis Engine Implementation 48

1 // Custom scanner to store state and handle the scanning process
2 struct Scanner {
3 int16_t indent_level ;
4 int16_t unprocessed_indentation ;
5
6 unsigned serialize (char * buffer) {
7 size_t i = 0;
8 buffer [i++] = indent_level ;
9 buffer [i++] = unprocessed_indentation ;

10 return i;
11 }
12
13 bool scan(TSLexer * lexer , const bool * valid_symbols){ ... }
14
15 /* Other attributes and methods (omitted) ... */
16 }
17
18
19 extern "C" {
20 // Functions called by the parser generated by Tree - sitter
21 unsigned tree_sitter_woowoo_external_scanner_serialize (void *payload ,

char *state) {
22 Scanner * scanner = static_cast < Scanner *>(payload);
23 return scanner -> serialize (state);
24 }
25
26 /* Functions for create , deserialize , destroy and scan (omitted) ... */
27
28 }

Code listing 5.4 Structure of the scanner.cc file

5.1.3 Parser Integration
Before transitioning to C++, the Tree-sitter parser was used directly from Python. To avoid the
need for a C++ compiler on the client to compile the parser, a cross-compilation pipeline using
the dockcross5 cross-compiling toolchain Docker images was established on GitLab. This pipeline
compiled the parser for the most common systems, and the resulting binaries were utilized by
the Tree-sitter Python bindings. Although this pipeline is no longer in use, its configuration can
still be found in the repository’s past commits6.

Switching to using C++ for the analysis engine simplified the entire process. The parser,
written in C, along with the scanner in C++, are now easily integrated directly into the project’s
build process.

5.2 Analysis Engine Implementation
The analysis engine (referred to as wuff) implementation, resides within a dedicated Git repos-
itory7. This repository contains both the C++ core of the analysis engine and the Python
packaging infrastructure needed for seamless integration into the WooWoo Language Server.

5More about dockcross: https://github.com/dockcross/dockcross
6See https://gitlab.fit.cvut.cz/woowoo/lsp/woowoo-language-server/-/blob/

ac92738232faeb825d7f95496a54729d7b62d6d8/.gitlab-ci.yml
7Available at: https://gitlab.fit.cvut.cz/woowoo/lsp/wuff

https://github.com/dockcross/dockcross
https://gitlab.fit.cvut.cz/woowoo/lsp/woowoo-language-server/-/blob/ac92738232faeb825d7f95496a54729d7b62d6d8/.gitlab-ci.yml
https://gitlab.fit.cvut.cz/woowoo/lsp/woowoo-language-server/-/blob/ac92738232faeb825d7f95496a54729d7b62d6d8/.gitlab-ci.yml
https://gitlab.fit.cvut.cz/woowoo/lsp/wuff

Analysis Engine Implementation 49

The src/ directory contains the C++ codebase, with a clear separation between source (.cpp)
and header (.h) files. CMakeLists.txt manages the build configurations. Python integration
is achieved using pybind11, with bindings definition files located in the same directory. To
promote modularity, the codebase is organized into subdirectories (e.g., components/, dialect/,
document/, parser/), each representing a specific domain of the analysis engine’s functionality.
See Table 5.1 for a complete directory structure.

Python packaging files reside alongside the C++ code in the repository’s root directory. This
simplifies packaging the analysis engine as a Python module. While the src/ directory could be
separated into its own project, the current setup prioritizes ease of use within this thesis, as the
analysis engine is exclusively accessed through the Python package.

This section explores the implementation of each component and outline the configuration of
the Python packaging.

wuff/..The root folder of the analysis engine
src/..Source files for the C++ codebase

components/ Feature components of the analysis engine
dialect/.....................................DialectManager and Dialect nodes
document/ .. Manages WooWoo documents
lsp/...LSP structure definitions
parser/ .. Parser component implementation
tree-sitter/..Tree-sitter generated parsers
utils/ ... Utility functions and classes
Bindings.cpp............................pybind11 bindings for Python integration
CMakeLists.txt ... CMake build file
WooWooAnalyzer.cpp.......................Implementation of the WooWooAnalyzer
WooWooAnalyzer.h.............................Header file for the WooWooAnalyzer

tests/..Test cases for the analysis engine
MANIFEST.in.......................................Manifest for Python package data
pyproject.toml.............................Python project settings and dependencies
README.md.......................................Package description and instructions
setup.py.................................Python setup script for package distribution

Figure 5.1 Directory tree of the wuff analysis engine

5.2.1 Build Configuration with CMake
This project employs CMake (minimum version 3.12) to manage its build process and integrate
external dependencies. The CMake configuration (CMakeLists.txt) defines builds for two tar-
gets: the primary wuff module and WooWooTest. The latter is designed for easy C++ debugging
and excludes Python bindings. This section focuses specifically on the wuff module build.

5.2.1.1 Dependency Management
The project leverages CMake’s FetchContent module to manage dependencies effectively. The
module automates downloading dependencies from various sources (Git repositories, URLs, etc.)
and integrates them into the build process. If a fetched dependency has its own CMakeLists.txt,
it can be easily included using add subdirectory(). Otherwise, source files might need to be
manually added to the build. [48]

Below is a list of dependencies fetched for wuff, along with brief descriptions of their inte-
gration:

Analysis Engine Implementation 50

tree sitter Contains the Tree-sitter structures and API. As tree sitter is not CMake-based,
the FetchContent module fetches the designated tag from its Git repository, and its source
files are then manually included in the wuff build system.

yaml-cpp A C++ YAML parser/emitter. Used for reading dialect-definition files and transform-
ing them into C++ classes. It is integrated as a subdirectory after fetching.

pybind11 The library chosen to expose the C++ types and functionality in Python. Similarly
to yaml-cpp, it contains its own CMakeLists, and it is simply added as subdirectory.

5.2.2 WooWooAnalyzer
Much of the WooWooAnalyzer’s implementation centers around filesystem interactions. This
includes tasks like scanning for projects and loading the initial contents of .woo files during
workspace initialization. Additionally, the WooWooAnalyzer manages loaded documents, han-
dling requests for deletion or renaming. Deletion is implemented by removing the document
from its container and calling its destructor. Renaming involves updating the document’s ID (its
path) within the associated maps, which are described in more detail later in this section.

Beyond these filesystem-related responsibilities, the WooWooAnalyzer primarily serves as a
coordinator for feature components. It exposes a public interface and instantiates these compo-
nents during its own construction. Client requests are then redirected to the appropriate feature
component, as illustrated in Listing 5.5. Similarly, requests to setDialect are delegated to the
DialectManager.

1 Location WooWooAnalyzer :: goToDefinition (const DefinitionParams & params)
{

2 return navigator -> goToDefinition (params);
3 }
4
5 std :: vector < CompletionItem > WooWooAnalyzer :: complete (const

CompletionParams & params) {
6 return completer -> complete (params);
7 }

Code listing 5.5 Redirecting Requests to Feature Components

5.2.2.1 Handling Paths and URIs
Ensuring consistent handling of file paths and URIs across different operating systems presented
a significant development challenge. For example, on Windows, file:///example.woo and
file:///Example.woo refer to the same file, while on Linux, they represent distinct files. Addi-
tionally, on macOS, the behavior depends on the specific file system configuration. Importantly,
while the LSP primarily uses URIs for file identification [8], the analyzer component also requires
actual paths to initially load file content and handle navigating include statements effectively.

A suite of utility functions was developed (residing within the utils namespace in utils.h
and utils.cpp) to ensure consistent handling of filenames. These functions handle platform-
specific conversions between URIs and file system paths. For example, the uriToPathString
function converts a URI to a platform-appropriate file path, accounting for percent decoding,
Windows drive letters, and leading slashes. Similarly, the pathToUri function generates valid
file URIs from file system paths.

C++ platform macros (like APPLE or WIN32) are used for platform-specific code execution.
The implementation currently treats all macOS file systems as case-insensitive. This is an area
for potential future refinement.

Analysis Engine Implementation 51

5.2.2.2 Loading a Workspace
The WooWooAnalyzer employs a structured process to load a workspace, ensuring the discovery
and processing of all .woo files. This process is initiated by the loadWorkspace method, which
accepts a workspaceUri pointing to the workspace’s root directory (typically the user-opened
folder in an IDE).

First, the analyzer identifies WooWoo project folders within the workspace. A project folder is
defined by the presence of a Woofile. The findProjectFolders function (Listing 5.6) recursively
scans the workspace for Woofile files, adding their parent directories to a list of project folders.

1 std :: vector <fs::path > WooWooAnalyzer :: findProjectFolders (const fs:: path
& rootPath) {

2 std :: vector <fs::path > projectFolders ;
3 for (const auto &entry: fs:: recursive_directory_iterator (rootPath))

{
4 if (entry. is_regular_file () && entry.path (). filename () == "

Woofile ") {
5 projectFolders . push_back (entry.path (). parent_path ());
6 }
7 }
8 return projectFolders ;
9 }

Code listing 5.6 Finding projects folder by scanning for Woofiles.

Next, the analyzer iterates through each project folder’s contents. All .woo files are loaded
using the loadDocument function, which creates and stores a DialectedWooWooDocument in-
stance for each file. These documents are associated with their respective projects for project
context aware analysis.

Finally, the analyzer gathers any .woo files within the workspace that are not part of a
recognized project. These files are grouped together, providing a means to process them even
if they lack explicit project association. An alternative approach would be to create a separate
artificial project for each unassigned file. However, for the time being, the assumption that
unassigned files may potentially be related provides a more flexible context for analysis.

Upon completion, the workspace is represented internally by two key maps: the projects
map and the docToProject map. The projects map organizes DialectedWooWooDocument
instances by their associated projects. The docToProject map facilitates quick lookups of a
document’s project based on its file path. Together, these maps enable efficient retrieval of any
DialectedWooWooDocument within the workspace.

5.2.3 DialectManager
The primary implementation goal for the DialectManager was to deserialize the dialect-definition
file into well-organized data structures and ensure an interface optimized for efficient querying
by feature components. Table 4.1 outlines the provided interface.

The Dialect class and its components (like DocumentPart and Wobject, detailed in Fig-
ure 4.6) reside in separate source and header files. Each component encapsulates its attributes
and a deserialize function for processing the YAML data.

5.2.3.1 Loading the Dialect
To specify a dialect, a path to its definition file (a YAML file) is provided. This path can
be passed either through the DialectManager’s constructor or by invoking the loadDialect
method with the path as an argument.

