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Instructions

Type 1 diabetes disrupts normal blood glucose regulation due to the destruction of 

insulin-producing cells, necessitating insulin therapy through injections or insulin 

pumps. Consumer devices can forecast blood glucose levels by leveraging data from 

blood glucose sensors and other sources. Such predictions are valuable for informing 

patients

about their blood glucose trajectory and supporting various downstream applications. 

Numerous machine-learning models have been explored for blood glucose prediction. 

The goal of the thesis is to research and improve machine learning models for blood 

glucose level prediction. One of the possible directions is to focus on Legendre memory 

units instead of common LSTM units or to use transformers (e.g., autoformer or informer). 

Moreover, for all those models, focusing on non-standard optimizers like the Lion 

optimizer might be beneficial.

Details assignment points:

1) Research the current state-of-the-art approaches for blood glucose predictions based 

on multivariate inputs.

2) Investigate promising models like LMU or transformer architectures like autoformer or 

informer that have the potential to improve performance. Select at least two of the most 

promising approaches.

3) Use the Ohio dataset to research the previously selected models experimentally. 

Experiment with various hyperparameters and training strategies.

4) Evaluate and discuss the results. Focus on the comparison with existing studies.

Electronically approved by Ing. Magda Friedjungová, Ph.D. on 14 February 2024 in Prague.
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Abstract

This work addresses the task of predicting blood glucose levels in patients
with type 1 diabetes. Models based on Transformer architecture and Legen-
dre Memory Units (LMU) were explored. The application of LMUs in this
work represents their first use for blood glucose level prediction. Employing
multivariate time series, predictions are made with 30-minute and 60-minute
horizons. Models were trained and evaluated using the OhioT1DM dataset,
which includes eight weeks of data from 12 distinct patients. The dataset
consists of two editions, released in 2018 and 2020.

Performance was measured using Root Mean Square Error (RMSE), and
Clarke Error Grid Analysis was utilized to evaluate clinical accuracy. LMUs
achieved an RMSE of 18.17 mg/dl for the 30-minute horizon and 30.33 mg/dl
for the 60-minute horizon, in the 2018 edition. In the 2020 edition, the RMSEs
were 18.56 mg/dl and 32.57 mg/dl for the 30-minute and 60-minute horizons,
respectively.

LMUs were proven to match and, in smaller datasets (2018 edition of
OhioT1DM), even outperform the state-of-the-art models.

Keywords type 1 diabetes, blood glucose prediction, time series forecasting
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Abstrakt

Tato práce adresuje problém predikce hladiny glukózy v krvi u pacientů s
diabetem 1. typu. Pro účel predikce byli aplikovány modely založené na
Transformer architektuře a Legendre Memory Units (LMU). Aplikace LMU
je v této práci taky první použití těchto modelů pro účel predikce hladiny
glukózy v krvi. Modely predikovali budoucí hodnoty hladiny glukózy na zák-
ladě vícerozměrných časových řad na vstupu a byli experimentálně hodnoceny
na 30minutovém a 60minutovém predikčním horizontu. Modely byly trénovány
a hodnoceny na datasetu OhioT1DM, který obsahuje osm týdnů dat od 12
různých pacientů. Dataset se skládá ze 2 edic, které byly vydány v letech 2018
a 2020.

Přesnost modelů byla hodnocena pomocí Root Mean Square Error (RMSE)
a k vyhodnocení klinické přesnosti byla použita Clarke error grid analýza.
LMU dosáhly RMSE 18.17 mg/dl pro 30minutový horizont a 30.33 mg/dl pro
60minutový horizont v edici OhioT1DM z roku 2018. V edici z roku 2020 byly
RMSE 18.56 mg/dl a 32.57 mg/dl.

Bylo prokázáno, že LMU dosahují, a na menších datasetech (edice OhioT1DM
2018), dokáží i překonat stávající state-of-the-art modely.

Klíčová slova diabetes typu 1, predikce hladiny krevní glukózy, prognóza
časových řad
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Introduction

Type 1 diabetes (T1D) is an autoimmune disorder causing abnormal blood glu-
cose (BG) levels due to the body’s incapability to produce insulin. Treatment
primarily involves the patient’s active involvement in managing their condi-
tion, which includes regularly monitoring glucose levels, administering insulin,
and controlling diet and exercise. Although T1D cannot be cured, effective
management can prevent complications by maintaining BG levels within the
recommended range. Recent developments in diabetes treatment technologies
and wearable devices have made collecting and processing relevant patient data
easier.

Accurate prediction of BG levels in patients with T1D is crucial for develop-
ing tools that assist in making informed treatment decisions and for systems
that automate insulin delivery. Such systems include blood glucose alarms
that alert patients about upcoming hyperglycemic or hypoglycemic events and
closed-loop systems used for automatic insulin delivery. These closed-loop sys-
tems utilize sensor-based glucose readings and potentially other data sources
to compute insulin dosages, which are forwarded to an insulin pump to deliver
the insulin.

Many machine learning (ML) based models have been proposed for the task
of BG prediction, see Chapter 2 for detail. Some of the explored models were
ARIMA, support-vector-machines (SVM), and neural networks. A popular
choice of neural networks are recurrent neural networks (RNN), particularly
LSTM.

Objectives
This thesis aims to research and improve upon the current state-of-the-art
methods for predicting blood glucose levels using multivariate inputs. This
involves investigating promising model architectures, as well as training and
data pre-processing techniques, with the aim of enhancing the performance of
proposed ML models.

1



Introduction 2

The training and evaluation of these models are conducted using the stan-
dard OhioT1DM dataset [1]. The best-performing models are compared against
existing state-of-the-art approaches, and their clinical accuracy is evaluated.
The prediction horizons are 30 and 60 minutes.

Overview
The thesis is organized into the following chapters:

Chapter 1 introduces the condition of T1D, the theory behind BG predic-
tions, and datasets used to develop models for BG prediction, including
the OhioT1DM dataset.

Chapter 2 reviews related literature and studies.

Chapter 3 explains the pre-processing applied to the dataset and the cre-
ation of new features.

Chapter 4 puts forward the theory behind proposed ML models for BG
prediction.

Chapter 5 describes the model training and tuning and compares the pro-
posed models and different training strategies.

Chapter 6 showcases the best model, its performance, and clinical accuracy
and compares it against the related studies.



Chapter 1

Background

1.1 Type 1 Diabetes
The introduction presented basic information about Type 1 Diabetes. This
section provides a more detailed exploration of the condition, beginning with
the challenges of BG regulation and dynamics.

The primary goal of T1D treatment is to maintain BG within a safe range,
similar to that of a healthy individual, known as euglycemia. The typical
euglycemic range cited in the research is approximately 60 to 140 mg/dl or 3.3
to 7.8 mmol/l. This range is commonly used for diabetes tests [2].

Hypoglycemia occurs when BG levels fall below 3.3 mmol/l or 60 mg/dl.
Symptoms include anxiety, sweating, and hunger, progressing to more severe
neurological effects such as behavioral changes, cognitive dysfunction, and,
in extreme cases, seizures and coma. The lower the glucose level, the more
severe the symptoms tend to be. Patients aim to avoid hypoglycemia due to
its potential to severely impair functionality or be life-threatening [3].

Hyperglycemia is defined by BG levels exceeding 180 mg/dl or 10 mmol/l.
Chronic levels of BG above this threshold can produce noticeable organ dam-
age over time. Symptoms of hyperglycemia are usually benign, like dry mouth
and polyuria, but can be more severe if hyperglycemia develops into ketoaci-
dosis. The greatest danger of chronic hyperglycemia is the long-term effects,
especially on the microvascular system. These effects may be life-threatening
and include damage to the eye, kidneys, nerves, heart, and the peripheral
vascular system [4].

1.1.1 Blood Glucose Dynamics
When analyzing BG dynamics, factors impact BG levels by either increasing
or decreasing the BG.

The primary factor that causes BG levels to rise is the consumption of
carbohydrates. These are metabolized into glucose, a simple sugar that is a

3



Blood Glucose Prediction 4

key energy source for various bodily functions. The time it takes for glucose
to become available in the bloodstream after eating can vary depending on
the food consumed. The duration and rate at which glucose is released into
the blood are measured by the Glycemic Index, which ranks foods accordingly
[5]. Additionally, the rate of glucose release into the bloodstream is specific to
each individual and can vary according to different life situations.

Additional factors that can increase BG levels include stress, anaerobic
exercise, and the action of glucagon — a hormone that prompts the release of
stored glucose from the liver, among other influences.

The primary factor that reduces BG levels is insulin. There are various
types of insulin that differ in their onset of action and overall duration of their
effect, leading to differing ways of acting on the BG levels. Insulin is typically
administered through insulin pens or insulin pump injections. Insulin pumps
deliver insulin primarily in two ways: basal and bolus. Basal insulin involves
regular, small infusions of short-acting insulin, while bolus doses are larger,
single-time injections, typically before meals or as corrective doses to manage
BG levels. As was demonstrated by Davidson et al. [6], the effect of insulin on
BG levels also varies from person to person, depending on individual insulin
sensitivity. This sensitivity is influenced by factors such as age, weight, and
the average amount of insulin administered in recent weeks.

Additional factors that can lower BG include aerobic exercise and alcohol
consumption.

1.2 Blood Glucose Prediction

Martin H. Kroll [7] demonstrated that BG variations include a deterministic
component and that it can be described as a nonlinear oscillatory or chaotic
system that can be modeled.

