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Abstract

With the paradigm shift to multimodal machine learning, hope arises for an improvement

in the prediction of functional outcome of schizophrenia and other disorders. As mag-

netic resonance imaging (MRI) can produce several types of views into the human brain,

it is suitable for the development of multimodal pipelines. The Early-Stage Schizophre-

nia Outcome study aims to collect multimodal, longitudinal neuroimaging and clinical

data of first-episode schizophrenia patients and healthy controls in order to construct a

predictive framework of functional outcome and treatment trajectory. From the data col-

lected within this project up until now, we have assembled two datasets ("IKEM" dataset:

161 subjects, "NÚDZ" dataset: 204 subjects) of features derived from several brain MRI

modalities (structural, functional, and diffusion). We have surveyed state-of-the-art multi-

modal machine learning literature and conducted exploratory analyses our data, assessing

the baseline predictive potential of primarily linear models in detecting schizophrenia and

predicting clinical features. Functional MRI features achieved the highest predictive poten-

tial in schizophrenia detection, and also show the highest rate of accuracy improvement

with increasing sample size. Conversely, regression on scores of the positive and negative

symptoms has not shown applicable results as of yet, regardless of modality. When inte-

grating multiple modalities, we found the highest predictive performance in a nonlinear

predictor stacked from several unimodal logistic classifiers. With the findings from our

analyses, we emphasize the need to understand the potential and limitations of both the

data and methods in designing individualized predictive systems.

Keywords: machine learning, exploratory analysis, magnetic resonance imaging, multi-

modal integration, schizophrenia



Abstrakt

Se změnou paradigmatu k multimodálnímu strojovému učení přichází naděje na zlepšení

kvality predikce prognózy u schizofrenie a dalších poruch. Magnetická rezonance (MRI)

je schopna zachytit různé typy obrazu mozku, je tak vhodná pro vývoj multimodálních

predikčních metod. Studie Early-Stage Schizophrenia Outcome si klade za cíl nashromáždit

multimodální, longitudinální neurozobrazovací data pacientů s první epizodou schizofre-

nie a zdravé kontrolní skupiny, a sestavit rámec pro predikci funkčního výsledku a tra-

jektorie léčby. Z dosud naměřených dat jsme sestavili dvě datové sady ("IKEM" dataset:

161 subjektů, "NÚDZ" dataset: 204 subjektů) sestávající z příznaků z několika modalit

mozkových obrazů (strukturální, funkční a difuzní). Provedli jsme rešerši současné lit-

eratury o multimodálním strojovém učení a exploratorní analýzy prediktivního poten-

ciálu primárně lineárních modelů při detekci schizofrenie a predikci klinických ukaza-

telů. Příznaky z funkční MRI vykazují nejvyšší prediktivní potenciál při detekci schizofre-

nie. Naopak regresní predikce hodnot škály pozitivních a negativních symptomů dosud

neukázala využitelné výsledky. Při integraci více modalit dosáhl nejvyššího prediktivního

výkonu nelineární prediktor složený z několika unimodálních logistických klasifikátorů. S

poznatky z našich analýz zdůrazňujeme poťrebu pochopit potenciál a limitace dat, modalit

a metod při návrhu individualizovaných prediktivních systémů.

Klíčová slova: strojové učení, exploratorní analýza, magnetická rezonance, multimoální

integrace, schizofrenie
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Preface

Machines rising

The recent developments in artificial intelligence (AI) and medical technology make the

case for computer-assisted healthcare and precision medicine ever more hopeful. Optimiz-

ing hospital processes, automatically detecting abnormal patterns from medical devices,

or enabling telemedicine for remote monitoring and advice are just some examples of

smart technology already helping save and improve lives. An important area of research

with much advancement potential is the prediction of diagnosis, treatment trajectory, and

outcome.

Eluding illness

Mental illnesses still await a significant breakthrough in this regard, as they are much less

tangible than conditions with a primarily physiological or neurologic nature. Schizophre-

nia, a mental condition that can severely warp one’s perception of reality from the norm,

is one such illness that would greatly benefit from computer-assisted treatment. However,

it has no clear etiology, and all of its symptoms overlap with those of other psychiatric

disorders. It is up to trained specialists to determine the diagnosis, which can be quite

subjective, as even professionals with the same training can perceive the patient’s symp-

toms and behavior differently. As such, it is desirable to find some objective biomarkers of

the disease, which could help ascertain the diagnosis or even recommend individualized

treatment. The hope is that early intervention and precisely targeted treatment can greatly

improve the prognosis of the patient.

Capture and predict

To build predictive frameworks, we use features or biomarkers derived from data. In an

attempt to investigate the objective markers for schizophrenia in the brain, researchers

turn to neuroimaging. Brain imaging techniques emerged along with the wave of novel
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medical imaging technology in the 20th century and enabled us to capture and map the

structure and function of the brain. To name a few, electroencephalography (EEG) mea-

sures the electrical activity of the brain cortex through the scalp, and magnetic resonance

imaging (MRI) uses strong electromagnetic fields in various configurations to measure

the tissue as a structural image, time series of neuronal metabolic activity, and so on.

These methods use different physical principles for measurement and so capture slightly

or wildly different types of information about the studied tissue. When building models

and predictors from neural data, we rely on these empirically known properties to exploit

them well and improve predictive and interpretative power.

Enter multimodality

The term modality denotes a set of features that contain specific information about the

measured entity. Multimodality represents a general paradigm shift happening in ma-

chine learning fields based on the belief that working with multiple data types and inte-

grating different views of studied objects can lead to improved prediction. Examples of

such approach include the DALL-E models integrating images with text to allow gener-

ating imagery from textual prompts (Ramesh et al. 2022), or ImageBind, which creates

shared representation for a number of modalities – images, text, audio, depth, thermal,

and inertial measurement unit (e.g. gyroscopic) data (Girdhar et al. 2023).
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Figure 1: Results of a search in the Scopus database with the terms multimodal neuroimag-
ing (author, abstract, and keyword fields) showing yearly numbers of article publications
in this area.

Neuroimaging also provides a variety of ways to inspect the brain, the neuroimaging

community started adopting the multimodal paradigm, and so in the last decade there

has been a surge in research focused on multimodal fusion (Azam et al. 2022). Thus more

studies have begun measuring multiple MRI modalities during a single magnetic reso-

nance imaging recording session, and there are also efforts to concurrently record func-
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tional magnetic resonance imaging (fMRI) and EEG, exploiting both the spatial resolution

of fMRI and temporal resolution of EEG (Jorge, Van Der Zwaag, and Figueiredo 2014;

Piorecka et al. 2022). Methods and pipelines integrating multiple imaging modalities are

gathered under the umbrella term multimodal fusion.

Multimodal confusion

While the idea of "the more modalities, the better" does seem intuitive, multimodality

comes with its own class of challenges. Firstly, there comes the MRI economy and prac-

ticality (Ooi et al. 2024). Scanning sessions are quite expensive at the baseline; adding

recording blocks for additional modalities increases this price tag. More importantly, sub-

jects have to spend more time in the scanner, which is not overly comfortable and, in

fact, may be distressing for some. This can cut the sessions short (Quirk et al. 1989), or

render the recordings unusable due to strong motion artifacts. In the already data-starved

biomedical field, multimodal datasets usually count even fewer recordings than unimodal

datasets. While there are possibilities of aggregating datasets from multiple sites, the prob-

lem lies in differing scanners, acquisition protocols, and demographics on site, and harmo-

nizing these factors adds another layer of complexity. Additionally, with more modalities

come more features, resulting in larger dimensionality. Models with a large number of

parameters tend to overfit to small training sets, resulting in poorer predictions on un-

seen data (Berisha et al. 2021). This means greedy approaches such as neural networks

or blindly using all features in prediction are not preferable. So, more complex feature

sets might potentially include novel information, as well as novel noise, to derail our al-

gorithms. As such, we have to reduce, simplify, and regularize our models, to recover as

much signal as possible while constrained by the sample size available.

ESO up the sleeve

The Early-Stage Schizophrenia Outcome (ESO) study is an ongoing effort to construct

a longitudinal multimodal dataset for schizophrenia. The main aim of the project is to

optimize care by predicting diagnosis, guiding treatment, and tracking illness trajectory

to improve the quality of life and functional outcomes of patients. Acquiring a multi-

tude of MRI modalities, as well as collecting many clinical variables, the project intends

to construct a complex clinical profile of the volunteering subjects. The data acquisition

is actively taking place formerly at the Institute of Clinical and Experimental Medicine

(IKEM) and currently at the National Institute of Mental Health (NUDZ) in the Czech

Republic and aims to form one the most comprehensive collections of longitudinal multi-

modal data from schizophrenia patients and healthy controls. The objectives of the study

3



Preface
;A<

are defined as follows:

Objective 1: Robust multimodal feature extraction To establish an effective software,

hardware and data framework to store and analyze large multimodal data.

Objective 2: Unimodal data analyses To develop and apply methods for efficient pre-

diction of probable treatment outcome from individual data types.

Objective 3: Multimodal data analyses To improve accuracy of trajectory prediction by

combining data from multiple modalities.

Objective 4: Clinical Application To establish simplified disease models providing inter-

pretable prediction of the disease progression trajectory.

The task before us

The goal of this thesis is to perform a multimodal analysis of a subset of the ESO dataset,

positioning us between Objectives 2 and 3. With the difficulties and limitations outlined

above in mind, we intend to study model behavior with respect to dimensionality, inter-

modality, and sample size. We resort to using simple linear models to inspect the dataset;

constructing a complex and intricate model that would predict a diagnosis with the best

accuracy possible is out of the scope of this thesis.

The official tasks of this thesis are defined as follows:

Task 1 Conduct a literature review on the detection of schizophrenia and prediction of

therapeutic outcome from unimodal and multimodal neuroimaging data.

Task 2 Investigate dependence of the separating plane between the groups on their the-

oretical distributions and sample size. Evaluate on data the separating potential in

individual modalities and across modalities.

Task 3 Prepare an appropriate structured dataset from data obtained as part of the ESO

study conducted at the National Institute of Mental Health.

Task 4 Design a suitable fusion pipeline of available multimodal neuroimaging data for

machine learning.

Task 5 Evaluate the possibilities of classification and regression tasks in schizophrenia on

the multimodal neuroimaging dataset.

Task 6 Validate results on an independent dataset.
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Structure of this work

The tasks defined above will be fulfilled in the chapter structure, which is as follows:

Research & Review (Task 1) First, we review fundamental concepts related to this the-

sis. Then, we survey the academic literature related to machine learning on multi-

modal MRI data and see what we can expect in terms of the performance of machine

learning models and the limitations of the multimodal approach.

Prepare Dataset (Task 3) From the ESO project database at NUDZ, we collect and filter

out relevant data to derive feature sets that will comprise our multimodal dataset.

Explore & Design (Task 2, 4, and 5) Exploring the assembled dataset, we think of ways

how to properly engineer and combine different feature sets for the machine learn-

ing tasks.

Hypothesize and Validate (Task 6) Using the models discovered previously, we lay out

models and hypotheses that we test on an independent dataset.

Ponder & Conclude We evaluate attained results and discuss them in the context of the

reviewed research, concluding the thesis.
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Chapter 1

Research & Review

1.1 The split mind

Schizophrenia is a mental disorder that warps one’s perception of reality. It can severely

impair the patient’s functioning in everyday life and negatively affect their place in so-

ciety. The definition of schizophrenia today is still not clear cut, and the development of

the concept up to this point was a rocky path throughout history. One term largely used

throughout the ages was lunacy, and it encompassed a multitude of today’s differenti-

ated mood and psychotic disorders, including schizophrenia. Important milestones on this

journey include French psychologist Benedict Morel defining the term dementia praecox

(meaning “premature dementia”); the work of Emil Kraepelin, who defined a disease with

similar symptoms to today’s schizophrenia under the same term; Eugen Bleuer following

up on this work and introducing his own term, schizophrenia, at the beginning of the

twentieth century (Johnstone 2003). In the same century, the first standardized diagnos-

tic criteria were established by major health organizations: the Diagnostic and Statistical

Manual of Mental Disorders by the American Psychiatric Association (now in its 5th edi-

tion) and the International Classification of Diseases by the World Health Organisation

(now in the 11th version).

The global prevalence of schizophrenia has been recently estimated to be roughly 289

cases per 100,000 people in 2019 (Solmi et al. 2023). Signs of schizophrenia include posi-

tive symptoms: psychosis (e.g., hallucinations) and delusions (e.g., paranoia, grandiosity),

and negative symptoms: blunted affect, social withdrawal, catatonic behavior (abnormal

movement patterns), and so on (Schultz, North, and Shields 2007). The symptoms are

diverse, yet none are specific to the illness. In addition, schizophrenia patients are still

stigmatized, and their human rights are often violated, which may worsen the condition

(Kelly 2005).

Pharmacological treatment of schizophrenia goes back to the 1950s with the first gen-

6



Chapter 1. Research & Review
;A<

eration of antipsychotics (also referred to as neuroleptics) (Schultz, North, and Shields

2007). The first antipsychotic developed was chlorpromazine, and to this day, antipsy-

chotic dosages are often expressed as chlorpromazine equivalents in milligrams (Patel et

al. 2013). First-generation (typical) antipsychotics have proven to be effective, at least in

reducing the positive symptoms, though they do carry a range of adverse side effects with

them. The characteristic adverse effects of typicals are extrapyramidal side effects, which

comprise various motor dysfunctions (Arana 2000). While second-generation (atypical)

antipsychotics have come shortly after the first, the distinction between typicals and atyp-

icals has been contested, as the atypical drugs do not seem to improve on efficacy or

tolerability significantly. Rather, the distinction lies in different side effects, with atypicals

alleviating extrapyramidal effects and having more pronounced metabolic effects (Leucht

et al. 2009). This is to say, there is no silver bullet regarding drug prescription, and it is

not uncommon for patients to switch medication multiple times during their treatment to

find a good trade-off between efficacy and tolerability for their case (Bitter et al. 2008).

1.2 Magnetic resonance imaging – see inside

The unique property of MRI is that it enables noninvasive acquisition of three-dimensional

reconstruction of internal tissue. It exploits the behavior of hydrogen atoms in a strong

magnetic field and the abundance of water in the human body. The atoms are aligned by

the strong magnet. Then, coils disrupt this configuration with radiofrequency waves, and

fluctuations created by the atoms returning to their aligned state are measured as signal.

Depending on the tissue the water is bound to, multiple signal intensities arise, creating

an image (Brown and Semelka 2011). A number of MRI sequences exist for perturbing

the field, leading to different imaging contrasts or modalities. In this thesis, we will refer

only to specific neuroimaging contrasts – structural, functional, and diffusion-weighted

imaging.