Analysis Engine Implementation 52

The loading operation starts with the file being read and parsed via the LoadFile func-
tion from yaml-cpp. This parsing results in an instance of the Node object (also provided by
yaml-cpp). The entire dialect definition is then deserialized into a Dialect class instance. The
DialectManager maintains a single instance of this Dialect class (stored in the activeDialect
attribute), which has a deserialize method that accepts a Node. The Dialect class initiates
the deserialization process by invoking the deserialize method on its associated components.
These components, in turn, recursively invoke deserialize on their own nested components.
See Listing 5.7 for a snippet from the Dialect class’s deserialization method.

1 void Dialect :: deserialize (const YAML :: Node& node) {
2 // Check for required nodes (omitted)
3
4 // Deserialize attributes
5 name = node["name"].as <std :: string >();
6 version_code = node[" version_code "].as <std :: string >();
7 // Other Dialect attributes (omitted)...
8
9 // Deserialize DocumentParts

10 if (node[" document_parts "]) {
11 for (const auto& dpNode : node[" document_parts "]) {
12 auto dp = std :: make_shared < DocumentPart >();
13 dp -> deserialize (dpNode);
14 document_parts . push_back (std :: move(dp));
15 }
16 }
17 // Deserialize Wobjects , Environments and Shorthands (omitted)...
18 }

Code listing 5.7 Snippet from the Dialect class’s deserialization method.

5.2.3.2 Preprocessing for Efficiency
The DialectManager preprocesses the loaded dialect-definition file to optimize the performance
of future function calls. It iterates over all valid parameter values and pre-calculates the results,
storing them in hashmaps for instant retrieval. This approach avoids the need for repetitive,
time-consuming searches.

For example, the referencesByTypeName hashmap is an important optimization. For each
structure capable of referencing another structure, it assembles a vector of its possible References
(value) by its typeName (key). This allows for instant lookup of what a given type (like the
reference environment in FIT-Math) can reference. Without this map, the DialectManager
would need to scan the entire dialect definition on each query, which would be particularly
inefficient for components like the Completer that frequently perform reference lookups.

5.2.4 Reference Mapping in DialectedWooWooDocument
The DialectedWooWooDocument class builds upon the WooWooDocument class, which handles
parsing using the Parser component and CST storage. To enable dialect-aware reference han-
dling, it integrates with the DialectManager to obtain reference information and performs pre-
processing. This pre-processing step allows language features to efficiently query the document
for all referencable and referencing fields. The primary addition in this class is the use of Tree-
sitter queries to index the document.

Firstly, the class iterates over each meta block and uses the fieldQuery (see Listing 5.8) to
obtain all keys within them. If a key within a meta block matches a reference definition within
the dialect (as detailed in Section 4.4.6.1), its position is stored in the referencableNodes

Analysis Engine Implementation 53

hashmap. For example, if a dialect defines an environment that can reference any structure
containing a meta block with a label key, all encountered label positions and their associated
values are stored. This preprocessing significantly speeds up subsequent definition searches,
enabling features such as retrieving all referencable fields by name (e.g. label) and their positions
within a document.

1 (block_mapping_pair
2 key: (flow_node
3 [
4 (double_quote_scalar)
5 (single_quote_scalar)
6 (plain_scalar)
7] @key
8)
9 value: (flow_node) @value

10)

Code listing 5.8 Query (S-expression) for finding key:value pairs within meta blocks.

In addition to storing referencable fields, the indexing process locates all referencing fields.
This involves querying for structures capable of containing references (meta block fields, short in-
ner environments, and shorthands) and matching them against names defined within the dialect.
For example, when used with the FIT-Math dialect, only the positions and values of reference
and eqref environments are stored, as these are the only environments capable of referencing
other document elements.

5.2.5 Feature Components
Feature components share a common implementation pattern. Each component defines a set of
Tree-sitter queries tailored to the specific language features it provides. For example, the Hoverer
component includes queries for identifying hoverable nodes, while the Navigator component
includes queries for locating include statements and other definition points. These queries are
precompiled during component instantiation using ts query new and being reused throughout
the component lifecycle for efficiency.

Language feature methods construct tree cursors on-demand using these queries. Cursors
are executed against the document CST, yielding nodes matching the query. To ensure the
most relevant results, most queries are limited to a specific range, typically surrounding the
position where the user triggered the feature. This range restriction is achieved by calling
ts query cursor set point range on the cursor before execution via ts query cursor exec.

Following cursor execution, the returned matches are analyzed based on the specific require-
ments of the feature. For instance, the semanticTokens feature of the Highlighter component
focuses on the position and type of matched nodes. Meanwhile, the hover feature also retrieves
the node’s text, such as the name of an outer environment. This text is necessary for a query to
the DialectManager to obtain a description of the structure, identified by its type and name. It
is ultimately displayed to the user (as shown in Figure 5.2).

Figures illustrating all other implemented features not shown in the main text are presented
in Appendix B.

Example Feature Component Implementation
The references method in the Navigator demonstrates the typical workflow of feature com-
ponents. This feature’s purpose is to find all references to a given structure across the entire
project.

Upon a user executing the Find All References feature at a given position in the editor, the
following sequence occurs:

Analysis Engine Implementation 54

Figure 5.2 Obtaining the description of the Question environment defined by the FIT-Math dialect.

1. Meta block Presence Check: The feature must be executed on a meta block, as that is
where the key being referenced is defined (e.g., label: section1). This is checked by running
a simple query (see Listing 5.9) limited to the executed position, verifying the presence of a
meta block node.

2. Meta block Field Extraction: If a meta block exists at the position, an additional query
is performed to identify the exact key-value pair within the meta block where the feature was
triggered. Note that this is a YAML query, distinct from the WooWoo query in the previous
step. The query is captured in Listing 5.8.

3. Searching Project Documents: Once the key-value pair is obtained, the feature iterates
over all documents within the same project as the one where the feature was executed. Using
the hashmaps within DialectedWooWooDocument objects (as described in Section 5.2.4), it
queries each document for references matching the given key and its associated value. This
process is demonstrated in Listing 5.10.

1 // Line and character are given as arguments .
2 TSPoint start_point = {line , character };
3 // end_point is next to start_point to specify the exact position , not a

range.
4 TSPoint end_point = {line , character + 1};
5 // Limiting the search to the position where the action was executed .
6 ts_query_cursor_set_point_range (cursor , start_point , end_point);
7 // queries [findReferencesQuery] contains the "(meta_block) @type" string

.
8 ts_query_cursor_exec (cursor , queries [findReferencesQuery],

ts_tree_root_node (document ->tree));
9

10 TSQueryMatch match;
11 std :: string nodeType ;
12 if (ts_query_cursor_next_match (cursor , &match)) {
13 if (match. capture_count > 0) {
14 TSNode node = match. captures [0]. node;
15 nodeType = ts_node_type (node);
16
17 if (nodeType == " meta_block ") {
18 // The user executed "Find All References " on a meta -block.
19 return findMetaBlockReferences (params);
20 }
21 }
22 }

Code listing 5.9 Verifying the presence of a meta block at feature execution position.

Analysis Engine Implementation 55

1 void
2 Navigator :: searchProjectForReferences (std :: vector <Location > &locations ,

WooWooDocument *doc , const Reference &reference ,
3 const std :: string & referenceValue)

{
4
5 for (auto projectDocument : analyzer -> getDocumentsFromTheSameProject (

doc)) {
6 for (auto refLocation : projectDocument ->

findLocationsOfReferences (reference , referenceValue)) {
7 projectDocument -> utfMappings -> utf8ToUtf16 (refLocation);
8 locations . emplace_back (refLocation);
9 }

10 }
11 }

Code listing 5.10 Project-wide search for references.

5.2.6 Python Bindings
To implement Python bindings, the PYBIND11 MODULE macro was utilized to create a wuff
module. Within this module, various classes were defined, with the primary focus being the
WooWooAnalyzer. This class exposes a constructor, enabling instantiation from Python, and its
entire public API. This API encompasses methods for setting up the workspace and accessing
the language features.

In addition to the WooWooAnalyzer, bindings were also implemented for all parameter types
necessary to invoke these language features. Listing 5.11 showcases the creation of the module,
the exposure of language features, and an example of the Position class binding. This class is
extensively utilized across the project to represent the position of text in documents.

1 PYBIND11_MODULE (wuff , m) {
2 // The main Analyzer class.
3 py:: class_ < WooWooAnalyzer >(m, " WooWooAnalyzer ")
4 .def(py::init <>())
5 .def(" set_dialect ", & WooWooAnalyzer :: setDialect)
6 .def(" load_workspace ", & WooWooAnalyzer :: loadWorkspace)
7 .def("hover", & WooWooAnalyzer :: hover)
8 // Other methods (omitted) ...
9

10 // Parameter classes
11 py:: class_ <Position >(m, " Position ")
12 .def(py::init <uint32_t , uint32_t >())
13 . def_readwrite ("line", & Position :: line)
14 . def_readwrite (" character ", & Position :: character);
15 // Other classes (omitted) ...
16 }

Code listing 5.11 Defining Python bindings.

Communication Layer Implementation 56

5.3 Communication Layer Implementation

The communication layer implementation resides in its own repository8. It builds mainly on the
pygls and wuff Python modules. As most of the actual work is done by these packages, the
implementation is quite simple and short.

It can be divided into three parts:

1. Utility/conversions functions: Convert data between LSP-specified types and the internal
representations used by wuff.

2. WooWooLanguageServer class: The core logic where LSP types are adapted and analysis
tasks are delegated to wuff.

3. Feature registration: Defines and registers the LSP features supported by the server. The
entry point for LSP requests.

5.3.1 Utility Functions
For seamless conversion between parameter types imported from lsprotocol.types (used by
pygls) and those expected by wuff, various conversion functions were implemented (located in
convertors.py). These functions handle bidirectional conversion. To avoid class name conflicts,
wuff structures are imported with a Wuff prefix (see Listing 5.12 for an example).

1 from wuff import Position as WuffPosition
2 from lsprotocol .types import Position
3
4 def wuff_position_to_ls (wuff_position : WuffPosition) -> Position :
5 return Position (line= wuff_position .line ,
6 character = wuff_position . character)

Code listing 5.12 Converting Position from the wuff module to Position from lsprotocol.types.

Additionally, a platform-independent utility function for converting URIs to file paths is pro-
vided in utils.py. The constants.py file contains initial parameters for semantic token con-
figuration and a preconfigured FileOperationRegistrationOptions instance. This instance,
reused across multiple features, defines the file types the language server is interested in. Cur-
rently, the filter is set to accept all files, with the filtering logic delegated to the wuff module.

5.3.2 WooWooLanguageServer Implementation
The WooWooLanguageServer, inheriting from pygls provided LanguageServer, is implemented in
the woowoo language server.py file. In its init method, it instantiates the WooWooAnalyzer
(provided by the wuff module) and configures it (e.g. sets tokens and modifiers for semantic
highlighting).

