
Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

Robust Estimation of Geometric Models for Retrieval
with Neural Networks

Master’s Thesis

Bc. Daniel Hubáček

Master program: Open Informatics
Specialisation: Computer Vision and Image Processing

Supervisor: prof. Mgr. Onďrej Chum, Ph.D.

Prague, May 2024

ii

Thesis Supervisor:
prof. Mgr. Ondřej Chum, Ph.D.
Department of Cybernetics
Faculty of Electrical Engineering
Czech Technical University in Prague
Karlovo náměst́ı 13
121 35 Prague 2
Czech Republic

Copyright © Prague 2024 Bc. Daniel Hubáček

iii

iv

Declaration

I declare that the presented work was developed independently and that I have listed all sources
of information used within it in accordance with the methodical instructions for observing the
ethical principles in the preparation of university theses.

In Prague, 24 May 2024

..
Bc. Daniel Hubáček

v

vi

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

483726 Personal ID number: Hubáček Daniel Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Cybernetics

Open Informatics Study program:

Computer Vision and Image Processing Specialisation:

II. Master’s thesis details

Master’s thesis title in English:

Robust Estimation of Geometric Models for Retrieval with Neural Networks

Master’s thesis title in Czech:

Robustní odhad geometrických modelů pro vyhledávání pomocí neuronových sítí

Guidelines:

Implement a robust estimator of models of various complexity and evaluate their benefit in image retrieval. Suitable models
include affine transformation, planar homography, and multiple occurrences of these models in a scene. Consider using
other image elements than point correspondences. Apply a robust estimator to improve search results, both when reranking
the results and when learning the image description extractor.

Bibliography / sources:

[1] Perdoch et al., Efficient Representation of Local Geometry for Large Scale Object Retrieval, CVPR 2009
[2] Hartley & Zisserman: Multiple View Geometry, Cambridge University Press, March 2004
[3] Tolieas et al., Learning and aggregating deep local descriptors for instance-level recognition, ECCV 2020

Name and workplace of master’s thesis supervisor:

prof. Mgr. Ondřej Chum, Ph.D. Visual Recognition Group FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 24.05.2024 Date of master’s thesis assignment: 22.09.2023

Assignment valid until: 16.02.2025

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
prof. Mgr. Ondřej Chum, Ph.D.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1

viii

Abstract

Instance level image retrieval makes use of a spatial verification, which is based on a robust
estimation of geometrical transformations between a pair of images. The spatial verification
generates various transformations from tentative feature correspondences. This thesis aims to
implement this algorithm and extend it by utilising line segments detected in the neighbourhood
of the feature pair. Two matching strategies are used to determine segment correspondences
in order to generate soft constraints on the estimated transformation. Furthermore, vanishing
points obtained from underlying lines are utilised to create additional hard constraints. All
approaches are evaluated, and it is shown that lines can compensate for inaccurate or completely
missing feature data.

Keywords: Image retrieval, feature matching, robust estimation, transformation estimation

Anotace

Vyhledáváńı obrázk̊u na úrovni instanćı využ́ıvá prostorové ověřováńı, které je založeno na
robustńım odhadu geometrických transformaćı mezi dvojićı obrázk̊u. Prostorové ověřováńı
generuje r̊uzné transformace z provizorně určených odpov́ıdaj́ıćıch si rys̊u. Diplomová práce
si klade za ćıl implementovat tento algoritmus a rozš́ı̌rit jej o využit́ı úseček detekovaných v
okoĺı těchto rys̊u. Dvě strategie párováńı jsou použity k určeńı korespondenćı jednotlivých
úseček, aby se vytvořila dodatečná omezeńı na odhadovanou transformaci. Dále jsou využity
úběžńıky źıskané z nadetekovaných př́ımek k vytvořeńı daľśıch omezeńı. Všechny př́ıstupy jsou
vyhodnoceny a je ukázáno, že úsečky mohou kompenzovat nepřesná nebo plně chyběj́ıćı data
rys̊u v obrázćıch.

Kĺıčová slova: Vyhledáváńı obrázk̊u, párováńı oblast́ı v obrázku, robustńı odhadováńı,
odhadováńı transformaćı

ix

x

Acknowledgements

First, I would like to express my sincere gratitude to my supervisor, prof. Mgr. Ondřej Chum,
Ph.D., for his guidance, remarks, and kind attitude. It was an honour to be led by such an
experienced character. I also greatly appreciate Ing. Tomáš Jeńıček for his help and technical
support, as well as the rest of the Visual Recognition Group members for making me feel welcome
in their team.

I would also like to thank all of my friends and family for the care and support they have
provided throughout my academic journey. Their cheer, love, and optimism were essential to
my success.

xi

xii

List of Tables

2.1 Evaluation protocols used in ROxford. 18
2.2 Binary classification results. 20

3.1 Number of iterations in the RANSAC algorithm. 26
3.2 Hierarchy and properties of basic 2D geometric image transformation types. . . . 32
3.3 mAP percentage for baseline approaches, basic SV and optimal results. 40
3.4 mAP percentage for weighted scores. 44
3.5 mAP percentage for the SV with LO. 46
3.6 mAP percentage for the enhanced verification. 48
3.7 mAP percentage for the multiple assignment approach. 49
3.8 mAP percentage for the scale verification. 52
3.9 mAP percentage for the eigenvalues check. 54
3.10 mAP percentage for the Bounding Box Coverage scoring. 55
3.11 mAP percentage for the advanced SV. 56
3.12 mAP percentage for the Query Expansion. 59
3.13 mAP percentage for elliptical features. 59
3.14 mAP percentage for elliptical features with lower thresholds. 60
3.15 mAP percentage for HOW features evaluated with a shortlist from SIFT features. 60

4.1 mAP percentage for the SV with line hypotheses. 75
4.2 mAP percentage for the SV with line hypotheses. 80
4.3 mAP percentage for the SV with line hypotheses. 83
4.4 mAP percentage for the SV with corrupted features. 84
4.5 mAP percentage for the SV when no feature scales are used. 84
4.6 mAP percentage for the SV with constrained homographies. 92

xiii

xiv

List of Figures

2.1 Harris detector algorithm. 10
2.2 Gradients used to compute a SIFT keypoint descriptor. 12
2.3 Examples of images in the ROxford. 19
2.4 Examples of images in the 24/7 Tokyo dataset. 19
2.5 Examples of the AP metrics. 21

3.1 Examples of RANSAC assumptions violation. 27
3.2 RANSAC algorithm. 28
3.3 Matrices for transformation types. 32
3.4 Basic types of 2D geometric image transformations. 33
3.5 Matrices for restricted transformation sub-types. 33
3.6 Basic unrestricted algorithm for tentative correspondences generation. 35
3.7 An example of an estimated affine transformation. 41
3.8 Different weight adjustment functions. 42
3.9 Histogram of similarities of correspondences, which generated optimal hypotheses. 43
3.10 Change in mAP when multiple hypotheses are passed into the LO. 46
3.11 Example of multiple features corresponding to a single feature. 47
3.12 Example of different homography estimation approaches. 51
3.13 An example of a local optimisation which just squeezes points onto a line. 53
3.14 Bounding Box coverage by inliers. 55

4.1 Example of a HT to find line parameters. 63
4.2 LSD and its line support regions. 66
4.3 Different approaches to line segment detection. 66
4.4 Stages of the post-processing of detected line segments. 69
4.5 An example of a segments matching. 71
4.6 An example of a segments matching. 72
4.7 An example of the influence of lines on naive hypotheses. 75
4.8 Change in support for the basic SV when line hypotheses are (not) used. 76
4.9 A line segments matching example. 78
4.10 Line segment matching algorithm. 79
4.11 Difference in direct line segment matching after adding the quadrant check. . . . 81
4.12 Projective plane geometry. 85
4.13 An example and a diagram of two parallel lines and a vanishing point. 86
4.14 An example of a homography constrained by vanishing points correspondences. . 92

xv

xvi

List of Acronyms

ROxford Revisited Oxford. 17–19, 38, 40, 43, 44, 46, 48, 49, 51, 52, 54–56, 59, 60, 75, 77, 80,
83, 84, 92

AP Average Precision. 20, 21

ASMK Aggregated Selective Match Kernel. 16, 17, 38, 40, 58, 59, 77

BBox Bounding Box. xiii, xv, 18, 40, 50, 53–55, 57

BoW Bag of Words. 14, 16, 38, 40, 58, 60

BRIEF Binary Robust Independent Elementary Features. 13, 14

CBIR Content-Based Image Retrieval. 2, 3

CNN Convolutional Neural Network. 37, 38

DELF Deep Local Features. 14

DLT Direct Linear Transformation. 25, 50

DoF Degrees of Freedom. 32, 36, 37, 49, 72

FAST Features from Accelerated Segment Test. 10, 14

FN False Negative. 20

FP False Positive. 20

HE Hamming Embedding. 16

HOG Histograms of Oriented Gradients. 13

HT Hough Transform. 62, 63, 67

IDF Inverse Document Frequency. 15

LO Local Optimisation. 28, 45, 46, 54, 59

LO-RANSAC Locally Optimised Random Sample Consensus. 28, 29, 44

LoG Laplacian of Gaussian. 11

LSD Line Segment Detector. 64–66, 68, 69

mAP Mean Average Precision. 20, 40, 41, 43–46, 48, 49, 52, 54–56, 58–60, 73–77, 80, 83, 84,
92

xvii

MLE Maximum Likelihood Estimation. 23, 29

NLP Natural Language Processing. 14

OLS Ordinary Least Squares. 23, 29

ORB Oriented FAST and Rotated BRIEF. 14

PPHT Progressive Probabilistic Hough Transform. 63, 64, 66, 68

PROSAC Progressive Sample Consensus. 30, 35

QE Query Expansion. xiii, 57, 59

RANSAC Random Sample Consensus. 24, 27–30, 33–35, 37, 39, 40, 50, 84, 87, 88

SfM Structure from Motion. 56

SIFT Scale Invariant Feature Transform. 11–13, 16, 30, 38, 40, 43, 45, 46, 48, 49, 52, 54–56,
58–60, 74, 83, 84, 95

SURF Speeded-Up Robust Features. 13, 16

SV Spatial Verification. 23, 40, 41, 46, 48, 49, 52, 55, 56, 58–60, 74–76, 80, 83, 84, 89, 91, 92

SVD Singular Value Decomposition. 90

TBIR Text-Based Image Retrieval. 2

TF Term Frequency. 15

TF-IDF Term Frequency-Inverse Document Frequency. 15, 58

TN True Negative. 20

TP True Positive. 20, 41

VLAD Vector of Locally Aggregated Descriptors. 16

VP Vanishing Point. 84, 89–92

xviii

Contents

Abstract ix

Anotace ix

Acknowledgements xi

List of Tables xiii

List of Figures xv

List of Acronyms xvii

1 Introduction 1

2 Image retrieval 3

2.1 General image retrieval . 3

2.2 Local-feature-based methods . 5

2.3 Feature detection . 6

2.3.1 Harris detector . 7

2.3.2 Other detection methods . 10

2.4 Feature description . 11

2.4.1 SIFT descriptors . 11

2.4.2 Other description methods . 13

2.5 Retrieval and ranking methods . 14

2.5.1 Bag of Words . 14

2.5.2 Other retrieval and ranking methods . 16

2.6 HOW descriptors . 16

2.7 Commonly used datasets and evaluation . 17

2.7.1 Revisited Oxford Dataset . 18

2.7.2 24/7 Tokyo Dataset . 18

2.7.3 Evaluation metrics . 19

3 Spatial verification 23

3.1 RANSAC . 23

3.2 RANSAC variants . 28

3.2.1 LO-RANSAC . 28

3.2.2 R-RANSAC . 29

3.2.3 PROSAC . 30

3.3 RANSAC for spatial verification . 30

3.3.1 Types of transformations . 31

3.3.2 Point correspondences . 33

3.3.3 Local geometry for object retrieval . 36

3.3.4 Transformation estimation . 37

xix

3.4 Possible adaptations . 41
3.4.1 Weighted correspondences . 41
3.4.2 Local optimisation . 44
3.4.3 Local optimisation on top N models . 45
3.4.4 Enhanced verification . 46
3.4.5 Multiple assignment . 48
3.4.6 Homography estimation . 49
3.4.7 Determinant and scale verification . 51
3.4.8 Eigenvalues verification . 52
3.4.9 Bounding box cover scoring . 54
3.4.10 Baseline used for further development . 55

3.5 Spatial verification use cases . 56
3.5.1 Query expansion . 57

3.6 Additional evaluations . 59

4 Using lines in spatial verification 61
4.1 Line segment detection . 61

4.1.1 Progressive Probabilistic Hough Transform 62
4.1.2 Line Segment Detector . 64
4.1.3 Deep learning based detector . 67
4.1.4 Post-processing of detected lines . 67

4.2 Lines utilisation in transformation estimation . 69
4.2.1 Projected segment matching . 70
4.2.2 Transformation estimation constrained by segment correspondences . . . 71
4.2.3 Spatial verification on Tokyo dataset . 77
4.2.4 Direct segment matching . 77
4.2.5 Artificially corrupted data . 83

4.3 Vanishing points for homography estimation . 84
4.3.1 Projective geometry . 84
4.3.2 Vanishing point estimation . 87
4.3.3 Vanishing point as a hard constraint . 89

4.4 Normalisation in least squares solutions . 92

5 Conclusions 95

Bibliography 97

xx

Chapter 1

Introduction

Even though no exact numbers are known, there are millions and billions of images taken and

uploaded to the internet every day. There are good reasons to believe that not only the number

of images, but also the growth rate, will increase in the future. People’s private albums, public

social media profiles, data backups, websites, blogs, and even images of places and street views

in maps contribute to this trend. Pictures are, and will be, almost everywhere in the digital

sector.

Images are often considered unstructured data. Unstructured data refers to information

that does not have a pre-defined data model or is not organised in a pre-defined manner. Unlike

structured data, which fits neatly into databases and spreadsheets, unstructured data lacks

a consistent format, making it more challenging to analyse using traditional data processing

techniques.

An image typically consists of pixels arranged in a grid, with each pixel containing colour

information. While there are patterns and structures within images (such as edges, shapes,

and textures), the data itself is not organised in a standardised way that lends itself to easy

analysis. Additionally, images can vary widely in content, resolution, aspect ratio, and other

characteristics, further contributing to their unstructured nature.

Despite being unstructured, images contain valuable information that can be extracted and

analysed using techniques from fields like computer vision and/or machine learning. These tech-

niques allow computers to interpret and understand the content of images, enabling applications

such as image recognition, object detection, 3D reconstruction, video tracking, image stitching,

classification, and image retrieval.

Image retrieval is the problem of searching for images in a large, unordered collection. It

has numerous applications across various domains, such as, but not limited to, medical imaging,

security and surveillance, fingerprint or trademark identification, copyright protection, art and

cultural heritage, geospatial retrieval, e-commerce, place recognition, etc. There are already

commercial products that can search image collections. For example, Google Image Search

(images.google.com), TinEye (www.tineye.com) or Bing Image Feed (www.bing.com/images),

which retrieve images from the internet, or even Apple Photos, which can perform searches in

user’s personal library.

1

images.google.com
www.tineye.com
www.bing.com/images

2 CHAPTER 1. INTRODUCTION

Two major categories of image retrieval are Text-Based Image Retrieval (TBIR) and Content-

Based Image Retrieval (CBIR). The former approach uses textual annotations of images, where

keywords are used to describe the content, and text-based database management systems and

search approaches to perform the retrieval. Text annotations are made by humans and therefore

are subject to human perception system and its subjectivity. That is, the same image content

may be perceived differently by different people and can even change over time. Furthermore,

the difficulty of annotating images increases with the collection size [1].

The latter approach, CBIR, analyses the information derived from the image pixels and

structure alone. It pays greater attention to extracting various kinds of visual features based on

global and local information, such as colour, shape, and texture [1]. These visual features are

then stored in a database and used for retrieval. Images that contain the same visual features

are considered similar, in a sense.

For CBIR, a query image is on the input, and a list of images from a collection is expected

as output. The query image often contains an object of interest. This problem is also referred

to as instance image retrieval. Having two images, a query and a collection image, they both

should contain the same object of interest, at least in the ideal scenario. Then there might exist

a geometric transformation between the two images, mapping the object from one image to the

other.

This transformation estimation is the subject of this thesis. The transformation provides

more information about the nature of the image pair. It can be then used for all kinds of things,

such as filtering collection images, sorting the results, or repetitive querying.

The thesis first describes the process of Content-Based Image Retrieval. From feature de-

tection to the retrieval itself. Then, a transformation estimation algorithm for instance image

retrieval is introduced. This algorithm uses the features detected in the first part. Later, lines are

considered and utilised during the transformation estimation, as they provide more information

about the geometry.

Chapter 2

Image retrieval

Image retrieval is a field within computer vision and information retrieval that focuses on finding

and retrieving relevant images from large collections, and it has many use cases and applications

in the real world. This chapter introduces the task of instance image retrieval and describes

methods based on local visual features. It aims to create an intuition of how an instance image

retrieval system can really work under the hood, as well as to dive into some details of basic

approaches. These details create a comprehensive and complete view of the task itself, such that

it can be implemented and transformed into a working search engine. It serves as a foundational

framework for subsequent methodologies. At the end, the focus is given to how a retrieval system

is evaluated and possibly compared to other methods.

2.1 General image retrieval

Image retrieval is a very general task that can differ already in the type of data given as input.

It can be a text description of images, a sketch of an object, an image itself, or even just a part

of an image. The latter options are subject to CBIR.

CBIR is a task where an image is given as a query, and the goal is to retrieve all relevant

images from an unordered collection of pictures. The term relevancy is not uniquely defined

and can vary depending on the particular task and use case. Relevant images can mean that the

images should be (almost) identical, semantically or contextually similar, depicting the same

scenery, capturing identical objects, or all objects from one particular category.

Ideally, the retrieval system should retrieve all relevant images. However, a common approach

is to rank all the images in the collection according to a score. The score is a scalar value

representing the likelihood that a pair of images is relevant. At the end, the first N images or

images with a score above a certain threshold are retrieved as results. This ability to retrieve

relevant images first is referred to as performance. Other characteristics of retrieval approaches

include speed (needed time for a query), compactness (memory requirements), and scalability

(applicability to large image collections).

Instance level image retrieval takes an image of an object as input and aims to retrieve all

images from the collection that contain the same object. Unlike image or object classification,

3

4 CHAPTER 2. IMAGE RETRIEVAL

where only a limited set of classes needs to be pre-defined, no such assumptions are imposed

in case of instance image retrieval; the queried object can be arbitrary. Hence, standard image

classification and object detection techniques are not directly applicable to all retrieval tasks,

although there might be some applications where this solution would be sufficient.

Instance image retrieval remains an open problem not only because of the variety of appli-

cations but also due to the high variation in the visual appearance of the same object. Common

challenges to take into consideration are:

• Viewport and/or scale change; two pictures of the same object can be taken from different

locations in space

• Illumination change; there can be different lighting conditions, e.g., when picture is taken

inside/outside, during a day/night or due to seasonal changes

• Colour variations; not only the illumination, but also colour balance settings and the

properties of the imaging sensor can influence the pixel values

• Occlusions; the object of interest can be partially hidden from view by other objects in

the scene

• Deformation; it can occur due to factors such as perspective distortion or object movement

• Visually similar but different objects should not be retrieved together; e.g., when the query

contains a painting, the goal is not to find all paintings, but only images of the queried

one

• Various types of image modalities; an image can be a photograph, a painting or a drawing,

sketch, illustration, mosaic, etc.

• Noise and distortions; artefacts can be introduced during the image acquisition or com-

pression process

Various visual features are used for retrieval, and these features can be either local or global.

Global features describe the image as a whole in order to generalise the entire object. They

can be understood as a dimensionality reduction technique because they represent an image

of width W , height H and with C channels as vector of D dimensions. The goal is to have

a small Euclidean distance between vectors corresponding to mutually relevant images so that

retrieval can be performed using a nearest neighbour search (i.e., finding images with the vector

representation closest to the query image vector representation).

Global features have been successfully employed for image retrieval, but they possess one

important weakness that limits their efficiency. It is the inability to differentiate between image

parts, i.e., object of interest, other objects contained in the image, or the background. As a

result, they do not perform well in tasks with complex and cluttered scenes [1].

2.2. LOCAL-FEATURE-BASED METHODS 5

2.2 Local-feature-based methods

Local visual features focus on capturing information in a local neighbourhood of a particular

point in an image. Each image has multiple local features, which are then compared. The idea

and ideal scenario is that relevant pairs of images have the same or similar features in them.

Therefore, the features should be designed in such a way that they preserve their essence even

under already mentioned circumstances (viewport and/or scale change, illumination change,

noise and distortion, etc.).

Typical pipeline consists of three major steps:

1. Feature detection: An image I from a space of all images I is taken and a set of points

xi = [xi, yi]
⊤ is detected using a function detect(I) −→ {xi}. These points ought to have

some potential to carry a valuable piece of information. Up-scaled and down-scaled images

are often used for the detection as well to cover various sizes of local neighbourhoods since

the detection methods usually do not have such capabilities. This up-scale and down-scale

factor is referred to as a scale.

2. Feature description: A vector representation d is assigned to each detected feature

x based on its local neighbourhood using a function describe(I [x]) −→ RD, where I [x]

represents the local neighbourhood of the point x in the image I. Thus, an image I has a

set of vectors DI = {di}. The vector d is called a descriptor and its value can capture for

example the local shape, colour, texture, or even a mixture of such properties describing

the neighbourhood. Theoretically, it would be also possible to have multiple descriptors

for one detected feature, each descriptor representing different properties. It can be hand-

crafted or even learnt by machine learning approaches. The goal is to create descriptors in

such a way that similar visual local features (features with visually similar neighbourhood)

have assigned descriptors with small Euclidean distance. At the same time, descriptors of

different local features should have significantly larger distance.

These first two steps, feature detection and description, are executed on images from three

datasets - training dataset, collection dataset, and queries.

First, a large dataset of training images Itrain is taken and descriptors for all images are

computed, resulting in a large set of all descriptors from the whole training dataset Dtrain,

Dtrain = {d | d ∈ DI , I ∈ Itrain}

These descriptors are then clustered into N clusters. Clustering is a technique wherein a collec-

tion of data points is partitioned into groups (clusters), such that the data points within each

cluster are more similar to each other than to those in other clusters. Descriptors within each

group could be seen as if they represented a single visual feature. A popular clustering algorithm

is K-means [2]. In this case, the similarity is measured by the Euclidean distance between de-

scriptors. Each cluster has a centroid µ, which is a central (or representative) point, computed

6 CHAPTER 2. IMAGE RETRIEVAL

as the mean of entries belonging to the corresponding cluster. These clusters are called visual

words. Set of all visual words is called a vocabulary or a codebook.

Having N visual words estimated from the training set, feature detection and description

is performed on images from the collection dataset (also referred to as database), Idb. Each

descriptor is then assigned to a cluster j, so each descriptor di has a corresponding visual

word wi = j. In case of previously described K-means, the nearest cluster j is taken. The

nearest cluster is considered to be the cluster whose centroid is the closest, i.e., wi = j =

argminj dist(di,µj).

Afterwards, the following data is stored in a database for each image from the collection

dataset: its features locations xi, scales si on which it was detected and corresponding visual

words wi. Other properties of the features can be stored in addition to the mentioned ones, e.g.,

original descriptors, residuals from centroids, detection and description confidence, etc. These

will be mentioned and used later.

Lastly, very similar workflow is used also for queries. Features in a query image are detected,

described and assigned to the pre-trained visual words. Then, the last, third, major step takes

place:

3. Ranking and retrieval: Mutual relevance of two images is estimated, given a set of

visual words WI for each of them. Exact evaluation strategy depends on the retrieval and

ranking algorithm used, but the fundamental idea is to perform a feature matching. Two

features are considered to match if they are assigned to the same visual word. The more

matching visual words the pair of images has, the more relevant the images appear. This

process can be represented by a function matching(WI1,WI2) −→ R returning a scalar

value, which can be interpreted as a score used for ranking the images.

The query image is compared to all images in the database Idb, which are then sorted

according to the score. At the end, a portion of images is retrieved. As it was already mentioned,

it can be first N images with the highest score or images with a thresholded score.

Each of these steps will be now described in detail.

2.3 Feature detection

Local features, as it was already described, are distinct regions within an image (i.e., in prin-

ciple arbitrary sets of pixels) that exhibit certain properties, notably having a discriminative

neighbourhood and high repeatability. They can be understood as a form of attention.

Discriminative neighbourhood means that the surrounding context of each keypoint (i.e.,

a unique pixel within the region) should contain unique information that facilitates accurate

localisation and matching. This property enhances the distinctive nature of local features,

enabling them to effectively capture and represent the salient characteristics of the underlying

image content.

Repeatability, in the context of image processing and computer vision, refers to the ability of

a feature detector (or/and descriptor) to reliably detect (or/and describe) the same visual pattern

2.3. FEATURE DETECTION 7

or structure across different instances of an object or scene. In simpler terms, it measures how

consistently a feature is detected under various changes in the appearance of an object or scene,

such as changes in viewpoint, scale, rotation, illumination, and occlusion. This is especially

important from the geometric point of view, for transformation estimation.

These regions, often characterised by distinctive patterns or structures, serve as key points

of interest for further analysis and processing. Each region is represented by a keypoint pixel,

usually located in the centre of the region. Keypoints also have other properties associated with

them (e.g., scale or orientation) based on the image or the neighbourhood of the pixel.

There are usually two steps in the detection process - detecting and sorting of keypoints. A

detector marks pixels with a potential to be keypoints. But a very permissive detector could

potentially mark (almost) all image pixels. Therefore each keypoint should have a rank based

on which they could be sorted and only top N taken. The ranking should be consistent under

a nuisance factor.

As a tangible example, one method will be described in detail: Harris detector, classical

analytical method seeking for local extremes.

2.3.1 Harris detector

The Harris Corner Detector is a popular method in computer vision used to detect corners in

images. It was developed by Chris Harris and Mike Stephens in 1988 [3].

In order to be a distinguished region, a region must be at least distinguishable from all

its neighbours. Therefore the detector analyses small windows of an image and computes the

variation in intensity when the window is moved in any direction. Ideally, shifting a window

in any direction should give a large change in intensity. Specifically, it calculates the corner

score for each pixel in the image, which indicates how likely that pixel is to be part of a corner.

The corner score is based on the amount of change in intensity that occurs when the window is

shifted in a certain direction. Pixels with high corner scores are considered to be part of corners.

Let I(x, y) −→ R be an intensity function of an image, I(x, y) be the intensity value of the

pixel at coordinates [x, y]. Then energy function E is defined as a weighted sum of squared

differences of intensities in a window W centred at [x0, y0] and corresponding intensities in the

same window moved in [u, v] direction:

E(x0, y0;u, v) =
∑

(x,y)∈W (x0,y0)

w(x, y)
(
I(x, y)− I(x+ u, y + v)

)2
(2.1)

Window W is typically a 3×3 square of neighbouring pixels with its centre in [x0, y0]. Weight

function w can be a constant or (better) a Gaussian. The energy E is computed for all pixels

[x0, y0] in the image independently.

Potential keypoints should have a large change in intensity (in other words, large energy) in

all directions [u, v]. Therefore minimum value of the energy function E over [u, v] shifts is taken,

minu,v E(x0, y0;u, v). The higher minimum energy, the higher corner score for a particular pixel.

Local maxima are sought.

8 CHAPTER 2. IMAGE RETRIEVAL

Equation (2.1) gets computationally expensive and therefore other approach is used. The

intensity function in the shifted position is approximated by the first-order Taylor expansion.

A first-order Taylor expansion of a function f near the point a is defined as:

f(x) ≈ f(a) + f ′(a)(x− a),

in case of the shifted intensity function:

I(x+ u, y + v) ≈ I(x, y) +
[
Ix(x, y) Iy(x, y)

] [u
v

]
,

where Ix, Iy are partial derivatives of I(x, y) in the x, y directions, respectively. Partial deriva-

tives of an image can be efficiently approximated using the Sobel operator [4] (or a similar

approach). Sobel operator computes the derivative as a difference of neighbouring pixels along

corresponding axis. Weights and larger neighbourhood can be also used.

