
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of master’s thesis

Build pipeline for edge computing applications

Bc. Jan Chybík

Ing. Daniel Sedlák

Informatics

System Programming

Department of Theoretical Computer Science

until the end of summer semester 2024/2025

Instructions

Edge computing has recently started gaining popularity among all significant CDN

providers. It allows data to be processed closer to its clients rather than relying on a

centralized data processing warehouse or distant cloud servers that can introduce

higher latency.

This thesis aims to design and develop a build pipeline tailored for edge computing

applications. The purpose of the pipeline is to accept untrusted source code and compile

it to the WebAssembly executable, which can be later executed on edge servers. It's

crucial to thoroughly consider potential security vulnerabilities that may arise during the

compilation and execution of untrusted user input.

In the thesis consider the following requirements:

- Familiarize yourself with edge computing technology

- Learn about WebAssembly and its use cases for edge computing

- Analyze security vulnerabilities caused by untrusted code

- Design the build pipeline with security and scalability in mind

- Implement the pipeline based on the design

Optionally, try different build optimization techniques for WebAssembly code to optimize

start-up and execution speed, thus limiting cold start problems for edge computing

applications.

Electronically approved by doc. Ing. Jan Janoušek, Ph.D. on 8 January 2024 in Prague.

Master’s thesis

BUILD PIPELINE FOR
EDGE COMPUTING
APPLICATIONS

Bc. Jan Chyb́ık

Faculty of Information Technology
Department of theoretical computer science
Supervisor: Ing. Daniel Sedlák
May 8, 2024

Czech Technical University in Prague
Faculty of Information Technology
© 2024 Bc. Jan Chyb́ık. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It
has been submitted at Czech Technical University in Prague, Faculty of Information
Technology. The thesis is protected by the Copyright Act and its usage without author’s
permission is prohibited (with exceptions defined by the Copyright Act).

Citation of this thesis: Chyb́ık Jan. Build pipeline for edge computing applications.
Master’s thesis. Czech Technical University in Prague, Faculty of Information Tech-
nology, 2024.

Contents

Acknowledgments vi

Declaration vii

Abstract viii

List of abbreviations ix

Introduction 1

1 About this thesis 2
1.1 Thesis structure . 2
1.2 Related work . 3

I Research 4

2 Computing systems 5
2.1 Distributed systems . 5
2.2 Scaling . 6
2.3 Types of distributed systems 7

3 WebAssembly (Wasm) 13
3.1 Core specification . 13
3.2 Application binary interface (ABI) 15
3.3 Wasi . 15
3.4 Wasmtime . 16
3.5 Proxy-Wasm . 17

4 Security 19
4.1 Untrusted code . 19
4.2 Potential risks . 20
4.3 Sandboxing . 21

II Implementation 31

5 Build pipeline design 32

ii

Contents iii

5.1 Requirements . 32
5.2 Architecture . 33
5.3 Orchestration . 37
5.4 Compilation . 40
5.5 Storage . 43

6 Build pipeline implementation 46
6.1 Related work . 46
6.2 Used technologies . 46
6.3 Orchestration . 54
6.4 Compilation . 58
6.5 Storage . 60

7 Build optimizations 69
7.1 Problem definition . 69
7.2 Solutions . 70

8 Future work 72
8.1 Build optimization implementation 72
8.2 Test bed . 72
8.3 Build client . 72

Summary 74

A Proxy-wasm 75
A.1 Function and callback categories 75
A.2 Types . 77

B User facing API 78
B.1 Application . 78
B.2 Version . 80
B.3 Version build . 82

C Evaluator API 83
C.1 Build success . 83
C.2 Build fail . 83
C.3 Build crash . 84

Contents of the attachment 91

List of Figures

2.1 Example of distributed system 6
2.2 Example of a cluster . 8
2.3 Example of a grid . 9
2.4 A simple example of a cloud infrastructure 11
2.5 A simple example of an edge computing infrastructure 11

3.1 Implemented proxy-wasm with SDK 18

4.1 Trusted/untrusted groups . 20
4.2 VM structure . 23
4.3 An example host running Firecracker microVMs (adapted from

Firecracker documentation [38]) 24
4.4 Firecracker threat containment (adapted from Firecracker doc-

umentation [38]) . 25
4.5 Containerization structure . 26
4.6 Differences between VMs, containerization and ruled-based ex-

ecution . 29
4.7 gVisor components (adapted from gVisor documentation [48]) . 30

5.1 Single component architecture 34
5.2 Every component separated into its own service 35
5.3 Multiple components with evaluator 36
5.4 Final design with two separate services 36
5.5 Sequence diagram of version creation 39
5.6 Architecture of compiler component 41
5.7 Architecture of storage . 43
5.8 Layering of storage architecture 44
5.9 Metadata entities . 45

6.1 CPU workload coverage [59] . 50
6.2 Network Workload Coverage [59] 50
6.3 Memory workload coverage [59] 50
6.4 File write workload coverage [59] 50
6.5 CPU workload [59] . 51
6.6 Total allocation time (without munmap) for 1GB [59] 52
6.7 Total allocation+unmap time for 1GB [59] 52
6.8 Total touch time (without munmap) for 1GB [59] 52

iv

6.9 Total touch time (with munmap) for 1GB [59] 53
6.10 Aggregate Network Bandwidth [59] 53
6.11 Write Throughput [59] . 53
6.12 Read Throughput [59] . 53

7.1 Distribution of steps required to run Wasm application 69
7.2 Distribution of steps required to run Wasm application after

optimization . 71

List of Tables

6.1 Union of line coverage across all workloads out of 806,318 total
lines in the Linux kernel. [59] 51

v

I would like to thank my supervisor, Ing. Daniel Sedlák,
for his guidance. His always-on-point advices made this
thesis possible. I would also like to thank my family and
my girlfriend, you are the reason I kept going, thank
you.

vi

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis. I acknowledge
that my thesis is subject to the rights and obligations stipulated by the Act
No. 121/2000 Coll., the Copyright Act, as amended. I further declare that I
have concluded an agreement with the Czech Technical University in Prague,
on the basis of which the Czech Technical University in Prague has waived
its right to conclude a license agreement on the utilization of this thesis as a
school work under the provisions of Article 60(1) of the Act. This fact shall
not affect the provisions of Article 47b of the Act No. 111/1998 Coll., the
Higher Education Act, as amended.

