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Abstract
Epilepsy is a neurological disorder af-

fecting about 50 million patients world-
wide. While seizures are the defining fea-
ture of epilepsy, behavioral comorbidities
such as depression or hyperactivity are
common and constitute significant bur-
den to the patients. Multiple studies
demonstrated slow fluctuations in seizure
risk over days to weeks in both patients
and mouse models of epilepsy. We hy-
pothesized that these fluctuations were
accompanied by changes in the behavior
(quantified by locomotor activity), which
would potentially enable better estima-
tion of current or future level of seizure
risk. We analysed this hypothesis us-
ing video-EEG recordings from a mouse
model of neocortical epilepsy. Since man-
ual analysis of several weeks-long record-
ings is prohibitively laborious, we used
automatic detection of the locomotor ac-
tivity of the mouse. We tested two al-
gorithms, DeepLabCut (DLC) and Pixel-
Count (PIX). Since the analysis was still
highly time consuming, we also tested var-
ious levels of frame rate reduction. Re-
ducing the frame rate from 25 FPS to 5
FPS yielded the best trade off between
the accuracy of the analysis and speed of
the computation. The locomotor activity
fluctuated in a relation to the seizure rate.
However, due to the high variability of
this relationship and insufficient amount
of data, this relationship could not be fully
characterized. Importantly, we showed
that the both DLC and PIX algorithms
are usable for this type of analysis which
opens great prospects for the future work.

Keywords: Epilepsy, Behavior
monitoring, Seizure forecasting

Supervisor: Ing. Jan Kudláček, DiS.,
Ph.D.
Department of Physiology, Second
Faculty of Medicine, Charles University

Abstrakt
Epilepsie je neurologické onemocnění

postihující přibližně 50 milionů pacientů
po celém světě. Zatímco záchvaty jsou
definujícím rysem epilepsie, komorbidity
jako je deprese nebo hyperaktivita, jsou
běžné a představují významnou zátěž
pro pacienty. Několik studií prokázalo po-
malé fluktuace záchvatů v průběhu dnů
až týdnů u pacientů i v myších mode-
lech epilepsie. Předpokládali jsme, že tyto
fluktuace jsou doprovázeny změnami v
chování (kvantifikované pohybovou akti-
vitou), což by potenciálně umožnilo lepší
odhad aktuálního nebo budoucího rizika
záchvatu. Tuto hypotézu jsme testovali
pomocí video-EEG záznamů z myšího mo-
delu neokortikální epilepsie. Protože vizu-
ální analýza několik týdnů dlouhých zá-
znamů je nesmírně pracná, využili jsme
automatickou detekci pohybové aktivity
myši. Otestovali jsme dva algoritmy, De-
epLabCut (DLC) a PixelCount (PIX).
Protože analýza byla stále velmi časově
náročná, otestovali jsme také různé úrovně
snížení snímkové frekvence. Snížení sním-
kové frekvence z 25 snímků za sekundu
na 5 snímků za sekundu poskytlo nej-
lepší kompromis mezi přesností analýzy a
rychlostí výpočtu. Pohybová aktivita fluk-
tuovala v souvislosti s rizikem záchvatu.
Nicméně, kvůli vysoké variabilitě tohoto
vztahu a nedostatečnému množství dat
nebylo možné tento vztah plně charakte-
rizovat. Důležitým poznatkem však je, že
oba algoritmy - DLC i PIX - jsou použi-
telné pro tento typ analýzy, což otevírá
možnosti pro budoucí práci.

Klíčová slova: Epilepsie, Behaviorální
monitoring, Předpověď záchvatů
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Chapter 1
Introduction

1.1 Epilepsy

Epilepsy is a chronic disease of the brain with about 50 million patients (around 0.5
to 1 percent of population) worldwide [1]. It is spread around the world, occurring at
all ages [2]. Around 80-90% of epilepsy patients come from developing countries [2] [1].
The disease is characterized by recurring interruptions of normal brain function called
epileptic seizures. In clinics, at least one seizure is needed to establish the diagnosis of
epilepsy [3]. According to WHO, up to 70% patients with epilepsy can become seizure
free with proper use of antiseizure medicine [1]. The rest of the patients remain refractory
to antiepileptic drugs, this accounts to about 15 million people worldwide [4].

People who have had a seizure may fear having another, even if inter-seizure interval
is long [5]. Seizures can impair patient’s ability to work, to drive, and to develop social
relationships [5]. Fear and uncertainty were labeled as the worst aspects when living
with epilepsy [5]. These aspects originate from unpredictability of seizures.

Epilepsy patients not only suffer from seizures, but some of them also encounter
behavioral disturbances. These disturbances, comorbidities, include psychiatric disorders
and certain pain disorders [6]. The most commonly reported comorbidities are mood
and anxiety disorders [4]. In childhood epilepsy, the most common comorbidities are
depression, anxiety, autism spectrum disorders, sleep disorders, attention deficits, cogni-
tive impairment, and migraine [7]. Other psychiatric disorders associated with epilepsy
are bipolar disorder, ADHD and sleep disorders, asthma or apnea, which have been
shown to have higher prevalence in epilepsy patients than in general population [6] [8].
There has also been reported higher prevalence of pain comorbidities in epilepsy patients,
mainly migraine, chronic pain and fibromyalgia (chronic widespread pain, accompanied
by fatigue) [6]. Memory loss in form of newly acquired memories fading over and also
loss of events from past was also described in patients with epilepsy [9].

These comorbidities, together with the unpredictable seizures, may lead to social
exclusion, isolation, restrictions or overprotection which become part of the condition [3].
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1. Introduction ........................................
1.2 Behavioral testing

Behavioral comorbidities can be tested by the methods of behavioral testing [10]. This
thesis focuses on attempt to quantify the comorbidities based on the behavioral analysis,
specifically movement, which is described in this section.

Study of biological processes, understanding of diseases and drug effects is frequently
carried out on experimental animal models [10]. In this study we use an animal model
of epilepsy. The comorbidities described in previous section are also common in animal
models and are detectable by behavioral testing [10].

Behavior of an individual is shaped through connections between regions of the nervous
system. Any change or pathology in central nervous system or any part of the body
may cause changes in behavioral actions. These changes are then analyzed by so called
behavioral tests [10]. Some of the common behavioral tests are elevated plus maze (in
the figure 1.1), passive avoidance task, fear conditioning or Morris water maze (in the
figure 1.1) [10]. These tests usually last tens of minutes per mouse and are suitable for
studying e.g. learning and memory, anxiety, curiosity or motivation.