The approximation of the shifted intensity function can be used in the Equation (2.1):

E(x0, y0;u, v) =
∑

(x,y)∈W (x0,y0)

w(x, y)
(
I(x, y)− I(x+ u, y + v)

)2
≈

∑
(x,y)∈W (x0,y0)

w(x, y)
(
I(x, y)−

(
I(x, y) +

[
Ix(x, y) Iy(x, y)

] [u
v

]))2
(2.2)

=
∑

(x,y)∈W (x0,y0)

w(x, y)
(
−
[
Ix(x, y) Iy(x, y)

] [u
v

])2
(2.3)

=
∑

(x,y)∈W (x0,y0)

w(x, y)
([

u v
] [Ix(x, y)

Iy(x, y)

] [
Ix(x, y) Iy(x, y)

] [u
v

])
(2.4)

=
[
u v

] ∑
(x,y)∈W (x0,y0)

w(x, y)

[
Ix(x, y)

2 Ix(x, y)Iy(x, y)

Ix(x, y)Iy(x, y) Iy(x, y)
2

]
︸ ︷︷ ︸

M(x0,y0)

[
u

v

]
(2.5)

=
[
u v

]
M(x0, y0)

[
u

v

]
(2.6)

First, the approximation is substituted (2.2), then the parentheses are removed resulting in

I(x, y) term cancellation (2.3). Next, in (2.4), the second power is expanded in order to sort

the terms (2.5) which leads to the introduction of M(x0, y0) (2.6). The matrix M(x0, y0) is a

structure tensor, also referred to as second-moment matrix, and is derived from the gradients of

the intensity function I for each pixel independently.

The energy E, as well as the structure tensor M, is computed independently for each pixel

in an image. Therefore, denote E(x0, y0;u, v) as E(u, v) and M(x0, y0) as M from now on.

This second-moment matrix M actually describes how do the intensity values change in

the close neighbourhood of [x0, y0]. By an analysis of this matrix, it is possible to ascertain

in which directions does the energy E increase or decrease and also how significantly does the

2.3. FEATURE DETECTION 9

energy change. Eigenvectors and corresponding eigenvalues ofM describe exactly this behaviour.

Moreover, the matrix M is positive semi-definite, which means that it is symmetric and has non-

negative eigenvalues.

Let λ1, λ2 be the eigenvalues of M. There are three cases which can happen:

1. Both λ1, λ2 are small, which means that the energy function E is almost constant in all

directions, i.e., no significant changes in the intensities.

2. λ1 ≪ λ2 or λ1 ≫ λ2, one of the eigenvalues is significantly larger that the other. This

represents the case when the energy E is increasing only in one direction. Typically, these

are edges.

3. Both λ1, λ2 are large and approximately the same. In this case, there are significant

changes in the energy in all directions. This case is typical for corners, which are good

keypoint candidates.

In general, having two non-negative numbers x and y such that x ≪ y, then the following

holds:
xy

x+ y
= x

y

x+ y
= x

1
x+y
y

= x
1

x
y + 1

≈ x
1

0 + 1
= x

In case of the second-moment matrix, this idea can be used for an estimation of the smaller

eigenvalue:

λmin ≈
λ1λ2

(λ1 + λ2)
=

det(M)

trace(M)

Such computation can be expensive and/or numerically unstable for matrices with small

eigenvalues or those close to being singular. Not only for these reasons, another approach is

used to evaluate the score of a pixel to be a corner. For each point [x0, y0] in an image, define a

Harris response R as follows:

R = λ1λ2 − k(λ1 + λ2)
2 = det(M)− k · trace(M)2,

where k is an empirically determined constant, k ∈ [0.04, 0.06]. Using this parameter, it is

possible to adjust the sensitivity to corners of the detector. It can be tuned based on the specific

characteristics of the images being analysed.

The choice of the Harris response R formulae has its own justification. Similarly to the

eigenvalues analysis, also here are three cases which can happen:

1. The absolute value of the response |R| is small, which corresponds to the case when both

λ1 and λ2 are small, i.e., the region is flat.

2. Response R < 0 is negative, which corresponds to the case when one eigenvalue is signifi-

cantly larger than the other, i.e., there is an edge.

3. Response R > 0 is positive, which corresponds to the case when both eigenvalues are large,

i.e., there is a corner.

10 CHAPTER 2. IMAGE RETRIEVAL

Input: intensities image I, sensitivity parameter k, Harris response threshold T , window size
W
Output: Set of keypoints [xi, yi]

1: keypoints← {}
2: I ← smooth(I) ▷ Smooth out any noise
3: Ix ← derivative(I, axis = x) ▷ Compute derivatives
4: Iy ← derivative(I, axis = y)
5: A←

∑
W I2x ▷ Compute elements of M

6: B ←
∑

W IxIy
7: C ←

∑
W I2y

8: R← AC −B2 − k(A+ C) ▷ Harris response
9: for each pixel [x, y] in the image do

10: if R(x, y) ⩾ T and R(x, y) is maximum in the neighbourhood then
11: keypoints.add([x, y])

12: return keypoints

Figure 2.1: Harris detector algorithm.

A response value is computed for each pixel in an image. Then, the values are thresholded

by a hyper-parameter T and non-maximum suppression is applied (on either 4-neighbourhood

or 8-neighbourhood). Non-maximum suppression is a procedure which suppresses values which

are not maximum in their neighbourhood. Together with the thresholding, it filters only locally

significant keypoints. The response value can be also used as the previously mentioned sorting

criterion for a case that there are too many detected keypoints. This is especially important for

intensity multiplication invariance:

When there is a shift in the image intensity, I ′ = I+ b, the response R is unchanged because

only derivatives are used. Nonetheless, in case of a multiplicative change, I ′ = a ·I, the response
R is increased as well. It may cause more keypoints to pass through the threshold filter, but the

order of keypoints is preserved.

The final algorithm is described in the Figure 2.1. Note that usually a smoothing of the

image or of the intensity function is applied in order to smooth out any noise. Also, border

points must be taken care of. Usual strategies are to add a padding (extend the image using

artificial values, e.g., zeros, mirrored values, extrapolated values, etc.) or, contrarily, crop the

image (leave the border pixels out). And, as already mentioned, the detection is evaluated on

up-scaled and down-scaled images as well in order to have features detected at different scales

(and therefore acquire scale invariance).

2.3.2 Other detection methods

Another detection method, similar to the Harris detector, is Shi-Tomasi [5]. The response is

calculated as the minimum eigenvalue of the structure tensor, representing the minimum amount

of corner-like structure in the local neighbourhood. This generally provides more stable results

compared to the Harris detector.

Features from Accelerated Segment Test (FAST) [6] is another representative. FAST is a

corner detection algorithm that identifies corners based on the intensity difference around a pixel

2.4. FEATURE DESCRIPTION 11

by comparing it with a threshold. It is known for its computational efficiency and is widely used

in real-time applications such as feature tracking and object recognition.

Besides corner and edge detectors, there are also blob detectors. One of the first and also very

common blob detectors are based on the Laplacian of Gaussian (LoG). It involves convolving the

image with a Gaussian kernel to smooth it and then applying the Laplacian operator (second-

order differential operator). It detects intensity variations and highlights regions of abrupt

intensity change. These often correspond to blobs. LoG can be further generalised to elliptical

blob structures detection [7].

There are also neural network based methods for detecting keypoints in images. One rep-

resentative is LF-Net [8]. LF-Net is a neural network architecture that learns to extract local

features directly from images without relying on handcrafted detectors or descriptors. It em-

ploys a fully convolutional network to predict keypoints and descriptors, which can be used for

image retrieval and other tasks requiring feature matching.

2.4 Feature description

As already mentioned, each feature is described by a vector d ∈ RD. These descriptors are

then used for further analysis, e.g., clustering or matching features between images. In theory,

the descriptor can be based on any information from the local neighbourhood, like colours,

structures, or textures. The key is for the descriptor not to change significantly when the

visual appearance of the underlying object changes, because the set of descriptors is supposed

to characterise the object.

There are two approaches of how to achieve such descriptors. First, the descriptor itself is

designed in a way its value does not depend on the orientation and viewport. This approach

was used in the past and lately has been abandoned. Alternatively, an invariant procedure can

be designed to estimate a geometric normalisation parameters. The feature is then normalised

before being described.

The particular mapping of a feature into the descriptor space RD can be pre-defined or

learnt by some machine learning models. One popular approach will now be described in detail

in order to demonstrate how such methods can work.

2.4.1 SIFT descriptors

Scale Invariant Feature Transform (SIFT) is an algorithm to detect, describe and match local

features in an image, which was invented by a Canadian computer scientist David G. Lowe in

1999 [9]. The descriptors are computed by analysing the gradient magnitudes and orientations

within localised regions of an image. They provide distinctive representations of keypoints that

can be matched across different images. They are robust to changes in scale, rotation, and

illumination, making them highly effective in various real-world scenarios. The algorithm itself

was originally protected by a patent, but it expired in 2020.

Before the descriptor is computed, the feature must be geometrically normalised. If a non-

12 CHAPTER 2. IMAGE RETRIEVAL

Figure 2.2: Gradients used to compute a SIFT keypoint descriptor [9].

scaled image is used while the feature was detected on a scaled image, the feature region must

be transformed accordingly. Furthermore, orientation of the corresponding keypoint must be

determined as well in order to gain rotation invariance.

The orientation is estimated using a histogram of gradients. Gradient orientations of pixels

within a region around the keypoint are taken. From them, a histogram of 36 bins covering the

360 degree range of orientations is computed. Furthermore, each sample added to the histogram

is weighted by a combination of two factors: (i) by the magnitude of the gradient and (ii) by

a Gaussian weighted circular window with the centre in the keypoint. Original algorithm also

suggests to use σ equal to 1.5 times the scale of the keypoint [9].

Having the histogram, its peak corresponds to the dominant direction of local gradients. The

peak still captures a range of 10 degrees so exact value is determined by an interpolation. Three

histogram values which are closest to the peak are used for fitting a parabola. This parabola

then determines the exact value of the peak for better accuracy.

If there are multiple significant peaks in the histogram, i.e., there are local peaks which are

within 80% of the highest peak, then these local peaks are used to create new keypoints with

these orientations. Each of them is later described. It is an example of how a single feature can

raise multiple descriptors.

Note that if the orientation of the object is known, it may replace this construction.

Having an orientation of a feature, together with its location and scale, a normalised patch

(part of the image) is extracted for description. The description is based on surrounding gradi-

ents again.

Gradient magnitudes and orientations within the patch are computed and weighted by a

Gaussian window function. Then, the patch is divided into 4 × 4 sub-regions and within each

sub-region, a histogram with eight bins is computed. The value of each bin corresponds to the

sum of gradient magnitudes falling into the bin. All the histograms values are then flattened into

a single vector. Having 4×4 histograms with eight bins, the vector ends up having 4×4×8 = 128

elements.

An example of this process is depicted in the Figure 2.2 [9]. It shows a 2×2 descriptor array

computed from an 8× 8 set of samples. The overlaid circle indicates the Gaussian weighting.

2.4. FEATURE DESCRIPTION 13

There are boundary effects when the descriptor changes upon a slight shift of a sample be-

tween orientation bins or even between histograms. To avoid this, the original paper proposes to

do a trilinear interpolation to distribute a value of each gradient sample into adjacent histogram

bins.

Finally, the feature vector is normalised in three steps:

1. The vector is normalised to unit length. This normalisation cancels changes in contrast of

the patches.

2. In the next step, the unit feature vector values are clipped on 0.2, i.e., all values larger than

0.2 are decreased to this value. This reduces the impact of non-linear illumination changes

(e.g., illumination changes of 3D surfaces with different orientations). These effects can

change magnitudes of the gradients, but are less likely to change their orientations. The

value 0.2 was determined experimentally [9].

3. Finally, the vector is normalised to unit length again.

SIFT descriptors have several useful properties. They are based on gradient orientations,

which makes them robust to various illumination changes. Spatial binning of histograms brings

a tolerance to small shifts in location. Explicit orientation normalisation is being made which

causes the descriptor to be invariant to rotation and uniform scale as well as being tolerant to

small affine changes and local deformations. Its popularity brought up a follow-up literature

on possible improvements, such as Daisy [10], Histograms of Oriented Gradients (HOG) [11] or

RootSIFT [12] descriptors.

2.4.2 Other description methods

Similar to SIFT features are Speeded-Up Robust Features (SURF) [13]. As the name suggests,

it is a speeded-up version of SIFT. The time complexity improvement is mainly in the detection

algorithm, which is different than the one proposed for SIFT. Descriptors use Wavelet responses

in both horizontal and vertical directions in the neighbourhood of the keypoint. Similarly to

SIFT, the neighbourhood is divided into sub-regions, whose values then form the final description

vector.

Another example of a description method comes from Binary Robust Independent Elemen-

tary Features (BRIEF) [14], which is only a feature descriptor independent from a detection

algorithm (although one is recommended in the original paper). BRIEF descriptors are binary

feature descriptors which (unlike traditional gradient-based descriptors) operate by comparing

pixel intensity differences between pairs of predetermined points within a local patch. These

comparisons result in a binary string representing the presence or absence of certain intensity

differences, providing a compact and efficient representation of local image features. BRIEF

descriptors are robust to noise, but poor results are observed when there is a large in-plane rota-

tion. Nevertheless, their computational efficiency makes them suitable for real-time applications

on resource-constrained devices.

14 CHAPTER 2. IMAGE RETRIEVAL

BRIEF was later used in Oriented FAST and Rotated BRIEF (ORB) [15]. It is basically a

fusion of FAST keypoint detector and BRIEF descriptor with many modifications to enhance

the performance. ORB introduces an orientation assignment step to make keypoints rotation-

invariant, unlike BRIEF, further improving its performance in scenarios with rotated or skewed

images. Overall, ORB leverages the simplicity and computational efficiency of BRIEF while

enhancing it with orientation handling and keypoint detection capabilities from FAST.

Last description methods representatives are methods based on (convolutional) neural net-

works. Already mentioned LF-Net [8] has a small neural network with three convolutional and

two fully-connected layers which take image patches on the input and provide 256-dimensional

descriptors on the output. Similarly, Deep Local Features (DELF) [16] is also based on convo-

lutional neural networks. In addition, it uses an attention mechanism for keypoint selection.

2.5 Retrieval and ranking methods

When sets of descriptors DI are assigned to each image I, a relevance score can be computed

between a pair of images. In case of a retrieval, scores are computed between the query image and

all database images. The database images are then sorted according to the score and retrieved.

In principle, score assignment is based on matching features, keypoints, and/or descriptors

between images. One example of simple and naive approaches is the nearest neighbour search.

For each descriptor from image A, the nearest descriptor in image B is found. If the distance is

close enough, they are considered to match. The more matching features, the higher score.

While embracing simplicity, this approach suffers from inefficiency. Comparing all pairs of

descriptors is a costly operation. Also, the necessity to store all descriptors in its full size might

be challenging for large collections of images. Therefore, other approaches, such as Bag of Words

(BoW), were introduced.

2.5.1 Bag of Words

This approach was inspired by a Natural Language Processing (NLP) technique where a text

document is represented by the set of words it contains [17].

BoW in images [18] does not use original descriptors of features, but visual words instead.

As it was described earlier, a vocabulary (set of visual words) is created using descriptors Dtrain

from a training dataset. Then, features from the collection dataset and from query images can

be assigned to these visual words. Descriptors with the same visual words are considered to be

matching, as if they had a small distance in the nearest neighbour approach. The task then

becomes finding features assigned to the same visual words.

This replacement of descriptors (D-dimensional vectors) for a simple visual word (represented

by a cluster identifier) not only makes the matching task simpler and computationally less

expensive, but also reduces the required memory load D times. Furthermore, the matching can

be implemented efficiently.

Let the vocabulary have size N , i.e., there are N visual words. Let X, Y be vectors of

2.5. RETRIEVAL AND RANKING METHODS 15

size N , where an element at position i refers to the number of visual words wi included in a

corresponding image. Then, the score of such a pair of images can be computed using cosine

similarity as follows:

score(IX , IY) = cosφ =
X⊤Y

∥X∥∥Y∥

If the vectors X, Y are stored normalised in the database (i.e., ∥X∥ = ∥Y∥ = 1), then the cosine

similarity becomes a simple dot product. Because all elements of the vectors must be positive,

the range of values is limited to the interval [0; 1]. Dot product is computed very efficiently. If an

image is compared with itself, the score is maximum possible, score(IX , IX) = X⊤X = ∥X∥ = 1.

Conversely, images with strictly distinct visual words have the score equal to zero.

Not all visual words may have the same weight. Some of them might be more important

or uncommon that the other. Most prevailing methods employ the Term Frequency-Inverse

Document Frequency (TF-IDF) weighting scheme to gauge the significance of visual words. Term

Frequency (TF) serves as a straightforward metric to assign weight to each visual word within

an image. In TF, the importance of each visual word is presumed to be directly proportional to

its frequency of occurrence in an image. While TF relates to the frequency of a term within a

single image, Inverse Document Frequency (IDF) [19] relates to the occurrence of terms across a

collection of images. It assigns a weight to each visual word based on its frequency of occurrence

across images. Conceptually, IDF assigns lower weight to commonly occurring visual words,

diminishing their influence, and higher weight to infrequent visual words, which are deemed

more distinctive.

TF of a term (visual word) w in a document (image) I and IDF of a term (visual word) w

in a collection of documents (images) I of size N (|I| = N) are defined as:

tf(w, I) =
count of w

count of all words
=

fw,I∑
w′∈I fw′,I

idf(w, I) = log
#images

#images with word w
= log

N

|{w | w ∈ WI , I ∈ I}|

where fw,I represents the raw count of term w in a document I andWI is a set of all terms in I.

In TF, if a visual word occurs repetitively in an image, it gets a higher weight, and vice versa.

In IDF, if a visual word occurs in every single image, then it has zero weight and basically is

dismissed. Similarly, if a visual word appears only in a single image, it has a high weight.

Nevertheless, this approach still requires to iterate over all collection images, even though

most of the images have zero visual words in common. This loop can be very inefficient for

large collections. This issue is addressed by inverted files and the idea is as follows: for each

visual word, store a list of images in which this particular visual word occurs. Then, on query

time, combine lists of those visual words which appear in the query image. The rest of collection

images has no visual words in common and therefore the score is zero.

16 CHAPTER 2. IMAGE RETRIEVAL

2.5.2 Other retrieval and ranking methods

A matching model, which extends previously explained and described BoW, is Hamming Em-

bedding (HE) [20]. HE represents each local descriptor di with its quantised value µi and a

binary code bi of B bits. All pairs of descriptors (or rather the binary codes) assigned to the

same visual words are then used to compute the score between an image pair as follows:

score(IX , IY) =
∑
x∈IX

∑
y∈IY

w(h(bx,by)),

where IX and IY are the images (represented as a set of descriptors di and more importantly

binary codes bi), w is i weighting function, h is the Hamming distance and bx, by are the binary

codes corresponding to the descriptors. The Hamming distance is the number of positions at

which the corresponding symbols are different. Originally, the weighting function w was proposed

to be a shifted Heaviside step function, i.e., w(h) = 1 if h ≤ τ for a threshold τ , and 0 otherwise

[20]. Nevertheless, a smoother weighting scheme (e.g., thresholded Gaussian function) is a better

choice [21].

Another popular method is Vector of Locally Aggregated Descriptors (VLAD) [22]. It is

based on aggregating local feature descriptors into a single vector representation for each image.

First, local descriptors such as SIFT or SURF are extracted from keypoints detected in the

image. These descriptors are then quantised into a visual vocabulary using techniques like k-

means clustering. VLAD computes the difference between each local descriptor and the nearest

visual word centroid (called a residual), accumulating these differences into a single vector for

each cluster. Finally, these aggregated vectors are normalised and concatenated to form the

VLAD representation, providing a compact yet informative description of the image content.

In [23], a framework is introduced that serves as a bridge between matching-based method-

ologies (like HE) and aggregated representations (VLAD in particular). This approach exploits

the strengths of both paradigms to generate a robust image representation. By integrating

an aggregation scheme with a selective kernel, a balanced synthesis of the two approaches is

achieved. Furthermore, the resultant vector representation can be efficiently compressed to

significantly reduce memory demands, while enhancing search efficiency. The compression is

done by binarisation of the descriptor elements. This method will be referred to as Aggregated

Selective Match Kernel (ASMK).

2.6 HOW descriptors

For the purpose of development, HOW features were used most often. These features were

introduced by Tolias et al., 2020 [24]. In this work, they propose a local feature detector and

descriptor based on a deep network.

This neural network is fully convolutional. In the original work, ResNet18 and ResNet50

[25] are used as the backbone network. It generates a mesh of local descriptors, an attention

map, and (as a combination of these two results) a global descriptor.

2.7. COMMONLY USED DATASETS AND EVALUATION 17

In the training phase, a global descriptor is generated for each image with image-level labels

(i.e., the position of an object in the image is unknown). These global descriptors and contrastive

loss are used to optimise the weights (parameters) of the neural network. Contrastive loss is a

technique used in neural networks to learn embeddings by contrasting pairs of samples (images

in this case). It operates by minimising the distance between similar (relevant) samples while

maximising the distance between dissimilar (irrelevant) ones. This is achieved through a margin-

based approach, where embeddings of similar samples are pushed closer together than those of

dissimilar ones.

In the testing phase, the image is represented by retaining the most prominent local de-

scriptors as indicated by the attention map. These descriptors are then used for image search

using ASMK. They are also assigned to visual words (which had been pre-trained earlier). Local

descriptors with low attention are ignored as well as the final global descriptor.

Because the neural network is fully convolutional, local descriptors really correspond to a

local region in the original input image. The signal of each local descriptor can be backtracked

through the network. It results in a particular group of pixels (usually a square or rectangle

area), which has an influence on the descriptor value. Using this approach, each response can

be approximately localised to a small region. In that case, the local descriptors can be though

of as local features.

From the high-level view, the HOW network outputs a set of features for an input image.

Each feature is characterised by: its approximate position x; the scale s on which it was detected;

the descriptor vector d; corresponding visual word w; residual vector r = d − µw; and an

attention (or importance, strength, weight) coefficient a, where a ∈ [0, 1]. The elements in the

residual vectors are quantised in order to reduce the memory demands. Quantisation brings

a trade-off between the memory load and efficiency. A visual word represents a region where

the feature descriptor is located, the quantised residual then determines a smaller sub-region.

Binary quantisation method is often used.

2.7 Commonly used datasets and evaluation

In the image retrieval community, there are several datasets which are often used for a compar-

ison of different methods and approaches. These datasets contain a database of images, several

query images and most importantly, the ground-truth information about which collection im-

ages are relevant for each query. The comparison of different approaches is then based on an

evaluation protocol.

For the purposes of development of this thesis, two datasets have been used and will now be

described. First and foremost used dataset was Revisited Oxford (ROxford) [26]. Another one

was 24/7 Tokyo dataset [27].

18 CHAPTER 2. IMAGE RETRIEVAL

Image label

Easy Hard Unclear Negative
E
va
lu
at
io
n

p
ro
to
co
l Easy (E) POSITIVE ignored ignored negative

Medium (M) POSITIVE POSITIVE ignored negative

Hard (H) ignored POSITIVE ignored negative

Table 2.1: Evaluation protocols used in ROxford.

2.7.1 Revisited Oxford Dataset

Original Oxford Buildings Dataset [28] consists of 5 062 high resolution images (1024 × 768).

They were collected from Flickr (www.flickr.com) by searching for particular landmarks lo-

cated in Oxford, e.g., All Souls, Balliol, Christ Church, etc. This collection was then manually

annotated, raising 55 queries over which an object retrieval system can be evaluated.

Later on, ROxford [26] dataset was introduced. It contributes namely by fixing some an-

notation errors which are present in the original dataset and also by defining 15 new queries,

which are more challenging compared to the original ones. Images from which all the queries

had been cropped were excluded from the evaluation dataset and are provided separately. This

way, off-line pre-processing techniques are unable to use query images.

Besides the two sets of images (query and collection), bounding boxes and the ground-truth

are distributed along. Each query image has a Bounding Box (BBox), selecting the landmark

in the image. It simulates a user attempting to remove background clutter as well as cases of

large occlusion. Only features located inside of the regions cropped according to the BBox are

used for the search. Each collection image has a ground-truth label in regards to a query image:

• Easy: Query landmark is clearly depicted in the image.

• Hard: Query landmark is depicted in the image, but with difficult viewing conditions.

• Unclear: The image may show the query landmark under consideration, but the informa-

tion provided is insufficient to confidently determine its overlap with the queried region.

• Negative: None of the above applies.

These labels determine whether a retrieved image should be ignored, treated as positive or

treated as negative. There are three evaluation protocols - Easy (E), Medium (M), and Hard (H).

Each evaluation protocol defines how a label should be interpreted. All of them are delineated

in the Table 2.1 and will be used in result reports and tables all across this thesis.

Examples of images in the ROxford dataset are shown in the Figure 2.3.

2.7.2 24/7 Tokyo Dataset

24/7 Tokyo Dataset [27] is another city-based collection of images, this time in Tokyo. There are

125 distinct locations, at each location there are 3 different viewing directions, and the pictures

www.flickr.com

2.7. COMMONLY USED DATASETS AND EVALUATION 19

Figure 2.3: Examples of images in the ROxford dataset.

Figure 2.4: Examples of images in the 24/7 Tokyo dataset.

are taken at 3 different times of day. This sums up to a collection of size 125 × 3 × 3 = 1125

images.

The idea of this dataset is that every place is captured approximately in the same way and

from the same place, but with different lightning conditions - during the daytime, during the

sunset, and at night. Each image can serve as a query and the task is to find the other two.

In terms of the evaluation protocol, for each query, the other two images photographed at the

same location are considered to be positive. Other 6 images taken at the same place but with

a different viewing direction (2 other viewing directions, 3 times of day, 2× 3 = 6) are ignored

for the purpose of evaluation. The rest of the images (124 locations, 124 × 3 × 3 = 1116) is

considered to be negative.

Some examples are shown in the Figure 2.4. It is a single place photographed (from left)

during the daytime, during the sunset, and at night.

2.7.3 Evaluation metrics

A dataset, such as 24/7 Tokyo or ROxford, can be used to compare various methods and

approaches. But first, a metric system must be established such that the performance of a

retrieval system can be even measured.

Assume a standard classification task with two classes - relevant and irrelevant. Then there

are 4 possible results of the classification describing the relationship between the classification

label and the ground truth label. The options are depicted in the Table 2.2.

There are also other two terms which are often used to describe properties, or performance,

20 CHAPTER 2. IMAGE RETRIEVAL

Classification

Relevant Irrelevant

G
ro
u
n
d

tr
u
th Relevant True Positive (TP) False Negative (FN)

Irrelevant False Positive (FP) True Negative (TN)

Table 2.2: Binary classification results.

of a classification system. Let items labelled as relevant be called selected items. Then:

• Precision means: How many selected items are relevant? (precision = TP
TP+FP)

• Recall means: How many relevant items are selected? (recall = TP
TP+FN)

Image retrieval is not a standard classification task, but after all, the goal is to separate

or sort relevant and irrelevant images. A list of images is sorted according to some relevancy

score and the desired order is to have all the relevant images first, and irrelevant images after.

Therefore terms like precision@k and recall@k are used. The idea is simple - take top k images

(with the highest score) and compute the precision/recall based only on these k samples. Images

in the top k list are looked upon as if they were labelled (classified) as positive so the Table 2.2

is applicable for the computation in this case too.

Example: Assume having 10 collection images and sort them as RRIRRIIIIR (where R stands

for ground truth relevant and I for irrelevant). Let k = 4 and compute precision@4 and recall@4:

precision@4 =
3

3 + 1
= 75%

recall@4 =
3

3 + 2
= 60%

This approach has one significant drawback and that is the independence of the total number

of relevant images according to the ground truth. Imagine two queries, one with 5 relevant

answers and the other with 500 relevant answers. It is unclear which k should be chosen.