The BG prediction task can be defined as univariate time-series forecast-
ing if only past BG levels are used for predictions or multivariate time-series
forecasting if multiple features, including past BG levels, are used to make pre-
dictions. This work focuses on the multivariate version. Features influencing
BG levels include insulin, carbohydrate consumption, physical activity, stress,
illness, and others.

Formally, as the input, the model takes n successive previous measurements
of feature vectors in past n time steps t1, t2, . . . , tn from interval [t − (n − 1)∆t, t],
where ti = t − ∆t(n − i), as an input. Hence, extending n or ∆t brings a
longer historical context to the model. Each component of a feature vector
xs = (xs;1, xs;2, . . . , xs;p) is associated with one of the p features. The output
is the prediction Ĝt+PH of the BG level Gt+PH at time t+PH, where PH is the
prediction horizon indicating how long into the future the predictions are be-
ing made. In this work, the model, represented by a function f∆(xt1 , . . . , xtn),
analogously to [8] predicts the change Gt+PH − Gt.
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It is expected that with a longer PH, the prediction performance will de-
crease. BG takes time to change, and as PH increases, the BG has further
opportunities to develop, leading to a wider range of possible BG values.

The aim is to find a model to predict the future BG values at a given PH
with the smallest error and generalize well for various BG trajectories.

1.3 Overview of T1D Datasets
Multiple datasets are utilized to develop BG prediction models. A frequently
used dataset is the OhioT1DM dataset [1], accessible to researchers through
a formal access request. Additional notable datasets include the Tidepool
dataset [9], OpenAPS Data Commons [10], and DiaTrend [11]. The mentioned
datasets can be accessed upon access request, which can be made either directly
to the authors or via the platforms hosting them.

To the best of the authors’ knowledge, no datasets are immediately avail-
able for free download without prior inquiry, except for the Type 1 Diabetes
Blood Glucose Prediction dataset [12]. This dataset is hosted on the Kaggle
platform and was previously published by the author of this thesis. It contains
five months of data from a single patient and is freely downloadable.

Additionally, many studies utilize synthetically generated data for model
evaluation, with the UVA/Padova simulator being a frequently used generator
[13].

This thesis uses the OhioT1DM dataset1 [1], frequently used in research, it
provides a wealth of related studies for comparison. This extensive use allows
for a comprehensive evaluation of the achieved results against a broad selection
of existing works.

1.4 OhioT1DM Dataset
The OhioT1DM dataset is available in two editions, from 2018 and 2020, and
the models developed in this thesis are evaluated on both versions. This dataset
includes data collected over eight weeks from 12 individuals with T1D, divided
equally between the two editions. Each participant used a smartphone applica-
tion and a fitness band to log daily activities. Patients wore either Medtronic
530G or 630G insulin pumps and used Medtronic Enlite CGM sensors through-
out the data collection period, see Figure 1.1. The insulin used by the patients
was either Humalog or Novalog. The first cohort from 2018 of 6 individuals
wore Basis Peak fitness bands. The second cohort from 2020 of 6 individuals
wore the Empatica Embrace. The full list of all features available is as fol-
lows [1]:

1Available at http://smarthealth.cs.ohio.edu/OhioT1DM-dataset.html.

http://smarthealth.cs.ohio.edu/OhioT1DM-dataset.html
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(a) Medtronic 530G insulin
pump [14]

(b) Medtronic Enlite CGM
sensor [15]

Figure 1.1 T1D equipment used by patients from the OhioT1DM dataset.

1. <patient> The patient ID number and insulin type.

2. <glucose level> CGM data, recorded every 5 minutes.

3. <finger stick> BG values obtained through self-monitoring by the patient.

4. <basal> The rate at which basal insulin is continuously infused.

5. <temp basal> A temporary basal insulin rate that supersedes the patient’s
normal basal rate.

6. <bolus> Insulin delivered to the patient. The most common bolus type,
normal, delivers all insulin at once. Other bolus types can stretch out the
insulin dose over the period between ts begin and ts end.

7. <meal> The self-reported time and type of a meal, plus the patient’s
carbohydrate estimate for the meal.

8. <sleep> The times of self-reported sleep, plus the patient’s subjective as-
sessment of sleep quality: 1 for Poor; 2 for Fair; 3 for Good.

9. <work> Self-reported times of going to and from work. Intensity is the
patient’s subjective assessment of physical exertion on a scale of 1 to 10,
with 10 being the most physically active.

10. <stressors> Time of self-reported stress.

11. <hypo event> Time of self-reported hypoglycemic episode.

12. <illness> Time of self-reported illness.

13. <exercise> Time and duration, in minutes, of self-reported exercise. In-
tensity is the patient’s subjective assessment of physical exertion on a scale
of 1 to 10, with 10 being the most physically active.

14. <basis heart rate> Heart rate, aggregated every 5 minutes.
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15. <basis gsr> Galvanic skin response. The data was aggregated every 5
minutes and 1 minute for the 2018 and 2020 cohorts, respectively.

16. <basis skin temperature> Skin temperature, in degrees Fahrenheit, ag-
gregated every 5 minutes and 1 minute for the 2018 and 2020 cohorts,
respectively.

17. <basis air temperature> Air temperature, in degrees Fahrenheit, aggre-
gated every 5 minutes.

18. <basis steps> Step count, aggregated every 5 minutes.

19. <basis sleep> Times when the sensor band reported that the subject was
asleep. For the 2018 cohort, there is also a numeric estimate of sleep quality.

20. <acceleration> Magnitude of acceleration, aggregated every 1 minute.

Features basis heart rate, basis air temperature, and basis steps are available
for the 2018 cohort only, while feature acceleration is available for the 2020
cohort only.

There are two XML files for each data contributor: one for training and
validation data and another for testing data. Thus, there are 24 XML files,
with each of the 12 contributors having two files.

It is noted that for the purposes of this thesis, bolus insulin that is adminis-
tered over a period of time was treated as if delivered all at once. Using the true
stretched-out insulin slightly negatively affected the model performance. This
can possibly be attributed to the fact that the models with the stretched-out
insulin input had less information about the actual insulin dose to be delivered
compared to the case when the whole insulin dose to be delivered was given
to the model at once. However, this effect is limited because most doses are
delivered at once.

1.4.1 CGM Sensor Accuracy
It is important to note that CGM sensors do not directly measure BG but
rather glucose levels in the interstitial fluid. There is a lag between BG and
interstitial glucose, which ranges from 5 to 10 minutes, according to Ananda
Basu et al. [16]. Furthermore, errors also come from the sensor itself due to
various factors.

The sensor lag is particularly significant in clinical settings, especially dur-
ing rapid changes in BG levels. For example, during episodes where BG levels
are quickly rising or falling, the glucose concentration can reach hypoglycemic
or hyperglycemic range within a short period. Under such circumstances, pa-
tients might experience symptoms of hyperglycemia or hypoglycemia, even
though the sensor indicates that glucose levels are within a safe range.
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Due to potential errors and the time lag associated with CGM sensors,
FBG samples, when available, can offer a more accurate reflection of current
BG levels.

1.5 OhioT1DM Data Analysis
This section conducts an exploratory data analysis. A selection of features is
chosen, which were further used in later chapters for model development.

Table 1.1 presents the number of training and testing BG samples available
for each patient. The number of train and test samples is relatively consistent
across patients. Patient 588 has the highest number of training samples, to-
taling 12640, while patient 552 has the fewest, with 9080. For testing samples,
patient 540 has the maximum, with 2896 samples, and patient 552 has the
minimum, at 2364.

Table 1.1 Patient BG samples.

Cohort Patient ID Train Samples Test Samples
2018 559 10796 2514
2018 563 12124 2570
2018 570 10982 2745
2018 575 11866 2590
2018 588 12640 2791
2018 591 10847 2760
2020 540 11947 2896
2020 544 10623 2716
2020 552 9080 2364
2020 567 10858 2389
2020 584 12150 2665
2020 596 10877 2743

Table 1.2 shows basic descriptive statistics for both OhioT1DM cohorts
combined. They include the number of samples, mean, standard deviation,
minimum and maximum, and 25, 50, and 75 percentile values. This presents
an initial insight into the feature properties. It can be seen that the range of
BG values is from 40 to 400, which also is the effective range of the Medtronic
Enlite CGM sensor [17]. The average BG level is 159.58 mg/dl, with a similar
average for FBG at 158.16 mg/dl. The typical bolus insulin dosage recorded is
approximately 5.95 units, and the basal insulin rate averages about 1.01 units
per hour.

To better understand the distribution of individual features, histograms
of BG, FBG, carbohydrates, bolus, and basal insulin are presented in Figure
1.2 for glucose-related features and Figure 1.3 for insulin and carbohydrate
features. The histograms for BG and FBG exhibit similar patterns, which is
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expected considering that CGM sensors are designed to estimate interstitial
glucose levels that approximate FBG concentrations. The histogram of car-
bohydrates is right-skewed, with the highest frequency of carbohydrate intake
occurring in the lower range, specifically below 100 grams. The histogram of
bolus insulin has a similar shape, with most insulin doses below 10 units. Most
basal insulin doses fall within the range of 0.5 to 2 units per hour. However,
there is a peak at 0 units per hour, likely reflecting instances when patients
have temporarily disabled basal insulin delivery.