The core logic of the WooWooLanguageServer focuses on mediating between LSP types and
those used by the wuff library. It contains dedicated methods for each registered LSP feature.
These methods use conversion functions to transform data between LSP types and the types
expected and returned by the wuff analyzer. See Listing 5.13 for an example.

1 def go_to_definition (self , params : DefinitionParams) -> Optional [
Location]:

2 wuff_params = WuffDefinitionParams (
3 WuffTextDocumentIdentifier (params . text_document .uri),

8Available at: https://gitlab.fit.cvut.cz/woowoo/lsp/woowoo-language-server

https://gitlab.fit.cvut.cz/woowoo/lsp/woowoo-language-server

Communication Layer Implementation 57

4 WuffPosition (params . position .line , params . position . character
),

5)
6 return wuff_location_to_ls (self. analyzer . go_to_definition (

wuff_params))
7 }

Code listing 5.13 Typical method of WooWooAnalyzer, constructing parameters for wuff, and then
returning the result in pygls-compatible type.

Setting a Dialect
As established in Section 4.5.1.2, the dialect must be set during server initialization. This is
achieved through the initializationOptions field provided within the InitializeParams of
the Initialize request in the LSP. This field allows the client to send any user-provided initial-
ization options to the server during startup, as documented in the LSP Specification [8].

The server specifically expects a path to the dialect file in the dialectFilePath key within
initializationOptions. If the user (client) does not provide a path to a dialect, the server falls
back to FIT-Math, as currently, it is the most logical option due to its adoption. The FIT-Math
dialect is included with the server.

The selected dialect file path is used to configure the WooWooAnalyzer before a loadWorkspace
request is issued. Both the dialect setting and the loadWorkspace action are triggered in response
to the client’s Initialize request.

5.3.3 Feature Registration and Launching the Server
The server.py file provides the entry point for clients to interact with the WooWoo Language
Server. It contains an instance of the WooWooLanguageServer class and defines the start func-
tion, used to launch the server in STDIO mode (as discussed in Section 4.5.1.3).

Importantly, server.py is where language features are registered to the instance. Listing 5.14
demonstrates this structure. Adding a new feature is streamlined:

1. Feature Registration (server.py): Decorate a function using pygls’ @SERVER.feature
decorator.

2. Mediator (WooWooLanguageServer): Create a method to handle the feature request,
using converters to bridge LSP and wuff types.

3. Analysis (wuff): Implement the analysis logic within the WooWooAnalyzer.

1 from woowoo_language_server import WooWooLanguageServer
2
3 SERVER = WooWooLanguageServer (" WooWoo Language Server ", "v1.0")
4
5 # registering INITIALIZE feature
6 @SERVER . feature (INITIALIZE)
7 def initiliaze (ls: WooWooLanguageServer , params : InitializeParams) ->

None:
8 logger .debug("[INITIALIZE]")
9

10 ls. initialize (params)
11
12 # other features registration (omitted) ...
13
14 # function to be used by client to start the server

VSCode Extension Implementation 58

15 def start () -> None:
16 SERVER . start_io ()

Code listing 5.14 The structure of the server.py file. Instantiating WooWooLanguageServer,
registering methods, and providing the start function for client to launch the server.

5.4 VSCode Extension Implementation
As outlined in Section 4.6, the extension is built upon Microsoft’s Python extension template.
This choice simplifies development, as essential logic for managing Python tools is provided by the
template. The template included marked sections indicating where customization was required.
This involved configuring the extension metadata, specifying dependencies, and setting up the
development environment. The following subsections detail the most significant implementations
and additions made on top of this foundation.

5.4.1 Extension Manifest
“Every Visual Studio Code extension needs a manifest file package.json at the root of the
extension directory structure [49].” This file defines various metadata and configurations for the
extension. Notably, the dependencies are specified here. In this case, the dependencies were left
unchanged from the extension template, as the primary dependency is the Python extension,
already included.

Importantly, the manifest file contains a contributes section, where an extension declares how
it extends VSCode’s features. For the WooWoo VSCode extension, there are several contributions
(referred to as Contribution Points), described in the following sections.

5.4.1.1 Language Contribution
The languages contribution point is used to introduce a new language to VSCode (or enrich
the knowledge about an existing one). This extension defines a new language with the id of
woowoo, named WooWoo, and associates it with files having the .woo extension (as illustrated
in Listing 5.15).

Additionally, it allows for the configuration of basic declarative features for the defined lan-
guage. For this purpose, a language-configuration.json file was created. This file contains
generally applicable settings such as surroundingPairs. This feature enables automatic enclo-
sure of selected text with commonly used brackets and quotation marks, further enhancing the
user’s editing experience.

1 " contributes ": {
2 " languages ": [
3 {
4 "id": " woowoo ",
5 " extensions ": [
6 ".woo"
7],
8 " configuration ": "./ language - configuration .json",
9 "name": " WooWoo ",

10 " aliases ": [
11 " WooWoo "
12]}],
13 " grammars ": [
14 {
15 " language ": " woowoo ",

VSCode Extension Implementation 59

16 " scopeName ": "text.woo",
17 "path": "./ syntaxes /woo.json"
18 }],
19 ...

Code listing 5.15 Defining the WooWoo Language and Grammar Contributions within the Extension
Manifest.

5.4.1.2 Grammars Contribution
As discussed in Section 4.6, most of the code highlighting is done on the client-side, not by the
language server. This is configured by providing a TextMate grammar for the language, using
the grammars contribution point (see Listing 5.15).

For this reason, a TextMate grammar for WooWoo had to be implemented. The grammar
included in this thesis was inspired by an existing TextMate grammar for WooWoo, created by
David Straka in 2021 [2].

The resulting grammar (implemented in syntaxes/woo.json) accurately captures most of
WooWoo’s syntax, but there is room for improvement. For example, it recognizes all quotes (”) as
the same token, even if used within fragile environments where highlighting of quotes might not
be expected. Additionally, it does not attempt to recognize meta blocks, as their interpretation
is left entirely up to the language server.

5.4.1.3 Configuration Contribution
This contribution point defines keys that are exposed to the user, allowing customization through
User Settings or Workspace settings.

Along with settings predefined in the Microsoft Python extension template (notifications set-
tings, custom Python interpreter), the WooWoo VSCode extension defines a dialect file path
configuration setting. Using this configuration setting, the user is expected to provide a path to
a dialect definition file, which will be used by the server, as discussed in Section 5.3.2.

5.4.2 Starting the Language Server Process
The entire WooWoo Language Server repository is included as a submodule within the extension’s
root directory, specifically in the bundled/tool/woowoo pygls subdirectory. This location is a
standard convention for housing extension-specific tools.

The bundled/tool/ directory also contains the lsp server.py file. This file serves as the
entry point for the language server and is executed directly by the Python interpreter. Its
primary function is to import the core language server implementation and launch it using the
start function (as described in Section 5.3.3).

The createServer function within server.ts is responsible for orchestrating the launch of
the language server process from the lsp server.py file. Additionally, it creates and configures
an instance of VSCode’s LanguageClient, establishing the communication channel between the
editor and the newly launched language server process. See Listing 5.16 for the core configuration
within the createServer function.

1 async function createServer (
2 settings : ISettings ,
3 serverId : string ,
4 serverName : string ,
5 outputChannel : LogOutputChannel ,
6 initializationOptions : IInitOptions ,
7): Promise < LanguageClient > {
8

Future Work 60

9 // Interpreter and arguments setup (omitted) ...
10
11 const serverOptions : ServerOptions = {
12 command , // Python interpreter
13 args , // python file to execute (lsp_server .py)
14 options : { cwd , env: newEnv },
15 };
16
17 // Options to control the language client
18 const clientOptions : LanguageClientOptions = {
19 // Register the server for woowoo documents
20 documentSelector : [{ scheme : ’file ’, language : ’woowoo ’ }],
21 outputChannel : outputChannel ,
22 traceOutputChannel : outputChannel ,
23 revealOutputChannelOn : RevealOutputChannelOn .Never ,
24 initializationOptions , // options containing the dialectFilePath
25 };
26
27 return new LanguageClient (serverId , serverName , serverOptions ,

clientOptions);

Code listing 5.16 Snippet from the createServer function showing how the server and
LanguageClient are configured and instantiated.

5.5 Future Work
The primary goal of delivering a functional, accessible language server for WooWoo has been
achieved. Since language servers are complex systems and the LSP keeps evolving, there’s always
room to improve and add new features to the WooWoo tools created in this thesis.

5.5.1 Tree-sitter Grammar
“Writing a grammar requires creativity. There are an infinite number of CFGs (context-free
grammars) that can be used to describe any given language. [47]”

The current grammar serves its purpose well, yet there remains potential for enhancement.
This is particularly true for the scanner, where subtle optimizations could streamline its detection
mechanisms and enhance the behavior during error recovery.

Another area for subtle refinement is the handling of comments within sequences of empty
lines. When a comment is inserted between empty lines that are meant to be recognized as a
multi-empty line token, it is currently included within this token.

Lastly, migrating the scanner to C represents a future improvement that should be straightfor-
ward. This change primarily involves converting the scanner’s member functions into standalone
functions that accept the scanner as a parameter.

5.5.2 Working with Woofiles
Currently, Woofiles are used only to determine project folder locations, but their contents could
be leveraged for additional insights. For example, Woofiles may declare the path to a bibliog-
raphy file containing sources frequently referenced from certain WooWoo environments. Parsing
Woofiles to extract this information could enable the language server to provide Completion and
Go to Definition features for these sources.

Future Work 61

5.5.3 Expanding Current Features
The implementation of some LSP features could be extended. Some promising enhancements
include:

Autocompletion from Bibliography Suggest autocompletions from bibliography files. This
enhancement would also necessitate extending the dialect definition format to allow specifying
which environments can reference the bibliography.

Autocompletion of Structure Names Enable autocompletion for names of structures de-
fined in the dialect file.

Highlighting of Special Environments Implement highlighting for the contents of math en-
vironments and fragile outer environments. This feature presents a challenge as the content of
these structures varies across different dialects. Introducing components like MathHighlighter
or TikzHighlighter to the analysis engine could be explored, specifying on a dialect-level
which highlighter should be used for different environment contents.

Improved Error Reporting Enhance error reporting capabilities. Current limitations im-
posed by Tree-sitter could potentially be overcome in its future versions, leading to more
precise and helpful error messages.

Diagnosis Extend the diagnostics to include linting features to check meta-blocks for required
fields, and ensure that all structure names conform to the used dialect.

Folding Ranges Extend the folding range implementation to support comment and potentially
imports kinds, in addition to the currently used region kind.