There is another evaluation metric used to evaluate a single query which is more suitable

for the retrieval task. It is Average Precision (AP). This AP metric is based on the previously

described precision and recall. In fact, AP is the area under a curve, where recall is on the X

axis and precision is on the Y axis. The previously mentioned example with 10 collection images

(RRIRRIIIIR) has AP equal to 79.11% and is showed in the Figure 2.5 as well as the ideal result

(RRRRRIIIII) with AP equal to 100%. Green element depict relevant images while red elements

mean irrelevant images (according to the ground truth). Every k-th element from left shows the

recall@k on the X axis and precision@k on the Y axis: see again the example mentioned above

with precision@4 equal to 75% and recall@4 equal to 60%, which is referred in the Figure 2.5

(a).

The AP metric is used to evaluate a single query. For an evaluation of multiple queries (for

example all queries in a dataset), Mean Average Precision (mAP) is used. The mAP metric is

computed as an average over all APs for all queries.

2.7. COMMONLY USED DATASETS AND EVALUATION 21

Figure 2.5: Examples of the AP for (a) RRIRRIIIIR with AP = 79.11% and (b) RRRRRIIIII

with AP = 100%.

22 CHAPTER 2. IMAGE RETRIEVAL

Chapter 3

Spatial verification

Having a query and corresponding list of collection images sorted by a retrieval system, the

first images of the list are expected to have a lot of visual features in common with the query.

Ideally, they should contain the same object as the query. If that is the case, there might exist

a geometric transformation which maps the object from one image into the other.

The process of estimating such transformations is called spatial verification, sometimes ab-

breviated as SV. It can be then used to re-sort the images according to various criteria or to

find a specific subset of images (e.g., zoomed images or pictures taken from a different and pre-

defined location), just to name a few use cases. However, the utilisation of the transformation

estimation does not necessarily apply only for image retrieval, but also elsewhere (e.g., image

stitching).

The spatial verification is described in this chapter. First, a commonly used algorithm is in-

troduced together with its possible enhancements. Then, its usage for transformation estimation

is shown. Possible improvements and different approaches to this transformation estimation are

discussed in the following part. Lastly, some specific use cases are described at the end of the

chapter.

3.1 RANSAC

Assume having two sets of measurements, also called data points. First set of measurements is

generated from a distribution with unknown parameters which one may want to estimate. This

distribution will be referred to as the underlying ground-truth distribution. Second set of data

points is generated from a different distribution. Furthermore, both sets of measurements may

include some Gaussian noise. If all the measurements originate only from the first distribution

(i.e., the second set is empty), its model parameters can be estimated using methods such as

Maximum Likelihood Estimation (MLE) or Ordinary Least Squares (OLS). The same holds also

for a case when the second set is not empty, but the measurements are distinguishable. Only

data points belonging to the first distribution would be taken into account for the parameters

estimation.

If the data points are indistinguishable, another methods should be chosen. These methods

23

24 CHAPTER 3. SPATIAL VERIFICATION

should be robust. It means that measurements which are inconsistent with a model should have

low (or even better - no) impact on its estimated parameters. Examples of such methods are M-

estimators or trimming [29], or Random Sample Consensus (RANSAC), which will be described

in further details in this section. Some applications may only need to separate the data points

into the two sets (e.g., anomaly detection, spam classification, etc.), while others might utilise

the concrete model parameters as well (e.g., homography estimation, stock market prediction,

etc.).

RANSAC is a paradigm for model fitting originally introduced by M.A. Fischler and R.C.

Bolles in 1981 [30]. It is an iterative algorithm for robust model estimation and has become one

of the most popular estimation methods in computer vision community [31].

The input of the RANSAC algorithm is a set U of data points from a measurements space

X. The algorithm itself consists of two steps executed repeatedly: a parameters generation step

and the verification step.

In the generation step, model parameters θ from a parameter space Θ are estimated using

a subset S of size m. This subset S is selected randomly from the input data set U . Particular
model parameters θ are called a hypothesis. Each hypothesis is then verified.

In the verification step, a hypothesis is evaluated using an error function ρ(θ,x) −→ R which

assigns an error value to each data point. This error is then compared with a hyper-parameter

threshold ∆ and if the error is lower or equal than ∆, the data point is considered to be consistent

with the proposed hypothesis. Consistent data points are called inliers. It is also commonly

said that inliers support a hypothesis or that a hypothesis has a support of n inliers. On the

contrary, if the error is higher than ∆, then the point is considered to be inconsistent with the

hypothesis and is called an outlier.

The output of the algorithm are model parameters θ∗ such that θ∗ optimise a cost function

J(θ,U ,∆) −→ R which typically returns the support for a particular hypothesis. Therefore the

hypothesis with maximum support over all the iterations is chosen:

θ∗ = argmax
θ

J(θ,U ,∆) = argmax
θ

∣∣{x ∈ U | ρ(θ,x) ≤ ∆}
∣∣ = argmax

θ

∑
T∈U

Jρ(θ,x) ≤ ∆K,

where J·K is the Iverson bracket which returns 1 if the statement is true and 0 otherwise.

An essential question to answer is how exactly does the hypothesis generation work. Before

a hypothesis is created, it is needed to determine what is the minimum number m of data points

to estimate model parameters uniquely. For example, a line is defined by two distinct points and

a homography is defined by four distinct pairs of corresponding points. After m is determined,

a subset S of size m should be randomly selected from the input data points U . This random

subset is called a sample. A sample can be contaminated, if it contains at least one outlier of

the underlying ground-truth model, or uncontaminated, if it contains all inliers. Only the latter

ones are of interest since the parameters of the underlying model can be estimated out of these

samples while parameters computed from data points including outliers can be arbitrary. The

lower m, the lower probability of generating a contaminated sample. Hence, the sample S is of

3.1. RANSAC 25

the minimum size m.

Having a random sample S, a hypothesis θ fitting the data can be uniquely and exactly

established by a function f(S) −→ Θ, which computes the model parameters out of the random

data points. For example, a line would be computed from the two distinct points as fline(x,y) =

x × y (where x is point x = [x, y]⊤ in homogeneous coordinates, x = [x, y, 1]⊤, and a line is

represented in a standard form, ax + by + c = 0). A homography would be computed from

the four distinct pairs of corresponding points using the Direct Linear Transformation (DLT)

algorithm [31].

Another question would be how many times should be the generation and verification steps

repeated. Although the number of iterations (generated hypotheses to be evaluated) can be set

statically to a fixed number by a hyper-parameter, it can be also computed dynamically based

on the probability that a better hypothesis will be generated.

Assume having N points, I of which are inliers of the underlying ground-truth model. Then

the probability of generating an uncontaminated (all-inlier) sample is:

P (inlier sample) =

(
I
m

)(
N
m

) =

m−1∏
j=0

I − j

N − j
≈

(
I

N

)m

= εm

where ε is the inlier ratio I/N .

Let η ∈ (0, 1) be a confidence that no better sample will be generated. Then in k-th iteration

it holds that:

P (bad model k times) = (1− P (inlier sample))k = (1− εm)k < 1− η

therefore at least k samples are required to find a solution with confidence η. From this equation,

the number of iterations k can be computed as follows:

(1− εm)k < 1− η

log(1− εm)k < log(1− η)

k log(1− εm) < log(1− η)

k ≥ log(1− η)

log(1− εm)
(3.1)

The larger size of the minimum sample m is, the more iterations are needed for a confident

estimate. Similarly, the lower the inlier ratio ε is, the more iterations are needed as well.

Demonstration of exact values is provided in the Table 3.1.

In practise, the inlier ratio ε is not known apriori, therefore the current highest support is

used instead. Each time a hypothesis with a higher support is discovered, the probabilities are

re-computed as well as the maximum number of iterations. The algorithm is terminated once

the iteration number exceeds the maximum number of iterations.

Nevertheless, this computation of maximum number of iterations assumes that an uncon-

taminated sample generates a model which is consistent with all inliers of the underlying ground-

26 CHAPTER 3. SPATIAL VERIFICATION

m
ε

15% 20% 30% 40% 50% 70%

2
η = 0.950; k = 130 73 32 17 10 4
η = 0.990; k = 200 110 49 26 16 6
η = 0.999; k = 300 170 73 40 24 10

3
890 370 110 45 22 7
1400 570 170 70 34 11
2000 860 250 100 52 16

4
5900 1900 370 120 46 11
9100 2900 570 180 71 17

1.4 · 104 4300 850 270 110 25

8
1.2 · 107 1.2 · 106 4.6 · 104 4600 770 50
1.8 · 107 1.8 · 106 7.0 · 104 7000 1200 78
2.7 · 107 2.7 · 106 1.1 · 105 1.1 · 104 1800 120

12
2.3 · 1010 7.3 · 108 5.6 · 106 1.8 · 105 1.2 · 104 210
3.5 · 1010 1.1 · 109 8.7 · 106 2.7 · 105 1.9 · 104 330
5.3 · 1010 2.7 · 109 1.3 · 107 4.1 · 105 2.8 · 104 500

18
2.1 · 1015 1.1 · 1013 7.7 · 109 4.4 · 107 7.9 · 105 1800
3.2 · 1015 1.8 · 1013 1.2 · 1010 6.7 · 107 1.2 · 106 2800
4.8 · 1015 2.6 · 1013 1.8 · 1010 1.0 · 108 1.8 · 106 4200

30
∞ ∞ 1.3 · 1016 2.6 · 1012 3.2 · 109 1.3 · 105
∞ ∞ 2.1 · 1016 3.1 · 1012 4.9 · 109 2.0 · 105
∞ ∞ 3.1 · 1016 5.1 · 1012 7.4 · 109 3.1 · 105

50
∞ ∞ ∞ ∞ 3.4 · 1015 1.7 · 108
∞ ∞ ∞ ∞ 5.2 · 1015 2.6 · 108
∞ ∞ ∞ ∞ 7.8 · 1015 3.8 · 108

Table 3.1: Number of iterations needed for a particular minimal sample size m (rows), inlier
ratio ε (columns) and confidence η (values 0.950, 0.990 and 0.999 for three rows in each cell,
respectively) [32]. Values are given only as an order of magnitude.

3.1. RANSAC 27

Figure 3.1: Examples of RANSAC assumptions violation [33]. Image (a) shows a case when
hypothesis is generated from an uncontaminated sample, but not all data points are consistent
with it. Image (b) shows a case of a contaminated sample with a large support.

truth model. However, this assumption is often violated due to a noise in the measured data

points. Violation of the assumption causes that the quality of the resulting model is affected

and/or the number of iterations needed is higher since the estimated inlier ratio is lower than

the ground-truth ratio, hence more iterations are needed.

Another assumption for the algorithm to work with the demonstrated probability guarantee

is that a hypothesis generated by a contaminated sample has a small number of inliers. This also

is not guaranteed since there can be cases when this assumption is violated. A wrong estimate

of parameters can be returned because of its high support.

Cases of the assumptions violation are depicted in the Figure 3.1. A few measurements

are used to estimate a line parameters. In the left picture, uncontaminated sample generates

a hypothesis which does not consider all other points as inliers, which can lead to imprecise

estimate as well as longer runtime. In the right picture, a contaminated sample generates a

hypothesis with a large support which leads to a wrong estimate [33]. Estimated line is red,

dashed lines represent the inlier threshold ∆, and red points form the sample used to generate

the line hypothesis. Green points are inliers consistent with the line while black points are

outliers. The underlying ground-truth line in both examples is y = x.

Full algorithm consists of looking for a hypothesis with the highest possible support over

multiple iterations until the probability of finding a better model is low enough. In each iteration,

a random sample of input data points is generated. Using this random sample, model parameters

are estimated and evaluated. The evaluation resides in computation of errors for each data point

given the generated model. Data points with error lower than a threshold are considered to be

inliers and their count forms the objective function which is being maximised. At the end,

the model with the highest support is returned. The whole algorithm is described also in the

Figure 3.2.

28 CHAPTER 3. SPATIAL VERIFICATION

Input: data points U , minimum sample size m, model function f(S), inlier threshold ∆, confi-
dence η
Output: Model parameters θ∗, hypothesis support s∗

1: k ← 0 ▷ Iteration number
2: kmax ←∞ ▷ Maximum iterations
3: θ∗ ← undefined ▷ Best hypothesis
4: s∗ ← −∞ ▷ Best support
5: repeat
6: Select random sample S of size m
7: Estimate parameters θ = f(S)
8: Count the support as s = J(θ,U ,∆) =

∣∣{x ∈ U | ρ(θ,x) ≤ ∆}
∣∣

9: if s > s∗ then ▷ So far the best
10: θ∗ ← θ
11: s∗ ← s
12: kmax = log(1− η)/ log(1− (s/|U|)m)

13: k ← k + 1
14: until k ≥ kmax

15: return θ∗, s∗

Figure 3.2: RANSAC algorithm.

3.2 RANSAC variants

There are several potential enhancements to the basic RANSAC algorithm. These improvements

can help to estimate the parameters of the final model more precisely or speed up the compu-

tation. Sometimes, prior knowledge or heuristics can be used to achieve such improvements.

A few enhancement examples will be described in the following subsections. Each of these

RANSAC variants offers advantages in different scenarios, providing researchers and practition-

ers with flexibility in choosing the most suitable algorithm based on the characteristics of their

data and computational requirements. Together, they show the flexibility, extendability, and

effectiveness of the original algorithm.

3.2.1 LO-RANSAC

First enhancement is Locally Optimised Random Sample Consensus (LO-RANSAC) [34]. This

adaptation aims to estimate model parameters more precisely, resulting in an increase in the

number of inliers and consequently, a reduction in the number of iterations according to the

Equation (3.1).

As it was already described, the number of iterations predicted from the mathematical model

is significantly lower than necessary due to assumptions which only rarely hold in practice. One

of the assumptions is that an uncontaminated sample generates a model which is consistent with

all inliers of the underlying ground-truth model. As depicted in the Figure 3.1 (a), this assump-

tion is easily violated by a noise in the data. And LO-RANSAC validates the aforementioned

assumption by employing local optimisation (often abbreviated as LO) on the solution estimated

from the random sample.

In the RANSAC algorithm, when a new hypothesis (generated from a minimal sample) is

3.2. RANSAC VARIANTS 29

evaluated and happens to be so far the best one, the model parameters are simply saved, as

in the Figure 3.2 on the line 10. The change in LO-RANSAC is that instead of simply saving

the parameters, the local optimisation step is carried out using current inliers and the locally

optimal parameters are saved instead.

The optimisation strategy can vary. The original paper [34] proposes four methods - simple

(linear optimisation, e.g., OLS), iterative (iteratively perform linear optimisation and progres-

sively reduce the threshold), inner RANSAC (new RANSAC with samples being drawn from

current inliers and evaluated on all data points) and inner RANSAC with iteration (combi-

nation of the inner RANSAC and iterative strategies). Nevertheless, any other optimisation

strategy can be used too, such as MLE or Levenberg-Marquardt algorithm [35] for non-linear

least squares problems.

This locally optimal parameters estimation deals with the noise present in the data, which

makes the original assumption valid and therefore the number of inliers is increased and the

number of iterations decreased. Concurrently, an experiment [34] verified that the number of

parameters updates (and hence number of optimisation steps) is lower than logarithm of the

number of samples drawn. Thus, local optimisation does not slow the whole procedure down.

On the contrary, the benefit in iterations decrease speeds up the whole procedure.

3.2.2 R-RANSAC

Matas and Chum pointed out that the speed of the RANSAC algorithm is influenced by two

key factors [36]. Firstly, the level of contamination, which determines the number of samples

that have to be randomly drawn in order to have a confidence guarantee in the optimality of

the solution. Next, the time spent by evaluating the quality of each hypothesis scales with the

size of the dataset. Typically, a large number of assessed model parameters are derived from

contaminated samples and are consistent with only a small fraction of the data. This insight

can be leveraged to extensively enhance the speed of the RANSAC algorithm.

They propose to implement a two-step randomised procedure for the hypothesis evaluation

(verification) step. First, a pre-check is performed. A hypothesis is verified only over a small

number d of measurements randomly drawn out of all N data points, d≪ N . If the number of

measurements consistent with the hypothesis is low, it is concluded with a high confidence that

the hypothesis is erroneous. On the contrary, if the number of inliers is high (i.e., the pre-check

passed), full evaluation on all N data points is performed.

This two-step hypothesis verification significantly decreases the number of overall evalua-

tions, hence increases the speed. As it was shown in the original work, the randomisation of

the model verification does not change the nature of the solution since the basic RANSAC is

already a randomised algorithm. The result is still correct only with a certain probability.

This variant of the algorithm nicely demonstrates the flexibility and universality of the

RANSAC. The idea that only a fraction of measurements is evaluated in order to speed up

the computation can be further extended even to the space of hypotheses. For example, in the

spatial verification, the fundamental question is whether two images contain the same object.

30 CHAPTER 3. SPATIAL VERIFICATION

When a hypothesis has a large enough score, the image pair can be considered to be verified

and the rest of the hypotheses does not need to be evaluated anymore.

3.2.3 PROSAC

Another RANSAC adaptation is Progressive Sample Consensus (PROSAC) [37], which aims to

speed up the standard algorithm. It addresses limitations of the original algorithm by prioritising

the selection of more reliable samples early in the process.

Given a (heuristics) method to sort the input data measurements according to a quality or

reliability, the PROSAC algorithm can employ this information in the process. Assuming that

the order of sorted samples is better than random, PROSAC uses the first portion of data to

generate the hypotheses. In other words, the samples which are more likely to be uncontaminated

are drawn earlier. The main idea is that hypotheses generated from this high quality data subset

should be more likely to be close to the underlying ground-truth distribution. They give a large

support and low probability of generating a better hypothesis.

The quality measure is specified depending on a particular problem and prior knowledge. For

example, SIFT descriptors are being matched in the original paper [37]. The quality measure

was defined as the ratio of the distances in the vector space of the best and second to best match.

The size of the ordered subset of data used for hypothesis generation is gradually increased,

up to the whole set. This implies that all possible sample combinations are drawn with a non-

zero probability. After all, the same samples as in standard RANSAC are drawn, only in a

different order, prioritising more promising samples first.

The sorted subset is used only for hypothesis generation, each hypothesis is verified against

the whole set of input measurements.

The algorithm has two stopping criteria, one of which must be satisfied. First, maximality

criterion, which follows the original RANSAC stopping condition - the probability of there

being an undiscovered solution with a higher number of inliers is sufficiently low. Second, non-

randomness criterion, stating that the probability of current inliers belonging by chance to an

incorrect model is low enough.

Sampling from progressively larger subsets can leads to substantial computational efficiency

gain. In contrast to RANSAC, PROSAC demonstrated an increase in speed by a factor of more

than one hundred when tackling non-trivial problems, as shown in [37].

3.3 RANSAC for spatial verification

At this point, local features for an image are detected and described. Each local feature is

identified by a location [x, y] and scale s, where it was detected. The scale s is determined

by the image up-scale or down-scale coefficient, which was used for detection. The location

coordinates are normalised into the original, non-scaled, image. It means that if a keypoint was

detected at coordinates [100, 200] in a two times up-scaled image, the location of the keypoint

in the original non-scaled image is [50, 100]. So the local feature carries its information x = 50,

3.3. RANSAC FOR SPATIAL VERIFICATION 31

y = 100, and s = 2.0, along with the descriptor d, visual word w, and possibly other properties.

Each image is be represented by a set of local features with the above mentioned proper-

ties. Since the properties contain some geometric information, they can be used to establish a

transformation between two images. If one image is the query and the other image is a collec-

tion image, it is said that the collection image is spatially verified when the transformation is

established.

In the first place, a type (group) of used transformations must be decided. There are several of

them, from a simple translation to a fully flexible homography. Then, correspondences between

points in the pair of images are established. These correspondences significantly reduce the

number of combinations - the search space of transformations to be examined. Lastly, the

transformation itself is established based on properties of the local features, or namely of the

local geometry (geometry present in the feature keypoint neighbourhood).

3.3.1 Types of transformations

First of all, points in an image (which is a two dimensional plane) are represented by a pair of

coordinates (x, y). Thus, the image is commonly identified with a vector space R2, where each

image point (x, y) is identified by a vector x = [x, y]⊤ ∈ R2. Furthermore, their homogeneous

coordinates are often used instead during computations, x = [x, y, 1]⊤. The homogeneous vector

is always normalised in such a way the last coordinate equals to one, i.e., vectors [kx, ky, k] for

k ̸= 0 are equivalent and refer to the same point (x, y) in an image. Adding also vectors with

the last coordinate equal to zero results in a projective space P2 [31], which will be described

later in the Section 4.3.1.

For now, consider only homogeneous vectors with non-zero third coordinate. This represen-

tation introduces two major benefits and consequences: (1) projective transformations can be

used, as will be described in this section, and (2) simple translations can be expressed in a basic

matrix notation by multiplication, without the necessity of introducing additions to the formula:

[
x+ tx

y + ty

]
=

[
x

y

]
+

[
tx

ty

]
corresponds to

x+ tx

y + ty

1

 =

1 0 tx

0 1 ty

0 0 1

x

y

1

 .

Therefore, all 2D image transformations can be represented by a 3× 3 matrix.

There are several basic types (groups) of 2D geometric image transformations: translation,

rigid, similarity, affine, and projective [38]. All of them are reproduced in the Table 3.2 and

in the Figure 3.3. Also, a visualisation is provided in the Figure 3.4. Each type has a specific

format, properties, and interpretation. First three of them (translation, rigid and similarity

transformations) are clear - they add support for translation, rotation, and a isotropic (single)

scale, respectively. Affine transformations support also anisotropic (dual) scale and shear. They

hold significance due to their close relation to projective transformations.

A projective transformation is the most general 2D image transformation, which maps four

points onto any arbitrary four points. This transformation is also referred to as a homography

32 CHAPTER 3. SPATIAL VERIFICATION

Name #DOF Preserves Supports

translation 2 orientation + ... translation

rigid (Euclidean) 3 lengths + + rotation

similarity 4 angles + + isotropic scale

affine 6 parallelism + + anisotropic scale, shear

projective 8 straight lines ... + perspective transform

Table 3.2: Hierarchy and properties of basic 2D geometric image transformation types [38].

(translation)1 0 tx
0 1 ty
0 0 1

(rigid)cos θ − sin θ tx

sin θ cos θ ty
0 0 1

(similarity)s cos θ −s sin θ tx

s sin θ s cos θ ty
0 0 1

(affine)a b tx
c d ty
0 0 1

(projective)h11 h12 h13
h21 h22 h23
h31 h32 h33

Figure 3.3: Matrices for transformation types.

matrix. Because of the homogeneous vectors, the transformation is defined up to scale (hence

only eight Degrees of Freedom (DoF), not nine, see the Table 3.2). Defining the full matrix,

including the scale, would have no influence since the point coordinates would be normalised

anyway. It is common to normalise the projective matrix in such a way that the very last

element, h33, equals to 1.

All these transformation groups are closed under composition and inverse. It means that a

composition of, for example, two affine transformations is still an affine transformation and even

its inverse is an affine transformation.

In addition, there are three special transformation sub-types used later in this thesis. They

are restricted versions of the basic types defined earlier, meaning that they have an additional

constraint limiting their flexibility as well as the number of parameters (and DoF).

1. A combination of a translation and an isotropic scale. It is a special case of a similarity

transformation with no rotation, i.e., θ = 0. Hence, it has three DoF. See the Figure 3.5

(1).

2. A combination of a translation and an anisotropic scale (different scale coefficients for each

axis). It is not a similarity anymore, but a special case of an affine transformation with

no shear. Hence, it has four DoF. See the Figure 3.5 (2).

3. A combination of a translation and a vertical shear. It is a special case of an affine

transformation with five DoF. See the Figure 3.5 (3).

3.3. RANSAC FOR SPATIAL VERIFICATION 33

Figure 3.4: Basic types of 2D geometric image transformations [38]. Additionally, restricted
sub-types are added at the bottom.

(1)
(restricted similarity)s 0 tx

0 s ty
0 0 1

(2)

(restricted affine 1)sx 0 tx
0 sy ty
0 0 1

(3)

(restricted affine 2)a 0 tx
b c ty
0 0 1

Figure 3.5: Matrices for restricted transformation sub-types.

The matrices for these restricted transformations are reproduced in the Figure 3.5. Some

of these types and sub-types will be used as models for transformation estimation between two

images. All of them are also visualised in the Figure 3.4.

3.3.2 Point correspondences

In order to estimate parameters of a line, two points in space must be provided. The points are

primitives (or basic entities) used for estimation of the model parameters, in this case the line.

Given n measurements, there are
(
n
2

)
≈ n2 combinations of point couples, resulting in n2 line

parameters. In terms of the RANSAC algorithm, there are n2 possible hypotheses.

For 2D geometric image transformations, the situation gets more complex. The transforma-

tion defines a mapping of points in one image onto points in another image, so the primitives

defining a particular transformation are tentative point correspondences. The most general

transformation type is the projective transform, as described in the Section 3.3.1, which is

defined by four point correspondences.

Let there be two images, with n detected points each, i.e., each image has n points for the

transformation estimation. A single model is defined by four point correspondences. Therefore,

there are
(
n
4

)
combinations of how to select the foursome of points in a single image. The same

amount applies for the second image. At the end, there are 4! ways how to assign the tentative

34 CHAPTER 3. SPATIAL VERIFICATION

correspondence relations. Putting that all together, there are(
n

4

)
·
(
n

4

)
· 4! ≈ n4 · n4 = n8

possible hypotheses. It is unbearable even for a small n and also hostile to the RANSAC

algorithm in terms of the inlier ratio ε, as defined in the Section 3.1. One point in the first

image can correspond to every single point in the second image while at most one tentative

correspondence is correct. This leaves an upper bound on the inlier ratio ε ≤ 1
n . Considering

an example with n = 7, there must be more than 5 900 iterations according to the Table 3.1

(m = 4, ε ≈ 15%).

In order to reduce the number of iterations, either the size of the minimum sample has to be

decreased or the inlier ratio has to be increased. Ideally both. Minimum sample size is discussed

in the subsequent Section 3.3.3, now the focus is given to the inlier ratio.

Considering all possible combinations of points as tentative correspondences is superfluous.

Instead, the idea is to restrict the consideration to only those correspondences that have a

potential to be correct. The simplest restriction is to pair only those points which belong to the

same visual word.

Points in an image are detected and after the detection, they are described, assigning each

feature a descriptor d and corresponding visual word w. The descriptor is dependent on the

neighbourhood of the detected point and points with visually similar neighbourhoods should

have similar descriptors, hence they should have the same visual words assigned. Pairing only

features belonging to the same visual word means that only visually similar regions are considered

for tentative correspondences.

The basic algorithm for the tentative correspondences generation is as follows: assume a pair

of images is represented by a pair of feature sets, each feature F has an assigned visual word w.

For each visual word wi, take a subset of features from the first image I1 belonging to the visual

word wi (F (wi)
I1) and in the same way take also a subset of features from the second image I2

belonging to the very same visual word wi (F (wi)
I2). Their Cartesian product defines tentative

correspondences C(wi) = F (wi)
I1 ×F

(wi)
I2 . This C(wi) is just a subset of all tentative correspondences

generated from a single visual word wi. The set of all tentative correspondences C is a union

over all visual words:

C =
⋃

wi∈W
C(wi)

where W is a set of all visual words.

A subset C(w) can be further restricted or completely disregarded. Having a lot of features

belonging to the same visual word w, the number of tentative correspondences gets too large and

the inlier ratio decreases. This resembles the original issue. A common technique is to completely

discard the subset C(w) if its size is larger than a threshold. If the tentative correspondences

can be sorted according to their quality, instead of discarding all of them, only a top part is

kept. The quality can be measured based on the similarity of the corresponding descriptors or

residuals and it can be also returned together with the correspondences in order to be used later

3.3. RANSAC FOR SPATIAL VERIFICATION 35

Input: input features FI1 and FI2 sorted by visual words, corresponding visual words w(F)
Output: List of all tentative correspondences C
1: C ← {}
2: i, j ← 0, 0
3: while i < length(FI1) & j < length(FI2) do
4: if w(FI1[i]) = w(FI2[j]) then ▷ The same visual word
5: jstart ← j
6: while j < length(FI2) & w(FI1[i]) = w(FI2[j]) do ▷ Fix i and iterate over j
7: C.add([i, j])
8: j ← j + 1

9: j ← jstart
10: i← i+ 1
11: else if w(FI1[i]) < w(FI2[j]) then ▷ Different visual word, increment i or j
12: i← i+ 1
13: else
14: j ← j + 1

15: return C

Figure 3.6: Basic unrestricted algorithm for tentative correspondences generation.

on, e.g., for a weighted evaluation (as will be described in the Section 3.4.1). However, retaining

these descriptors or residuals places high demands on memory which makes it an unsuitable

choice for large collections.

