
Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

Integrating Text and Image Models for Question
Answering

Master thesis

Bc. Jan Čuhel

Study programme: Open Informatics
Branch of study: Computer Vision and Image Processing

Supervisor: Ing. Jan Šedivý, CSc.

Prague, May 2024

ii

Thesis Supervisor:
Ing. Jan Šedivý, CSc.
Czech Institute of Informatics, Robotics and Cybernetics (CIIRC)
Czech Technical University in Prague
Jugoslávských partyzánů 1580
160 00 Prague 6
Czech Republic

Copyright © May 2024 Bc. Jan Čuhel

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

483634 Personal ID number: Čuhel Jan Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Cybernetics

Open Informatics Study program:

Computer Vision and Image Processing Specialisation:

II. Master’s thesis details

Master’s thesis title in English:

Integrating Text and Image Models for Question Answering

Master’s thesis title in Czech:

Integrace textových a obrazových modelů pro odpovídání na otázky

Guidelines:

This assignment is to develop algorithms for a system that simplifies the use of user's manuals for service and maintenance
of complicated machines.The technical user’s manuals for complicated machines are usually in PDF format and contain
both textual information and images that complement the explanation. Explore methods for answering questions from
technical manuals, with a specific focus on Retrieval-Augmented Generation (RAG). The task involves finding the most
effective combination of Large Language Models (LLMs) for generating accurate textual answers along with relevant
descriptive images. Study and review the state-of-the-art models and propose an optimal fusion of text and image models.
Subsequently, select models and design and implement a working system. Select benchmarks to estimate accuracy, with
special attention to alignment of textual workflows and tags in images, ensuring comprehensive understanding and accurate
representation.

Bibliography / sources:

[1] Radford, Alec, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry et al.
"Learning transferable visual models from natural language supervision." In International conference on machine learning,
pp. 8748-8763. PMLR, 2021.
[2] Li, Junnan, Dongxu Li, Silvio Savarese, and Steven Hoi. "Blip-2: Bootstrapping language-image pre-training with frozen
image encoders and large language models." arXiv preprint arXiv:2301.12597 (2023).
[3] Chen, Jun, Deyao Zhu, Xiaoqian Shen, Xiang Li, Zechun Liu, Pengchuan Zhang, Raghuraman Krishnamoorthi, Vikas
Chandra, Yunyang Xiong, and Mohamed Elhoseiny. "Minigpt-v2: large language model as a unified interface for
vision-language multi-task learning." arXiv preprint arXiv:2310.09478 (2023).
[4] Liu, Haotian, Chunyuan Li, Yuheng Li, and Yong Jae Lee. "Improved baselines with visual instruction tuning." arXiv
preprint arXiv:2310.03744 (2023).
[5] Wang, Jianfeng, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, and Lijuan Wang.
"Git: A generative image-to-text transformer for vision and language." arXiv preprint arXiv:2205.14100 (2022)
[6] Wang, Weihan, Qingsong Lv, Wenmeng Yu, Wenyi Hong, Ji Qi, Yan Wang, Junhui Ji et al. "Cogvlm: Visual expert for
pretrained language models." arXiv preprint arXiv:2311.03079 (2023).

Name and workplace of master’s thesis supervisor:

Ing. Jan Šedivý, CSc. Big Data and Cloud Computing CIIRC

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 24.05.2024 Date of master’s thesis assignment: 03.01.2024

Assignment valid until: 21.09.2025

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Dr. Ing. Jan Kybic

Head of department’s signature
Ing. Jan Šedivý, CSc.

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1

Declaration

I declare that the presented work was developed independently and that I have listed all sources
of information used within it in accordance with the methodical instructions for observing the
ethical principles in the preparation of university theses.

Prague, date.. ..
Bc. Jan Čuhel

v

Declaration of Artificial Intelligence Usage

I hereby declare that while working on this thesis, I have used the artificial intelligence tools as
an auxiliary tool while writing the report and implementation in the form of GitHub Copilot1

and ChatGPT/GPT–42 for the following types of tasks; generating code for LaTeX, small text
reformulations, generating docstrings of functions and methods or generating auxiliary func-
tions (e.g. to draw a plot). The generated outputs were used as a starting point and edited (if
needed) for this work.

1https://github.com/features/copilot
2https://chatgpt.com/

vi

https://github.com/features/copilot
https://chatgpt.com/

Abstract

Abstract (en)
This work focuses on enhancing Retrieval–Augmented Generation (RAG) systems by in-

corporating knowledge from images. The goal of this work was to find an optimal fusion of text
and image models to integrate knowledge from images into Question–Answering (QA) systems
capable of answering questions about technical manuals. The work introduces the problem and
reviews the related work and the current state–of–the–art Visual–Language models (VLMs).
We then propose a multi–modal RAG pipeline and describe its crucial components. We created
several data sets to train and evaluate the proposed pipeline’s components. The created data sets
and trained models were published. The selected models show promising results on the created
data sets. As part of the work, we proposed an algorithm for localizing an icon’s position in a
text based on its coordinates on a page. Ultimately, we implemented the proposed multi–modal
RAG pipeline into a working QA application. All experiments and models were programmed
in the Python programming language.

Keywords: Computer Vision (CV), Natural Language Processing (NLP), Large Language
Models (LLMs), Vision–Language Models (VLMs), Retrieval–Augmented Generation (RAG),
Question–Answering (QA).

Abstrakt (cs)

Tato práce se zaměřuje na vylepšenı́ systémů Retrieval–Augmented Generation (RAG)
začleněnı́m znalostı́ z obrázků. Cı́lem této práce bylo najı́t optimálnı́ fúzi textových a obra-
zových modelů pro začleněnı́ znalostı́ z obrázků do systémů pro zodpovı́dánı́ otázek (QA), které
jsou schopny odpovı́dat na otázky týkajı́cı́ se technických přı́ruček. Práce začı́ná představenı́m
problému a podánı́m přehledu o souvisejı́cı́ch pracı́ch a současně nejlepšı́ch vizuálně jazykových
modelů (Visual–Language models, VLM). Poté je navržen multimodálnı́ RAG systém a jsou
popsány jeho klı́čové komponenty. Pro natrénovánı́ a ohodnocenı́ jednotlivých komponent
jsme vytvořili několik datových sad. Tyto datové sady a natrénované modely byly zveřejněny.
Vybrané modely vykazujı́ na vytvořených datových sadách slibné výsledky. V rámci práce
jsme také navrhli algoritmus pro lokalizaci pozice ikony v textu na základě jejı́ch souřadnic
na stránce. Nakonec jsme implementovali navržený multimodálnı́ RAG systém do funkčnı́ ap-
likace. Všechny experimenty a modely byly naprogramovány v programovacı́m jazyce Python.

Klı́čová slova: Počı́tačové viděnı́, Zpracovánı́ přirozeného jazyka, Velké jazykové modely,
Vizuálně–jazykové modely, Rozšı́řená generace pomocı́ vyhledávánı́, Problém odpovı́dánı́ otázek.

vii

Acknowledgements

First, I would like to express my enormous gratitude to my thesis supervisor, Ing. Jan Šedivý,
CSc. He has been a constant source of encouragement and insight during my research and
helped me with numerous problems. Furthermore, I am grateful to Bc. Adam Černý and Ing.
Ondřej Kobza for help with creating the icon captioning dataset. Special thanks go to the staff
of the Department of Cybernetics, CIIRC, and Team Alquist, who gave me access to the GPT–
4 model and maintained a pleasant and flexible environment for my research. This work was
supported by the Ministry of Education, Youth and Sports of the Czech Republic through the
e-INFRA CZ (ID:90254).

viii

Contents

Abstract vii

Acknowledgements viii

List of Tables xi

List of Figures xiii

List of Acronyms xiv

1 Introduction 1
1.1 Structure of the thesis . 2
1.2 Problem Description . 2

2 Related Work 4
2.1 Theoretical Background . 4
2.2 Vision–Language Models (VLMs) . 6

2.2.1 State–of–the–art VLMs . 6
2.2.2 Evaluating VLMs . 9

2.3 Retrieval–Augmented Generation (RAG) . 14
2.3.1 RAG components . 15
2.3.2 Multi–modal RAG . 16

3 Our Approach 17
3.1 Proposed RAG Pipeline . 17

3.1.1 Pre–Processing Phase . 17
3.1.2 Inference Phase . 19
3.1.3 Extensions . 20

3.2 Data . 21
3.3 Created Data Sets . 23

3.3.1 Image Text Relevance Data Set . 23
3.3.2 Icon Captioning Data Set . 29
3.3.3 Plot Recognition Data Set . 31

4 Results and Discussion 32
4.1 Used Libraries and Tools . 32
4.2 Used Hardware . 33
4.3 Used Models . 33
4.4 Image Text Relevance Task . 33

ix

CONTENTS x

4.4.1 Baseline Results . 33
4.4.2 Using LLM to shorten the text . 35
4.4.3 Fine–tuning of CLIP and SigLIP . 36
4.4.4 Fine–tuning of Idefics2 . 38
4.4.5 Final Results . 38

4.5 Icon Captioning . 39
4.6 Icon Localization . 40
4.7 Plots . 40

4.7.1 Plots Recognition . 40
4.7.2 Plot to Text Translation . 41

4.8 Multi–modal RAG Pipeline Implementation 41

5 Conclusion 44
5.1 Future Work . 44

A Model Overview 46

B Image Text Relevance Task 47
B.1 Semi–automatically Curated Data Set: Utilized Questions 47
B.2 Utilized Prompts . 49
B.3 Fine–tuning CLIP . 50
B.4 Fine–tuning SigLIP . 50
B.5 Fine–tuning Idefics2 . 50

C Icon Captioning Task 52
C.1 Utilized Prompts . 52

Bibliography 57

List of Tables

2.1 A table with results of state–of–the–art VLMs. (*: model was trained on this
task) . 13

3.1 Analysis of the selected manuals . 22
3.2 Analysis of the resolutions of the images from the selected manuals 23
3.3 Analysis of the semi-automatically curated image–text–relevance data set . . . 24
3.4 Analysis of the manually curated image–text–relevance data set 25
3.5 Sizes of each data set split . 25
3.6 Analysis of the icon captioning data set . 30

4.1 Used hardware . 33
4.2 Utilized model variants, their size and the tasks they were utilized for (ITR:

stands for image–text–relevance task, IC: stands for icon captioning, PD: stands
for plot detection, and PT: stands for plot translation, the names in the paren-
theses represent the tasks onto which the models were fine–tuned, patchX/Y
means that the given model was pre–trained on images with Y×Y resolution
and it splits input images into patches of size X×X) 34

4.3 A table showing the results of the baseline VLMs on the image–text–relevance
data set (for CLIP and SigLIP models, the number in the parentheses in the
column mode represents the value of the automatically found threshold) 35

4.4 Comparison of the CLIP results when using summaries vs. not (please note
that CLIP B/32 refers to CLIP ViT–B/32, and CLIP B/16 refers to CLIP ViT–B/16) 36

4.5 Comparison of the SigLIP results when using summaries and when not (please
note that siglip-so-p14 refers to SigLIP so400m (patch14/384) and SigLIP L/16
to SigLIP large (patch16/384)) . 37

4.6 Table showing the contribution of training the CLIP models in comparison with
the non–trained versions (please note that +T stands for training, CLIP B/32
refers to CLIP ViT–B/32, and CLIP B/16 refers to CLIP ViT–B/16) 37

4.7 Table showing the contribution of training the CLIP models in comparison
with the non–trained versions (please note that +T stands for training, and
that siglip-so-p14 refers to SigLIP so400m (patch14/384) and SigLIP L/16 to
SigLIP large (patch16/384)) . 37

4.8 A table showing the contribution of training the Idefics2 model in comparison
with the non–trained version . 38

4.9 A table showing the final results on the image–text–relevance data set 39
4.10 A table showing the results on the icon captioning data set (BLEU N means that

the overlap is computed across geven N-grams, e.g. N = 2 means bigrams are
considerated) . 39

4.11 Results of the icon localization algorithm1 . 40

xi

LIST OF TABLES xii

4.12 Model results for plot recognition . 41

A.1 Used pre–trained models, link to their weights and their latency on a batch
with a single sample measured across around a hundred samples (except for
the DePlot model) on a device with one NVIDIA Tesla A100 GPU with 40GB
of memory . 46

B.1 Hyperparameters used for training the CLIP models 50
B.2 Hyperparameters used for training the SigLIP models 51
B.3 Hyperparameters used for training the Idefics2 model 51

List of Figures

2.1 An example from the paper [41] of the Flickr30K data set 10
2.2 Two examples from the paper [42] of the NoCaps data set. Each image is

annotated with 10 reference captions . 11
2.3 Two examples from the data set website [45] of the VQAv2 data set 11
2.4 Examples from the data set website [46] of the VizWiz VQA data set 12
2.5 The Vision Arena leaderboard . 13
2.6 The OpenVLM leaderboard . 14

3.1 Pre–processing phase of the proposed multi–modal RAG pipeline 18
3.2 The potential icon problem . 19
3.3 Inference phase of the proposed multi–modal RAG pipeline 19
3.4 Updated pre–processing phase of the proposed Multi–modal RAG pipeline

with plots . 21
3.5 Histogram of the 25 most common words in the selected manuals 22
3.6 Example of the created image–text–relevance data set with the following ques-

tion: ”How do I turn on the cruise control?” and the following answer: ”To
turn on cruise control, press the R button on the control stalk. Then, select CC
using the rotary knob on the steering wheel and press to confirm. Cruise con-
trol is switched on and passive.The operating status appears grey in the status
display. There is no speed stored.”. 24

3.7 Label frequencies of the combined image–text-relevance data set 26
3.8 Icon captioning data set preview (only showing the icons’ function and their

apperance) . 30
3.9 Examples from the curated plot recognition data set 31

4.1 Example of a plot with a correct translation that is following: TITLE |<0x0A>
Emotions | Number of samples <0x0A> Anger | 1079 <0x0A> Disgust | 1057
<0x0A> Fear | 1080 <0x0A> Joy | 1084 <0x0A> Sadness | 1078 <0x0A>
Shame | 1057 <0x0A> Guilt | 1045 . 42

xiii

List of Acronyms

AI Artificial intelligence. 1

CV Computer vision. 1

GIT Generative Image–to–text Transformer. 7

IR Information retrieval. 15

LLMs Large Language models. 1

LMs Language models. 1

LoRA Low–Rank Adaptation. 8

LSTM Long Short–Term Memory. 5

MAP mean average precision. 15

MRR mean reciprocal rank. 15

NLP Natural language processing. 1

PEFT Parameter Efficient Fine–tuning method. 8

QA Question–Answering. 2

RAG Retrieval–Augmented Generation. 1

RNNs Recurrent neural networks. 5

tf–idf Term Frequency-Inverse Document Frequency. 11

ViT Vision Transformer. 5

VLMs Visual–Language models. 2

VQA Visual Question Answering. 6

xiv

Chapter 1

Introduction

In recent years, Artificial intelligence (AI) has witnessed remarkable advancements, particu-

larly in the domains of Natural language processing (NLP) and Computer vision (CV), with

the introduction of Self–Attention and Transformers architecture in the paper Attention is all

you need, Vaswani, Ashish, et al. [1]. The Transformer architecture became very popular in

NLP and CV, and it is nowadays used to solve various NLP and CV problems. One notable

area of research that has garnered significant popularity is multi–modal AI, which takes the best

of what each modal field has to offer. Throughout the years, as the Language models (LMs)

powered by the Transformer architecture kept growing, we started to talk about them as Large

Language models (LLMs). However, even though the LLMs were getting more impressive and

capable of storing much more pieces of information about the world, they still suffered from

several issues, such as generating responses with outdated knowledge or responses that were

factually incorrect, a phenomenon called hallucination [2]. One solution to reduce hallucina-

tion is to use a Retrieval–Augmented Generation (RAG) [3] technique. RAG attempts to reduce

hallucination by fetching knowledge from external sources (e.g., web searches and manuals)

and utilizing this fetched knowledge during the process of generating a response. This ensures

that the response contains factual knowledge and decreases the possibility of hallucinating.