1.2.1 Structural MRI

The fundamental modality is structural magnetic resonance imaging (sMRI), capturing the

anatomy of brain tissue. Three important contrasts that show up in sMRI are white mat-

ter, gray matter, and cerebrospinal fluid (showing as black, i.e. low signal). These tissues

can be analyzed with methods such as voxel-based morphometry (VBM) or surface-based

morphometry (SBM) (Ashburner and Karl J. Friston 2000; Goto et al. 2022), allowing us

to compute and compare measures like gray matter volume or cortical thickness. Struc-

tural imaging can reveal injuries, tumors, anatomical abnormalities, atrophy of tissue, and

others. Technically, sMRI is key for any MRI study, regardless of the primary modality of

interest, as structural images serve as a reference in the preprocessing steps of images
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from all modalities (Manjón 2017; Esteban et al. 2019). To minimize findings due to indi-

vidual differences such as skull volume, standardized brain templates have been devised

by averaging a large number of structural images. When images are acquired for a study,

they are registered to this template.

1.2.2 Functional MRI

Brain activity can be measured by fMRI. It cannot capture the underlying electromagnetic

activity of the neurons, but there is a proxy measure – neuronal metabolism. As active neu-

rons require more oxygen, a hemodynamic response delivers more oxygenated blood into

their immediate surroundings, changing magnetic properties in the corresponding voxel

and thus showing a different intensity. Functional imaging’s strength lies in its greater spa-

tial resolution compared to EEG. EEG records the electrical activity of the brain projected

to the scalp, whereas fMRI can capture metabolic activity anywhere inside the brain down

to a few millimeters. The downside is that the temporal resolution is not very impressive

(which is the strength of EEG). The temporal resolution, usually around two seconds per

volume, is not only limited by the scanner’s capabilities but also by the hemodynamic re-

sponse itself since the duration from stimulus onset to peak response is in order of seconds

Figure 1.1.

Figure 1.1: A sketch of the hemodynamic response function (HRF) model, as implemented
in the statistical parametric mapping package (SPM12 Software - Statistical Parametric
Mapping 2024). The HRF peaks around five seconds from onset.

1.2.3 Diffusion-weighted MRI

Diffusion-weighted imaging displays the complex structure of axonal highways; in other

words, the structure of white matter in the brain. As axons are responsible for neuronal

communication, diffusion-weighted magnetic resonance imaging (dwMRI) serves as a

means of inspecting structural connectivity and white matter integrity, which can be sensi-

tive to pathological changes. The principle of the method is based on the motion of water
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molecules in the brain. The constraint of motion of the molecules depend on the cell com-

position in a certain place (represented here by a voxel). In some voxels, the molecules

can move freely in most directions (anisotropic motion), but in and around neuronal ax-

ons, the motion is dominantly constrained to be along the axon. So, the imaging protocol

works by applying magnetic gradient of several strengths in several directions, acquiring

images in a number of directions. From these images, the diffusion of water molecules

in each voxel can be measured (Hagmann et al. 2006). The methods of estimating the

white matter tracts or fibers are termed tractography. With the tracts estimated, we can

then compute structural connectivity between regions of interest, by tracing and counting

fibers connecting those regions (Jeurissen et al. 2019; Bach et al. 2014). Another class

of features obtainable from dwMRI images are tensor measures (diffusion tensor imag-

ing). In each voxel, a tensor is computed which represents an ellipsoid that describes the

motion possibilities at that voxel. This tensor has eigenvalues associated with it, that are

then used to compute the diffusion tensor measures. For instance, fractional anisotropy

measures the relative degree of water diffusion anisotropy in a voxel, with a minimum

value of 0 representing spherical diffusion and a maximum value of 1 representing linear

diffusion (Le Bihan et al. 2001).

1.3 Atlases of the (brain) world

Throughout the history of investigating the brain, different parcellations have been de-

vised in order to organize its structure anatomically or functionally. MRI atlases represent

such divisions as voxel masks - 3D images where the voxel value indicates whether the re-

spective voxel belongs to a respective region/structure in the atlas (Cabezas et al. 2011).

The region labels can be probabilistic, expressing numerically the likelihood of belonging

to a region, or deterministic, giving a hard indication. Here we describe two specific at-

lases, which are also used in our project - the Automated Anatomical Labeling atlas (AAL)

and the John Hopkins University atlas (JHU).

1.3.1 AAL gray matter atlas

The AAL is an atlas and a software package that labels the gray matter regions of the

cortex. Originally, a T1 volume of a single subject was parcellated into gray matter 90

regions (45 for each hemisphere), and 26 subcortical regions, totalling 116 labeled regions

(N. Tzourio-Mazoyer et al. 2002). In the subsequent versions, AAL2 (Rolls, Joliot, and

Nathalie Tzourio-Mazoyer 2015) and AAL3 (Rolls, C.-C. Huang, et al. 2020), tweaking

some regions and including new ones, make the total number of regions 120 and 166,

respectively. Our study utilizes only the 90 gray matter regions from AAL1 (Table A.1).
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1.3.2 JHU white matter atlas

The ICBM-DTI-81 white matter atlas has been created at the John Hopkins University by

averaging DTI scans from 81 subjects and manually delineating 50 anatomical structures

(Table A.2) known from histological studies of white matter, as documented by Oishi et al.

(2008).

1.4 Clinical examinations

In order to rate the condition or symptom severity of a patient in a quantifiable and stan-

dard way, numerous clinical scales and instruments have been devised, rating disorder-

specific symptoms or general indications. Clinical scales are used to assess the initial state

and illness trajectory of a patient in clinical practice, research, and clinical trials of treat-

ments. Here, we provide short descriptions of four such scales, which were recorded as a

part of the ESO project. For the purposes of this thesis, we only deal with the Positive and

Negative Symptom Scale (PANSS) scale.

1.4.1 MINI

The Mini-International Neuropsychiatric Interview (M.I.N.I.) is a short, approximately 15-

minute structured interview developed to be compatible with diagnostic criteria for psy-

chiatric disorders in the ICD-10 and DSM-IV manuals. It aims to be brief while maintaining

accuracy. It is designed to capture routine information so non-specialist personnel can con-

duct the interview. It is intended both for the clinical and research setting (Sheehan et al.

1998).

1.4.2 BREF

The World Health Organization Quality of Life (WHOQOL) BREF questionnaire is the ab-

breviated version of WHOQOL-100. It is useful for brief clinical assessments while being

highly correlated with the more extensive questionnaire. It surveys four domains of quality

of life: physical health, psychological, social relationships, and environment. The exami-

nee is asked to answer each question on a scale of 1 to 5 (worst to best). The answers

are then plugged into four equations (one for each domain), computing the final scores

(WHO 2004).

1.4.3 GAF

The Global Assessment of Functioning (GAF) scale comprises Axis V in the multiaxial as-

sessment system in the DSM-IV (1994). It is a 100-point scale divided into deciles, each
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interval representing a symptomatic and functional component. The examiner works with

the interval, which reflects the worse of the two components; e.g., if the symptom severity

falls between 70 and 80 but functioning falls between 60 and 70, the examiner will select

a score they deem appropriate in the range 60-70. GAF is not diagnosis-specific and cov-

ers the range from a severely disabled (1) to a healthy (100) individual. Although there

are some points of controversy, such as higher sensitivity to the subjectivity of the inter-

viewer, it has been adopted in several local health systems and is a common instrument in

outcome studies (Aas 2010).

1.4.4 PANSS

PANSS (Kay, Fiszbein, and Opler 1987) is one of the oldest yet still one of the most widely

used scales for assessing the severity of schizophrenia. A trained examiner conducts an

approximately 50-minute interview with the patient, studies reports from family and care

personnel and compiles this information into the rating. The scale rates thirty symptoms

in total, split into three groups: positive symptoms, negative symptoms, and general psy-

chopathology (enumerated in Table 1.1). The positive and negative scales include 7 symp-

toms each, and the general psychopathology scale includes 16. The examiner rates each

symptom on a scale of 1 to 7 in terms of intensity. The minimum score the examinee can

attain is 30, the maximum is 210 (the lower, the better).

Table 1.1: PANSS subscales and symptoms

Scale Symptoms

Positive symptoms Delusions, Conceptual disorganization, Hallucina-
tory behavior, Excitement, Grandiosity, Suspicious-
ness/persecution, Hostility

Negative symptoms Blunted affect, Emotional withdrawal, Poor rapport,
Passive/apathetic social withdrawal, Difficulty in ab-
stract thinking, Lack of spontaneity and flow of con-
versation, Stereotyped thinking

General psychopathology Somatic concern, Anxiety, Guilt feelings, Tension,
Mannerisms and posturing, Depression, Motor retar-
dation, Unusual thought content, Disorientation, Poor
impulse control, Preoccupation, Poor attention, Active
social avoidance, Disturbance of volition, Impaired
judgment and insight, Uncooperativeness

11



Chapter 1. Research & Review
;A<

1.5 Statistical methods

Note that we use notation and formulas for population statistics throughout the text when

convenient, however, in practice, we use sample statistics.

1.5.1 Standardization

In order to have comparable statistics across features, as well as to ascertain good behavior

of some algorithms, we standardize features to zero mean and unit variance. The standard

score (z-score) of a data point expresses in terms of standard deviations how the raw data

point deviates from the mean of the overall data. It is defined as

Z =
X − µ

σ
. (1.1)

1.5.2 Testing hypotheses

Statistical tests allow us to asses significance of our findings when analysing data. The null

hypothesis (H0) often marks the condition that there is no difference or effect present, such

as no linear relationship between two variables. The alternative hypothesis (H1) states the

opposite. The output of a test is some statistic and a p-value. The p-value tells us the

probability of observing the found or even more extreme value of the statistic, given that

the null hypothesis is true. To make a decision if a finding is statistically significant, we set

a significance level α, with the conventional level being α = .05, or lower. In our analyses,

we will use this conventional significance level.

1.5.3 Errors, power, and corrections

When conducting a test, the significance level α has an important meaning: it is the level

of acceptable false positive probability. False positive rate is also known as the Type I error:

detecting a significant result when it is not there. False negativity or Type II error, the

probability of which is denoted by β, means failing to detect a significant result when it is

there. On the other hand, the ability of a test to detect a significant result when it is there,

is called power. It is defined as the complement of Type II error probability:

power = 1− β. (1.2)

In the case where multiple tests are conducted in attempt to answer a single question, the

error compounds for every test conducted. This compound error is known as the family-

wise error rate (FWER). Under independence of the hypotheses, the FWER is given by:

FWER = 1− (1− α)m, (1.3)
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where m denotes the total number of tests conducted. Assuming α, for m = 2 the FWER

will be 0.0975, for m = 3 it will be 0.1426. It becomes apparent that even with a small

number of tests, the compound error becomes unacceptable. A number of corrections were

devised to alleviate this issue. The most well-known and very widely used is also one of

the most conservative ones – the Bonferroni correction. This procedure simply divides the

original significance level for a single test by the total number of tests conducted to answer

the research question

αm =
α

m
. (1.4)

Alternatively, we can multiply the p-values by m, keeping α fixed, to achieve the same

effect. While Bonferroni indeed diminishes the probability of false detections (in fact,

controls the FWER at values below the prescribed α), it also does so for true detections,

meaning it has lower power. Other corrections have a varying tradeoff between FWER

control and power, and it is up to the researcher to choose and justify the use of a respec-

tive procedure. Although corrective procedures can serve well to control for false findings,

a notion often omitted is that they ought not be used blindly, to needlessly hinder power.

For instance, when doing exploratory analyses or post-hoc tests, correcting or overly con-

servative correcting in this scenario could be detrimental to the idea of the task. As such,

Bonferroni correction (and even the p-value per se) has been questioned in the academic

sphere (Wasserstein and Lazar 2016). Our approach is the following: we will use uncor-

rected significance levels when exploring data or performing post-hocs; however, when

we want to make a confident statement when reporting statistical questions, we will use

the Bonferroni correction.

1.5.4 Correlations

Statistical relationships between pairs of variables observed together can be measured by

correlation coefficients.

Pearson’s (product-moment) correlation coefficient measures the degree of linear re-

lationship between variables. For random variables X and Y , Pearson’s ρ is defined

as their covariance normalized by the product of their standard deviations

ρXY =
cov(X, Y )

σXσY
. (1.5)

Spearman’s (rank) correlation coefficient measures the degree of monotonicity of the

relationship. The formula is equivalent to Pearson’s correlation, except that the val-

ues of the variables are first converted into their rank, and then plugged into the

formula

ρXY =
cov(rank(X), rank(Y ))

σrank(X)σrank(Y )
. (1.6)
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1.6 Machine learning models

In the field of machine learning, models are built on assumptions and trained on avail-

able data. They can then predict e.g. the properties of unseen data or discover hidden

associations in a dataset. In contrast to traditional group analysis in statistics, which aims

to find a difference between populations as a whole, predictive ML models can perform

inference on an individual level. In prediction, a model learns a relationship between pre-

dictors and a target variable. If this variable is numerical, the task is called regression; if

it is categorical, the task is then called classification.

1.6.1 Linear regression

A fundamental tool in any analysis, linear regression models aim to find coefficients to

model a linear relationship between a target variable and its predictors. It does so by

finding coefficients of the linear combination of the predictors

Y = β0 + β1X1 + . . .+ βpXp + ε, (1.7)

where Y is the target variable, Xi the predictors, βi the coefficients, and the residuals

ε express the difference between the predicted and true value of Y . The interpretation

of the coefficients is that βi represents the average change in Y for a unit change in Xi,

leaving all other predictors fixed.

There are now many methods to obtain in some sense optimal estimates β̂ of the

coefficients β of a linear model, but the classical one is called ordinary least squares, which

minimizes the sum of squares of the differences between data points and their predicted

values. This criterion is expressed as

L =

n∑
i=1

||yi − β̂0 −
m∑
j=1

β̂jxij ||2. (1.8)

1.6.2 Logistic regression

In a binary classification scenario, with classes labeled 0 and 1, the probability of a data

point belonging to class 1 is p1, and the probablitity of it being class 0 is p0 = 1− p1. The

fraction of probabilities is called odds, and by taking the (natural) logarithm of odds we

obtain log-odds
p1
p0

=
p1

1− p1
. (1.9)
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Logistic regression is a linear model in parameters: it models the log-odds as a linear

combination of the predictors

β0 + β1x1 + . . .+ βpxp = ln

(
p1

1− p1

)
. (1.10)

The model expresses the probability of class 1 via the sigmoid (logistic) function; solving

eq. (1.10) for p1, we obtain the formula

p(x) = p1(x) =
1

1− exp−(β0+β1x1+...+βpxp)
. (1.11)

One of the ways to estimate model parameters are via maximum likelihood estimation.