5.5.4 Adding New Features
The LSP encompasses many capabilities not yet utilized in the WooWoo Language Server. For
example, the following features could significantly enhance its functionality:

Auto-formatting Adding a feature that automatically formats files in accordance with the
latest WooWoo practices could provide a significant boost, particularly for new authors.

Code Lens This feature could enhance the document editing interface by displaying reference
counts directly above document elements, for example, providing a quick overview of their
usage without user interaction. Code Lens could also display other useful metadata, such as
the last editing date for document parts.

Document Linking This would enable link detection within documents to facilitate navigation
to external resources. This feature could be particularly useful for WooWoo, where external
resources are heavily referenced. Implementing this feature might require extending the
dialect definition.

Chapter 6

Distribution

An effective distribution strategy is crucial for language server adoption. While a language
server itself is a significant step forward, it’s often not enough on its own. Even though most
modern editors support the LSP, configuring a specific language server within them may not be
straightforward for all users, especially those unfamiliar with the LSP or nontechnical users in
general.

The LSP does not specify how it should be integrated into a tool (IDE). “Some tools integrate
language servers generically by having an extension that can start and talk to any kind of language
server. Others, like VS Code, create a custom extension per language server... [50]”. From a
user’s perspective, these different integration techniques directly impact the setup process. This
can range from simply searching for an extension within the editor’s marketplace and clicking
install, to manually downloading files and writing configuration settings.

This thesis focuses on VSCode, which, as discussed earlier, requires a custom-made extension
(with design and implementation described in Sections 4.6, 5.4). While this approach necessitates
more development effort, it greatly simplifies the installation process for end-users.

This chapter describes the details of how the WooWoo VSCode extension and its dependencies
are distributed.

6.1 Distributing wuff

As detailed in Section 4.4, wuff is the core analytical component of the WooWoo Language
Server, written in C++ for optimal performance. The choice of C++ over Python introduces
the tradeoff of a more complex build process to ensure compatibility across different operating
systems and architectures.

Requiring users to compile the package themselves would create a significant barrier, espe-
cially for those without a C++ compiler. Expecting users to install a C++ compiler is equally
impractical, particularly for nontechnical individuals. Even if comprehensive guidance were pro-
vided, the compilation process itself would demand considerable effort from the user, as it can
be quite complex and time-consuming, especially on platforms like Windows.

Pre-compiling the package is the most practical solution. However, shipping numerous bina-
ries directly with the extension isn’t feasible. The preferred approach is to upload pre-compiled
wheels to the Python Package Index (PyPI). PyPI is the standard platform for distributing
Python software, offering advantages like centralized discovery and ease of installation (using
tools like pip). Python wheels are the established binary distribution format [51]. Their domi-
nance is evident, with 359 out of the 360 most downloaded PyPI packages being distributed as
wheels (as of March 2024) [52].

62

Distributing wuff 63

6.1.1 Cross-Platform Wheel Building
To build wheels for specific target platforms, direct access to those platforms is required. Continu-
ous Integration (CI) services, like GitHub Actions or GitLab CI, are ideal for this purpose, as they
provide the necessary platforms. Tools like cibuildwheel1 automate the creation of platform-
specific build environments and the generation of corresponding wheels. “Python wheels are
great. Building them across Mac, Linux, Windows, on multiple versions of Python, is not [53].”

The cibuildwheel tool is compatible with various CI services but integrates particularly well
with GitHub Actions, which offers broader platform support. The availability of free, standard
GitHub-hosted runners for public repositories further strengthens the case for using GitHub
Actions.

For these reasons, a pipeline has been established using GitHub Actions, leveraging templates
from the official cibuildwheel repository. This pipeline configures a GitHub job for each target
platform, executing the cibuildwheel command to build the wheels. For new releases, a final
job aggregates the built wheels and uploads them to PyPI. See Figure 6.1 and Figure 6.2 for a
visual representation of the pipeline and the build process. Note that to support both Intel and
Apple Silicon chips on macOS, both macos-13 and macos-14 runners must be used, respectively.

Figure 6.1 GitHub Actions pipeline jobs for cross-platform wheel generation and PyPI upload.

1For more information about cibuildwheel, visit: https://github.com/pypa/cibuildwheel

https://github.com/pypa/cibuildwheel

Distributing wuff 64

Figure 6.2 Summarization of the steps that cibuildwheel takes on each platform. [53]

6.1.2 Supported Systems
The wuff wheels are provided for a broad spectrum of common Python versions and imple-
mentations (CPython and PyPy), operating systems, and architectures, facilitated by the use
of cibuildwheel. To ensure consistency and compatibility with pygls—utilized within the
communication layer—a minimum of Python 3.8 is required by wuff.

For a comprehensive list of supported systems, refer to the wuff project page on PyPI2 or
consult Table 6.1. If a pre-built wheel is not available for a specific system, pip will attempt to
build the package locally from the source distribution, also available on PyPI.

Note that in the context of wheel building, the tags manylinux and musllinux indicate com-
patibility with a wide range of Linux distributions based on the glibc and musl libc libraries,
respectively.

Table 6.1 Supported Systems for the wuff Package

Python Platform Windows manylinux/musllinux macOS
Version Arch x86-64 x86 x86-64 i686 ARM64 x86-64
PyPy 3.10 ✓ ✗ ✓/✗ ✓/✗ ✓ ✓
PyPy 3.9 ✓ ✗ ✓/✗ ✓/✗ ✓ ✓
PyPy 3.8 ✓ ✗ ✓/✗ ✓/✗ ✓ ✓
CPython 3.12 ✓ ✓ ✓/✓ ✓/✓ ✓ ✓
CPython 3.11 ✓ ✓ ✓/✓ ✓/✓ ✓ ✓
CPython 3.10 ✓ ✓ ✓/✓ ✓/✓ ✓ ✓
CPython 3.9 ✓ ✓ ✓/✓ ✓/✓ ✓ ✓
CPython 3.8 ✓ ✓ ✓/✓ ✓/✓ ✓ ✓

2wuff on PyPI: https://pypi.org/project/wuff/#files

https://pypi.org/project/wuff/#files

Extension Distribution 65

6.2 Extension Distribution
To maximize the reach, adoption, and convenience for users of a VSCode extension, choosing
the right distribution strategy is essential. There are two main options for distributing VSCode
extensions [54]:

Direct Distribution Involves packaging the extension into the installable VSIX format and
sharing it directly with users. VSCode provides the option to install an extension from a
local VSIX file. However, this method places the onus of discovery and updates on the user.

Marketplace Distribution Entails uploading the extension to a marketplace that is directly
integrated within VSCode. This method significantly enhances the discoverability of the
extension, as users can easily search for and install extensions relevant to their needs directly
within the editor. It also streamlines the installation process, often requiring just a few clicks,
and handles automatic updates to ensure users always have the latest version.

6.2.1 VSCode Marketplace
The VSCode Marketplace is a centralized platform integrated directly into the VSCode editor,
offering a vast collection of over 55,000 extensions (as of March 2024). VSCode’s dominance
as the preferred IDE (approximately 73% usage according to the 2023 Stack Overflow Annual
Survey [55]) highlights the marketplace’s potential for broad distribution of language tools.

Publishing to the VSCode Marketplace requires creating an organization account in Azure
DevOps, generating a Personal Access Token, and utilizing the vsce publish command for
packaging and publishing [54]. Microsoft provides detailed instructions within their “Publishing
Extensions” guide3.

The WooWoo Language Server extension is available on the marketplace4, meaning it can be
easily installed directly within VSCode by searching for “WooWoo” in the Extensions tab (See
Figure 6.3).

Figure 6.3 The WooWoo extension listed in the VSCode Marketplace, accessible from within the
editor.

6.2.2 Open VSX Registry
“The Open VSX Registry is a vendor-neutral, open source alternative to the Microsoft Visual
Studio Marketplace for VS Code extensions. It’s built on the Eclipse Open VSX project, and

3Available at: https://code.visualstudio.com/api/working-with-extensions/publishing-extension)
4https://marketplace.visualstudio.com/items?itemName=michal-janecek.woowoo-vscode

https://code.visualstudio.com/api/working-with-extensions/publishing-extension)
https://marketplace.visualstudio.com/items?itemName=michal-janecek.woowoo-vscode

Extension Distribution 66

delivers on the industry’s need for a more flexible and open approach to VS Code extensions and
marketplace technologies [56].”

This marketplace becomes particularly relevant due to the Microsoft VSCode Marketplace’s
terms of use, which restrict its use to Microsoft-branded releases. However, there are other
distributions of VSCode, such as the open-source Code - OSS. While Code - OSS serves as the
foundation for Microsoft’s VSCode, it can be packaged and distributed by various entities, such
as Arch Linux, and might have configurations that enable Open VSX by default. [57]

Publishing an extension on the Open VSX Registry requires creating an Eclipse account linked
to a GitHub profile and signing the Publisher Agreement. An access token is then generated
within the Open VSX profile. The ovsx CLI tool is used to create a namespace corresponding
to the extension’s publisher field. Finally, the extension, packaged as a VSIX file, is uploaded
to the namespace using the ovsx publish command. (Note: the ovsx tool internally leverages
vsce for packaging). [58]

To ensure accessibility for all users, including those who prefer non-Microsoft VSCode distribu-
tions—which are popular among current WooWoo authors—the extension is also made available5

on the Open VSX marketplace.

5https://open-vsx.org/extension/michal-janecek/woowoo-vscode

https://open-vsx.org/extension/michal-janecek/woowoo-vscode

Chapter 7

Testing

“Testing shows the presence, not the absence of bugs.” - Edsger W. Dijkstra

Testing is essential for ensuring the quality and reliability of software. This is particularly
true for language servers, where errors in grammar parsing or performance lags can severely
hinder the user’s editing experience. Throughout this chapter, diverse testing methodologies
employed in development will be explored. Due to the project’s scale, testing primarily targets
core components.

The chapter starts with grammar tests, the foundation of the language server’s accuracy.
Then, user testing and feedback are examined, along with performance tests (including replication
instructions). The chapter concludes with automated unit tests for the analysis engine.

7.1 Grammar Tests
Tree-sitter offers a convenient way to verify the generated parser’s correctness through the
tree-sitter test command. This command executes the parser on the defined test cases
and compares the parser’s output against the expected results. This simplifies development by
enabling repeated testing, ensuring that changes to the grammar don’t introduce unintended
errors or break existing functionality.

The official Tree-sitter manual states: “These tests are important. They serve as the parser’s
API documentation, and they can be run every time you change the grammar to verify that
everything still parses correctly. The recommendation is to be comprehensive in adding tests.
If it’s a visible node, add it to a test file in your test/corpus directory. It’s typically a good
idea to test all of the permutations of each language construct. This increases test coverage, but
doubly acquaints readers with a way to examine expected outputs and understand the ‘edges’ of
a language.” [47]

7.1.1 Test Corpus
To define grammar tests, each test case must reside in its own specially formatted text file within
the /corpus/ directory. Each file should adhere to the following structure (see Listing 7.1 for an
example):

Name The name of the test case, displayed when running the tests.