Despite the popularity of the multi–modal AI, little work is being done in the domain of multi–

modal RAG. This thesis focuses on enhancing RAG systems dealing with technical manuals by

integrating images into the process. Typically, these manuals are presented in PDF format and

are rich with illustrative images. Employing the knowledge from these images could, therefore,

boost the performance of RAG systems.

The core objective of this thesis is to explore and develop algorithms that enhance RAG

systems by incorporating images. The main focus is on finding relevant images for a generated

answer and the input question and utilizing icons. This thesis will contribute to the field by

providing a detailed analysis and practical solution to a real-world problem, potentially setting

a new standard for how technical manuals are interacted with in the industry. This thesis can

1

CHAPTER 1. INTRODUCTION 2

also be considered as sort of an overview of the current state–of–the–art Visual–Language

models (VLMs).

1.1 Structure of the thesis

This thesis is organized into x chapters as follows:

1. Introduction: Explain the motivation behind our efforts, set the goals, and describe the

problem.

2. Related Work: Introduces the necessary theoretical background and state–of–the-art re-

lated work to the reader.

3. Our Approach: Describes our approach to achieving the set goals.

4. Results and Discussion: Describes the experiments that we have conducted and shows

their results.

5. Conclusion: Summarizes the thesis results, suggests possible topics for further research,

and concludes the work.

1.2 Problem Description

Throughout history, humanity has invented many astonishing inventions that have helped us

prolong and improve the quality of our lives, saved us time by automating some routine tasks,

or enabled us to connect with people more easily and travel not only around the globe but also

into the space and so much more. We are living in truly technologically unique times. However,

as the devices we use get more and more advanced, they also get more complex. This increased

the required knowledge for us to operate these devices successfully. Fortunately, manuals come

to the rescue.

Manuals contain valuable pieces of information that help people understand how to use

and operate various devices and products. They contain product descriptions, instructions on

how to use them and repair if necessary. They also warn about possible dangers that may

arise from the devices’ usage. These manuals come in the form of a structured text document

(usually a PDF file). The textual instructions are usually accompanied by images that further

explain some procedure or help point to some feature. There is a famous saying: ”A picture is

worth a thousand words,” which translates to the fact that sometimes images can explain some

idea better than a thousand words. However, in today’s classical Question–Answering (QA)

applications, images pose a considerable challenge that many QA systems solve by ignoring

CHAPTER 1. INTRODUCTION 3

them and only working with the textual modality. In this work, we will utilize images in a QA

application focused on user manuals for the service and maintenance of complicated machines

such as vehicles.

Our problem is notably straightforward; we are given a manual as a PDF file(s). Our task is,

given a user question, to find relevant images to the topic of the question and the corresponding

answer. We assume that the input manuals are in English.

Chapter 2

Related Work

2.1 Theoretical Background

These days, machine learning models in the NLP domain are standardly based on the Trans-

former architecture [1]. CV models have been using Convolutional layers [4] since the arrival

of AlexNet [5], but nowadays, they are also utilizing Transformer layers. The following pas-

sages will briefly go through some basic necessary concepts.

Convolutional Neural Networks (CNNs)

Convolutional neural networks (CNNS) [4] is a specific type of neural network that was inspired

by the visual Cortex in the human brain. CNNs are generally composed of convolution, pooling,

and fully connected layers. Each convolutional layer performs an operation called convolution,

which represents an application of a filter kernel to an input matrix using a sliding window

mechanism. Each convolutional layer contains a set of these filter kernels. Each filter is trained

to recognize a specific pattern in the image, such as an edge [6].

Encoder Decoder

The encoder and decoder are two components of so-called Encoder–decoder networks, some-

times called sequence–to–sequence networks. Their principle is simple: the encoder accepts

an input sequence and returns a corresponding contextual representation of the input sequence.

In other words, the encoder takes input information and encodes it into a vector representation.

A decoder accepts a contextual representation and generates an output sequence specific for

a specified task [2]. These two components can stand apart and be used separately, which is

commonly done.

4

CHAPTER 2. RELATED WORK 5

Language Models (LMs)

Language models, often abbreviated as LMs, assign probabilities to forthcoming words or se-

quences of words based on a specified context. The n–gram LM is an example of a straightfor-

ward LM. An n–gram is just a sequence of n words [2].

Large Language Models (LLMs)

The term Large language models (LLMs) refers to scaled–up language models with billions

of parameters such as Google’s PaLM [7] with 540 billion parameters or OpenAI’s GPT–3 [8]

with 175 billion parameters. Please note that the perception of what is ‘large‘ shifts throughout

time.

Transformer Architecture

Transformers [1] are a deep learning architecture that powers the most recent NLP solutions.

They are the successors of Recurrent neural networks (RNNs) [9] and Long Short–Term Mem-

ory (LSTM) [10]. Transformer–based models are made out of transformer blocks. Each block

receives a sequence of vectors (x1, ...,xn) and outputs a sequence of vectors (z1, ..., zn) of the

same length [2]. Each block consists of feed–forward networks and multi–head attention lay-

ers. Multi–head attention layer is just a combination of many self-attention mechanisms, which

is the key innovation of the Transformer architecture. The intuition behind self–attention is

finding relationships within the vectors of a sequence and their proper weighting.

LMs based on Transformer architecture are trained in a self–supervised fashion, either by

Masked generation [11] or Next token generation (Causal language modeling) [12] training

objectives. In the Masked generation objective, a specified number of randomly chosen input

tokens are masked, and the task for the model is to unmask them (predict the probability of

masked tokens). In the Next token generation, the model iteratively predicts the next token

conditioned on the previous tokens. Such models are called autoregressive. The difference

between the Masked generation and the Next token generation is that in the Masked generation,

the model also has access to the future tokens that follow a specific token. The conditioning is

bi-directional, whereas the Next token generation model has only access to the previous tokens.

Vision Transformer (ViT)

Transformer architecture was initially invented for the NLP domain; however, in work An image

is worth 16x16 words: Transformers for image recognition at scale, Dosovitskiy, Alexey, et

al. [13] it was successfully adapted to the CV domain. The authors in this paper presented the

Vision Transformer (ViT) model, a pure transformer–based classification model. The model

works in the following way: first, an image is split into fixed–sized patches, flattened, and

CHAPTER 2. RELATED WORK 6

linearly mapped into an embedding space. Position embeddings are added to the sequence

alongside a classification token. This updated sequence is fed into the Transformer encoder, to

which a classification head is attached.

2.2 Vision–Language Models (VLMs)

Vision–Language models (VLMs) are machine learning models that combine the vision and

language modalities. In other words, they are capable of ingesting images and natural texts.

The exact details depend on the specific architecture and the task these models are trained

on. VLMs solve tasks such as image captioning, image retrieval, Visual Question Answering

(VQA), and image classification. Image retrieval is a traditional CV task that involves finding

similar images to a given query from a database of images [14]. In VQA, models are given

an image and a question and are tasked to answer the question using the knowledge from

the image. In image classification, VLMs classify input images based on provided textual

prompts [15].

2.2.1 State–of–the–art VLMs

In the following subsections, we will introduce some of the state–of–the–art VLMs.

CLIP

The CLIP model [16], an acronym for Contrastive Language–Image pre–training by OpenAI,

represents the first significant advancement in multi–modal image–text understanding. Its pri-

mary objective is to assess the degree of similarity between a provided image and a provided

textual caption. During the training process, CLIP strives to optimize the cosine similarity

metric between pairs of vectors that correspond to correctly associated image–caption pairs.

Simultaneously, it minimizes the similarity scores between vectors representing incorrect as-

sociations. This is done using the CLIP loss (equation 2.1). During inference, CLIP leverages

its trained model to compute similarity scores between the vector representation of a single

image and a collection of potential caption vectors. Subsequently, it selects the caption with

the highest similarity score, indicating the most contextually relevant textual description for the

particular image. CLIP model is widely used in Image retrieval.

The CLIP loss, incorporating the definition of cross–entropy loss, can be expressed as:

L = − 1

2N

N∑
i=1

(
log

etxi·yi∑N
j=1 e

txi·yj

+ log
etxi·yi∑N

j=1 e
txj ·yi)

)
(2.1)

CHAPTER 2. RELATED WORK 7

where t are learnable parameters, xi normalized image features, yj normalized text features,

and N is the size of a particular mini–batch.

SigLIP

The SigLIP model [17] is another multi–modal embedding model. The paper’s authors propose

replacing the CLIP loss with a simple pairwise sigmoid loss (equation 2.2). In contrast to the

CLIP loss, the proposed sigmoid loss does not require global normalization factors. It processes

each image–text pair independently, resulting in a more efficient parallel implementation than

CLIP loss.

The Sigmoid loss is defined as

L = − 1

N

N∑
i=1

N∑
j=1

log
1

1 + ezij(txi·yj+b)
(2.2)

where b and t are learnable parameters, xi normalized image features, yj normalized text

features, N is the size of a specified mini–batch, and zij is defined as:

zij =

1, for positive pairs

−1, for negative pairs.

GIT

In work Git: A generative image-to-text transformer for vision and language, Wang, Jian-

feng, et al. [18], the authors present an image–to–text Generative Image–to–text Transformer

(GIT) model consisting of a pre–trained image encoder and transformer–based text decoder

to generate text from images. The image encoder transforms raw images into a compact 2D

feature map, subsequently projected into D dimensions through an additional linear layer and

a normalization layer. The text decoder employs a Transformer module for text description

prediction, consisting of multiple Transformer blocks. Text is tokenized and embedded into

D dimensions. Image features and text embeddings are concatenated and serve as input to the

Transformer module. Text generation commences with the [BOS] token, proceeding autore-

gressively until the [EOS] token or maximum steps are reached.

BLIP–2

BLIP–2 [19] introduces a method that leverages frozen vision and language models to effi-

ciently bridge the modality gap between visual and textual features. It minimizes computa-

tional requirements by training fewer parameters than prior end–to–end approaches. A pro-

posed, lightweight Querying Transformer (or Q–Former) acts as an intermediary between the

CHAPTER 2. RELATED WORK 8

frozen image and text encoders. Visual features are extracted by the image encoder and then

processed by the language model for comprehension. For the frozen image encoder, the au-

thors explored two pre–trained Vision Transformer models: ViT–L/14 from CLIP [16] and ViT–

g/14 from EVA–CLIP [20]. For the frozen language model, the authors experimented with

the unsupervised–trained OPT model family [21] and the instruction–trained FlanT5 model

family [22] LLM.

InstructBLIP

InstructBLIP [23] is an improved version of BLIP–2. Specifically, it is an instruction–tuned

version of BLIP–2. The authors trained the InstructBLIP model in three stages (the first two

are identical as in BLIP–2, and the third is the instruction–tuning). As a frozen LM backbone,

the authors decided to use instruction–trained FlanT5 model and Vicuna [24]1 (a decoder–only

LLM finetuned from LLaMA [25]).

MiniGPT4

The authors of MiniGPT4 [26] were inspired by the BLIP–2 model and employed the same pre–

trained vision components of BLIP–2 (ViT–G/14 from EVA–CLIP and a Q–Former network).

As an LLM, they used Vicuna. MiniGPT4 adds a single projection layer trained in two–stage

settings to align the encoded visual features with the Vicuna language model. The rest of the

parameters are frozen.

MiniGPT–v2 [27] is built upon MiniGPT4 model. MiniGPT–v2 aims to build a unified in-

terface for completing many vision–language tasks, including image description, VQA, and vi-

sual grounding, using intensive multi–modal instruction tuning. MiniGPT–v2 adopts the open–

sourced LLaMA2-chat (7B) [25] as the LM backbone that is further fine–tuned using Low–Rank

Adaptation (LoRA) [28], one of the Parameter Efficient Fine–tuning method (PEFT). LoRA

works on the principle of updating the weights of carefully selected layers while keeping the

original model frozen. The weights of the selected layers to be updated are cloned and initial-

ized to zeros. The key idea is that the weight matrices are not updated using full rank but by

product of two matrices of lower rank.

LLaVA

LLaVA [29], LLaVA–1.5 [30], and LLaVA–NeXT [31] are similar to MiniGPT4 as they are using

Vicuna as an LLM and pre–trained CLIP visual encoder ViT–L/14. The critical difference is that

instead of using Q–Former from BLIP–2, LLaVA uses a linear projection, and LLaVA–1.5 uses

a two–layer MLP [32], [33]. LLaVA-NeXT further builds upon LLaVA–1.5 by increasing the

1https://github.com/lm-sys/FastChat

https://github.com/lm-sys/FastChat

CHAPTER 2. RELATED WORK 9

input image resolution, improving the data sets’ variability, and scaling up the LLM backbone.

In addition to Vicuna 1.5 (in 7 and 13 billion variants), the authors also considered Mistral

7B [34] and Nous-Hermes–2–Yi–34B [35] LLMs.

Idefics2

In work What matters when building vision-language models?, Laurençon, Hugo, et al. [36],

the authors sought to find out, as the name suggests, which aspects matter when creating a

VLM. Based on their findings, they built the Idefics2 model, a VLM similar to LLaVA. The

model takes an input image and feeds it into a vision encoder (SigLIP–SO400M [17]). The

outputted visual features are then mapped to the LM input space to obtain visual tokens. Visual

tokens are then concatenated with the input text embedding sequence. Finally, the resulting

sequence of vectors is passed into the LM (Mistral 7B) that predicts the textual output.

DePlot

Reasoning about plots and charts is a challenging task. The authors of DePlot [37] divided

this challenge of visual language reasoning into two steps: plot–to–text translation using the

proposed DePlot model and reasoning over the translated text using a LLM (FlanPaLM [38]).

DePlot is a image–to–text encoder–decoder Transformer model based on MatCha [39] VLM

trained to map plots to their corresponding linearized data tables.

GPT–4

OpenAI released in March 2023 its multi–modal LM, GPT–4 [40], which can take images

and other modalities as an input with a textual instruction describing the task. In May 2024

an updated version GPT–4o2 (‘o‘ for ‘omni‘) was released. It is the OpenAI’s latest multi–

modal model capable of reasoning across audio, text, and vision. It improves over the previous

versions of GPT–4. Unfortunately, all GPT–4 variants are proprietary, and their source code is

not published. Therefore, we do not know anything about the architecture of this model.

2.2.2 Evaluating VLMs

The current state–of–the–art VLMs were described in the previous parts. The models are

trained and evaluated on numerous data sets across various tasks, including image captioning,

VQA, visual reasoning, visual conversational QA, image question generation, video question

answering, and image classification. However, the issue with the current VLMs is that each

model is trained and assessed on slightly different tasks and data sets.

2https://openai.com/index/hello-gpt-4o/

https://openai.com/index/hello-gpt-4o/

CHAPTER 2. RELATED WORK 10

Image captioning and VQA are popular tasks on which many VLMs are evaluated. To

compare the current state–of–the–art VLMs we will choose instance data sets from these tasks

and compare the models’ results on them. Flickr30K [41] and NoCaps [42] are two image

captioning data sets commonly used. VQAv2 [43] and Vizwiz [44] are popular VQA data sets.