Table 1.2 Descriptive statistics of BG, FBG, bolus, basal, and carbohydrates
from the OhioT1DM dataset.

BG [mg/dl] FBG [mg/dl] Bolus [u.] Basal [u./h] Carb. [g]
count 166533 4762 3733 165359 2168
mean 159.58 158.16 5.95 1.01 45.40
std 60.67 75.66 4.41 0.42 33.65
min 40.00 0.00 0.00 0.00 0.00
25% 113.00 107.00 2.60 0.73 21.75
50% 152.00 152.00 4.80 0.98 39.000
75% 197.00 203.00 8.50 1.25 60.00
max 400.00 586.00 25.00 2.34 450.00

Figure 1.2 Histograms of BG and FBG from the OhioT1DM dataset.

Figure 1.4 is a glance at a day’s worth of data from a single patient with
BG, carbohydrates, and bolus insulin displayed in the figure. Fluctuations
in BG levels can be observed, particularly around meal times and at times
when insulin is administered. Furthermore, it can be seen that there was a
gap in BG measurements approximately between 12:00 and 18:00. Gaps in
the BG measurements are quite common and are further explored in Table
1.3. Additionally, the BG spike observed after 18:00 does not appear to be
preceded by any recorded carbohydrate consumption. This might suggest that
the patient did not accurately log the meal.
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Figure 1.3 Histograms of bolus, basal, and carbohydrates from the OhioT1DM
dataset.

Figure 1.4 Short-term BG behavior with purple line threshold for hypoglycemia,
orange for euglycemia, and red for hyperglycemia.

Table 1.3 provides comprehensive data on mean BG gap durations, gap
counts, and missing percentages across all patients and both cohorts.

The mean gap duration, gap count, and missing percentage of BG val-
ues show significant variation among patients. For example, in the training
dataset, patient 588 exhibits the lowest missing percentage at 4.59%, whereas
patient 596 has the highest at 23.88%. In the testing dataset, the missing per-
centages range from as low as 3.06% for patient 591 to as high as 40.72% for
patient 552. These disparities suggest that using a straightforward approach of
resampling and interpolating to handle missing values may not effectively rep-
resent the true dynamics of BG levels. A more detailed discussion on strategies
for managing missing BG values can be found in Section 3.3.

Lastly, Figure 1.5 presents a series of violin plots illustrating the distribu-
tion of BG levels for individual patients. The body of each violin plot provides
a mirrored density estimation showing the probability density of the data at
different values, with the middle horizontal line in each plot indicating the
mean. The shapes of the violins for both cohorts are generally similar. How-
ever, individual variations exist. A distribution displaying a long tail extending
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Table 1.3 Patient data on BG gaps, including mean gap duration, gap count,
and missing percentages by patient and cohort.

ID Dataset Cohort Mean Duration [min] Count Missing %
559 test 2018 169 11 12.59
563 test 2018 206 3 8.67
570 test 2018 80 9 4.69
575 test 2018 69 10 5.65
588 test 2018 227 2 3.09
591 test 2018 113 4 3.06
540 test 2020 111 8 5.54
544 test 2020 355 6 13.39
552 test 2020 798 10 40.72
567 test 2020 224 11 19.62
584 test 2020 115 15 11.02
596 test 2020 221 6 8.66
559 train 2018 157 42 10.75
563 train 2018 236 21 7.68
570 train 2018 162 20 7.00
575 train 2018 90 72 9.45
588 train 2018 238 10 4.59
591 train 2018 371 26 16.30
540 train 2020 198 30 9.83
544 train 2020 470 22 16.17
552 train 2020 234 44 19.16
567 train 2020 239 57 19.78
584 train 2020 98 59 8.29
596 train 2020 534 26 23.88

upward indicates a higher frequency of hyperglycemia episodes. Conversely, a
long tail at the lower end of the distribution suggests more frequent occurrences
of hypoglycemia.
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Figure 1.5 Violin plot of BG for each patient.



Chapter 2

Related Work

2.1 Broad Overview
One of the earliest studies on BG prediction was conducted by Bremer and
Gough in 1999 [18]. The researchers demonstrated that future BG levels could
be predicted using only historical BG data. Ashenafi Zebene Woldaregay et
al. mapped out the landscape of available literature on BG prediction in a
comprehensive review [19]. The review gives an insight into the models used,
prediction horizons, and achieved performance. Further, there is information
about study subjects and inputs used for the models. The review considered
peer-reviewed journals, articles, and conference proceedings published between
2000 and 2018.

Their findings show that the most commonly investigated prediction hori-
zons range from 15 minutes to 2 hours. Figure 2.2 shows the most frequent
combinations of features used to train models for BG prediction as reported
in [19], with BG, Insulin, and Diet being the most frequent. Figure 2.1 show-
cases the most common types of models used for BG prediction according to
[19]. It can be seen that most commonly, they are feed-forward neural net-
works, closely followed by recurrent neural networks (RNN) and then hybrid
approaches. Most of the hybrid BG prediction models involve the hybridiza-
tion of physiological (compartmental) models and different ML techniques.

Physiological models are typically used to convert raw features, such as
insulin doses, carbohydrate intake, and potentially physical activity, into a
format that should enhance the predictive performance of ML models. This
process usually involves transforming these features from discrete to continu-
ous. These continuous features aim to better represent the dynamics of insulin
absorption into the circulation and the conversion of carbohydrates into read-
ily available glucose for use by the body. For additional details, see Section
3.1.

Various other models were previously used for the BG prediction task,

13
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including support-vector regression [20] and statistical approaches like ARIMA
[21].

Figure 2.1 Classes of ML techniques used for BG prediction. [19]

Figure 2.2 Types of input features used for BG prediction. [19]

It is important to note that comparing prediction performance across dif-
ferent studies is challenging because model evaluations often do not utilize
the same datasets. The predictability of BG dynamics can vary significantly
among patients; for instance, individuals with routine daily activities and reg-
ular BG patterns may present less complex prediction tasks compared to those
with more irregular lifestyles and BG fluctuations.

Furthermore, the methodologies and data transformations used in these
studies can differ substantially. For example, for any time t and PH, Georga
et al. [22] excluded data windows from their dataset that contained any events
such as food intake, insulin administration, or moderate to intense exercise
within the time interval [t, t + PH]. This exclusion of training instances is
intended to establish a more logical connection between input and output by
not considering unpredictable future events. However, it also makes the data
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less noisy, and it is harder to make predictions if such dropout is not used.
In another example, Rabby et al. [23] applied Kalman smoothing to the

BG values across their entire dataset, effectively reducing noise and simplify-
ing the prediction process. They reported results for both the smoothed and
unsmoothed data, but it is crucial to carefully interpret these results, recog-
nizing how such data pre-processing may influence the apparent prediction
performance.

Given the difficulties in comparing prediction performance across differ-
ent studies due to varying methodologies and datasets, this thesis will only
compare with models developed using the OhioT1DM dataset. Additionally,
careful attention has been given to accurately interpret the reported results to
ensure that meaningful comparisons can be made with the selected studies.

2.2 Works utilizing the OhioT1DM dataset

This section introduces works that utilized the 2018 and/or 2020 editions of
the OhioT1DM dataset.

2.2.1 Performance on OhioT1DM, 2018 edition
Chen et al. in [24] proposed a Dilated Recurrent Neural Network for a 30-
minute BG prediction task, utilizing the 1-hour input containing CGMs, bolus
insulin doses, and carbohydrate intake, achieving a mean root mean squared
error (mean RMSE) of 19.04 mg/dl. Performance was evaluated on all test
data points.

Martinsson et al. in [25] implemented an LSTM-based neural network that
utilized the past 30 minutes of BG history to make BG prediction 30 and 60
minutes in the future, achieving a mean RMSE of 20.1 mg/dl and 33.2 mg/dl,
respectively. Performance was evaluated only on test points where at least 12
previous consecutive measurements were available.

Rabby et al. in [23] implemented a stacked LSTM neural network, which
utilized the past 2 hours of BG values, carbohydrate intake from the meal,
insulin dose as a bolus, and 5-min aggregation of step count from the fitness
band. The carbohydrate and insulin features were transformed into continuous
variables instead of using the raw discrete samples. They further experimented
with Kalman smoothing of the input and target BG time series. They report
RMSE for both 30 and 60-minute PH. The RMSE achieved for raw BG input
and output was 18.57 mg/dl and 30.32 mg/dl, respectively. The best RMSE
for the Kalman smoothed BG was 5.89 mg/dl and 17.24 mg/dl, respectively.
They mention that: "It is possible to evaluate the model at a certain point
in time if there are at least 24 prior data points available (prior data points
for 120 min)", which suggests that the performance was evaluated only on test
points where at least 24 previous consecutive measurements were available,
but it is not stated explicitly.
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2.2.2 Performance on OhioT1DM, 2020 edition
The reported performance is always evaluated on all provided test data points
of all patients from the 2020 edition of OhioT1DM. Some works also utilized
the 2018 edition and/or other datasets for pre-training.

Zhu et al. in [8] proposed Generative Adversarial Networks (GAN) for BG
prediction, utilizing 1.5 hours of historical data containing BG, carbohydrate
intake, and bolus insulin. The first half of the cohort from the 2018 OhioT1DM
edition was used for model pre-training. The achieved RMSE was 18.34 mg/dl
and 32.21 mg/dl for 30-minute and 1-hour PH, respectively.