(a) Elevated plus maze [11] (b) Morris water maze [12]

Figure 1.1: Behavioral test examples.

However, in this thesis, we take a different approach which we call "behavioral monitor-
ing" in contrast to the traditional "behavioral testing". Instead of performing dedicated
behavioral tests, we make use of video recordings obtained during long-term video-EEG
monitoring of epileptic mice. The main purpose was to record the seizures. Most of
the videos are, however, from interictal (i.e. between seizure) periods and may contain
valuable data about the interictal behavior of the mouse which may reflect various
psychiatric comorbidities [13]. Here we focus on a simple but very important behavioral
parameter, which is locomotor activity, i.e. how much the mouse moves around the cage.
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......................... 1.3. Motivation of long-term automatic monitoring

1.3 Motivation of long-term automatic monitoring

Behavioral testing is typically done by detailed observation of the animal in short (up
to 30 minutes long) tests [10]. However, seizure rate fluctuates over days to weeks in
patients as well as mice [14]. We suspect that also the comorbidities might fluctuate
in such slow manner and therefore a single behavioral test might not be representative.
Hence, we used a different approach: long-term behavioral monitoring. Less detailed,
but carried out over several weeks, thus, capturing the possible long-term fluctuations of
the behavior.

While the short testing may be done using manual labelling and the video recordings
can be analysed visually by the investigator, manual analysis of the long-term recordings
would be prohibitively time consuming. Therefore, large part of this thesis is devoted to
the exploration of methods of automatic analysis of long-term videos.

We tested already existing method for video analysis, specifically pose-estimation,
DeepLabCut (DLC) [15]. We also compared DLC with a simple method which we
implemented, PixelCount (PIX), mainly based on the analysis of the difference of
consecutive frames of the video. Step by step description of these analyses is provided
in next chapters. We then compared the locomotor activity data extracted by each
algorithm. The ultimate goal was to link the long-term variations in locomotor activity
to the variations in the rate of seizures.
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Chapter 2
Analyzed videos and hardware

In this chapter, there is a brief description of origin of the videos we were provided. Then
there is short overview of the parts of computer used for the analyses in this thesis.

2.1 Provided videos

We analyzed videos of laboratory mice with artificially induced epilepsy [16]. The videos
were recorded at the Department of Developmental Epileptology, Institute of Physiology,
Czech Academy of Sciences. The mice were labeled jc20181211_1, jc20181218_1 and
jc20181219_2 and in further analyses we will describe them without the underscore and
numbers after that for simplification.

The mice in these videos were video-EEG monitored for several weeks continuously
(except for accidental recording dropouts) in rectangular open plexiglass boxes (terrariums)
of size 30 x 40 x 50 cm (length x width x height). Videos were recorded at 25 frames per
second (FPS) by black and white industrial cameras. The recording was split into files
containing 20 minutes each. Example frame of video is shown in figure 2.1.

Videos used in this study come from study of behavioral correlates of seizures and main
aim of this study was to utilize already created videos. Because of that, the videos are
video-EEG recordings. Video-EEG combines the recording of EEG with cable attached
to the mice head and video, in this case video recording from above. Because of this, the
cable is present at all times in the recordings and is inseparable part of the recording.
This may cause disturbance in some analyses, but in the case of locomotor activity
monitoring, we focus mainly on movement and when the cable is connected to the mouse,
its movement corresponds to the mouse movement. Therefore, we get data about mouse
movement not only from the mouse but also from the cable.
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2. Analyzed videos and hardware ................................

Figure 2.1: Example frame from an analysed video.

Figure 2.1 depicts terrarium of mouse, where we can see the video-EEG monitored
mouse. There is also bedding material, food pellets and bowl with water present. The
mouse itself is darker than the surroundings in the terrarium. The mouse has roughly
same color as EEG cable. There are also apparent shadows, reflections and neighbouring
terrarium.

2.2 Used hardware

All the preprocessing and analyses were carried out on laptop Lenovo IdeaPad Gaming 3
(15ACH6). Overview of specific important parts is given in table 2.1.

Computer part Name Detail
Processor AMD Ryzen 5 5600H 12 CPUs 3.3GHz
Memory RAM 16384 MB

GPU NVIDIA GeForce RTX 3050 Laptop 11074 MB Total Memory

Table 2.1: Laptop description.

Operation system of the laptop was Windows 11 Pro 64-bit.
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Chapter 3
Frame dropping and reencoding

A significant obstacle in the automated analysis of videos is the high processing time,
especially when using state-of-the-art artificial neuronal network-based approaches such as
the DeepLabCut (DLC). If we wanted to reduce the time while using the same algorithms,
one of the possibilities is reducing the frame rate of videos, frame dropping. But this
procedure itself takes some time. We thus investigated whether this procedure is worth
it and whether it keeps the yield of analyses close to the original value.

3.1 Frame dropping

In signal processing, downsampling, also called compression or decimation, is a procedure
of keeping every D-th sample, where D is called decimation factor. In our case, frame
dropping is an analogous procedure, keeping every D-th frame and reducing the frame
rate.

The original videos are filmed in 25 FPS. We decided to investigate the frame dropping
factors 5 and 25, thus reducing the videos to 5 FPS and 1 FPS, respectively. Our
assumption was that if we are looking for long term changes of movement, we do not
need to look for instantaneous movements like trembling or scratching, but rather focus
on longer-lasting movement in space (i.e. the locomotor activity).

Although frame dropping adds some time to preprocessing, we came across an error,
which needed to be solved by re-encoding the videos. Frame dropping could be combined
with this necessary re-encoding, thus saving some time and making the time of frame
dropping itself negligible.

3.2 Re-encoding due to faulty videos

Some of the videos could not be handled by DLC directly in the format in which they
were recorded, resulting in an error of wrong encoding. The videos loaded normally in
video players and MATLAB so there was probably only problem with the compatibility
with DLC.

7



3. Frame dropping and reencoding................................
At first, we thought it was a problem with AVI format itself due to the vague error

message, so we re-encoded the videos to MP4 format. After further investigation, we
realized that the error was due to dropped frames and AVI format would be probably
usable in the end, but due to the fact that we began analyses in MP4 we continued with
MP4 format. This procedure could be combined with frame dropping, as mentioned in
previous section.

3.3 Method

For the frame dropping and re-encoding, we used FFmpeg. FFmpeg is multimedia
framework supporting almost all formats used to processing videos in many ways[17].