We describe each task and metric utilized to measure the models’ performance, then depict the

presented models’ results on these four tasks.

As an alternative option for benchmarking VLMs, we also included a short section of avail-

able VLM leaderboards that we found.

Image Captioning Data Sets

Flickr30K Flickr30K is an image captioning data set that contains 31 thousand images

collected from Flickr3. Each image has five ground truth captions. Figure 2.1 displays an

example from this data set.

Figure 2.1: An example from the paper [41] of the Flickr30K data set

NoCaps NoCaps is an image captioning data set. It contains over 15 thousand images

with 166 thousand human–written captions for novel object image captioning. Figure 2.2 dis-

plays an example from this data set.

VQA Data Sets

VQAv2 VQAv2 is a data set for open–ended image QA. The training set contains 82 thou-

sand samples, the validation set 40 thousand, and the test set 81 thousand samples. Figure 2.3

displays an example from this data set.

Vizwiz The VizWiz VQA data set originates from a natural VQA setting where blind peo-

ple took an image and recorded a spoken question, together with ten crowd–sourced answers

per visual question. The proposed challenge addresses the following two tasks for this data

set: predict the answer to a visual question and predict whether a visual question cannot be

answered. Figure 2.4 displays examples from this data set.

3https://www.flickr.com

https://www.flickr.com

CHAPTER 2. RELATED WORK 11

Figure 2.2: Two examples from the paper [42] of the NoCaps data set. Each image is annotated
with 10 reference captions

Figure 2.3: Two examples from the data set website [45] of the VQAv2 data set

Evaluation Metrics

CIDEr score The CIDEr score [47] measures the similarity between a generated caption

and the reference captions. It is based on the concept of consensus: the idea that good captions

should not only be similar to reference captions in terms of word choice and grammar but also

in terms of meaning and content. The similarity is measured using Term Frequency-Inverse

CHAPTER 2. RELATED WORK 12

Figure 2.4: Examples from the data set website [46] of the VizWiz VQA data set

Document Frequency (tf–idf) [48]. tf–idf is a statistical method for assessing the significance

of a word within a document in a corpus. The CIDEr score is used to measure the quality of

image captioning models.

top-1 accuracy Top–1 accuracy measures the proportion of examples for which the gen-

erated text matches the target label. It is commonly used to evaluate models trained on the

VQA tasks.

Results

The table 2.1 shows the results of the presented models (except DePlot which was not trained

or evaluated on the tasks of image captioning and VQA) on the Flickr30K, NoCaps, VQAv2,

and Vizwiz data sets reported by their authors. InstructBLIP FlanT5XL performs very well on

the image captioning tasks. GIT2 model performs well on NoCaps image captioning task and

after fine–tuning also very well on VQA tasks. LlaVA and Idefics2 models were only evaluated

on the two VQA tasks on which they performed well.

VLMs Leaderboard

Another option to compare VLMs is via leaderboards. To the best of our knowledge, two

leaderboards exist to compare VLMs.

Vision Arena [49] is a leaderboard based on user–anonymous voting of model outputs. In

this arena, the users choose an image and a prompt, or they can be sampled. After that, out-

puts from two different random models are sampled anonymously, and the user can judge the

CHAPTER 2. RELATED WORK 13

Model Name Image Captioning [CIDEr] VQA [top-1 accuracy %]
Flickr30K [↑] NoCaps [↑] VQAv2 [↑] Vizwiz [↑]

BLIP-2 FlanT5XL 76.10 104.50 63.00 29.80
BLIP-2 FlanT5XXL 73.70 98.40 65.00 29.40
BLIP-2 Vicuna 7B 74.90 107.50 – 25.30
BLIP-2 Vicuna 13B 71.60 103.90 – 19.60
InstructBLIP FlanT5XL 84.50 119.90 Training 32.70
InstructBLIP Vicuna 7B 82.40 123.10 Training 34.50
MiniGPT–v2 7B Training - Training 32.90
MiniGPT–v2 7B Chat Training - Training 53.60
LLaVA 1.5 Vicuna 7B – – 78.50* 50.00
LLaVA 1.5 Vicuna 13B – – 80.00* 53.60
LLaVA-NeXT Mistral 7B – – 82.20* 60.00
LLaVA-NeXT 34B – – 83.70* 63.80
Idefics2 8B – – 81.20 –
GIT2 50.70 124.80 81.74* 70.97*
GPT–4 (0–shot) – – 77.20 –

Table 2.1: A table with results of state–of–the–art VLMs. (*: model was trained on this task)

models’ responses. The leaderboard is available here. Figure 2.5 shows a screenshot of the

leaderboard.

Figure 2.5: The Vision Arena leaderboard

https://huggingface.co/spaces/WildVision/vision-arena

CHAPTER 2. RELATED WORK 14

OpenVLM Leaderboard [50] is a leaderboard where various VLMs are ranked based on

their performance on various benchmarks. As of the date of writing this text (May 2024),

it covers 56 different VLMs and 22 different multi–modal benchmarks. The leaderboard is

available here. Figure 2.6 shows a screenshot of the leaderboard.

Figure 2.6: The OpenVLM leaderboard

2.3 Retrieval–Augmented Generation (RAG)

As time passed and the LM grew, this increased size enabled them to store more world knowl-

edge they could use during generation. However, this did not allow LLMs to remember every

single information available. Moreover, the world is constantly changing, so pieces of in-

formation can get outdated, or new pieces of information can arise daily. Therefore, LLMs

can generate very confident responses with proper grammatical features, which are factually

wrong, a phenomenon called hallucination [2]. Retrieval–Augmented Generation (RAG) [3]

is addressing this problem by retrieving knowledge from external sources (e.g., Wikipedia4)

and passing the acquired passages to the prompt. The prompt is an input piece of text used to

condition the generated response; in other words, to steer the LM in the right direction.

4https://en.wikipedia.org/

https://huggingface.co/spaces/opencompass/open_vlm_leaderboard
https://en.wikipedia.org/

CHAPTER 2. RELATED WORK 15

RAG consists of two components: a retriever and a generator. A retriever is a system

that retrieves relevant documents given an input query from a collection of documents. These

documents are then fed to the generator (a LLM) that takes the input query with the retrieved

documents and, conditioned on them, generates a response. RAG is a well–suited for the task

of open domain QA. QA is a task of answering questions. Open domain QA, also known as

retrieval–based QA, is a task of finding or generating an answer to a user question based on the

information available on the web or in some collection of documents [2].

2.3.1 RAG components

Retriever

Retriever (also called search engine) is a resulting system of Information retrieval (IR). IR is the

task of retrieving relevant documents from a set of documents based on a provided user query.

A document refers to any segment of text that the system retrieves (news articles, websites,

messages). IR is solved by mapping the query and documents to their vector representation

(embeddings). It uses the cosine similarity between the query and documents’ embeddings to

rank the documents based on their similarity with the user query [2]. To save time, the docu-

ment embeddings are pre–calculated and stored so that only the query embedding is computed

during the search. Historically, tf–idf [48] or BM25 [51] were a popular choice for weighting

words. Modern IR systems use transformer–based encoders such as BERT [52] for computing

embeddings. However, since the context window (the number of tokens a language model can

process during generation) is limited, usually between 512 to 32K tokens, the documents must

be split into several chunks.

Evaluation of Retrievers Popular metrics to evaluate retrievers are precision, recall, mean

average precision (MAP), and mean reciprocal rank (MRR) [53]. MAP measures the average

precision across multiple text passages, considering precision only at those points where a

relevant document has been encountered. MRR evaluates the average reciprocal rank of the

first relevant result across multiple queries [2].

Generator

Any generative LM can be used as a generator in RAG. The original paper utilized a transformer–

based model called BART [54]. Following today’s trend, a popular choice is using one of the

latest instruction–tuned LLM such as GPT–4 [40], Mistral [34], Llama 3 [55] or Phi–3 [56].

An instruction–tuned LLM is a fine–tuned version of the specific LLM on a labeled dataset of

instructional prompts and corresponding outputs [57].

CHAPTER 2. RELATED WORK 16

2.3.2 Multi–modal RAG

Standard RAG systems work only with textual knowledge, neglecting the knowledge hidden

in other modalities, such as images. Multi–modal RAG, on the other hand, also incorporates

knowledge from other modalities such as images.

We found two possible approaches for multi–modal retrieval in the literature. The first

option is to embed all modalities into the same vector space using multi–modal embedding

models like CLIP or SigLIP. The second option is to ground all modalities into one primary

modality, for example, using a VLM such as LlaVA or GPT–4 to generate images’ captions and

embed them using text embedding models.

The first approach was used in work Murag: Multimodal retrieval-augmented generator for

open question answering over images and text, Chen, Wenhu, et al. [58], in which the authors

proposed MuRAG, a multi–modal transformer–based model used for open domain QA. Both the

retriever and the generator use a multi–modal backbone, which is capable of encoding image–

text pairs in such a way that they are suitable for both retrieval and answer generation. During

generation, the retrieved image–text pairs are combined with the query, fed to the multi–modal

backbone encoder, and passed to a decoder to generate a textual response. Another example

of the first approach in [59], where authors used CLIP model (ViT-L/14) [16] for generating

embeddings.

The second approach was used in [60], where authors use DePlot model to translate the

plots and neva-22b [61] from NVIDIA to generate captions from images and decide whether

an image is a plot or chart.

Chapter 3

Our Approach

This section will discuss our approach to incorporating images into the RAG system, which is

focused on technical manuals. We will propose a multi–modal RAG pipeline and describe each

component. Then, we will describe the data and metrics used in our work.

3.1 Proposed RAG Pipeline

RAG and its components were described in the previous chapter. As our focus in this work

is on image integration into a RAG pipeline, we will not conduct any experiments regarding

selecting the best text chunkenization method, text embedding model, and LLM responsible

for generating answers. Instead, we will propose a general multi–modal RAG pipeline that can

be used with arbitrary vector storage, text embedding, and answering models. We will divide

the RAG pipeline into two phases; pre–processing and an inference phase. During the pre–

processing phase, the input manual(s) is(are) processed, and the resulting chunk embeddings

and extracted images are stored to be easily used during the inference phase, which happens

whenever a user asks a question. The pre–processing phase is executed only when the QA

application is created, or a new or updated manual is added.

3.1.1 Pre–Processing Phase

The pre–processing phase of the proposed multi–modal RAG pipeline is depicted in the figure

3.1. Text and all images are extracted from each PDF manual. An image is classified as an

icon or a standard image based on its resolution. In our work, an image is considered an icon

when both the width and height of the image are below 100px. Standard images are stored for

inference into folders based on what pages they are in the manual. Icons are localized in the

text and fed into a VLM that generates the icon’s caption. If the icon’s location is detected,

then the generated icon caption is inserted at the detected location.

17

CHAPTER 3. OUR APPROACH 18

Figure 3.1: Pre–processing phase of the proposed multi–modal RAG pipeline

The icon extraction pipeline’s pseudo code is written in 1. To extract icons from the PDF

file and to extract text around specified coordinates on a page in the PDF file, we utilize a

Python package PyMuPDF1. Because the PDF parsing can create mistakes (wrongly parsed

letters or even words), we use a Levenshtein distance to compare the text segments parsed

around the icon’s coordinates on a page with the extracted text of the whole page and sort the

matches based on this distance. The icon localization does not work perfectly; it can make

mistakes or even not localize an icon. There are several reasons for that. First, there does not

have to be any text around the icon, so the icon cannot be detected if no text is parsed around

the icon. The text in the manuals can be structured into more than one column, so the text

around the specific icon can very well be from a different text section, and the icon can be

localized incorrectly or not at all. Lastly, the detected text around an icon can be present in the

text several times, and therefore, the icon can be mistakenly localized. The first two mentioned

issues can be reduced by carefully picking the Levenshtein distance threshold and the bounding

box size used for extracting text around an icon’s coordinates. Choosing a big threshold will

result in a higher recall but smaller precision. The selection of the optimal values will be a

trade–off between precision and recall. However, wrong localization is more problematic in

our case, so we prioritized precision more. The third problem can be reduced by sorting the

icons based on their coordinates from top to bottom and left to right. One of our experiments

was designed to measure the precision of the algorithm’s localization.

We decided to process icons differently from other images because the icons often represent

some buttons or symbols that help to make the text more transparent. Furthermore, icons have

tiny resolutions and are, therefore, usually placed right between words, meaning that during

text parsing, the extracted text segments around are disconnected because they are missing the

information the icons represent. An example of such an icon can be seen in the figure 3.2.

1https://pymupdf.readthedocs.io/en/latest/

https://pymupdf.readthedocs.io/en/latest/

CHAPTER 3. OUR APPROACH 19

Algorithm 1: Icon Extraction Pipeline
Data: Manual file in .pdf
Result: Extracted text from the manual with injected textual description of the icons.
Function findTemplate(template, text, threshold):

matches← []
for i← 0 to (text.length - template.length) do

candidate← text[i:i+templateLength]
dist← Levenshtein(candidate, template)
if dist ≤ threshold then

save the candidate to matches with dist

return sorted matches based on dist;

Function extractIcons(manual):
extractedText← ””
foreach page in manual do

textPage← extract text from the page
icons← extract icons on page
foreach icon in icons do

textAround← extract text around the icon
candidates← findTemplate(textAround, textPage, threshold)
if found match in candidates then

inject description of the icon into the textPage

extractedText← extractedText + textPage
return extractedText

Figure 3.2: The potential icon problem

3.1.2 Inference Phase

Figure 3.3: Inference phase of the proposed multi–modal RAG pipeline

The inference phase of the proposed multi–modal RAG pipeline is depicted in the figure

CHAPTER 3. OUR APPROACH 20

3.3. An input user query is embedded using a text embedding model, and the resulting vector

is passed to the retriever, which retrieves the k–most similar chunks to the query with all the

images from the pages where the most similar chunks originate. Retrieving images from partic-

ular pages is solved by storing the source page(s) from which a specific chunk originates. The

retrieved similar text chunks are passed into a LLM that, conditioned on the chunks, generates

an answer. The generated response and/or the user query are alongside the retrieved images

passed into a VLM to determine which image(s) is(are) relevant, if any. The image retrieval in

the pipeline utilizes the idea that an image on a page is relevant to some part of the page. By

assuming this, we can easily filter out most images in the storage and focus only on a few se-

lected. The advantage of this approach is that the images are retrieved without the necessity to

compute anything. The disadvantage is that the information contained in the retrieved images

is not considered when generating the answer.

3.1.3 Extensions

We can further improve the proposed RAG pipeline by translating plots into linearized text

using a specialized model or supporting languages other than English.

Plots

Inspired by [60], we can improve our proposed pipeline by translating plots into text using

the DePlot model. Doing this should increase the performance of the QA system in situations

when the user question is referring to a chart or plot because, as the work [37] suggests, visual

language reasoning is a challenging task, and splitting it into two parts helps.

To utilize the DePlot model, it is crucial to differentiate the plots and charts from regu-

lar images. For this differentiation, we can employ one of the pre-trained instruction-based

VLM. This update requires modifying only the proposed pipeline’s pre–processing phase. The

updated pre–processing phase with plots is depicted in figure 3.4. The translated textual repre-

sentations of icons are embedded using the selected text embedding model.