In Prague on May 8, 2024

vii

Abstract

Edge computing is currently gaining popularity among many CDN providers.
It moves data processing closer to its clients, reducing latency compared to
standard centralized data processing warehouses or cloud servers.

This thesis analyzes edge computing technology with WebAssembly and
explores how it can be used together. Based on these findings, the thesis
designs and implements a build pipeline that accepts untrusted source code
and compiles it to the WebAssembly executable, which can be later executed
on edge servers.

Keywords Edge computing, WebAssembly, Proxy Wasm, Untrusted code,
Compilation

Abstrakt

Edge computing aktuálně nab́ırá na popularitě mezi mnoha poskytovateli CDN.
Přesouvá zpracováńı dat bĺıže klient̊um, č́ımž snižuje odezvu oproti centrali-
zovaným datovým sklad̊um, nebo vzdáleným cloudovým server̊um.

Tato práce analyzuje edge computing s technologii WebAssembly a zkoumá
jak mohou být použity společně. Na základě těchto zjǐstěńı pak vytvář́ı návrh
a implementaci kompilačńı pipeline, která přij́ımá ned̊uvěryhodný zdrojový
kód a zkompiluje ho do WebAssembly spustitelného souboru, který může být
později spuštěn na edge serverech.

Kĺıčová slova Edge computing, WebAssembly, Proxy Wasm, Ned̊uvěryhodný
kód, Kompilace

viii

List of abbreviations

ABI Application binary interface
AOT Ahead of time
CDN Content delivery network
CLI Command line interface

CRUD Create, Read, Update, Delete
DoS Denail of service
EC Edge computing
FFI Foreign function interface

GDB The GNU Project debugger
IDL Interface definition language
IoT Internet of things
JIT Just in time

KVM Kernel-base virtual machine
LLDB Low-level debugger

SDK Software development kit
VM Virtual machine

VMM Virtual machine manager
WASI WebAssembly System Interface
Wasm WebAssembly

ix

Introduction

Edge computing is recently gaining traction among many CDN providers. It
moves data processing closer to clients, reducing latency compared to central-
ized data warehouses or distant cloud servers.

By using edge computing, companies gain an advantage in the ever-changing
landscape of modern technology, and thus, they must use it to its maximum
potential.

A common problem for all edge computing platforms is the execution of
untrusted code written in any language a client wants. This problem can be
solved by using WebAssembly. A relatively new binary instruction format into
which many languages can be compiled and safely executed.

This thesis looks into edge computing with WebAssembly and explores
why and how they can be used together. Furthermore, it studies the dangers
of untrusted code and how to mitigate them.

Based on these findings, the thesis proposes a design for a compilation
pipeline that takes untrusted source code as its input and compiles it into the
WebAssembly executable, which can be later executed on edge servers.

The design is then transformed into a production-ready implementation,
following all software best practices with end-to-end tests, ensuring the pipeline
works correctly. And lastly, the thesis tries to sketch out how it could optimize
compilation to reduce cold starts of the WebAssemlby binaries.

1

Chapter 1

About this thesis

1.1 Thesis structure

This thesis is divided into two parts. The first part of the thesis, research
(Part I), focuses on all necessary topics that are important to understand
the subject of the thesis. This includes chapters about edge computing, We-
bAssembly, and security. The edge computing chapter goes into types of dis-
tributed systems and why they are beneficial. It explains in which ways edge
computing is better than other distributed systems and establishes its use case.

The next chapter is about WebAssembly. It explains what exactly We-
bAssembly is, its core specification, and ways how to extend it. It also focuses
on how WebAssembly can be used as a proxy, which operates on the network’s
edge. The last chapter of the research part is about security. It is crucial
to consider security when handling any production application. This chapter
focuses on ways in which an untrusted code can exploit an application and
how to mitigate such attempts.

The second part of the thesis, the implementation (Part II), shows a way
how to design and implement a solution that handles the building process of
applications running on edge servers. It uses all concepts from the research
part and creates a solution that is usable, safe, and easily extensible. After the
implementation chapter, the thesis explores how WebAssembly startups can
be optimized by going into each step of the process. The whole part ends with
a chapter about future work, which states how the development will continue
and in which ways the platform could be extended to provide the best outcome
possible.

2

Related work 3

1.2 Related work

Edge computing is currently a hot topic because of its benefits against central-
ized cloud computing and the wide adoption of IoT devices. Several research
papers were published analyzing edge computing as a whole or only its parts.

The first paper that this thesis would like to mention is Edge Comput-
ing [Scanning the Issue] [1]. It provides general information about edge com-
puting, its history, present, and future. It gives an overview of why edge
computing is required to develop IoT and other platforms further.

The second paper, Resource Management in Fog/Edge Computing [2], goes
into many other works identifying and classifying different architectures, in-
frastructures, and algorithms for managing resources in edge computing.

And last, the A New Multi-Target Compiler Architecture for Edge-Devices
and Cloud Management [3] analyzes how edge applications are used and pro-
poses a new multi-target compiler architecture that can compile source code
that can be distributed across different edge devices.