Although the tentative correspondences generation algorithm might seem to be intricate,

there is an efficient method. All correspondences can be generated with a linear time complexity

for sorted feature lists (O(n log n) for unsorted), with a slight overhead for the version with the

limited discarding, because Cartesian products for all visual words need to be generated. In the

worst case, all features in a pair of images would belong to the same visual word, resulting in

O(n2) time complexity for the product. Nevertheless, this scenario has a low probability and it

is intended to avoid this — it would mean the vocabulary is not very descriptive.

Collection images are processed offline, making it possible to have the sorted feature lists

prepared. The main idea is to have the features sorted according to their visual word and then

iterate through the two lists. If current pair of features has the same visual word, then tenta-

tive correspondences should be generated. Otherwise, move the belated list one step forward.

The maximum number of tentative correspondences can be again restricted by a threshold, a

hyper-parameter. A basic version of the algorithm (without the restrictions for maximum corre-

spondences) is described in the Figure 3.6. Note that the output list of tentative correspondences

is again sorted according to visual words. This known order can be used later to speed up an

advanced hypothesis verification.

This algorithm significantly reduces the number of tentative correspondences from any pos-

sible (∼ n8) to just a few hundreds. It leaves only a subset of promising correspondences, which

is then used in the RANSAC algorithm. It can be seen as a form or adaptation of PROSAC

described in the Section 3.2.3. All possible tentative correspondences are sorted using visual

words, obviously unpromising ones are disregarded right away, leaving only primitives with a

higher potential for a success.

36 CHAPTER 3. SPATIAL VERIFICATION

3.3.3 Local geometry for object retrieval

Second way how to increase the inlier ratio is to decrease the minimum sample size for hy-

pothesis generation. Previously mentioned projective transformation with eight DoF needs four

correspondences to estimate the transformation parameters, while affine transformation with six

DoF needs only three tentative correspondences. The resulting transformation may not be as

precise, but is sufficient in many cases. Furthermore, it can serve only as an initial estimate for

further re-estimation, as described in the Section 3.4.6.

The transformation type can be eased up further more. Each feature has at least its position

and scale detected, so in the worst case scenario these pieces of information can be used to

establish a restricted similarity with three DoF, as described in the Section 3.3.1 and showed

in the Figure 3.5 (1). To estimate parameters of this transformation, only a single tentative

correspondence (only one primitive) is needed. While the number of hypotheses exponentially

decreases, the precision of such models is poor since it is unable to capture the underlying

ground-truth transformation. Nevertheless, this approach will be used very often throughout

the thesis.

There is yet another option. Instead of using less flexible transformation types, some assump-

tions can be introduced and each feature can be equipped with additional pieces of information.

These tools could be used for better parameter estimation - high number of DoF is kept while

less primitives are used for hypothesis generation.

Typically, photos are taken from a restricted range of canonical views. One of the axes in the

image is often parallel with the ground. Modern cameras can also detect landscape mode (where

the image is rotated by ninety degrees) and transform the image accordingly. This results in the

vast majority of pictures having the x axis parallel with the ground and most importantly, with

similar (upright) view orientation. This prior information can be used as an assumption [28].

Next, shape information in the feature image region can be exploited, even in a memory

efficient way, as suggested in [39]. Local geometry around the feature can be represented by an

ellipse. It is convenient to represent the ellipse by a lower triangular matrix A, which is mapping

points on a unit circle to points on the ellipse:

A =

[
a 0

b c

]

This matrix A can be defined up to an unknown rotation. The position, ellipse shape, and the

(unknown) rotation form an affine frame. As proposed in the original work [39], it is assumed the

orientation can be ignored. This assumption, coupled with the selection of A that preserves the

orientation of the vertical axis, can be understood as implying the existence of a gravity vector –

a vector within an image that points downward in the direction of gravity and is preserved. This

gravity vector can be leveraged in the initial feature description. For each feature, a local affine

frame is computed and utilised to normalise a neighbourhood region surrounding the keypoint.

Subsequently, a descriptor is generated based on this normalised neighbourhood.

Furthermore, it has been shown that the local affine frames can be discretised into a com-

3.3. RANSAC FOR SPATIAL VERIFICATION 37

pact representation [39]. The memory requirements are reduced without a significant loss in

performance.

In other words, from a high level perspective, each feature can be represented by an affine

frame. This affine frame specifies feature location x = [x, y]⊤ and some other parameters, a, b,

and c, describing the image structure in a local neighbourhood. These five parameters can be

then used to estimate a restricted affine transformation with five DoF (see the Section 3.3.1 and

the Figure 3.5 (3)) using just a single tentative point correspondence.

Even though this approach brings a useful insight into the local geometry of all features,

it cannot be used in all cases. For example, HOW features (described in the Section 2.6)

are detected using a Convolutional Neural Network (CNN). It is not possible (nor desired) to

normalise the local feature patches according to a gravity vector and even the exact location is

unknown. Therefore simple transformation types, as described in the beginning of this chapter,

must be used.

3.3.4 Transformation estimation

First, a short review of symbols used in the RANSAC algorithm: there is a set U of data

points x from a measurements space X; a random subset S of size m for hypothesis generation;

model parameters θ from a parameter space Θ; function f(S) −→ Θ to estimate a hypothesis

parameters from a minimal sample; error function ρ(θ,x) −→ R; threshold ∆ for inlier recognition;

cost function J(θ,U ,∆).

The algorithm can be applied for a robust estimation of a transformation between two images.

The measurements space X is made up of all possible pairs of feature correspondences in the two

images. A tentative correspondence (an item from the measurements space X) will be denoted as

T such that x can be used for a feature location. Each feature consists of a position x = [x, y]⊤,

scale s, visual word w and possibly some other pieces of information. The amount of all possible

correspondences is way too large, so just a subset U is picked based on the visual words, as

described in the Section 3.3.2. A random subset of m tentative correspondences is selected for

the subset S. In most cases, the estimation task is defined in such a way m = 1 (either by

providing additional pieces of information for each feature, by introducing assumptions or by

using restricted transformation types, as described earlier in the Section 3.3.3). Furthermore,

the random subset S is not random per se, but all tentative correspondences from the pre-defined

set U are used sequentially. The parameter space Θ consists of all 9-tuples defining 3×3 matrices

representing image transformations. Just a subset of all matrices is often considered given the

transformation type being estimated (e.g., for a simple translation, only a 2-tuple is needed).

The function f(S) −→ Θ then assigns a particular n-tuple θ given a tentative correspondence

of two features. Error function ρ(θ, T) −→ R takes a transformation matrix given from θ and a

tentative correspondence T . Since the correspondence T is a pair of features, each feature having

a position x = [x, y]⊤, the error function tries to transform the feature from the first image into

the second image using the estimated matrix. Then, the distance of the transformed feature

from the first image and the original feature in the second image is returned as the error value.

38 CHAPTER 3. SPATIAL VERIFICATION

This error value is then compared to a threshold ∆ to determine whether the correspondence

should be considered as an inlier or not. In this context, ∆ is measured in pixels. All tentative

correspondences from the set U are evaluated. Finally, all inliers are simply counted and the

count is used as the value of the cost function J(θ,U ,∆) −→ R.

Throughout the thesis, two types of features are used, both are evaluated mainly over the

ROxford dataset. First are HOW features [24] (described in the Section 2.6). ResNet50 [25] with

the last block skipped was used as the backbone fully-convolutional network. It was initialised by

pre-training on ImageNet [40]. During the training phase, vocabulary of size 64 ∗ 1024 = 65 536

was estimated using the K-means algorithm. As a shortlist, ASMK retrieval system was used,

as in the original work [24]. Only top 100 images are used for the spatial verification. Each

feature F has an approximate location x = [x, y]⊤, a scale s, a descriptor d, a visual word w,

and a quantised residual vector r. The HOW features are the main features for the thesis. Since

they are estimated using a CNN, the exact position is unknown. The location x = [x, y]⊤ is

only an approximation acquired by backtracking the network, knowing its structure. This may

lead to inaccurate transformations being estimated.

Secondly, SIFT features [9] together with local affine frames [39] are used as well. In this

case, the BoW approach (as described in the Section 2.5.1) was used to obtain a shortlist.

The vocabulary has size of 1 000 000 and was estimated using the K-means algorithm as well.

Again, top 100 images were re-ranked using the spatial verification. Each feature F has a position

x = [x, y]⊤, visual word w, and parameters a, b, and c corresponding to a local affine frame.

These descriptors were used to verify the correctness of the base algorithm implementation

since it has already been shown to bring improved results while spatial verification with HOW

features has not been used yet. In order to move closer to the first case with HOW features,

residuals and scales must be somehow acquired. Because neither the original descriptors nor

the cluster centroids were available in the data provided for the purpose of development of this

thesis, residuals are assumed to be zero vectors. As a consequence, tentative correspondences

cannot be sorted according to a similarity of descriptors. Regarding scales, the local affine

frame parameters are used to estimate the scale s. The affine frames form an ellipse, so features

containing only a scale can be understood as if they represent a circle. As it was already

described in the Section 3.3.3, the parameters a, b and c form a lower triangular 2 × 2 matrix,

which can be directly used to estimate an affine image transformation:

A =

a 0 tx

b c ty

0 0 1

This matrix transforms points on a unit circle with the centre in [0, 0] onto an ellipse with

the centre in the keypoint [tx, ty]. The parameters a and c define the scale over the x and y

axes, respectively, while b defines the vertical shear. The parameter b is ignored and only a and

c are used to estimate the isotropic scale s. It is computed as a geometric mean over the two

numbers, i.e., s =
√
a · c. It can be interpreted as the square root of the determinant of the 2×2

3.3. RANSAC FOR SPATIAL VERIFICATION 39

sub-matrix (the local affine frame), s =
√
|A2×2| =

√
a · c− b · 0 =

√
a · c.

Having features F with a location x, a scale s, a visual word w, and residual r (i.e., F =

(x, s, w, r)), the RANSAC algorithm can be described in detail.

First, the measurement space X is a space of all tentative correspondences between features.

Features, which are detected in the pair of images and assigned to visual words, are used to gen-

erate a set of tentative correspondences, U . Maximum number of all tentative correspondences

was set to 1 500, while maximum number of tentative correspondences generated from a single

visual word was set to 15. In the case of HOW features, residuals are utilised to sort the features

and pick only the top N in the event of encountering either of the thresholds. Since a binary

quantisation method was used for their compression, Hamming distance is used to estimate the

similarity between two residuals. As it was described earlier, Hamming distance is the number

of positions at which the corresponding symbols are different. The Hamming distance is then

normalised into the interval [−1, 1] in such a way that −1 stays for completely different and 1

for the same (i.e., the Hamming distance equal to 0).

The tentative correspondences are then iterated over, each one of them serving as a subset

S of size m = 1 and generating a hypothesis. The estimated transformation type is chosen to

be the restricted similarity sub-type, i.e., a combination of a translation and an isotropic scale,

as in the Figure 3.5 (1). The parameters space Θ consists of 3-tuples defining the translation

and scale between the images. Every hypothesis θ (a set of parameters) is estimated from a

single pair of (tentatively) corresponding features F1 = (x1, s1, w1, r1), F2 = (x2, s2, w2, r2). In

particular, only the locations x1 = [x1, y1]
⊤, x2 = [x2, y2]

⊤ and scales s1, s2 are used. The

restricted similarity matrix can be decomposed into two translation and two scale matrices for

an easier interpretation:

M = T2S2S
−1
1 T−1

1

=

1 0 x2

0 1 y2

0 0 1

s2 0 0

0 s2 0

0 0 1

1
s1

0 0

0 1
s1

0

0 0 1

1 0 −x1
0 1 −y1
0 0 1

=

s2
s1

0 −x1 s2s1 + x2

0 s2
s1
−y1 s2s1 + y2

0 0 1

 (3.2)

The translation matrices T1 and T2 translate the coordinate origin into the keypoint loca-

tions x1 and x2, respectively. Similarly, matrices S1, S2 transform the normalised scale into

the scale of a particular image. Given the tentative correspondence features F1 and F2, the

hypothesis is generated using the function f(S) = f({(F1,F2)}) −→ (s2s1 ,−x1
s2
s1
+x2,−y1 s2s1 +y2).

The transformation matrix is then generated simply by substituting the values into the matrix

M in the Equation (3.2), which transforms points from the first image into the second image.

Each hypothesis should then proceed to the verification step. Given a particular transfor-

mation matrix Mθ, all tentative correspondences from the set U are evaluated using an error

40 CHAPTER 3. SPATIAL VERIFICATION

Easy Medium Hard

S
IF

T

BoW 66.26 53.53 31.64

Basic SV 69.74 55.92 33.49

Optimal 79.41 61.68 40.40

H
O
W

ASMK 94.75 78.19 55.51

Basic SV 85.80 71.83 45.93

Optimal 97.80 83.97 67.43

Table 3.3: mAP percentage for SIFT and HOW features on ROxford - BoW and ASMK base-
lines, basic SV and optimal results.

function. In this case, the error function transforms keypoints of all features in the first image

into the second image using the transformation matrix Mθ. Then, the distance of this trans-

formed keypoint and the keypoint belonging to the corresponding feature in the second image

is returned as the error value.

ρ(θ, T) = ρ(θ, (F1,F2)) = |Mθx1 − x2|2

The error value is then compared to the threshold ∆. During experiments, this hyper-

parameter was set to ∆ = 62. If the error is lower or equal, then the correspondence is considered

to be an inlier. The count of all inliers determines the final value of the cost function for a given

hypothesis:

J(θ,U ,∆) =
∣∣{T ∈ U | ρ(θ, T) ≤ ∆}

∣∣
After evaluating all hypotheses (one hypothesis per tentative correspondence), the one with

the highest cost function value is returned.

The algorithm described above represents the very basic version, leaving ample room for

improvement. Several enhancements, extensions, and adaptations will be introduced and de-

scribed in the next section. But already this algorithm gives meaningful results if the RANSAC

assumptions are met.

This algorithm was evaluated on the SIFT and HOW features. The results are in the

Table 3.3. Each column represents one evaluation protocol, as described in the Section 2.7.1.

For SIFT features, the BoW approach was used to obtain the shortlist. For HOW features,

ASMK approach was used instead. In both cases, top 100 images were proceeded to the spatial

verification. The results for the SIFT features are improved while the results for HOW features

are significantly worse. The optimal results were computed as well - how would the mAP look

like if the first 100 images for each query were sorted perfectly, i.e., the relevant in the beginning

and irrelevant only after.

An example of how an estimated transformation can look like is shown in the Figure 3.7.

The transformation of the query Bounding Box together with inlier correspondences is depicted

in red colour.

3.4. POSSIBLE ADAPTATIONS 41

Figure 3.7: An example of an estimated affine transformation.

3.4 Possible adaptations

The basic spatial verification algorithm has ample room for improvement. Weights of tentative

correspondences can be utilised, different cost functions may be tried or local optimisation might

be added. Not only these possible enhancements will be described in this section. The goal is

to improve the basic version of the algorithm in such a way that the results are better both in

increased mAP and in more precise transformations (e.g., more inliers for TP images).

Some of the approaches will be described in the following sections. In each case, the base

algorithm, to which are applied described changes, is the one just described in the Section 3.3.4.

It will be referred to as the Basic SV.

3.4.1 Weighted correspondences

The first method utilises weights of the tentative correspondences — or, more precisely, the

weighted inlier score in the cost function [39].

In the original formulation, all features belonging to the same visual word are considered to

be completely equal. But a visual word can be understood as a part of the descriptor space (it

is a Voronoi cell in a Voronoi tessellation in case of the K-means algorithm). Its size is unknown

and depends on the training data and method. The original descriptor space is often infinite,

meaning that at least some visual words cover an unbounded partition of the space. This is

just one option which leads to the possibility of having two very different features with distant

descriptors, yet assigned to the same visual word. If a tentative correspondence generated

from these features is considered to be an inlier given a hypothesis, it is most likely a mistake.

Therefore, it might be beneficial to assign a lower weight to such correspondences. On the

contrary, if two features have exactly the same descriptors, the weight should be high.

When the original descriptors or residuals are known, the similarity of corresponding features

42 CHAPTER 3. SPATIAL VERIFICATION

Figure 3.8: Different weight adjustment functions.

can be computed and used for the weights assignment. But this almost never happens for large-

scale image databases, because storing entire vectors for each feature is memory demanding.

Therefore, as it was already described, quantised residuals are used instead as a trade-off. They

are used already in the tentative correspondences generation, as explained in the Section 3.3.2

and the Section 3.3.4. Let it be reminded that the similarity falls within the range from −1 to

1.

These similarities (generated from the corresponding quantised residuals) are returned to-

gether with the tentative correspondences. Although the similarity relates to the pair of corre-

sponding features, it is being referred to as a correspondence similarity. This similarity coefficient

can be then used as a weight in the cost function for a particular element. Due to the range

of values, weights are often passed through one more function, adjusting their final influence on

the score. The final cost function is as follows:

J(θ,U ,∆) =
∑
T∈U

w(s(T))Jρ(θ, T) ≤ ∆K,

where s(T) is the similarity corresponding to the tentative correspondence T , w is the weight

adjustment function and J·K is the Iverson bracket (it outputs one for true and zero for false

statements).

Different weight adjustment functions were tried — linear, square, and cubic functions. They

were also combined with clipping the value at a minimum of zero. All the functions are visualised

in the Figure 3.8. In addition, exponential function f(x) = ex was used too.

Note the shift and the multiplicative constant in the square weight adjustment function

3.4. POSSIBLE ADAPTATIONS 43

Figure 3.9: Histogram of similarities of correspondences, which generated optimal hypotheses.

(f(x) = 1
4(x+ 1)2). The reason for the shift is for the function to be increasing on the interval

[−1, 1]. The multiplicative constant then keeps the range of values in the original interval. It

does not change the order, which is the decisive factor in the cost function. Hence, the results

are the same as if there was no (or any other positive) coefficient.

Clipping values at a minimum of zero results in ignoring the tentative correspondences with

a negative similarity in the cost function. But these correspondences are still used for hypothesis

generation, which is an important factor. The histogram in the Figure 3.9 shows that tentative

correspondences with a negative similarity can also end up generating the optimal hypothesis

and therefore are useful. Weighted spatial verification with the clipped linear function (f(x) =

max(x, 0)) was computed over all queries in the ROxford dataset on a shortlist of size 100

images. For each image pair, an optimal hypothesis was estimated. Then, the original tentative

correspondence was taken and its similarity was looked up. The histogram was computed from

these similarity values, separated by the relevance of the image pair. It is representing which

similarity values do tentative correspondences generating optimal hypotheses have. It can be

seen that optimal hypotheses between relevant images tend to be generated from correspondences

with a higher similarity and also that 9.75% of them were generated from a correspondence with

a negative similarity. In case of irrelevant image pairs, 13.80% of optimal hypotheses were

generated from a correspondence with a negative similarity. The vertical lines in the chart

represent the minimum and maximum value in the corresponding list of similarities.

Because the dataset with SIFT features does not contain the residuals, this adaptation was

evaluated only on HOW features, which have all the necessary information. Weighting in general

seems to improve the results. All weight adjustment functions achieved a higher mAP than the

basic spatial verification. Best results (in terms of the highest mAP) were achieved by the linear

44 CHAPTER 3. SPATIAL VERIFICATION

Easy Medium Hard

Basic SV 85.80 71.83 45.93

f(x) = x 88.35 73.93 49.52

f(x) = 1
4(x+ 1)2 87.74 73.16 48.50

f(x) = x3 87.07 73.44 49.66

f(x) = max(x, 0) 88.21 73.85 49.40

f(x) = (max(x, 0))2 88.31 73.98 49.77

f(x) = (max(x, 0))3 87.04 73.45 49.68

f(x) = ex 87.08 72.89 48.28

Table 3.4: mAP percentage for HOW features on ROxford - weighted score with different weight
adjustments functions.

function, simple clip function, and the clip combined with the square function. All the results

are shown in the Table 3.4.

3.4.2 Local optimisation

Another method applies the local optimisation, similarly to the LO-RANSAC described in the

Section 3.2.1. The only difference is that the original formulation uses random subsets for

hypotheses generation and optimises the model each time a better hypothesis is found, while in

this case, a pre-defined list of primitives is sequentially evaluated and the local optimisation is

performed only once, at the end, for the best model.

Assume a hypothesis with N tentative correspondences marked as inliers. Let (xi,x
′
i) for

i = 1...N be the corresponding points xi = [xi, yi]
⊤ in the first image and x′

i = [x′i, y
′
i]
⊤ in the

second image. Then for an affine transformation H the following holds:

Hxi = λx′
i

a b tx

c d ty

0 0 1

xi

yi

1

 = λ

x′i

y′i

1

Each correspondence produces a set of two linear equations:

3.4. POSSIBLE ADAPTATIONS 45

[
xi yi 0 0 1 0

0 0 xi yi 0 1

]
︸ ︷︷ ︸

Ai

a

b

c

d

tx

ty

︸ ︷︷ ︸

h

=

[
x′i

y′i

]
︸︷︷︸
bi

The vector h represents the parameters of the affine transformation matrix H. Denote A,

b as a set of all equations, i.e., stacked Ai, bi for all i = 1...N . Since there are six unknowns,

at least three correspondences (which are not collinear) are required in order for the set of

equations to be determined with a unique solution. In that case, the equations matrix A has

shape 6× 6 and an inversion exists. The solution is obtained as h = A−1b. If more than three

correspondences are available, the solution can be obtained using a pseudo-inverse as:

h = (A⊤A)−1A⊤b

Computing the locally optimal affine transformation might change the arrangement of in-

liers, i.e., outliers may become inliers and vice versa. Therefore this optimal transformation

is evaluated. If the value of the cost function increases, it means the inliers arrangement has

changed and the local optimisation process can be executed again. This forms a recursive loop

which ends as soon as the cost function stops increasing.

Since the number of correspondences is limited, the cost function has an upper bound too.

As a consequence, the stopping criterion is always reached. If the inliers arrangement changes

were observed instead of the cost function, there could be two hypothesis alternating infinitely,

including and excluding two correspondences over and over again. A change in the cost function

implies a change in the inliers arrangement, but this implication does not hold in the opposite

direction.

The local optimisation was evaluated on both SIFT and HOW features, results are in the

Table 3.5. In the case of HOW features, the mAP has increased in comparison to the basic spatial

verification algorithm. For SIFT features, the performance has surprisingly slightly dropped. It

can happen due to an issue described in the Section 3.4.4 which causes mistaken correspondences

to influence the optimal solution.

3.4.3 Local optimisation on top N models

The local optimisation does not have to be used only for the best hypothesis. It can happen

that another hypothesis converges to a better solution. That is the idea which leads to a slight

enhancement of the previously mentioned LO version.

Simply perform the local optimisation on top N models, not only on the single one. Model

with the best cost function value is then chosen.

46 CHAPTER 3. SPATIAL VERIFICATION

Easy Medium Hard

S
IF

T Basic SV 69.74 55.92 33.49

SV with LO 69.47 55.63 32.95

H
O
W Basic SV 85.80 71.83 45.93

SV with LO 86.81 71.55 44.01

Table 3.5: mAP percentage for SIFT and HOW features on ROxford - basic SV and SV with
LO.

Figure 3.10: Change in mAP when multiple hypotheses are passed into the LO.

Results are presented in the Figure 3.10. The x axis shows the number of hypotheses passed

into the local optimisation. The y axis shows how much does the mAP change in comparison

to the case when only a single hypothesis was optimised.

3.4.4 Enhanced verification

Currently, the inliers are determined only based on a threshold of a distance. This approach has

one large flaw — a single feature in an image can be considered as an inlier multiple times [39].

As described in the Section 3.3.2, tentative correspondences of features belonging to a visual

word are generated using a Cartesian product. In other words, multiple features in the first

image can correspond to a single feature in the second image, and vice versa. If some of the

features in the first image are located nearby each other, all of them can fall under the threshold

∆ after being transformed by a hypothesis. This results in a single feature in the second image

generating more than one inlier. This situation is depicted in the Figure 3.11. There are four

features in the first image, all of them corresponding to a single feature in the second image.

All features are depicted in black. The arrow represents a hypothesis which transforms the

features from the first image into the second one. The transformed features have grey colour.

The threshold ∆ around the feature in the second image is shown as a black circle. Since all four

transformed features fall under the threshold, all four tentative correspondences are considered

to be inliers.

3.4. POSSIBLE ADAPTATIONS 47

Figure 3.11: Example of multiple features corresponding to a single feature.

This case does not happen only rarely. It often occurs in real pictures when a repetitive

pattern is present, for example: brick wall, tiled floor, foliage in a forest, textile designs, urban

skylines, ripples in water, roof tiles, etc.

In reality, it does not make any sense for a single feature in an image to correspond to

multiple features in another image. Inlier features should be in a One-To-One relationship. This

constraint can be enforced in the inlier determination process.

The inlier determination process is formulated as follows: Let ∆ be a threshold for an inlier

recognition, ρ(θ, T) −→ R be an error function and C = {(Fi,Fj) | Fi ∈ I1,Fj ∈ I2} be a set of

tentative correspondences T of features Fi in the first image I1 and features Fj in the second

image I2. The task is to select a subset of C, such that ρ(θ, T) ≤ ∆ and each feature F is present

in the subset at most once.

Ideally, the subset should be as large as possible and features should be paired in such a way

that the sum of errors is minimum. The formulation above with these additional constraints

forms a well known task — optimal matching in a bipartite graph. However, this task cannot

be solved in a polynomial time. If the assignment is loosen a little bit by rounding the error

such that only integers are used, then it can be solved using Ford Fulkerson algorithm for Max

Flow problem [41]. The time complexity of the algorithm is O(C2F), where C is the number

of correspondences satisfying the thresholded error condition and F is the number of involved

features in both images. Nevertheless, it is unbearable for each hypothesis to run a verification

function with a time complexity higher than O(n). Hence, a greedy algorithm is used instead.

Greedy algorithm selects a feature in one image, takes a correspondence with the lowest error

and inserts this correspondence into the final subset (if the error is lower than the threshold ∆).

Corresponding feature in the second image is considered to be taken and is ignored further on.

The pre-defined order of tentative correspondences generated by the algorithm described earlier

in the Section 3.3.2 and the Figure 3.6 can be utilised in this task. The list of correspondences

is sorted by the features from the first image, meaning that all tentative correspondences with

a particular feature are consecutive. This helps to find a usable correspondence in an efficient

manner by a sequential iteration. Features in the second image must be marked as taken. It can

be done either by using an array of boolean values (flags) or a set. The former approach has look-

up and write operations with a constant time complexity, but is memory consuming for large

vocabularies (an array of the vocabulary size must be initialised while just a few elements are

used). The latter approach is more complex, but sets are usually implemented using hash-tables

48 CHAPTER 3. SPATIAL VERIFICATION

Easy Medium Hard

S
IF

T Basic SV 69.74 55.92 33.49

Enhanced verification 73.18 58.1 35.97

H
O
W Basic SV 85.80 71.83 45.93

Enhanced verification 86.88 72.59 47.89

Table 3.6: mAP percentage for SIFT and HOW features on ROxford - basic SV and enhanced
verification.

with a constant time complexity for look-up and write operations as well.

This greedy algorithm runs in a linear time, but often does not return optimal results. For

example, let A, B be features in one image and 1, 2 features in the second image. All of them

belong to a same visual word, raising a set of four tentative correspondences: A1, A2, B1 and

B2. Let the errors be 1, 2, 2 and 10, respectively. Then, the optimal solution is to have A2, B1

with the errors 2+2 = 4, but the greedy algorithm outputs A1, B2 with the errors 1+10 = 11.