Input Source Code The input to the parser.

67

Grammar Tests 68

Expected Output Syntax Tree Expected output, represented as an S-expression1. Shows
only named nodes, similar to the tree-sitter parse command output, which additionally
shows the positions of nodes. Positions are not included in the test.

1 ==================
2 Outer environment - nested
3 ==================
4 . Chapter Test
5 label: outer -env - nested
6
7 . itemize :
8
9 .item:

10
11 Item 1 content .
12 ---
13 (source_file
14 (document_part
15 (document_part_type)
16 (document_part_title
17 (text))
18 (meta_block)
19 (document_part_body
20 (block
21 (classic_outer_environment
22 (outer_environment_type)
23 (block
24 (classic_outer_environment
25 (outer_environment_type)
26 (block
27 (text_block
28 (text))))))))))

Code listing 7.1 An example of a Tree-Sitter WooWoo test case (simple nesting.txt).

The WooWoo Language Corpus
A comprehensive, structured corpus of over 60 tests was compiled for the WooWoo language,
providing thorough coverage of its grammatical rules and edge cases. This corpus spans from
simple test cases for individual rules to large, complex cases that cover edge cases of the language,
including comments, varying newline styles, empty lines with spaces, and more.

These tests not only serve to continuously verify the parser’s correctness during development
but also act as a valuable resource for those learning WooWoo and its intricacies. For a visual
overview of the corpus structure, see Figure 7.1.

7.1.2 Manual Grammar Validation with Existing Projects
During the development of the grammar, it was continuously verified by parsing existing WooWoo
documents and checking for errors. This included every known existing WooWoo document as
of January 2024, including sources for subjects at FIT CTU with codes BI-DML, BI-LA1, BI-LA2,
BI-MA1, BI-MA2, BI-PKM, and the WooWoo sandbox.

1More on S-expressions: https://en.wikipedia.org/wiki/S-expression

https://en.wikipedia.org/wiki/S-expression

User Testing 69

tree-sitter-woowoo/corpus/.......................................The root test folder
document part...............................Tests focused on the document part rule
wobject..Tests focused on the wobject rule
outer environment......................Tests focused on the outer environment rule

fragile Tests for fragile outer environments
nested.................................Tests for various nested outer environments

table.txt .. A specific test
simple nesting.txt .. A specific test

implicit.....................................Tests for implicit outer environments
... Other tests covering outer environments

inner environment/ Tests focused on the inner environment rule
..Other tests covering various rules and cases

Figure 7.1 Structure outline of the corpus folder

This manual testing shaped the final version of the grammar. The process was iterative,
leading to many discussions with the creator of WooWoo syntax, Tomáš Kalvoda, about the
language’s precise rules. These discussions played a key role in refining the grammar’s accuracy.

Many errors were encountered during development. Some were related to special or undocu-
mented, but valid, WooWoo syntax, such as math/inner environments spanning multiple lines,
empty lines containing whitespace, and the formatting of fragile environment bodies.

Additionally, several instances of invalid syntax were found in existing WooWoo documents.
These had gone undetected by previous, less strict WooWoo parsers. These errors included
incorrectly used empty line separators, empty outer environments, unclosed math environments,
and text blocks in illegal positions. Their discovery led not only to grammar improvements but
also corrections within the existing WooWoo documents themselves.

7.2 User Testing
Real-world testing with users is essential for validating the effectiveness and usability of language
server features. This section outlines the user testing methodology employed during the develop-
ment of the WooWoo VSCode extension. The extension is essentialy a front-end to the language
server, therefore the feedback gathered from using the extension could be directly applied to the
language server.

7.2.1 Methodology
A user-focused, iterative approach was adopted for testing. The extension was made available
early to a select group of initial users, primarily within the FIT CTU community who are actively
involved in authoring WooWoo textbooks.

This initial user group included the creator of WooWoo, Tomáš Kalvoda, who provided
valuable insights from his own use and feedback gathered from colleagues. The feedback, collected
primarily through direct discussions, led to the identification of issues, which were then addressed
in subsequent updates of the extension.

Additionally, a GitLab issue tracker supplemented the feedback process, allowing users to
document bug reports and other observations. This iterative cycle of feedback, updates, and
further testing ensured the continuous refinement of the WooWoo Language Server and the
VSCode extension. The extension was made available from its early versions and was improved
through this process over a months-long period.

Performance Tests 70

7.2.2 Results
The user testing process led to significant improvements in the following areas:

1. Code Highlighting: Refinement of certain code highlighting rules to ensure accurate, visu-
ally helpful, and consistent code coloring.

2. Performance Optimization: Addressing performance bottlenecks that caused noticeable
lags.

3. Localization: Improvements in the handling of Czech diacritics in language structures.

4. Dialect Accuracy: Resolving dialect-specific issues, such as inaccurate descriptions of ele-
ments.

7.3 Performance Tests
Performance tests were conducted on a selected subset of representative analysis engine features
to guide the choice of underlying technology. Results of these tests, visually presented in the
Design Chapter (Section 4.4.1.2), aided in making the design decision. This section outlines the
datasets used, engine versions tested, the methodology employed, and the steps for replicating
the experiments.

7.3.1 Datasets
The performance tests utilized nearly all existing WooWoo source codebases (see Table 7.1).
Importantly, these datasets are currently only accessible to students and teachers at FIT CTU.

Table 7.1 Testing Datasets Used for Performance Measurements

Code Description File Count Total Lines Commit Hash
bi-dml BI-DML Course textbook1 16 35795 25b40d1
bi-la1 BI-LA1 Course textbook2 9 16202 6f0b206
bi-la2 BI-LA2 Course textbook 3 10 14661 c1c237d
bi-ma1 BI-MA1 Course textbook4 10 15693 c33df5b
bi-ma2 BI-MA2 Course textbook5 7 12749 a2229c0

7.3.2 Methodology
This analysis utilized four testing scripts (located in the /test/performance directory) to eval-
uate key aspects of the analysis engine’s performance. Importantly, for the purpose of these
tests, one dataset was treated as a single workspace. Below is an overview of each script and its
purpose:

initialization.py Measures the time required to execute load workspace on each specified
dataset (repeated ten times). This provides insight into how quickly the analyzer becomes
operational and responsive.

1https://gitlab.fit.cvut.cz/BI-DML/bi-dml
2https://gitlab.fit.cvut.cz/BI-LA1/bi-la1
3https://gitlab.fit.cvut.cz/BI-LA2/bi-la2
4https://gitlab.fit.cvut.cz/BI-MA1/bi-ma1
5https://gitlab.fit.cvut.cz/BI-MA2/bi-ma2

https://gitlab.fit.cvut.cz/BI-DML/bi-dml
https://gitlab.fit.cvut.cz/BI-LA1/bi-la1
https://gitlab.fit.cvut.cz/BI-LA2/bi-la2
https://gitlab.fit.cvut.cz/BI-MA1/bi-ma1
https://gitlab.fit.cvut.cz/BI-MA2/bi-ma2

Performance Tests 71

semantic tokens.py This test provides a benchmark for a computationally intensive feature.
For each dataset:

1. The workspace is loaded.
2. The semantic tokens feature is executed on every file within the workspace.
3. The execution time for a single semantic tokens operation is measured and repeated ten

times for each file.

hover.py This test assesses the responsiveness of the hover feature under various conditions. It
provides insights into the efficiency of a simple feature, as the hover information is primarily
derived from the dialect file, without needing much computation resources. The following
steps outline the test procedure:

1. A single, representative WooWoo file was selected.
2. Multiple predefined locations within the file were chosen to represent diverse code struc-

tures and positions (start, middle, end).
3. The hover feature is executed at each predefined location.
4. The execution time for each individual hover operation is measured and recorded.
5. The process is repeated ten times to ensure reliable results.

completion.py Similar in principle to the hover test, this script executes the completion fea-
ture at predefined locations representing a variety of autocompletion scenarios. Additionally,
it simulates file changes to trigger cache invalidation, as this context-dependent, workspace-
wide feature relies on up-to-date workspace state. This test aims to assess the performance
of a workspace-state dependent feature as it adapts to code changes.

7.3.3 Replication
To replicate the performance tests, one should follow these steps:

1. Clone the woowoo-language-server2 repository.

2. Check out one of the following commits:

Python Version: f3939ee5 (last commit before migration to wuff)
C++ Version: 39d3a9c (tested with wuff==1.1.3)

3. Place the datasets in the /test/data/ directory in the root of the repository.

4. Ensure the datasets match the commits specified in Table 7.1.

5. Configure the script:

a. Locate the tested version variable and set its value to either “python” or “C++” based
on the version you’re testing.

b. Ensure that the dialect path (for C++) and template path (for Python) variables point
to the correct YAML file within your local copy of the repository.

6. Run the scripts.

7. Results will be saved within the /test/results folder.

8. (Optional) Use the /results/plots.ipynb notebook to visualize the collected data.
2Available on FIT CTU’s GitLab: https://gitlab.fit.cvut.cz/woowoo/lsp/woowoo-language-server

https://gitlab.fit.cvut.cz/woowoo/lsp/woowoo-language-server

Unit Testing wuff 72

7.4 Unit Testing wuff

“A unit test is an automated piece of code that invokes the unit of work being tested, and
then checks some assumptions about a single end result of that unit. A unit test is almost
always written using a unit testing framework. It can be written easily and runs quickly. It’s
trustworthy, readable, and maintainable. It’s consistent in its results as long as production code
hasn’t changed. [59]”

Unit testing aligns well with modular development practices, encouraging the creation of
well-defined, independent components that are easier to test and reason about.

As described in Section 4.4, the analysis engine (wuff) is a core component within the
WooWoo Language Server, responsible for the majority of language analysis tasks. Therefore, it
was a primary focus of unit testing efforts.

7.4.1 Testing Framework
The Pytest framework3 was chosen for writing tests, as the unit tests target the wuff Python
package. This approach effectively serves as a combined test of the C++ analysis engine’s core
functionality and the integrity of the Python bindings. Pytest’s flexibility, ease of use and a lot
of resources make it a well-suited choice for this project.