Part I

Research

4

Chapter 2

Computing systems

2.1 Distributed systems

A distributed system is a collection of autonomous computing elements that
appears to its users as a single coherent system. [4]

The computing element is usually referred to as a node. Node internals are
generally hidden, it can be either a hardware device or a software process with
high or low performance. Nodes serve as hosts for computation and storage.
They can execute a program, store data in volatile and stable memory, and
send messages to other nodes. [5] Nodes act independently from each other.
However, even if they are independent, they are connected and communicate
together to achieve a common goal.

This network of nodes, also known as a distributed system, appears as a sin-
gle coherent system to the outside world. Ideally, users should not know they
are dealing with a distributed system processing data all over the network. This
creates a convenient abstraction for users because they can interact with the
system like any other non-distributed system. Meanwhile, the distributed sys-
tem can change and scale while keeping the same interface. However, achieving
this goal poses a challenge.

A distributed system is usually more than just a single node. This creates
unexpected behavior when the right conditions are met. A typical problem of
distributed systems is a partial failure from which all complex systems suffer.
At any given time, only part of the system fails. This leads to some applications
working and some failing. Another problem that distributed systems have to
face is a problem with latency. Because a system can be distributed worldwide,
it may take a while for some nodes to communicate with each other or the user.

5

Scaling 6

System user

System user

System proxy
server

Node

Node

Node

Figure 2.1 Example of distributed system

Nevertheless, a distributed system can sometimes reveal that it is dis-
tributed. It can leverage the fact that it is located globally and can offer
location-specific services. Sometimes, it might make sense to be open about
the system’s distributed nature so users can understand the unexpected be-
havior. [4] Figure 2.1 shows what a distributed system could look like.

2.2 Scaling

An important aspect of distributed systems that was already briefly mentioned
is scaling. One of the most significant benefits of a distributed system is that
it can scale almost indefinitely by introducing new nodes, which are either
wholly new or replicas of already existing ones.

2.2.1 Scalability dimensions
Scalability of a system can be measured along at least three different dimen-
sions [4]:

1. Size scalability: Users do not notice performance loss while the system is
stressed.

2. Geographical scalability: Users do not notice performance loss or delays
while geographically far from the resources.

Types of distributed systems 7

3. Administrative scalability: System can be easily managed while being ad-
ministrated by many independent organizations

Each scalability dimension comes with its problems. Size scalability is
tested with heavy loads or complicated operations. This is typically con-
fronted when resources are located on single machines, which may create a
bottleneck for the system’s operations. Geographical scalability faces different
problems. Communication over a long distance is inherently less reliable, thus
creating more data loss. Another geographical scalability challenge arises with
synchronous communication, where the client’s request hinges on waiting for a
response from the system. Being far from the system also means the messages
take longer to travel, creating a higher latency. Administrative scalability has
to deal with the problem of data privacy.

2.2.2 Scaling techniques
To solve the mentioned problems, one can apply vertical or horizontal scal-
ing techniques. Vertical, also known as scaling up, contains methods such as
increasing memory and upgrading CPU. In other words, scaling vertically im-
proves already existing nodes. Scaling horizontally, or scaling out, is expanding
by introducing new nodes to the system. [4, 6]

Another technique that does not quite fit into these two categories is using
asynchronous communication instead of synchronous one. By communicating
asynchronously, the client does not have to wait for a response from the server.
This alleviates the problem of latency of geographical scaling to some extent.

Next in a list of possible techniques is partitioning and distribution which
involves taking a component, splitting it into smaller parts, and subsequently
spreading those parts across the system. [4]

The last technique is replication. Replication can remedy the problem
of data loss, node overload, and latency. [4] By replicating data or services
on multiple nodes across the system, one can access any of them instead of
overloading only one. Replicas can also be geographically dispersed to lower
the latency of global systems. A special type of replication is caching, which
creates copies based on demand and proximity. A particular example of caching
being successfully used in distributed systems are CDNs.

2.3 Types of distributed systems

2.3.1 Clusters and grid computing
As time went on, multiple types of distributed systems emerged. The most
simple one is cluster computing, which uses closely connected nodes that are
similar to each other to gain performance and work as a high-performance unit
of computation, so-called cluster. [4] Depicted in figure 2.2.

Types of distributed systems 8

Cluster user

Cluster user

Cluster proxy
server

Cluster node

Cluster node

Cluster node

Figure 2.2 Example of a cluster

The second one is grid computing. Grid computing builds upon cluster
computing and takes it further by creating a world-spanning interconnected
network called grid. The grid comprises various processing units, such as
personal computers, clusters, or mobile phones, illustrated in figure 2.3. Grids
are used for high-performance computing, mainly in the research area. Grids
can be connected to create an even bigger grid. An example of a grid is
Worldwide LHC computing grid used to compute data captured at the Large
Hadron Collider at Cern.

Multiple organizations must work simultaneously on a grid while keeping
their data private. This is achieved by having various virtual organizations
which cannot access each other’s data. [7] Security is a big concern in grid
computing because it is used heavily for research. Somebody could delete
months of work or steal critical data if it was not handled.