For specific frame rates we executed command:

for %i in (.*avi) do ffmpeg -y -i "%i" -r N %~ni_decN.mp4

This command executed frame dropping for each AVI format video while also re-
encoding and converting format. The resulting video is of N frames per second and in
MP4 format.

for %i in (.*avi): This part initiates a loop that iterates over files matching the
pattern .*avi in the current directory. %i is a placeholder for each file found.

do ffmpeg -y -i "%i" -r N % ∼ni_decN.mp4: This part of the loop executes the
FFmpeg command for each file.

FFmpeg options:
-y: Overwrites output files without asking for confirmation.
-i "%i": Specifies the input file, where %i is the current file in the loop.
-r N: Sets the output frame rate to N.
% ∼ ni_decN.mp4: Constructs the output file name. % ∼ ni extracts the file name

without the extension from the input file, and _decN.mp4 is appended to it. The
placeholder N should be replaced with the desired frame rate.

8



......................... 3.4. Comparison of frame dropping and re-encoding

3.4 Comparison of frame dropping and re-encoding

In the table below, we present the approximate time taken by re-encoding and frame
dropping using FFmpeg. We compared three frame rates - 25 FPS (original), 5 FPS and
1 FPS. Speed is argument returned by FFmpeg, corresponding to the length of the video
divided by processing time of the video. Last column shows approximate real time taken
by the procedure on a 20 minute video. Note that these numbers are illustrative and
highly depend on the specifications of the computer and also other potential concurrent
workload.

Frame rate [FPS] Speed [-] Approx. time [s]
25 22 70
5 60 20
1 120 10

Table 3.1: Frame dropping processing time.
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Chapter 4
Analysis methods

In this chapter, we describe the two algorithms we used to analyze the locomotor activity
of the mice. These algorithms are DeepLabCut (DLC) and Pixel Count (PIX). DLC
is feature detector subset of DeeperCut, pose estimation algorithm [15]. PIX is simple
Matlab script quantifying pixel change frame by frame, which is our own implementation.

DLC is an excellent tool for pose-estimation, which accurately marks pre-selected
bodyparts. It can also be used for multi-animal projects. However, analyses with DLC
are highly time consuming. In PIX we focused on simplicity, hopefully pushing the
speed of analysis to limits. In the case of simple algorithms, there is always trade-off for
accuracy, which we analyzed by comparison to already proven accurate DLC.

In the last section, we present overview of algorithms and procedures researched in
this thesis. This is to provide some information about other already existing open source
algorithms.

4.1 DeepLabCut

DLC is a deep convolutional network combining two key ingredients from algorithms
for object recognition and semantic segmentation: pretrained residual neural networks
(ResNets) and deconvolutional layers [15]. ResNets weights were trained on an object
recognition benchmark called ImageNet [15] [18]. To fine-tune the network for a particular
task, its weights are trained on labeled data [15].

While installation of DLC is described in detail at DLC github [19], we will provide
brief overlook of steps and describe fixes for specific errors encountered. Note that from
version 2.1 of DLC there is full front-end user experience provided in form of Graphical
User Interface [19]. DLC is licensed under the GNU Lesser General Public License v3.0
[19].

4.1.1 Installation and environment creation

Firstly, for DLC installation, you need to have CONDA installed, since DLC works in its
environment. CONDA is an open-source package and environment management system

11



4. Analysis methods ......................................
used by multiple companies and provided by Anaconda [20]. It runs on Windows, macOS,
and Linux. It is used to install, run, and update packages and their dependencies [20].

With Anaconda installed, next step is to download CONDA file from DLC github and
creating the CONDA environment for DLC installation. This can be created easily in
Anaconda Prompt with command:

conda env create -f DEEPLABCUT.yaml

This command needs to be used in folder where DEEPLABCUT.yaml is downloaded.
After installing and setting up CONDA environment, DLC is prepared for project creation.
Again, the process is described in detail in DLC manuals, we will just describe our specific
steps.

4.1.2 DeepLabCut project

First step is to chose the dataset to fine-tune on - excellent results were achieved even
on 100 frames [15]. We chose 10 videos as the training data. This number should prove
sufficient, due to the fact that there was almost no change in the surroundings of the
mouse and the mouse was seen from the same angle at all times.

The next step is to extract and manually label the frames - we set DLC to extract 10
frames from each video, adding up to 100 frames extracted in total. The DLC was set to
the default settings, which means the extraction used K-means method. The frames were
then manually labeled by the previously chosen body parts (shown in the table 4.1) and
then the project was ready for model training. In our project, we chose these body parts:

Body
Nose

EarLeft
EarRight

Neck
SpineFront

ForelimbLeft
ForelimbRight

SpineBack
HindlimbLeft

HindlimbRight
TailRoot
TailMid
TailEnd
Cable
cable1
cable2
cable3

Table 4.1: DLC tracked body parts.
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........................................ 4.1. DeepLabCut

Note that there is the cable included due to the video-EEG recording. The cable is
connected to head of the mouse and we chose to also track it. In this thesis, we focus on
the locomotor activity, so it may seem unnecessary to track so many points, however,
the detection of additional points does not add significant time to the analysis and the
data about the body parts can be used for additional analyses beyond the scope of this
thesis. Additionally, the locomotor activity is estimated as a distance between succeeding
averages of tracked points, which means the more points tracked, the more accurate
estimation we get. The distance is then converted from pixel units into metric units and
multiplied by frame rate to achieve the speed in meters per second. In our study, we
calculated the estimate of position as mean of forelimbs, hindlimbs and spine. This adds
up to 6 points, which gives us reasonable assurance, that at all times at least one point
will be present.

Figure 4.1: DLC extracted frame with manually labeled body parts.

After the frame labeling, the model was trained using default settings except maximum
iteration changed to 200000 from default 100000. After the model training, DLC is ready
for video analysis.

The trained model then goes through all the videos and produces .csv files with
positions of all selected body parts. It also provides probability density which represents
the ‘evidence’ that a body part is in a particular location [15].

DLC is able to create a labeled video, which allows to visually check the results. An
example frame of labeled video with body parts from table 4.1 can be seen in the figure
4.2.
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4. Analysis methods ......................................

Figure 4.2: DLC automatically labeled frame.
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.........................................4.2. PixelCount

4.2 PixelCount

The idea of this algorithm is to count the number of pixels changed between following
frames. It is based on the assumption that number of changed pixels could substitute the
tracking method, meaning the distance travelled as a metric is substituted with number
of changed pixels frame to frame. If this assumption is correct, this method could prove
much faster compared to mouse tracking methods.