Other Languages Support

In our work, we assume the data is in English. However, using the proposed multi–modal RAG

pipeline with other languages is possible. This requires replacing each model in the proposed

RAG pipeline with a multilingual one. Here are suggestions for the components:

• Text embedding model: Multilingual MiniLM–L12 v22 [62]

• Icon captioning model: GPT–4
2https://tinyurl.com/yc5tt5mk

https://tinyurl.com/yc5tt5mk

CHAPTER 3. OUR APPROACH 21

Figure 3.4: Updated pre–processing phase of the proposed Multi–modal RAG pipeline with
plots

• LLM for generating answers: C4AI Command-R3

• VLM: Multilingual SigLIP base (Patch16/256)4 [17]

3.2 Data

For our work, we selected five manuals about electric vehicles. All these manuals are publicly

available on the internet. All manuals are in English. They all describe how to operate and use

the vehicle and all of their features. Here is the list of the selected manuals:

1. Porsche Taycan5

2. BMW I46

3. Tesla Model S7

4. Volvo8

5. Ford Mustang Mach E9

Table 3.1 shows some essential characteristics of the selected manuals (such as the number

of pages, words, and images). The table shows that manuals about vehicles are rich in images,

3https://huggingface.co/CohereForAI/c4ai-command-r-v01-4bit
4https://huggingface.co/google/siglip-base-patch16-256-multilingual
5https://tinyurl.com/436u54s6
6https://tinyurl.com/puvfzbjf
7https://tinyurl.com/4v6u9k6j
8https://tinyurl.com/3z4n2ppu
9https://tinyurl.com/5n89ht3y

https://huggingface.co/CohereForAI/c4ai-command-r-v01-4bit
https://huggingface.co/google/siglip-base-patch16-256-multilingual
https://tinyurl.com/436u54s6
https://tinyurl.com/puvfzbjf
https://tinyurl.com/4v6u9k6j
https://tinyurl.com/3z4n2ppu
https://tinyurl.com/5n89ht3y

CHAPTER 3. OUR APPROACH 22

as could be suspected, and ignoring them could result in losing much knowledge. Please note

that the icons in these manuals are usually displayed multiple times even though it is visible

that the manuals contain many icons, which only proves their importance.

Manual # of Pages # of Images # of Icons # of Words # of Unique Words

Porsche Taycan 327 823 528 108 128 5 999
BMW I4 404 1 080 735 115 707 5 104
Tesla Model S 292 467 299 124 431 5 121
Volvo 921 2 345 1 373 198 564 7 592
Ford Mach E 742 506 234 115 325 5 912

Avg 476.6 1 319.6 909.4 132 431 5 945.6
Total 2 383 6 598 4 547 662 155 13 046

Table 3.1: Analysis of the selected manuals

Generally, the most frequent words are words like the and a. These words are called stop

words. Figure 3.5 shows the 25 most frequent words occurring in the manuals after the stop

words were removed. By far, the most frequent word is vehicle with over nine thousand occur-

rences, which is around 2.5 times more than the second most frequent word system.

ve
hi

cl
e

sy
st

em

co
nt

ro
l

ch
ar

gi
ng

w
ar

ni
ng

in
fo

rm
at

io
n

se
at

m
ay

dr
iv

in
g

dr
iv

er

us
e

sp
ee

d

re
ar

fro
nt

di
sp

la
y

us
in

g

se
e

ba
tte

ry

no
te 1

pr
es

s 2

st
ee

rin
g

w
he

el

br
ak

e

Words

0

2000

4000

6000

8000

Fr
eq

ue
nc

y

Histogram of the 25 Most Common Words
9406

3632

28082692258024752353227221022001192018001788173817001677166415581534153315071440140113841380

Figure 3.5: Histogram of the 25 most common words in the selected manuals

Table 3.2 displays image resolution statistics of the manuals’ images. The table tells us that

the Porsche Taycan manual contains the smallest images. The smallest image from the manuals

has only a resolution of 9x12px.

CHAPTER 3. OUR APPROACH 23

Manual Image Resolution [px]
Mean ± Std Min Median Max

Porsche Taycan 146.65±171.17 x 116.6±138.7 9x12 29x19 1181x779
BMW I4 192.73±382.6 x 107.94±107.12 8x17 56x60 3818x1247
Tesla Model S 175.71±206.69 x 129.56±162.36 24x18 70x70 1654x2100
Volvo 117.86±148.11 x 76.99±72.89 13x13 38x38 2637x359
Ford Mach E 200.44±194.17 x 151.17±145.46 18x19 138x98 1396x1123

Avg 166.68±220.55 x 116.45±125.3 14.4x15.8 66.2x57.0 2137.2x1121.6

Table 3.2: Analysis of the resolutions of the images from the selected manuals

3.3 Created Data Sets

Since this work focuses on integrating images and icons into a RAG pipeline, we needed data

sets to evaluate the components of the proposed multi–modal RAG pipeline that are responsible

for the image integration. These components are an icon captioning VLM, a plot detector, and,

most importantly, a VLM used for finding relevant images based on a text. We created data sets

for all these components, which we will describe in the following sections.

3.3.1 Image Text Relevance Data Set

The purpose of the image–text–relevance task is to determine whether the particular image is

relevant to the provided text (answer, question, or both). This data set represents an image

retrieval task or can also be seen as a specific type of VQA task. Each sample in the dataset is

a quadruplet (I,Q,A, L) of an image, a question, an answer, and a corresponding label stating

whether the image is relevant to the question and answer. The labels can be either relevant

(label = 1) or irrelevant (label = 0). Figure 3.6 shows an example from this data set.

We created two versions of this data set depending on the creation method. Each version is

described in the following subsections. Please note that when working with this task, we first

concatenated the splits from both versions and that the number of retrieved images differs for

each question.

Semi-automatically Curated Data Set

To create this data set, we used a self–service1011 conversational QA tool. This tool lets users

upload a PDF manual; it proceeds to parse the manual, extract images, generate embeddings,

and then answer any question a user asks in a chat. It is powered by ChatGPT12. The answer

10https://slf-service.web.app/index.html
11During the work on this thesis, we participated in the development of this service, where we were in charge

of the image integration.
12https://openai.com/index/chatgpt/

https://slf-service.web.app/index.html
https://openai.com/index/chatgpt/

CHAPTER 3. OUR APPROACH 24

(a) Label 0 (not relevant image). (b) Label 1 (relevant image). (c) Label 1 (relevant image).

Figure 3.6: Example of the created image–text–relevance data set with the following question:
”How do I turn on the cruise control?” and the following answer: ”To turn on cruise control,
press the R button on the control stalk. Then, select CC using the rotary knob on the steering
wheel and press to confirm. Cruise control is switched on and passive.The operating status
appears grey in the status display. There is no speed stored.”.

contains not only the textual answer but also images from the retrieved most relevant pages. We

uploaded the selected five manuals to this utility and asked 42 questions about the cars (to see

the full list of the questions, refer to Appendix B.1). Some of these 42 questions were created

manually; the rest was generated using ChatGPT. We saved all the questions, the generated

answers, and the retrieved images. We then labeled whether each retrieved image was relevant

to the question and answer. Please note that because the questions were general, sometimes, no

relevant images were returned due to missing images on the topic. The dataset is available here

at HuggingFace. The table 3.3 shows data analysis of this version of the data set. Please note

that the average values are rounded to integers except for the column with the average number

of words. The table shows that simply returning images from the retrieved most relevant pages

is insufficient, and only a few are relevant. This is most likely the questions we ask about a

specific detail that only a small portion of data deals with.

Manual # of Samples # of Words Image Resolution [px]
Positive Negative Avg Max Min Median Max

Porsche Taycan 21 79 29.1±23.5 119 322x153 345x345 637x345
BMW I4 9 118 39.5±32.2 105 120x126 448x241 3818x519
Tesla Model S 8 53 52.3±44.7 146 150x126 380x281 760x527
Volvo 23 81 44.3±45.9 154 219x113 219x151 369x265
Ford Mach E 12 54 30.5±34.1 138 114x106 330x218 1396x777

Avg 15 77 39.1±36.1 132 185x125 344x247 1396x487

Table 3.3: Analysis of the semi-automatically curated image–text–relevance data set

https://huggingface.co/datasets/jancuhel/img-text-relevancy-deduplicated

CHAPTER 3. OUR APPROACH 25

Manually Curated Data Set

As the name suggests, this data set was created entirely manually. The goal was to create a

high–value data set. The creation process was straightforward. We skimmed through each of

the five selected manuals, and whenever we saw an image about which we could ask something,

we noted the question and the answer and saved the image(s). Because the creation process

was manual, it was more time–consuming and therefore, this version is smaller than the semi-

automatically curated one. The dataset is available here at HuggingFace. The table 3.4 shows

data analysis of this version of the data set. Please note that the average values are rounded to

integers except for the column with the average number of words.

Manual # of Samples # of Words Image Resolution [px]
Positive Negative Avg Max Min Median Max

Porsche Taycan 10 20 34.3±23.4 87 166x83 166x99 166x166
BMW I4 26 67 24.2±23.6 74 448x241 448x241 448x241
Tesla Model S 17 36 26.3±21.3 87 379x237 380x263 910x573
Volvo 31 46 26.4±23.8 85 219x151 219x151 703x189
Ford Mach E 19 36 29.9±17.3 61 146x111 343x231 986x583

Avg 21 41 28.2±21.9 79 272x165 311x187 643x350

Table 3.4: Analysis of the manually curated image–text–relevance data set

Data Set Splits

As it is custom, we decided to split the samples into training, validation, and test parts in both

data set versions. Samples from the Porsche Taycan, the BMW I4, and the Volvo manuals were

chosen as a training split, samples from the Tesla Model S manual as a validation split, and

samples from the Mustang Mach E manual as a test split. We decided to split the samples this

way, as this will ensure the objectivity of the results. Furthermore, it ensures that no images

from the training set will be used in either validation or test splits and vice versa. Table 3.5

shows the split sizes. As shown in figure 3.7, the task is imbalanced, and the relevant images

form only a minority of the combined data set.

Data Set Train Size Validation Size Test Size

Semi-automatical 331 (72.3%) 61 (13.3%) 66 (14.4%)
Manual 200 (64.9%) 53 (17.2%) 55 (17.9%)
Total 531 (69.3%) 114 (14.9%) 121 (15.8%)

Table 3.5: Sizes of each data set split

https://huggingface.co/datasets/jancuhel/img-text-relevancy-manual

CHAPTER 3. OUR APPROACH 26

Not Relevant

77.4%

Relevant

22.6%

Train Split Labels

Not Relevant

78.1%

Relevant

21.9%

Validation Split Labels

Not Relevant

74.4%

Relevant

25.6%

Test Split Labels

Figure 3.7: Label frequencies of the combined image–text-relevance data set

Used Metric

Since our task is a particular case of image retrieval or VQA, we used standard metrics such

as accuracy, F1–score, precision, and recall. Because the data set is imbalanced, we chose the

F1–score as the primary indicator of the quality of a model.

Modes

Our image–text–relevance data sets provide user questions and the corresponding answers.

This creates several combinations of how to exploit these textual pieces of information. We

created the following modes: answer only (denoted as A), question only (denoted as Q), ques-

tion answer (denoted as QA), question answer max (denoted as maxQA), question answer mean

(denoted as meanQA).

• answer only – Only the answer to a user question is used to determine the relevance of

the input image.

• question only – Only the user question is used to determine the relevance of the input

image.

• question answer – Both the user question and the answer are used in the prompt to

determine the relevance of the input image. This option is used for open–generation

VLMs such as Idefics2.

• question answer max/mean – For both the user query and the corresponding answer,

the relevance scores are computed separately, and then, depending on the aggregation

function (max/mean), the final relevance is computed. This option is used for multi–

modal embedding models such as CLIP and SigLip models.

CHAPTER 3. OUR APPROACH 27

Evaluated Models

Models we chose to evaluate on the image–text–relevance task are the following: CLIP, SigLIP,

GIT, BLIP, InstructBLIP, LlaVA–NeXT, Idefics2 and as a reference model, we chose to use

GPT–4o.

CLIP and SigLIP inference Both CLIP and SigLIP are a multi–modal embeddings models.

They project images and tokenized texts into a shared vector space in which an image with

content similar to a text’s meaning should be close to each other. The similarity is assessed

through cosine similarity. We needed to find a threshold to classify whether a given text is

relevant to the provided image to utilize these two models in our image–text–relevance task.

Finding such a threshold is depicted in 2.

Algorithm 2: Process of finding the best threshold
Data: Validation set
Result: Threshold for cosine similarity
Function findThreshold(validationSet, model):

bestThreshold← 0 bestF1← 0
for candidateThreshold← 0.1 to 0.3 + [0.32, 0.35, 0.4, 0.5] do

f1Score← compute F1–score with model, candidateThreshold on validationSet
if f1Score ≥ bestF1 then

bestThreshold← candidateThreshold bestF1← f1Score

return threshold with the best F1–score on validation set;

Instruction VLMs inference

Besides CLIP and SigLIP, all the other models selected for experimenting are generative VLMs.

For every mode, we created a shared instruction for all the models. The specific instruction was

inserted into a model’s prompt. Each model uses a different prompt format, which depends on

the model’s pre–training. To see the prompts used for all the selected models, please refer to

Appendix B.2. Here are the utilized instructions for each mode:

• answer only and question only
Is this image relevant to the following text or not?

Text: answer

Reply ’Yes’ only if this image is relevant to the text, otherwise reply ’No’.

• question answer
Is this image relevant to either text1 or text2 or not?

Text1: question

CHAPTER 3. OUR APPROACH 28

Text2: answer

Reply ’Yes’ only if this image is relevant to either of the texts, otherwise reply ’No’.

After the generation, we check whether the generated response contains either the word

‘yes‘ or the phrase ‘is relevant‘; if so, we predict the input image as relevant; in all other cases,

we classify the input image as irrelevant.

Using LLM to shorten the text

One of the disadvantages of the CLIP and SigLIP models is their context window size. For

SigLIP, the context window size is 64; for CLIP, it is 77. This means that many answers could

be truncated, resulting in missing information; this is especially true for the answers from the

semi–automatically curated data set (the generated answers from ChatGPT tend to be wordier).

Therefore, we decided to conduct an experiment in which we shortened the answers using an

LLM in case the answers had more tokens than allowed. As a shortening LLM we used Phi–

3[63] (specifically the instruction–tuned variant microsoft/Phi-3-mini-4k-instruct13 with 3.8B

parameters). Here is an example of the utilized input prompt (including the generation tokens

and an answer) and the corresponding shortened answer:

• Input prompt
<s><|user|> Shorten the following text while keeping the important information. Don’t

write comments of any kind. Write only the shorter text.

Text: The driver and front passenger airbags deploy during significant frontal and near

frontal crashes. The airbags are a supplemental restraint system and are designed to work

with the seatbelts to help protect the driver and right front passenger from certain upper

body injuries. Airbags do not inflate slowly; there is a risk of injury from a deploying

airbag. Note: You will hear a loud bang and see a cloud of harmless powdery residue if

an airbag deploys. This is normal. The airbags inflate and deflate rapidly upon activation.

After airbag deployment, it is normal to notice a smoke–like, powdery residue or smell

the burnt propellant.<|end|><|assistant|>

• Response shorten answer
Front and near frontal crashes trigger driver and front passenger airbags, which com-

plement seatbelts to protect against upper body injuries. Airbags inflate quickly, posing

a risk of injury. A loud bang and harmless residue are normal upon deployment, with

subsequent smoke–like residue or burnt propellant smell.