2.3.2 Cloud computing
Cloud computing is a model for enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable computing resources (e.g., net-
works, servers, storage, applications, and services) that can be rapidly provi-
sioned and released with minimal management effort or service provider inter-
action. This cloud model comprises five essential characteristics, three service
models, and four deployment models. [8]

Virtualized machines are started on provisioned physical resources to sim-
ulate operating systems and offer better isolation from other cloud users. One
concrete isolation technique called sandboxing will be discussed in section 4.3.
Computing resources are then carefully monitored to charge users appropri-
ately. [7]

Types of distributed systems 9

Grid proxy
server

Grid user

Grid user

Grid node

Grid node

Grid node

Grid node

Grid storage

Grid node

Grid
cluster

Grid storage

Figure 2.3 Example of a grid

The three layers of cloud computing mentioned in the definition are ac-
cording to the abstraction level following:

1. Software as a Service (SaaS)

2. Platform as a Serice (PaaS)

3. Infrastructure as a Service (IaaS)

Software as a service offers a single software or system, such as video pro-
cessing or an office suite. Platform as a service contains a development en-
vironment that allows the development of applications without dealing with
low-level details. Examples of such platforms are Google AppEngine, or Mi-
crosoft Azure. The last type, infrastructure as a service, offers a wide variety of
infrastructure elements such as virtual servers, physical servers, or storage. [9,
4]

In order for a service to represent a cloud computing model successfully, it
has to have five essential characteristics [8, 10]:

1. On-demand self-service – Service has to be self-serviced. Cloud users ex-
pect simple on-demand computing without needing to deal with low-level
elements constantly.

2. Broad network access – Capabilities are available over the network and
accessed through standard mechanisms that promote use by heterogeneous
thin [8]

Types of distributed systems 10

3. Resource pooling – The provider’s computing resources are pooled to serve
multiple consumers using a multi-tenant model, according to consumer
demand. The customer generally has no knowledge or control over the
exact location of the provided resources.

4. Rapid elasticity – Capabilities can be elastically provisioned to scale rapidly,
offering the illusion of infinite computing resources available on demand.

5. Measured service – Cloud systems automatically control and optimize re-
source use. Resource usage can be monitored, controlled, and reported.

According to cloud definition, there are four deployment models that reflect
who the cloud is purposed for [8]:

1. Private cloud – Exclusive use for a single organization.

2. Community cloud – Exclusive use for a specific community.

3. Public cloud – The infrastructure is provisioned for use by the general
public. It exists on the premises of the cloud provider.

4. Hybrid cloud – Infrastructure is a composition of two or more distinct cloud
infrastructures (private, community, or public) that remain unique entities.

2.3.3 Edge computing
The network edge is the connection or interface between a device or network
and the outside world. The edge is close to the devices it is communicating
with and is the entry point to the network. [11]

It is a complementary extension of cloud computing, which considers geo-
graphical proximity. If the computation allows, it can be done directly on the
edge nodes instead of processing data in large data centers. Nevertheless, the
edge might still need large storage or computing power of cloud computing
centers. [1] The difference between cloud and edge computing can be seen in
figures 2.4 and 2.5, where in cloud computing, the user request always reaches
the cloud datacenter, but when using the edge the requests to centralized dat-
acenter are reduced as they are processed directly on the edge.

An important distinction to make is that the cloud is not a place. It is
a logical entity distributed on multiple nodes over various locations. [12] The
edge, on the other hand, is the place closest to the outside world as possible.

Because of its nature, edge computing solves many scaling problems de-
scribed in section 2.2.1. It is a combination of partitioning and distribution
and replication techniques from section 2.2.2. Having edge nodes take care of
computation reduces pressure on the rest of the network and reduces the risk
of network leakage by not sending sensitive data further. Moreover, being at
the system’s entry point is the ideal place for low-latency applications where
data must be processed and sent back as fast as possible. [1]

Types of distributed systems 11

Cloud
proxy server

Datacenter

Cloud

Cloud
proxy server Cloud user

Cloud user

Cloud user

Cloud user

Figure 2.4 A simple example of a cloud infrastructure

Edge server

Datacenter

Edge server
Edge user

Edge user

Edge user

Edge user

Request to
datacenter
only when

needed

Figure 2.5 A simple example of an edge computing infrastructure

Types of distributed systems 12

2.3.4 Reverse proxy
At a basic level, a proxy server is an intermediate piece of hardware/software
that receives requests from clients and relays them to the backend origin servers.
Typically, proxies are used to filter requests, log requests, or sometimes trans-
form requests (by adding/removing headers, encrypting/decrypting, or com-
pression). [6] The proxy acts as a ”router” routing requests into multiple other
nodes chosen based on some arbitrary metric. A typical use case of a reverse
proxy is load balancing, where the rerouting metric is the load on the nodes.
[6]

2.3.5 Nginx
NGINX is open-source software for web serving, reverse proxying, caching, load
balancing, media streaming, and more. It started as a web server designed for
maximum performance and stability. In addition to its HTTP server capabil-
ities, NGINX can function as a proxy server for email (IMAP, POP3, and
SMTP) and a reverse proxy and load balancer for HTTP, TCP, and UDP
servers. [13]

Nginx has a modular architecture. It can be configured by writing a config-
uration file containing directives for the Nginx server or by writing a custom
module that does practically any custom logic the author wants it to. Us-
ing these two approaches, Nginx server administrators can manipulate HTTP
requests and responses as they see fit.

Chapter 3

WebAssembly (Wasm)

3.1 Core specification

WebAssembly (abbreviated Wasm) is a safe, portable, low-level code format
designed for efficient execution and compact representation. Its main goal
is to enable high-performance applications on the Web, but it does not make
any Web-specific assumptions or provide Web-specific features, so it can be
employed in other environments as well. [14]

It is an open standard byte code format developed by W3C Community
Group. Designed to be fast, safe, hardware, language, and platform indepen-
dent, and open so programs can simply interoperate with their host environ-
ment. It is designed to be easily processed by just-in-time or ahead-of-time
compilation in a single pass. [14]

Wasm provides no access to its host environment. Every operation, such as
I/O operations, has to be provided by the host, also known as embedder, and
imported into the Wasm module. The embedder is responsible for controlling
all functionalities provided through imports. [14] However, even if core Wasm
does not specify these operations by itself, there are extensions of core Wasm
format that do. An example of an extension is Wasi (WebAssembly System
Interface), which provides a group of standard API specifications. Wasi is
described in more detail in section 3.3.