Due to the simplicity of the method, there is noise contained caused mainly by
background shadows. We investigated whether the method was yielding comparable
results and this method could substitute the highly time consuming DLC analysis.

The output of this algorithm is a vector of numbers corresponding to the number of
pixels changed between consecutive frames, which we use as a metric substituting the
travelled distance. To find this metric, we first need to convert the frames to grayscale.
This is due to the fact that the videos are saved in rgb - three separate channels. After
that, we subtract framei−1 from framei to obtain difference frame (procedure shown in
the figure 4.3).

The difference frame is not the final step before counting and it needs to be processed.
We tried to erode and dilate the grayscaled frames, but after some unsuccessful tries we
replaced the erosion and dilatation with simple thresholding. We set the threshold to
-20 experimentally (negative values of pixel change correspond to mouse appearing in
new frame because the mouse is black - values near 0). After that, the thresholded frame
pixels are counted and we obtain the final value.

Arguably, we could track both the negative and positive values - both where the mouse
appeared and disappeared. This method could provide better results in cases of mouse
standing up or falling on its back. Since we are interested mainly in the long term
movement rather than smaller behavioral patterns like standing up, tracking only the
part where the mouse appeared was deemed sufficient.

Note that there is always the cable movement included in the resulting values. This is
not a problem, because the cable is tied to the mouse and its movement is related to
mouse movement itself.
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4. Analysis methods ......................................
Figure 4.3 shows what the difference frame shows in case of a detectable movement.

The white part in the difference frame would correspond to mouse "disappearance" area,
while the black part corresponds to our "appearance" area, which we track. On the
thresholded difference image, there can be seen something like the "contour of the mouse
appearance".

Figure 4.3: PIX example.
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4.3 Different approaches to analysis

There have been other algorithms and methods developed focusing on behavioral testing
in the past. These algorithms focus on pose estimation or analysing behavioral patterns.
Some of the tracking methods are optical flow, Markov random field theory based
monitoring and behavioral patterns clustering tool VAME. There are also other deep-
learning tools such as SLEAP.

Optical flow is the distribution of apparent velocities of movement of brightness patterns
in an image [21]. One of the most popular ways of analysing optical flow is Horn-Schunck
method, minimising pixel-to-pixel variation among velocity vectors [22] [21]. Automated
optical flow detection might prove useful in development of automated system for seizure
recognition and characterisation [22].

Markov random field theory can be utilized for movement detection [23]. This method
searches for optimal configuration of change detection map, using constraints between
neighbouring pixels ("changed"/"unchanged" pixel will likely to be "changed"/"unchanged"
too) [23]. Great robustness and accuracy of this method has been shown on monitoring
arm of epilepsy patient [23].

Social LEAP (SLEAP) is a deep learning method based on earlier LEAP (LEAP
estimates animal pose) algorithm [24]. It includes pose-tracking workflow, including
interactive labeling, training, inference and proofreading [24]. SLEAP uses convolutional
neural networks simpler than DLC. SLEAP may perform better than DLC in multi
animal projects.

VAME - Variational Animal Motion Embedding is a tool used to cluster data obtained
from pose-estimation tools [25]. It is used to find behavioral patterns and sort them after
the tracking itself was concluded. The model uses recurrent neural networks [25].

We implemented one additional method, which tracked the mouse itself based on image
thresholding - difference of color between mouse and its surroundings, but the method
was struggling due to the presence of the cable. Because of that, we decided to abandon
this method. We provide brief description of that method in the next section.
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4.4 Mouse region with thresholding

In this algorithm, we also wanted to use the fact that the mice are black whereas the
bedding is light. We focused on tracking the mouse and extract the locomotor activity
by saving its positions. This procedure was done in several steps.

The image was first converted to grayscale image. This was done due to the videos
being saved in three channels. Then we cut out the area outside of mouse terrarium and
focused only on this part of the image.

After that, the image was thresholded (the threshold was found by analysing histograms
of sample videos) so there would remain only a few objects, which should have corre-
sponded to the cable and the mouse. In some frames it also included noise, corresponding
mainly to shadows and food or bedding material.

We then selected the largest object region, corresponding to the mouse. But in large
number of cases, the area of cable was larger than the area of mouse and after several
unsuccessful tries with processing methods (e.g. erosion and dilation or selection of
closest succeeding region) we decided to abandon the method.
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Chapter 5
Relationship of locomotor activity and seizure rate

In this chapter we describe methods of analyzing relationship of epileptic seizures and
locomotor activity and we will give explanation of why the metric could prove useful.

5.1 Sliding window analysis

This algorithm is a simple sliding window analysis, which processes the locomotor activity.
In each window, the mean and standard deviation is computed. We tried different window
lengths, ranging from 1 hour to 72 hours. The window lengths of integer multiples of
24 hours have the advantage of averaging out the circadian variations. We wanted to
do so to study the long-term cycles - with frequencies of days to weeks. Additionally,
longer windows than 24 hours flatten the data to such degree that they also provide no
reporting value. Therefore, 24-hour windows with 18 hours overlap (i.e. 6 hour window
shift) are used for the analysis of long-term fluctuations in locomotor activity.

This procedure outputs two signals, window mean signal and window standard deviation
(STD) signal, which are timestamped to the end of the window. We extracted mean
locomotor activity as a measure of mouse movement itself, and then standard deviation
from which we calculated normalized standard deviation (STD divided by mean value)
as a measures of the character of mouse movement. For example, if the mouse was slowly
walking, the average could be the same as in jumping interrupted by sitting still. Such a
difference in the character of the locomotor activity could be captured by the normalized
STD.

To find some relation between seizures and locomotor activity, we need to prepare some
metric to relate to. We did this by using the same sliding window on the timestamps
of seizures converting them to signal which shows seizure count in the window - seizure
frequency, also timestamped to the end of the window. Locomotor activity mean and
normalised STD signals are then cross-correlated with the seizure count signal.

This method is advantageous in a sense that it could possibly be used as a seizure
predictor or forecasting tool. E.g. one can imagine that an increasing or decreasing
locomotor activity would indicate an approaching period of high seizure risk.

Main disadvantage of this type of analysis is that if longer windows are used, the values
are flattened to such degree that data are unusable.
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5. Relationship of locomotor activity and seizure rate........................
5.2 Time windows

In this method, the data are split into bins based on windows in day time, which
correspond to day time, divided by hour. This means that data from 00:00-00:59 are
assigned to first bin, 01:00-01:59 to second bin and so on.