Rubin-Falcone et al. in [26] developed an N-BEATS model utilizing BG,
finger stick glucose, bolus values, carbohydrate inputs, sine and cosine of time,
and missingness indicators for BG values. They’ve built an ensemble of models,
each using a different input length, and used the median as the ensemble
prediction. The models were pre-trained on the 2018 version of the OhioT1DM
dataset and the Tidepool dataset [9] and then fine-tuned per patient. The
achieved mean RMSE was 18.22 mg/dl and 31.66 mg/dl for 30-minute and 1-
hour PH, respectively. The authors further mention that without pre-training
on OhioT1DM 2018 and Tidepool, the 30-minute PH performance was 18.87
mg/dl.

Daniels et al. in [27] proposed a multi-task learning approach by training
a convolutional RNN (CRNN) with subject-specific layers. The model was
trained on 2-hour-long inputs with BG, insulin bolus, carbohydrate intake,
and reported exercise. The achieved RMSE was 19.79 mg/dl and 33.73 mg/dl
for 30-minute and 1-hour PH, respectively.



Chapter 3

Pre-processing and Feature
Engineering

The OhioT1DM dataset contains two files, train and test, for each patient.
The training dataset is loaded and split into training and validation sets, with
the first 80% of the data points used for training the models and the last 20%
for validation.

The BG sensors used in the OhioT1DM study are expected to take glu-
cose readings every 5 minutes. Occasionally, gaps in the readings may occur
due to signal loss, malfunction, or the patient not wearing the sensor. Both
train and test datasets are resampled to a 5-minute sampling frequency. The
missing values for carbohydrates, insulin, and fingerstick are set to 0. Missing
BG values are first marked missing and later interpolated/extrapolated when
creating the input windows (vectors) for the models (see Section 3.3).

3.1 Physiological Models

3.1.1 Hovorka Model
Roman Hovorka et al. [28] developed a model predictive controller for use with
subcutaneous insulin infusion with the aim of facilitating control during fasting
conditions. The controller employed a nonlinear model of glucose kinetics. The
model consists of a glucose subsystem (glucose absorption, distribution, and
disposal), an insulin subsystem (insulin absorption, distribution, disposal) and
an insulin action subsystem (insulin action on glucose transport, disposal, and
endogenous production).

In this thesis, the glucose and insulin subsystem components are employed
to transform discrete raw data of insulin and carbohydrate consumption into a
continuous representation. This process is designed to reflect more accurately
the dynamics of insulin absorption into the bloodstream and the conversion of

17
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carbohydrates into readily available glucose in the body.
Hovorka et al. [28] describe the insulin absorption in the insulin subsystem

as:

dS1(t)
dt

= u(t) − S1(t)
tmax,I

dS2(t)
dt

= S1(t)
tmax,I

− S2(t)
tmax,I

(3.1)

where S1 and S1 are a two-compartment chain representing absorption
of subcutaneously administered short-acting (e.g., Lispro) insulin, u(t) repre-
sents administration (bolus and infusion) of insulin, and tmax,I is the time-to-
maximum insulin absorption.

Further, Hovorka et al. [28] describe the gut absorption rate UG(t) in the
glucose subsystem, represented by a two-compartment chain with identical
transfer rates tmax,G as:

UG(t) = DG · AG · t · e−t/tmax,G

t2
max,G

(3.2)

where tmax,G is the time-of-maximum appearance rate of glucose in the
accessible glucose compartment, DG is the amount of carbohydrates digested,
and AG is carbohydrate bioavailability.

3.1.2 Insulin Feature Engineering
The implementation of the Hovorka insulin model [28] transforms discrete bo-
lus insulin samples into continuous features. The implementation is inspired by
the work of Price [29]. A two-compartmental insulin model based on equation
3.1 estimates the amount of insulin in subcutaneous tissue (IST) and blood
plasma as continuous features.

For each time step t, states S1,t and S2,t are maintained and represent the
insulin in subcutaneous tissue and blood plasma respectively at time t. For
each time t, the states are updated as follows:

S1,t = S1,t−1 + u(t) − S1,t−1
tmax,I

S2,t = S2,t−1 + S1,t

tmax,I
− S2,t−1

tmax,I

(3.3)

If no insulin u(t) is administered at time t, the value of u(t) will be 0. The
parameter tmax,I of the time-to-max absorption of subcutaneously injected
short-acting insulin was set to 100 minutes for all patients. Numerous values
were explored for the time-to-max absorption, and it was seen that the models
performed similarly well with values as low as 60 and as high as 180. Figure
3.1 shows an example of this insulin transformation. The IST feature was used
to train the models.
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Figure 3.1 Example of transforming discrete insulin samples into a continuous
feature.

Figure 3.2 Example of transforming discrete carbohydrate samples into a
continuous feature.
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3.1.3 Carbohydrates Feature Engineering
Similarly to insulin, discrete carbohydrate values are also transformed into a
continuous feature using an implementation inspired by [29] of a two-compartmental
meal model [28]. The model estimates the amount of glucose available in the
gut and blood plasma. For each time step t, states Gt and Pt are maintained
to represent the glucose in the gut and plasma, respectively. For each time t,
the states are updated as follows:

Gt = Gt−1 + AG · DG,t

tmax,G
− Gt−1

tmax,G

Pt = Pt−1 + Gt

tmax,G
− Pt−1

tmax,G

(3.4)

where the AG as carbohydrate bioavailability was set to 1 and DG,t are
the grams of carbohydrates consumed at time t, set to 0 if no carbohydrates
were ingested. The tmax,G parameter for the time of maximum glucose rate
of appearance was set to 60 minutes for all patients. This is the same value
as the one used by Rabby et al. [23], although their carbohydrates model im-
plementation is different. Figure 3.2 shows an example of this transformation.
The carbohydrates in the gut (CG) feature was used to train the models.

3.2 Creating Windows
For any time t and PH, the models should predict BG value at time t + PH
based on historical samples seen before time t. To facilitate this, a Window-
Generator class has been developed in Python to prepare windows of historical
values as inputs and future BG levels as targets for the models. The key pa-
rameters of the WindowGenerator are as follows:

Features: the feature to be used (BG, Carbohydrates, etc.).

Input Width: Specifies the number of historical time steps used for each
input window.

PH: Indicates the future time point to predict, measured in time steps; for
instance, a PH of 12 corresponds to a prediction one hour ahead, assuming
a sampling frequency of five minutes.

Batch Size: Determines the number of input-output window pairs per
batch.
The windows are created with a stride equal to 1. So, for a total window

size equal to 5, the window intervals wi will be w0 = [0, 4], w1 = [1, 5], . . .
The shape of the input tensor is (BatchSize, InputWidth, NumberOfFeatures),

where the BatchSize refers to the number of windows in a single batch, In-
putWidth is the number of historical samples used and NumberOfFeatures is
how many dimensions are used to represent data in one time step (sample).
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Moreover, the WindowGenerator class incorporates methods for handling
data interpolation and the logic for dropping windows with insufficient data,
as detailed in Section 3.3. This class is crucial for transforming the input time-
series data into structured inputs and targets that models can effectively learn
from.

3.3 Handling of Missing Blood Glucose Values
Missing BG entries are first substituted with FBG samples when available.
In handling missing BG values within the training and validation datasets,
sequences of missing BG data are linearly interpolated if the gap consists of
up to six samples, equivalent to a duration of 30 minutes. Any missing samples
that extend beyond this 30-minute window remain unfilled. This interpolation
is applied across the entire dataset, affecting both the input features and the
target outputs used during the model’s training and validation phases.

Interpolation is not applied to the test dataset as a whole since this could
introduce data leakage. Here, for each input and target, the following decision-
making process is applied:

if all input BG values are missing, the input-target pair is dropped,

if the target BG value is missing, the input-target pair is dropped,

else, that is, when the target value exists, and input BG has at least 1
value, the rest of the missing samples in the input are interpolated and
forward and backward filled from the existing BG values in the input.



Chapter 4

Models

4.1 LSTM

A Long-Short-Term Memory (LSTM) recurrent neural network serves as the
baseline model for comparisons with other models in this thesis. LSTM net-
works, developed by Sepp Hochreiter and Jürgen Schmidhuber [30], are distin-
guished by their ability to retain information over prolonged periods, improving
upon the basic RNN design, which has issues with longer sequences. This char-
acteristic makes them well-suited for machine translation, image captioning,
and time-series forecasting tasks.

LSTM cell for each time t takes in the input xt and maintains a cell state
Ct and hidden state ht (which is also the cell output). It uses a forget gate
introduced in [31] and an input gate to update the cell state Ct−1 based on xt

and ht−1. Then, through the output gate, it updates the previous hidden state
ht−1 to create a new hidden state ht based on Ct, xt and ht−1. For a schema
of the LSTM cell, see Figure 4.1.

4.2 Transformer

The Transformer model, introduced by Vaswani et al. [33], is a recently pop-
ular neural network architecture based on an encoder-decoder structure. It
advanced various tasks that require the processing of sequential data. The
Transformer’s core mechanism, known as attention, allows it to handle data
sequences in parallel, contrary to the sequential processing of traditional RNNs.
This capability significantly improves training efficiency and has led to impres-
sive performance gains in areas such as natural language processing, where it
powers innovations in machine translation, text summarization, and language
generation.

22
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Figure 4.1 LSTM cell [32].