7.4.2 Structure
The unit tests are organized to match the components responsible for specific language features
within the analysis engine (see Figure 7.2). Since each component requires a WooWooAnalyzer
instance to operate within a specific workspace and dialect, a common configuration is es-
tablished using Pytest fixtures for streamlined testing. A session-scoped fixture initializes the
WooWooAnalyzer, ensuring a consistent testing environment for all subsequent tests.

tests/..The root folder
conftest.py ... Utilities and pytest fixtures
files...Folder with mock workspace for testing
basic...Folder with basic tests
components.................................Folder with tests organized by component

completer...........Folder containing test files targeting the Completer component
navigator......................................Tests of the Navigator component

test definition.py......................Tests for the Go to Definition feature
test references.py...................Tests for the Find All References feature

Other components Other tests organized by component

Figure 7.2 Unit Tests Directory Structure

Listing 7.2 demonstrates a core component test. It uses the analyzer fixture to get a configured
WooWooAnalyzer instance, calls its complete method (utilizing the Completer component), and
asserts that the expected labels were suggested.

1 def test_complete_reference (analyzer , file1_uri):
2 cp = create_completion_params (file1_uri , 4, 41)
3 results = analyzer . complete (cp) # call to the WooWooAnalyzer
4
5 labels = ["ct1", "ct2", "ct3"]
6 for label in labels :

3More on pytest: https://docs.pytest.org/en/8.0.x/

https://docs.pytest.org/en/8.0.x/

Unit Testing wuff 73

7 assert any(result .label == label for result in results), f"Label
{label} not found in results "

Code listing 7.2 Testing Completion suggestions (snippet from test complete.py)

7.4.3 Use in Wheel-Building Pipeline
A key advantage of targeting the Python module is seamless integration into the wheel build
pipeline (described in Section 6.1.1). This allows automated testing after a wheel is built for
a specific platform, safeguarding against platform-specific issues. If any tests fail, the build
process halts, preventing the distribution of faulty wheels. See Figure 6.2 for a visualization of
test integration within the process.

This approach acts as a safety net for code correctness and build integrity. During develop-
ment, it frequently exposed issues ranging from programming errors to platform-specific build
configuration problems or missing dependencies.

Chapter 8

Conclusion

WooWoo stands as a powerful markup language with significant potential. However, prior to
this thesis, its authoring tooling was lacking.

This work began with a comprehensive view of WooWoo, encompassing its history, syn-
tax, semantics, and its role in creating the math study materials favored by students at FIT
CTU. Building upon this foundation, this thesis also contributed by introducing the concept of
“WooWoo Dialects”, a key abstraction for developing language tools for WooWoo while preserv-
ing its domain-agnostic nature.

The main focus of this thesis was to build a language server for WooWoo. Progressing
from using Tree-sitter to generate a powerful WooWoo parser, which serves as the heart of
the language server, to building an analysis engine for WooWoo workspaces—written in C++ for
performance reasons—which enables the language features. Finally, this engine was incorporated
into a Python-based language server, which integrates seamlessly with VSCode and has been
adopted by WooWoo authors.

Furthermore, this thesis addressed distribution aspects, ensuring the analysis engine’s avail-
ability on PyPI and making the extension available on popular extension marketplaces used by
various VSCode builds.

The project’s codebase is managed across four Git repositories, hosted internally on FIT
CTU’s GitLab1. The development process encountered many challenges and dead ends but ulti-
mately yielded a tool that not only serves WooWoo authors but also provides a vast infrastructure
to build upon, with many reusable components.

In summary, the contributions of this thesis provide lasting benefits to the WooWoo commu-
nity, offering both immediate enhancements to the WooWoo authoring experience and resources
to build upon for future innovations.

1Located in the woowoo/lsp group: https://gitlab.fit.cvut.cz/woowoo/lsp

74

https://gitlab.fit.cvut.cz/woowoo/lsp

Appendix A

Installation Guide

This appendix details the installation procedures for the WooWoo VSCode extension, including
alternative approaches primarily intended for developers and advanced users with specific tech-
nical requirements. For a more streamlined guide, refer to the extension’s description on the
marketplace1.

Step 1: System Compatibility
Ensure that your system meets the following requirements:

Python 3.8 or higher.

A C++ compiler for compiling the wuff package, if necessary. This is only required on systems
where a pre-compiled wuff wheel is not available. Check Table 6.1 for compatible systems.

Step 2: Install wuff
Install the wuff package into the Python interpreter that the extension will use to launch the lan-
guage server. This could be a Python virtual environment, the system-wide Python installation,
or any other Python interpreter on your system. Use the following command for installation:

pip install wuff

wuff is available on PyPI2. PyPI also provides a source distribution, which will be compiled
using a C++ compiler on your system if a pre-compiled wheel is not available.

Developer Alternative: Compile From Source Locally
Alternatively, you can clone the wuff repository and install it locally:

git clone https://gitlab.fit.cvut.cz/woowoo/lsp/wuff.git
cd wuff
pip install .

1https://marketplace.visualstudio.com/items?itemName=michal-janecek.woowoo-vscode
2https://pypi.org/project/wuff/#files

75

https://marketplace.visualstudio.com/items?itemName=michal-janecek.woowoo-vscode
https://pypi.org/project/wuff/#files

76

Step 3: Install the Extension
This step describes how to obtain and install the WooWoo extension in VSCode, using one of
three methods based on your preference and setup needs.

Option 1: Install Directly via Marketplace (Recommended)
Install the WooWoo extension by opening the Extensions tab in VSCode. Type “WooWoo” into
the search field to locate the extension. Once found, click Install to complete the installation
process.

Option 2: Download the Extension from a Website
Alternatively, you can download the extension file (VSIX) from Open VSX or the Microsoft
VSCode Marketplace. Once downloaded, install the extension manually using the Install from
VSIX option in VSCode.

This method is particularly useful if you are using a custom build of VSCode that does not
integrate with the standard marketplaces.

Option 3: Package the Extension Yourself
For those involved in development and testing, another option is to package the extension your-
self. Begin by installing the vsce tool, which depends on Node.js. Then, clone the extension
repository and use vsce to package it:

npm install -g @vscode/vsce
git clone https://gitlab.fit.cvut.cz/woowoo/lsp/vscode-woowoo-lsp
cd vscode-woowoo-lsp
vsce package

This process will generate a VSIX file in the extension folder, which you can then install
manually in VSCode.

Step 4: Select Interpreter
After installing the extension, ensure the correct Python interpreter is selected by using the
Command Menu.

Press Ctrl + Shift + P (Windows/Linux) or Cmd + Shift + P (Mac) and search for the
Python: Select Interpreter command. Then, choose the Python interpreter where wuff
was installed in Step 2.

If the language server isn’t working, you may need to run the WooWoo VSCode: Restart
Server command from the command menu to restart the language server.

Step 5: Configure Dialect (optional)
Language support in WooWoo is highly dependent on the specific dialect used. To ensure the
extension operates correctly, you must specify your dialect unless you are using the default
FIT-Math dialect.

1. Access Settings: Open VSCode settings with Ctrl + , (Windows/Linux) or Cmd + ,
(Mac).

2. Search for WooWoo: Type “WooWoo” in the settings search bar.

77

3. Set Dialect File Path: Locate the “WooWoo-vscode: Dialect file path” setting and input
the absolute path to your dialect-definition file.

4. Restart VSCode: Restart VSCode to apply the changes.

The dialect file path you set is passed to the language server by the VSCode language server
client upon startup.

Appendix B

Feature Demonstration

This appendix showcases various features of the WooWoo Language Server. It includes screen-
shots taken from the Visual Studio Code editor with the WooWoo extension installed, demon-
strating these features in action.

B.1 Diagnostics

(a) Example of a short inner environment missing a body.

(b) Example of an unclosed math environment.

Figure B.1 Demonstration of the Diagnostics feature, specifically focusing on error reporting based
on the detection of Tree-sitter MISSING nodes.

78

Diagnostics 79

(a) Syntax error caused by incorrect separation of document parts, which require a minimum of two empty lines
between them. The error is identified based on the position of the ERROR node within the CST.

(b) Syntax error resulting from an invalid fragile outer environment that has an empty body, which is prohibited.

Figure B.2 Demonstration of the Diagnostics feature, specifically focusing on error reporting based
on the detection of Tree-sitter ERROR nodes.

Completion 80

B.2 Completion

(a) Initial suggestions for completing the body of an inner environment that can reference another structure.

(b) Filtered suggestions displayed after the user begins typing. Client-side filtering is performed by VSCode.

Figure B.3 Demonstration of the Completion feature for inner environments capable of referencing,
focusing on body completion.

For a demonstration of the Completion feature applied to the include statement, see Fig-
ure 2.5 presented in Chapter 2.

Go To Definition 81

B.3 Go To Definition

(a) User executes the Go to Definition option on a reference inner environment.

(b) After execution, the user is redirected to the corresponding structure. Behavior is dialect-dependent.

Figure B.4 Demonstration of the Go to Definition feature, illustrating how users are directed to
labeled structures within the FIT-Math dialect.

File Rename 82

B.4 File Rename

(a) The user initiates a file rename via the
GUI by right-clicking, selecting the Rename
option, and entering the new name.

(b) VSCode displays the changes suggested
by the WooWoo Language Server, offering op-
tions to accept immediately, preview, or skip
the changes.

(c) The user reviews proposed changes; here, the language server suggests refactoring file references in include
statements to reflect the new filename.

Figure B.5 Demonstration of the Rename Files feature, illustrating the process from initiation to
review of proposed changes.

Folding Range 83

B.5 Folding Range

(a) Option to fold an entire document part by clicking the left arrow. Users can also choose to fold specific blocks
selectively.

(b) Example of the folding feature applied to entire document parts.

Figure B.6 Demonstration of the Folding Range feature, which allows users to fold document parts,
blocks, and wobjects.

Rename Symbol 84

B.6 Rename Symbol

(a) User initiates the Rename Symbol feature on a referencable field within a metablock.

(b) The user is prompted to enter a new name for the symbol. Upon confirmation, a project-wide renaming is
executed, refactoring the symbol and all associated references.

Figure B.7 Demonstration of the Rename Symbol feature, enabling project-wide refactoring of refer-
ences.

Semantic Tokens 85

B.7 Semantic Tokens
The Semantic Tokens feature can be seen in action in Figures B.6a and B.7, as well as in other
figures that depict meta blocks. The highlighting of these blocks is facilitated using this feature.

B.8 Hover
For a demonstration of the Hover feature, see Figure 5.2 presented in Chapter 5.

B.9 Find All References
For a demonstration of the Find All References feature, see Figure 2.4 presented in Chapter 2.

Bibliography

1. FRNKA, Matěj. Generator of Mind Maps from WooWoo Documents. CTU, Faculty of
Information Technology, 2022. Bachelor’s Thesis.

2. STRAKA, David. WooWoo Source Code Editor. CTU, Faculty of Information Technology,
2021. Bachelor’s Thesis.

3. PRETEXT PROJECT CONTRIBUTORS. PreTeXt – Write Once, Read Anywhere [online].
2024. [visited on 2024-02-24]. Available from: https://pretextbook.org/.