Additionally, the data are split into bins of pre-seizure, post-seizure and non-seizure.
These indicate presence of seizure in specific number of hours X. Pre-seizure data come
from points where there will occur seizure in X or less hours. Post-seizure data come
from points where there occurred seizure before X or less hours. Non-seizure data are
the remaining data points, where no seizure occurred in preceding or upcoming X hours.
Note that a point can appear in both pre-seizure and post-seizure categories, but a point
appearing in a non-seizure category always belongs exclusively to it.

The split into bins of day time is advantageous due to the investigation of differences
between seizure free parts and near seizure parts.

This method is useful for the exploration of the relationship between the locomotor
activity and seizure rate but cannot be used for the prospective seizure forecasting due
to its non-causal nature (the whole recording needs to be analyzed at a time).

5.3 Seizure detection and seizure forecasting

Due to the highly time consuming analysis of DLC, we were forced to use frame dropping.
This significantly sped up the analysis, but ruled out the option to recognize some
behavioral patterns - such as trembling. Because such behavioral patterns are the
recognizing factor for seizure detection, we were forced to step down from the detection
of single seizures to forecasting of groups of seizures [26].

Seizure forecasting is a procedure that quantifies the risk of seizure at any present
or upcoming moment. Seizure forecasting can be characterised as a long-term seizure
prediction. We do not want to predict seizures in upcoming minutes, but rather the
risk of seizure group in upcoming hours or days. This can be illustrated on the similar
example, weather forecasting, which informs us about the risk of thunderstorms, but
does not predict individual lightning strikes.

To create a forecasting tool, we needed to find a relationship between the extracted
locomotor activity data and the actual seizure risk (number of seizures). This was done in
two steps on the averaged data, first was to analyse whether there is a linear relationship
between the number of seizures and the extracted parameters in the same window. The
second step was to find whether there was any relationship between the current window
data and upcoming window seizure frequency.

We performed this analysis on mean values of locomotor activity and discrite time
derivative (difference) of locomotor activity. This was done for both algorithms, for all
mice. Due to the low number of mice and especially low number of seizure groups, this
can not create forecasting tool, but rather provides a first step into locomotor activity
based seizure forecasting.
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Chapter 6
Results

6.1 Time taken by analysis on different frame rates

We analysed 20 minute videos of mouse labeled jc20181219_2 in three different frame
rates with both algorithms for comparison. The frame rates were 25, 5 and 1 FPS. Rough
average times achieved for frame rates were 15 minutes of analysis for 25 FPS video,
spiking to 20 minutes in some cases, 3 minutes 10 seconds for 5 FPS and 38 seconds for 1
FPS.

Frame rate (FPS) Average time (s) Speed (length/time)
25 900 1.33
5 190 6.32
1 38 31.58

Table 6.1: Analyses processing time of 20 minute-long video files on different frame rates
with DLC.

These numbers are estimates based on averages of 10 videos. The real average for all
videos is highly dependent on workload throughout the analysis and on hardware of used
computer. The time of analysis on the frame dropped videos decreases linearly with the
decreasing frame rate.

In the table 6.2 we present processing time of PIX algorithm. In this analysis, the
increase is even more significant.

Frame rate (FPS) Processing time (s) Speed (length/time)
25 205 5.85
5 36 33.33
1 5 240

Table 6.2: Analyses processing time of 20 minute-long video files on different frame rates
with PIX.
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6. Results ..........................................
6.2 Comparison of travelled distance with frame dropping

In this section we present the graphs of original and frame dropped videos for comparison.
We also present close-ups to compare the instantaneous change although it is not so
important for our analyses. These signals are included to show how the raw data looks
and to illustrate the changes in mouse activity due to circadian rhythm (figures 6.1 and
6.2). It is also great for demonstration of differences between the algorithms.

There is an apparent increase in activity at night compared to the day (night = time
when lights were switched off, 18:00-06:00). This correlates with the fact that mice are
nocturnal animals and proves that the algorithms are tracking the quantity of movement
correctly.

In the figure 6.1, we can see that there are peaks that extend out of the scope of the
remaining values. These are outliers in some cases, corresponding to failure of tracking
algorithm, although, they are present in such low volume, that they will have almost no
effect in further analyses due to the averaging.

There is also a change in the amplitude of the overall signals when decreasing the
frame rate. The amplitude decreases slightly for DLC in the figure 6.1 while it increases
for PIX in the figure 6.2. This is caused by the calculation of the locomotor activity
from output of DLC and PIX. DLC outputs the coordinates of the mice, which are
averaged and distance is calculated between these points and converted to speed. Due to
the triangle inequality, the distance at lower frame rate is always lower or equal to the
distance obtained at the higher frame rate. On the other hand, PIX calculates the metric
as number of changed pixels. On the lower frame rates, the difference of consecutive
frames is usually bigger since the mouse travels longer distance from frame to frame.
Thus, in this case, the amplitude increases since PIX does not normalize based on the
frame rate. Note that the absolute values are of little interest for us, we are mostly
interested in the fluctuations.
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...................... 6.2. Comparison of travelled distance with frame dropping

Figure 6.1: Raw DLC activity on different frame rates. Gray background indicates nighttime,
note that there is increased activity. Truncated peak values at 25 FPS are reaching about 1.2
m/s. The amplitude is slightly decreasing with decreased frame rate.
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6. Results ..........................................

Figure 6.2: Raw PIX activity on different frame rates. Gray background indicates nighttime,
note that there is increased activity. The amplitude is increasing with decreased frame rate.
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...................... 6.2. Comparison of travelled distance with frame dropping

To showcase the instantaneous changes of locomotor activity through one day, we
present closeup on the first day of analysis. In the figures of closeups the increased daily
activity at night can be seen in the figures 6.3 and 6.4.

Figure 6.3: Raw DLC activity on different frame rates closeup. Gray background indicates
nighttime. There is an apparent increase in activity at nighttime.
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6. Results ..........................................

Figure 6.4: Raw PIX activity on different framerates closeup. Gray background indicates
nighttime. There is an apparent increase in activity at nighttime.
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...................... 6.2. Comparison of travelled distance with frame dropping

In the previous pictures, there was a visible increase in the locomotor activity at night.
However, we want to look past that and average out the circadian rhythm. Averaging with
24-hour window not only normalizes the circadian rhythm, but also provides information
about daily locomotor activity, which we want to further investigate. Thus, for the
purposes of our analyses, the figures 6.5 and 6.6 show signals averaged with 24-hour
window.