4.2.1 Attention Mechanism
The attention mechanism is a main component of the Transformer architec-
ture. It operates on the principle of dynamically focusing on different parts of
the input sequence, thereby allowing the model to learn contextual relation-
ships between features, regardless of their position in the sequence. Unlike
previous architectures that processed input data in a fixed order, the attention
mechanism provides a flexible way to weigh the importance of each part of the
input data, facilitating more effective learning of dependencies.

Vaswani et al. [33] describe attention as a function that maps a query and
a set of key-value pairs to an output, where the query, keys, values, and output
are all vectors. The output is computed as a weighted sum of the values, where
the weight assigned to each value is computed by a compatibility function of
the query with the corresponding key. In practice, the attention function is
computed on a set of queries simultaneously, packed together into a matrix
Q. The keys and values are also packed together into matrices K and V. The
matrix of outputs is computed as:

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V (4.1)

4.2.2 Architecture
The Transformer’s architecture comprises two main modules: the encoder and
the decoder. The encoder consists of a stack of layers that process the in-
put sequence, each employing self-attention and position-wise feed-forward
networks. The decoder, similarly layered, includes both self-attention and
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Figure 4.2 The Transformer - model architecture (adopted from [33]).

encoder-decoder attention mechanisms. Self-attention in the decoder ensures
the generation of coherent output sequences, while the encoder-decoder atten-
tion layers allow the decoder to focus on relevant parts of the input sequence.
This two-part structure is adept at handling a wide range of sequence-to-
sequence tasks. The Transformer architecture schema can be seen in Figure
4.2.

4.3 Time Series Transformer
The Time Series Transformer is a vanilla encoder-decoder Transformer for time
series forecasting. The implementation used in this thesis is from Hugging Face
[34]. It is a basic transformer with a distribution head on top of it, which can
be used for time-series forecasting. It is a probabilistic forecasting model, not
a point forecasting model. This means that the model learns a distribution
from which one can sample.

The Time Series Transformer consists of 2 blocks: an encoder, which takes
time series values as input, and a decoder, which predicts time series values
into the future. During training, one needs to provide pairs of both past and
future time-series values to the model. [34]

The whole future time series in the time interval [t, t + PH] is provided to
the models during training, and the model outputs a sequence of PH values.
Thus, the loss is also computed across the entire output sequence. The results
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reported later in Chapter 5 are only evaluated on the last predicted value in
the sequence at t+PH. Since the model learns a distribution, the loss function
for training is negative log-likelihood.

4.4 Informer

Informer is a transformer-based architecture developed by Zhou et al. [35].
The implementation of Informer used in this thesis is also from Hugging Face
[36]. It introduces a probabilistic attention mechanism and provides a sparse
transformer, thus mitigating the quadratic computing and memory require-
ments of vanilla attention. [36]

Zhou et al. [35] explain that the ProbSparse Self-attention proposed by
them allows each key to only attend to the u dominant queries according to a
query sparsity measurement. Thus, the Q matrix from 4.1 will contain the top-
u queries under the sparsity measurement, controlled by a constant sampling
factor c.

Except for the addition of the sampling factor c, the parameters of the
Informer remain the same as those of the Time Series Transformer.

4.5 Legendre Memory Unit

Legendre Memory Unit (LMU), introduced in [37], is a relatively less known
type of RNN architecture designed to process time-series data efficiently. It
leverages the mathematical properties of Legendre polynomials to create a
fixed-size memory cell, enabling it to achieve high precision in capturing and
representing temporal information over sequences with long-range dependen-
cies.

In general, the LMU cell consists of two parts: a memory component (de-
composing the input signal using Legendre polynomials as a basis) and a hid-
den component (learning nonlinear mappings from the memory component)
[38], for more, see 4.5.1 and 4.5.3.

4.5.1 Memory Cell
Voelker et al. [37] explain that the memory cell orthogonalizes the continuous-
time history of its input signal, u(t) ∈ R, across a sliding window of length
θ ∈ R>0. The cell is derived from the linear transfer function for a continuous-
time delay, F (s) = e−θs, which is best approximated by d coupled ordinary
differential equations (ODEs):

θṁ(t) = Am(t) + Bu(t) (4.2)

where m(t) ∈ Rd is a state-vector with d dimensions. The ideal state-space
matrices, (A, B), are derived through the use of Padé [39] approximants [40]:
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A = [aij ] ∈ Rd×d, aij =
{

(2i + 1)(−1)i for i < j,

(2j + 1)(−1)i−j+1 for i ≥ j.

B = [bi] ∈ Rd×1, bi = (2i + 1)(−1)i, i, j ∈ [0, d − 1].
(4.3)

The key property of this dynamical system is that m represents sliding
windows of u via the Legendre [41] polynomials up to degree d − 1:

u(t − θ′) ≈
d−1∑
i=0

Pi

(
θ′

θ

)
mi(t), 0 ≤ θ′ ≤ θ,

Pi(r) = (−1)i
i∑

j=0

(
i

j

)(
i + j

j

)
(−r)j

(4.4)

where Pi(r) is the ith shifted Legendre polynomial [42]. This gives a unique
and optimal decomposition, wherein functions of m correspond to computa-
tions across windows of length θ, projected onto d orthogonal basis functions.
For a visual representation of Legendre polynomials, see 4.3.

4.5.1.1 Discretization

The matrices A and B describing the ideal state-space model need to be dis-
cretized, which in this case means mapping the equations onto the memory of
an RNN. Voelker et al. [37] explain that for a given RNN memory mt ∈ Rd,
and given some input ut ∈ R, indexed at discrete moments in time, t ∈ N:

mt = Ãmt−1 + B̃ut (4.5)

where (Ã, B̃) are the discretized matrices provided by the ODE solver for some
time-step ∆t relative to the window length θ. For instance, Euler’s method
supposes ∆t is sufficiently small:

Ã = (∆t/θ)A + I, B̃ = (∆t/θ)B. (4.6)

4.5.2 Layer Design
In [37], it is described that the LMU takes an input vector, xt, and generates a
hidden state, ht ∈ Rn. Each layer maintains its own hidden state and memory
vector. The state mutually interacts with the memory, mt ∈ Rd, in order to
compute nonlinear functions across time while dynamically writing to memory.
Similar to the NRU [43], the state is a function of the input, previous state,
and current memory:

ht = f(Wxxt + Whht−1 + Wmmt) (4.7)
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Figure 4.3 Shifted Legendre polynomials (d = 12).

The memory of the LMU represents the entire sliding window of input history as a
linear combination of these scale-invariant polynomials. Increasing the number of

dimensions supports the storage of higher-frequency inputs relative to the time-scale.
[37]

where f is some chosen nonlinearity (e.g., tanh) and Wx, Wh, Wm are learned
kernels. Note this decouples the size of the layer’s hidden state (n) from the
size of the layer’s memory (d) and requires holding n + d variables in memory
between time-steps. The input signal that writes to the memory (via equation
4.5) is:

ut = ex
⊤xt + eh

⊤ht−1 + em
⊤mt−1 (4.8)

where ex, eh, em are learned encoding vectors. Intuitively, the kernels W
learn to compute nonlinear functions across the memory, while the encoders e
learn to project the relevant information into the memory. For a schematic of
the LMU layer design, see Figure 4.4.

4.5.3 Hidden Component
The LMU architecture includes a hidden component that is responsible for
learning nonlinear relationships from the memory component and producing
the state vector ht ∈ Rn. According to the Nengo LMU implementation doc-
umentation [38], this hidden component can take various forms, such as a
standard RNN cell, LSTM cell, and Gated Recurrent Unit (GRU) cell. Ad-
ditionally, it can also be a feed-forward layer or None (empty) to create a
memory-only LMU. The number of units used in the hidden cell determines
the dimensionality of ht.

The Standard/Simple RNN cell can be seen in Figure 4.5. GRU, as seen in
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Figure 4.4 Time-unrolled LMU layer.

An n-dimensional state vector (ht) is dynamically coupled with a d-dimensional
memory vector (mt). The memory represents a sliding window of ut, projected onto

the first d Legendre polynomials. [37]

Figure 4.5 Standard/Simple RNN cell [32].

Figure 4.6 is similar to the LSTM but it combines the forget and input gates
into a single “update gate.”, with some additional changes.
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Figure 4.6 GRU cell [32].



Chapter 5

Model Development and
Experiments

This thesis examines three distinct model architectures: the Time Series Trans-
former, the Informer, and the LMU. This chapter outlines the procedures and
experiments conducted to apply, evaluate, and fine-tune these models for the
task of BG prediction.

5.1 Model Evaluation Strategy
Two metrics are used to evaluate the prediction performance of models: Root
Mean Squared Error (RMSE) and, for assessing clinical accuracy, Clarke Error
Grid Analysis (CEGA) [44].

For a series of BG measurements Y and BG predictions Ŷ , both having an
equal length n, RMSE is defined as

RMSE =

√√√√ 1
n

n∑
i=1

(
Yi − Ŷi

)2
(5.1)

Each model is evaluated by calculating the RMSE for each patient and com-
puting the mean RMSE as the mean of the RMSEs of all patients. This results
in each patient’s RMSE having the same weight in the final mean RMSE, even
though the number of test samples is different between patients.