4. PRETEXTBOOK CONTRIBUTORS. PreTeXt [online]. 2024. [visited on 2024-02-24]. Avail-
able from: https://github.com/PreTeXtBook/pretext.

5. KALVODA, Tomáš. Catalogue of terms and statements [online]. CTU, Faculty of Informa-
tion Technology, 2024 [visited on 2024-03-23]. Available from: https://woowoo.pages.
fit/catalogue/.

6. KALVODA, Tomáš. WooWoo Specs [online]. CTU, Faculty of Information Technology, 2021
[visited on 2024-02-24]. Available from: https://kam.fit.cvut.cz/deploy/woowoo-
specs/woowoo-specs.pdf.

7. KALVODA, Tomáš. Example WooWoo Document [online]. CTU, Faculty of Information
Technology, 2024 [visited on 2024-02-25]. Available from: https://woowoo.pages.fit/
sandbox/index.html.

8. MICROSOFT. Language Server Protocol Specification, Version 3.17 [online]. 2024. [visited
on 2024-02-11]. Available from: https : / / microsoft . github . io / language - server -
protocol/specifications/lsp/3.17/specification/.

9. SOURCEGRAPH. Langserver.org [online]. 2024. [visited on 2024-03-03]. Available from:
https://langserver.org.

10. MICROSOFT. Language Server Extension Guide [online]. 2024. [visited on 2024-03-11].
Available from: https://code.visualstudio.com/api/language-extensions/language-
server-extension-guide.

11. STOCK, Vinicius. Improving the Developer Experience with the Ruby LSP [online]. 2023.
[visited on 2024-03-05]. Available from: https://shopify.engineering/improving-the-
developer-experience-with-ruby-lsp.

12. MICROSOFT. Language Server Protocol Overview [online]. 2024. [visited on 2024-02-11].
Available from: https://microsoft.github.io/language-server-protocol/overviews/
lsp/overview/.

13. HANDY, Alex. Codenvy, Microsoft and Red Hat collaborate on Language Server Protocol.
SD Times [online]. 2016 [visited on 2024-03-03]. Available from: https://sdtimes.com/
che/codenvy-microsoft-red-hat-collaborate-language-server-protocol/.

86

https://pretextbook.org/
https://github.com/PreTeXtBook/pretext
https://woowoo.pages.fit/catalogue/
https://woowoo.pages.fit/catalogue/
https://kam.fit.cvut.cz/deploy/woowoo-specs/woowoo-specs.pdf
https://kam.fit.cvut.cz/deploy/woowoo-specs/woowoo-specs.pdf
https://woowoo.pages.fit/sandbox/index.html
https://woowoo.pages.fit/sandbox/index.html
https://microsoft.github.io/language-server-protocol/specifications/lsp/3.17/specification/
https://microsoft.github.io/language-server-protocol/specifications/lsp/3.17/specification/
https://langserver.org
https://code.visualstudio.com/api/language-extensions/language-server-extension-guide
https://code.visualstudio.com/api/language-extensions/language-server-extension-guide
https://shopify.engineering/improving-the-developer-experience-with-ruby-lsp
https://shopify.engineering/improving-the-developer-experience-with-ruby-lsp
https://microsoft.github.io/language-server-protocol/overviews/lsp/overview/
https://microsoft.github.io/language-server-protocol/overviews/lsp/overview/
https://sdtimes.com/che/codenvy-microsoft-red-hat-collaborate-language-server-protocol/
https://sdtimes.com/che/codenvy-microsoft-red-hat-collaborate-language-server-protocol/

Bibliography 87

14. MICROSOFT. Language Server Protocol Implementors [online]. 2024. [visited on 2024-02-
11]. Available from: https : / / microsoft . github . io / language - server - protocol /
implementors/servers/.

15. JSON-RPC WORKING GROUP. JSON-RPC 2.0 Specification [online]. 2013. [visited on
2024-03-04]. Available from: https://www.jsonrpc.org/specification.

16. BIRRELL, Andrew D.; NELSON, Bruce Jay. Implementing remote procedure calls. ACM
Trans. Comput. Syst. 1984, vol. 2, no. 1, pp. 39–59. issn 0734-2071. Available from doi:
10.1145/2080.357392.

17. ALTEXSOFT. Functional and Nonfunctional Requirements: Specification and Types [on-
line]. 2023. [visited on 2024-03-11]. Available from: https://www.altexsoft.com/blog/
functional-and-non-functional-requirements-specification-and-types/.

18. QAT GLOBAL. Guide to Functional Requirements [online]. 2024. [visited on 2024-03-11].
Available from: https://qat.com/guide-functional-requirements/.

19. BRUNSFELD, Max. Enabling low-latency, syntax-aware editing using Tree-sitter. Zed In-
dustries Blog [online]. 2023 [visited on 2024-03-21]. Available from: https://zed.dev/
blog/syntax-aware-editing.

20. TYPESCRIPT LANGUAGE SERVER CONTRIBUTORS ET AL. TypeScript Language
Server [online]. 2024. [visited on 2024-03-16]. Available from: https : / / github . com /
typescript-language-server/typescript-language-server.

21. MICROSOFT. Standalone Server (tsserver) [online]. 2023. [visited on 2024-03-16]. Avail-
able from: https://github.com/microsoft/TypeScript/wiki/Standalone-Server-
%28tsserver%29.

22. THE RUST DEV TOOLS TEAM. RLS Deprecation [online]. 2022. [visited on 2024-03-17].
Available from: https://blog.rust-lang.org/2022/07/01/RLS-deprecation.html.

23. FERROUS SYSTEMS & CONTRIBUTORS. rust-analyzer [online]. 2024. [visited on 2024-
03-17]. Available from: https://rust-analyzer.github.io/.

24. BASH LANGUAGE SERVER CONTRIBUTORS ET AL. bash-language-server: Bash Lan-
guage Server [online]. 2024. [visited on 2024-03-16]. Available from: https://github.com/
bash-lsp/bash-language-server.

25. TREE-SITTER CONTRIBUTORS ET AL. Tree-sitter: An incremental parsing system for
programming tools [online]. 2024. [visited on 2024-03-24]. Available from: https://github.
com/tree-sitter/tree-sitter/.

26. KALVODA, Tomáš. WooWoo library [online]. 2024. [visited on 2024-03-18]. Available from:
https://gitlab.fit.cvut.cz/woowoo/woowoo.

27. KSCHIESS et al. parslet GitHub Repository [online]. 2014. [visited on 2024-03-18]. Available
from: https://github.com/kschiess/parslet/blob/master/qed/accelerators.md.

28. STRAKA, David. Wootom GitHub repository [online]. 2021. [visited on 2024-03-18]. Avail-
able from: https://github.com/davidstraka2/wootom/.

29. HUTCHISON, Luke A. D. Pika parsing: reformulating packrat parsing as a dynamic pro-
gramming algorithm solves the left recursion and error recovery problems. ar5iv. 2020.
Available from eprint: 2005.06444v2.

30. MIT OPENCOURSEWARE. Parser Generators - MIT OCW [online]. 2016. [visited on
2024-03-20]. Available from: https://ocw.mit.edu/ans7870/6/6.005/s16/classes/18-
parser-generators/index.html.

31. PARR, Terence; FISHER, Kathleen. LL(*): the foundation of the ANTLR parser generator.
In: 2011, pp. 425–436. Available from doi: 10.1145/1993498.1993548.

https://microsoft.github.io/language-server-protocol/implementors/servers/
https://microsoft.github.io/language-server-protocol/implementors/servers/
https://www.jsonrpc.org/specification
https://doi.org/10.1145/2080.357392
https://www.altexsoft.com/blog/functional-and-non-functional-requirements-specification-and-types/
https://www.altexsoft.com/blog/functional-and-non-functional-requirements-specification-and-types/
https://qat.com/guide-functional-requirements/
https://zed.dev/blog/syntax-aware-editing
https://zed.dev/blog/syntax-aware-editing
https://github.com/typescript-language-server/typescript-language-server
https://github.com/typescript-language-server/typescript-language-server
https://github.com/microsoft/TypeScript/wiki/Standalone-Server-%28tsserver%29
https://github.com/microsoft/TypeScript/wiki/Standalone-Server-%28tsserver%29
https://blog.rust-lang.org/2022/07/01/RLS-deprecation.html
https://rust-analyzer.github.io/
https://github.com/bash-lsp/bash-language-server
https://github.com/bash-lsp/bash-language-server
https://github.com/tree-sitter/tree-sitter/
https://github.com/tree-sitter/tree-sitter/
https://gitlab.fit.cvut.cz/woowoo/woowoo
https://github.com/kschiess/parslet/blob/master/qed/accelerators.md
https://github.com/davidstraka2/wootom/
2005.06444v2
https://ocw.mit.edu/ans7870/6/6.005/s16/classes/18-parser-generators/index.html
https://ocw.mit.edu/ans7870/6/6.005/s16/classes/18-parser-generators/index.html
https://doi.org/10.1145/1993498.1993548

Bibliography 88

32. FREE SOFTWARE FOUNDATION, INC. GNU Bison [online]. 2014. [visited on 2024-03-
24]. Available from: https://www.gnu.org/software/bison/.

33. KRILL, Paul. What’s new in GitHub’s Atom text editor. InfoWorld [online]. 2018 [visited
on 2024-03-21]. Available from: https://www.infoworld.com/article/3263904/whats-
new-in-githubs-atom-text-editor.html.

34. BRUNSFELD, Max et al. Tree-sitter — Using Parsers [online]. 2024. [visited on 2024-03-
20]. Available from: https://tree-sitter.github.io/tree-sitter/using-parsers.

35. BRUNSFELD, Max. Tree-sitter - a new parsing system for programming tools [online].
2018. [visited on 2024-03-24]. Available from: https : / / youtu . be / Jes3bD6P0To ? si =
BOutnQbDgmO0Kgjf&t=2076.

36. NEOVIM CONTRIBUTORS. neovim — Treesitter [online]. 2024. [visited on 2024-03-24].
Available from: https://neovim.io/doc/user/treesitter.html.

37. BRUNSFELD, Max et al. Tree-sitter — Syntax Highlighting [online]. 2024. [visited on
2024-03-20]. Available from: https://tree-sitter.github.io/tree-sitter/syntax-
highlighting.

38. GITHUB. Why Tree-Sitter? [online]. 2020. [visited on 2024-03-24]. Available from: https:
//github.com/github/semantic/blob/main/docs/why-tree-sitter.md.

39. MICROSOFT. Authoring Python Extensions [online]. 2022. [visited on 2024-03-25]. Avail-
able from: https://code.visualstudio.com/api/advanced-topics/python-extension-
template.