The advantage of shortening longer answers is that we can include more information in the

CLIP and SigLIP context window. Using the generated summaries, we can drastically reduce
13https://huggingface.co/microsoft/Phi-3-mini-4k-instruct

https://huggingface.co/microsoft/Phi-3-mini-4k-instruct

CHAPTER 3. OUR APPROACH 29

the number of texts that need to be truncated during pre–processing, concretely from 294 to 29

in case of CLIP (that is a reducement of 90%), and from 311 to 7 in case of SigLIP (that is a

reducement of almost 98%). On the other hand, the summarization can omit information that

is necessary for answering the provided user question.

Trained models

We chose to attempt to train CLIP, SigLIP, and Idefics2 models to improve their performance

on the task further. Since both the CLIP and SigLIP have too small context window, we could

experiment with increasing the context size and pre–training the models with longer context

window. However, we opted not to do this as we believed we needed more data, so we chose to

do full fine–tuning of all weights as the models are relatively small. We utilized the CLIP loss

function described in the related work chapter to fine–tune both models. For the SigLIP model,

we initially tried the Sigmoid loss. However, the results were worse than when using CLIP

loss. We used a training set for training the fine–tuning and the validation set for finding the

threshold used during inference. For fine–tuning the of Idefics2 model, we decided to utilize

LoRA[28] since the combined data set is still relatively small, and more importantly, the model

is large (8 billion parameters).

3.3.2 Icon Captioning Data Set

To evaluate state–of–the–art VLMs on the task of icon captioning, we curated a data set from

the manuals, which we refer to as an icon captioning data set. We extracted icons from all the

manuals and annotated 300 of them14. We annotated the function and appearance of each icon.

Examples from this data set are shown in figure 3.8.

Used Metric

Since our icon captioning task is an instance of an image captioning task, we used the CIDEr

score as the primary indicator of a model’s performance. Additionally, we also computed

classical statistical metric BLEU [64], METEOR [65] and ROUGE L [66].

BLEU BLEU is a statistical metric measuring an n-gram overlap between a reference and

candidate strings. It is widely used for the automatic evaluation of machine translation mod-

els [2].
14Cooperative work with fellow students Bc. Adam Černý and Ing. Ondřej Kobza

CHAPTER 3. OUR APPROACH 30

available
supercharger

location with no
data

Active Lane Keeping
and Lane Keep Assist
are switched on and

both are passive
icon

a freehand entry
icon right turn signal

E-Sound warning
light (other road

users may not hear
the vehicle)

HOLD function light
indicator (vehicle
is indenpendently
held in stationary

position)

Warning light if
there is no steering

activity unlock doors
front fog lights on

icon

Warning light for a
fault in the drive

or charging system

information icon Battery icon Lights warning light

High beam warning
light (high beams
are switched on) Heading Up

Figure 3.8: Icon captioning data set preview (only showing the icons’ function and their apper-
ance)

METEOR METEOR is another metric for automatically evaluating machine translation mod-

els. It is based on computing a harmonic mean of precision and recall of words (unigrams)

alignment.

ROUGE L ROUGE L scores two text segments based on the longest common subsequence.

Data Set Splits

We randomly divided the samples from the icon captioning data set into training, validation,

and test sets. Table 3.6 shows the split sizes with statistics about the resolutions of the icons.

Split # of Samples Image Resolution [px]
Min Median Max

Train 200 10x10 28x28 90x90
Validation 40 14x7 28x27 80x80
Test 60 11x10 30x29 85x99

Table 3.6: Analysis of the icon captioning data set

CHAPTER 3. OUR APPROACH 31

Evaluated Models

As baseline models, we chose the generative VLMs GIT, BLIP, InstructBLIP, LlaVA–NeXT,

Idefics2 and as a reference model, we again used GPT–4o. For GIT and BLIP models, no

prompt was necessary, as this is how they were trained for image captioning. To see the prompts

used for all the other VLMs on this task, please refer to Appendix C.1.

3.3.3 Plot Recognition Data Set

In order for us to experiment with plots, we gathered 160 images from which 60 are plots. These

images and plots were taken from the selected manuals, our solutions for school assignments,

as well as from these works [67], [68] and this repository [69]. Figure 3.9 shows examples of a

plot and a non-plot image.

Barista Response
Did you know that people
spend an average of 20
seconds looking at a painting?

Topic Classifier
music > 70%

or
celebrity_&_pop_culture and music > 65%

science_&_technology > 70%

gaming > 70%

travel_&_adventure > 70%

earning_&_educational > 70%

arts_&_culture > 70% ART

EDUCATION

GAMES

MUSIC

SCIENCE

TRAVELING

(a) An example of a non–plot image.

0 1 2 3 4 5 6
Epochs

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

accuracy
val_accuracy

(b) An example of a plot image.

Figure 3.9: Examples from the curated plot recognition data set

Evaluated Models

To be able to use the DePlot model to translate plots into text, we first needed to determine

which image is a plot and which is not. For this task, we evaluated LlaVA–NeXT together with

Idefics2 models as both models showcased strong performance out of the open–sourced VLMs

on the VQA tasks (table 2.1). The instruction for both these models was the following:

• Decide whether this image is a chart, plot or something different (e.g. a diagram or

flowchart). In case this image is either plot or chart, reply ’Yes’, if the image is a diagram,

flowchart or something else reply ’No’. Do not reply anything else.

https://github.com/poludmik/AgentToBeNamed/tree/master/dataset/plots

Chapter 4

Results and Discussion

This chapter presents and discusses the results of the experiments proposed in the previous

chapter.

4.1 Used Libraries and Tools

Libraries

We developed this thesis in Python programming language in version 31. Some of the most

important employed Python packages include PyTorch2, Transformers3, SentenceTransform-

ers4 [70], Datasets5, Accelerate6, Numpy7, TRL8, PEFT9, and langchain10.

SentenceTransformers is a popular Python package for state–of–the–art text and image em-

beddings. However, they only supported the CLIP model, so while working on this thesis, we

have added the support for the SigLIP models11.

Tools

All the scripts were implemented in the Visual Studio Code12 and Google Colab13. For tracking

of the training processes, we utilized the wandb platform14.

1https://www.python.org
2https://pytorch.org
3https://huggingface.co/docs/transformers/index
4https://sbert.net
5https://huggingface.co/docs/datasets/index
6https://huggingface.co/docs/accelerate/index
7https://numpy.org
8https://huggingface.co/docs/trl/index
9https://huggingface.co/docs/peft/index

10https://www.langchain.com
11https://github.com/UKPLab/sentence-transformers/pull/2629
12https://code.visualstudio.com
13https://colab.research.google.com
14https://wandb.ai/site

32

https://www.python.org
https://pytorch.org
https://huggingface.co/docs/transformers/index
https://sbert.net
https://huggingface.co/docs/datasets/index
https://huggingface.co/docs/accelerate/index
https://numpy.org
https://huggingface.co/docs/trl/index
https://huggingface.co/docs/peft/index
https://www.langchain.com
https://github.com/UKPLab/sentence-transformers/pull/2629
https://code.visualstudio.com
https://colab.research.google.com
https://wandb.ai/site

CHAPTER 4. RESULTS AND DISCUSSION 33

4.2 Used Hardware

For our work, we used several devices. We used either a personal laptop or a free version of

Google Colab for quick prototyping. For more complex computation we used the following

clusters: CIIRC Cluster15, Barbora16 and Karolina17. The following table 4.1 summarizes the

used computational tools. Please note that we have requested and used much less RAM in the

case of the clusters.

Device GPU CPU RAM

Apple MacBook 10-core GPU 11-core Apple M3 Pro 18GB
Google Colab Tesla T4 (15GB) 2x Intel Xeon, 2.30GHz 12.7GB
CIIRC Cluster Tesla V100 (32GB) 2x Intel Xeon E5-2690 v4, 2.6GHz 256GB
Barbora Cluster Tesla V100 (16GB) 2x Intel Skylake Gold 6126, 2.6GHz 192GB
Karolina Cluster NVIDIA A100 (40GB) 2x AMD Zen 3 EPYC 7763, 2.45GHz 1024GB

Table 4.1: Used hardware

4.3 Used Models

Before diving into the experiment results, we will present the pre–trained models employed

in our conducted experiments and their size. Table 4.2 presents the model names, sizes, and

tasks they were used for. All models are accessible on HuggingFace18. Although, we used the

original PyTorch CLIP weights from the OpenAI’s repozitory19. Please refer to Appendix A

for the complete model overview, including the links to the models’ weights.

4.4 Image Text Relevance Task

In this section, we will describe the results of our experiments on the image–text–relevance

task.

4.4.1 Baseline Results

The table 4.3 shows the baseline results for the selected models. The table shows only the

best–performing mode on the test set for each model. Without any doubt, the best results

achieves the GPT–4o model with a gap in F1–score of almost 20 percentage points between the

15https://cluster.ciirc.cvut.cz
16https://www.it4i.cz/en/infrastructure/barbora
17https://www.it4i.cz/en/infrastructure/karolina
18https://huggingface.co
19https://github.com/openai/CLIP

https://cluster.ciirc.cvut.cz
https://www.it4i.cz/en/infrastructure/barbora
https://www.it4i.cz/en/infrastructure/karolina
https://huggingface.co
https://github.com/openai/CLIP

CHAPTER 4. RESULTS AND DISCUSSION 34

Model Name # of Params Usage

CLIP ViT–B/32 [16] 151M ITR
CLIP ViT–B/16 [16] 150M ITR
SigLIP base (patch16/224) [17] 203M ITR
SigLIP base (patch16/256) [17] 203M ITR
SigLIP base (patch16/384) [17] 203M ITR
SigLIP base (patch16/512) [17] 204M ITR
SigLIP so400m (patch14/384) [17] 878M ITR
SigLIP large (patch16/256) [17] 652M ITR
SigLIP large (patch16/384) [17] 652M ITR
GIT base (TextVQA) [18] 177M ITR
GIT large (TextVQA) [18] 395M ITR
GIT base (VQAv2) [18] 177M ITR
GIT large (VQAv2) [18] 395M ITR
GIT large (TextCaps) [18] 395M IC
GIT large (COCO) [18] 395M IC
GIT base (TextCaps) [18] 177M IC
GIT base (COCO) [18] 177M IC
BLIP2 OPT 6.7B (COCO) [19] 7.96B ITR, IC
BLIP2 OPT 2.7B [19] 3.87B ITR, IC
BLIP2 FlanT5XL [19] 3.94B ITR, IC
BLIP2 OPT 6.7B [19] 7.96B ITR, IC
InstructBLIP FlanT5XL [23] 4.02B ITR, IC
InstructBLIP Vicuna 7B [23] 7.91B ITR, IC
LlaVA–NeXT Mistral 7B [31] 7.57B ITR, IC, PD
LlaVA–NeXT 34B [31] 34.8B ITR, IC
Idefics2 8B [36] 8.4B ITR, IC, PD
deplot [37] 282M PT

Table 4.2: Utilized model variants, their size and the tasks they were utilized for (ITR: stands
for image–text–relevance task, IC: stands for icon captioning, PD: stands for plot detection,
and PT: stands for plot translation, the names in the parentheses represent the tasks onto which
the models were fine–tuned, patchX/Y means that the given model was pre–trained on images
with Y×Y resolution and it splits input images into patches of size X×X)

second best model Idefics2. Such a massive difference in performance is sporadic these days.

The open–sourced LLMs and VLMs are slowly closing in on their proprietary rivals. Other

models showcasing promising results include CLIP, SigLIP, and LlaVA–NeXT. Unsurprisingly,

both CLIP and SigLIP perform relatively okay on this task since, as we already stated, this task

could be considered as an instance of an image retrieval problem. By far, the worst performance

showcased all variants of the GIT model except for the GIT large (VQAv2) version, which

performs relatively well in comparison with other models. Even though the GIT models were

trained on VQA tasks (either VQAv2 or TextVQA [71]), they were not able to cope with the

task and generated only meaningless texts. The BLIP2 and InstructBLIP models are better than

CHAPTER 4. RESULTS AND DISCUSSION 35

most of the GIT variants, but still, the results are not usable.

The results show that the optimal mode can be different for each model. It depends on the

training data on which the specific model was trained. However, the best–performing mode

overall was the answer mode. The best results were achieved with this mode, so we further

focused mainly on it.

Model Name Mode Accuracy [%] F1 Precision Recall

CLIP ViT–B/32 A (0.27) 71.90 51.43 46.15 58.06
CLIP ViT–B/16 A (0.26) 67.77 55.17 42.86 77.42
SigLIP base (patch16/224) A (0.16) 79.34 50.98 65.00 41.94
SigLIP base (patch16/256) A (0.11) 78.51 48.00 63.16 38.71
SigLIP base (patch16/384) maxQA (0.15) 80.17 55.56 65.22 48.39
SigLIP base (patch16/512) maxQA (0.17) 78.51 48.00 63.16 38.71
SigLIP so400m (patch14/384) maxQA (0.50) 82.64 63.16 69.23 58.06
SigLIP large (patch16/256) maxQA (0.14) 80.17 61.29 61.29 61.29
SigLIP large (patch16/384) A (0.17) 83.47 65.52 70.37 61.29
GIT base (TextVQA) Q 74.38 0.00 0.00 0.00
GIT large (TextVQA) Q 74.38 0.00 0.00 0.00
GIT base (VQAv2) Q 74.38 0.00 0.00 0.00
GIT large (VQAv2) A 75.21 48.28 51.85 45.16
BLIP2 OPT 6.7B (COCO) A 36.36 38.40 25.53 77.42
BLIP2 OPT 2.7B A 29.75 38.85 25.0 87.10
BLIP2 FlanT5XL QA 64.46 49.41 38.89 67.74
BLIP2 OPT 6.7B Q 48.76 41.51 29.33 70.97
InstructBLIP FlanT5XL QA 55.37 50.91 35.44 90.32
InstructBLIP Vicuna 7B Q 62.81 47.06 37.04 64.52
LlaVA–NeXT Mistral 7B A 79.34 64.79 57.50 74.19
LlaVA–NeXT 34B A 71.07 63.16 46.88 96.77
Idefics2 8B A 78.51 67.50 55.10 87.10

GPT-4o A 92.56 86.96 78.95 96.77

Table 4.3: A table showing the results of the baseline VLMs on the image–text–relevance data
set (for CLIP and SigLIP models, the number in the parentheses in the column mode represents
the value of the automatically found threshold)

4.4.2 Using LLM to shorten the text

The tables 4.4 and 4.5 show the results of the pre–trained CLIP and SigLIP models with long

answers replaced by their summaries. Please note that in the case of maxQA and meanQA

modes, only the answers were replaced by their summaries if they were too long.

The results are pretty interesting; for CLIP ViT–B/32, the F1–score while using summaries

is smaller than without them. For CLIP ViT–B/16 and the maxQA mode, the F1–score while

using summaries is significantly higher than without. Actually, the score for the experiment

CHAPTER 4. RESULTS AND DISCUSSION 36

without the summaries is pretty low, which is interesting. The low recall suggests that the

model predicts positive class very sparsely. In the case of the selected two SigLIP models,

the F1–score is higher for the SigLIP so400m (patch14/384) with summaries and the A mode,

otherwise the F1–score is smaller or equal (in case of SigLIP large (patch16/384) and the

maxQA mode). Overall, the SigLIP models seem more stable because the difference in the

metrics for experiments with and without summaries is minor. In contrast, for the selected

two CLIP variants, the difference in performance between the two settings is more prominent.

These results indicate that using summaries might be beneficial in some cases; however, further

studying would be required. Another and most likely a better solution would be to pre–train

both CLIP and SigLIP with longer context window sizes to overcome the problem with small

context windows.