Even though the greedy algorithm has no guarantee of how far the optimal solution is (in

other words, it is not known how bad the greedy solution is), it gives sufficient results in practise.

The mAP increases for both SIFT and HOW features, as shown in the Table 3.6.

3.4.5 Multiple assignment

Some relevant image pairs have just a few visual words in common. When descriptors are

assigned to visual words, only a single visual word is chosen, based on the nearest cluster centre.

The distance to the second nearest cluster, or even third, is not taken into consideration at all.

But if these distances are similar to the distance to the nearest centre, then the features may

be similar to the features belonging to the neighbouring visual words too. Unfortunately, this

information is completely lost in the quantisation (by clustering) and potential correspondences

of features are disregarded.

In case of spatial verification, this issue is even more noticeable for large vocabularies. Visual

words in an image are very sparse, generating just a small amount of tentative correspondences.

As a side effect, it creates a low upper bound on the maximum score.

Multiple assignment aims to partially solve this issue by assigning multiple visual words to

each feature [39]. A common technique is to assign a pre-defined number of the nearest clusters

to each descriptor. Similarly, the assignment could be based on the distances.

When each feature in a database image is assigned to multiple visual words, the memory

complexity linearly increases. This may not be desired for large collections. As a compromise,

the multiple assignment procedure might be performed only on query images. Each query is

used in the spatial verification multiple times. It makes use of the approach while the memory

load is increased only for a single image. Furthermore, in real retrieval systems, the query image

is processed (detection, description, clusters assignment, computation) on the fly, without the

necessity to store all the metadata on a hard disk.

3.4. POSSIBLE ADAPTATIONS 49

Easy Medium Hard

H
O
W Basic SV 85.80 71.83 45.93

Multiple assignment 87.28 72.30 46.22

Table 3.7: mAP percentage for HOW features on ROxford - basic SV and multiple assignment
approach.

This approach was evaluated on the HOW features. Original descriptors of the SIFT features

were not present in the dataset used for the development of this thesis. Four visual words are

assigned to each feature in query images and only one visual word per feature in database images.

Multiple assignment was used only for spatial verification, not for the original shortlist retrieval.

The results are shown in the Table 3.7.

Note that multiple assignment can have a side effect while being performed on both query

and database images, which is not really obvious. If two features with very close descriptors

are being assigned to multiple clusters, they can be assigned to the same set of clusters. As

a consequence, it behaves as if multiple features were matching while it is just a single one.

This is even more notable in the spatial verification. One pair of features generates multiple

tentative correspondences. All of them share the same parameters in terms of locations and

scales, therefore they generate the very same hypothesis. Because the descriptors are close to

each other, the correspondences might have a higher similarity. If the number of overall tentative

correspondences is high, then they are sorted according to the similarity (as described in the

Section 3.3.2) and only a portion of them is chosen. Since all of the correspondences generated

from a single pair of features with close descriptors may have a high similarity, they are more

likely to survive, eliminating other unique hypotheses.

Furthermore, either all of them or none of them can be inliers for a hypothesis. This can

be interpreted as if a single tentative correspondence of two features had a several times higher

weight than the other correspondences.

3.4.6 Homography estimation

Restricted similarity models are used to estimate a naive transformation out of a single tentative

correspondence. This transformation is often good enough to find a set of inliers, which can be

then used to estimate a better, more precise and more flexible, transformation. This approach

was already described in the Section 3.4.2 about local optimisation, where an affine transforma-

tion was estimated using inliers of a naive hypothesis. In the same way, another transformation

type can be used. The most flexible type is a homography.

A homography is a mapping between two planar projections of an image. In other words,

homographies are image transformations that describe the relative motion between two images,

when the camera (or the observed object) moves. In general, it maps four points onto any

arbitrary four points. A homography matrix is defined up to scale, leaving eight DoF.

At least four corresponding points must be known in order to estimate the matrix parameters.

50 CHAPTER 3. SPATIAL VERIFICATION

There are two ways of how to do so: by using a RANSAC algorithm again or using the least

squares method.

In case of the RANSAC, inliers are used as primitives (assuming the naive hypothesis had

more than four inliers). They are more likely to be correct, which increases the inlier ratio ε and

decreases the number of iterations needed. Four correspondences are randomly selected and the

homography is estimated out of them. The algorithm follows the standard formulation described

in the Section 3.1. Nevertheless, this approach is not really suitable for the HOW features since

the locations of the features are not known exactly. Small errors in the feature location (caused

by the approximation) can lead to large errors in the transformation estimation.

Another option is to use all inliers to estimate the homography using the least squares

method, DLT algorithm [31] in particular. The derivation is similar to the derivation of the affine

matrix parameters earlier in the Section 3.4.2, including the iterative step. The homography

matrices are recomputed as long as the score increases (hence the inliers arrangement changes).

Alternatively, yet another method can be used. A homography can be estimated from

correspondences of local elliptical features [42]. This approach is based on the fact that a first

order Taylor expansion A(H,x) of a homography H at a point x is an affine transformation [43].

Furthermore, affine transformations can be generated from local features using affine frames [39],

as explained in the Section 3.3.3. The knowledge of only two affine transformations that locally

approximate the homography at different points provides sufficient linear constraints to estimate

the homography matrix H. Unfortunately, this approach does not use the full potential in the

case of this thesis since only scale is utilised — ellipses (affine frames) are disregarded in favour

of simple circles.

Real example is depicted in the left part of the Figure 3.12. First, an affine transforma-

tion (red transformation) was estimated using local optimisation (Section 3.4.2) and enhanced

verification (Section 3.4.4). Inlier correspondences (also depicted in red) were then used for

further computations. All three approaches were tested and compared — least squares solu-

tion (blue), inner RANSAC for homography estimation (green), and a homography estimated

from correspondences of elliptical features (yellow). All three resulting transformations are very

inaccurate. The flexibility of the permissive transformation type causes the transformation to

over-fit the points.

This appears to be a frequent problem. Naive hypotheses tent to have inliers mostly around

the original correspondence (the correspondence which generated the hypothesis). It can be

caused by the fact that features which are more distant from the original correspondence have

a higher error value due to the inaccurate hypothesis and, as a consequence, they may not fall

under the threshold.

There was an attempt to somehow regularise the inaccurate corners of the Bounding Box

(BBox). Top left and bottom right corners were transformed and the two correspondences of

the original and transformed points were added. The motivation was that it regularises the

transformation such that the corners would not be so off, while the influence on the final model

would be low due to being just two correspondences out of many. Nonetheless, as it can be seen in

3.4. POSSIBLE ADAPTATIONS 51

Figure 3.12: Example of different homography estimation approaches.

the right part of the Figure 3.12, the flexibility of the homography is perceptible and the artificial

correspondences moved the homography significantly closer to the affine transformation.

Homographies did not seem to have the expected effect and therefore were not evaluated on

the whole ROxford dataset.

3.4.7 Determinant and scale verification

So far, only the feature location x = [x, y]⊤ was used in the verification process of a hypothesis.

The scale of the feature was not taken into consideration.

But even the scale can be used for a verification of an affine transformation [39]. In theory,

if a feature was detected on a scale s1 = 2.0 and a corresponding feature on a scale s2 = 0.5,

then it is expected to find a transformation, which reduces the size of the object (reduces the

scale) 2.0/0.5 = 4 times. On the contrary, if the hypothesis increases the object size (increases

the scale), then it is likely that the features are not true correspondences.

In this context, the scale change is actually the change in a two dimensional area — how

the area of a unit square changes after being transformed. In case of an affine transformation

A, this area change is specified by the determinant of the matrix. The shear and scales (which

influences the change of an area) are determined by the 2× 2 sub-matrix, last column contains

just a translation (which does not change the area in any way) and last row does not contain

any values in case of an affine transformation.

|A| =

∣∣∣∣∣∣∣∣
a b tx

c d ty

0 0 1

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣a b

c d

∣∣∣∣∣ = ad− bc

In the enhanced verification process, it is checked that the ratio of the scale of a transformed

feature and a corresponding feature is between some pre-defined bounds. These bounds are

52 CHAPTER 3. SPATIAL VERIFICATION

Easy Medium Hard

S
IF

T Basic SV 69.74 55.92 33.49

Scale verification 69.33 55.85 33.52

H
O
W Basic SV 85.80 71.83 45.93

Scale verification 86.08 72.14 47.35

Table 3.8: mAP percentage for SIFT and HOW features on ROxford - basic SV and scale
verification.

passed as a hyper-parameter B.
1

B
≤ s1 · |A|

s2
≤ B

Given a hypothesis with a matrix A, tentative correspondences, which are not satisfying this

inequality, cannot be labelled as inliers.

This hypothesis verification toughening was evaluated with the threshold B = 5. The results

are in the Table 3.8. The results for SIFT features are worse than the Basic SV approach. The

HOW features received a slight improvement in the mAP.

This approach is applicable only for affine transformations, including the sub-types, i.e., it

is not applicable for projective transforms, namely for homographies described in the previous

section. The reason is that the determinant of the 2 × 2 sub-matrix does not specify the scale

change anymore and neither does the determinant of the whole 3× 3 matrix.

However, a homographyH can be approximated at a point x by a first order Taylor expansion

A(H,x) [43]. This approximation is an affine transformation and therefore can specify the

scale change in the neighbourhood of a point x. A possible workaround is to compute an affine

approximation of an estimated homography at each inlier correspondence and use its determinant

to specify the scale change for that particular correspondence.

3.4.8 Eigenvalues verification

Similarly to checking the scales of the features, even the estimated transformation can be further

analysed and examined. Naive transformations generated from tentative correspondences are

straightforward, there is nothing to look into. But affine transformations received from the local

optimisation may have some deficiencies. In this section, an algorithm with local optimisation

on top 10 naive hypotheses (as described in the Section 3.4.3) is used as a baseline.

The local optimisation is an iterative process which progressively adapts the transformation

to the current set of inliers. The final output estimation can be very different from the input one.

In fact, it happens (mostly for some irrelevant images) that the locally optimal transformation

tries to fit itself on a line of inliers. In other words, there are features approximately on a line

in one image, features approximately on a line in the second image and the features are corre-

sponding with each other. This can happen for example for rooftops (roofing tiles neighbouring

with the sky), lawns (grass field neighbouring with a path), etc. It also happens when an object

is zoomed out and the features appear to be in a thin strip, or even when just two small clusters

3.4. POSSIBLE ADAPTATIONS 53

Figure 3.13: An example of a local optimisation which just squeezes points onto a line.

of points correspond.

In those cases, the local optimisation may tend to find a transformation which maps the

first line onto the second line (or similarly the first small cluster onto the second small cluster).

Since all the points do not lie exactly on a line, it might even try to push the points closer to

the line. At the end, the resulting transformation is distorted and deformed.

An example is shown in the Figure 3.13. All the corresponding features (depicted in red)

from the naive hypothesis are on the border of the roof and the sky, therefore it makes sense

they are assigned to the same visual words. Furthermore, they form just a small cluster in the

right picture and features in the left picture are positioned inside a thin horizontal stripe. The

naive hypothesis (depicted also in red) makes the original BBox significantly smaller, making

it possible for the correspondences to fall under the threshold (therefore become inliers). After

five iterations in the local optimisation, the transformation gets deformed (depicted in yellow).

To prevent from having transformations deformed in this way, they can be analysed and

ignored based on a criterion. The determinant of a matrix defines only the overall scale, but

does not take into consideration the scale of individual axes. The scale coefficients (numbers

on the diagonal) cannot be used because they do not take account of the shear. Therefore

eigenvalues of the transformation matrix should be used.

Eigenvectors of a matrix are vectors which do not change their orientation under the trans-

formation. They are just scaled. Corresponding eigenvalues define exactly this scale, i.e., how

much are they scaled:

Au = λu,

where A is a matrix, u is an eigenvector (often with unit length) and λ is a corresponding

eigenvalue. In fact, the product of all eigenvalues equals to the determinant. Furthermore, the

affine transformation matrix has one eigenvalue equal to one and two eigenvalues equal to the

eigenvalues of the 2× 2 sub-matrix. It means that the scale changes can be analysed by the two

eigenvalues since they characterise the scale changes in particular directions.

The absolute value of an eigenvalue is not a reliable criterion to decide whether a transfor-

mation is reasonable (i.e., is not deformed). One image can be just zoomed in or out. Better

54 CHAPTER 3. SPATIAL VERIFICATION

Easy Medium Hard

S
IF

T LO with 10 entries 70.03 55.77 33.29

Eigenvalues check added 70.58 56.08 33.69

H
O
W LO with 10 entries 87.63 71.40 43.46

Eigenvalues check added 88.32 72.31 45.29

Table 3.9: mAP percentage for SIFT and HOW features on ROxford - LO with 10 entries and
its adaptation with eigenvalues check.

approach is to analyse the ratio λ1
λ2

of the two eigenvalues λ1, λ2, i.e., if the scale in one direc-

tion is not significantly larger that in the other direction. Again, this ratio is compared with a

threshold R (new hyper-parameter):
1

R
≤ λ1

λ2
≤ R

This criterion was evaluated with the hyper-parameter R = 5. The results are shown in the

Table 3.9. There is a slight improvement, but affected image pairs still remain with quite a large

score, because the initial naive hypothesis has usually already many inliers.

3.4.9 Bounding box cover scoring

Last tried modification of the basic spatial verification algorithm is a different cost function for

determining the scores.

What happens very often is that an image pair has a large number of inliers, but majority of

the features in the query image is located in a cluster, a small local region. It can be partially

seen already in the Figure 3.12, where most of the features in the first image are in the centre

while the top left part and the bottom part of the image are quite empty. On the contrary,

the desired situation (for relevant images) is for the inlier features in the query image to cover

majority of the BBox area.

Uniform spatial distribution of features can be regarded as more reliable. This BBox coverage

can be then utilised as a weight [44]. In the case of spatial verification, the utilisation resides in

the cost function.

All inlier features mark their neighbourhood. The cost function used for scoring is the

marked area. The larger area, the higher score. If two inlier features are close to each other, the

marked area does not increase very much since they share most of the neighbourhood. If two

the features are distant, then they share no neighbourhood and both of them have significant

influence on the final cost function value.

An example of this idea is depicted in the Figure 3.14. Correspondences are depicted in red

and the green area behind each feature represents the marked area. The coverage of the marked

area in the BBox (the score) is 41.76%.

The size of the marked area should be relative to the BBox size. Not all queries have the

same dimensions, so absolute values would not treat all the queries in the same way — for

example, one query might need only twenty features to cover the whole BBox while another

3.4. POSSIBLE ADAPTATIONS 55

Figure 3.14: BBox coverage by inliers.

Easy Medium Hard

S
IF

T Basic SV 69.74 55.92 33.49

BBox Coverage Scoring 72.92 57.83 35.25

H
O
W Basic SV 85.80 71.83 45.93

BBox Coverage Scoring 83.68 67.78 40.11

Table 3.10: mAP percentage for SIFT and HOW features on ROxford - basic SV and BBox
Coverage scoring.

query would need sixty.

The following marking strategy was used: given a BBox of width W and height H, each

feature marks a square with its side length l. The side length l is determined by the mean side

length of the BBox, divided by a hyper-parameter P . This results in the following formulae:

l =
⌊ 1

2P
· (H +W)

⌋
This approach was evaluated with the hyper-parameter P = 22 and the results are shown

in the Table 3.10. Dataset images labelled as hard often contain query landmarks with difficult

viewing conditions, such as an occlusion (see the Section 2.7.1). Therefore, such a significant

drop in performance for the HOW features and Hard evaluation protocol is rather expected.

3.4.10 Baseline used for further development

At the end, multiple aforementioned enhancements can be applied at once. Nevertheless, one

having a positive influence on the results does not mean it works in conjunction with another

approach too.

56 CHAPTER 3. SPATIAL VERIFICATION

Easy Medium Hard

S
IF

T Basic SV 69.74 55.92 33.49

Advanced SV 73.91 58.05 36.12

H
O
W Basic SV 85.80 71.83 45.93

Advanced SV 91.74 75.52 51.59

Table 3.11: mAP percentage for SIFT and HOW features on ROxford - basic SV and advanced
SV.

Several combinations of the enhancement methods were tried and the final algorithm con-

figuration used for further development was decided to be as follows: Local optimisation on

top 10 models (Section 3.4.3); enhanced verification with the error threshold ∆ = 62 (Section

3.4.4); and eigenvalues verification with the ratio threshold R = 5 (Section 3.4.8). HOW fea-

tures additionally utilise weighted correspondences with the weight adjustment function set to

f(x) = max(x, 0) (Section 3.4.1). Spatial verification was performed on a shortlist of length 100

images.

This configuration will be referred to as the advanced SV. The results of the advanced SV

algorithm in comparison to the basic SV are shown in the Table 3.11.

3.5 Spatial verification use cases

When a transformation between the images is established, it can be utilised. One potential use

case is in a training of deep learning models for local-feature-based methods in image retrieval

or processing. If the transformation between two images is known, a model can be taught in

such a way it recognises corresponding parts. This might be done in an easier and more precise

way using approaches like Structure from Motion (SfM) [45], where an object is photographed

from many different positions with the relative camera pose known (i.e., the position and di-

rection/rotation of the camera is known). However, in datasets like these, no difficult viewing

conditions appear (such as different day time, weather, fog, season of the year, sketches, paint-

ings, etc.). Also, these datasets are harder and more expensive to obtain, while the internet

already contains plenty of images of all kinds. This approach of learning the image descriptor

extractor was not tried in this thesis because it is a complex task which would require a lot of

additional work beyond the time allocation.

Besides this theoretical use case, there are more practical (and already tried) ones. The

results can be sorted, but not only using the inlier score (as it was done so far). For example,

they can be sorted (or even filtered) based on the zoom. Only zoomed in or zoomed out images

can be retrieved. This process can be performed repeatedly, going from an image with a very

small object to another image with a detailed part of the same object. Another use case is to

analyse the frequency with which is an object photographed in detail [46].

Spatial verification finds a corresponding plane in a pair of images. If the inliers or even

whole features belonging to this plane are removed from the image and the spatial verification

3.5. SPATIAL VERIFICATION USE CASES 57

algorithm is performed again, it is possible to find yet another, different, plane with a different

transformation. This provides more information about the underlying geometry which can be

further utilised. In this case, it is beneficial to decrease the inlier threshold and utilise the local

optimisation in order to remove solely features from the found plane and not others. However, the

primary dataset used in this thesis does not contain objects which would have several dominant

planes in the field of interest and therefore this approach was not not further elaborated.

One more practical use case is query expansion [47], [48], sometimes abbreviated as QE. The

original query can be enriched by new features and the image search can be processed again,

using these extended data.

3.5.1 Query expansion

Two distinct images of the same object often contain many visual features, some of which belong

to the same visual words and most of which do not. Feature detection and quantisation are noisy

processes and can result in variation in the particular visual words that appear in different images

of the same object, leading to missed results.

If an image pair (query and database) has a large enough score in the spatial verification,

the database image can be considered to be verified in the sense that it is assumed it depicts the

same object as the query image. The verified image includes additional information. First and

foremost, it contains new features, which are not present in the query, including their location.

These features can be transformed back to the query image and possibly merged with the original

ones. This extended query has a potential to nicely capture the essence of the object, making it

possible to retrieve many relevant images with a higher score than before and to revive previously

missed results.

Assume a query image Q with a set of features FQ inside of a BBox B and a collection of

images Cdb (database), where each image Ci ∈ Cdb has its own set of features FCi . Each feature

F is a four-tuple of location x, scale s, visual word w, and residual r, F = (x, s, w, r). Assume

each image pair Q↔ Ci has an estimated transformation ACi from the query image Q into the

collection image Ci and that the hypothesis corresponding to this transformation has a score φi.

Then a subset of collection images Cdb with a high enough score (greater than a threshold

Φ) can be assumed to be verified and features Fi from the verified images can be transformed

to the query image Q, extending the query feature set FQ. Only features back-projected inside

of the BBox B are considered. The feature properties (in this case only the location x and scale

s) must be changed accordingly.

F (QE)
Q = FQ ∪

{(
A−1

Ci
xi,

si
|ACi |

, wi, ri

) ∣∣∣ (xi, si, wi, ri) ∈ FCi , Ci ∈ Cdb, φi ≥ Φ,A−1
Ci

xi ∈ B
}

This naive approach generates way too many features, which may not be desired. The

features are usually filtered. There are two ways of how to so: filter the images which are used

for the query expansion or/and filter the features themselves.

58 CHAPTER 3. SPATIAL VERIFICATION

In the formulation defined above, all verified collection images are used. Instead, only a

subset can be chosen. However, it may not be the best idea to choose the top N verified images

as they are expected to be the most similar to the query. Visual features retrieved out of them

might be very similar to those already present in the query. Common approach is to take every

n-th verified image instead. It is expected to reliably cover the range of object specific visual

features — it adds new visual features as well as secures the original ones by heightening their

overall weight.

The second way of how to generate less features is to filter the features themselves. Again,

every n-th feature can be chosen, but more sophisticated approaches also exist. One of them is

based on Term Frequency-Inverse Document Frequency (TF-IDF) (which was described in the

Section 2.5.1). All the features are sorted according to the TF-IDF and only a portion is used.

Similarly, strengths of features can be used as the sorting criterion, if they are known from the

detection and description process.

There are also other, more advanced, approaches, such as transitive closure expansion, aver-

age query expansion, recursive average query expansion, or multiple image resolution expansion

[47].

For the purpose of this thesis, only a basic query expansion approach was implemented and

evaluated on the SIFT features. The verification threshold Φ was set to 15 (inliers). If at least

three images were verified, then the images were further filtered and only every n-th was used,

where n = max(1, ⌊ v
10⌋) and v is the number of verified images. If less than three images were

verified with the threshold Φ = 15, then the verification threshold Φ was decreased to 8 and all

collection images satisfying this score constraint were used for the query expansion.

Regarding the features, all of them were included in the query for the second retrieval, where

BoW with cosine similarity and TF-IDF weighting was used (see the Section 2.5.1). In case of

a second spatial verification, only every n-th feature was utilised, where n was chosen in such a

way that approximately 1 500 features were used in total, i.e., n = ⌊ 1
1 500#features⌋.

The results are shown in the Table 3.12. The query expansion brings significant improve-

ments. Basic SV algorithm (as described in the Section 3.3.4) and advanced SV (as described in

the Section 3.4.10) were used as baselines. On the top of them, query expansion was applied, as

explained above. Even the values of the hyper-parameter Φ were kept unchanged, even though

it might be a good idea to adjust them for each approach individually since the advanced SV is

much more restrictive. Also, a second spatial verification was evaluated on the expanded queries.

The effect of the second verification is, surprisingly, opposite for the basic and advanced SV.

Note that the optimal mAP from the Table 3.3 was exceeded by the query expansion. It is

because this optimal result considers only sorting entries in the top 100 shortlist. Nevertheless,

the expanded query performs the image search from scratch using the BoW, which results in a

different response (possibly with more relevant database images present in the top 100).

Query expansion was also evaluated on the HOW features with ASMK retrieval engine.

However, there was a significant drop in performance.

3.6. ADDITIONAL EVALUATIONS 59

Easy Medium Hard

S
IF

T

Basic SV 69.74 55.92 33.49

Basic SV + QE 75.36 64.16 41.72

Basic SV + QE + Basic SV 80.30 67.43 44.24

Advanced SV 73.91 58.05 36.12

Advanced SV + QE 83.36 68.69 47.00

Advanced SV + QE + Advanced SV 73.35 61.51 38.06

Table 3.12: mAP percentage for SIFT features on ROxford - basic SV, advanced SV and their
combinations with QE.

Easy Medium Hard

S
IF

T

Basic SV, circles 69.74 55.92 33.49

Basic SV, ellipses 69.85 56.06 33.67

Advanced SV, circles 73.91 58.05 36.12

Advanced SV, ellipses 74.21 58.28 36.16

Table 3.13: mAP percentage for SIFT features on ROxford - circles versus ellipses with ∆ = 62.

3.6 Additional evaluations

In order to get to know the data better, additional experiments and evaluations were performed

on the two available feature sets for the ROxford images.

SIFT features with local affine frames define an ellipse for each feature. The original for-

mulation estimates affine transformations out of these ellipse correspondences [39] while in this

thesis, parameters of ellipses helped to assess scales (hence, an ellipse becomes a circle) and a

restricted similarity type was used instead of the affine. The question is, how much information

is actually lost in this approximation.

Since restricted similarity transformations are significantly more rigid than affine transfor-

mations and the location of the HOW features is only approximated, the inlier threshold used

throughout this thesis was decided to be ∆ = 62 (as written in the Section 3.4.10). This is quite

a large and benevolent value. If this threshold is kept unchanged, the added value by preserving

and using the whole affine frames is not really noticeable since the transformation flexibility

and accuracy is lost in the error leniency. The mAP increases approximately by 0.17% for each

evaluation protocol, as shown in the Table 3.13.

However, if the inlier threshold is decreased to as low as ∆ = 25, the difference becomes

more apparent, as it can be seen in the Table 3.14. In case of the advanced SV without local

optimisation, the difference in the mAP is as high as 1.24%. When the local optimisation is

added, the difference decreases since the LO also outputs an affine transformation which evens

up the advantage of ellipses.

Second experiment aims to examine the HOW features. In the ASMK retrieval system, they

60 CHAPTER 3. SPATIAL VERIFICATION

Easy Medium Hard

S
IF

T

Basic SV, circles 69.71 55.86 33.05

Basic SV, ellipses 70.30 56.35 33.89

Advanced SV, circles 72.81 58.04 35.90

Advanced SV, ellipses 73.44 58.59 36.46

Advanced SV without LO, circles 72.15 57.73 35.50

Advanced SV without LO, ellipses 73.39 58.54 36.43

Table 3.14: mAP percentage for SIFT features on ROxford - circles versus ellipses with lower
thresholds.

Easy Medium Hard

Basic SV using SIFT features 69.74 55.92 33.49

Basic SV using HOW features 75.01 57.54 32.95

Advanced SV using SIFT features 73.91 58.05 36.12

Advanced SV using HOW features 76.84 59.24 35.57

Table 3.15: mAP percentage for HOW features evaluated on ROxford using a shortlist from
SIFT plus BoW.

achieve state-of-the-art performance, which is ruined after applying the spatial verification (as

it was shown before in the Table 3.3). The question is whether the HOW features are unusable

for the spatial verification at all or whether the reason resides in the shortlist.

It was tried to take the shortlist given by the SIFT plus BoW approach and then apply the

spatial verification using the HOW features. The results are shown in the Table 3.15. It can

be seen that the spatial verification does work even for the HOW features. The results for the

Easy evaluation protocol are significantly better (in comparison to the SV with SIFT features),

while the performance slightly drops for the Hard evaluation protocol. Nevertheless, the HOW

features deliver reasonable results and therefore are usable for the spatial verification.

Chapter 4

Using lines in spatial verification

So far, only keypoints in images were used as primitives for a transformation estimation. Single

tentative correspondence of two keypoints was used to estimate a naive hypothesis, which was

then further verified and possibly optimised.

In this chapter, the spatial verification is further extended. Lines and line segments are used

as they also exhibit discriminative neighbourhood and high repeatability properties, just like

local features, as explained in the Section 2.3 about feature detection. Lines are strong elements

that tend to remain consistent even when there is a change in the visual appearance of the same

object. It makes them potentially useful in the spatial verification process.

Their primary utilisation is in compensating measurement errors. As it was described in the

Section 2.6, the location of the HOW features is only approximated based on an architecture of

a fully convolutional neural network. The lines are expected to compensate for the error and

uncertainty.

First, line segment detection methods are explored and described. Then, detected line seg-

ments are used to generate new naive hypotheses. They improve the basic hypotheses estimated

from keypoint correspondences by creating correspondences of line segments in the neighbour-

hood of the keypoint pair. These line segment correspondences are then utilised to make the

transformations more precise. Lastly, detected lines are used to estimate constrained homogra-

phies.