1.6.3 Principal component analysis

principal component analysis (PCA) aims to find the directions of the largest variance of

the data. These directions are represented by a vector basis, where the vectors are ordered

by the amount of variance they capture. This basis is found by eigendecomposition of the

covariance matrix of the data. An eigenvector v of matrix A fulfills the following condition

Av = λv, (1.12)

where λ is the corresponding eigenvalue. The procedure is often preceded by taking the

data matrix X and standardizing its features in columns (assuming the examples are

stored in rows), as PCA is sensitive to feature scaling. Then, the covariance matrix is

constructed

Σ = XTX, (1.13)

and its eigenvectors V are found

Σ = V ΛV T , (1.14)

where Λ denotes a diagonal matrix with eigenvalues on the diagonals corresponding to

eigenvectors in the columns of V . Plotting the variance captured by each component, we

often see that the first few principal components capture much of the useful information

and thus decide to keep only a small number of the total number of components; this can

be seen both as a form of compression and filtering.

1.6.4 Bias and variance

The integral part of a model is its assumptions, which influence its flexibility. The degree

of flexibility relates to the model’s ability to adapt to data and plays a central role in the
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bias-variance tradeoff. Stronger assumptions can give the model a lot of predictive and

interpretative power, but a gross violation of these assumptions can be detrimental to

performance. Such models are known to be inflexible or biased, to have a high bias (not

to be confused with the bias term in linear models). In contrast, models with generally

fewer assumptions, many parameters, and high adaptability are flexible; they have a high

variance. The training score of flexible models tends to be higher, as they are better molded

to the training set. This is a double-edged sword, though, because these estimators can

easily overfit to the details of the training set, leading to insufficient generalization and

performance in the real world (referring to new, unseen data). The challenge is then to

find a classifier with flexibility fitting the nature of the data at hand. The bias-variance

tradeoff is expressed by the formula decomposing total error into the bias and variance

components, as well as irreducible error (Geman, Bienenstock, and Doursat 1992):

εtotal = εbias + εvariance + εnoise (1.15)

This relation is visualized in Figure 1.2. Sample size plays a big role in this problem: it

is more acceptable to choose highly flexible estimators such as convolutional neural net-

works if there are many examples, like in the MNIST handwritten digit database (Lecun

et al. 1998). Though some overparametrized neural network architectures seem to empir-

ically challenge the bias-variance paradigm (Neal et al. 2019), that seems to be the case

when the ratio of sample size to model capacity is large and thus avoids the neuroimaging

case. As such, less flexible models such as linear models are abundantly used in imaging

studies, especially with the typically small samples.

1.6.5 Dimensionality

With large numbers of features, the curse of dimensionality starts to be a problem, which

leads to troubles in convergence, overfitting, or sampling issues. Reducing the number of

dimensions is one of the ways of dealing with the curse of dimensionality. Feature selection

is a family of methods aiming to select a subset of variables most valuable for prediction.

Some examples would be forward/backward step-wise selection, where in each step, a

variable is added into the model if it improves a certain criterion in comparison with other

variables; very popular are shrinkage methods, such as ridge or lasso, which incorporate

shrinking of the model coefficients directly in the training phase, leading to penalization of

less important variables. The lasso specifically zeroes the unimportant variables. Another

feature engineering approach is decomposition, with PCA being the standard among linear

techniques. It is important to keep in mind that the number of principal components does

not have to be the same as the original number of features. The number of components is

upper bound by either the number of features or the sample size, whichever is smaller. This
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Figure 1.2: Complex models have less bias (rigidity) and have more variance (flexibility).
As such, with more complexity, the error due to bias diminishes, and the error due to
variance grows. In order to minimize the total error, the aim is to find balanced levels of
bias and variance in the model.

ties another layer of complexity to PCA applied to small high-dimensional datasets because

every additional training example increases the total number of components obtained by

PCA (and also improves the overall estimate of covariance). Nonlinear methods include

widespread methods such as kernel PCA, multi-dimensional scaling, uniform manifold

approximation and projection, or t-stochastic neighbor embedding. These methods, while

more flexible, are more suited to specific conditions and scenarios, e.g., data being spread

on a specific, high-dimensional nonlinear manifold.

1.6.6 Regularization

Both simple and complex models benefit from regularization, which aims to prevent over-

fitting. There are various methods to achieve this, but the most well-known are the ridge

and lasso methods, based on penalizing large (absolute) values of model coefficients. This

can be done in models using any sort of gradient optimization to find the coefficients. Gra-

dient descent optimizes a loss function based on the optimization criterion for the model,

and the penalty is implemented by the addition of a coefficient penalty term. The term is a

sum of all the coefficients with a norm applied to them. For the ridge, that is the L2 norm;

for the lasso, it is the L1 norm. For least squares linear regression, the extended loss looks
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as follows:

Lridge =
n∑

i=1

||yi − β0 −
m∑
j=1

βjxij ||2 +
m∑
j=0

∥βj∥22 (1.16)

Llasso =
n∑

i=1

||yi − β0 −
m∑
j=1

βjxij ||2 +
m∑
j=0

∥βj∥1 (1.17)

where β0, ..., βm are the model coefficients, and

||x||p = (|x1|p + |x2|p + . . .+ |xn|p)
1
p (1.18)

denotes the Minkowski vector p-norm. These methods are called shrinkage methods, as

they shrink the size of the coefficients. Lasso specifically tends to zero out some coeffi-

cients, effectively performing feature selection. Another popular method, called dropout,

has been introduced in neural networks. This method randomly nullifies some neurons

(coefficients) in each iteration, forcing other neurons to evolve more robustly in that iter-

ation of the training.

1.6.7 Orthogonalization

There are a number of ways of dealing with confounding variables to minimize their influ-

ence on analysis. A simple but data-hungry approach would be confounder stratification.

Subjects are analyzed separately in strata or bins of the confounder where the variable

values are relatively similar. That is not practical for our dataset size. Another approach

is called confounder orthogonalization (also known as Frisch-Waugh-Lovell or regression

decomposition theorem). There, for each dependent or independent variable of interest,

a linear regression model is constructed where said variable is used as a response and the

confounding variables as predictors. The residuals of the model are used as new values for

the variable. This diminishes the effect of the expected linear relationship with the con-

founders, as it is subtracted from the useful variable. Suppose we wanted to orthogonalize

age and sex from the variable X. The model would be represented by the equation

X = β0 + βagecage + βfemalecfemale + ε. (1.19)

where c stands for a confounder variable and cmale, cfemale ∈ {0, 1} specifically are dummy

variables standing in for the categorical variable of csex. The procedure is visualized in

Figure 1.3. This model is a composite of two lines with the same slope and different biases.

In the case that the age range was wider and age was more heterogeneous between the

sexes, an interaction term could be introduced into the equation, providing the model

with two different slopes as well.
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Figure 1.3: Visual sketch of the orthogonalization procedure using a linear model. Left:
fitted model of the dependent variable as function of sex and age, to obtain the residuals.
Right: distribution of the residuals (age and sex-corrected variable X) as function of sex
and age.

1.6.8 Evaluation

Predictor performance is evaluated and compared using scoring metrics. For classifiers,

these metrics are derived from the confusion matrix (Figure 1.4) and chosen with respect

to specific goals or use cases. The matrix summarizes the interaction of prediction and

ground truth: true positives (TP) and true negatives (TN) for correct classification, false

positives (FP) and false negatives (FN) for incorrect classification. The most common and

straightforward metric is accuracy (or its complement, error).

Accuracy (classification) is the proportion of correctly classified examples to all exam-

ples.

ACC =
TP + TN

P +N
(1.20)

Coefficient of determination R2 (regression) expresses how much variance is captured

by a regression model in comparison to the null model (simple mean of data). It is

computed as

R2 = 1− SSresidual

SStotal
(1.21)

where SSresidual is the residual sum of squares (for evaluated model) and SStotal is

the total sum of squares (for the null model), which is equivalent to the variance of

the data. As R2 is observed to increase just with adding predictors into a model, and

adjusted variant has been devised to compensate for this behavior:

adjR2 = 1− (1−R2)
n− 1

n− p− 1
(1.22)

Where n is the sample size and p is the number of predictors in the evaluated model.
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Figure 1.4: The confusion matrix.

1.6.9 Validation

Validating a model means testing how the model fares on predicting unseen data that

weren’t in the training set. The key aspect of model validation is having separate data

for training and testing the model. The trivial case to satisfy this condition would be

holdout validation: splitting the dataset into two non-overlapping subsets, training on one

of them, and testing predictions on the other. Conventionally, the training set is larger

than the testing one, often in the 70:30 ratio. This is a valid approach; however, it does

not provide a measure of uncertainty and is quite sensitive to how the examples in both

sets are distributed. The solution to this are resampling methods such as cross-validation.

1.6.10 Cross-validation

Cross-validation (CV) alleviates the aforementioned issue by dividing the training set into

smaller subsets. One subset is put away, and the training runs on the remaining subsets.

The classification score is then computed on the held-out validation subset. This yields a

set of training scores, which are then averaged. Other statistics, such as evaluation time,

are also often computed, providing additional information about the classifier. CV is con-

ventionally implemented as k-fold CV, dividing the training set into k sets of roughly the

same size, using k − 1 sets as the training set and the remaining set as the validation set.

The extreme case of k-fold CV is called leave-one-out, where the validation set consists of

only one example. Stratified k-fold CV is often applied when there is a noticeable class

imbalance in the sample. It sorts training examples into strata corresponding to their class

label, attempting to preserve in each fold the class ratio of the dataset. Repeated CV takes

any of the former defined procedures and repeats them a number of times, shuffling the

dataset each time, again averaging over folds and repetition. It is intended to be more

robust to dataset permutation. A variant popularized when Dietterich (1998) introduced
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it for model comparison is 5x2cv, which shuffles the dataset five times, making the met-

ric less sensitive to dataset ordering, while still fitting the model 10 times like in often

used 10-fold CV. Cross-validated prediction is a sort of model diagnostic prediction, where

instead of scores we are interested in the predicted values in folds, which are then con-

catenated into one single vector for the whole predicted set. This vector is comprised of

predictions from k different models and, as such, is used for comparing different algo-

rithms rather than the model they produced. To contrast this, when we use the holdout

method, train the two models once on the same training set, and compare predictions

from the same testing set, we are performing a model comparison.

1.6.11 Data leakage

Importantly, to avoid data leakage, the validation examples ought not to be included in

fitting transformations such as PCA or confounder orthogonalization. Data leakage refers

to properties of testing examples being projected into the estimator before being classified.

For example, principal components could be heavily influenced by the validation examples

in smaller samples (this might be less of an issue in LOOCV, but the principle holds). So,

the transformation is fitted on the training set (which is then also transformed), and the

validation set is only transformed by the fitted model.

1.6.12 Grid search

Grid search is a technique for optimizing estimator hyperparameters. It cross-validates

the classifier for each combination of considered hyperparameters, and the parameter

combination with the best mean score is selected for the job. This way, parameters like

regularization strength or optimal number of (PCA) components can be estimated on

the training set to achieve a good score while preventing overfitting to the training set.

Moreover, multiple classifiers with different principles can be hyperparameter-optimized

on the training set and compared in their optimal tunings.

1.6.13 Comparing classifiers

McNemar’s statistical test is used in situations where we want to compare two paired

samples of nominal data. As such, it is often used for pairwise comparison of diagnostic

tests, which includes classification models. The usage of McNemar’s test for comparing the

performance of supervised models is detailed by Dietterich (ibid.). First, a contingency

table counting concordant and discordant pairs is constructed (Table 1.2). In the case

of classifiers, pairs are counted that were concordant and discordant in terms of correct

classification of the training example. Following that, the test statistic is
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Table 1.2: Contingency table of McNemar’s test between classifiers A and B.

A is correct A is incorrect

B is correct a b
B is incorrect c d

χ2 =
(|b− c| − 1)2

b+ c
(1.23)

The test statistic follows the χ2 distribution with one degree of freedom. The 1 in the

numerator of eq. (1.23) is added for "continuity correction" because of the fact that the

statistic is discrete, but the distribution is continuous. We can see that the test takes into

account only the discordance between the correctness of classification of the algorithms.

The hypotheses for this test are the following:

H0 : pb = pc (1.24)

H1 : pb ̸= pc (1.25)

The null hypothesis expects the counts b and c to be equal to their average (b+ c)/2. It is

not dependent on the concordance counts a and d.

Cochran’s Q-test is an omnibus test that assesses differences between more than two

models of classification. It can be seen as an extension of McNemar’s test, akin to analysis

of variance being the omnibus alternative to pairwise t-tests between groups. Given the

ground truth class labels and corresponding predictions for each classifier, we can con-

struct a table that records the correct predictions of subjects in rows per each classifier

(example in Table 1.3). Following from this, the Q statistic is computed by the formula

Table 1.3: Table of Cochran’s Q test between classifiers A, B, and C.

Classifier A Classifier B Classifier C

Subject 1 I11 I12 I13
Subject 2 I21 I22 I23
Subject 3 I31 I32 I33
...

...
...

...
Subject n In1 In2 In3

Q = k(k − 1)

∑k
j=1 I·j −N/k∑n
i=1 Ii·(k − Ii·)

, (1.26)

where Iij denotes an binary variable indicating the correctness of the classification, k

is the number of classifiers compared, n is the number of subjects classified, I·j and Ii·
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denote the sum of columns and rows respectively, and N is the sum of all ones (correct

classifications) in the table. The hypotheses for this test are following:

H0 : The treatments are equally effective. → ACC1 = ACC2 = . . . (1.27)

H1 : There is a difference in effectiveness between some treatments. (1.28)

Dietterich (1998) reviewed several ways of comparing algorithms, and presented a

new approach. The 5x2cv paired t-test performs repeated 2-fold cross-validation. The im-

provement lies in the 2-fold part, as the train and test sets are independent (the repetitions

still are not, as the sets are shared across repetitions). This test has been shown to have

similar Type I error to McNemar’s test, while having greater power (ibid., pp. 20–23).

While the former two tests are specific to classification, 5x2cv can be used for regression

as well.

1.6.14 Matters of size

The number of training examples influences the behavior of machine learning predictors.

Here, we assess how this role sample size depends on the modalities studied.

Learning curves are used to analyze the behavior of model performance with varying

training sample sizes. Learning curves are conventionally constructed by repeatedly

subsampling a dataset at different sample sizes and cross-validating the inspected

model on these subsamples. Cortes et al. (1993) define learning curves as "the ex-

pectation value of the test and training errors as a function of the training set size

l."

In our approach, for each sample size studied, we subsampled our data to this size

(without replacement; assuming balanced groups) and cross-validated a classifier on this

subsample (10-fold stratified CV). This was repeated for a number of times (here the

number of repeats was 100) for each sample size and averaged.