Model Name Mode Accuracy [%] F1 Precision Recall

CLIP B/32 w\o summaries A (0.27) 71.90 51.43 46.15 58.06
CLIP B/32 w summaries A (0.29) 74.38 24.39 50.00 16.13

CLIP B/32 w\o summaries maxQA (0.27) 70.25 51.35 44.19 61.29
CLIP B/32 w summaries maxQA (0.29) 73.55 30.43 46.67 22.58

CLIP B/32 w\o summaries meanQA (0.27) 73.55 46.67 48.28 45.16
CLIP B/32 w summaries meanQA (0.28) 71.90 26.09 40.00 19.35

CLIP B/16 w\o summaries A (0.26) 67.77 55.17 42.86 77.42
CLIP B/16 w summaries A (0.29) 80.99 54.90 70.00 45.16

CLIP B/16 w\o summaries maxQA (0.32) 75.21 11.76 66.67 6.45
CLIP B/16 w summaries maxQA (0.29) 79.34 56.14 61.54 51.61

CLIP B/16 w\o summaries meanQA (0.28) 76.03 49.12 53.85 45.16
CLIP B/16 w summaries meanQA (0.29) 76.86 39.13 60.00 29.03

Table 4.4: Comparison of the CLIP results when using summaries vs. not (please note that
CLIP B/32 refers to CLIP ViT–B/32, and CLIP B/16 refers to CLIP ViT–B/16)

4.4.3 Fine–tuning of CLIP and SigLIP

Table 4.6 presents the contribution of the training of CLIP models on the task data. To see the

utilized hyperparameters and their values, please refer to the Appendix to the section B.3. The

trained CLIP models were uploaded to HuggingFace here and here.

Table 4.7 presents the contribution of training of SigLIP models on the task data. To see the

utilized hyperparameters and their values, please refer to the Appendix to the section B.4. The

trained SigLIP models were uploaded to HuggingFace here and here.

As can be seen from the two tables, the additional training has improved the models’ per-

formance on our task by approximately 7 percentage points in F1–score. The interesting thing

https://huggingface.co/jancuhel/clip-vit-base-patch32-img-text-relevancy
https://huggingface.co/jancuhel/clip-vit-base-patch16-img-text-relevancy
https://huggingface.co/jancuhel/google-siglip-so400m-patch14-384-img-text-relevancy
https://huggingface.co/jancuhel/google-siglip-large-patch16-384-img-text-relevancy

CHAPTER 4. RESULTS AND DISCUSSION 37

Model Name Mode Accuracy [%] F1 Precision Recall

siglip-so-p14 w\o summaries A (0.18) 79.34 61.54 58.82 64.52
siglip-so-p14 w summaries A (0.19) 78.51 63.89 56.10 74.19

siglip-so-p14 w\o summaries maxQA (0.50) 82.64 63.16 69.23 58.06
siglip-so-p14 w summaries maxQA (0.19) 74.38 59.74 50.00 74.19

siglip-so-p14 w\o summaries meanQA (0.25) 82.64 63.16 69.23 58.06
siglip-so-p14 w summaries meanQA (0.13) 76.03 62.34 52.17 77.42

SigLIP L/16 w\o summaries A (0.17) 83.47 65.52 70.37 61.29
SigLIP L/16 w summaries A (0.13) 82.64 60.38 72.73 51.61

SigLIP L/16 w\o summaries maxQA (0.17) 80.17 62.50 60.61 64.52
SigLIP L/16 w summaries maxQA (0.10) 80.17 62.50 60.61 64.52

SigLIP L/16 w\o summaries meanQA (0.17) 82.64 63.16 69.23 58.06
SigLIP L/16 w summaries meanQA (0.17) 81.82 60.71 68.00 54.84

Table 4.5: Comparison of the SigLIP results when using summaries and when not (please
note that siglip-so-p14 refers to SigLIP so400m (patch14/384) and SigLIP L/16 to SigLIP large
(patch16/384))

Model Name Mode Accuracy [%] F1 Precision Recall

CLIP B/32 A (0.27) 71.90 51.43 46.15 58.06
CLIP B/32 +T A (0.26) 72.73 (+0.83) 60.24 (+8.81) 48.08 (+1.93) 80.65 (+22.59)

CLIP B/16 A (0.26) 67.77 55.17 42.86 77.42
CLIP B/16 +T A (0.26) 78.51 (+10.74) 62.86 (+7.69) 56.41 (+13.55) 70.97 (-6.45)

Table 4.6: Table showing the contribution of training the CLIP models in comparison with the
non–trained versions (please note that +T stands for training, CLIP B/32 refers to CLIP ViT–
B/32, and CLIP B/16 refers to CLIP ViT–B/16)

Model Name Mode Accuracy [%] F1 Precision Recall

siglip-so-p14 A (0.18) 79.34 61.54 58.82 64.52
siglip-so-p14 +T A (0.23) 85.12 (+5.78) 68.97 (+7.43) 74.07 (+15.25) 64.52 (+0.00)

SigLIP L/16 A (0.17) 83.47 65.52 70.37 61.29
SigLIP L/16 +T A (0.10) 86.78 (+3.31) 72.41 (+6.89) 77.78 (+7.41) 67.74 (+6.45)

Table 4.7: Table showing the contribution of training the CLIP models in comparison with the
non–trained versions (please note that +T stands for training, and that siglip-so-p14 refers to
SigLIP so400m (patch14/384) and SigLIP L/16 to SigLIP large (patch16/384))

to notice is the decrease in the recall for the CLIP ViT–B/16 model. It is an excellent example of

a trade–off between precision and recall meaning that massive gain in one metric can result in

a decrease in the other, but not necessarily as can be seen in the case of CLIP ViT–B/32, where

the model gained 22.59 percentage points in the recall, which is a vast improvement, while

CHAPTER 4. RESULTS AND DISCUSSION 38

still gaining almost 2 percentage points in precision. Another example of the precision–recall

trade–off is visible in the case of SigLIP so400m (patch14/384) model, which gained 15.25

percentage points in precision while not gaining anything in recall.

4.4.4 Fine–tuning of Idefics2

Table 4.8 shows the results of the fine–tuned Idefics2 model using the LoRA algorithm com-

pared with the non–trained variant. As can be seen from the table, the additional training helps,

and the model achieves better results. Although, the performance gain is not as significant as

we have seen for both CLIP and SigLIP. This shows that there could still be room for improve-

ment if a better combination of hyperparameters was used. To see the complete list of utilized

hyperparameters and their values, please refer to the Appendix to the section B.5. The trained

model is available here at HuggingFace.

Model Name Mode Accuracy [%] F1 Precision Recall

Idefics2 8B A 78.51 67.50 55.10 87.10
idefics2 8B + LoRA A 81.82 (+3.31) 71.05 (+3.55) 60.0 (+4.90) 87.10 (+0.00)

Table 4.8: A table showing the contribution of training the Idefics2 model in comparison with
the non–trained version

4.4.5 Final Results

Table 4.9 presents the final results obtained on the image–text–relevance data set. The models

solving the image–text–relevance task are crucial in the proposed multi–modal RAG pipeline.

Therefore, our primary focus was on this task. The best results overall achieves the proprietary

GPT–4o model. The results of it are quite astonishing. The second best model based on our

targeted F1–score is the trained version of SigLIP large (patch16/384) followed by the trained

Idefics2 8B model. The training helped to narrow the performance gap between our models

and the GPT–4o. However, the difference is still significant. This could mean that our task

is complex and not easily solvable because the models need to pay attention to details, and

so far, only GPT–4o is genuinely able to solve it. However, our data sets were still relatively

small, meaning that with additional training, even our models could achieve comparable results

as GPT–4o. Furthermore, these results show that even a smaller, faster, and more specialized

model such as SigLIP can perform better than a much more extensive size, a slower but more

general model such as Idefics2. To conclude, we recommend using the GPT–4o model in our

pipeline or the trained SigLIP large (patch16/384) version in the case GPT–4o is too expensive

to use.

https://huggingface.co/jancuhel/idefics2-8b-img-text-relevancy

CHAPTER 4. RESULTS AND DISCUSSION 39

Model Name Mode Accuracy [%] F1 Precision Recall

CLIP ViT–B/32 +T A (0.26) 72.73 60.24 48.08 80.65
CLIP ViT–B/16 +T A (0.26) 78.51 62.86 56.41 70.97
siglip-so-p14 +T A (0.23) 85.12 68.97 74.07 64.52
SigLIP L/16 +T A (0.10) 86.78 72.41 77.78 67.74
idefics2 +LoRA A 81.82 71.05 60.0 87.10

GPT-4o A 92.56 86.96 78.95 96.77

Table 4.9: A table showing the final results on the image–text–relevance data set

4.5 Icon Captioning

The table 4.10 shows the results of the selected VLMs on the icon captioning task. The best

performing models are GPT–4o, BLIP2 FlanT5XL, InstructBLIP FlanT5XL, LlaVA–NeXT Mis-

tral 7B and Idefics2 8B. They all perform very similarly. The results of InstructBLIP FlanT5XL

are in agreement with the results on the NoCaps and Flick30K shown in table 2.1, where the

model performed also very well. On the other hand, all GIT versions again did not perform

very well. An interesting thing to notice is that it matters which LM is employed inside a VLM

because, as the results show, whenever a VLM employs the FlanT5–XL model, it performs very

well on image captioning tasks, even beating the InstructBLIP Vicuna 7B model with almost

twice the number of parameters.

Model Name BLEU 1 BLEU 2 METEOR ROUGE L CIDEr

GIT large (TextCaps) 26.96 14.71 11.19 24.32 31.36
GIT large (COCO) 24.25 12.25 9.09 21.72 24.19
GIT base (TextCaps) 23.83 12.31 11.27 23.80 32.67
GIT base (COCO) 25.00 10.07 8.39 21.41 23.71
BLIP2 OPT 2.7B 23.87 10.29 11.07 20.79 35.10
BLIP2 FlanT5XL 27.42 15.86 13.99 29.09 52.69
BLIP2 OPT 6.7B 22.77 11.89 11.85 22.33 33.72
BLIP2 OPT 6.7B (COCO) 24.44 12.16 13.49 25.91 32.71
InstructBLIP FlanT5XL 29.81 16.13 15.34 28.72 47.53
InstructBLIP Vicuna 7B 27.50 14.70 12.75 26.41 43.69
LlaVA–NeXT Mistral 7B 27.66 14.48 14.44 32.69 49.00
Idefics2 8B 28.50 15.28 11.67 24.52 49.15

GPT–4o 27.65 16.85 12.30 24.20 53.29

Table 4.10: A table showing the results on the icon captioning data set (BLEU N means that
the overlap is computed across geven N-grams, e.g. N = 2 means bigrams are considerated)

CHAPTER 4. RESULTS AND DISCUSSION 40

4.6 Icon Localization

As explained in the previous chapter, the localization of the correct icon’s position in a text

is a complex task, and the proposed algorithm 1 can either miss some icons or mistakenly lo-

calize them. Because of this, we designed an experiment in which we skimmed through the

Porsche Taycan and Ford Mustang Mach E manuals and manually labeled which icons were

localized correctly, which were not, and which were not localized at all. We then computed

accuracy, precision, recall, and F1–score. Table 4.11 presents the measured values. The av-

erage precision on the two manuals is slightly above 90 percent, which means that only less

than 10 percent of icons are wrongly localized. The average recall is approximately 83 percent,

meaning around 17 percent of icons are undetected. Please note that a more significant sample

than two manuals would be required to measure the algorithm’s performance more objectively.

However, we did not have enough time for this, so we leave this as a possible improvement for

future work.

Manual # of Icons Detected Icons Accuracy [%] F1 Precision Recall

Porsche Taycan 819 724 (88%) 79.61 88.65 90.06 87.28
Ford Mach E 470 380 (81%) 73.19 84.52 90.53 79.26

AVG 664.50 84.50% 76.40 86.59 90.30 83.27

Table 4.11: Results of the icon localization algorithm1

4.7 Plots

This section will present the results of experiments conducted with plots. We will start with

plot recognition, followed by an experiment designed to measure the quality of the translated

charts.

4.7.1 Plots Recognition

Table 4.12 shows the models’ performance on these images. The table tells us that the LlaVA–

NeXT Mistral 7B model outperforms Idefics2 by quite some margin. Even though the models

are similar in architecture, the difference in their performance is enormous. This proves that

the data onto which models are pre–trained and fine–tuned play a crucial role in a model’s

performance.

CHAPTER 4. RESULTS AND DISCUSSION 41

Model Name Accuracy [%]
Figures Plots Overall

LlaVA–NeXT Mistral 7B 98.00% 98.33% 98.12%
Idefics2 8B 88.00% 80.00% 85.00%

Table 4.12: Model results for plot recognition

4.7.2 Plot to Text Translation

We evaluated the 60 plots we accumulated to measure the plot translation’s quality. For trans-

lation of a particular chart, we used the following instruction: ”Generate underlying data table

of the figure below:”. Out of the 60 plots, 25 were correctly translated into a text. 14 plots had

either negligible or slightly bigger mistakes in the translation, but nothing serious. Lastly, in 25

cases, the translation was utterly wrong. This results in an accuracy of 41.67% and weak accu-

racy (considering all translations that were at least a bit correct) of 65.00%. While evaluating

the DePlot model, we learned how well it performs on different types of plots. Namely, the

DePlot model excels on bar plots or histograms (as seen on the chart 4.1), and it can also handle

very well simple line charts. Pie charts are also handled very well, except for one mistake when

the title is below the pie chart very closely to the chart. The model mistakes the title as another

piece of the chart (as seen on the chart 4.2a with the incorrect part highlighted in red). DePlot

is not able to handle the translation of confusion matrices (as can be seen on the chart 4.2b) and

some complex plots (e.g., a plot with 10 lines).

4.8 Multi–modal RAG Pipeline Implementation

In this part, we put it all of our results together and implemented the proposed proposed multi–

modal RAG pipeline. The implementation is available at GitHub20. We chose models for

each component based on their performance and implemented the proposed multi–modal RAG

pipeline. Here are the chosen components:

• Text embedding model: BGE base21 [72]

• Icon captioning model: InstructBLIP FlanT5XL22

• LLM for generating answers: Mistral 7B23

• Plot Recognizer: LlaVA–NeXT Mistral 7B24

20https://github.com/HonzaCuhel/multimodal-rag-pipeline
21https://huggingface.co/BAAI/bge-base-en-v1.5
22https://huggingface.co/Salesforce/instructblip-flan-t5-xl
23https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
24https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf

https://github.com/HonzaCuhel/multimodal-rag-pipeline
https://huggingface.co/BAAI/bge-base-en-v1.5
https://huggingface.co/Salesforce/instructblip-flan-t5-xl
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf

CHAPTER 4. RESULTS AND DISCUSSION 42

1079 1057 1080 1084 1078 1057 1045

Anger Disgust Fear Joy Sadness Shame Guilt
0

200

400

600

800

1000

Emotions

N
um

be
r

of
 s

am
pl

es

Figure 4.1: Example of a plot with a correct translation that is following: TITLE | <0x0A>
Emotions | Number of samples <0x0A> Anger | 1079 <0x0A> Disgust | 1057 <0x0A> Fear
| 1080 <0x0A> Joy | 1084 <0x0A> Sadness | 1078 <0x0A> Shame | 1057 <0x0A> Guilt |
1045

User Ratings

Fr
eq

ue
nc

ie
s

[%
]

Rating 0

11.0%

Rating 1
21.2%

Rating 2

15.8%

Rating 3

22.6%

Rating 4
19.2%

Rating 5

10.3%

(a) Example of a plot with a translation of a
pie chart with the following translation: TITLE |
<0x0A> Frequencies [%] | 0.1% <0x0A> Rat-
ing 0 | 11.0% <0x0A> Rating 1 | 21.2% <0x0A>
Rating 2 | 15.8% <0x0A> User Ratings | 22.6%
<0x0A> Rating 3 | 22.6% <0x0A> Rating 4 |
19.2% <0x0A> Rating 5 | 10.3%

ne
utr

al
ha

pp
y sad an

gry

Predicted label

neutral

happy

sad

angry

Tr
ue

 la
be

l

197 56 62 25

38 282 12 15

16 3 182 4

23 33 4 155 50

100

150

200

250

(b) Example of a plot with a incorrect translation
with the following translation: TITLE | <0x0A>
Predicted label | True label <0x0A> neutral | 197
<0x0A> happy | 56 <0x0A> sad | 182 <0x0A>
angry | 155

• Plot Translator: DePlot25

• Vector Store: FAISS [73]
25https://huggingface.co/google/deplot

https://huggingface.co/google/deplot

CHAPTER 4. RESULTS AND DISCUSSION 43

• VLM: our trained variant of SigLIP large (patch16/384)26 with threshold 0.10

Please note that we could chose any text embedding and LLM models trained in English.