4.1 Line segment detection

Before line segments can be used, they have to be detected in all images. The ability to accurately

identify and extract line segments from digital images plays a vital role in understanding the

underlying geometric structure and spatial relationships within a scene.

There are several approaches how to do so. These methods can differ based on their underly-

ing principles, computational complexity, hyper-parameters, sensitivity, and robustness to noise,

gaps and breaks. Also, some methods are meant to detect entire lines instead of line segments.

This might be undesirable in some cases as further processing is required to obtain segments

only. As a consequence, each method gives more or less diverse results.

61

62 CHAPTER 4. USING LINES IN SPATIAL VERIFICATION

The subsequent sections will focus on specific algorithms for line segment detection which

were considered in this thesis.

4.1.1 Progressive Probabilistic Hough Transform

The Hough Transform (HT) is a fundamental technique used in computer vision and image

processing for extraction of geometric shapes, particularly in the presence of noise, distortion, or

other irregularities. It was first introduced by Paul Hough in 1962 for automatically detecting

simple shapes like lines in binary images, and later extended to detect more complex shapes like

circles and ellipses. The basic idea behind the HT is to represent a particular shape (e.g., a line)

in an image as a point in a parameter space, rather than directly in image space. By doing so,

the detection of shapes becomes a problem of identifying peaks in this parameter space. These

correspond to the parameters of the desired shapes.

First step is to identify pixels that likely belong to edges or boundaries of objects in the

image. Hence, edge detection must be performed first. One of the popular approaches is the

Canny edge detector [49].

The Canny edge detector analyses gradients in the image intensity. The higher gradient

magnitude at a pixel, the higher potential it belongs to an edge. When gradient magnitude

values are computed for each pixel in the image intensity, non-maximum suppression is applied

in order to thin the edges and keep only the local maxima in the gradient direction. For each

pixel, the gradient magnitude is compared with its neighbouring pixels in the gradient direction.

If the pixel has the maximum gradient magnitude among its neighbours, it is retained; otherwise,

it is suppressed (set to zero). This step helps in obtaining thin, well-defined edges by removing

pixels that do not contribute significantly to the edge structure. Furthermore, the pixels are

double thresholded. These two thresholds categorise pixels into three groups — strong edge,

weak edge, no edge. Strong edge and no edge groups represent the final classification while weak

edge group is further processed by a hysteresis. This very final step aims to connect weak edge

pixels to strong edge pixels to form continuous edges. If a weak edge pixel is connected to a

strong edge pixel (either directly or through a chain of weak edge pixels), it is classified as part

of the edge.

Once edge pixels are detected, they are used to extract shapes, in this case, lines. Each

line can be parametrised in multiple ways, one of which is parametrisation by two parameters,

θ ∈ [0, π] and r ∈ R, such that the following equation holds: x cos θ + y sin θ − r = 0

The parameter space is discretised (or quantised) into bins, each bin stands for a particular

instance of a line with a pair of exact parameter values. The discretised parameter space is

represented by an accumulator array. Each cell in this array corresponds to one bin. The

accumulator is then used in a voting scheme.

Every edge pixel is suspected of belonging to a line. Therefore, for each edge pixel in the

image, calculate and vote in the accumulator array for possible lines that pass through that

pixel. This involves updating the accumulator array based on the possible r and θ values that

could represent lines passing through each edge pixel.

4.1. LINE SEGMENT DETECTION 63

Figure 4.1: Example of a HT to find line parameters.

Finally, when the voting is done, peaks (local maxima) are identified in the accumulator

array. Every peak corresponds to the parameters r and θ of the lines that are detected in the

image. Nevertheless, if the number of votes is not high enough, it might be a false positive

response or featureless line. That is the reason why an additional thresholding is applied as well

— to identify most prominent peaks, which correspond to the final lines detected in the image.

The threshold helps to filter out noise and spurious detections.

An example is depicted in the Figure 4.1. In the left image, there are seven detected edge

pixels belonging to a single line. Each of them votes for all lines passing through it. The

accumulator array is visualised in the right image. Notice the seven wave-like curves for seven

input points (edge pixels). All seven curves meet in one parameters bin, θ = π/4 and r = 15,

which is the sought for line. There is an error caused by the discretisation, the ground truth

value is r = 10
√
2

.
= 14.142.

This approach can be applied for other geometric primitives too, for example a circle is

parametrised by a triplet [xc, yc, r] ∈ R3 such that (y−yc)2+(x−xc)2−r2 = 0. Nevertheless, the

search space (accumulator size) increases with each parameter and gets prohibitively large very

easily. The overall time complexity of the algorithm is polynomial in the number of parameters

and linear in the number of points — O(NB(p−1)), where N is the number of points, B is the

number of bins per parameter (assuming the number of bins is the same for all parameters),

and p is the number of parameters of the corresponding geometric primitive.

This is the basic HT. There are many adaptations and enhancements, such as the Pro-

gressive Probabilistic Hough Transform (PPHT) [50], which aims to minimise the amount of

computations needed.

The PPHT repeatedly draws a random point for voting from the input set of edge pixels.

This point is removed from the input set and the accumulator is updated, i.e., the votes are

cast. Then, the highest peak in the accumulator that was modified by the new pixel is checked.

If the value is not higher than a threshold s, the process starts over (i.e., a new random point

is drawn). On the contrary, if the peak value reaches the threshold s, it is assumed a line was

found and is about to be extracted. A corridor specified by the peak in the accumulator is

64 CHAPTER 4. USING LINES IN SPATIAL VERIFICATION

looked along. It is seeking for the longest segment of pixels either continuous or exhibiting a

gap not exceeding a given threshold. All such pixels found in the segment are removed from the

input set. Next, all the pixels from the line that have previously voted retract their votes from

the accumulator. The line segment is added into an output list (it can be conditioned by some

additional criteria, such as minimum or maximum length). Finally, the procedure starts over, a

random point is drawn. This repeats as long as the input set is not empty. Possibly, a stopping

criterion can be introduced and checked as well.

The decision threshold s (whether a bin contains enough votes to assume a line exists)

dynamically changes as votes are cast. This check is supposed to test a hypothesis whether

the count of votes is due to random noise or not, or more formally: having sampled m out of

N points, does any bin count exceed the threshold of s points which would be expected from

random noise? [50]

This algorithm exhibits several appealing characteristics. It can be halted prematurely yet

still identify some of the lines. Additionally, it operates without the need for a termination

criterion. Depending on the data, only a minority of points may contribute votes, while the

remaining points are disregarded as supplementary evidence for the detected features. And,

importantly, line segments are extracted implicitly, without a need of a post-processing.

An illustration of line segments detected by this algorithm is in the Figure 4.3 (a). Gaussian

blur with kernel size of 7 pixels and standard deviation σ = 2 was applied before the Canny

edge detector with the thresholds set to 20 and 80. The PPHT was evaluated with the minimum

line length hyper-parameter of 20 pixels and maximum line gap set to 8 pixels. It can be seen

that the line segments are quite scattered, especially in noisy areas, and that some areas are

almost completely left out. There are just a few line segments detected in the shaded parts of

the image.

4.1.2 Line Segment Detector

The Line Segment Detector (LSD) is an advanced gradient-based algorithm developed for de-

tecting straight line segments, introduced by Rafael Grompone von Gioi et al. in 2012 [51].

It takes only a grey-level image as input, no hyper-parameters are required. The algorithm

actually depends on several numbers that determine its behaviour, but these values were care-

fully chosen to ensure effective performance across all types of images. The algorithm achieves

accurate results while having a linear time complexity, which makes it a very suitable option for

real-time applications.

Before the actual algorithm begins, the input image is scaled to 80% of its original size. Scal-

ing is achieved through Gaussian sub-sampling: the image undergoes filtering with a Gaussian

kernel to prevent aliasing and quantisation artefacts before being sub-sampled. Then, a gradient

for each pixel is obtained using a 2× 2 convolution mask. In particular, the gradient magnitude

and a level-line angle are computed. The level-line can be seen as a line perpendicular to the

gradient with approximately the same level of intensity values. The gradient magnitude deter-

mines the amount of change in the intensity in the gradient direction. Pixels exhibiting a small

4.1. LINE SEGMENT DETECTION 65

gradient magnitude typically correspond to flat areas or regions with slow gradients. Moreover,

such pixels inherently exhibit a higher error in gradient computation due to the quantisation of

their values. In the LSD algorithm, pixels with a gradient magnitude smaller than a threshold

are consequently discarded and not utilised — it is assumed they do not belong to any line

segment.

Next, the pixels are ordered based on the gradient magnitude. Pixels with high gradient

magnitude often correspond to the more contrasted edges, hence it makes sense to process them

first. Because sorting algorithms usually require O(n log n) operations in order to sort n values,

pseudo-ordering is used instead as it is possible in linear time. The pixels are simply classified

into several (1 024 in particular) bins with equal length according their gradient magnitude.

Pixels belonging to the bin with highest magnitudes are processed first.

The algorithm then consists of three major steps: region growing, rectangular approximation

and rectangle validation. Unused pixels in the pseudo-ordered list are sequentially processed.

First, a seed pixel is taken from the pseudo-ordered list and used as a starting point. Each

region starts just with this one seed and the region angle is set to the level-line angle at that

pixel. Then, pixels adjacent to the region are tested and those with level-line angle equal to

the region angle up to a certain tolerance are added to the region. At each iteration, the region

angle is updated to the average orientation of the level-lines of the pixels belonging to the

current region. This iterative process continues until no additional pixels can be added. During

the region growing, an 8-connected neighbourhood is used and the angle tolerance is set to 22.5

degree (which corresponds to 45 degree range).

When a region is established, it is approximated by a rectangle. The group of pixels is

conceptualised as a cohesive entity resembling a solid object, where gradient magnitude of each

pixel serves as its mass. The centre of mass of this pixel group is then designated as the centre

of the rectangle. The primary orientation of the rectangle is aligning with the first inertia axis

of the region. The dimensions of the rectangle are adjusted to the minimum values required to

fully encompass the whole region.

Last step is to validate the rectangle. It is a complex procedure which will not be described

in details, but there are a few key concepts worth mentioning:

• Rectangle validation involves a concept of aligned points. It refers to the pixels within the

rectangle whose level-line angle closely matches the primary orientation of the rectangle,

within a specified tolerance. The more aligned points, the better.

• Several adjustments are attempted on the initial rectangle approximation to achieve a

more accurate representation. These adjustments involve testing variations in both width

and lateral position of the rectangle.

• If the density of aligned points is low, it is tried to cut the region either by reducing the

angle tolerance or region radius. The idea is to split the region into two (or more) regions

which can be better approximated by smaller rectangles.

66 CHAPTER 4. USING LINES IN SPATIAL VERIFICATION

Figure 4.2: LSD and its line support regions [51].

Figure 4.3: Different approaches to line segment detection: (a) PPHT, (b) LSD and (c) Deep
learning based detector.

If a rectangle is successfully validated, corresponding pixels are marked as used and are not

considered anymore at all, i.e., cannot be used as seed pixels and cannot be assigned to a region.

On the contrary, if a rectangle is not validated, the pixels are not used as seed pixels, but they

can still be assigned to a region.

The three steps repeat over again as long as there are some seed pixels in the pseudo-ordered

list.

For a better conception, the main idea is depicted in the Figure 4.2. A grey-scale image is

represented by level-lines. They are then grouped into regions, which are finally approximated

by rectangles and verified.

An illustration of line segments detected by the LSD is in the Figure 4.3 (b). It can be seen

that many edges are well detected, even in shaded areas of the image. There are some lines

which seem to be insignificant or even false positive, but many of them could be easily filtered

out by their length.

4.1. LINE SEGMENT DETECTION 67

4.1.3 Deep learning based detector

Another considered approach was to use detectors based on deep learning models. Many neural

networks are trained to detect line segments or wire-frames [52], [53]. A wire-frame refers to

a visual representation of a 3D object or scene using only its underlying geometric structure,

typically consisting of lines and vertices. A wire-frame does not include surface details such

as texture, colour, or shading; instead, it focuses solely on the shape and layout of the edges

and vertices. Hence, it is a subset of lines in an image. Furthermore, the lines should be

characteristics for the object or scene since they describe and encapsulate its shape.

There are also neural network architectures which allow End-to-End training to predict wire-

frames. One such network is the L-CNN [54]. It contains four modules: a feature extraction

backbone, a junction proposal module, a line sampling module, and a line verification module.

The backbone layer provides intermediate feature maps for the successive modules. The junction

proposal module tries to predict junctions, which are the vertices in the wire-frame. The line

sampling module predicts the lines (edges) between the junctions (vertices). These lines are

then classified by the last module. The output of the L-CNN are the positions of junctions and

the connectivity matrix among those junctions.

This approach was further extended by introducing line priors obtained by the HT [55].

Trainable HT blocks are added into a deep network, the L-CNN in particular. The HT block

contains additional trainable convolution layers to perform local operations on the HT accumu-

lator space (discretised line parameters, as described in the Section 4.1.1). Local operations in

accumulator space correspond to global operations in the image space. Therefore, local convo-

lutions over the bins are global convolutions over lines in the image. It is demonstrated in the

original work that the approach is effective especially for small training datasets.

This model was also evaluated and considered in this thesis. An illustration of the resulting

line segments is in the Figure 4.3 (c). It can be seen that the wire-frame is sparse in comparison to

the previously explained methods. Also, it covers many of the characteristic and most significant

edges. These properties could be beneficial for a line matching, which will be used in the

transformation estimation later. But, at the same time, many edges are missed (which leaves

almost empty regions) and many segments seem to be inaccurate and false positive.

4.1.4 Post-processing of detected lines

One utilisation of line segments in the transformation estimation process resides in obtaining

additional constraints based on line correspondences. However, finding line correspondences in

an image with a noisy set of detected line segments is a difficult task. It can be simplified by a

thorough post-processing of the detection process.

Ideally, the set of line segments should contain only those which are significant, distinctive,

and which capture the nature of the object. The wire-frame definition would nicely fit this

description, but results received by the deep learning approach tried in the Section 4.1.3 are

insufficient. Some of the significant segments are missing (are not detected; false negative

segments) and some of the detected segments do not really represent any underlying edge (false

68 CHAPTER 4. USING LINES IN SPATIAL VERIFICATION

positive).

The PPHT method described in the Section 4.1.1 is a line detector, not wire-frame, which

means that even weak edges (not so conspicuous) are detected. Consequently, there are fewer

false negative segments. However, the resulting set of segments contains many false positive

samples which also makes hardly applicable.

Out of the three methods, the LSD detector (described in the Section 4.1.2) appears to be

the most promising option, leading to the decision to use it. The sensitive gradient approach

detects most of the line segments present in an image, leaving just a few false negative edges

undetected. At the same time, there are not so many false positive segments. Noisy and cluttered

areas generate almost no samples due to the rectangle validation step. Short segments which

may seem like a noise at first turn out to copy a weak edge present in the image. Overall, the

LSD detector produces a low number of false detections but a high number of segments. They

must be filtered in order to pick only the most significant ones.

The filtering process consists of two major steps. First, all segments with a length shorter

than a threshold (value of 40 pixels was used for the purpose of this thesis) are removed. Second,

the rest of the segments is filtered in such a way no two lines are located near each other. Even

though it can happen that there are two significant line segments at one place (e.g., a stripe

has two sides), determining correspondences based on the spatial location would be basically

impossible. Therefore, only one of them can be kept. The algorithm is as follows.

All pairs of line segments are iterated over and when two segments are located near each

other, only the longer one is preserved. The distance between two segments is defined as a

combination of the distance from a line and the distance between their projected points: First

(longer) segment generates a line. The distances of the border points of the second segment

from this line are computed. If both border points are close enough (a threshold of 9 pixels was

used), the process continues. The two border points are projected onto the line. If the first line

segment and the projected second line segment share an intersection, then the second segment

(which is shorter) is removed. If they share no intersection, but they are very close in terms of

the minimum distance between their points combinations (a threshold of 5 pixels was used), the

shorter one is removed too.

It was also tried not to delete one of the segments, but combine them together. The longer

segment was extended by the shorter one — a four-tuple of points created by the first segment

border points and the second segment projections is established. Outer points of this four-tuple

are used to determine the new (combined) segment border points. This approach had a positive

impact on the PPHT detection results because it often fails to detect long segments - they

contains breaks and gaps. However, the PPHT was not used after all.

For reasons which will be described in the Section 4.2.1, one additional step was applied.

Long line segments (in particular, line segments longer than 110 pixels) were split into several

shorter ones.

The post-processing steps are visualised in the Figure 4.4. Output of the LSD detector is

in the first image, filtering by line length comes right after, filtering by location follows, and

4.2. LINES UTILISATION IN TRANSFORMATION ESTIMATION 69

Figure 4.4: Stages of post-processing of detected line segments: (a) output of the LSD, (b)
filtering by length, (c) filtering by location, (d) split of long lines.

the last image depicts the final set of line segments after the splitting of long lines. The figure

contains also the number of segments in each stage. For clarity, same lines across images keep

the same colour.

The overall time complexity of the algorithm is O(n2) as all pairs of detected line seg-

ments must be analysed. It could be potentially decreased, e.g., if segments were sorted and a

sweeping-like type of algorithm was applied. However, this idea was not thought out thoroughly.

Nonetheless, the database images are processed offline which allows a longer processing time.

For query images, the line segments are filtered even more and only those which are located

inside the bounding box are kept.

Despite the promising results produced by the LSD detector, there was also consideration

given to combining line segments from multiple methods. However, this approach did not yield

any benefits. The LSD detector is highly sensitive and generates the majority of segments

independently. It results in the loss of most added segments from other detectors during the

filtering process.

4.2 Lines utilisation in transformation estimation

Line segments detected in images can be utilised already in the process of generating naive

hypotheses. It would be possible to create descriptors for them and apply matching algorithms,

just like it was done with keypoints so far. But it would lead to the same problems and solutions

as with keypoints. Instead, line segments can serve as additional constraints to the point cor-

respondences, upgrading the family of used transformations and making the model parameters

more precise.

Consider a naive hypothesis generated by a keypoint pair. The core idea is to detect segments

located near the keypoints, establish a matching between them and generate a set of equations

to be solved. These additional constraints allow for the underlying lines and potentially improve

the original naive hypothesis.

Two approaches were tested and compared. The first one projects segments from the first

70 CHAPTER 4. USING LINES IN SPATIAL VERIFICATION

image into the second one using the naive hypothesis and then attempts to find corresponding

segments to improve the naive hypothesis. The second approach finds segments in both original

images and establishes a matching between them right away.

4.2.1 Projected segment matching

The first approach utilises an existing naive hypothesis before it is tried to improve it by consid-

ering line segments detected in the neighbourhood of the corresponding keypoints. The overall

process consists of four major steps: find close line segments; transform segments from the first

image using the naive hypothesis; match the transformed segments with those present in the sec-

ond image; and estimate new transformation parameters. The first three steps will be described

in this section and the last step right in the subsequent one.

The process of finding close line segments is similar to the algorithm used for filtering seg-

ments in the detection post-processing phase. Given a point and a set of line segments, the task

is to find a subset such that the point is close to the segments. Assume a single line segment.

Initially, distance of the point from the underlying line is computed. If the distance is short

enough (threshold of 50 pixels was used in this thesis), the process continues. This simple and

computationally efficient operation eliminates most of the entries. Next, the point is projected

onto the line. If the projection ends up lying right on the segment, it is accepted. If the projec-

tion does not end up right on the segment, but the distance of the original point to one of the

segment border points is short enough (using the very same threshold as before), it is accepted

as well. Otherwise, the point lies far from the segment and therefore is declined. This is the

standard definition of a distance between a line segment and a point, but the line distance check

in the beginning makes to process faster as less operations are needed.

Close segments are found in both images for a given keypoint correspondence. As the

second step, segments from the first image are transformed using a naive hypothesis. This

is straightforward since all the transformations are linear — the border points are projected

independently, resulting in new border points of the new segment in the second image.

The third step consists of matching the segments. Projected segments from the first image

and original segments in the second image are considered. As it was described in the Section

3.4.4, this is a well-known task of matching in a bipartite graph, whose optimal solution is com-

putationally expensive. Therefore, a greedy approach is used instead. Thanks to the detection

post-processing, the presence of line segments in images is quite sparse. This leads to an obser-

vation that the greedy approach finds the optimal solution in most correct cases (correct in the

sense that the keypoints really do correspond). It works as follows:

All pairs of segments are considered. In order to allow their matching in the first place,

several conditions must be satisfied: the underlying lines must not share an angle higher than a

threshold (value of 30 degrees was used); and the maximum distance of two border points from

the opposite segment must not be too large (maximum of 60 pixels was used). In other words,

only segments with similar direction and location are considered, regardless of their length.

Note that the maximum distance condition is the reason for the last step of the detection post-

4.2. LINES UTILISATION IN TRANSFORMATION ESTIMATION 71

Figure 4.5: An example of a segments matching. In (a), the detected (red) and projected
(yellow) lines are depicted. In (b), the established matching is visualised.

processing procedure, the line splitting (as described in the Section 4.1.4). If a long line segment

was about to be matched with a short one, this check would not pass and the correspondence

would not have been allowed.

Among all allowed correspondences, final matching is selected in a greedy way. A distance

of two line segments is computed as the mean distance of the border points from the opposite

segment. The correspondences are cast from the lowest value to the highest, as long as the

distance does not exceed a threshold (value of 35 pixels was used). This can happen, for

example, for two parallel line segments which are 50 pixels away from each other. It passes the

initial check, so the correspondence is allowed, but it does not make it to the final matching.

Two examples of the matching results are shown in the Figures 4.5 and 4.6. Red dots across

all images represent the corresponding keypoints. In the left images, the selected and used line

segments are visualised in red. In addition, yellow segments represent the transformed segments.

In the right images, the final matching is shown. It can be seen in the Figure 4.5 that one of the

lines is correctly left out with no correspondence. However, the lines are not detected perfectly

in this area and there is a slight misalignment. The Figure 4.6 shows a case with two segments

only, but the segments cover an ideal case where the two corresponding lines are perpendicular

in reality.

This was one option how to create correspondences between line segments. These correspon-

dences will now be used in the transformation estimation to improve the naive hypotheses.

4.2.2 Transformation estimation constrained by segment correspondences

Once the line segment correspondences are established, regardless of the matching strategy, they

can be used for generating additional constraints for the transformation matrix. The segments

themselves are not used directly, but the underlying lines are utilised instead. This is due to the

fact that the border points are often detected imprecisely and unreliably.

Assume corresponding line segments where the first segment is represented by its border

points (b1,b2) and the second segment utilises its underlying line l. The goal is to estimate

a transformation A from the first image into the second one such that the border points bi,

72 CHAPTER 4. USING LINES IN SPATIAL VERIFICATION

Figure 4.6: An example of a segments matching. In (a), the detected (red) and projected
(yellow) lines are depicted. In (b), the established matching is visualised.

i ∈ {1, 2}, are projected onto the line l:

l⊤Abi = 0 (4.1)

Each border point generates one equation, so a single segment correspondence generates

two. Furthermore, the original keypoint correspondence also generates two equations. Features

contain a piece of information about the scale which can be utilised as well, yielding up to

additional two equations. All together, they form a linear system to be solved. A keypoint with

a single segment correspondence can generate a set of up to six equations.

The naive transformation type was chosen to be a translation with an isotropic scale. With

the additional constraints, the type can be upgraded to something more flexible. It can be

decided based on the number of equations. However, it is not so beneficial to choose the most

flexible type such that the set of equations is exactly-determined. The measurements are often

not very precise, and the exact solution to the linear system is very sensitive to small errors;

hence, the resulting transformation lacks accuracy. A less flexible type of transformation is

chosen instead, resulting in an over-determined linear system. This way, the additional equations

compensate for the measurement errors.

In this thesis, the affine transformation type (see the Figure 3.3) is chosen if at least P

non-parallel segment correspondences are established (P stands for parallel, this term will be

used in evaluation tables later). A set of segments is assumed to be parallel if all pairs of the

underlying lines form an angle smaller than a threshold. This condition is checked only for lines

in one of the images as it is unlikely to end up oppositely in the other (due to the way the

segment correspondences are determined). On the contrary, if there are less than P segment

correspondences or if all the segments are assumed to be parallel, a restricted similarity type

(translation and an isotropic scale, as in the Figure 3.5) is used instead as it has less DoF.

Parallel lines generate dependent equations which lead to under-determined linear system or

imprecise results.

An ideal case is to have at least two lines which are parallel in reality (e.g., a corner).

4.2. LINES UTILISATION IN TRANSFORMATION ESTIMATION 73

For this reason, the threshold of the maximum angle (between lines to be considered parallel)

was set to 45 degrees. Moreover, this rather high threshold for assuming parallelism mitigates

consequences of false results as some of the lines are sufficiently different to produce independent

equations. By a false result it is meant that the check in the other image would have resulted in

an opposite outcome. However, perpendicular lines do not appear in all images. For example,

only a triangular gable is queried in images which were used in the Figure 3.13. The benefit of

lines then loses its significance.

Two values of the hyper-parameter P were tested and compared. First, P = 2 as two non-

parallel lines can generate very good constraints, as it will be shown in the Figure 4.7. But the

set of equations is not over-determined as it was recommended before for better robustness and

stability. Therefore, P = 3 was tried as well. The results will be shown in the Table 4.1 at the

end of this section, but the difference in mAP is often negligible.

Returning back to the linear system of equations, assume a correspondence of two keypoints

x = [x, y]⊤ and x′ = [x′, y′]⊤ with scales s, s′, respectively. Assume a set C of N corresponding

line segments, {(pi, si, li)} for i = 1...N , where pi = [qi, ri]
⊤, si = [ti, ui]

⊤ are border points of a

segment in the first image and li = [mi, ni, oi]
⊤ is a corresponding underlying line. If there are

at least P non-parallel segment correspondences, then the transformation type is chosen to be

an affine transform,

A =

a b Tx

c d Ty

0 0 1

 ,

and the linear system of equations derived from (4.1) is as follows:

x y 1 0 0 0

0 0 0 x y 1

miqi miri mi niqi niri ni

miti miui mi niti niui ni

a

b

Tx

c

d

Ty

=

x′

y′

−oi
−oi

Contrarily, if there are not P non-parallel segment correspondences, restricted similarity is

used instead,

A =

S 0 Tx

0 S Ty

0 0 1

 ,

and the linear system of equations reduces to:

74 CHAPTER 4. USING LINES IN SPATIAL VERIFICATION

x 1 0

y 0 1

miqi + niri mi ni

miti + niui mi ni

S

Tx

Ty

 =

x′

y′

−oi
−oi

Notice that the feature scales s and s′ are not used in either of the cases. In general, it

was observed that the scales are the worst estimated properties. Therefore, this property is

disregarded and the scale is estimated directly from the set of equations.

In either case, the output is an improved version of the naive hypothesis (this hypothesis may

not be called naive anymore; it is called a line hypothesis instead). Since the transformation

matrix changed, the projection of the segments from the first image also changed. It means

that different line segments might be matching and, consequently, another and possibly better

transformation could be estimated. This leads to an iterative process. It happens that the naive

transformation finds only a single matching segment. This segment is then used to adjust the

matrix, and the improved hypothesis manages to match even more segments, which finally leads

to an affine transformation. The most beneficial is every additional matching segment so this

iterative process is stopped as soon as the number of matching segments does not increase.

An example of a line hypothesis is shown in the Figure 4.7. Red dots and red line segments

represent corresponding entities used to establish the line hypothesis, which is depicted also in

red. Blue dots represent the keypoint correspondence which produced the best naive hypothesis,

which is also depicted in blue. To demonstrate the crucial influence of the two line segments,

original naive hypothesis which created the red line hypothesis (i.e., the naive hypothesis pro-

duced from the red points) is also visualised in the image, in green. The line hypothesis has

105 inliers while the original naive hypothesis has only 22 inliers. The line hypothesis surpasses

even the best line hypothesis. In this example, HOW features were used together with enhanced

verification and weighted correspondences. The visualised line hypothesis ends up having the

highest score among all hypotheses.