40. OPEN LAW LIBRARY. pygls: A Pythonic framework to build Language Servers [online].
2024. [visited on 2024-03-26]. Available from: https://github.com/openlawlibrary/
pygls.

41. MARSH, Charlie. Ruff: An extremely fast Python linter [online]. 2024. [visited on 2024-03-
25]. Available from: https://github.com/astral-sh/ruff-lsp.

42. AVAST. yls: YARA Language Server [online]. 2023. [visited on 2024-03-26]. Available from:
https://github.com/avast/yls.

43. OPEN LAW LIBRARY. pygls - pygls 1.3.1 documentation [online]. 2024. [visited on 2024-
04-13]. Available from: https://pygls.readthedocs.io/en/latest/index.html.

44. MICROSOFT. Language Extensions Overview [online]. 2024. [visited on 2024-04-08]. Avail-
able from: https://code.visualstudio.com/api/language-extensions/overview.

45. MICROSOFT. Syntax Highlight Guide [online]. 2024. [visited on 2024-04-08]. Available
from: https://code.visualstudio.com/api/language-extensions/syntax-highlight-
guide.

46. MICROSOFT. Semantic Highlight Guide [online]. 2024. [visited on 2024-04-08]. Available
from: httpshttps://code.visualstudio.com/api/language-extensions/semantic-
highlight-guide.

47. BRUNSFELD, Max et al. Tree-sitter — Using Parsers [online]. 2024. [visited on 2024-03-
20]. Available from: https://tree-sitter.github.io/tree-sitter/creating-parsers.

48. KITWARE, INC. AND CONTRIBUTORS. CMake Documentation: FetchContent [online].
2024. [visited on 2024-04-09]. Available from: https://cmake.org/cmake/help/latest/
module/FetchContent.html.

49. MICROSOFT. Visual Studio Code — Extension Manifest [online]. 2024. [visited on 2024-
04-10]. Available from: https://code.visualstudio.com/api/references/extension-
manifest.

https://www.gnu.org/software/bison/
https://www.infoworld.com/article/3263904/whats-new-in-githubs-atom-text-editor.html
https://www.infoworld.com/article/3263904/whats-new-in-githubs-atom-text-editor.html
https://tree-sitter.github.io/tree-sitter/using-parsers
https://youtu.be/Jes3bD6P0To?si=BOutnQbDgmO0Kgjf&t=2076
https://youtu.be/Jes3bD6P0To?si=BOutnQbDgmO0Kgjf&t=2076
https://neovim.io/doc/user/treesitter.html
https://tree-sitter.github.io/tree-sitter/syntax-highlighting
https://tree-sitter.github.io/tree-sitter/syntax-highlighting
https://github.com/github/semantic/blob/main/docs/why-tree-sitter.md
https://github.com/github/semantic/blob/main/docs/why-tree-sitter.md
https://code.visualstudio.com/api/advanced-topics/python-extension-template
https://code.visualstudio.com/api/advanced-topics/python-extension-template
https://github.com/openlawlibrary/pygls
https://github.com/openlawlibrary/pygls
https://github.com/astral-sh/ruff-lsp
https://github.com/avast/yls
https://pygls.readthedocs.io/en/latest/index.html
https://code.visualstudio.com/api/language-extensions/overview
https://code.visualstudio.com/api/language-extensions/syntax-highlight-guide
https://code.visualstudio.com/api/language-extensions/syntax-highlight-guide
httpshttps://code.visualstudio.com/api/language-extensions/semantic-highlight-guide
httpshttps://code.visualstudio.com/api/language-extensions/semantic-highlight-guide
https://tree-sitter.github.io/tree-sitter/creating-parsers
https://cmake.org/cmake/help/latest/module/FetchContent.html
https://cmake.org/cmake/help/latest/module/FetchContent.html
https://code.visualstudio.com/api/references/extension-manifest
https://code.visualstudio.com/api/references/extension-manifest

Bibliography 89

50. MICROSOFT. Language Server Protocol - Visual Studio [online]. 2022. [visited on 2024-03-
30]. Available from: https://learn.microsoft.com/en-us/visualstudio/extensibility/
language-server-protocol?view=vs-2022.

51. PYTHON PACKAGING AUTHORITY. Binary Distribution Format [online]. 2024. [vis-
ited on 2024-03-30]. Available from: https : / / packaging . python . org / en / latest /
specifications/binary-distribution-format/.

52. DENTON, Charlie. Python Wheels [online]. 2024. [visited on 2024-03-30]. Available from:
https://pythonwheels.com/.

53. PYPA. cibuildwheel: Build Python wheels on CI with minimal configuration [online]. 2024.
[visited on 2024-03-30]. Available from: https://github.com/pypa/cibuildwheel.

54. MICROSOFT. Publishing Extensions - Visual Studio Code [online]. 2024. [visited on 2024-
03-30]. Available from: https://code.visualstudio.com/api/working-with-extensions/
publishing-extension.

55. STACK OVERFLOW. Stack Overflow 2023 Developer Survey [online]. 2024. [visited on
2024-03-31]. Available from: https://survey.stackoverflow.co/2023/#overview.

56. KÖHNLEIN, Jan. The Open VSX Registry at the Eclipse Foundation: What You Need to
Know [online]. 2021. [visited on 2024-03-31]. Available from: https://www.eclipse.org/
community/eclipse_newsletter/2021/january/1.php.

57. ARCH LINUX COMMUNITY. Visual Studio Code - ArchWiki [online]. 2024. [visited on
2024-03-31]. Available from: https://wiki.archlinux.org/title/Visual_Studio_Code.

58. TRONÍČEK, Filip. Open VSX - Publishing Extensions [online]. 2022. [visited on 2024-
03-31]. Available from: https : / / github . com / eclipse / openvsx / wiki / Publishing -
Extensions.

59. OSHEROVE, Roy. The Art of Unit Testing: with Examples in C#. 2nd ed. Manning Pub-
lications, 2013. isbn 978-1617290893.

https://learn.microsoft.com/en-us/visualstudio/extensibility/language-server-protocol?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/extensibility/language-server-protocol?view=vs-2022
https://packaging.python.org/en/latest/specifications/binary-distribution-format/
https://packaging.python.org/en/latest/specifications/binary-distribution-format/
https://pythonwheels.com/
https://github.com/pypa/cibuildwheel
https://code.visualstudio.com/api/working-with-extensions/publishing-extension
https://code.visualstudio.com/api/working-with-extensions/publishing-extension
https://survey.stackoverflow.co/2023/#overview
https://www.eclipse.org/community/eclipse_newsletter/2021/january/1.php
https://www.eclipse.org/community/eclipse_newsletter/2021/january/1.php
https://wiki.archlinux.org/title/Visual_Studio_Code
https://github.com/eclipse/openvsx/wiki/Publishing-Extensions
https://github.com/eclipse/openvsx/wiki/Publishing-Extensions

Contents of the Enclosed Medium

The attachment contains four Git repositories corresponding to the projects developed and de-
scribed in this thesis. In addition, the woowoo-language-server repository includes the per-
formance tests. For clarity, only the core files and folders are listed in the directory tree below.
Additionally, each project folder contains a README.md file that provides further information.

/ Root directory containing all project repositories and files
tree-sitter-woowoo.....................Repository for WooWoo Tree-sitter grammar

corpus Structured tests for tree-sitter-woowoo
grammar.js ... Grammar definition file
src...Source code for the parser

parser.c Parser generated by Tree-sitter
scanner.cc............................Custom external scanner implementation

wuff..Repository for the wuff analysis engine
.github...........................GitHub Actions pipelines for wheels distribution
src Entire wuff C++ codebase, including Python bindings
tests..Unit tests for the Python module
setup.py Script for building and installing the module

woowoo-language-server................Repository for the WooWoo Language Server
server.py................Script to start the server and manage feature registration
woowoo language server.py....Core implementation of the WooWooLanguageServer
dialects Directory containing the default dialect, fit-math.yaml
test...................................Performance tests, scripts, data, and results

vscode-woowoo-lsp....................Repository for the WooWoo VSCode extension
src..TypeScript codebase of the extension
syntaxes Directory containing woo.json, the TextMate grammar for WooWoo
bundled............................Directory containing the tool and launcher files
package.json.......................................Manifest file for the extension

90

	Acknowledgments
	Declaration
	Abstract
	Introduction
	The WooWoo Language
	Introduction to WooWoo
	The Need for WooWoo
	Inspired by PreTeXt
	Present and Future

	Syntax and Semantics
	Indentation and Whitespace
	Document
	Document Part
	Include Statement
	Meta Block
	Wobject
	Block
	Text Block
	Outer Environments

	The Building Blocks of WooWoo
	Dialect
	Templates
	Project

	Language Server Protocol
	The Need for LSP
	LSP Foundations
	JSON-RPC
	LSP Specification
	Document Synchronization
	Workspace Synchronization
	Language Features

	Requirements
	Functional Requirements
	Non-functional Requirements

	Design & Technologies
	Overview of Existing Language Servers
	TypeScript Language Server
	Rust-Analyzer
	Bash Language Server

	High-Level Language Server Architecture
	Parser
	Existing WooWoo Parsers
	Parser Generators
	Parser Choice

	Analysis Engine
	Technology
	Architecture Overview
	WooWooAnalyzer
	Parser
	WooWooDocument
	DialectManager
	Feature Components
	Enabling Python Integration

	Communication Layer
	Pygls

	VSCode Extension Integration

	Implementation
	Parser Implementation
	Defining Grammar Rules
	External Scanner
	Parser Integration

	Analysis Engine Implementation
	Build Configuration with CMake
	WooWooAnalyzer
	DialectManager
	Reference Mapping in DialectedWooWooDocument
	Feature Components
	Python Bindings

	Communication Layer Implementation
	Utility Functions
	WooWooLanguageServer Implementation
	Feature Registration and Launching the Server

	VSCode Extension Implementation
	Extension Manifest
	Starting the Language Server Process

	Future Work
	Tree-sitter Grammar
	Working with Woofiles
	Expanding Current Features
	Adding New Features

	Distribution
	Distributing wuff
	Cross-Platform Wheel Building
	Supported Systems

	Extension Distribution
	VSCode Marketplace
	Open VSX Registry

	Testing
	Grammar Tests
	Test Corpus
	Manual Grammar Validation with Existing Projects

	User Testing
	Methodology
	Results

	Performance Tests
	Datasets
	Methodology
	Replication

	Unit Testing wuff
	Testing Framework
	Structure
	Use in Wheel-Building Pipeline

	Conclusion
	Installation Guide
	Feature Demonstration
	Diagnostics
	Completion
	Go To Definition
	File Rename
	Folding Range
	Rename Symbol
	Semantic Tokens
	Hover
	Find All References

	Contents of the Enclosed Medium