We chose these two models because of their popularity. Moreover, if we opted to use GPT–4

instead of the InstructBLIP and SigLIP models, we should expect even better results.

26https://tinyurl.com/2ee6avv6

https://tinyurl.com/2ee6avv6

Chapter 5

Conclusion

In this thesis, we have proposed a general multi–modal RAG pipeline, which incorporates

knowledge from icons (small images), plots, and other images. Even though the proposed

pipeline is general, we focused on improving the quality of question–answer systems that let

users ask questions about information from technical manuals. We described the components

of the proposed pipeline that are responsible for image integration. The crucial components

include an icon localizer and captioner, a Visual–language model (VLM) capable of finding

relevant images to a given answer/question, and a plot recognizer. We have presented candi-

date models for these components and proposed a simple algorithm for icon localization based

on matching text around an icon’s coordinates. We created data sets that we used to model

training and evaluation. As a reference model, we chose GPT–4o, the current state–of–the–

art model on many tasks, which performed the best on both the image–text–relevance and

icon captioning tasks. After the GPT–4o, the best results on the image–text–relevance task

showed trained variants of SigLIP and Idefics2 8B models. On the icon captioning task, the

InstructBLIP FlanT5XL model performed comparably with the reference GPT–4o model, even

outperforming it on BLEU 1 and METEOR metrics. The results showed that one of the most

crucial aspects of a well–performing VLM is its LM, which is employed inside. For image

captioning tasks, that LLM is any model from the FlanT5 model family. Our proposed icon

localization algorithm achieves precision slightly over 90 percent. Furthermore, we have im-

plemented the proposed multi–modal RAG pipeline and contributed to the open–source world

by implementing SigLIP support to a popular SentenceTransformers Python library.

5.1 Future Work

There is certainly room for future work. In this work, we did not manage to evaluate the

performance of the implemented multi–modal pipeline. Moreover, it would be interesting to

compare our implemented solution against the existing ones. Another area we could improve

44

CHAPTER 5. CONCLUSION 45

in the future is to train a model on icon captioning. This should improve the quality of the

generated icon captions, possibly even outperforming the GPT–4 model. Another idea would

be to collect more manuals to enlarge the created data sets. Instead of computing a cosine

similarity of CLIP and SigLIP embeddings to determine whether a given text is relevant to a

given image, we could train a simple feed–forward neural network to predict the likelihood of

the relevancy of the text w.r.t. the image.

Furthermore, we could focus on providing better support for other languages. We sug-

gested a possible multilingual solution. However, the ratio of non-English languages, such as

Czech, in the training data of these multilingual models is usually low. Therefore, we could

focus on developing a better solution for specific languages. This could include creating a cus-

tom Vision–Language models for those specific languages. Another possible experiment is to

feed multiple images at once to VLMs tasked with solving the image–text–relevance problem.

Lastly, we could also improve the proposed RAG pipeline by adding a model capable of high-

lighting the image’s relevant segment to which the generated answer refers. This would result

in an even more user-friendly QA system.

Appendix A

Model Overview

Model Name Weights Source # of Params Data Type Latency [ms]

CLIP ViT–B/32 OpenAI 151M fp32 16±1
CLIP ViT–B/16 OpenAI 150M fp32 15±1
SigLIP base (patch16/224) HuggingFace 203M fp32 14±2
SigLIP base (patch16/256) HuggingFace 203M fp32 14±1
SigLIP base (patch16/384) HuggingFace 203M fp32 21±1
SigLIP base (patch16/512) HuggingFace 204M fp32 37±2
SigLIP so400m (patch14/384) HuggingFace 878M fp32 74±2
SigLIP large (patch16/256) HuggingFace 652M fp32 31±2
SigLIP large (patch16/384) HuggingFace 652M fp32 51±1
GIT base (TextVQA) HuggingFace 177M fp16 23±6
GIT large (TextVQA) HuggingFace 395M fp16 35±18
GIT base (VQAv2) HuggingFace 177M fp16 23±2
GIT large (VQAv2) HuggingFace 395M fp16 36±8
GIT large (TextCaps) HuggingFace 394M fp16 20±3
GIT large (COCO) HuggingFace 394M fp16 42±74
GIT base (TextCaps) HuggingFace 177M fp16 15±4
GIT base (COCO) HuggingFace 177M fp16 17±7
BLIP2 OPT 6.7B (COCO) HuggingFace 7.96B fp16 91±79
BLIP2 OPT 2.7B HuggingFace 3.87B fp16 71±34
BLIP2 FlanT5XL HuggingFace 3.94B fp16 90±45
BLIP2 OPT 6.7B HuggingFace 7.96B fp16 94±52
InstructBLIP FlanT5XL HuggingFace 4.02B fp16 93±3
InstructBLIP Vicuna 7B HuggingFace 7.91B fp16 143±76
LlaVA–NeXT Mistral 7B HuggingFace 7.57B fp16 271±067
LlaVA–NeXT 34B HuggingFace 34.8B int4 1 656±303
Idefics2 8B HuggingFace 8.4B fp16 236±134
DePlot HuggingFace 282M fp32 1 990±1 937

Table A.1: Used pre–trained models, link to their weights and their latency on a batch with a
single sample measured across around a hundred samples (except for the DePlot model) on a
device with one NVIDIA Tesla A100 GPU with 40GB of memory

46

https://github.com/openai/CLIP
https://github.com/openai/CLIP
https://huggingface.co/google/siglip-base-patch16-224
https://huggingface.co/google/siglip-base-patch16-256
https://huggingface.co/google/siglip-base-patch16-384
https://huggingface.co/google/siglip-base-patch16-512
https://huggingface.co/google/siglip-so400m-patch14-384
https://huggingface.co/google/siglip-large-patch16-256
https://huggingface.co/google/siglip-large-patch16-384
https://huggingface.co/microsoft/git-base-textvqa
https://huggingface.co/microsoft/git-large-textvqa
https://huggingface.co/microsoft/git-base-vqav2
https://huggingface.co/microsoft/git-large-vqav2
https://huggingface.co/microsoft/git-large-textcaps
https://huggingface.co/microsoft/git-large-coco
https://huggingface.co/microsoft/git-base-textcaps
https://huggingface.co/microsoft/git-base-coco
https://huggingface.co/Salesforce/blip2-opt-6.7b-coco
https://huggingface.co/Salesforce/blip2-opt-2.7b
https://huggingface.co/Salesforce/blip2-flan-t5-xl
https://huggingface.co/Salesforce/blip2-opt-6.7b
https://huggingface.co/Salesforce/instructblip-flan-t5-xl
https://huggingface.co/Salesforce/instructblip-vicuna-7b
https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf
https://huggingface.co/llava-hf/llava-v1.6-34b-hf
https://huggingface.co/HuggingFaceM4/idefics2-8b
https://huggingface.co/google/deplot

Appendix B

Image Text Relevance Task

B.1 Semi–automatically Curated Data Set: Utilized Ques-

tions

Here is the list of utilized questions during the creation of the semi–automatically curated

image–text–relevance data set:

1. How do I turn on the cruise control?

2. How to use Siri?

3. How to connect an Android phone?

4. How to unlock the bonnet?

5. Is it possible to unlock the bonnet with the key?

6. How do I adjust the regenerative braking settings?

7. What are the different driving modes available?

8. How to change a driving mode?

9. How can I schedule charging times for my car?

10. What is the maximum range of on a single charge?

11. Where can I see the remaining range?

12. How do I activate the lane-keeping assist feature?

13. Can I customize the interior lighting settings?

47

APPENDIX B. IMAGE TEXT RELEVANCE TASK 48

14. How do I program the memory seats in my car?

15. What are the maintenance intervals and procedures?

16. How do I pair multiple phones with the car?

17. How do I use the car’s navigation system?

18. Can I disable the automatic start-stop function?

19. How do I adjust the ride height or suspension?

20. How do I lock and secure the charging port?

21. How to enable or disable the car’s sport sound?

22. How to use the car’s efficiency monitoring feature?

23. How do I engage the car’s launch control?

24. How do I activate the car’s parking assist?

25. How to pair garage door opener with HomeLink?

26. Can the car be locked remotely using an app?

27. How do I use the car’s adaptive headlights?

28. How do I activate the ambient lighting?

29. How to set up the car’s Wi-Fi hotspot?

30. Can I configure different driver profiles?

31. What is the sport driving mode called?

32. How to use a wireless charging pad for a phone?

33. Can I set a maximum charge limit?

34. How do I adjust the side mirrors?

35. How do I use the car’s energy recovery system?

36. How to enable the remote climate control?

37. How to customize the steering wheel?

38. Can I set up a charging schedule?

APPENDIX B. IMAGE TEXT RELEVANCE TASK 49

39. What should I do if I experience a loss of power?

40. How do I enable the car’s rear-wheel steering?

41. How to set up the collision avoidance system?

42. How do I maintain the cabin air filters?

B.2 Utilized Prompts

Here are the utilized prompts for the answer mode for each model in the image–text–relevance

task:

• All GIT variants
Is this image relevant to the following text or not?

Text: ...

Reply ’Yes’ only if this image is relevant to the text, otherwise reply ’No’.

• All BLIP2 variants
Question: Is this image relevant to the following text or not?

Text: ...

Reply ’Yes’ only if this image is relevant to the text, otherwise reply ’No’. Answer:

• All InstructBLIP variants
Is this image relevant to the following text or not? Text: ...

Reply ’Yes’ only if this image is relevant to the text, otherwise reply ’No’.

• LlaVA–NeXT Mistral 7B
[INST] <image>

Is this image relevant to the following text or not?

Text: ...

Reply ’Yes’ only if this image is relevant to the text, otherwise reply ’No’. [/INST]

• LlaVA–NeXT 34B
<|im start|>system

Answer the questions.<|im end|><|im start|>user

<image>

Is this image relevant to the following text or not? Text: ...

Reply ’Yes’ only if this image is relevant to the text, otherwise reply ’No’. <|im end|>
<|im start|>assistant

APPENDIX B. IMAGE TEXT RELEVANCE TASK 50

• Idefics2 8B
User:<image> Is this image relevant to the following text or not?

Text: ...

Reply ’Yes’ only if this image is relevant to the text, otherwise reply ’No’.<end of utterance>

Assistant:

B.3 Fine–tuning CLIP

The CLIP models were trained on a device with four Tesla V100 GPUs, each with 16GB of

memory. The table B.1 presents the utilized hyperparameters.

Hyperparameter ViT-B-32 ViT-B-16

Train batch size 128 128
Evaluation batch size 64 64
Number of train epochs 4 13
Optimizer Adam [74] Adam [74]
Learning rate 5e-06 5e-06
β1 0.9 0.9
β2 0.98 0.98
ϵ 1e-6 1e-6
Weight decay 0.2 0.2
Seed 42 42
Data type fp32 fp32

Table B.1: Hyperparameters used for training the CLIP models

B.4 Fine–tuning SigLIP

The SigLIP models were trained on a device with one NVIDIA Tesla A100 GPU with 40GB

of memory. The table B.2 presents the utilized hyperparameters.

B.5 Fine–tuning Idefics2

The Idefics2 model was trained on a device with one Nvida A100 GPU with 40GB of memory.

The table B.3 shows the utilized hyperparameters.

APPENDIX B. IMAGE TEXT RELEVANCE TASK 51

Hyperparameter SigLIP large (patch16/384) SigLIP so400m (patch14/384)

Train batch size 4 8
Number of train epochs 3 3
Optimizer Adam [74] Adam [74]
Learning rate 4.8e-06 4.8e-06
β1 0.9 0.9
β2 0.98 0.98
ϵ 1e-6 1e-6
Weight decay 0.2 0.2
Seed 42 42
Data type fp32 fp32

Table B.2: Hyperparameters used for training the SigLIP models

Hyperparameter Value

Vase model Idefics2 8B
Learning rate 1.4e-5
Train batch size 1
Evaluation batch size 1
Gradient accumulation steps 8
Number of train epochs 1
Gradient checkpointing True
Data type auto
Fp16 True
Use peft True
Lora r 8
Lora alpha 16
Lora target modules all-linear

Table B.3: Hyperparameters used for training the Idefics2 model

Appendix C

Icon Captioning Task

C.1 Utilized Prompts

Here are the utilized prompts of the selected VLMs for the icon captioning task:

• All InstructBLIP variants
Generate a caption for this given icon from a manual of an electric vehicle.

• LlaVA–NeXT Mistral 7B
[INST] <image>

Generate a caption for this given icon. Do not write whole sentences. Write a short,

concise and precise description of this icon. [/INST]

• Idefics2 8B
User:<image>Generate a caption for this given icon. This icon was taken from a man-

ual of an electric vehicle. Do not write whole sentences. Write a short caption of this

icon.<end of utterance>

Assistant:

52

Bibliography

[1] A. Vaswani, N. Shazeer, N. Parmar, et al., “Attention is all you need”, Advances in
neural information processing systems, vol. 30, 2017.

[2] D. Jurafsky and J. H. Martin, Speech and language processing. vol. 3, 2014.

[3] P. Lewis, E. Perez, A. Piktus, et al., “Retrieval-augmented generation for knowledge-
intensive nlp tasks”, Advances in Neural Information Processing Systems, vol. 33, pp. 9459–
9474, 2020.

[4] K. Fukushima and S. Miyake, “Neocognitron: A self-organizing neural network model
for a mechanism of visual pattern recognition”, in Competition and cooperation in neu-
ral nets, Springer, 1982, pp. 267–285.

[5] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep con-
volutional neural networks”, Communications of the ACM, vol. 60, no. 6, pp. 84–90,
2017.

[6] S. A. Afshine Amidi. “Convolutional neural networks cheatsheet”. (2018), [Online].
Available: https://stanford.edu/˜shervine/teaching/cs- 230/
cheatsheet-convolutional-neural-networks (visited on 05/20/2024).

[7] A. Chowdhery, S. Narang, J. Devlin, et al., “Palm: Scaling language modeling with
pathways”, Journal of Machine Learning Research, vol. 24, no. 240, pp. 1–113, 2023.

[8] T. Brown, B. Mann, N. Ryder, et al., “Language models are few-shot learners”, Advances
in neural information processing systems, vol. 33, pp. 1877–1901, 2020.

[9] J. L. Elman, “Finding structure in time”, Cognitive science, vol. 14, no. 2, pp. 179–211,
1990.