The structure of Wasm is described in the form of abstract syntax and
encoded in one of two formats:

Binary format

Text format

The binary format is a dense linear encoding of the abstract tree. Files
containing binary format usually have the .wasm extension. This format is very
close to machine code, making it less understandable for humans. Conversely,
the text format is a human-readable representation of the abstract syntax. It

13

Core specification 14

has a form of S-expressions and files containing it usually have .wat extension.
An example of the text format is in listing 3.1.

(module
(func (param $lhs i32) (param $rhs i32) (result i32)

local.get $lhs
local.get $rhs
i32.add))

Code listing 3.1 A function taking two parameters and returning their sum in
Wasm text format. [15]

3.1.1 Concepts
The computational model of WebAssembly is based on a stack machine. Code
consists of sequences of instructions that are executed in order. Instructions
manipulate values on an implicit operand stack. [14] Some instructions can
generate traps, which abort execution and are reported to the embedder which
may catch them. Another responsibility of the embedder is defining how the
code is initiated. [14]

Code is organized into separate functions. Each function takes a sequence
of values as parameters and returns a sequence of values as results. Functions
can call each other, including recursively, resulting in an implicit call stack that
cannot be accessed directly. Functions may also declare mutable local variables
that are usable as virtual registers. [14] A program can call a function either
directly by function call instruction or indirectly via the index to a table. The
table is array of opaque values of a particular element type. [14], which can be,
during the writing of this thesis, only untyped function reference. [14]

A similar to the table is linear memory. The linear memory is a contigu-
ous, mutable array of raw bytes. [14] It is initialized with a specified size and
dynamically grows as the program stores data in it. The linear memory can
load and store data at any address. When an instruction tries to access an
address outside the memory bounds, it generates a trap.

Definitions for tables, linear memory, and functions are contained with ini-
tial values inside a Wasm binary, which takes the form of a module. These def-
initions can be exported, and definitions from other modules can be imported.
Module can also define a start function that is automatically executed. [14] The
start function initializes the module.

Application binary interface (ABI) 15

3.1.2 Semantic phases
The Wasm semantics is divided into three phases:

Decoding – The Wasm module is decoded into an internal representation.

Validation – The decoded module is checked for validity. This includes type
checking of functions and instructions and validating operand stack use.

Execution – The module is executed. First, it is instantiated by initializing
globals, tables, and memory and calling the start function if defined. The
results of instantiation are instances of the module’s exports. A module
instance is the dynamic representation of a module, complete with its own
state and execution stack. [14] After instantiation, the exported functions
can be invoked on a module instance, returning its result.

3.2 Application binary interface (ABI)

Application binary interface (ABI) is a set of conventions for application ac-
cess to the operating system functionality and other low-level services designed
for portability of executable code between machines. [16] In other words, it is
a convention dictating how binaries can work with other binaries to work cor-
rectly. It defines, for example, calling conventions that specify how arguments
are passed and returned to/from a function.

3.3 Wasi

The WebAssembly System Interface (WASI) is a group of standard API specifi-
cations for software compiled to the W3C WebAssembly (Wasm) standard. [17]
It takes inspiration from POSIX and CloudABI and provides Wasm code with
a unified way of communicating with the outside world. [18] Wasi currently
has two versions: Preview 1 (0.1) and Preview 2 (0.2). Preview 2 was released
in January 2024, and Preview 3 is planned. [18]

Preview 1 and 2 differ in interface definition language (IDL). Preview 1
uses WITX IDL composed into Wasm modules binaries. [19] This corresponds
with the Wasm core specification, which states that Wasm binaries take the
form of a module. [14] Meanwhile, preview 2 uses WIT IDL that is composed
into Wasm component binaries. [19] Wasm component is a wrapper around the
core Wasm module, that specifies its imports and exports using WIT defined
interfaces. [20] It is used to enrich the core module’s exposed functionality by
adding more complex types, such as strings, lists, and records. By default, core
modules do not have those and have to operate essentially only on integers and
floating-point numbers. [19]

Wasmtime 16

Wasi Preview 2 contains the following APIs:

I/O – Providing I/O stream abstractions. [21]

Clocks – Reading time and measuring elapsed time. [22]

Random – Obtaining pseudo-random data suitable for cryptography. [23]

Filesystem – Accessing host filesystems. This includes operations such as
opening, reading, and writing. [24]

Sockets – Adds TCP and UDP sockets and domain name lookup. [25]

CLI – Provides command-line facilities such as command-line arguments,
environment variables, and studio. It also contains APIs commonly avail-
able in CLI environments, such as filesystems and sockets. [26]

HTTP – Sending and receiving HTTP requests and responses. [27]

3.4 Wasmtime

Wasmtime is a standalone runtime for WebAssembly, WASI, and the Com-
ponent Model by the Bytecode Alliance. [28] It is a runtime intended for use
outside the web, striving to be fast, secure, configurable, and compliant with
the Wasm standard. [28]

It is written in Rust programming language on top of the Cranelift code
generator used for JIT and AOT compilation. Its inherently sandboxed design
(must import all functionality, more on this in section 4.3.4) is excellent for
running untrusted code. As an additional precaution, once new features are
implemented, the implementation undergoes 24/7 fuzzing. [28]

Wasmtime also offers additional capabilities like debugging. One can use
gdb or l ldb to live debug and step through the guest Wasm and the host
simultaneously, or it can generate Wasm core dumps for crash analysis. [28]