It can be seen that both DLC and PIX have peaks around midnight of day 68 and 71,
however, the peaks in DLC are more apparent and stand out among the surroundings.
The ’shapes’ of the signals also do not change with decreasing frame rate and remain
almost the same.

We performed Pearson correlation on the signals with decreased frame rate. Values of
correlation between different frame rates are presented in table 6.3.

Signals Pearson correlation P-value
DLC 25 x 5 FPS 0.99 <0.001
DLC 25 x 1 FPS 0.96 <0.001
PIX 25 x 5 FPS 0.99 <0.001
PIX 25 x 1 FPS 0.97 <0.001

Table 6.3: Correlations between averaged locomotor activity signals on different frame rates.

Based on the results of Pearson correlation, we decided to continue the further analyses
on 5 FPS. It is the best possible trade-off between increasing the processing speed of
further analyses and preservation of as much accuracy as possible.

Additionally, we performed Pearson correlation on these frame rates to have assurance,
that DLC and PIX are not producing completely different data. In the table 6.4, we
can see values of Pearson correlation, also performed on averaged signals. It can be seen
that correlation increases with decreasing frame rate, this is likely due to the fact that
PIX performs better on lower frame rates, since there is more apparent change between
consecutive frames.

Signals Pearson correlation P-value
DLC x PIX 25 FPS 0.74 <0.001
DLC x PIX 5 FPS 0.78 <0.001
DLC x PIX 1 FPS 0.87 <0.001

Table 6.4: Correlations between averaged locomotor activity signals from different algorithms.
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6. Results ..........................................

Figure 6.5: 24h window averaged DLC activity. Gray background indicates nighttime. Note
that in this figure the values are not affected by circadian rhythm.
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Figure 6.6: 24h window averaged PIX activity. Gray background indicates nighttime. Note
that in this figure the values are not affected by circadian rhythm.
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6. Results ..........................................
6.3 Fluctuations of locomotor activity

Here we present the results of analysing the signals of mouse activity with relationship to
seizure presence and seizure count. The key part of these analyses was to prove whether
there is some connection between long term change in locomotor activity and seizure of
epileptic seizures.

Note that in the figures 6.7 and 6.12 there is barely any human eye noticeable difference
around the seizures. On the other hand, in the remaining figures with averaged values
there is human eye detectable long term change.

To rigorously confirm that there indeed is circadian rhythm detected, which needs to
be normalised with specific length of sliding windows in analysis if we want to focus on
long-term cycles, we calculated the periodogram and present the results in the figures 6.8
and 6.13. Periodogram of the signal is estimated by calculating the Fourier Transform (in
the case of Matlab Fast Fourier Transform - FFT, function fft) of the signal, the absolute
value of the FFT is then squared and divided by the number of samples of signal. We
present these figures with x axis in days, to better visualise this idea. There is visible
local maximum at 1 day in each mouse. This shows the occurrence of circadian rhythm.

Mean values of locomotor activity are shown in the figures 6.9 for DLC analysis and
6.14 for PIX analysis. We supposed that there would exist increase or decrease in mean
values preceding the upcoming seizures. This increase is visible in the data from mouse
jc20181219 and arguably also on jc20181218 data, while not even slightly in the mouse
jc20181211.

In the figure 6.10 and 6.15 we present STD which is not normalized. This is provided
to give some visual clue of how STD looks before normalization.

In the terms of normalised STD values, we can see apparent increase around seizures,
again in mice jc20181218 and jc20181219, while increase in such manner is visible only
around first group of seizures in mouse jc20181211. This is presented in the figures 6.11
and 6.16.
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Figure 6.7: Raw DLC activity data of all mice with shown seizure clusters. Gray background
indicates nighttime.
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Figure 6.8: DLC periodograms of all mice. Note mainly the apparent peaks around periodicity
of 1 day.
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Figure 6.9: 24h window averaged DLC activity data of all mice with shown seizure clusters.
Gray background indicates nighttime.
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Figure 6.10: 24h STD of DLC activity data of all mice with shown seizure clusters. Gray
background indicates nighttime.
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Figure 6.11: 24h normalized STD of DLC activity data of all mice with shown seizure clusters.
Gray background indicates nighttime. There is visible increase around seizures in last two
mice.
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Figure 6.12: Raw PIX activity data of all mice with shown seizure clusters. Gray background
indicates nighttime.
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Figure 6.13: PIX periodograms of all mice. Note mainly the apparent peaks around
periodicity of 1 day.
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Figure 6.14: 24h averaged PIX activity data of all mice with shown seizure clusters. Gray
background indicates nighttime.
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Figure 6.15: 24h STD of PIX activity data of all mice with shown seizure clusters. Gray
background indicates nighttime.

39



6. Results ..........................................

Figure 6.16: 24h normalized STD of PIX activity data of all mice with shown seizure clusters.
Gray background indicates nighttime. There is visible increase around seizures in the last
two mice.
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6.4 Relationship between locomotor activity and seizure
rate

In this section, we present the results of normalized cross-correlation between seizure
rate signals with signals created by mean and normalized STD of locomotor activity in
the time bins as described in previous chapter. Because of the overlap in sliding window
analysis, the lag unit corresponds to 6 hours.

To support our hypothesis that the locomotor activity changes preceding seizures,
we are looking for high values of positive or negative cross-correlation of mean values
in positive lags. Additionally, STD should provide information mainly about seizures
themselves. During the periods of high seizure rate, the motion is expected to be jerky
which will result in a high STD. Thus, STD of locomotion activity could serve for a
non-invasive estimation of the seizure rate.

In the figure 6.17 there is a cross-correlation from first mouse, jc20181211. The blue and
red curves belong to the results obtained by DLC and PIX algorithm. Cross-correlations
of mean values are in low values in positive lags. Values of STD are in high values around
zero lag for both algorithms. Additionally, we can see that in the terms of difference
between algorithms, there is only a slight difference in the negative lags of STD.

Figure 6.17: Cross-correlation results of jc201812111. Plot on the left shows cross-correlation
between mean locomotor activity in sliding windows and seizure rate. Plot on the right shows
cross-correlation between normalized STD of locomotor activity and seizure rate.
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Figure 6.18: Cross-correlation results of jc201812118. Plot on the left shows cross-correlation
between mean locomotor activity in sliding windows and seizure rate. Plot on the right shows
cross-correlation between normalized STD of locomotor activity and seizure rate.