1.7 Fusions

When referring to multimodal fusion, we talk about a specific form of feature engineering

which from several feature sets generates a single fused one. This has prompted nomen-

clature naming the strategies in the engineering pipeline as described by S.-C. Huang et al.

(2020). Note that in this work, we use fusion and integration interchangeably.

Early fusion joins features from all modalities into a single vector to be input into a

machine learning model.

23



Chapter 1. Research & Review
;A<

Late fusion feeds each modality into a separate machine learning model, joining the re-

sults from these models into a feature vector do be used in learning.

Joint fusion aims to learn a joint representation space for the input modalities by opti-

mizing the submodels, which output the intermediate features, along with the final

model.

1.8 Survey of schizophrenia prediction

Individual prediction of schizophrenia has been a rising topic in research for the last

twenty years. Just in the past decade, the technology and methodology of the MRI have

developed substantially and, as such, provided greater resolution, reliability, and acces-

sibility. Also owing to these developments, sample size, a problematic aspect of studies,

has grown from tens of subjects in total (e.g. Arbabshirani et al. (2013)) to hundreds of

subjects in each group in multi-site experiments (e.g. Vieira et al. (2020), H. Cao et al.

(2022), and Dwyer et al. (2023)).

1.8.1 Structural imaging

As the oldest modality, brain sMRI of patients with schizophrenia have been studied

in group analyses for decades. The structure of the brain is more subtly affected by

schizophrenia, as suggested by more than 40 years of research, wherein group analyses

on the modality have not yet found conclusive clinical markers of the illness (Fusar-Poli

and Meyer-Lindenberg 2016). Additionally, this research alone does not provide evidence

of applicability in individual prediction. Nevertheless, the results obtained do serve as a

foundation for conducting prediction research and are useful for comparison with results

achieved therein.

Chin et al. (2018) used a voxel-wise support vector machines (SVM) on on VBM im-

ages. A form of spatial and anatomical regularization has been used. Spatial regulariza-

tion intends to attenuate the effects of local variations, and anatomical regularization

suppresses inter-regional interactions, and these regularizations were implemented as an

SVM kernel. Additionally, a sequential region of interest (ROI) selection was included.

There, voxels from an initial ROI are included. Similarly to forward step-wise feature se-

lection, for each remaining ROI in turn, the ROI that improves the accuracy the most is

selected and its voxels included. This procedure was performed for each ROI (from the

Harvard-Oxford cortical and subcortical atlases) as a starting point, yielding 64 feature

selection trajectories. Counterbalancing the accuracy and computational load of the pro-

cedure, 7 ROIs were selected for the final classifier. This approach yielded a strong test

accuracy of 89.4%. However, some limitations to this study include an unbalanced dataset
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(roughly 2:1 SZ to HC) and, on average, long-term patients with medication, so the ques-

tion of applicability on first-episode psychosis drug-naive patients stands.

Yamamoto et al. (2020) also performed classification on whole-brain voxel-based mor-

phometry. Collecting subjects from two sites, an SVM pipeline has been trained on each

site and tested for generalization on the other, with both classifiers attaining a cross-site

consistent accuracy of slightly above 70%. While this approach sacrifices training size for

the individual models, it circumvents the need to harmonize the entire dataset for a single

model and shows the generalizability of a single model architecture trained on different

sites. The authors also listed regions of interest most contributing to the accuracy of the

model. To compare with Chin et al. (2018), while there were some common regions, such

as occipital fusiform gyrus or middle frontal gyrus, most regions differed either completely,

or the region was a different part of the same structure, e.g. posterior as opposed to the

anterior part of the superior temporal gyrus.

Anatomical subgroups have been identified among the patient population by Chand

et al. (2020), joining the ranks of studies attempting to stratify the population affected by

the disorder. The subgroups are defined as SG1 - lower brain volume and SG2 - higher

striatal volume, and they were identified in data of predominantly longtime patients. In

a follow-up study, these subgroups were subject to further investigation by Dwyer et al.

(2023). In this study, the anatomical subgroups were investigated in both healthy control

(HC) and schizophrenia patient (SZ) by classifying patients into one of four categories:

SG1, SG2, SG1 + SG2, None. Proportions of controls and patients have been analyzed

in each category. first-episode psychosis (FEP) participants were significantly more rep-

resented in the SG1 and SG2 subgroups, supporting the hypothesis of early changes in

structural images of first-episode patients. Furthermore, in the SG2, a greater number of

patients with symptom remission were present. Apart from anatomical stratification, these

subgroups then provide a hint at future functional outcome and deserve further investiga-

tion in treatment trials. While there was a considerable fraction FEP patients not assigned

to either SG1 or SG2, meaning that these two subgroups may present a small sample of

such anatomical variations, this method represents a promising approach in subtyping

schizophrenia.

In addition to the stratification of patients within the schizophrenia diagnosis, com-

paring schizophrenia with other mood and psychotic disorders is an important branch

of research since schizophrenia is such a heterogeneous disorder. Salvador, Radua, et al.

(2017) included a cohort of patients with bipolar patient (BP) group in addition to the HC

and SZ groups. Among the considered sMRI features, the largest classification accuracy

(75%) was achieved with VBM features between the HC and SZ groups (regardless of pre-

dictor used). The accuracy between BP and HC (63%) or BP and SZ (62%) were weaker,

as feature values BP participants were scattered between those of the other two groups.
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1.8.2 Functional imaging

So far, the literature on unimodal prediction points to functional MRI as consistently the

most powerful modality, with classification accuracy on resting-state fMRI features reach-

ing upwards of 80% (Steardo et al. 2020). While this line of research identifies the pre-

dictive potential of fMRI, even the best-performing classifiers will have to undergo proper

validation and scrutiny before any clinical use. For example, in Arbabshirani et al. (2013),

the best-performing classifier provides an accuracy of 96% on functional network con-

nectivity features. However, this number is severely inflated by the fact that the training

sample is only 56 subjects (28 HC + 28 SZ). A sample size this small does not capture the

heterogeneity of the condition, which usually leads to over-optimistic results.

In addition to common confounders such as age, sex, or recording site, an impor-

tant role is played by medication. Antipsychotic medication has both desirable influence

and side effects projecting into the data measured. As such, the application of models

trained on medicated patients can have limited application on incoming patients with

first-episode psychosis. Kalmady et al. (2019) is one of the first studies recruiting a cohort

of fully drug-naive patients for model training. Regional and connectivity measures from

fMRI have been computed for multiple brain parcellations, and a probabilistic classifier

has been trained on these features. The ensemble classifier then consisted of averaging

the probabilities of all the classifiers (soft voting), where the class is assigned based on

the averaged probability. This model achieved an accuracy of 87%. While this study used

around 3× more subjects than Arbabshirani et al. (2013) and includes unmedicated pa-

tients, there is no account on the duration of untreated psychosis, and females are slightly

unrepresented (around 1/3 in each group). The soft voting principle is not unique to this

study and is suitable for integrating the input of classifiers trained on multiple modalities.

Following a group-level study (Hengyi Cao et al. 2018) identifying patterns of in-

creased connectivity in the cerebello-thalamo-cortical network as a neural marker for (in-

dependent of clinical/behavioral presentation) psychosis, H. Cao et al. (2022) focus on

connectivity features in this network as a means of individual prediction. Acquiring data

from a relatively large cohort of participants (179 HC; 214 SZ, all of which were yet un-

treated FEP patients). A fraction of the patients (62 participants) underwent at least one

follow-up visit in the 12 or 24 months after the initial visit, providing longitudinal data for

the prediction of outcome. The results found that hyper-connectivity in the CTC network

predicted lesser remission of negative symptoms as indicated by the negative subscale of

PANSS. Negative symptoms are generally more functionally impairing and less likely to

be improved by treatment than positive symptoms. Finding a biomarker indicating the

persistence of negative symptoms would help prioritize their management to potentially

improve the illness course.
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1.8.3 Diffusion tensor imaging

Diffusion tensor imaging is the youngest of the three modalities discussed. It is also more

sensitive to noise and artifacts, requiring stricter quality assurance and (largely manual)

quality control (Liu et al. 2010). Moreover, owing to more degrees of freedom in the

preprocessing and computational steps (Oldham et al. 2020), there is more diversity in

the pipelines, making it less viable to compare studies or perform meta-analyses on large

samples if the raw data is not provided. For these reasons, although there exists a line

of evidence suggesting group-level changes in white matter integrity present in early-

stage schizophrenia (Samartzis et al. 2014), research on the prediction on DTI features

in schizophrenia is a small niche. Nevertheless, there have been efforts to use DTI in

prediction.

Mikolas et al. (2018) surveyed a cohort of first-episode schizophrenia (FES) patients

in a medium-sized study (77 participants in each group, age/sex-matched). A linear SVM

on voxel-wise fractional anisotropy (FA) achieved a significant but weaker accuracy of

around 62%. While this result is not strong in itself for schizophrenia prediction, the

study also explores the influence of medication doses and symptom scores on classification

accuracy, showing that such variables may not be the factors negatively impacting the

predictive power of DTI measures. On the other hand, classification probability estimates

(obtained from SVM via Platt scaling (Platt 1999)) were not significantly correlated with

any clinical variable. Furthermore, group analyses of fractional anisotropy showed clusters

of significant difference between the groups. While these clusters did overlap with regions

contributing to prediction accuracy, these results demonstrate the discrepancy between

group analyses and individual prediction.

In an attempt to help the prediction performance of the modality, Elad et al. (2021)

used normative modeling to compute age and sex-adjusted z-scores of diffusion measures

on a large harmonized multisite dataset containing data from schizophrenia-spectrum

patients (512 HC, 601 SZ). These z-scores, representing deviations from the normative

model, were then used in classification. Three diffusion MRI measures were computed:

fractional anisotropy (FA), fractional anisotropy in the tissue compartment (FAt), and frac-

tional volume of the free-water compartment (FW). These were then averaged over white

matter skeleton regions. The raw values of fractional anisotropy in individual regions pro-

vided weak predictive performance in terms of AUC, and the z-scored FA provided only

mild improvement. The best performance for this measure was achieved by combining all

regions in prediction (AUC = .67). FAt and FW features generally outperformed FA when

individual regions were used for prediction; however, the best overall classifier was con-

structed by combining both FAt and FW features over all regions (AUC = 0.726). Overall,

the normative approach comprehensively improved the predictive power of the studied

feature. In the baseline, normative modeling serves as a means of controlling for con-

27



Chapter 1. Research & Review
;A<

founders and thus is suitable for large datasets as used here, though this study still might

have suffered from diverse durations of illness in patients.

Another approach is shown by Tønnesen et al. (2020), where a hypothetical brain age

is modeled on DTI data. A regressive model is trained strictly on a healthy population,

with brain data as a predictor and age as a target variable. In this way, a model of a

normative brain age is constructed. This model is then applied to the patient population,

with the difference between the true and predicted brain age being the deviation from

normal aging. The study has shown that in this model, the brain age of patients is largely

overestimated, suggesting some influence of schizophrenia on normal brain development.

While the concept of brain-age prediction is an interesting addition to the schizophrenia

prediction toolbox, there are several limitations to the approach. This method is essen-

tially the opposite way of conventional normative modeling, with the disadvantage that

the brain variables are much more complex and varied than common demographic fac-

tors. While age and sex are common variables with known and stable distributions, the

brain-age model undoubtedly has more degrees of freedom, such as choice of modality,

preprocessing, brain parcellation, feature combinations, and much more. This makes the

predicted brain age more dependent on the construction and assumptions of the model

rather than actual brain development. Also, the actual definition of brain age itself might

not be straightforward. Taken together, while this is an interesting approach and might

bear fruit in some cases, it is recommended to proceed with caution, as the researcher’s

degrees of freedom are vast.

1.8.4 Multimodal imaging

Unimodal analyses have been conducted for quite some time now, and throughout, a

leap was made in improving methodology and understanding each modality’s limitations

and strengths. Recent years have shown a large increase in the number of multimodal

studies investigating to what extent multimodal fusion can overcome the limitations of

individual modalities. Multimodal fusion or integration is the usage of at least two sources

of neuroimaging contrast, such as different MRI contrasts, functional MRI together with

EEG recorded simultaneously, and so on. Generally, multimodal studies provide unimodal

analyses of the inspected dataset for comparison with the multimodal results.

Salvador, Canales-Rodríguez, et al. (2019) demonstrate a simple multimodal approach.

Measuring resting-state, task-based fMRI, and structural MRI features, select classifiers

were first applied to every modality individually. The largest mean accuracy of 84% was

reached with lasso regularized logistic regression on activation maps of the 2back task in

fMRI. Then, a redundancy assessment was conducted between all feature sets to find

out if feature set 1 provides additional predictive information with respect to feature

set 2 and vice versa. The multimodal integration was performed in multiple ways. First,
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classification probabilities for each modality were collected. Functions such as the mean

(soft-voting) or max were applied to this collection, with the output probability from this

function determining the class label. The probabilities were also transformed into log-

likelihood and input as features to a classifier in a two-step classification scheme. Another

way was to use the classifiers themselves as feature selection procedures - for instance,

using only voxels with nonzero coefficients from the lasso classifier, then again training

a final classifier only on these features. Finally, a neural network was devised, combining

the brain maps in convolutional and fully connected layers. This enumeration is to show

that the pipelines in multimodal analyses can be diverse and also quite arbitrary. In the

end, the best multimodal classifier (two-step ridge classifier) provided a slightly better

accuracy (87%) than the best unimodal classifier (84%). While hopes are that combining

more types of data will lead to improved performance, it is not to be applied naively, as

blindly combining too many features may even worsen the accuracy of a classifier.

Ambrosen et al. (2020) combine cognitive, EEG, and structural MRI data to build a

baseline classifier and also a predictor of short/long-term functional outcome via PANSS.

The patient data came from three consecutive cohorts measured over the span of 16

years (1998-2014) as a part of medication treatment studies; however, the participants

were measured before the medication protocol started, providing a large dataset from

antipsychotic-naive FES patients (138 participants). One hundred fifty-one controls were

recruited for this study to match demographic values in the patient group. The machine

learning approach was divided single and ensemble models to predict the short-term (bi-

nary HC/SZ) and long-term (PANSS regression target). The single approach consisted of

testing common linear and nonlinear models individually; the ensemble approach was

implemented by an AutoML framework (auto-sklearn), which searches a vast model and

parameter space to compose a meta-classifier with improved performance. Furthermore,

to avoid bias in selecting models on real data, a synthetic dataset on which algorithm

choices were made was simulated from properties of the real dataset, and the resulting

models with parameter constraints were trained and validated on the real dataset. While

this overall pipeline is quite complex, the balanced accuracy of the diagnostic classification

task reached 63.8% for the single-model approach and 64.2% for the ensemble approach,

with the classification more influenced by cognitive tests rather than neuroimaging data.