Another capability is profiling. Wasm strives to be performant, so it is es-
sential that Wasmtime offers code profiling. For the best results, one would ide-
ally use hardware counters. However, because Wasmtime uses JIT, it requires
providing hooks to other native profiling tools because the JIT-generated code
can be located at arbitrary locations. Because of this, wasmtime currently
offers support for only three tools: perf, VTune, and samply. Nevertheless,
Wasmtime also provides a cross-platform profiler that works on every plat-
form at the cost of preciseness. The native profilers can show almost every-
thing from time spent in guest code to time spent in the kernel. Meanwhile,
the cross-platform option can show only time spent in the guest code. [28]

Proxy-Wasm 17

3.5 Proxy-Wasm

Proxy-Wasm or WebAssembly for proxies is an emerging specification of ABI
and conventions to use between L4/L7 proxies (and/or other host environ-
ments) and their extensions delivered as WebAssembly modules. [29] It was
initially developed for the Envoy, but by being proxy agnostic, it can be used
by different proxies. The ABI contains definitions for callbacks, functions,
types, and serialization.

3.5.1 Callbacks and functions
A callback is a function exposed by the Wasm module. They are identified
by entry points named as proxy_on_<event>. All are optional and will only
be called if the Wasm module exposes them. On the other hand, the function
is a function exposed by the host. All functions are required and return type
proxy_status_t (details in section 3.5.2), which indicates the status of the
call. Return values are written into the memory pointed by return_<value>
parameters.[29]. Definitions are split into multiple categories, which can be
found in appendix A.1.

3.5.2 Types
The proxy-wasm specifies the types used for callbacks and functions. One such
type is already mentioned proxy_status_t, the return type of all functions.
All types the ABI specifies are in appendix A.2:

3.5.3 Proxy-wasm implementation
For the purposes of this thesis, nginx terminology is used to describe the
implementation, but principles should also apply to other proxies. The proxy-
wasm specifies two components:

Proxy (host, exposing functions)

Wasm module (exposing callbacks)

To implement proxy-wasm, a new nginx module can be created containing
all the necessary logic. The module has to contain Wasm runtime, such as
Wasmtime, exposed function definitions, and general orchestration. Consider-
ing some wasm modules should be part of the proxy lifetime, the orchestration
is responsible for instantiating them and calling correct callbacks. The runtime
is responsible for module execution which can call the exposed functions.

This is enough for the proxy-wasm to work correctly. However, the ABI
is too low-level to develop custom proxy logic comfortably. The best user
experience would allow the logic to be written in any programming language.

Proxy-Wasm 18

Nginx

Proxy-wasm
module

Edge server
(Proxy)

proxy-wasm ABI

Wasm runtime

Call callback

Run new application

Orchestration

Wasm application

proxy-wasm ABI

Proxy-wasm SDK

Source code

Abstracts
communication

Use SDK for easier
development

Client side

Call function

Figure 3.1 Implemented proxy-wasm with SDK

This can be achieved by providing an SDK for every supported language that
would handle conforming to the ABI specification. Clients writing the logic
can then use the SDK to develop modules in a comfortable, idiomatic way and
do not have to worry about details. An overview of this approach can be seen
in the figure 3.1.

Chapter 4

Security

4.1 Untrusted code

An untrusted code is a code one decided not to trust. The reasons for not
trusting the code can be many, ranging from ”The code is old, and nobody
knows what it is doing.” to the ”Code was written by the company’s competi-
tor.” However, generally speaking, an untrusted code is a code that one is not
certain what it will do. In extreme cases, one could consider all code untrusted
because there can always be a bug, which is not expected. Some amount of
paranoia is healthy, but too much is harmful. In practice, what is considered
untrusted code depends on the author’s identity. Usually, people are divided
into two sections: trusted and untrusted. The trusted group consists of all the
people working directly on a product, and untrusted people are outsiders or
users who can provide their code via some input to the product (figure 4.1).
This thesis follows the same premise and considers the authors of the build
pipeline as trusted and all pipeline users as untrusted.

As already mentioned above, with untrusted code, one cannot be sure what
it will do. This is not always bad. Sometimes, it is intended because the author
of the code decides what they want to do. Nevertheless, it becomes a huge
problem when the code does something malicious. This includes things like
Denial of service (DoS), data breach, or complete destruction. Thus, untrusted
code must be dealt with accordingly because it poses a significant risk for the
system handling it. The following sections will describe a few attacks that
potentially could affect the results of this thesis.

19

Potential risks 20

Application

Trusted

Untrusted

Inputted
code

Newly
developed

code

Organization

Input
interface

Figure 4.1 Trusted/untrusted groups

4.2 Potential risks

4.2.1 Compression bomb
Data compression is a coding technique that aims at reducing the number of
bits required to represent a string by removing redundant data. When the
compressed data can be restored to the exact original state, the compression
is called lossless, otherwise lossy. [30] This is useful for storing and sending
data, it saves space and makes data transportation faster. However, there are
some caveats when decompressing data, which stem from three aspects:

Decompression is CPU, memory, and disk-intensive task

Decompression amplifies the amount of data

Compressed data can often be pre-computed, so input can be sent really
fast, while the decompressed has to spend a lot of resources to process it

The second point is the main reason for an attack called compression bomb.
The concept is pretty simple. An attacker creates an archive containing a lot
of redundant data, which is compressed to a relatively small archive compared
to the amount of data it stores. This is possible because of the extensive re-
dundancy. When the archive is decompressed, it overwhelms the target by
consuming a lot of memory or CPU time. As an example, the classic archive
bomb was a 42-kilobyte zip file archive that contained five nested layers of

Sandboxing 21

compressed files whose total size amounted to 4.5 petabytes. [30] The com-
pression bomb is an example of what can happen when untrusted code is
poorly handled. One does not even need to execute the code in order to be
dangerous.