[10] S. Hochreiter and J. Schmidhuber, “Long short-term memory”, Neural computation,
vol. 9, no. 8, pp. 1735–1780, 1997.

[11] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidi-
rectional transformers for language understanding”, arXiv preprint arXiv:1810.04805,
2018.

[12] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving language under-
standing with unsupervised learning”, 2018.

[13] A. Dosovitskiy, L. Beyer, A. Kolesnikov, et al., “An image is worth 16x16 words: Trans-
formers for image recognition at scale”, arXiv preprint arXiv:2010.11929, 2020.

[14] D. M. Squire, W. Müller, H. Müller, and T. Pun, “Content-based query of image databases:
Inspirations from text retrieval”, Pattern Recognition Letters, vol. 21, no. 13-14, pp. 1193–
1198, 2000.

53

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-convolutional-neural-networks
https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-convolutional-neural-networks

BIBLIOGRAPHY 54

[15] S. P. Alara Dirik. “A dive into vision-language models”. (2023), [Online]. Available:
https://huggingface.co/blog/vision_language_pretraining#a-
dive-into-vision-language-models (visited on 05/20/2024).

[16] A. Radford, J. W. Kim, C. Hallacy, et al., “Learning transferable visual models from
natural language supervision”, in International conference on machine learning, PMLR,
2021, pp. 8748–8763.

[17] X. Zhai, B. Mustafa, A. Kolesnikov, and L. Beyer, Sigmoid loss for language image
pre-training, 2023. arXiv: 2303.15343 [cs.CV].

[18] J. Wang, Z. Yang, X. Hu, et al., “Git: A generative image-to-text transformer for vision
and language”, arXiv preprint arXiv:2205.14100, 2022.

[19] J. Li, D. Li, S. Savarese, and S. Hoi, “Blip-2: Bootstrapping language-image pre-training
with frozen image encoders and large language models”, arXiv preprint arXiv:2301.12597,
2023.

[20] Y. Fang, W. Wang, B. Xie, et al., “Eva: Exploring the limits of masked visual representa-
tion learning at scale”, in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2023, pp. 19 358–19 369.

[21] S. Zhang, S. Roller, N. Goyal, et al., “Opt: Open pre-trained transformer language mod-
els”, arXiv preprint arXiv:2205.01068, 2022.

[22] H. W. Chung, L. Hou, S. Longpre, et al., Scaling instruction-finetuned language models,
2022. arXiv: 2210.11416 [cs.LG].

[23] W. Dai, J. Li, D. Li, et al., Instructblip: Towards general-purpose vision-language mod-
els with instruction tuning, 2023. arXiv: 2305.06500 [cs.CV].

[24] “Vicuna”. (2023), [Online]. Available: https://github.com/lm-sys/FastChat.

[25] H. Touvron, T. Lavril, G. Izacard, et al., “Llama: Open and efficient foundation language
models”, arXiv preprint arXiv:2302.13971, 2023.

[26] D. Zhu, J. Chen, X. Shen, X. Li, and M. Elhoseiny, Minigpt-4: Enhancing vision-language
understanding with advanced large language models, 2023. arXiv: 2304.10592 [cs.CV].

[27] J. Chen, D. Zhu, X. Shen, et al., Minigpt-v2: Large language model as a unified interface
for vision-language multi-task learning, 2023. arXiv: 2310.09478 [cs.CV].

[28] E. J. Hu, Y. Shen, P. Wallis, et al., “Lora: Low-rank adaptation of large language models”,
arXiv preprint arXiv:2106.09685, 2021.

[29] H. Liu, C. Li, Q. Wu, and Y. J. Lee, “Visual instruction tuning”, arXiv preprint arXiv:2304.08485,
2023.

[30] H. Liu, C. Li, Y. Li, and Y. J. Lee, Improved baselines with visual instruction tuning,
2023. arXiv: 2310.03744 [cs.CV].

[31] H. Liu, C. Li, Y. Li, et al., Llava-next: Improved reasoning, ocr, and world knowledge,
2024. [Online]. Available: https://llava-vl.github.io/blog/2024-01-
30-llava-next/.

[32] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework for contrastive
learning of visual representations”, in International conference on machine learning,
PMLR, 2020, pp. 1597–1607.

https://huggingface.co/blog/vision_language_pretraining#a-dive-into-vision-language-models
https://huggingface.co/blog/vision_language_pretraining#a-dive-into-vision-language-models
https://arxiv.org/abs/2303.15343
https://arxiv.org/abs/2210.11416
https://arxiv.org/abs/2305.06500
https://github.com/lm-sys/FastChat
https://arxiv.org/abs/2304.10592
https://arxiv.org/abs/2310.09478
https://arxiv.org/abs/2310.03744
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/

BIBLIOGRAPHY 55

[33] X. Chen, H. Fan, R. Girshick, and K. He, “Improved baselines with momentum con-
trastive learning”, arXiv preprint arXiv:2003.04297, 2020.

[34] A. Q. Jiang, A. Sablayrolles, A. Mensch, et al., “Mistral 7b”, arXiv preprint arXiv:2310.06825,
2023.

[35] “Nous-hermes-2-yi-34b”. (2023), [Online]. Available: https://huggingface.
co/NousResearch/Nous-Hermes-2-Yi-34B.

[36] H. Laurençon, L. Tronchon, M. Cord, and V. Sanh, “What matters when building vision-
language models?”, arXiv preprint arXiv:2405.02246, 2024.

[37] F. Liu, J. M. Eisenschlos, F. Piccinno, et al., Deplot: One-shot visual language reasoning
by plot-to-table translation, 2022. arXiv: 2212.10505 [cs.CL].

[38] H. W. Chung, L. Hou, S. Longpre, et al., “Scaling instruction-finetuned language mod-
els”, Journal of Machine Learning Research, vol. 25, no. 70, pp. 1–53, 2024.

[39] F. Liu, F. Piccinno, S. Krichene, et al., Matcha: Enhancing visual language pretraining
with math reasoning and chart derendering, 2022. arXiv: 2212.09662 [cs.CL].

[40] OpenAI, Gpt-4 technical report, 2023. arXiv: 2303.08774 [cs.CL].

[41] P. Young, A. Lai, M. Hodosh, and J. Hockenmaier, “From image descriptions to vi-
sual denotations: New similarity metrics for semantic inference over event descriptions”,
Transactions of the Association for Computational Linguistics, vol. 2, pp. 67–78, 2014.

[42] H. Agrawal, K. Desai, Y. Wang, et al., “Nocaps: Novel object captioning at scale”,
in Proceedings of the IEEE/CVF international conference on computer vision, 2019,
pp. 8948–8957.

[43] Y. Goyal, T. Khot, D. Summers-Stay, D. Batra, and D. Parikh, “Making the v in vqa mat-
ter: Elevating the role of image understanding in visual question answering”, in Proceed-
ings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 6904–
6913.

[44] D. Gurari, Q. Li, C. Lin, et al., “Vizwiz-priv: A dataset for recognizing the presence and
purpose of private visual information in images taken by blind people”, in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

[45] Y. Goyal, T. Khot, D. Summers-Stay, D. Batra, and D. Parikh. “Vqa”. (2017), [Online].
Available: https://visualqa.org (visited on 05/21/2024).

[46] D. Gurari, Q. Li, A. J. Stangl, et al. “Vizwiz - visual question answering”. (2018), [On-
line]. Available: https://vizwiz.org/tasks-and-datasets/vqa/ (visited
on 05/21/2024).

[47] R. Vedantam, C. L. Zitnick, and D. Parikh, Cider: Consensus-based image description
evaluation, 2015. arXiv: 1411.5726 [cs.CV].

[48] K. S. Jones, “A statistical interpretation of term specificity and its application in re-
trieval”, Journal of documentation, 1972.

[49] Y. Lu, D. Jiang, W. Chen, W. Wang, Y. Choi, and B. Y. Lin, Wildvision arena: Bench-
marking multimodal llms in the wild, 2024. [Online]. Available: https://huggingface.
co/spaces/WildVision/vision-arena/.

[50] O. Contributors, Opencompass: A universal evaluation platform for foundation models,
https://github.com/open-compass/opencompass, 2023.

https://huggingface.co/NousResearch/Nous-Hermes-2-Yi-34B
https://huggingface.co/NousResearch/Nous-Hermes-2-Yi-34B
https://arxiv.org/abs/2212.10505
https://arxiv.org/abs/2212.09662
https://arxiv.org/abs/2303.08774
https://visualqa.org
https://vizwiz.org/tasks-and-datasets/vqa/
https://arxiv.org/abs/1411.5726
https://huggingface.co/spaces/WildVision/vision-arena/
https://huggingface.co/spaces/WildVision/vision-arena/
https://github.com/open-compass/opencompass

BIBLIOGRAPHY 56

[51] S. E. Robertson, S. Walker, S. Jones, M. M. Hancock-Beaulieu, M. Gatford, et al.,
“Okapi at trec-3”, Nist Special Publication Sp, vol. 109, p. 109, 1995.

[52] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, Bert: Pre-training of deep bidirec-
tional transformers for language understanding, 2019. arXiv: 1810.04805 [cs.CL].

[53] E. M. Voorhees et al., “The trec-8 question answering track report.”, in Trec, vol. 99,
1999, pp. 77–82.

[54] M. Lewis, Y. Liu, N. Goyal, et al., “Bart: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and comprehension”, arXiv preprint arXiv:1910.13461,
2019.

[55] AI@Meta. “Introducing meta llama 3: The most capable openly available llm to date”.
(2024), [Online]. Available: https://ai.meta.com/blog/meta-llama-3/
(visited on 05/22/2024).

[56] M. Abdin, S. A. Jacobs, A. A. Awan, et al., “Phi-3 technical report: A highly capable
language model locally on your phone”, arXiv preprint arXiv:2404.14219, 2024.

[57] D. Bergmann. “What is instruction tuning?” (2024), [Online]. Available: https://
www.ibm.com/topics/instruction-tuning (visited on 05/22/2024).

[58] W. Chen, H. Hu, X. Chen, P. Verga, and W. W. Cohen, “Murag: Multimodal retrieval-
augmented generator for open question answering over images and text”, arXiv preprint
arXiv:2210.02928, 2022.

[59] M. Yasunaga, A. Aghajanyan, W. Shi, et al., “Retrieval-augmented multimodal language
modeling”, arXiv preprint arXiv:2211.12561, 2022.

[60] A. B. Annie Surla and T. Varshney. “An easy introduction to multimodal retrieval-
augmented generation”. (2024), [Online]. Available: https://developer.nvidia.
com/blog/an- easy- introduction- to- multimodal- retrieval-
augmented-generation/ (visited on 05/22/2024).

[61] Nvidia. “Multi-modal vision-language model that understands text/images and generates
informative responses”. (2024), [Online]. Available: https://build.nvidia.
com/nvidia/neva-22b/modelcard (visited on 05/22/2024).

[62] N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings using siamese bert-
networks”, in Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing, Association for Computational Linguistics, Nov. 2019. [Online].
Available: http://arxiv.org/abs/1908.10084.

[63] M. Abdin, S. A. Jacobs, A. A. Awan, et al., Phi-3 technical report: A highly capable
language model locally on your phone, 2024. arXiv: 2404.14219 [cs.CL].

[64] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: A method for automatic evalua-
tion of machine translation”, in Proceedings of the 40th annual meeting of the Associa-
tion for Computational Linguistics, 2002, pp. 311–318.

[65] S. Banerjee and A. Lavie, “Meteor: An automatic metric for mt evaluation with improved
correlation with human judgments”, in Proceedings of the acl workshop on intrinsic
and extrinsic evaluation measures for machine translation and/or summarization, 2005,
pp. 65–72.

[66] C.-Y. Lin, “Rouge: A package for automatic evaluation of summaries”, in Text summa-
rization branches out, 2004, pp. 74–81.

https://arxiv.org/abs/1810.04805
https://ai.meta.com/blog/meta-llama-3/
https://www.ibm.com/topics/instruction-tuning
https://www.ibm.com/topics/instruction-tuning
https://developer.nvidia.com/blog/an-easy-introduction-to-multimodal-retrieval-augmented-generation/
https://developer.nvidia.com/blog/an-easy-introduction-to-multimodal-retrieval-augmented-generation/
https://developer.nvidia.com/blog/an-easy-introduction-to-multimodal-retrieval-augmented-generation/
https://build.nvidia.com/nvidia/neva-22b/modelcard
https://build.nvidia.com/nvidia/neva-22b/modelcard
http://arxiv.org/abs/1908.10084
https://arxiv.org/abs/2404.14219

BIBLIOGRAPHY 57

[67] O. Kobza, J. Čuhel, T. Gargiani, D. Herel, and P. Marek, “Alquist 5.0: Dialogue trees
meet generative models. a novel approach for enhancing socialbot conversations”, arXiv
preprint arXiv:2310.16119, 2023.

[68] Č. Jan, “Multimodálnı́ rozpoznávánı́ emocı́ z řeči”, B.S. thesis, České vysoké učenı́ tech-
nické v Praze. Vypočetnı́ a informačnı́ centrum., 2021.

[69] M. Poludin, Tableqa-llmagent, https://github.com/poludmik/TableQA-
LLMAgent, 2024.

[70] N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings using siamese bert-
networks”, in Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing, Association for Computational Linguistics, Nov. 2019. [Online].
Available: https://arxiv.org/abs/1908.10084.

[71] A. Singh, V. Natarajan, M. Shah, et al., Towards vqa models that can read, 2019. arXiv:
1904.08920 [cs.CL].

[72] S. Xiao, Z. Liu, P. Zhang, and N. Muennighoff, C-pack: Packaged resources to advance
general chinese embedding, 2023. arXiv: 2309.07597 [cs.CL].

[73] J. Johnson, M. Douze, and H. Jégou, “Billion-scale similarity search with gpus”, IEEE
Transactions on Big Data, vol. 7, no. 3, pp. 535–547, 2019.

[74] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, 2017. arXiv:
1412.6980 [cs.LG].

https://github.com/poludmik/TableQA-LLMAgent
https://github.com/poludmik/TableQA-LLMAgent
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1904.08920
https://arxiv.org/abs/2309.07597
https://arxiv.org/abs/1412.6980

	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	List of Acronyms
	Introduction
	Structure of the thesis
	Problem Description

	Related Work
	Theoretical Background
	Vision–Language Models (VLMs)
	State–of–the–art VLMs
	Evaluating VLMs

	Retrieval–Augmented Generation (RAG)
	RAG components
	Multi–modal RAG

	Our Approach
	Proposed RAG Pipeline
	Pre–Processing Phase
	Inference Phase
	Extensions

	Data
	Created Data Sets
	Image Text Relevance Data Set
	Icon Captioning Data Set
	Plot Recognition Data Set

	Results and Discussion
	Used Libraries and Tools
	Used Hardware
	Used Models
	Image Text Relevance Task
	Baseline Results
	Using LLM to shorten the text
	Fine–tuning of CLIP and SigLIP
	Fine–tuning of Idefics2
	Final Results

	Icon Captioning
	Icon Localization
	Plots
	Plots Recognition
	Plot to Text Translation

	Multi–modal RAG Pipeline Implementation

	Conclusion
	Future Work

	Model Overview
	Image Text Relevance Task
	Semi–automatically Curated Data Set: Utilized Questions
	Utilized Prompts
	Fine–tuning CLIP
	Fine–tuning SigLIP
	Fine–tuning Idefics2

	Icon Captioning Task
	Utilized Prompts

	Bibliography