For the long-term classification task, both approaches approached 50% balanced accu-

racy (chance). These results suggest that complicated approaches do not always improve

performance.

Rahaman et al. (2021) integrated structural and functional MRI and genomic data

in a deep-learning approach. Functional network connectivity is extracted from fMRI,

group independent component analysis loadings from sMRI, and single nucleotide poly-

morphisms (SNP) from genomics. Each feature set then goes through a specialized neural

subnetwork, which outputs a latent representation or embedding. These embeddings are
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then fused together via weighted concatenation into a single vector and finally forwarded

into a deep neural model that predicts the diagnosis. In addition to the full multimodal

model, unimodal and pairwise multimodal models have been trained for comparison. The

full model has achieved the greatest accuracy (88%), compared to the best unimodal

model based on fMRI (81%) and a partial multimodal model based on sMRI and fMRI

(83%). The study also investigates the explainability of the deep model by working with

saliency maps, which indicate the importance of features in the correct prediction of a

sample. Identified features were further statistically analyzed and showed some signifi-

cant differences between groups. Furthermore, genes were identified from the salient SNP

data, and genetic pathway analysis has been conducted on them. Such an approach could

potentially lead to identifying new genetic targets in drug development or repurposing.

1.8.5 Remarks

So far, multimodal models have achieved moderate margins in classification performance

over unimodal models in the litarature. Moreover, multiple types of data do not only

improve performance but can also provide new insights. While caution should be exercised

in framework design – degrees of freedom are numerous in multimodality, and too much

complexity may even hinder performance – the multimodal approach provides diverse

avenues in research going forward. It is, however, key to keep track of the limitations that

multimdality brings, so the burdens wont overweigh the advantages.

Higher-dimensional data that are innate to multimodal analyses require more training

examples to be better comprehended by both researchers and the learning algorithms.

With larger samples, more heterogeneity among patients can be captured, so machine

learning models can make more powerful inferences about the population, and so multi-

site studies aggregating data from more recording centers are becoming the norm. This

comes with its own class of challenges, as multiple sites introduce variability in recordings

partly due to differences in technical equipment and demographics on site. The larger and

more diverse the sample, the more need is there to account for the effects of confounder

variables. Confounder correction is commonly done by age/sex matching of the groups or

regression decomposition of the predictor variables by the confounders. Newer approaches

include normative modeling, where brains are adjusted by the age/sex group (Dinga et

al. 2021) or specialized methods like ComBat multi-site harmonization (Johnson, Li, and

Rabinovic 2007).
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2.1 Data provenance

The dataset used in this thesis comes from the data collected as part of the ESO project.

The ESO project is a large-scale effort orchestrated by National Institute of Mental Health

(NUDZ) aiming to predict the treatment trajectory and outcome of schizophrenia patients.

Patients are recruited from the Bohemia surveillance area shortly after their first episode.

Undergoing three visits to the study site in total, a longitudinal multimodal dataset is

formed. In addition to all modalities recorded on MRI scanners, patients go through a bat-

tery of clinical, laboratory, and neurocognitive examinations (Hlinka 2020). The healthy

control sample underwent a similar protocol sans patient-specific procedures (such as the

PANSS interview, aiming to establish the severity of schizophrenia in diagnosed patients).

NUDZ collects and governs data in the Hyper Database of Recognizable Associations

(HYDRA). In this environment, raw data is stored, further processed by pipelines and de-

rived into features. Authorized persons are allowed to filter and export data for analyses.

We have requested data from the ESO project for our analyses and acquired several files

that are used to assemble the dataset.

2.2 Scanners

The data measured come from two sites: Institute of Clinical and Experimental Medicine

and National Institute of Mental Health. The IKEM site has served as a scanning site with

a 3 Tesla scanner (Siemens Magnetom Trio 3 T) until another 3 Tesla scanner (Siemens

Magnetom Prisma 3 T) was installed at NUDZ, and the measurements relocated there.

Patients who made their first visit to the IKEM site follow up on the same site; any newly

recruited patients are measured exclusively at NUDZ.

31



Chapter 2. Prepare Dataset
;A<

IKEM parameters

sMRI T1 structural image acquired using the magnetization prepared rapid acquisition

gradient echo (MPRAGE) sequence with inversion time (TI): 900 ms, repetition time

(TR): 2300 ms, echo time (TE): 4.63 ms, flip angle: 10°, 1 average, matrix: 256 ×

256 × 224, voxel size: 1 × 1 × 1 mm3, bandwidth: 130 Hz/pixel, GRAPPA acceler-

ation factor: 2 in phase-encoding direction, reference lines: 32, prescan normalize:

on, elliptical filter: on, raw filter: off, acquisition time: 5:30 minutes.

dwMRI Acquired using a Spin-Echo EPI sequence with TR: 8300 ms, TE: 84 ms, matrix:

112 × 128, voxel size: 2 × 2 × 2 mm3, b-value: 0 and 900 s/mm2 in 30 diffusion

gradient directions, 2 averages, bandwidth: 1502 Hz/pixel, GRAPPA acceleration

factor: 2 in phase-encoding direction, reference lines: 24, prescan normalize: off,

elliptical filter: off, raw filter: on (intensity: weak), acquisition time: 9:01 minutes.

fMRI Acquired using T2-weighted echo-planar imaging (EPI) with blood oxygenation

level-dependent (BOLD) contrast using SENSE imaging. GE-EPIs with TR: 2000 ms,

TE: 30 ms, flip angle: 70°, 35 axial slices acquired continuously in sequential de-

creasing order covering the entire cerebrum, voxel size: 3 × 3 × 3 mm, slice di-

mensions: 48 × 64 voxels. 400 functional volumes were used for the analysis. A

three-dimensional high-resolution MPRAGE T1-weighted image with TR: 2300 ms,

TE: 4.63 ms, flip angle: 10°, voxel size: 1 × 1 × 1 mm covering the entire brain was

acquired at the beginning of the scanning session and used for anatomical reference.

NUDZ parameters

sMRI T1 structural image acquired at the National Centre of Mental Health in Klecany,

Czech Republic, at the National Institute of Mental Health using Siemens MAG-

NETOM Prisma 3T. Acquisition parameters of T1-weighted images using MPRAGE

sequence: 240 scans, voxel size: 0.7 × 0.7 × 0.7 mm, repetition time (TR): 2400

ms, echo time (TE): 2.34 ms, inversion time (TI): 1000 ms, flip angle: 8°, field of

view (FOV): 224 mm × 224 mm, acquisition matrix: 320 × 320.

dwMRI Acquired using a Spin-Echo EPI sequence with TR: 3000 ms, TE: 82 ms, voxel

size: 2 × 2 × 2 mm3, matrix: 100 × 100, FOV: 200 mm × 200 mm, b-value: 0, 1000,

and 3000 s/mm2 in 74 diffusion gradient directions, 6 averages, bandwidth: 1515

Hz/pixel, GRAPPA acceleration factor: 3 in phase-encoding direction, acquisition

time: 5:15 minutes.

fMRI, version 1 Acquired using the T2-weighted (T2w) gradient echo-planar imaging

(GR-EPI) sequence sensitive to the blood oxygenation level-dependent (BOLD) sig-

nal with TR: 2000 ms, TE: 30 ms, flip angle: 70°, voxel size: 3 × 3 × 3 mm3, field of
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view (FOV): 192 mm × 192 mm, matrix size: 64 × 64, each volume with 37 axial

slices (slice order: alternating increasing), 300 volumes in total.

fMRI, version 2 Acquired using the T2-weighted (T2w) gradient echo-planar imaging

(GR-EPI) sequence sensitive to the blood oxygenation level-dependent (BOLD) sig-

nal with TR: 1000 ms, TE: 30 ms, flip angle: 52°, voxel size: 3 × 3 × 3 mm3, field of

view (FOV): 222 mm × 222 mm, matrix size: 74 × 74, each volume with 60 axial

slices (multiband sequence with factor 4), 400 volumes in total.

2.3 Features

Table 2.1 lists all MRI features we use.

Table 2.1: MRI modalities and features

MRI Modality Techniques

Structural MRI Voxel-based morphometry

Functional MRI Functional connectivity
Amplitude of low-frequency fluctuations

Diffusion-weighted MRI Structural connectivity
Fractional anisotropy
Axial diffusivity
Mean diffusivity
Radial diffusivity

2.3.1 Structural MRI

VBM has been already precomputed in HYDRA in the 90 gray matter AAL regions.

Voxel-based morphometry is an approach for detecting statistical differences in voxels

of aligned structural images between groups of subjects. Here, instead of statistical

group comparison, we use the interim result of voxel-wise gray matter density esti-

mate for each subject, further averaged across regions to provide suitable number of

robust features.

2.3.2 Functional MRI

For this modality, we worked with preprocessed timeseries of 400 timepoints in 90 AAL

gray matter regions for all participants. All time series were then orthogonalized against

signal of cerebrospinal fluid, white matter, and 12 motion parameters (six original pa-

rameters and their temporal derivatives), linearly detrended and bandpass filtered using
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the Butterworth filter with a window of 0.008 - 0.09 Hz, so the signal only contains low

frequency fluctuations (Hlinka et al. 2024).

Functional connectivity is defined as statistical dependence (here quantified by Pear-

son’s correlation) of timeseries from two spatially separated regions. Thus, we com-

puted the coefficient for each pair for the 90 AAL regions into a connectivity matrix.

This matrix is symmetric, and so to transform it into a feature vector, we only need

to extract the lower or upper triangle, sans diagonal (Figure 2.1).

Figure 2.1: Extracting symmetric matrix into a feature vector.

Amplitude of low frequency fluctuations is defined as root mean square of the fMRI

BOLD timeseries filtered to only contain low frequency fluctuations (Yang et al.

2007).

2.3.3 Diffusion-weighted MRI

The dwMRI features have been already precomputed in HYDRA. Structural connectivity

has been computed between the 90 AAL regions, diffusion tensor metrics have been av-

eraged across the 50 regions of the JHU atlas. Because of missing values in all of the

tensor metrics except fractional anistropy (FA), we’ve excluded features with the missing

values and left in 28 features each for the axial diffusivity (AD), mean diffusivity (MD),

and radial diffusivity (RD) metrics.

Structural connectivity is computed via methods of probablistic tractography, which out-

put white matter tracks. In the pipeline that generated our structural connectivity

matrices, the connectivity between ROI1 and ROI2 is estimated as follows: fibers

seeded (starting) in any voxel of ROI1 and passing through any voxel of ROI2 are

counted. This number is then normalized by the number of voxels in the seed ROI

and also by the number of fibers seeded per voxel (5000). The resulting number is

then interpretable as a connectivity probability (Škoch et al. 2022). The connectivity

matrices are not symmetric in general, but they are "almost" symmetric, so to enforce
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this pragmatic requirement, the matrices are symmetrized

Ssym = (Sassym + ST
assym)/2 (2.1)

Axial diffusivity measures diffusivity along the strongest direction:

AD = λ1 (2.2)

Mean diffusivity measures mean diffusivity along all three axes of the ellipsoid:

MD = λ̂ =
λ1 + λ2 + λ3

3
(2.3)

Radial diffusivity measures diffusivity in the diretions perpendicular to the main diffu-

sion direction (along an axon):

RD =
λ2 + λ3

2
(2.4)

Fractional anisotropy expresses the degree of anisotropy in the voxel. If the ellipsoid is

a sphere, it means the water molecules can move in any direction and the value is

zero. If the ellipsoid collapses to a line, the motion of the molecules is restricted only

to this direction, and the value is one.

FA =

√
3

2

√
(λ1 − λ̂)2 + (λ2 − λ̂)2 + (λ3 − λ̂)2√

λ2
1 + λ2

2 + λ2
3

(2.5)

(2.6)

2.4 Covariates and clinicals

Along with the MRI modalities, we have processed the covariates that were used for con-

trolling for confounders, as well as clinical PANSS scores and diagnosis labels.

Patient Indication of whether the participant is in the HC group (0) or the SZ group (1).

Sex Biological sex of the participant.

Visit age Age of participant on the date of the first visit.

PANSS positive measures positive symptom severity.

PANSS negative measures negative symptom severity.
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PANSS global measures the severity of global psychopathology.

PANSS total is a sum of the three subscales.

2.5 Dataset disparity

Due to data governance and prioritization in HYDRA and the running length of the ESO

project itself, there are differences in final training (IKEM) and testing (NUDZ) datasets.

Apart from some newer processing pipelines in NUDZ dataset, the structural connectivity

has not been computed as of the writing of this thesis. From the diffusion metrics, only the

FA features will be present since the other feature sets have high proportions of missing

data. As such, these features will not be included in validation (Chapter 4), and the com-

parison of the two datasets is presented in Table 2.2. Summary statistics for both datasets

are shown in Table 2.3.

Table 2.2: Training and testing dataset feature set availability.

FC ALFF VBM SC FA AD MD RD

IKEM (training)
NUDZ (validation)

Table 2.3: Training and testing dataset summary statistics.

Sample size M:F HC:SZ Visit age

IKEM (training) 161 83:78 78:83 27.8 ± 6.5 years
NUDZ (validation) 204 111:93 76:128 28.3 ± 7.7 years

The effects of different preprocessing pipelines can be demonstrated in difference of

accuracy for these pipelines, see an example of classification accuracy from functional

connectivity features with several different preprocessing in Figure 2.2. For more detailed

discussion, see the paper by Hlinka et al. (2024).

2.6 Feature vector

All of the features per participant were composed into a single feature vector, which can

be sliced to contain only the feature sets needed for a concrete analysis. The subvectors

for each feature sets will have lengths as shown in Table 2.4.
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Figure 2.2: Dependence of linear classifier accuracy on the preprocessing pipeline and
number of components used.

Table 2.4: Training and validation dataset feature vector lengths.