CEGA is widely used to assess the clinical accuracy of BG prediction mod-
els. It presents a scatterplot that compares reference BG values against pre-
dicted BG values and categorizes the results into five zones:

Zone A includes predicted BG values with deviations no greater than 20%
from actual BG measurements, representing ideal accuracy.

Zone B encompasses predictions that deviate beyond 20% but would not
lead to incorrect treatment.

30
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Figure 5.1 Clarke error grid.

Zone C includes points that might prompt unnecessary treatment.

Zone D comprises points indicating a potentially dangerous failure to detect
hypoglycemia or hyperglycemia.

Zone E contains clinical errors where hyperglycemia is confused for hypo-
glycemia and vice versa.

The goal is for all predictions to fall within Zone A, with Zone B represent-
ing acceptable discrepancies and the remaining zones containing as few points
as possible. A visual example of CEGA is provided in Figure 5.1. CEGA is
performed on the best model in Chapter 6.

5.2 Model Training
This section explains the model training setup used for the final evaluation of
models, as presented in Chapter 6 and for the hyper-parameter tuning.

For the 2018 OhioT1DM edition, models were trained using data from all
patients in the 2018 cohort. Models for the 2020 edition were trained using
both the train and test data from the 2018 edition and the training datasets
from all patients in the 2020 cohort. All models were trained using the same
input features: BG, FBG, insulin in subcutaneous tissue, and carbohydrates
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in the gut. The rationale behind selecting these features is detailed in Section
5.4.1. The PH evaluated were 30 minutes and 1 hour.

All models were designed to predict the change Gt+PH − Gt of the BG val-
ues at t and t+PH. The rationale for this choice is written out in Section 5.4.3.
The final BG prediction of a model represented by a function f∆(x⃗t1 , . . . , x⃗tn)
is then given by Ĝt+PH = f∆(x⃗t1 , . . . , x⃗tn) + Gt. In the case of Time Se-
ries Transformer and Informer, the models are trained to predict the change
Gt+i − Gt for each sample at time i in the interval [t, t + PH].

5.2.1 LSTM and LMU Training
All of the models were trained using Adam optimizer [45] with a learning rate
set to 10−3, maximum of 300 epochs, and early stopping with the patience of
35, meaning the model training was stopped if validation loss did not improve
in 35 epochs. The batch size was 256. The loss function used was mean squared
error (MSE), defined as:

MSE = 1
n

n∑
i=1

(
Yi − Ŷi

)2
(5.2)

for a series of BG measurements Y and BG predictions Ŷ , both having an
equal length n.

Furthermore, a learning rate reducer was used, which reduces the learning
rate during the training by a factor of 10−1 when validation loss stagnates for
10 epochs. Model checkpoints were implemented to preserve the model with
the best validation loss in each training.

5.2.2 Transformers Training
All models were trained using the Adam optimizer with an initial learning rate
of 10−3, a maximum of 550 epochs, and early stopping implemented with a
patience of 30 epochs. The learning rate was reduced to 10−4 after 50 epochs
or if the validation loss did not improve for 30 epochs, and further reduced to
10−5 after 300 epochs using the same criteria. The batch size for training was
set to 256.

An important distinction of the Transformer architecture from LSTM and
LMU models is its requirement for positional encodings of individual samples to
provide the model with the sequence order of the samples. In this context, the
implementations for the Time Series Transformer [34] and Informer [36] include
an interface to incorporate time features as positional encodings. Unlike the
Transformer architecture, where encodings are learned, the time features act
as positional encodings in these models. The time features used were Hour,
Minute, and Age. The ’Age’ feature assigns an index to each sample from 0
for the first to n − 1 for the last n-th sample.
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5.3 Hyper-parameter Tuning
The models’ hyper-parameters were tuned using the Hyperband algorithm
[46], introduced in 2018. Hyperband is a relatively recent method for hyper-
parameter tuning that leverages adaptive resource allocation and early stop-
ping to identify high-performing models quickly. This algorithm is initiated
by training a large pool of models for a limited number of epochs and then
progresses only the top-performing half to subsequent rounds.

5.3.1 LMU Tuning
LMUs have several hyper-parameters that can be set: hidden-to-memory con-
nection (HM), memory-to-memory learnable connection (MM), input-to-hidden
connection (IH), memory dimension, number and type of hidden units, dropout
and recurrent dropout rate, and the order, which is the number of degrees in
the transfer function of the linear time-invariant system used to represent the
sliding window of history.

The type of hidden units in the LMU cells was chosen to be LSTM, which
was shown to yield the best performance (see 5.4.2). The memory dimension
was set at 4 to match the dimensionality of the input, while the remaining
hyper-parameters were subject to tuning.

This tuning process was conducted separately for different dataset editions
and PHs. Specifically, for the 30-minute PH, tuning was started with vari-
ous input lengths: 30, 45, 60, and 120 minutes. The best validation loss was
achieved with the 30-minute long input, which was subsequently used for tun-
ing models for 60-minute PH. Table 5.1 shows the final best values for these
hyper-parameters.

Additional manual experiments involved stacking two LMU layers rather
than using a single layer; however, this configuration did not improve perfor-
mance.

Table 5.1 Best hyper-parameters for LMU models tuned on 2018 and 2020
OhioT1DM cohorts and 30-minute and 60-minute PH.

Cohort PH order HM MM IH units dropout rec. drop.
2018 30 52 True False False 72 0.1 0
2018 60 54 False True False 144 0.1 0
2020 30 60 True False False 72 0.1 0.2
2020 60 64 False False True 156 0.1 0.1

5.3.2 LSTM Tuning
The hyper-parameters tuned for the LSTM were the number of units and the
dropout rate. Two distinct LSTM architectures were tuned: one with a single
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LSTM layer and another with two stacked LSTM layers. The dropout was
added after the LSTM layer, and for the stacked variant, it was also added
between the two LSTM layers. This tuning process was run separately for
different dataset editions and PHs. The input length was 30 minutes.

The tuning results indicated that the single-layer LSTM architecture per-
formed worse than the stacked architecture. The optimal hyper-parameter
values for the stacked architecture, which yielded the best performance, are
shown in Table 5.2. The number of units was the same for both LSTM layers
in the stacked architecture. Dropout 1 refers to the dropout applied between
LSTM layers, while dropout 2 refers to the one applied between the last LSTM
layer and the output layer.

Table 5.2 Best hyper-parameters for LSTM models tuned on 2018 and 2020
OhioT1DM cohorts and 30-minute and 60-minute PH.

Cohort PH units dropout 1 dropout 2
2018 30 240 0 0.2
2018 60 250 0.1 0.1
2020 30 200 0 0
2020 60 140 0 0.5

5.3.3 Transformers Tuning
The tuned hyper-parameters of the transformer models are [36], [34]:

<ffn_dim> Dimension of the feed-forward layer of the decoder/encoder.

<attention_heads> Number of attention heads for each attention layer in
the encoder/decoder.

<layers> Number of encoder/decoder layers.

<d_model> Dimensionality of the transformer layers.

<dropout> The dropout probability for all fully connected layers in the
encoder and decoder.

<layerdrop> The dropout probability for the attention and fully connected
layers for each encoder/decoder layer.

<attention_dropout> The dropout probability for the attention probabil-
ities.

<activation_dropout> The dropout probability used between the two lay-
ers of the feed-forward networks.
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<sampling_factor> Applicable to Informer only, controls the reduced query
matrix Q input length.

Where ffn_dim, attention_heads, layers, and layerdrop parameter values
were passed to both the encoder and decoder of the transformer architecture.

Hyper-parameter tuning for the Informer model was initially conducted
for the 2020 cohort with a PH of 30 minutes. Tuning was started for two
input lengths: 120 minutes and 30 minutes, with a 30-minute input length
achieving better results. The best parameters are listed in Table 5.3. Due
to the model’s poor performance, as indicated in Table 6.1, further tuning
for a 60-minute PH and the 2018 cohort was halted to focus efforts on more
promising architectures, particularly the LMU.

For completeness, the Informer model was also trained for a 60-minute
PH for the 2020 cohort and both 30-minute and 60-minute PHs for the 2018
cohort. The Time Series Transformer was also trained for both cohorts and
PHs. All of these models shared the same hyper-parameter setting as per Table
5.3, except Time Series Transformer, for which the parameter sampling_factor
was omitted since it does not apply to this model. The validation RMSE for
these models is presented in Table 6.1.

Table 5.3 Best hyper-parameters for Informer tuned on 2020 OhioT1DM cohort
and 30-minute PH.

parameter value
ffn_dim 32
attention_heads 2
layers 2
d_model 128
dropout 0.1
layerdrop 0.1
attention_dropout 0.1
activation_dropout 0.1
sampling_factor 5

5.4 Ablation Study
This section outlines the steps taken to enhance the models developed in this
thesis, including dataset pre-processing, feature engineering, and the selection
of model parameters. Given that LMUs demonstrated superior performance
compared to Transformer architectures, as shown in Table 6.1, the analysis
focuses on LMUs.

The method involves first introducing the highest-performing LMU model
and then systematically altering specific parameters and training setup to eval-
uate the impact of these changes. The ablation study focuses on a PH of 30
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minutes using the 2018 dataset for simplicity and due to constraints on com-
putational resources.

The best-performing model for predicting BG over a 30-minute PH was
an LMU trained on 30-minute-long input data incorporating BG, FBG, IST,
and CG features. The LMU model employed LSTM as its hidden unit, and its
parameters were configured according to those listed in Table 5.1. The model
was designed to predict the BG change: Gt+PH − Gt. This model achieved a
validation RMSE of 20.93 ± 0.03 mg/dl and will be referred to as BestLMU
in subsequent discussions.