Figure 6.18 shows results from mouse jc20181218. In this case, the values reach peak in
negative lag, although, the values around maximum extend to positive lag so the seizure
preceding increase in locomotor activity is debatable. STD is again maximal around lag
zero for DLC, on the contrary, PIX failed to detect this phenomen in this case.

The last mouse in this analysis was jc20181219, its cross-correlations are shown in the
figure 6.19. In this case, we can see a periodicity, this was also visible in the figure 6.9.
The first peak in mean values is in positive lag, which supports our the hypothesis that
an increase in locomotor activity precedes an increase in seizure rate. STD values also
show apparent increase around zero lag, although little shifted for different algorithms.

Figure 6.19: Cross-correlation of jc201812119. Plot on the left shows cross-correlation
between mean locomotor activity in sliding windows and seizure rate. Plot on the right shows
cross-correlation between normalized STD of locomotor activity and seizure rate.
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6.5 Seizure forecasting

Due to the lack of data, we were not able to create a seizure forecasting tool, but we
looked into the question of whether the locomotor activity could be of any help in seizure
forecasting. In the figure 6.20, we present Pearson correlations between shifted seizure
frequency and mean value of locomotor activity in 24 hour window. Then, in the figure
6.21, we present Pearson correlations between shifted seizure frequency and discrete
time derivative (difference) of mean value of locomotor activity in 24 hour window. On
the y-axis - the higher the absolute value of the curve, the stronger is the relationship
between the locomotor activity (or its discrete time derivative) and the upcoming seizure
rate. The high anti-correlation values show that locomotor activity decreases preceding
seizures, high positive correlation shows increase in locomotor activity before seizures.
The position on the x-axis tells us how long into the future the seizure rate is shifted.

(a) DLC

(a) PIX

Figure 6.20: Pearson correlation of mean locomotor activity with shifted seizure frequency.
Shown for both algorithms and all mice combined.
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(a) DLC

(a) PIX

Figure 6.21: Pearson correlation of difference of mean locomotor activity with shifted seizure
frequency. Shown for both algorithms and all mice combined.

Values of correlation reach fairly high values around shift of 9 days in mouse jc20181219.
This is caused mainly due to the fact that with this shift, it is only correlation of roughly
half of the recording with one seizure group. We can see other peaks in positive correlation
around shift of 2 to 4 days. Around shift 0 and shift of 4 to 5 days, there are minima,
i.e. maximal anti-correlations. All these minima and maxima could provide information
about seizure forecasting, whether proving that the locomotor activity increases before
seizures in case of maxima, or decreases in case of minima. However, in this case, there
would need to be longer recordings of mice with more seizure groups to investigate such
phenomena.
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6.6 Time of the day oriented analysis

While using the sliding window as a seizure predictor or forecasting tool, there is a
problem with the absolute values of data due to the skewness brought in by circadian
rhythm. For this reason, we also decided to extract the average values for specific day
times. This task is more on the illustrative side, although, with larger quantity of data,
it could possibly be used to create normalization tool for seizure predictor or forecasting
tool.

In the figures 6.22 and 6.23, there are three columns, which represent non-seizure,
pre-seizure and post-seizure data. The rows correspond to daytime windows. Bins where
there is data absent are marked with black color. In the figure 6.24 there is mean data
for all mice presented.

The results again vary between mice and similarly as in continuous analysis results,
mouse jc20181211 provides no data from which any conclusions can be derived. On the
other hand, remaining mice show that in the case of upcoming seizure, there can be a
detectable increase of locomotor activity early in the morning (around 04:00 to 07:00)
and at night (around 20:00 to 24:00).

Additionally, there is an apparent decrease in locomotor activity after seizures, which
may point to postictal depression.

However, this analysis is confounded by high uncertainty due to the low number of
data points (sometimes even zero) in certain bins.
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(a) jc20181211

(b) jc20181218

(c) jc20181219

Figure 6.22: Hour by hour analysis based on DLC output. Black color visualizes zero data
present in specific bin.
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(a) jc20181211

(b) jc20181218

(c) jc20181219

Figure 6.23: Hour by hour analysis based on PIX output. Black color visualizes zero data
present in specific bin.
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In the figure 6.24 there are values which average all the mice together. The values in

the figure are calculated as means of means. This figure serves as a summary of all the
data.

(a) DLC data

(b) PIX data

Figure 6.24: Combined hour by hour analysis based on both algorithms.

The values from this averaged analysis provide information about overall increase
before seizures in specific time windows. With larger scale data sets, this analysis could
be used to normalize the values in the seizure forecasting tool to provide information
about specific increase or decrease at certain time periods of day.
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6.7 Circadian distributions of seizures

In the figure 6.25, there is a circadian distribution of seizures. The seizures generally
do not follow uniform distribution. It can be seen that the most seizures occur at night
(18:00 - 06:00).

Figure 6.25: Circadian distributions of seizures.
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Chapter 7
Discussion

It is known that the frequency of seizures fluctuates over days to weeks in patients as well
as in animal models of epilepsy [14] [27]. In this study, we investigated whether also the
long-term behavior fluctuates in such manner and whether this fluctuations are related.
It is also known that epilepsy patients suffer from postictal symptoms, such as headaches,
migraines, and psychoses [28], which may result in postictal depression. Ultimately, we
investigated if any change of the locomotor activity precedes the periods of high seizure
rate. Such knowledge can facilitate the development seizure forecasting techniques which
have an extremely high potential of improving lives of people with epilepsy.

We examined the behavior based on locomotor activity, one of the most simple
parameters to monitor. We hypothesized that the locomotor activity fluctuation could
be related to seizure frequency. Our hypothesis was that the locomotor activity would
increase or decrease preceding to seizures and would return to normal after seizures.
Monitored increase in locomotor activity preceding seizures could then be used as a tool
to determine seizure probability. This could help drug resistant epilepsy patients to
overcome their fear and uncertainty from unpredictability of seizures [5].

The aim of our study was not to conduct any dedicated behavioral test. We did not
monitor the mice doing any specific task or number of tasks. To conduct such study, the
best tool would be to use phenotyping cages. These cages can monitor for example how
much the mouse eats, drinks or runs on a wheel [29] [30]. However, these cages mostly
do not allow EEG measuring and are typically costly. Videos used in this study come
from study of behavioral correlates of seizures and main aim of this study was to utilize
already created videos.