FC ALFF VBM SC FA AD MD RD total

IKEM (training) 4005 90 90 4005 50 28 28 28 8324
NUDZ (validation) 4005 90 90 – 50 – – – 4235

2.7 Implementation notes

We have implemented the entirety of our analyses in the Python language. Our modules

for data loading and the bulk of our work were done within the scikit-learn framework,

which provides an object-oriented interface to data processing, classical machine learning

models, and ways to compose them. We have developed our own models for transform-

ing the data in this framework, namely the Orthogonalizer class, which, given a table

of covariates for each training example, regresses out these variables from the training

data; the SelectorTransformer is used for filtering columns of the dataset to a subset of

modalities. In this way, we can supply the entire dataset to the estimator without having

to filter it manually each time, as the modality parameter is easily set. This class is de-

pendent on the way we name the columns in our dataset – if we want to limit it to e.g.

functional connectivity (FC), all such columns in the dataset must contain the substring

"FC". As such, the column names in our dataset follow this convention:

{modality acronym}_{atlas acronym}_{feature name} (2.7)

For example, the functional connectivity between AAL regions of left precentral gyrus

and right angular gyrus will be labeled FC_AAL_Precentral_L_vs_Angular_L. This way,

even if there would be an ambiguity in the name of the feature itself, we are sure to se-

lect functional connectivity features by matching the pattern "FC_AAL_" with the function

select_modality(data, "FC_AAL_").
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The entire dataset assembly pipeline is located in the dedicated scripts

• prepare_dataset_ikem.py

• prepare_dataset_nudz.py

which take IKEM/NUDZ site-specific files, perform cleaning, feature derivation, and data

wrangling on each, align the tables for both modalities and covariates by the participant

(HYDRA) ID, and save these tables into separate parquet files. Parquet is a columnar

table data format that allows for efficient storage and preserves column data types. The

load_dataset(ds_name) is a utility function that returns the contents of these files as

pandas dataframes. When we want to perform joint analyses, such as validation, between

the datasets, we have to align them on the column axis to include only features present in

NUDZ, as it is a feature subset of IKEM.
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In this chapter, we perform explorations on the IKEM dataset. We will get an idea about

the data and evaluate the possibilities of prediction on multimodal data. In this process,

we will design a number of pipelines, some of which will be tested later on the NUDZ

dataset.

3.1 Demographics

Of the healthy group, 42 (53%) are female; of the patient group, 36 (43%) are female.

Figure 3.1 (A) shows age distributions of the sample of recruits from IKEM. In the con-

trol group, a bias towards younger age can be observed. Some patients have available

the duration of untreated psychosis (DUP) (period of time from first experienced psychotic

episode to treatment onset) and/or the duration of treatment (DT) (at time of visit). Dis-

tributions of these durations are depicted in Figure 3.1 (D, E), showing that most patients

have started treatment in the first three months after their first episode; most patients

have also been undergoing treatment for three months or less at the time of the first visit,

making them relatively pharmaco-naive. This stems from the inclusion criteria for ESO,

which aim to recruit patients in their early phase of illness.

3.2 Correlations

Here we perform an exploratory correlation analysis of clinical features via Pearson’s cor-

relation coefficient for both IKEM and NUDZ datasets (Figure 3.2). In general, PANSS

subscales are anti-correlated with age and correlated with each other, especially the pos-

itive and negative subscales with the global subscale (as also illustrated in Figure 3.1

(F). There is a weak positive correlation between DUP and visit age in both datasets and

between DUP and positive symptoms in the NUDZ dataset.
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A

B C

D E

F

Figure 3.1: A Histograms: age at the time of visit for the control and patient groups (IKEM
dataset). The mean and standard deviation of age is 26.9 (6.3) years in the healthy group
and 28.6 (6.7) years in the patient group. B Histogram: chlorpromazine equivalent doses.
C Histograms: PANSS subscales; subscale minima and maxima are delineated by verti-
cal dotted lines. D Histogram: duration of untreated psychosis. E Histogram: duration of
treatment. F Relationship between PANSS positive and negative subscales before and after
orthogonalization by PANSS global.
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Figure 3.2: Correlation matrices for clinical variables.

3.3 Tools of the trade

In our analyses, we generally use this setup:

Orthogonalization We control for common demographic confounds by regressing out

age and sex.

Standardization Especially in a multimodal setting, it is important to standardize fea-

tures to zero mean and unit variance.

Principal component analysis We vary the number of components to probe the effect of

dimensionality.

Linear regression We use L2 regularized linear regression with a constant penalty multi-

plier C = 1.

Logistic regression We use L2 regularized logistic regression with a constant penalty

multiplier α = 1.

Stratified 10-fold cross-validation (classification) Stratification of folds preserves class

balance. We use 10 folds as it is the conventional number of folds balancing bias and

variance of the estimates.

Repeated 5x2-fold cross-validation (regression) For regression we’re not using strata,

such as group membership or age ranges, so we use 2-fold cross-validation repeated

5 times on permuted samples.

3.4 Model overview

Although we fixed logistic regression for our subsequent analyses, we also carried out a

survey of selected classical machine learning models. We did not grid search any hyperpa-
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rameters and left the models in their "stock" settings. We understand that some predictors

may not perform optimally with their default parameters (which also depends on the soft-

ware framework in use, in our case scikit-learn); but we hope to see the comparative

classification potential of the modalities rather than adapt the models to predict the out-

come best, and also to see which predictors are generally well applicable in their default

setting. The results are laid out in a cross-validated grid in Figure 3.3. FMRI modalities –

FC and ALFF – show the largest classification potential, and linear models mostly outper-

form nonlinear models, which is expected at this sample size.
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Figure 3.3: Mean accuracy for each modality-model combination. LogReg – logistic regres-
sion, LinSVC – linear support vector machines, LDA – linear discriminant analysis, SVC –
support vector machines with radial basis functions kernel, DecTree – decision tree, GNB
– Gaussian naive bayes

3.5 Unimodal components

We begin by grid-searching the PCA dimension for each modality separately to assess the

relationship of modality and dimensionality. This means that for each number of compo-

nents used to transform the data, a classifier was cross-validated. We searched only for

up to 28 components because the smallest feature sets have 28 features, so we wanted

to compare only up to this number. We will then choose the best model per modality for

validation. Looking at Figure 3.4 (A), both plots suggest that two feature sets – FC and

amplitude of low-frequency fluctuations (ALFF) – dominate other modalities over most

dimensions.
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Table 3.1: Cross-validation results for top models per modality.

modality mean accuracy n components

ALFF 80.85% 9
FC 77.06% 10
VBM 63.42% 28
RD 61.47% 4
MD 59.60% 3
AD 57.13% 11
SC 55.88% 13
FA 55.26% 25

Findings 3.5

• Functional features lead in performance.

• VBM lags behind with weak accuracy.

• There is a stark difference between accuracy of the two connectivity metrics,

FC and structural connectivity (SC).

• Diffusion features mostly perform about the same as random classification.

• Together with the fact that the diffusion features are missing in NUDZ, we will

subsequently work only with FC, ALFF, VBM, and FA.

3.6 On the learning curve

In this analysis, we fix the predictor and its parameters and observe the scaling of predic-

tive potential for each modality and across modalities. We use the same metamodel as in

the previous section, with the number of PCA components set to 10. In Figure 3.5 we can

observe the typical saturation behavior of learning curves on all of the modalities. As ex-

pected from the previous section, FC and ALFF lead by a large margin in test performance,

whereas the performance SC does not seem to depend on the sample size, staying around

50% accuracy. Note that this behavior is recorded for 10 PCA components and may vary

with dimensionality, but nevertheless this case illustrates learning rates for the modalities

studied.

Findings 3.6

• FC and ALFF lead in learning curves, showing on par learning rate.

• Accuracy of SC does not improve with sample size.
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A
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B

D

Figure 3.4: Lineplots showing accuracy versus number of components used in PCA and
the boxplots showing the projections of all the results per modality. A For each modality
separately. B For the three fusion strategies with all modalities as input, as well as with
unimodal FC and ALFF plots for comparison. C For only FC and ALFF as input modalities
to multimodal pipelines. D For FC and SC as input modalities to multimodal pipelines.
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Figure 3.5: Learning curves for all IKEM modalities.

3.7 Multimodal fusions

We try several multimodal fusion strategies based on PCA.

postconcat – early fusion concatenates all feature sets together and applies PCA.

preconcat – early fusion applies PCA to each feature set separately and concatenates the

components from all feature sets together.

stacking – late fusion applies PCA to each feature set followed by logistic regression,

concatenating all the probability predictions. Then, a final logistic regression is per-

formed (stacked) on top of these predictions to make the final prediction.

We again plot the performance on considered dimensions in Figure 3.4 (B), together with

unimodal plots for FC and ALFF. The figure suggests that multimodal strategies actually do

not improve accuracy over the best unimodal predictors, with the exception of the stacking

classifier. We also have to note that for the preconcat and stacking the dimensionality is

actually larger; each feature set yields n components, so the actual number of components

used downstream in the predictor is multiplied by the number of input feature sets (8×n).

This makes the curves as plotted for these pipelines incomparable with the unimodal

ones, but they still serve as an indication of the dependence of pipeline performance on

dimensionality.

Findings 3.7

• Stacking strategy visibly improved upon other pipelines.

• Blindly concatenating all possible features is not a straight way to improve

accuracy – both concatenating strategies were outperformed by ALFF alone.
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Table 3.2: Cross-validation results for top models per multimodal pipeline.

pipeline mean test accuracy n components

stack 81.0% 4 × 10
preconcat 77.7% 4 × 28
FC 75.8% 15
ALFF 74.0% 9
postconcat 73.9% 23
VBM 60.6% 6
FA 56.2% 4

3.8 Seek synergy

We have seen that FC and ALFF feature sets seem to dominate in performance. Here we

explore the possibilities of the two feature sets working in synergy, separately from the

other modalities. First, we perform an analogous grid-search like above, now inspecting

components 1 through 90, as that is the number of features of the smaller feature set

(ALFF). Figure 3.4 (C) illustrates a point: while both modalities perform moderately well,

with ALFF performing better, the concatenated and reduced (postconcat) model performs

on par with FC. We hypothesize that due to the sheer difference in dimensionality be-

tween the feature sets, FC features will have a major influence on the components yielded

by PCA, thus yielding a classifier performing similarly to the unimodal FC one. We can

observe multiple local maxima in the lineplot for ALFF classifiers that we would not see

if searching only in the 1-28 component range. The preconcat and stacking method have

yielded best results. On average, preconcat has achieved 78.3% accuracy at 11 compo-

nents per modality (22 components total), and stack has achieved 77.7% at 29 compo-

nents per modality (58 components total), as opposed to best ALFF accuracy of 76.4% at

68 components.

Table 3.3: Cross-validation results for top models using FC and ALFF.

pipeline mean test accuracy n components

preconcat 78.3% 2 × 11
stack 77.7% 2 × 29
ALFF 76.4% 68
postconcat 74.5% 50
FC 73.3% 10
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Findings 3.8

• Multimodal methods combining FC and ALFF provide better accuracy than the

unimodal models, with less overall components than the best ALFF model as

well.

• It appears that taking away other modalities from the fusion strategies im-

proves performance, when we focus on unimodally well performing feature

sets.

• FC seems to degrade the performance when concatenated with ALFF before

PCA dimensionality reduction.

3.9 Connectivity discrepancy

In this case, we explore the relationship between functional and structural connectivity.

Both feature sets have the same large dimensionality, measuring connectivity between the

90 regions of the AAL atlas. However, as depicted in Figure 3.1 (D), there is a noticeable

discrepancy between accuracy levels of FC and SC.

Table 3.4: Cross-validation results for multimodal pipelines using FC and SC.

pipeline mean test accuracy n components

postconcat 74.5% 43
FC 74.0% 10
stack 73.3% 15
preconcat 72.8% 11
SC 58.3% 15

Findings 3.9

• SC alone does not go above 60% accuracy, while FC achieved almost 75% on

less PCA components.

• Any integration of SC with FC performs on par with unimodal FC.

3.10 Slippery (linear) slope

We have attempted to predict the PANSS scales of patients as a function of MRI modalities

using principal component regression – PCA reduced features (5, 10, 15, and 20 com-

ponents used) with a ridge linear regression model. Unfortunately, as is apparent in Fig-

ure 3.6, no model has achieved an R2 larger than zero (as such, we did not further adjust
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R2). There is a systemic component to this phenomenon – R2 is suitable as a goodness-of-

fit measure on the training data, and when it is computed for predictions out-of-sample,

the predictions of a model trained on the training set can be arbitrarily worse than those

of a mean model of the testing set. When exploring unimodal prediction on individual

components we see that ALFF or FC have in some cases achieved small positive R2. This

shows the weak point of regressing on the unsupervised PCA components, as some minor

components with respect to maximizing variance within the regressor space can be more

correlated with the target that, say, the first principal component is.

Findings 3.10

• Linear prediction does not perform well with respect to R2, regardless of

modality or target.

• Among the modalities, ALFF sometimes achieves small but positive R2 when

regressing on individual components Figure 3.6 (C).

• Among the targets, positive scale seems to have better potential for predic-

tion than other scales, as highlighted in Figure 3.6 (C) when regressing on

individual components.

3.11 Stratify patients

In the Section 3.10, we have seen some convincing arguments that linear prediction of

clinical variables may not work well in practice, at least not in the naive way applied. To

simplify the task, we have devised a simple strategy: using the median of each target vari-

able (for all patients) as a threshold, and transforming the task into a binary classification.

This will sort patients into groups of "lower" and "higher" PANSS scores. It is of note that

this threshold is very much data dependent. A data independent threshold could be e.g.

some quantile of the original scale range. We classified the patients grouped by the thresh-

olded PANSS scores by the same unimodal pipeline we used in Section 3.5. The results are

presented in Figure 3.7. The accuracy of classification is generally poor here compared

to the classification into patients and controls, which is expected, as we are predicting

within a single group on an arbitrary threshold. However, some models are still compar-

atively more applicable than the regression on untransformed PANSS (Figure 3.7 A. Even

some of the univariate classifiers achieve above 60% accuracy. While more research would

be needed, the stratification approach potentially could be of merit; however, it could be

more data hungry if we wanted to to fill up the strata more uniformly or use a different

threshold than the median, perhaps a data independent one. More than two strata also

amplify the problem of small samples.
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A

B

C

Figure 3.6: Linear regression evaluation with A R2 and B mean absolute error. C Separate
linear regressions were performed on each component individually to predict the PANSS
scales, having better R2 than the multivariate approach, yet still mostly negative.
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A

B

Figure 3.7: A Accuracy of classifying patients into above and below median variables.
B Accuracy of classifying patients into above and below median variables on individual
components.

Findings 3.11

• While most models in the stratification approach have poor performance, some

ALFF and FA models achieve almost 70% accuracy.

• Some modality-scale combinations on individual components have peaks at

around 60-65% accuracy.

• Using median and similar thresholds is data dependent, using fixed thresholds

may bring up issues with class imbalance.
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Chapter 4

Hypothesize & Validate

In exploring the IKEM dataset, we have made discoveries about the data and generated an

array of questions. In this chapter, we will present these questions and answer them with

results on the validation NUDZ dataset. We will work with models for four modalities: FC,

ALFF, VBM, and FA. We selected models from these modalities by grid-search on IKEM,

and then performed the same analyses on both datasets, comparing the results.