The usage of line hypotheses was evaluated on the HOW features and the final results

are shown in the Table 4.1. They seem to bring an improvement, especially for the Easy

evaluation protocol. In case of the Advanced SV, the increase in mAP is not as high. This

could be attributed to the fact that there is less room for improvement, and also that the local

optimisation can substitute for the role of lines. SIFT features were also used for an evaluation,

but there was no betterment in terms of the mAP. The value has decreased by approximately

0.5% in all criteria.

The conflict of the local optimisation and the line hypotheses was investigated further more.

For the analysis, HOW features and enhanced verification were used and the SV was evaluated

over top 100 entries in a shortlist. The process was as follows: evaluate the SV over all images

and save the scores. Then, add line hypotheses and check the difference, i.e., whether the

number of inliers increased or decreased. Differentiate between relevant and irrelevant pairs. A

4.2. LINES UTILISATION IN TRANSFORMATION ESTIMATION 75

Figure 4.7: An example of the influence of lines on naive hypotheses.

Easy Medium Hard

H
O
W

Basic SV 85.80 71.83 45.93

Basic SV + Lines, P = 2 87.82 72.32 45.77

Basic SV + Lines, P = 3 87.86 72.38 45.81

Advanced SV 91.74 75.52 51.59

Advanced SV + Lines, P = 2 92.17 75.72 51.79

Advanced SV + Lines, P = 3 92.18 75.80 51.81

Table 4.1: mAP percentage for HOW features on ROxford - basic SV, advanced SV, and their
versions with lines (correspondences generated by the projection strategy).

76 CHAPTER 4. USING LINES IN SPATIAL VERIFICATION

Figure 4.8: Change in support for the basic SV when line hypotheses are (not) used. Positive
values are in favour of line hypotheses.

histogram was computed out of the score differences and the results are shown in the Figure 4.8

on the left. Notice especially two things. First, it is not possible for a line hypothesis to decrease

the final number of inliers. If the line hypotheses are not good (in the meaning that they do not

have many inliers), it does not change the fact that the naive hypotheses are still present with

the very same results. Hence, the presence of the line hypotheses can only increase the score (in

this case). Second, line hypotheses tend to increase the score for relevant images compared to

irrelevant ones. The score for approximately 60% of relevant images has increased in comparison

to 35% of irrelevant images. However, the biggest changes happened on images which had a

large score already. They did not manage to surpass any irrelevant entries in the shortlist, which

would lead to an increase in the mAP. Considering relevant pairs, almost 40% of images whose

support increased by more than 20 inliers had already a score higher than 50 inliers.

The very same thing was evaluated also with the local optimisation on top 10 hypotheses

added. It can be seen on the right side of the Figure 4.8 that the benefits are not as significant

as before. Only approximately 60% 30% of relevant images increased their support upon adding

line hypotheses and even the amount of added inliers was not as high. Some of the scores were

even decreased. This can happen in a case when line hypotheses kick some naive ones out of

the list of top 10 hypotheses intended for the local optimisation.

In conclusion, the local optimisation really does compensate the effect of added line hypothe-

ses. Typically, many point correspondences are used as an input for local optimisation, whereas

only one point and a few line correspondences are used as an input for line hypotheses. This in-

equality is profitable primarily for the local optimisation. On the contrary, line hypotheses tend

to outperform the local optimisation in cases when the image pair has sparse correspondences.

There are not many point correspondences present in the local optimisation (or the points form

just a small cluster). However, in these cases, there are not so many additional inliers to find

and therefore the score is increased only a little by the line hypotheses.

Some additional approaches were also tried, but were relinquished due to their poor perfor-

mance. First, it was considered to use a combination of a translation and an anisotropic scale

4.2. LINES UTILISATION IN TRANSFORMATION ESTIMATION 77

as an upgraded transformation type for line constraints (see the Figure 3.5, restricted affine

1). However, this method did not show any positive impact or results. In the case when only

parallel segments are available, one of the scales was often very poorly estimated.

Another considered option was to constraint the transformation matrix such that lines are

mapped onto lines, i.e., lA−⊤l′ ≃ 0. Nonetheless, this approach seemed to provide exaggeratedly

over-fitted results. It tried to match the lines even at infinity to the detriment of points in the

image itself.

4.2.3 Spatial verification on Tokyo dataset

The spatial verification algorithm was evaluated also on the Tokyo dataset (see the Section

2.7.2). Objects (or places) in the images are photographed in different lightning conditions,

but from nearly the same location and with nearly the same viewing direction. This makes it

potentially a good use case for the spatial verification algorithms since the estimated geometric

transformation should not change too much between the images.

This dataset does not distinguish between different image labels, like ROxford. Therefore,

just one evaluation protocol is used and only a single mAP value is considered in this case. The

dataset has 1 125 images, each image is used as one query and the goal is to find the other (and

only) two positive (relevant) images. Due to the high number of queries and the low number of

sought images, it was decided that the spatial verification is performed only on top 10 images.

HOW features were used, so the baseline and the shortlist is given by the ASMK retrieval

system. Its mAP is 88.61%. There are 90 queries which can be improved by the spatial verifi-

cation, i.e., there are 90 queries which have both relevant images in the top 10 and at least one

irrelevant image in the top 2. The rest of the queries either already has the two relevant images

in the top 2 or at least one relevant image is not present in the top 10.

The configuration of the spatial verification was as follows: weighted correspondences with

the weight adjustment function set to f(x) = max(x, 0); enhanced verification with the error

threshold ∆ = 62; and line hypotheses.

Given this spatial verification configuration, the mAP increases to 91.33% with only 9 queries

which can be improved. However, the fundamental benefit comes from the spatial verification

itself, not from the line hypotheses. Ignoring the line hypotheses and using only the naive ones

results in mAP being equal to 91.27% and 11 improvable queries.

4.2.4 Direct segment matching

The first line segment matching approach described in the Section 4.2.1 is based on improving

an existing naive hypothesis by projecting line segments from the neighbourhood. These pro-

jected segments are then matched with line segments detected in the second image and these

relationships determine constraints for a new, possibly better, transformation.

The approach was shown to work, the hypotheses were often indeed improved. However, they

are dependent on the initial naive transformation. If the features are not good, the resulting

transformation is completely meaningless. As it was already mentioned, the feature scales are

78 CHAPTER 4. USING LINES IN SPATIAL VERIFICATION

Figure 4.9: A line segments matching example. First row depicts corresponding features and
close line segments as well as segment projections. Second row depicts results of the matching
algorithm based on a distance.

often very poorly estimated. So even if keypoint locations really correspond, the scale might be

inaccurate. The resulting naive transformation projects the lines in such a way the algorithm

is unable to match them. An example of this case is depicted in the Figure 4.9 in the first row.

The detected line segments are shown in red. The segments from the first image are projected

into the second image (yellow) and it is clear that the lines could not be matched.

This issue gives rise to an idea: do not project the lines into the second image, but match

the line segments right away. It is obvious that lines which are close to a keypoint should stay

close while lines which are distant should stay distant. And this is exactly the main point.

Assume two images with two corresponding features inside each one of them. The goal is to

obtain a matching of line segments in such a way it can be used as an input into the optimisation

procedure described in the Section 4.2.2.

The beginning of the algorithm is the same. Given an image and a keypoint, line segments

4.2. LINES UTILISATION IN TRANSFORMATION ESTIMATION 79

Input: Sorted lists of line segments L1, L2

Output: List of line segment correspondences C.
1: C ← {}
2: for l1 in L1 do
3: for l2 in L2 do
4: if check conditions(l1, l2) then
5: C.add([l1, l2])
6: L2.remove(l2)
7: break ▷ Breaks out of the L2 loop only

8: return C

Figure 4.10: Line segment matching algorithm.

located in the neighbourhood of the keypoint must be found. Nothing has changed here, except

one little detail — the distance of the keypoint from each line (represented by the segment) is

saved and returned together with the list of segments. The line segments are then sorted based

on the distance from the keypoint.

Given a pair of sorted lists of line segments, the matching itself can start. First segment from

the first list and first segment from the second list are taken. If they satisfy a set of conditions,

they are considered as correspondences and they are removed from the lists. On the contrary, if

they do not satisfy the conditions, the segment from the second list is skipped for now and the

same process continues with another one as long as there are some segments left. This procedure

is applied also for all other segments from the first list. This algorithm is described also in the

Figure 4.10.

The set of conditions is supposed to ensure that the line segment correspondence is mean-

ingful, i.e., the line segments do have some properties in common. There are two main criteria

to verify: (i) the corresponding lines have an angle lower than a threshold, and (ii) the two

keypoints are located on the same side of the two lines (in a simplified way).

The first condition is very straightforward. It is expected that under-laying lines represented

by the corresponding line segments do not do have a large angle. This assumption is reasonable

because of the way photos are usually taken — x axis parallel with the ground and similar

(upright) view orientation (as described in the Section 3.3.3). A threshold of 30 degrees was

used, just like in the previous matching strategy (in the Section 4.2.1).

Second condition checks that the two keypoints are located on the same side of the two

lines. This formulation does not make any sense yet, because lines in general do not have any

orientation, hence they do not have sides. Therefore, an orientation must be first assigned to

each line, or line segment, in order to be able to tell whether points are located on the same side

or not. From the previous condition it is known that the lines are similar in the sense that both

are horizontal, vertical, or in between. Most line segments in the images are only horizontal or

vertical. It is an ideal scenario and makes the matching task easier as these are the extreme

options. This additional knowledge can be used to create a sense of an orientation. For example,

assume there is a vertical line (segment) in the first image as well as in the second image. Then it

can be assumed that both of the lines are pointing upwards, in the y axis direction, and checked

80 CHAPTER 4. USING LINES IN SPATIAL VERIFICATION

Easy Medium Hard

H
O
W

Basic SV 85.80 71.83 45.93

Basic SV + Lines, P = 2 88.06 72.92 46.60

Basic SV + Lines, P = 3 88.50 72.96 46.47

Advanced SV 91.74 75.52 51.59

Advanced SV + Lines, P = 2 92.25 75.97 52.04

Advanced SV + Lines, P = 3 92.27 75.91 51.90

Table 4.2: mAP percentage for HOW features on ROxford - basic SV, advanced SV, and their
versions with lines (correspondences generated by the distance strategy).

that the corresponding keypoint is located on the left (or right) side of the line.

These two conditions are enough to generate meaningful line hypotheses and even exceed

the projection matching strategy in some cases. An example of the final correspondences is

shown again in the Figure 4.9, in the second row. While the strategy based on a projection is

unable to generate correspondences, this distance based strategy does it perfectly. The green and

orange horizontal line segments are swapped, but it does not matter at all since both segments

represent the very same line and lines (not line segments) are used in the optimisation step. The

evaluation results are shown in the Table 4.2. The mAP has increased in all cases in comparison

to the projection matching strategy (Table 4.1).

The current set of conditions has still some flaws. One of them is that two segments which

are in reality far away from each other can be matched just because the under-lying lines have

a similar relative distance to the keypoint. An example is depicted in the Figure 4.11. The first

row of images shows the corresponding keypoints (red dots) and line segments located in their

neighbourhood (red lines). The second row shows the current matching strategy with the angle

and side checks. It can be seen that there are several incorrectly matched segments:

• The brown and pink line segments correspondences (the left most pair of vertical lines,

excluding the one isolated and correctly matched yellow line in bottom left) are swapped.

In this case, luckily, the under-lying lines are almost identical. However, it does not have

to be the case every time.

• A very similar scenario happens also for the purple and red line segments correspondences

(the right most pair of vertical lines). Again, they represent the same ground-truth line so

the miss-match does not have any serious consequences. However, in this case, the upper

border point of the upper segment in the left image is detected imprecisely and causes

that the approximated line is inclined from the ground-truth line a bit. Recall that in

the optimisation step, the line segment border points are projected onto a line (Equation

(4.1)). Due to the miss-matched segments, the distances of the pair of border points from

the line are slightly larger.

• Last incorrectly matched segments correspondence is the light blue pair of horizontal lines.

4.2. LINES UTILISATION IN TRANSFORMATION ESTIMATION 81

Figure 4.11: Difference in direct line segment matching after adding the quadrant check.

82 CHAPTER 4. USING LINES IN SPATIAL VERIFICATION

They both are horizontal and they both are close to the keypoint, but they do not really

correspond. It is a mistake which should not happen.

To address the aforementioned issues, one more condition was experimented with. It is

clear from the example that corresponding line segments should be located in the same relative

position to the keypoint. Also, the line side check is not enough since it works only with the

lines, not segments. Therefore a new condition was developed and examined. The keypoint

can be used to divide the image into four quadrants, where the quadrants are separated by two

perpendicular lines passing through the keypoint. Due to the way photos are taken (as described

earlier in the first angle condition), it is reasonable to choose lines which are parallel with the x

and y axes, respectively. When two segments are about to be matched, they are expected to lie

in the same quadrant.

This condition was implemented as four independent checks: is the segment above, below,

left, and right. Their combination then forms the whole quadrant check. However, the checks

are not complements of their opposites, e.g., above is not a complement of below. In order to

cover the whole range of possible cases (a line segment fully above, close to the keypoint, fully

below, and all over the keypoint), each check is fully independent with three possible states,

e.g., above, non-above, and undefined.

To decide whether a line segment ([ax, ay]
⊤, [bx, by]

⊤) is above a keypoint [x, y]⊤, the y

coordinates of the border points and the keypoint are compared. If any of the border points is

near the horizontal level of the keypoint, i.e., min(|ay − y|, |by − y|) ≤ τ , where τ is a threshold,

then the segment position is marked as undefined. It is a safety measure to recompense line

segment detection inaccuracies and keypoint location approximation error. Also, it prevents

from sudden changes between above and non-above extremes since this ensures an intermediate

level. If both points are sufficiently distant, the classification can continue. If both border points

(their horizontal levels, to be exact) are higher than the keypoint, i.e., min(ay, by) > y, then the

line segment is claimed to be above. Otherwise, the segment is marked as non-above. A pair of

line segments can correspond if and only if at least one of them is marked as undefined or they

are both (non-)above.

Similarly, the line segment can be marked as below, non-below or undefined. If none of the

border points is located within the τ stripe and both points have the horizontal level lower than

the keypoint, i.e., max(ay, by) < y, then the segment is marked as below. Otherwise, it is marked

either as non-below or undefined. The condition for the corresponding segments is the same as

before — at least one of them must be undefined or they must be marked equally.

The vertical classification for right and left is made analogously to the above and below,

respectively, only with the x coordinates and the vertical levels. A line segment correspondence

is allowed if and only if all the quadrant conditions are satisfied.

The third row of the Figure 4.11 shows the final matching when the quadrant check is

included. It can be seen that the vertical line segments (pink, brown, purple, red) are now

matched correctly as well as the horizontal orange ones. It was also evaluated with the threshold

τ = 10 and the results are shown in the Table 4.3. A small improvement is noticeable in

4.2. LINES UTILISATION IN TRANSFORMATION ESTIMATION 83

Easy Medium Hard

H
O
W

Basic SV 85.80 71.83 45.93

Basic SV + Lines, P = 2 88.78 73.05 46.69

Basic SV + Lines, P = 3 88.75 72.99 46.47

Advanced SV 91.74 75.52 51.59

Advanced SV + Lines, P = 2 92.48 75.99 52.14

Advanced SV + Lines, P = 3 92.48 75.96 52.08

Table 4.3: mAP percentage for HOW features on ROxford - basic SV, advanced SV, and their
versions with lines (correspondences generated by the distance strategy, including the quadrant
check).

comparison to the previous version without the quadrant check.

4.2.5 Artificially corrupted data

The original idea why to utilise lines for the spatial verification on HOW features was that the

HOW features have inaccurate feature locations. This may lead to imprecise hypotheses and

consequently also results. During the development it appeared that the lines can compensate for

the errors mostly in two cases: (i) in sparse environments where are not so many correspondences;

(ii) or when the input tentative feature correspondence is obviously incorrect but not so different.

Therefore it was tried to artificially corrupt some data and observe whether the lines manage

to compensate for it by improving the results. The SIFT features were taken and their scales

were inverted: s′ = 1
s . This can have serious consequences mainly for images with a change in

a scale.

The spatial verification algorithms were executed over the ROxford dataset with the cor-

rupted data and the results are in the Table 4.4. It can be seen that for the Basic SV, the lines

really do compensate for the incorrect scales and increase the score to values comparable to the

original ones. In case of the Advanced SV, the lines also improve the results, but the change is

not as significant. Most of the relevant image pairs have a similar scale so the inversion does

not ruin the naive hypotheses completely, but gives a solid foundation in terms of inliers for

the local optimisation. In both cases, the line hypotheses were generated by the direct segment

matching strategy with the quadrant check (Section 4.2.4) and P = 2 (P refers to the number

of non-parallel lines needed for an affine transformation type to be used, see 4.2.2).

Another experiment was to drop the scales completely. All naive hypotheses are disregarded

and only line hypotheses are considered. The very same setup as in the previous case was used.

Despite the complete loss of data, the results are surprisingly good, as it can be seen in the

Table 4.5. They even exceed several approaches which use the scales. It happens that some

image pairs do not manage to find a line hypothesis, i.e., no line segment matching is found for

any tentative correspondence. In case of the HOW features, this happened for 108 image pairs

where 88 of them were irrelevant, 17 relevant, and 3 pairs were unclear (they are ignored during

84 CHAPTER 4. USING LINES IN SPATIAL VERIFICATION

Easy Medium Hard

S
IF

T Basic SV 69.74 55.92 33.49

Advanced SV 73.91 58.05 36.12

C
o
rr
u
p
t.

S
IF

T Basic SV 66.23 52.77 30.07

Basic SV + Lines 69.50 55.73 33.46

Advanced SV 72.32 56.54 34.12

Advanced SV + Lines 73.26 58.27 36.40

Table 4.4: mAP percentage for the SV with SIFT features in comparison to corrupted SIFT
features on ROxford.

Easy Medium Hard

S
IF

T Basic SV 69.60 55.49 32.94

Advanced SV 73.32 57.97 35.93

H
O
W Basic SV 89.10 73.08 46.68

Advanced SV 92.67 76.03 52.12

Table 4.5: mAP percentage for the SV with SIFT and HOW features on ROxford when no scale
is used.

the evaluation, see the Section 2.7.1). This was even more apparent for the SIFT features. No

generated hypothesis had 363 irrelevant image pairs, 38 relevant, and 7 unclear pairs. Image

pairs with no generated hypothesis were treated as if they had zero support, zero score. Since

the majority of cases regards irrelevant image pairs, the overall results in terms of the mAP are

good.

4.3 Vanishing points for homography estimation

Another approach is to use lines to estimate something called a vanishing point, sometimes

abbreviated as a VP. Its location in the real world is known while it is measurable in images.

This makes it possible to adjust transformations in such a way they preserve the vanishing

points.

First, the very basics of the projective geometry in images will be described and the vanishing

points will be defined. Then, vanishing points in images will be estimated using the RANSAC

algorithm and subsequently, they will be used to define hard constraints on transformations

between images.

4.3.1 Projective geometry

In order to get a notion about what a vanishing point actually is and why is it any good,

projective geometry will be shortly described. It should give enough foundations to understand

4.3. VANISHING POINTS FOR HOMOGRAPHY ESTIMATION 85

Figure 4.12: Projective plane geometry.

the rest.

Imagine a standard three dimensional world and a camera taking a picture of a scene. When

a picture is taken, the 3D scene in front of the camera is projected onto a 2D plane, the image.

There is a line between each 3D point and the camera centre. Each such line defines a single

point, projection, on the 2D projective plane. It is the intersection of the line and the projective

plane.

A visualisation is depicted in the Figure 4.12. A camera centre is in the point C. The scene

shows three points, X1, X2, and X3, and their projections onto the projective plane π. The

projections are intersections of the projective plane π and the lines. These lines are determined

by the camera centre C and direction vectors x1, x2, and x3, respectively. Scaling a direction

vector of a line does not change the projection, e.g., both lines determined by x2 and λx2 refer

to the very same point in the plane π (for λ ̸= 0).

It is convenient to choose the coordinate system in such a way that the origin [0, 0, 0]⊤ is

in the camera centre C, first two axes (x and y) are parallel with the projective plane π and

the distance of the camera centre from the projective plane π is one, i.e., π : z = 1. The basis

of the system is depicted by grey vectors in the Figure 4.12. With this system, a point with

coordinates [x, y]⊤ in an image corresponds to the vector [x, y, 1]⊤ as well as vectors [λx, λy, λ]⊤

for λ ̸= 0.

Given a 3D point X, three different situations may arise [56]:

1. If X = C, then there is an infinite number of lines passing through this pair of points, or

actually a single point since they are equal. An infinite number of lines also intersect π in

all of its points, therefore the projection of X contains the whole plane π.

2. If X ̸= C lies in a plane π′, which is parallel to π and passing through C (π′ : z = 0),

then there is exactly one line passing through X and C. This line does not intersect the

projection plane π in any point, hence the projection of X is empty. These points have

86 CHAPTER 4. USING LINES IN SPATIAL VERIFICATION

Figure 4.13: An example and a diagram of two parallel lines and a vanishing point.

coordinates [x, y, 0]⊤ and are called points at infinity.

3. In other cases, there is exactly one line passing through X and C, and this line intersects

the projective plane π in exactly one point. Hence, the projection of X contains exactly

one point. This is the most common situation which is also depicted in the Figure 4.12.

The projective plane and points at infinity form a projective space.

Formally: a projective space P2 is a vector space with three dimensions, with the zero vector

excluded (i.e., R3\[0, 0, 0]⊤), and with equivalence relation classes x ≃ λx for λ ̸= 0 (where

x = [x, y, 1]⊤).

Elements x are often called points, even though they represent a whole line (with one ex-

cluded point). The projective space P2 includes also points at infinity.

Given this projective space and the camera model, the appearance of parallel lines can be

examined. See the Figure 4.13, where is a diagram together with a real picture. There are

two parallel lines being captured, in case of the real image they are two rails. However, the

projections of the parallel lines are not parallel anymore, they intersect somewhere. Consider

a line determined by the point X0 and the direction vector d. Each point X0 + λd of the line

is projected onto the projective plane π. As λ goes to infinity, the projection gets closer to the

point v. The point v is a vanishing point, representing the projection of a point that moves

infinitely in one direction along a space line.

Notice that the other parallel line has the very same vanishing point. As λ goes to infinity,

the root point X0 gets negligible and only the direction vector d determines the projection.

Parallel lines have the same direction, therefore the vanishing point is shared as well.

Lines in an image which are parallel are said to intersect at infinity, which actually does

correspond to the points at infinity mentioned earlier. Consider two parallel lines in P2, l =

4.3. VANISHING POINTS FOR HOMOGRAPHY ESTIMATION 87

[a, b, c]⊤ and k = [a, b, d]⊤. Note the identical normal vector, [a, b]⊤, and different intercepts c

and d. Their intersection is l × k = [b,−a, 0]⊤. The third coordinate is equal to zero, hence it

is a point at infinity.

The concept of parallel lines in reality not being parallel in images can be further utilised.

The more parallel lines (in reality) in an image, the more significant vanishing point which can

be used during the transformation estimation.

4.3.2 Vanishing point estimation

It is reasonable to assume that majority of the ground-truth lines in an image form groups of

lines which are mutually parallel and therefore share a vanishing point. Vanishing points can be

further utilised, but they must be estimated in the first place. Lines in an image are represented

by line segments, which were already detected in the Section 4.1, so they can be re-used now.

Many lines from an image are detected due to some noise or they represent an edge whose

vanishing point is insignificant. Usually, only a minority of lines belongs to a concrete and

strong vanishing point. For these reasons, a robust estimation algorithm must be used and the

RANSAC is a clear candidate.

An existing implementation of the vanishing point estimation by the RANSAC algorithm was

used in this thesis [57], [58]. It assumes only horizontal and vertical lines, nothing in between.

It estimates a single vertical vanishing point and multiple horizontal ones.

It starts by classifying the line segments into three categories: horizontal, vertical, and

undefined. A direction of each line segment is taken. It is the normalised difference of the

border points, so the direction is a unit vector which is then classified as follows:

• If the absolute value of the x coordinate is greater than a threshold, it is a horizontal line;

• If the absolute value of the y coordinate is greater than a threshold, it is a vertical line;

• If none of the above applies, the line is classified as undefined.

The threshold value was set at 0.8, corresponding to a range of approximately ±37 degrees.

This leaves only a 16-degree range for classifying undefined segments, which are excluded from

the estimation process.

After the line segments are classified, the RANSAC algorithm itself can be performed. The

most important parts are the hypothesis generation function and the error function.

In order to generate a hypothesis θ in the form of a vanishing point, minimum sample S
of two line segments is needed. Given a line segment (a,b), the line can be obtained as a

vector product, l = a × b. Then, the vanishing point is an intersection of at least two lines

in an image. An intersection can be computed again as a dot product, v = l1 × l2, however,

the implementation uses a set of equations instead. The intersection v must lie on each line l:

l⊤v = 0. This generates one equation, the other line generates second equation, which is the

required minimum in order for the set to be exactly determined. A least squares method is used

88 CHAPTER 4. USING LINES IN SPATIAL VERIFICATION

for this linear system, which has an advantage — it can handle even more than two lines, hence

is applicable also in a local optimisation.

When a hypothesis is generated, an error function can be evaluated. It is supposed to

output a small values for line segments consistent with the hypothesis (a vanishing point) and

large values for segments which are inconsistent. The error function was chosen to be as follows:

given a vanishing point v and a line segment (a,b) generating a line l, a line c connecting the

vanishing point and a mid-point of the segment is created, c = v×
(a+b

2

)
. Then, a point f on l

with a fixed distance from the mid-point is taken and its squared distance from the connecting

line c is used as the error value.

By using a point f on the line segment at a fixed distance from the line mid-point instead

of the segment border points, the distance from the connecting line c does not depend on the

length of the line segment anymore.

It is apparent that line segments (or lines) consistent with a hypothesis point in that di-

rection and therefore the error is small. On the contrary, inconsistent lines have the distance

much greater as the the point f is moving further away from the connecting line c. This error

function is equivalent to measuring an angle between the lines, however, this method is more

computationally efficient and less sensitive to numerical errors.

In terms of the RANSAC notation: a set of line segments with the same assigned category

is used as the set U of input data points from a measurement space X of all 2D line segments.

The goal is to estimate a vanishing point, which is an intersection of at least two lines, therefore

the minimum sample size m = 2. One sample S of two line segments generates a hypothesis

θ (a vanishing point) from a parameter space of all points Θ ≡ P2 as an intersection of the

underlying lines. This hypothesis is then evaluated over all line segments using an error function

ρ(θ,x) −→ R. This function computes a distance of a point from a line. The point is on the line

segment with a fixed distance from its mid-point. The line is connecting the mid-point and the

vanishing point nominated by the hypothesis. The error values are compared with a threshold

∆ and divided into two groups, inliers and outliers. For the purpose of this thesis, threshold

∆ = 2 was used. The cost function J(θ,U ,∆) returns a number of inliers for a given hypothesis,

therefore a vanishing point with the highest support is chosen. Additionally, in order to accept

the estimated vanishing points, the ratio of inliers in the input set must be higher than 10%.

The algorithm is evaluated on line segments with vertical and horizontal classes separately.

It is evaluated only once for the vertical segments and multiple times for horizontal segments.

Each time a horizontal vanishing point is estimated, inliers are removed from the input data set

(U) and the RANSAC is started again as long as the support of the last vanishing point is large

enough (value of 10 was used). Also, more than 20% of the original line segments must be still

present in the input data set.

The evaluation was performed over raw line segments detected in an image, before the post-

processing described in the Section 4.1.4. Only segments longer than 50 pixels were used. The

confidence η for stopping the algorithm was set to 0.999, with additional conditions for the

minimum and maximum number N of iterations to be 10 000 < N < 100 000.

4.3. VANISHING POINTS FOR HOMOGRAPHY ESTIMATION 89

To summarise it: vanishing point estimation is performed on each image. Ideally, one vertical,

and multiple horizontal VPs are found. Nevertheless, it can happen that none is detected in an

image. In fact, vanishing points were computed for 2 133 images in total (the rest of the images

was not used in the SV), while 67 of them has no VP at all, 640 is missing a vertical VP, and

102 images have no horizontal VP. 764 images have exactly one horizontal VP and two images

have even 8 horizontal VPs.