See Table 5.4 for the validation RMSE associated with individual steps in
the ablation study.

5.4.1 Effects of Features
This section examines the impact of individual features and feature engineering
on the model’s performance.

Compartmental Model-derived Features

First, the effect of using transformed insulin and carbohydrates features: "in-
sulin in the subcutaneous tissue" (IST) and "carbohydrates in the gut" (CG)
is assessed. These features are created based on the output from the compart-
mental models, discussed in Section 3.1. When BestLMU was trained using
the raw Carbohydrates and Bolus Insulin features instead of the feature from
compartmental models, the validation RMSE increased to 21.18 mg/dl, indi-
cating that the usage of compartmental model-derived features leads to more
accurate predictions.

The best input length for the models utilizing the compartmental features
was observed to be 30 minutes. In the conducted experiments, longer input
windows did not lead to better performance. Surprisingly, sometimes, they
produced worse performance of the models. It is suspected that the feature
engineering applied to insulin and carbohydrates might have helped decrease
the input length needed. This assumption is made because the transformed
carbohydrate and insulin features effectively stretch out the influence of insulin
and carbohydrates in time. For example, a model with a 30-minute input
window may still see the effects of insulin taken more than 8 hours ago.

Fingerstick Blood Glucose

Next, the removal of the FBG feature was explored. Training BestLMU with-
out the FBG feature resulted in a validation RMSE of 21.04 mg/dl, suggesting
that including FBG slightly enhances model performance.
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Basal Insulin

The incorporation of basal insulin was also tested. The basal insulin, described
as the number of insulin units released by the pump per hour, was first con-
verted into insulin units per 5 minutes to match the sampling frequency of the
time series. The basal insulin was then added to the bolus insulin, creating
a new insulin feature that captured the effects of both. The compartmental
model was then applied to this feature to create the IST feature. The RMSE
achieved was 21.06 mg/dl, suggesting that adding basal insulin does not help
the model.

Physical Activity

Lastly, the potential benefits of incorporating physical activity data were con-
sidered. Inconsistent data types between cohorts presented challenges: the
2018 cohort data included step count, while the 2020 cohort data featured
acceleration measures. Step count was explored as an addition to the training
features, and it led to a comparable performance on the 2018 dataset, with an
RMSE of 20.89 mg/dl. Due to the inconsistencies and lack of substantial per-
formance enhancement, physical activity data were excluded from the models
developed for both cohorts.

5.4.2 Choice of Hidden Unit in LMU
LSTM, GRU, and standard RNN cells were assessed as potential hidden units
for an LMU network. The BestLMU model was trained five times with each
type of cell. The standard RNN variant achieved a validation RMSE of 21.01 ±
0.06 mg/dl, and the GRU variant recorded an RMSE of 20.98 ± 0.03 mg/dl.
These results suggest that LSTM cells provide the best performance, while
GRU and standard RNN cells, though comparable, consistently resulted in
slightly higher errors across multiple training runs.

5.4.3 Choice of Model Output
Drawing inspiration from studies like Zhu et al. [8], the approach of predict-
ing the change in BG levels, Gt+PH − Gt was explored, instead of directly
forecasting the BG at future time t + PH.

The BestLMU model was trained three times to predict BG levels at
t + PH directly. This approach resulted in a validation RMSE of 25.79 ±
0.22 mg/dl. Interestingly, removing the 0.1 dropout rate in the LMU network
improved validation RMSE, reducing it to 21.73 ± 0.07 mg/dl. Despite this
improvement, the performance remained inferior to the RMSE achieved by
models predicting BG change.
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5.4.4 Effect of Training on Combined Datasets
Including additional patients in the training dataset has been shown to im-
prove the model’s overall performance. This improvement was illustrated, for
example, by Rubin-Falcone et al. [26]. Specifically, they pre-trained their
model using data from both the 2018 OhioT1DM cohort and the Tidepool
dataset, then fine-tuned it using data from the 2020 OhioT1DM cohort.

To test this finding, two models for PH of 30 minutes were developed: one
trained exclusively on data from the 2020 cohort and another trained on data
from both the 2018 and 2020 cohorts. Inputs to the models were BG, FBG,
IST, and CG. The models used the optimal hyper-parameters from Table 5.1
for the PH of 30 minutes and cohort 2020.

The validation RMSE was calculated using data only from the 2020 cohort.
The model trained solely on the 2020 cohort achieved a validation RMSE of
21.76 mg/dl, whereas the model trained on both cohorts achieved a slightly
better validation RMSE of 21.66 mg/dl.

Furthermore, training on the combined datasets also showed improved per-
formance on the 2018 cohort. However, studies reporting performance on the
2018 cohort did not incorporate the 2020 data, as it was not available at the
time. For fair comparisons, models assessed on the 2018 cohort data were
exclusively trained on that specific dataset.

5.4.5 Optimizers
Lion optimizer [47], published recently in 2023, is a stochastic-gradient-descent
method that uses the sign operator to control the magnitude of the update,
unlike other adaptive optimizers such as Adam that rely on second-order mo-
ments. It has been shown to improve the accuracy of various ML models and is
examined here as an alternative to the Adam optimizer. This section describes
experiments conducted using the Lion optimizer to train the LMU model and
the LSTM baseline.

Based on their experience, the authors report that a suitable learning rate
for Lion is typically 3-10 times smaller than that for Adam [47]. For this
reason, three initial learning rate settings were picked 1

3 · 10−3, 1
5 · 10−3 and

1
10 · 10−3.

The BestLMU model trained with Lion and learning rate 10−3 divided by
factors 3, 5, and 10 achieved a validation RMSE of 21.01, 20.98, and 20.77
mg/dl, respectively. These results initially suggested that Lion could slightly
outperform Adam when using a 10−4 learning rate. However, three additional
training runs under the same settings did not reproduce these RMSEs, re-
sulting in RMSEs of 20.92, 20.94, and 20.94 mg/dl. Lion thus failed to yield
models with lower RMSE consistently.

The effect of using the Lion optimizer for training was further explored for
the baseline LSTM architecture. The Lion optimizer was observed to yield
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models with performance comparable to those trained using Adam.

Table 5.4 Ablation Results for different training setups, RMSE is evaluated on
the validation dataset.

Training setup RMSE [mg/dl]
Raw Insulin and Carbohydrate features 21.18
Removal of FBG feature 21.04
Addition of basal insulin feature 21.06
Addition of step count feature 20.89
Simple RNN as hidden LMU cell 21.01
GRU as hidden LMU cell 20.98
Predicting BG instead of BG change 21.73
BestLMU model 20.93

5.5 LMU with Simple RNN Cell
LMU with a simple RNN cell used in the hidden component instead of an
LSTM is detailed here as an alternative LMU model. It can achieve perfor-
mance that is only slightly worse than that of the LMU with LSTM hidden
cell, see Tables 5.5 and 5.6, but it uses substantially fewer parameters.

Table 5.5 Validation and test mean RMSE of LMU model with simple RNN cell
on both OhioT1DM editions.

2018 cohort 2020 cohort
Dataset 30-min PH 60-min PH 30-min PH 60-min PH
Validation 21 34.37 21.79 35.62
Test 18.3 30.42 18.69 32.76

Table 5.6 Validation and test mean RMSE of LMU model with LSTM cell on
both OhioT1DM editions.

2018 cohort 2020 cohort
Dataset 30-min PH 60-min PH 30-min PH 60-min PH
Validation 20.96 34.29 21.67 35.56
Test 18.17 30.33 18.56 32.57

Focusing on the 30-minute PH, the LMU with a simple RNN cell uses ap-
proximately 20,000 trainable parameters, as opposed to the LMU with LSTM
cells, which uses 80,000 and 90,000 for the 2018 and 2020 cohorts, respec-
tively. This difference is even further pronounced when compared to the base-
line LSTM architecture, where the number of parameters ranges from 500,000
to 700,000.
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The N-BEATS models proposed by Rubin-Falcone et al. [26] reportedly
used 7 blocks of 300 LSTM units, while the stacked LSTM architecture by
Rabby et al. [23] used 2 LSTM layers with 128 units followed by fully con-
nected dense layers with 512, 128 neurons, and 1 output neuron. Based on a
Tensorflow implementation of the stacked LSTM architecture from [23], the
number of trainable parameters is approximately 300,000. An estimate was
not made for the N-BEATS architecture.

A related work with a number of parameters comparable to that of LMU
is a CRNN [27] with 128 LSTM units and 52,441 trainable parameters for the
entire proposed architecture. Further, the GAN architecture proposed by Zhu
et al. [8] utilizing 3 layers with 32 GRU units each in the generator of the GAN
architecture and further three one-dimensional causal CNN layers employed in
the discriminator of the GAN architecture is also comparable.
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Results and Dicussion

Table 6.1 presents the validation RMSE for the investigated models. The
LMUs achieved the best results, followed by the LSTM baseline, the Informer,
and the Time Series Transformer. These findings are further confirmed by
Table 6.2, which provides the RMSE evaluated on the test set.

See Figure 6.1, which illustrates the overall system architecture of LMU as
the final model. This model will be evaluated and compared with other related
works.

Table 6.1 Validation mean RMSE of the proposed models on both OhioT1DM
editions.