4.1 Which modality generalizes best?

We choose four models, one for each modality, with the number of PCA components that

had the highest CV accuracy on the training (IKEM) dataset. All four models were cross-

Table 4.1: Training and validation accuracy for unimodal models.

modality ALFF FC VBM FA

n components 9 10 28 25
IKEM acc 80.85 77.68 63.42 55.26
NUDZ acc 62.81 72.50 60.40 55.93

Table 4.2: Training and validation accuracy for multimodal models.

pipeline stack postconcat preconcat

n components 4 × 8 10 4 × 28
IKEM acc 82.7% 79.6% 77.0%
NUDZ acc 70.6% 68.2% 67.3%

validated in NUDZ dataset as well. Scores are summarized in Table 4.1. Cross-validated

group predictions were used as an input to the Cochran’s Q omnibus test to confirm dif-

ferences in model performance. As a post-hoc test, the McNemar’s test was used pairwise

on the predicions of respective classifiers to determine pairwise differences. The omnibus
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Figure 4.1: Assessment of parameter generalizability via accuracy comparison when se-
lecting on IKEM (left) and NUDZ (right) and cross-validating on the other.

test found significant differences in performance both in the IKEM (Q = 32.42, p < .001)

and NUDZ (Q = 16.97, p < .001) datasets. Seeing as the performance diminished when

validating on the NUDZ dataset, we conducted the same procedure in the opposite direc-

tion – selecting on NUDZ and validating on IKEM – comparing the two in Figure 4.1. Here

we can see that the least stable are FA and ALFF, with FC and VBM staying stable above

70%, and 60%, respectively.

Findings 4.1

• There are significant differences in performance between modalities in both

datasets.

• On IKEM, ALFF significantly outperformed all other modalities except for FC.

• On NUDZ, the accuracy of all modalities decreased, with ALFF dropping most

markedly, being significantly outperformed by FC.

4.2 Which multimodal pipeline generalizes best?

We have applied multimodal pipelines as defined in 3.7 to the tested modalities. Same

comparisons as above were performed. Here, the pipelines fared similarly, and this was

confirmed by Cochran’s Q test, which did not detect any significant differences for either

IKEM (Q = 1.28, p = .52) or NUDZ (Q = 0.79, p = .67). There was also a drop in accuracy

from IKEM to NUDZ similarly to unimodal classifiers.
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D

C

B

A

Figure 4.2: The cross-validated accuracy (left) and McNemar’s pairwise test for per-
formance comparison (right) for A unimodal classifiers (IKEM) B unimodal classifiers
(NUDZ) C multimodal classifiers (IKEM) D multimodal classifiers (NUDZ).
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Findings 4.2

• There are no significant differences in performance between fusion pipelines

in both datasets.

• All three fusion pipelines had lower accuracy on NUDZ compared to IKEM.

4.3 Does reducing feature sets to FC+ALFF improve perfor-

mance?

We use the multimodal pipelines applied to FC and ALFF with the best parameters found

per pipeline in the exploratory phase. Cochran’s Q does not find any significant difference

between FC+ALFF pipelines in either dataset (IKEM: Q = 3.71, p = .16; NUDZ: Q =

4.55, p = .10). We then want to see the difference between the corresponding pipelines

containing either 2 or 4 feature sets. For that, we again take predictions for each pipeline

and compare with pairwise McNemar’s test, but we do not find any significant difference.

Findings 4.3

• There is no significant difference between the pipelines using all four modali-

ties and using FC and ALFF only.

• While the reduced model does not perform significantly better, it provides

accuracy on par with the full model at lower dimensionality.

4.4 Does PANSS correlate with diagnosis probability?

Probabilistic predictions of classifiers studied above were obtained for all participants in

the same way as for the class prediction for Cochran’s/McNemar’s test. Then, only patients

were taken into account, and their individual PANSS subscores were correlated via Spear-

man’s coefficient with their probability prediction. We hypothesize that the patients with

larger PANSS scores should have higher probability of predicted diagnosis (or vice versa).

There were some significant correlations in the unimodal IKEM classifiers, especially with

FA. However, no correlations survive the Bonferroni correction, so the subscales do not

correlate significantly with the PANSS scales in this framework.

Findings 4.4

• The probability of assignment to the patient group does not significantly corre-

late with the PANSS scores for both the unimodal and multimodal classifiers.

54



Chapter 4. Hypothesize & Validate
;A<

A

B

Figure 4.3: P-values of Spearman’s correlations between PANSS scores and model pre-
dictions, for IKEM (left) and NUDZ (right) for A selected unimodal classifiers B selected
multimodal classifiers.

4.5 How do learning rates compare across datasets?

We took the best unimodal models selected and used for analyses above and computed

the learning curves for each model for both datasets.

Findings 4.5

• Learning curves show best learning rates for functional features, with ALFF

falling to the level of VBM on NUDZ dataset.

• Structural connectivity slightly improves performance on training dataset, but

not on validation.

• These results are in line with our analyses on the full sample size datasets.

4.6 Remarks

We have found that:

1. Of the validated unimodal models FC generalizes best.
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2. Multimodal models generalize on par, with the stacking strategy being most promis-

ing.

3. Reducing the multimodal model to functional features performs about the same or

better at reduced dimensionality.

4. Prediction probability is not Spearnman correlated with PANSS scores.

5. Learning curves show qualitative differences in predictor learning rates.
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B

A

Figure 4.4: Learning curves for top unimodal models on the A IKEM dataset B NUDZ
dataset.
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Chapter 5

Ponder & Conclude

This thesis adds to the recently rapidly growing body of research on the integration of

multiple modalities of MRI. We have utilized feature sets from three MRI modalities –

structural, functional, and diffusion-weighted imaging – to assess the predictive ability

in diagnosing schizophrenia from neuroimaging data. We’ve conducted a comparison be-

tween modalities in separation as well as designed several multimodal integration strate-

gies for classification and regression analyses, and probed the effect of sample size on

accuracy.

5.1 Towards individualized prediction

The driver of predicting illness is the optimization and better targeting of clinical care

to improve the standard of living for people burdened with serious illness. The ability to

detect schizophrenia would open the possibility of early intervention, even before the first

symptoms or major episodes of the illness arise. However, the idea of simply trusting a

model in clinical practice – even one with reported 99% accuracy – to label a living person

with a diagnosis that could substantially alter their lives due to burdens of treatment

seems infeasible as of yet. What seems to be achievable instead is to devise objective

indicators, which would be useful together with wider evidence. There have been hopes

for breakthrough medical indicators for a number of years (Lawrie et al. 2011; Iwabuchi,

Liddle, and Palaniyappan 2013), however, to reach clinical usefulness/utility, one such

marker has to be well tested and, more importantly, widely adopted. Another promising

approach would be in the form of health recommender systems (Suphavilai, Bertrand,

and Nagarajan 2018; Tran et al. 2021), suggesting appropriate treatment parameters,

such as medication labels and dosage, possibly predicting expected drug side-effects, by

comparing patient data. Studies such as ESO would be helpful in this aspect, relating

functional outcome with neuroimaging and clinical data at several timepoints. All of that

58



Chapter 5. Ponder & Conclude
;A<

said, we believe assessing the capabilities of unimodal and multimodal approaches to

discriminate between healthy and patient groups is a first step towards individualized

prediction in healthcare.

5.2 Potential of modalities

In this thesis, we have used preprocessed second-level features obtained by averaging

voxel values across atlas regions. This approach can filter out a lot of regional noise and

bring the feature distribution closer to the shape of the normal distribution, though it

sacrifices the flexibility of early integration at the voxel level. As such, our results can only

speak for model behavior at the regional level.

The structural modality, represented here by gray matter voxel-based morphometry

features, had mediocre diagnostic power, reaching little over 60% accuracy consistently

on both datasets. VBM accuracy in the range of 60-70% in the detection task is reported

throughout the literature. While here we have limited ourselves to gray matter VBM, Sal-

vador, Radua, et al. (2017) have conducted an assessment of a range of classifiers applied

voxel-wise to both gray and white matter VBM and some other metrics such as wavelet-

based morphometry. Importantly, the top accuracy of 75% in discriminating controls and

patients was achieved with VBM as well (averaged over classifiers). This raises motivation

to explore more in-depth the VBM data in the ESO dataset – first in trying to saturate the

accuracy given the ROI based classifiers, and then possibly move to the voxel-based level.

Another use of structural features could be found in anatomical stratification of individu-

als, such as when Dwyer et al. (2023) used previously found anatomical stratification of

patients with psychosis and applied it to a mixed multi-site cohort of controls/patients,

finding differences in, e.g., symptom remission at certain timepoints between patients in

different subgroups. Similarly, Honnorat et al. (2019) found three neuroanatomical sub-

groups of patients. Findings like these motivate further inquiry into structural profile in

psychosis as compared to the wider population, possibly then bringing back findings us-

able in individual prediction.

When it comes to diffusion-weighted MRI features, the jury is still out on whether

they will be useful in schizophrenia analysis; their predictive performance in detecting

schizophrenia has shown poor results so far, both in our analyses and the literature (Miko-

las et al. 2018). In the case of structural connectivity, it is quite clear that as it stands, there

is really no merit in it as a detector. Unimodally, it is no better than a coin-toss classifier,

and there was no improvement when combined with functional connectivity as well. The

SC as a modality is still quickly evolving with new tractography methods, as well as being

quite dependent on the preprocessing steps, so we cannot forsake it as a whole, but we can

confidently state that SC matrices were not effective as predictors in our study. Diffusion
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tensor metrics have also fared poorly, mostly performing in the low end of the 50-60%

range of accuracy.

These results are in accord with previous machine learning studies, whereas structural

features generally show accuracy of around 60-70% (Yamamoto et al. 2020; Vieira et al.

2020; Winterburn et al. 2019). This is a stark contrast with their predictive power in de-

tecting, e.g., multiple sclerosis (Rehák Bučková et al. 2022). However, detection is not the

only task these modalities could be utilized in, and this utility may depend both on the way

we preprocess and engineer these features and the target – these feature sets may perform

better in predicting other clinical features, so we cannot rule them out in schizophrenia

prediction yet. For instance, Tønnesen et al. (2020) uses diffusion tensor features for con-

structing brain-age models to assess deviations of schizophrenic and bipolar groups from

the healthy control group in terms of predicted brain age. In our analyses, we have seen

FA (along with ALFF) reach almost 70% accuracy when predicting the thresholded nega-

tive subscale of PANSS. These findings encourage finding ways of utilizing modalities even

when working with an illness in which they do not play a primary role in detection.

For some time now, schizophrenia has been viewed through the lens of the discon-

nectivity hypothesis, referring to the improper integration of functional systems across

the brain (K. J. Friston 1999), which suggests that functional features, specifically func-

tional connectivity, should be the largest discriminators. Indeed, throughout our analysis,

we have seen that functional features, FC and ALFF, perform substantially better than

the anatomical or diffusion-based ones in detecting schizophrenia. This further adds to

the findings reviewed in our survey of functional MRI prediction of schizophrenia in Sec-

tion 1.8.2, with studies achieving accuracies often in the range of 80-90% and upwards

using complex pipelines and nonlinear classifiers (Arbabshirani et al. 2013; Steardo et al.

2020). Kalmady et al. (2019) perform ensemble classification by incorporating several

classifiers trained on a number of brain parcellations, and achieving high accuracy. This

approach is interesting, as it takes into account the effect these different regional par-

cellations, which could be explored in research further. It is also of note that our linear

models on functional features reached similar performance as the unimodal deep model

by Rahaman et al. (2021).

Another avenue of research is generalizability. Fractional anistropy and voxel-based

morphometry had weak accuracy similarly across both datasets, ALFF dropped from the

best modality in IKEM to the level of VBM in NUDZ, while FC has retained its moderately

high performance. Explaining the factors of this behavior may lead to a better understand-

ing of the illness as well. Generalizability may be dataset-dependent, as different datasets

may produce classifiers of lower or higher quality in this regard. Note that generalizability

may be taken in different senses, such as model or meta-model/algorithm generalizability.

The former would be when training the model on one dataset and testing it on the other.

The latter is when taking the best-performing parameters on one dataset and fitting a sep-
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arate model on the other dataset, assessing whether the parameters work as well across

datasets, which is what we have done in our work.

5.3 Multimodal merit

We have seen that the multimodal models perform at least on par with the top unimodal

model. This can be seen as a positive result, as it suggests the added information did not

degrade the predictions. Importantly, when the unimodal logistic regressions were taken

and a final logistic regression was stacked on top of the previous predictions (indeed a

small neural network in principle), the performance seemed to improve. In general, the

multimodal pipelines preserved fair amount of accuracy when validating the selected pa-

rameters on another dataset (see Figure 4.2 (C, D)). We have also seen in Section 3.8 and

validation Section 4.3 that reducing and curating feature sets input into the learning algo-

rithm may retain accuracy reached with a larger model or even improve it. These findings

illustrate that before performing multimodal integration, one should be well acquainted

with the modalities and features to be integrated in an attempt to maximize predictive

potential. FC and ALFF features perform well enough on their own, often matching the

multimodal pipelines in accuracy, so it is intuitive to try and find synergy between those

two sets. The integration has shown no drop in accuracy from the model with all feature

sets (reaching 84% CV accuracy in IKEM), which is a virtue in itself, as recording just a

single imaging modality to achieve the same predictive power is more convenient. These

results prompt a discussion about how to select and engineer the best features for predic-

tion. In our review, we saw a parade of ways to use such approaches. Here, we performed

an ad-hoc reduction of two second-level feature sets, as those generally performed well

in our concrete analyses. Performing more detailed voxel-wise stepwise selection for the

whole brain may still be quite infeasible due to computational constraints. One solution

to this specific approach is outlined by Chin et al. (2018), where prediction is made voxel-

wise, but the voxel features are selected in bulk as regions, so the number of iterations in

the step-wise feature selection is drastically reduced.

5.4 Clinical correlations

Regression tasks on neuroimaging data in schizophrenia are not a very well-explored area

compared to classification as of yet. As we have seen in our own analyses, there may be

a good reason. In our analyses, regressing PANSS scores on brain data has not yielded

optimistic results, with the goodness-of-fit measure R2 showing largely negative values.

Whether this is fault of using this measure in cross-validation, as it is designed for evalu-

ation of goodnes-of-fit on training sets, is out of the scope of this thesis. The clinical scale
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PANSS is not well for prediction. Most of the patients were positioned at the lower end of

the scale (maybe intuitively, as they were early-stage schizophrenia patients on average),

and the scale would probably need a large diversified sample to fill out the scale in the

data. We have chosen to quantize the problem by thresholding each subscale by the me-

dian. This yielded interesting results, with some classifiers reaching about 70% accuracy,

suggesting a suitably thresholded scale may be a promising target for classification, and

motivating further in-depth exploration. One of the reasons we chose logistic regression

is that it provides probabilistic output (without the need for Platt scaling and the like),

which we deem a better alternative to hard classification, as it is a scale that could give a

more gradual instrument for medical professionals. However, when we correlated patient

PANSS scores with probabilistic predictions, we found no significant effect after correc-

tion, although looking at some p-values being below the significance level for FC and

ALFF encourages further exploration of classifiers constructed with prior clinical infor-

mation in mind. The regressions of clinical targets were done for patients only, however

scales such as GAF or quality-of-life questionnaires are patient-agnostic and can be ap-

plied in constructing more comprehensive models for a wider population. A bigger merit

of regressing of clinical scales and other variables might be in creating a sort of norma-

tive model rather than individual prediction, as demonstrated for age regression in the

brain-age models by Tønnesen et al. (2020).