4.2.2 Code execution
The code execution is not necessarily an attack but a prerequisite for many of
them. When an untrusted code is allowed to execute, it can do almost any-
thing without the proper restrictions. For this reason, the untrusted code has
to be tightly controlled to deny anything malicious it could do. Examples of
malicious behaviors are: Trying to allocate a lot of memory until the machine
fails, creating infinite loops so the machine cannot process anything else, steal-
ing sensitive data, and more. One could allow only certain APIs to be used
by the running program so it cannot allocate memory and provide sufficient
access rights so it cannot steal sensitive data, but that would still leave infinite
loops and other exploits unsolved.

Another problem would arise when multiple instances of different untrusted
code were executed at the same time. Ensuring they are sufficiently isolated
and cannot access each other’s data is essential. Moreover, if one instance of
malicious code is successful and gains access to the machine, there has to be a
way to mitigate the damage and not endanger other non-malicious instances
running and potentially the whole infrastructure.

Because of all of this, there is a need for a more complex solution. The
solution is a technique called sandboxing. It isolates the code in its own en-
vironment called a sandbox in which it can do anything without affecting the
host system. However, naturally, the sandbox must somehow utilize its host
resources to work. How to utilize the resources is implementation-specific for
each sandboxing technique.

4.3 Sandboxing

Sandboxing, as briefly mentioned above, is a security technique responsible
for providing a running code with its own environment in which it cannot
harm the host. It is an encapsulation mechanism that imposes a security
policy on software components. [31] It limits the access to system resources
and allows the sandboxed program to be monitored. Sandboxes can be divided
into multiple categories [32]:

Jail – The operating system limits the resources a program running inside
a jail has.

Virtual machine – A program is running inside a virtual machine that has
dedicated resources and limited access to the host.

Sandboxing 22

Rule-based execution – Rule-based execution like SELinux or Apparmor
controls the behavior of a program by explicitly allowing which programs
and files it can interact with and control their registry access.

Os build-in – Build-in techniques like seccomp allows to restrict what sys-
tem calls a program can call.

Application sandboxes – An application offers sandboxing via a combina-
tion of mentioned and new techniques

Choosing a proper sandboxing technique is essential. Although sandboxes
should be ideally perfect, they never are, and different implementations offer
different benefits and drawbacks. Based on the selected sandbox, an attacker
might try different techniques to exploit or escape it.

4.3.1 Dedicated hardware
Probably the most simple form of a sandbox is a separate dedicated hardware.
It physically separates the dangerous operations from the rest of the trusted
infrastructure and provides perfect isolation. Nevertheless, when attackers get
hold of the hardware, they have access to everything inside. Thus, the hard-
ware must be carefully monitored, and no suspicious communication outside
should be allowed.

Although this solution works as a perfect sandbox because it cannot affect
any system outside, it still has its problems. Considering that some use cases
require thousands of sandboxes to be run simultaneously, this solution could
be costly. To mitigate this, machines are often virtualized so that multiple
virtual machines can operate on the same hardware.

4.3.2 Virtual machines (VM)
Virtualization provides a way of relaxing the foregoing constraints and increas-
ing flexibility. When a system (or subsystem), e.g., a processor, memory, or
I/O device, is virtualized, its interface and all resources visible through the
interface are mapped onto the interface and resources of a real system im-
plementing it. [33] Virtual machines are virtualized operating systems with
virtualized hardware.

Virtual machines are beneficial in many ways. They offer partitioning of
large software systems and provide isolation between guest VMs running on the
same host hardware. Virtual machines can be provided with a limited amount
of system resources, and they can emulate any architecture necessary for the
running software. VMs are managed and controlled by a virtual machine
manager (VMM), also known as hypervisor. The hypervisor presents to the
guest operating systems a virtual operating platform and manages the execution
of the guest operating systems. Multiple instances of a variety of operating

Sandboxing 23

Host hardware

Host kernel

System calls

Hypervisor

VM

System calls

Application

Guest
kernel

...

Virtual hardware

VM

System calls

Application

Guest
kernel

Virtual hardware

Figure 4.2 VM structure

systems may share the virtualized hardware resources. [34] Figure 4.2 shows
structure of VMs.

Virtual machines are a great choice for sandboxing because they isolate the
running application from the host kernel by every VM having its own kernel.
Hypervisor is then the only way how to interact with the host system, which
creates a performance bottleneck but also a great control. Hypervisors are also
intensely scrutinized and tested by time so it is unlikely a malicious program
will escape the VM confinments. A drawback of VMs is that they are very
heavy weight. They need a whole kernel, and it takes a lot of time and space to
spin up a new VM. This problem is solved in a different sandboxing method,
a containerization, which will be described in section 4.3.3.

4.3.2.1 Kernel-based Virtual Machine (KVM)

KVM (Kernel-based Virtual Machine) is a full virtualization solution for Linux
on x86 hardware containing virtualization extensions (Intel VT or AMD-V).
It consists of a loadable kernel module, kvm.ko, that provides the core virtu-
alization infrastructure and a processor-specific module, kvm-intel.ko or kvm-
amd.ko. Using KVM, one can run multiple virtual machines running unmod-
ified Linux or Windows images. Each virtual machine has private virtualized
hardware: a network card, disk, graphics adapter, etc. [35]

KVM effectively transforms a Linux running the KVM into a hypervisor.

Sandboxing 24

Host
user space

Host
kernel space

KVM

Firecracker
orchestrator

Network bridge

Guest

MicroVM

Guest

MicroVM

. . .