4.3.3 Vanishing point as a hard constraint

In reality, parallel lines do not intersect (they intersect at infinity, as it was explained before)

regardless of the position of an observer. However, in images, projections of these lines do

intercept and the location of the intersection depends on the camera position and direction.

This brings a new measurable element which can be used during a transformation estimation.

Its preservation can be used or even enforced in an optimisation.

Consider two images, each with one vertical and one horizontal vanishing point detected. In

this thesis, vanishing points were used as hard constraints. It means that their correspondence

is enforced during the transformation estimation, i.e., vanishing points in the first image are

transformed onto vanishing points in the second image. Since affine transformations preserve

parallelism (see the Table 3.2), projective transformations are estimated instead. The first at-

tempt of a homography utilisation in the Section 3.4.6 was not successful. The transformations

tent to over-fit the inliers which caused conspicuous incongruities, especially in corners of bound-

ing boxes. The vanishing points constraints could potentially solve this issue as they preserve

directions of lines.

Before concrete equations regarding the vanishing points and its constraints are introduced,

start with a general homography estimation. Without assuming any knowledge about cameras,

the goal is to find a homography matrix out of point correspondences.

Let H ∈ R3×3 be an estimated homography matrix, x = [u, v]⊤ ∈ P2 and x′ = [u′, v′]⊤ ∈ P2

be two corresponding points. Then the following equation holds [56]:

λx′ = Hx =

h⊤
1

h⊤
2

h⊤
3

x,

for λ ̸= 0, where hi are rows of the homography matrix H and underlined variables represent

the homogeneous form. The equation can be rewritten row-wise as:

λu′ = h⊤
1 x

λv′ = h⊤
2 x

λ = h⊤
3 x

90 CHAPTER 4. USING LINES IN SPATIAL VERIFICATION

Next step is to eliminate λ using the third equation,

(h⊤
3 x)u

′ = h⊤
1 x

(h⊤
3 x)v

′ = h⊤
2 x

and move everything to one side.

h⊤
1 x− (h⊤

3 x)u
′ = 0

h⊤
2 x− (h⊤

3 x)v
′ = 0

Now, reshape the equations using x⊤y = y⊤x equality to move the homography matrix row vec-

tors on the right side of each term and change the parenthesis such that the scalar multiplication

comes first:

x⊤h1 − (u′x⊤)h3 = 0

x⊤h2 − (v′x⊤)h3 = 0

Concatenate row vectors hi of the homography matrix H into a vector h ∈ R9. Then the pair

of equations can be rewritten into a homogeneous system of linear equations as:[
u v 1 0 0 0 −u′u −u′v −u′

0 0 0 u v 1 −v′u −v′v −v′

]
︸ ︷︷ ︸

Mx

h = 0 (4.2)

and this system can be solved. Mx refers to a matrix form of the homogeneous set of equations

generated by point correspondences. The final homography matrixH is obtained by re-arranging

the elements of the vector h. Since the homography transformation is defined up to scale, at

least four correspondences are required to obtain a solution.

Now get back to hard constraints induced by vanishing points correspondences. Assume

corresponding horizontal and vertical vanishing points vh, v
′
h, vv, and v′

v. The vanishing points

must satisfy the homography, therefore the corresponding pairs of VPs can be substituted into

the Equation (4.2):

Mvh = 0, (4.3)

where Mv is a matrix form of a homogeneous set of equations generated by vanishing points

correspondences. Since each correspondence generates two equations and there are two corre-

spondences, the matrix has four rows (Mv ∈ R4×9).

The Equation (4.3) means that h lies in the null space of Mv and can be expressed as a

linear combination of base vectors of its null space. The null space can be found using a Singular

4.3. VANISHING POINTS FOR HOMOGRAPHY ESTIMATION 91

Value Decomposition (SVD),

Mv = UΣV⊤,

and the base B ∈ R9×5 of the null space of the matrix Mv is obtained by taking five right-most

vectors of the matrix V. It is known that the homography vector h is a linear combination of

the base vectors B:

h = Bα,

where α ∈ R5. Hence, the task is to find the coordinates of the vector α.

The rest of the corresponding image points is then used to obtain a least squared solution of

the final homography matrix, constrained by the vanishing points. Assume a set of corresponding

points xi, x
′
i for i = 1...N , where N is a number of inliers (of a previously estimated affine

transformation). These point correspondences are used to create the matrix Mx from the

Equation (4.2). However, this time, linear combination of the previously obtained base vectors

is sought, i.e., coordinates of the vector α:

Mxh = 0

MxBα = 0

By solving this homogeneous linear system, the vector α is estimated and the homography

vector h (and subsequently the matrix H) is obtained as the linear combination of the base

vectors:

h = Bα

As it was done several times before, estimating a new transformation is followed by its

evaluation. The evaluation may have changed the inlier arrangement and therefore this becomes

an iterative process. However, the base vectors remain unchanged and only the second step of

the least squares solution is repeated.

Going back to the beginning, each image should have (in an ideal scenario) one vertical VP

and at least one horizontal VP. However, about ∼ 35% of images has multiple horizontal VPs

detected. All their combinations are evaluated, compared, and the best result in terms of the

score is taken.

This approach can give nice results which look accurate, for example as in the Figure 4.14,

but it is still a projective transform which very easily over-fits. Furthermore, this approach is

conditioned by several factors: the line segments must be well detected; the object should be

conspicuous and striking such that the VPs are not eclipsed by VPs generated from segments

detected in the neighbourhood; the estimated VPs must be fine. If any of the conditions is un-

satisfied, no homography can be estimated or it is constrained by false correspondences resulting

in a poor transformation.

It was tried to use this approach also in re-ranking. Because not all image pairs have VPs

detected, it must be implemented just as an optional superstructure over the basic SV. Used

92 CHAPTER 4. USING LINES IN SPATIAL VERIFICATION

Figure 4.14: An example of a homography (yellow) constrained by vanishing points correspon-
dences. Estimated affine transform (red) is depicted for reference.

Easy Medium Hard

H
O
W Advanced SV with lines 92.48 75.99 52.14

... + constrained homographies 92.82 75.81 51.99

Table 4.6: mAP percentage for HOW features on ROxford - advanced SV with line hypotheses
as a baseline and its version with constrained homographies.

baseline was the advanced SV with line hypotheses generated by the direct segment matching

strategy with P = 2. If the final affine transformation has at least five inliers and both images

have the compulsory vanishing points, a homography is estimated. After the model is verified

and gets a score assigned, additional two points are added. The reason is that the homography

satisfies the two vanishing points correspondences, but they are not in the list of tentative

point correspondences. Therefore, they are not included in the scoring mechanism and must

be rewarded afterwards. It is one point per VPs correspondence. The results are shown in the

Table 4.6. The Easy evaluation protocol got a slight improvement while the performance for

the Hard protocol dropped by a few hundredths. These images have difficult viewing conditions

which often result in poor (or no) vanishing point estimates.

4.4 Normalisation in least squares solutions

Throughout the thesis, all least squares computations implicitly use normalised input data in

order to return precise and stable solutions. The normalisation includes a translation and

isotropic scaling such that the points have centroids in their origin and the average distance

from the origin is equal to
√
2. This normalisation is performed on all images independently

4.4. NORMALISATION IN LEAST SQUARES SOLUTIONS 93

[31].

Without normalisation, typical image points are of order [x, y, z]⊤ = [100, 100, 1]⊤ and the

linear system of equations used for a transformation estimation then contains terms like xx′ of

order 104, xz′ of order 102 and zz′ equal to 1, just to name a few examples. However, increasing

the term zz′ by 100 means a huge change, whereas increasing the term xx′ by 100 is almost

negligible. Therefore, the normalisation of all entries is essential [31].

Assume a set of input correspondences xi, x
′
i for i = 1...N between two images. It can be

either points or even lines. The correspondences generate a system of linear equations which is

solved by a least squares method in order to estimate an optimal geometric transformation from

the first image into the second one.

First, two normalisation matrices are computed for each image independently as:

N =

s 0 −stx
0 s −sty
0 0 1

 , N′ =

s′ 0 −s′tx′

0 s′ −s′ty′
0 0 1

 ,

where [tx, ty]
⊤ = 1

N

∑
i xi determines the translation of the points centroid into the origin and

s is a normalisation factor such that the average distance of points from the origin is equal to
√
2. Similarly, the very same parameters s′, tx′ , and ty′ are computed also for points x′

i in the

second image.

When the normalisation matrices are computed, they are used to normalise the inputs Nxi,

N′x′
i of the least square solver. When the solver outputs a solution (transformation) H̃, it must

be de-normalised accordingly. The final (and optimal) transformation H is obtained as:

H = N′−1H̃N

As it was shown in [31], such normalised transformations are essential as they are more

precise and stable results.

94 CHAPTER 4. USING LINES IN SPATIAL VERIFICATION

Chapter 5

Conclusions

This thesis addresses the problem of transformation estimation in the spatial verification process.

The results are evaluated between image pairs and utilised in image retrieval, primarily for re-

ranking. The main contribution lies in employing lines and line segments detected in images.

These are used in the transformation estimation process to provide additional information about

the local geometry.

After the image retrieval was introduced and the spatial verification was put into the context,

a robust estimation algorithm was described along with its advanced variants. These were

applied to the problem of transformation estimation between pairs of images and implemented

as a toolkit of functions, which included several adaptations of the base version of the algorithm.

The correctness of the implementation was verified against a well-known set of SIFT features as

well as evaluated with a new set of HOW features.

In the second part of the thesis, line segments were detected in order to be utilised in the

transformation estimation process. Three detection methods were implemented and experimen-

tally compared. One of the approaches was used and provided a foundation for further work.

Detected line segments were utilised during a generation of transformation candidates. Two

matching strategies were compared, and corresponding line segments were used to provide ad-

ditional soft constraints for the estimated transformations. This helps to improve the transfor-

mation flexibility, accuracy, and to compensate imprecise or missing feature properties. Lines

were also used to estimate vanishing points in images, offering hard constraints for projective

transformations.

The lines were shown to bring a slight improvement to the overall retrieval performance.

The added value was the most noticeable for imprecise or fully missing feature data. It was able

to compensate for absent feature scales with performance results comparable to the cases with

scales present.

The code will be released at https://gitlab.fel.cvut.cz/hubacda1/dt-sv.

95

https://gitlab.fel.cvut.cz/hubacda1/dt-sv

96 CHAPTER 5. CONCLUSIONS

Bibliography

[1] A. Halawani, A. Teynor, L. Setia, G. Brunner, and H. Burkhardt, “Fundamentals and
applications of image retrieval: An overview.”, Datenbank-Spektrum, vol. 18, pp. 14–23,
Jan. 2006.

[2] J. B. MacQueen, “Some methods for classification and analysis of multivariate observa-
tions”, in Proc. of the fifth Berkeley Symposium on Mathematical Statistics and Probability,
vol. 1, University of California Press, 1967, pp. 281–297.

[3] C. Harris and M. Stephens, “A combined corner and edge detector”, in Proceedings of the
4th Alvey Vision Conference, 1988, pp. 147–151.

[4] N. Kanopoulos, N. Vasanthavada, and R. L. Baker, “Design of an image edge detection
filter using the sobel operator”, IEEE Journal of solid-state circuits, vol. 23, no. 2, pp. 358–
367, 1988.

[5] J. Shi and Tomasi, “Good features to track”, in 1994 Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition, 1994, pp. 593–600. doi: 10.1109/CVPR.1994.
323794.

[6] E. Rosten and T. Drummond, “Machine learning for high-speed corner detection”, in
Computer Vision – ECCV 2006, Berlin, Heidelberg: Springer Berlin Heidelberg, 2006,
pp. 430–443, isbn: 978-3-540-33833-8.

[7] H. Kong, H. C. Akakin, and S. E. Sarma, “A generalized laplacian of gaussian filter for
blob detection and its applications”, IEEE Transactions on Cybernetics, vol. 43, no. 6,
pp. 1719–1733, 2013. doi: 10.1109/TSMCB.2012.2228639.

[8] Y. Ono, E. Trulls, P. Fua, and K. M. Yi, Lf-net: Learning local features from images, 2018.
arXiv: 1805.09662 [cs.CV].

[9] D. G. Lowe, “Object recognition from local scale-invariant features”, in Proceedings of the
seventh IEEE international conference on computer vision, Ieee, vol. 2, 1999, pp. 1150–
1157.

[10] E. Tola, V. Lepetit, and P. Fua, “A fast local descriptor for dense matching”, Proc. CVPR,
Jun. 2008. doi: 10.1109/CVPR.2008.4587673.

[11] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection”, in 2005
IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05),
vol. 1, 2005, 886–893 vol. 1. doi: 10.1109/CVPR.2005.177.

[12] R. Arandjelović and A. Zisserman, “Three things everyone should know to improve object
retrieval”, in 2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012,
pp. 2911–2918. doi: 10.1109/CVPR.2012.6248018.

[13] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust features (surf)”,
Computer Vision and Image Understanding, vol. 110, no. 3, pp. 346–359, 2008, Similarity
Matching in Computer Vision and Multimedia, issn: 1077-3142. doi: https://doi.org/
10.1016/j.cviu.2007.09.014. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S1077314207001555.

97

https://doi.org/10.1109/CVPR.1994.323794
https://doi.org/10.1109/CVPR.1994.323794
https://doi.org/10.1109/TSMCB.2012.2228639
https://arxiv.org/abs/1805.09662
https://doi.org/10.1109/CVPR.2008.4587673
https://doi.org/10.1109/CVPR.2005.177
https://doi.org/10.1109/CVPR.2012.6248018
https://doi.org/https://doi.org/10.1016/j.cviu.2007.09.014
https://doi.org/https://doi.org/10.1016/j.cviu.2007.09.014
https://www.sciencedirect.com/science/article/pii/S1077314207001555
https://www.sciencedirect.com/science/article/pii/S1077314207001555

98 BIBLIOGRAPHY

[14] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “Brief: Binary robust independent ele-
mentary features”, in Computer Vision – ECCV 2010, Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, pp. 778–792, isbn: 978-3-642-15561-1.

[15] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: An efficient alternative to sift
or surf”, in 2011 International Conference on Computer Vision, 2011, pp. 2564–2571. doi:
10.1109/ICCV.2011.6126544.

[16] H. Noh, A. Araujo, J. Sim, T. Weyand, and B. Han, “Large-scale image retrieval with
attentive deep local features”, in 2017 IEEE International Conference on Computer Vision
(ICCV), 2017, pp. 3476–3485. doi: 10.1109/ICCV.2017.374.

[17] G. Salton, A. Wong, and C. S. Yang, “A vector space model for automatic indexing”,
Commun. ACM, vol. 18, no. 11, pp. 613–620, Nov. 1975, issn: 0001-0782. doi: 10.1145/
361219.361220. [Online]. Available: https://doi.org/10.1145/361219.361220.

[18] J. Sivic and A. Zisserman, “Video google: A text retrieval approach to object matching in
videos”, in Proceedings Ninth IEEE International Conference on Computer Vision, 2003,
1470–1477 vol.2. doi: 10.1109/ICCV.2003.1238663.

[19] K. Jones, “A statistical interpretation of term specificity in retrieval”, Journal of Docu-
mentation, vol. 60, pp. 493–502, Jan. 2004. doi: 10.1108/00220410410560573.

[20] H. Jegou, M. Douze, and C. Schmid, “Hamming embedding and weak geometric consis-
tency for large scale image search”, in Computer Vision – ECCV 2008, Berlin, Heidelberg:
Springer Berlin Heidelberg, 2008, pp. 304–317, isbn: 978-3-540-88682-2.

[21] H. Jégou, M. Douze, and C. Schmid, “On the burstiness of visual elements”, in 2009
IEEE Conference on Computer Vision and Pattern Recognition, 2009, pp. 1169–1176.
doi: 10.1109/CVPR.2009.5206609.

[22] H. Jégou, M. Douze, C. Schmid, and P. Pérez, “Aggregating local descriptors into a com-
pact image representation”, in 2010 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, 2010, pp. 3304–3311. doi: 10.1109/CVPR.2010.5540039.

[23] G. Tolias, Y. Avrithis, and H. Jégou, “To aggregate or not to aggregate: Selective match
kernels for image search”, in 2013 IEEE International Conference on Computer Vision,
2013, pp. 1401–1408. doi: 10.1109/ICCV.2013.177.

[24] G. Tolias, T. Jenicek, and O. Chum, “Learning and aggregating deep local descriptors for
instance-level recognition”, in ECCV, 2020.

[25] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition”,
in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016,
pp. 770–778. doi: 10.1109/CVPR.2016.90.

[26] F. Radenović, A. Iscen, G. Tolias, Y. Avrithis, and O. Chum, “Revisiting oxford and paris:
Large-scale image retrieval benchmarking”, in CVPR, 2018.

[27] A. Torii, R. Arandjelović, J. Sivic, M. Okutomi, and T. Pajdla, “24/7 place recognition
by view synthesis”, in CVPR, 2015.

[28] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, “Object retrieval with large
vocabularies and fast spatial matching”, in 2007 IEEE Conference on Computer Vision
and Pattern Recognition, 2007, pp. 1–8. doi: 10.1109/CVPR.2007.383172.

[29] P. Huber, J. Wiley, and W. InterScience, Robust statistics. Wiley New York, 1981.

[30] M. A. Fischler and R. C. Bolles, “Random sample consensus: A paradigm for model fitting
with applications to image analysis and automated cartography”, Commun. ACM, vol. 24,
no. 6, Jun. 1981, issn: 0001-0782. doi: 10.1145/358669.358692. [Online]. Available:
https://doi.org/10.1145/358669.358692.

[31] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, 2nd ed. New
York, NY, USA: Cambridge University Press, 2003, isbn: 0521540518.

https://doi.org/10.1109/ICCV.2011.6126544
https://doi.org/10.1109/ICCV.2017.374
https://doi.org/10.1145/361219.361220
https://doi.org/10.1145/361219.361220
https://doi.org/10.1145/361219.361220
https://doi.org/10.1109/ICCV.2003.1238663
https://doi.org/10.1108/00220410410560573
https://doi.org/10.1109/CVPR.2009.5206609
https://doi.org/10.1109/CVPR.2010.5540039
https://doi.org/10.1109/ICCV.2013.177
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2007.383172
https://doi.org/10.1145/358669.358692
https://doi.org/10.1145/358669.358692

BIBLIOGRAPHY 99

[32] O. Chum, J. Matas, and O. Drbohlav, Robust model estimation from data contaminated
by outliers, Lecture, 2021. [Online]. Available: https://cw.fel.cvut.cz/wiki/_media/
courses/mpv/2021_ransac.pdf.

[33] O. Chum, “Two-view geometry estimation by random sample and consensus”, Ph.D. dis-
sertation, Czech Technical University in Prague, 2005.

[34] O. Chum, J. Matas, and J. Kittler, “Locally optimized ransac”, in DAGM-Symposium,
2003. [Online]. Available: https://api.semanticscholar.org/CorpusID:15181392.

[35] J. J. Moré, “The levenberg-marquardt algorithm: Implementation and theory”, in Nu-
merical Analysis, Berlin, Heidelberg: Springer Berlin Heidelberg, 1978, pp. 105–116, isbn:
978-3-540-35972-2.

[36] J. Matas and O. Chum, “Randomized ransac with td,d test”, Image and Vision Computing,
vol. 22, pp. 837–842, Sep. 2004. doi: 10.1016/j.imavis.2004.02.009.

[37] O. Chum and J. Matas, “Matching with prosac - progressive sample consensus”, in 2005
IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05),
vol. 1, 2005, 220–226 vol. 1. doi: 10.1109/CVPR.2005.221.

[38] R. Szeliski, Computer Vision: Algorithms and Applications, 1st. Berlin, Heidelberg: Springer-
Verlag, 2010, isbn: 1848829345.

[39] M. Perdoch, O. Chum, and J. Matas, “Efficient representation of local geometry for large
scale object retrieval”, 2009 IEEE Conference on Computer Vision and Pattern Recogni-
tion, pp. 9–16, 2009. [Online]. Available: https://api.semanticscholar.org/CorpusID:
120117297.

[40] O. Russakovsky, J. Deng, H. Su, et al., “Imagenet large scale visual recognition challenge”,
Int. J. Comput. Vision, vol. 115, no. 3, pp. 211–252, Dec. 2015, issn: 0920-5691. doi:
10.1007/s11263-015-0816-y. [Online]. Available: https://doi.org/10.1007/s11263-
015-0816-y.

[41] L. R. Ford and D. R. Fulkerson, “Maximal flow through a network”, Canadian Journal of
Mathematics, vol. 8, pp. 399–404, 1956. doi: 10.4153/CJM-1956-045-5.

[42] O. Chum and J. Matas, “Homography estimation from correspondences of local ellipti-
cal features”, in Proceedings of the 21st International Conference on Pattern Recognition
(ICPR2012), 2012, pp. 3236–3239.

[43] O. Chum, T. Pajdla, and P. Sturm, “The geometric error for homographies”, Computer
Vision and Image Understanding, vol. 97, no. 1, pp. 86–102, Jan. 2005, issn: 1077-3142.

[44] A. Irschara, C. Zach, J.-M. Frahm, and H. Bischof, “From structure-from-motion point
clouds to fast location recognition”, in 2009 IEEE Conference on Computer Vision and
Pattern Recognition, 2009, pp. 2599–2606. doi: 10.1109/CVPR.2009.5206587.

[45] J. L. Schönberger and J.-M. Frahm, “Structure-from-motion revisited”, in 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 4104–4113.
doi: 10.1109/CVPR.2016.445.

[46] A. Mikuĺık, F. Radenović, O. Chum, and J. Matas, “Efficient image detail mining”, in
Computer Vision – ACCV 2014, Springer International Publishing, 2015, pp. 118–132,
isbn: 978-3-319-16808-1.

[47] O. Chum, J. Philbin, J. Sivic, M. Isard, and A. Zisserman, “Total recall: Automatic
query expansion with a generative feature model for object retrieval”, 2007 IEEE 11th
International Conference on Computer Vision, pp. 1–8, 2007. [Online]. Available: https:
//api.semanticscholar.org/CorpusID:570516.

[48] O. Chum, A. Mikuĺık, M. Perdoch, and J. Matas, “Total recall ii: Query expansion revis-
ited”, CVPR 2011, pp. 889–896, 2011.

https://cw.fel.cvut.cz/wiki/_media/courses/mpv/2021_ransac.pdf
https://cw.fel.cvut.cz/wiki/_media/courses/mpv/2021_ransac.pdf
https://api.semanticscholar.org/CorpusID:15181392
https://doi.org/10.1016/j.imavis.2004.02.009
https://doi.org/10.1109/CVPR.2005.221
https://api.semanticscholar.org/CorpusID:120117297
https://api.semanticscholar.org/CorpusID:120117297
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.4153/CJM-1956-045-5
https://doi.org/10.1109/CVPR.2009.5206587
https://doi.org/10.1109/CVPR.2016.445
https://api.semanticscholar.org/CorpusID:570516
https://api.semanticscholar.org/CorpusID:570516

100 BIBLIOGRAPHY

[49] J. Canny, “A computational approach to edge detection”, IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. PAMI-8, no. 6, pp. 679–698, 1986. doi: 10.1109/
TPAMI.1986.4767851.

[50] J. Matas, C. Galambos, and J. Kittler, “Robust detection of lines using the progressive
probabilistic hough transform”, Computer Vision and Image Understanding, vol. 78, no. 1,
pp. 119–137, 2000, issn: 1077-3142. doi: https://doi.org/10.1006/cviu.1999.
0831. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1077314299908317.

[51] R. Gioi, J. Jakubowicz, J.-M. Morel, and G. Randall, “Lsd: A line segment detector”, Image
Processing On Line, vol. 2, pp. 35–55, Mar. 2012. doi: 10.5201/ipol.2012.gjmr-lsd.

[52] N. Xue, S. Bai, F. Wang, G.-S. Xia, T. Wu, and L. Zhang, “Learning attraction field repre-
sentation for robust line segment detection”, in 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2019, pp. 1595–1603. doi: 10.1109/CVPR.2019.
00169.

[53] K. Huang, Y. Wang, Z. Zhou, T. Ding, S. Gao, and Y. Ma, “Learning to parse wireframes in
images of man-made environments”, in 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2018, pp. 626–635. doi: 10.1109/CVPR.2018.00072.

[54] Y. Zhou, H. Qi, and Y. Ma, “End-to-end wireframe parsing”, in 2019 IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), 2019, pp. 962–971. doi: 10.1109/ICCV.
2019.00105.

[55] Y. Lin, S. L. Pintea, and J. C. van Gemert, “Deep hough-transform line priors”, in Com-
puter Vision – ECCV 2020, Cham: Springer International Publishing, 2020, pp. 323–340,
isbn: 978-3-030-58542-6.

[56] T. Pajdla, Elements of geometry for computer vision and computer graphics, Feb. 2021.
[Online]. Available: https://cw.fel.cvut.cz/b212/_media/courses/gvg/pajdla-
gvg-lecture-2021.pdf.

[57] J. L. Schönberger, E. Zheng, M. Pollefeys, and J.-M. Frahm, “Pixelwise view selection for
unstructured multi-view stereo”, in European Conference on Computer Vision (ECCV),
2016.

[58] A. Benbihi, C. Pradalier, and O. Chum, “Object-guided day-night visual localization in
urban scenes”, in 2022 26th International Conference on Pattern Recognition (ICPR),
IEEE, 2022, pp. 3786–3793.

https://doi.org/10.1109/TPAMI.1986.4767851
https://doi.org/10.1109/TPAMI.1986.4767851
https://doi.org/https://doi.org/10.1006/cviu.1999.0831
https://doi.org/https://doi.org/10.1006/cviu.1999.0831
https://www.sciencedirect.com/science/article/pii/S1077314299908317
https://www.sciencedirect.com/science/article/pii/S1077314299908317
https://doi.org/10.5201/ipol.2012.gjmr-lsd
https://doi.org/10.1109/CVPR.2019.00169
https://doi.org/10.1109/CVPR.2019.00169
https://doi.org/10.1109/CVPR.2018.00072
https://doi.org/10.1109/ICCV.2019.00105
https://doi.org/10.1109/ICCV.2019.00105
https://cw.fel.cvut.cz/b212/_media/courses/gvg/pajdla-gvg-lecture-2021.pdf
https://cw.fel.cvut.cz/b212/_media/courses/gvg/pajdla-gvg-lecture-2021.pdf

	Abstract
	Anotace
	Acknowledgements
	List of Tables
	List of Figures
	List of Acronyms
	Introduction
	Image retrieval
	General image retrieval
	Local-feature-based methods
	Feature detection
	Harris detector
	Other detection methods

	Feature description
	SIFT descriptors
	Other description methods

	Retrieval and ranking methods
	Bag of Words
	Other retrieval and ranking methods

	HOW descriptors
	Commonly used datasets and evaluation
	Revisited Oxford Dataset
	24/7 Tokyo Dataset
	Evaluation metrics

	Spatial verification
	RANSAC
	RANSAC variants
	LO-RANSAC
	R-RANSAC
	PROSAC

	RANSAC for spatial verification
	Types of transformations
	Point correspondences
	Local geometry for object retrieval
	Transformation estimation

	Possible adaptations
	Weighted correspondences
	Local optimisation
	Local optimisation on top N models
	Enhanced verification
	Multiple assignment
	Homography estimation
	Determinant and scale verification
	Eigenvalues verification
	Bounding box cover scoring
	Baseline used for further development

	Spatial verification use cases
	Query expansion

	Additional evaluations

	Using lines in spatial verification
	Line segment detection
	Progressive Probabilistic Hough Transform
	Line Segment Detector
	Deep learning based detector
	Post-processing of detected lines

	Lines utilisation in transformation estimation
	Projected segment matching
	Transformation estimation constrained by segment correspondences
	Spatial verification on Tokyo dataset
	Direct segment matching
	Artificially corrupted data

	Vanishing points for homography estimation
	Projective geometry
	Vanishing point estimation
	Vanishing point as a hard constraint

	Normalisation in least squares solutions

	Conclusions
	Bibliography