2018 cohort 2020 cohort
Model 30-min PH 60-min PH 30-min PH 60-min PH
LSTM baseline 21.55 35.4 21.98 36.13
TS Transformer 23.55 39.12 23.04 39.85
Informer 23.52 36.81 22.96 36.86
LMU 20.96 34.29 21.67 35.56

Table 6.2 Test mean RMSE of the proposed models on both OhioT1DM editions.

2018 cohort 2020 cohort
Model 30-min PH 60-min PH 30-min PH 60-min PH
LSTM baseline 18.88 31.32 18.8 32.96
TS Transformer 20.5 34.84 21.25 38.99
Informer 20.34 32.42 21.26 34.96
LMU 18.17 30.33 18.56 32.57

For the purpose of the final evaluation, the best LMU models were trained
and evaluated 5 times. Tables 6.3 and 6.4 show the performance of the evalu-
ated LMU models, with the mean RMSE achieved over 5 runs and the standard

41
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Figure 6.1 LMU architecture (the schema for the LMU cell is sourced from
Voelker et al. [37]).

deviation. Figure 6.2 (a) shows an example of predictions made by the best
LMU model.

For the 2018 cohort (Table 6.3) and 30-minute PH, individual patient RM-
SEs range from 15.23 to 21.28 mg/dl, while for a 60-minute PH, they range
from 27.15 to 33.59 mg/dl. The RMSE values are higher for patients 575 and
591, which might indicate specific challenges related to these patients’ data.

In the 2020 cohort (Table 6.4), the errors are slightly higher, with mean
RMSE across patients being 18.56 and 32.57 mg/dl for 30-minute and 60-
minute PH, respectively. Patients 540, 567, and 584 show notably higher
RMSEs for both PHs than others.

Moreover, Tables 6.7 and 6.8 show the comparison of the best LMU models
with other works mentioned in the related work, evaluated on the 2018 and
2020 editions of OhioT1DM, respectively. It can be seen that the performance
on the 2018 edition of the dataset is the best in the case of 30-min PH and
comparable to the best in the case of the 60-min PH. One should also note
that for the Stacked LSTM introduced by Rabby et al. in [23], the authors
skipped testing inputs with any missing values of BG. If the same procedure
is applied, the results are further improved to 18.03 mg/dl mean RMSE for
30-min PH and 30.18 mg/dl mean RMSE for 60-min PH.

The performance of LMU models on the 2020 edition of the dataset is
slightly worse than the state-of-the-art model N-BEATS [26]. However, as
was mentioned earlier in Section 2.2.2, they use more datasets for training
which has a positive influence. Further, the GAN architecture [8] also slightly
outperforms LMU models on the 2020 edition.

In addition to RMSE, the Clarke error grid [44] is constructed as a semi-
quantitative tool to obtain clinical relevance. An example is provided in Fig-



43

Table 6.3 Test evaluation of the best LMU model on the 2018 OhioT1DM
edition.

Patient ID RMSE (30-min PH) RMSE (60-min PH)
559 17.63 ± 0.04 30.81 ± 0.14
563 17.54 ± 0.06 29.24 ± 0.14
570 15.23 ± 0.06 27.15 ± 0.12
575 21.28 ± 0.07 33.59 ± 0.18
588 16.83 ± 0.05 28.24 ± 0.14
591 20.51 ± 0.04 32.92 ± 0.19

Mean RMSE 18.17 ± 0.02 30.33 ± 0.08

Table 6.4 Test evaluation of the best LMU model on the 2020 OhioT1DM
edition.

Patient ID RMSE (30-min PH) RMSE (60-min PH)
540 20.50 ± 0.05 37.70 ± 0.14
544 16.51 ± 0.07 28.72 ± 0.17
552 15.72 ± 0.06 28.98 ± 0.11
567 20.41 ± 0.06 36.13 ± 0.15
584 21.92 ± 0.07 35.90 ± 0.16
596 16.32 ± 0.06 28.00 ± 0.13

Mean RMSE 18.56 ± 0.03 32.57 ± 0.09

ure 6.2 (b), and the values for all patients on the 2018 and 2020 editions of
OhioT1DM are reported in Tables 6.5 and 6.6 respectively. The results con-
firm the promising performance. Clarke error grid figures for all patients and
PHs are available in Appendix A.
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Table 6.5 Test Clarke error grid distribution (in %) on the 2018 OhioT1DM
edition, for the best LMU model.

Zone for 30-min PH Zone for 60-min PH
Patient ID A B C D E A B C D E

559 91.7 7.01 0 1.29 0 75.18 21.13 0.25 3.4 0.04
563 93.71 5.82 0 0.47 0 79.29 19.1 0.08 1.53 0
570 97.62 2.2 0 0.18 0 88.46 11.02 0 0.52 0
575 87.42 9.98 0 2.6 0 67.27 26.08 0.39 6.23 0.04
588 93.91 5.94 0 0.14 0 79.69 19.41 0.04 0.87 0
591 82.79 13.93 0.04 3.24 0 62.13 32 0.29 5.58 0

Table 6.6 Test Clarke error grid distribution (in %) on the 2020 OhioT1DM
edition, for the best LMU model.

Zone for 30-min PH Zone for 60-min PH
Patient ID A B C D E A B C D E

540 85.25 12.43 0 2.33 0 60.06 34.02 0.1 5.82 0
544 92.62 6.9 0 0.48 0 74.02 24.37 0 1.61 0
552 90.48 8.32 0 1.2 0 66.29 30.23 0.04 3.4 0.04
567 86.8 10.94 0 2.26 0 59.57 31.65 0.3 8.48 0
584 87.33 11.64 0.08 0.95 0 69.32 28.16 0.5 2.02 0
596 90.82 7.19 0 1.99 0 73.32 23.71 0.04 2.94 0

Table 6.7 Mean RMSE comparison on the 2018 OhioT1DM edition.

Model Mean RMSE (30-min PH) Mean RMSE (60-min PH)
LSTM [25] 20.1 33.2
Dilated RNN [24] 19.04 not-applicable
Stacked LSTM [23] 18.57 30.32
LMU (ours) 18.17 30.33

Table 6.8 Mean RMSE comparison on the 2020 OhioT1DM edition.

Model Mean RMSE (30-min PH) Mean RMSE (60-min PH)
GAN [8] 18.34 32.21
N-BEATS [26] 18.22 31.66
CRNN [27] 19.79 33.73
LMU (ours) 18.56 32.57
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(a) Predictions (b) Clarke error grid

Figure 6.2 Example of BG predictions made by LMU (a) and the Clarke error
grid plot (b) for 30-minute PH and the patient with ID 552 on 2020 OhioT1DM

edition.



Conclusion

The goal of this thesis was to research and improve ML models for BG predic-
tion. The aim was to explore prospective ML models and training strategies,
evaluate these models using the OhioT1DM dataset, and compare the results
with existing studies.

The author successfully achieved these goals. Initially, state-of-the-art
models were reviewed, specifically focusing on those utilizing the OhioT1DM
dataset. Further, the author explored Transformer architectures and Legendre
Memory Units (LMUs), with various training strategies and features. This
included an ablation study that highlighted the progressive improvements in
the proposed ML models.

The experiments demonstrated that LMUs outperformed both Transform-
ers and the baseline LSTM architecture across both 30-minute and 60-minute
prediction horizons. Further, they were proven to reach and, on smaller
datasets (2018 edition of OhioT1DM), even outperform the state-of-the-art
models. A research paper detailing the best models developed is to appear at
the International Conference on Artificial Intelligence in Medicine [48].

There are likely further enhancements to be made, possibly through the
integration of additional features or improved pre-processing strategies. Future
research could also explore more complex architectures incorporating LMUs,
such as generative adversarial networks.
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Appendix A

Appendix

Clarke error grid [44] figures for all patients and PHs, evaluated on the best
LMU models.
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Figure A.1 CEGA for patient 559.

Figure A.2 CEGA for patient 563.
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Figure A.3 CEGA for patient 570.

Figure A.4 CEGA for patient 575.
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Figure A.5 CEGA for patient 588.

Figure A.6 CEGA for patient 591.
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Figure A.7 CEGA for patient 540.

Figure A.8 CEGA for patient 544.
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Figure A.9 CEGA for patient 552.

Figure A.10 CEGA for patient 567.
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Figure A.11 CEGA for patient 584.

Figure A.12 CEGA for patient 596.
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Contents of the attached
media

code
ablation ...........jupyter notebooks containing the ablation study
LMUs jupyter notebooks with the implementation and training of LMU
models
LSTMs ....jupyter notebooks with the implementation and training of
LSTM models
transformers .......jupyter notebooks with the implementation and
training of transformer models
misc .various jupyter notebooks for analysis, evaluation, generation of
figures and additional model implementations
hyperparameters_tune.py ..... script for hyper-parameter tuning of
LSTM and LMU architectures
tune_transformers.py .........script for hyper-parameter tuning of
transformer architectures

core .....python files with common logic for model training and dataset
pre-processing
data ..should contain the OhioT1DM dataset files, left empty due to the
dataset licensing
plots ...............................contains figures used in the thesis
tests ................................................... python tests
requirements.txt .........................list of python dependencies
README.md ......introduction of the implementation and instructions for
running it
thesis.pdf ..........................................pdf of the thesis
thesis_src.zip ..............................LATEX thesis source code
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