As a basis for monitoring of long-term locomotor activity we used two algorithms,
DeepLabCut (DLC) and PixelCount (PIX). DLC is a tool for pose-estimation, which
marks the pre-selected body parts [15] and PIX is Matlab script counting frame to frame
difference while focusing on the areas marking the mouse "appearance".

DLC is accurate and saves the positions of pre-selected body parts. However, DLC is
far slower than PIX, needs to be trained (fine-tuned) for specific task and may not work
with change of surroundings (e.g. placement of items in terrarium). PIX is much faster
algorithm and with a simple change of threshold it will work in any environment, but it
does not provide values about actual locomotor activity, but some substituting metric.
PIX is also prone to noise, mainly caused by shadows and requires contrasting colors of
the animal and bedding material.
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7. Discussion .........................................
As a simple test of whether the algorithms tracked correctly, we looked at circadian

rhythm. In both algorithms, there was apparent increased activity at night (when lights
were turned off, from 18:00 to 06:00), which correlates with the fact that mice are
nocturnal animals. There was also circadian rhythm detected by PSD.

The main problem of our study is the lack of data. Not only we had sets of videos of
only three mice, the sets were also comprised from monitoring only over about two to
three weeks. This is problematic due to the fact, that multi-day seizure fluctuations have
reported periodicity of 7, 15, 20, and 30 days [14], because of that we have at maximum 2
periods of high seizure rate, in some cases not even one. Therefore, the cross-correlation
deductions can not be backed up by large scale data. We are aware of that and provide
the results and deductions as some guiding ideas, which could suit as starting point for
future analysis on a larger data set.

Using state-of-the-art neural networks such as DLC for video analysis is highly compu-
tationally expansive. We have decided to speed up the process of analysis by reducing
the frame rate of the videos, a procedure called frame dropping. We performed frame
dropping on original videos, specifically from 25 FPS to 5 FPS and 1 FPS. This approach
is feasible for the purposes of behavioral monitoring, since it analyses long-term locomotor
activity, rather than instantaneous changes. On the other hand, this renders the data
unusable for the purposes of behavioral testing, because some mouse movement patterns,
such as scratching or grooming, are not reliably detectable on videos with lower frame
rate. For the purposes of our analysis, we decided to use videos, which were reduced to 5
FPS. Videos with 5 FPS also keep far more data intact than 1 FPS videos. This process
reduced the time of analyses roughly 5 times, which moved the combined processing time
of all videos from several weeks to several days.

We performed analyses on three mice with two to three weeks of video recording,
which could become foundation for further analysis. The focus of further study may be
performing the analysis on more video recordings, mainly analysing longer recordings,
which would include more grouped seizures and more periods of multi day seizure frequency
fluctuations. Additionally, the analysis can be extended to long term behavioral testing
- long term monitoring of behavioral parameters (e.g. grooming, scratching, drinking
or eating). Mainly grooming is considered a parameter which correlates with wellbeing
of mice and its relation preceding seizures could be examined. However, grooming
and scratching analyses would need to be concluded on original frame rate, which
substantially increases the analysis duration and may even require the use of a specialized
computational facility.

There still remain many other behavioral patterns which could be analysed and linked
to long-term frequency fluctuations other than locomotor activity. To continue with
behavioral parameters, only DLC could be used, since it can monitor the movement of
limbs and then an engine such as Variational Animal Motion Embedding (VAME) could
be used to cluster such data into behavioral patterns. However, this monitoring and
further processing would be time costly. To monitor simple behavior, such as drinking
and eating - by placing the food and drink in specific areas and look for the percentage of
time mouse spent there, videos could be reduced to lower frame rates. For this analysis,
1 FPS could be enough.
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..........................................7. Discussion

To summarize, we provided a foundation for long term behavioral monitoring. We
presented one tool - PixelCount, which in terms of long-term locomotor activity can
substitute complicated models like DLC. It is specifically tailored to this task, so it is
not multi-purpose like DLC, but it proved reliable in this area. We also sped up the
analysis by trying out frame dropping and found out that for the purpose of long-term
behavioral monitoring, decreased frame rates are sufficient. We did not arrive to some
general conclusion, due to the lack of data so our study rather provides basis for further
analyses.
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Chapter 8
Conclusion

We analyzed three mice with artificially induced epilepsy with two different algorithms.
DeepLabCut (DLC) is a pose-estimation tool directly extracting the coordinates of
pre-selected body parts from videos. PixelCount (PIX) is a custom-made Matlab script
which substitutes the locomotor activity with number of changed pixels frame to frame.

Automated analysis was highly time consuming so we analyzed whether frame dropping
can be used to speed up the analyses while preserving the accuracy of the results. We
frame dropped the original videos from 25 FPS to 5 FPS and 1 FPS. With 5 FPS videos,
we achieved Pearson correlation between sliding window extracted values from original
and frame dropped videos of 0.99 (p < 0.001) with DLC data and 0.99 (p < 0.001) with
data from PIX. With 1 FPS videos, we achieved Pearson correlation of 0.96 (p < 0.001)
with DLC data and 0.97 (p < 0.001) with data from PIX. We chose to continue analysis
with 5 FPS because of data preservation. Pearson correlation between DLC and PIX
data on 5 FPS was 0.78 (p < 0.001).

We extracted the raw locomotor activity data, which was then median filtered with 10s
window and filtered with 24 hour sliding window for the investigation of the long-term
fluctuations. We performed cross-correlation on seizure frequency signals with mean
and normalized standard deviation signals of locomotor activity, all three extracted with
sliding window. Our hypothesis was that the long-term locomotor activity would change
before seizures and that normalized standard deviation would change around seizures.
In the end, the first hypothesis could not be verified due to insufficient data, but the
normalized standard deviation increased around seizures.

In the last part, we extracted the mean values for specific daytime windows. Main
purpose of including these tables was that it shows that with larger amount of data, the
continuous monitoring could be normalized to possibly create the seizure forecasting
tool.
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Appendix A
Used software

I declare that I list all the artificial intelligence tools that were used according to CTU
FEE guidelines.

A.1 Spell check

To check correct spelling in the whole thesis, Overleaf LanguageTool was used [31].

A.2 Translation of abstract to Czech language

The abstract was translated from English into Czech using Microsoft Copilot (Microsoft
Bing Chat AI) [32].

A.3 Simplification

In the section 3.3, the command and its explanation was simplified with the use of
ChatGPT [33].
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