5.5 Size matters

Classification of schizophrenia patients from MRI already a wide area of research, with

a number of unimodal (Arbabshirani et al. 2013; Kalmady et al. 2019; Salvador, Radua,

et al. 2017; Vieira et al. 2020) and multimodal (Salvador, Canales-Rodríguez, et al. 2019;

Ambrosen et al. 2020; Rahaman et al. 2021) studies reviewed in our work. The accuracy

achieved in these studies varies greatly, often depending on confounding variables such

as sample size (Arbabshirani et al. 2013), class imbalance, or multisite harmonization

(Vieira et al. 2020). As we have stated earlier, we believe that a smaller sample size can

unrealistically inflate performance metrics, such as in the fMRI study by Arbabshirani et

al. (2013). Steardo et al. (2020, pp. 4–6) provide in Table 1 a well-structured overview of

prediction studies using SVM on various modalities to predict schizophrenia, with several

reaching up to 90% accuracy. It is of note that most of the studies have a modest sample

size; in fact, most are smaller than our two sub-datasets taken separately: 73% are smaller

than IKEM, median value of dataset:IKEM size ratio is 0.65; 82% are smaller than NUDZ,

median value of dataset:NUDZ size ratio is 0.51. To support this claim with data, we

collected the pairs (sample size, accuracy) from the table, taking the average where ranges

were provided (visualized Figure 5.1), and computed Pearson’s correlation coefficient,
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Figure 5.1: Accuracies and sample sizes from review by Steardo et al. (2020) with a linear
trend and validation accuracies of functional features in our data.

which showed significant anti-correlation (r = −0.47, p = .023). While this is anecdotal

evidence, it prompts further scrutiny of accuracy estimates with different combinations

of modalities, predictors, and sample sizes, maybe constructing a sort of (approximate,

due to study variability) "normative model of performance" per modality in the process.

However, careful consideration should be in place, as, for example, the study with over

700 participants (Figure 5.1) is a multi-site study (6 sites), so it would be difficult to assess

whether the weak accuracy is given by the sample size or the site-effect. The sample size

may also play into the generalizability aspect of datasets.

5.6 Adverse site-effects

The effect of site of recording has been documented throughout literature, and there have

been efforts in devising methods of multi-site harmonization (Johnson, Li, and Rabinovic

2007; Fortin et al. 2017; Bayer et al. 2022). While it is indeed important to see our trained

models generalize across sites, the difference in scanner properties and local demography

(Henrich, Heine, and Norenzayan 2010) make this approach much more complex than

expected for MRI studies as of today (even more so for multimodal ones). The difference

in the feature values caused plainly by site effect changes the interpretation from recog-

nizing patients from controls to recognizing scanners/local populations. The demographic

effect may be attenuated in ESO, because while the site changed during the project, the

participant surveillance area has remained the same. Even then, as outlined in Table 2.3,

there may be discrepancies in patient or sex ratios, as well as age distributions (although

the latter two may be orthogonalized to some extent). However, the effect of the scanner

still remains most apparent. Indeed, when we train a PCA model (including the standard-

ization mean and standard deviation) on all IKEM features and project NUDZ features

onto them, we get two well-separated distributions of data points (Figure 5.2). Although
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both scanners in the ESO study have the same field strength, looking at the parameter

descriptions in Section 2.2, we can notice differences in scanning sequence parameters,

and even two versions of the fMRI protocol for the NUDZ machine. But it is not only a

matter of scanner hardware. As is apparent from Figure 2.2, performance can vary sub-

stantially with preprocessing strictness. Even more sensitive to preprocessing and com-

putation choices appears to be diffusion imaging, as can be illustrated when obtaining

structural connectivity. When features are so heavily dependent on preliminary steps, it is

key for researchers to open up raw data for research (after necessary anonymization). As

matters stand today, it seems to be still too early to perform reliable cross-site prediction.

Figure 5.2: All features from IKEM and NUDZ projected to first principal component of
IKEM.

5.7 Limitations of approach

We have scattered notes on limitations of studies and methods throughout discussion.

Here we detail more specifically the limitations of our methodology. We do realize that

this is a preliminary and exploratory study of potential data and methods, and as a con-

sequence, our analyses are more qualitative in nature. As such, we take care not to make

strong judgements on our concrete results. To minimize effects of methodology, we have

fixed many of the parameters at some common, yet still indeed arbitary values, for exam-

ple, the regularization strength C in our predictors. While controlling for these confounds

may improve interpretability and lessen the complexity of our analyses, we must keep in

mind that our outcomes are dependent on the values of such parameters. This principle

applies not only to parameters, but also to conditions such as dataset permutation, i.e. the

ordering of the training examples, which leads to different results when cross-validating

the pipelines, as composition of individual folds matters. This effect can be mitigated to an

extent by varying the number of folds, with leave-one-out CV, as it is not sensitive to per-

mutations – given the number of folds is the same as number of data points, it exhausts
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all the ways to split the dataset – but it is quite computationally expensive with larger

samples and complex models, and there is a bias-variance trade-off in cross-validation

as well. As such, we have conformed to one of the conventional numbers: 10 folds for

classifier cross-validation, with stratification in folds provided by group labels. For regres-

sion we have used a different arrangement, the 5x2cv method, simply to see how this

other popular method behaves on our data, and as an alternative to 10-fold CV with the

same number of model fits. Also regarding cross-validation, we have used cross-validated

predictions for use in the McNemar’s and Cochran’s tests, which is not usually found in

literature, however, we haave justified this approach for the purposes of algorithm com-

parison. All of this is to say, we have fixed a number of variables, but the fixed values may

be viewed as arbitrary or the justification may be lacking in completeness. We also draw

reader’s attention to the provenance of the data, which was obtained across two sites with

inherent inconsistencies arising both due to the multi-site and long-running nature of the

ESO project. As we have worked exclusively with the region-level extracted features, our

judgements are constrained to this level of detail, so our assessment of modality potential

might be quite skewed due to this fact.

5.8 Conclusions

In this thesis, we set out to perform and evaluate several machine learning approaches

on the multimodal datasets from the ESO project. We have focused on second-level fea-

tures derived from three imaging modalities: sMRI (VBM), fMRI (FC, ALFF), and dwMRI

(SC, FA, AD, MD, and RD). We first constructed a pipeline that collects these feature

sets from HYDRA data and merges them into two separate tabular datasets for data col-

lected at IKEM and NUDZ. We then performed exploratory analyses on the IKEM dataset

to get an overview of the properties of the data, as well as what can be achieved with

the tools we have chosen to use. We then selected top-performing models that had the

highest cross-validated accuracy and evaluated them on the NUDZ dataset as well. We

couldn’t use NUDZ as a testing set, as accounting for the scanner effect would be out of

the scope of this work. As such, we compared the validated models within datasets and

found out there are differences of performance between modalities. Functional connectiv-

ity performed similarly well across datasets, while ALFF, which by itself performed on par

with multimodal pipelines on IKEM, had noticeably worse performance on NUDZ. Shaving

down integrated modalities to just FC and ALFF has shown performance on par or higher

than all four modalities, and though not significantly different, this suggests that curat-

ing features to more potent subsets could improve performance; conversely, that adding

features without apriori information or feature engineering could introduce noise. On the

other hand, integrating the functional and structural connectivity measures did not bring
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any merit for classification. We have found that unimodal principal component regression

does not predict PANSS scales well and recommend that different ways of transforming

the predictors and targets should be explored while ideally preserving some interpretabil-

ity of both. Another area of analysis of the patient group is stratification, which opens a

wide realm of possible variables to stratify against. We have shown a clinical scale median-

thresholding approach that yielded optimistic results, given the fact that we’ve classified

within the patient group (then again, each subgroup was half the size of the patient group,

which might have inflated the score). We have analyzed effect of sample size via learning

curves, showing that the best discriminating features in our data may be reaching satu-

ration at the size of the full sample, but similarly to the other analyses, we acknowledge

that these behaviors are conditioned on our current data and experiment conditions. We

have taken care to highlight these and other limitations throughout this work, whether in

the review, the results, or the discussion. Finally, based on our research and results, we en-

courage further development of multimodal datasets and recommend deeper inquiry into

modality-specific and multimodal applications in the quest of improving understanding of

complex disorders such as schizophrenia.

66



Appendix A

Atlases

Table A.1: The 90 gray matter regions from the AAL atlas. Left hemispere indices are odd-
numbered, right hemisphere indices are even-numbered.

Index Left hemisphere Index Right hemisphere

1 Precental gyrus, left 2 Precental gyrus, right
3 Superior frontal gyrus, dorsolateral, left 4 Superior frontal gyrus, dorsolateral, right
5 Superior frontal gyrus, orbital part, left 6 Superior frontal gyrus, orbital part, right
7 Middle frontal gyrus, left 8 Middle frontal gyrus, right
9 Middle frontal gyrus, orbital part, left 10 Middle frontal gyrus, orbital part, right

11 Inferior frontal gyrus, opercular part, left 12 Inferior frontal gyrus, opercular part, right
13 Inferior frontal gyrus, triangular part, left 14 Inferior frontal gyrus, triangular part, right
15 Inferior frontal gyrus, orbital part, left 16 Inferior frontal gyrus, orbital part, right
17 Rolandic operculum, left 18 Rolandic operculum, right
19 Supplementary motor area, left 20 Supplementary motor area, right
21 Olfactory cortex, left 22 Olfactory cortex, right
23 Superior frontal gyrus, medial, left 24 Superior frontal gyrus, medial, right
25 Superior frontal gyrus, medial orbital, left 26 Superior frontal gyrus, medial orbital, right
27 Gyrus rectus, left 28 Gyrus rectus, right
29 Insula, left 30 Insula, right
31 Anterior cingulate and paracingulate gyri, left 32 Anterior cingulate and paracingulate gyri, right
33 Median cingulate and paracingulate gyri, left 34 Median cingulate and paracingulate gyri, right
35 Posterior cingulate gyrus, left 36 Posterior cingulate gyrus, right
37 Hippocampus, left 38 Hippocampus, right
39 Parahippocampal gyrus, left 40 Parahippocampal gyrus, right
41 Amygdala, left 42 Amygdala, right
43 Calcarine fissure and surrounding cortex, left 44 Calcarine fissure and surrounding cortex, right
45 Cuneus, left 46 Cuneus, right
47 Lingual gyrus, left 48 Lingual gyrus, right
49 Superior occipital gyrus, left 50 Superior occipital gyrus, right
51 Middle occipital gyrus, left 52 Middle occipital gyrus, right
53 Inferior occipital gyrus, left 54 Inferior occipital gyrus, right
55 Fusiform gyrus, left 56 Fusiform gyrus, right
57 Postcentral gyrus, left 58 Postcentral gyrus, right
59 Superior parietal gyrus, left 60 Superior parietal gyrus, right
61 Inferior parietal, but supramarginal and angular gyri, left 62 Inferior parietal, but supramarginal and angular gyri, right
63 Supramarginal gyrus, left 64 Supramarginal gyrus, right
65 Angular gyrus, left 66 Angular gyrus, right
67 Precuneus, left 68 Precuneus, right
69 Paracentral lobule, left 70 Paracentral lobule, right
71 Caudate nucleus, left 72 Caudate nucleus, right
73 Lenticular nucleus, putamen, left 74 Lenticular nucleus, putamen, right
75 Lenticular nucleus, pallidum, left 76 Lenticular nucleus, pallidum, right
77 Thalamus, left 78 Thalamus, right
79 Heschl gyrus, left 80 Heschl gyrus, right
81 Superior temporal gyrus, left 82 Superior temporal gyrus, right
83 Temporal pole: superior temporal gyrus, left 84 Temporal pole: superior temporal gyrus, right
85 Middle temporal gyrus, left 86 Middle temporal gyrus, right
87 Temporal pole: middle temporal gyrus, left 88 Temporal pole: middle temporal gyrus, right
89 Inferior temporal gyrus, left 90 Inferior temporal gyrus, right
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Table A.2: The 50 white matter regions from the JHU atlas.

index Area

1 Middle cerebellar peduncle
2 Pontine crossing tract (a part of MCP)
3 Genu of corpus callosum
4 Body of corpus callosum
5 Splenium of corpus callosum
6 Fornix (column and body of fornix)
7 Corticospinal tract, right
8 Corticospinal tract, left
9 Medial lemniscus, right

10 Medial lemniscus, left
11 Inferior cerebellar peduncle, right
12 Inferior cerebellar peduncle, left
13 Superior cerebellar peduncle, right
14 Superior cerebellar peduncle, left
15 Cerebral peduncle, right
16 Cerebral peduncle, left
17 Anterior limb of internal capsule, right
18 Anterior limb of internal capsule, left
19 Posterior limb of internal capsule, right
20 Posterior limb of internal capsule, left
21 Retrolenticular part of internal capsule, right
22 Retrolenticular part of internal capsule, left
23 Anterior corona radiata, right
24 Anterior corona radiata, left
25 Superior corona radiata, right
26 Superior corona radiata, left
27 Posterior corona radiata, right
28 Posterior corona radiata, left
29 Posterior thalamic radiation (include optic radiation), right
30 Posterior thalamic radiation (include optic radiation), left
31 Sagittal stratum (include inferior longitidinal fasciculus and inferior fronto-occipital fasciculus), right
32 Sagittal stratum (include inferior longitidinal fasciculus and inferior fronto-occipital fasciculus), left
33 External capsule, right
34 External capsule, left
35 Cingulum (cingulate gyrus), right
36 Cingulum (cingulate gyrus), left
37 Cingulum (hippocampus), right
38 Cingulum (hippocampus), left
39 Stria terminalis (can not be resolved with current resolution), right
40 Stria terminalis (can not be resolved with current resolution), left
41 Superior longitudinal fasciculus, right
42 Superior longitudinal fasciculus, left
43 Superior fronto-occipital fasciculus (could be a part of anterior internal capsule), right
44 Superior fronto-occipital fasciculus (could be a part of anterior internal capsule), left
45 Inferior fronto-occipital fasciculus, right
46 Inferior fronto-occipital fasciculus, left
47 Uncinate fasciculus, right
48 Uncinate fasciculus, left
49 Tapetum, right
50 Tapetum, left
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