File block
device

File block
device

Host zone

Figure 4.3 An example host running Firecracker microVMs (adapted from Fire-
cracker documentation [38])

VMs are implemented as regular Linux processes with dedicated virtual hard-
ware. By VMs being regular Linux processes, they are scheduled by a regular
scheduler, which can be controlled to prioritize or deprioritize VMs. KVM also
utilizes known security techniques like SELinux which defines security policies
for files and processes. [36]

4.3.2.2 Firecracker

Firecracker is an open-source virtualization technology that is purpose-built for
creating and managing secure, multi-tenant container and function-based ser-
vices. It enables the creation of lightweight virtual machines, called microVMs,
which solve the problem that VMs are normally too slow. It tries to match con-
tainerization efficiency without compromising the standard hypervisor’s safety.
By limiting the number of resources and kernel configuration, the microVM
can be faster than other traditional VMs. [37]

Firecracker is a hypervisor developed by Amazon web services (AWS) for
AWS lambda that builds on top of KVM. Figure 4.3 shows an example host

Sandboxing 25

Host
user space

Host
kernel space

KVM

Host zone

Client

IO

API
(thread)

Firecracker Zone

Device
emulation

IMDS
(thread)

Hypervisor
(thread)

Rate
limiting

IO
emulation

Customer zone

Virtualization Barrier

Jailer Barrier
seccomp, cgroup, chroot, net/pid/usr/

namespaces

Figure 4.4 Firecracker threat containment (adapted from Firecracker documenta-
tion [38])

running Firecracker microVMs. Its main priorities are to be secure and per-
formant. In order to be secure, it limits what devices guest VM might use
and offers only the bare minimum. It can be executed inside of a companion
program called Jailer, which provides an additional layer of security in case
the virtualization is compromised. [37] From a security perspective, all vCPU
threads are considered to be running malicious code as soon as they have been
started; these malicious threads need to be contained. Containment is achieved
by nesting several trust zones, incrementing from least trusted or least safe
(guest vCPU threads) to most trusted or safest (host). These trusted zones are
separated by barriers that enforce aspects of Firecracker security. For exam-
ple, all outbound network traffic data is copied by the Firecracker I/O thread
from the emulated network interface to the backing host TAP device, and I/O
rate limiting is applied at this point. These barriers are marked in the figure
4.4. [38]

Firecracker can be configured via a RESTful API to limit the number of
resources and start new VMs. It provides a metadata service for communica-
tion between the host and the VM, which can be configured with the API. [37]
It is generally considered to be safe thanks to its relatively small code base

Sandboxing 26

Host hardware

Host kernel

System calls

Container engine

Container

System calls

Application ...

System calls

Application

Container

Figure 4.5 Containerization structure

written in rust. Nevertheless, while being considered safe, there are still some
vulnerabilities exploited by microarchitectural attacks, like Medusa variants
or Spectre, which the firecracker cannot mitigate. [39]

4.3.3 Containerization
Containerization is a type of virtualization that is more lightweight than creat-
ing full-blown virtual machines. A unit of virtualization is a Container, which
is an alternative to the virtual machine. Containers are standard Linux pro-
cesses managed by a container runtime, which is an alternative to the VM’s
hypervisor. Containers are defined by a container image or a container reposi-
tory. There are several standards for container images, such as Docker, Appc,
LXD, and Open Container Initiative (OCI).

The most significant difference from VMs is that containers share the host
kernel and thus can be more efficient in utilizing and sharing resources. Con-
tainers are isolated by the use of cgroups, SELinux, or AppArmor. [40] A
containerization structure can be seen in figure 4.5 and can be compared to
the figure 4.2 to spot the missing layer in containerization.

Cgroups or, in their whole name, control groups, allow the allocation of
resources such as CPU time, system memory, network bandwidth, or com-
binations of all among user-defined groups of tasks (processes) running on a
system. Cgroups can be monitored, configured, and deny or allow access to
certain resources. [41]

Nevertheless, cgroups are not enough to isolate everything. Containers
must also utilize kernel namespaces to enable each container to have its own
mount points, network interfaces, user identifiers, process identifiers, etc. [40]

All this functionality is provided by a container engine. A container engine

Sandboxing 27

is responsible for downloading container images, running containers based on
said images, preparing container mount points, managing metadata, and call-
ing container runtime. There are many container engines like docker, podman,
or LXD, with other engines being part of cloud platforms provided through
PaaS. [40]

Containers are used for many use cases. They can be run in privileged and
non-privileged modes. Privileged mode makes users in the container have the
same privileges as on the host machine. This is a problem when the user is
root and could potentially harm the host. Thus, the privileged mode should
be avoided and only used in special cases. [42] On the other hand, there is a
non-privileged mode, which gives the user inside the container no privileges on
the host other than specifically defined ones.

Based on use cases, containers can be divided into multiple categories [40]:

Application containers – Probably the most popular form of containers.
Containers contain code that developers develop. Containers also can con-
tain databases and other necessary applications.

Operating system containers – They operate similarly to the full virtual
machine. Nevertheless, the kernel is still shared with the host.

Super privileged containers – Specialized containers used for administrating
container infrastructure.

Sandbox containers – Container used as a sandbox to run potentially ma-
licious software isolated from the host.

This thesis is interested in the last category, sandbox containers. Contain-
ers certainly have capabilities for their use as sandboxes. Cgroups, namespaces,
and SELinux are potent tools for isolating malicious intentions. They can be
leveraged to offer a safe location to execute untrusted code. But only with
additional effort.

While being its most significant asset in terms of performance, the shared
kernel of containers is a big security problem. Containers are more closely
connected and can access data more efficiently. Container sandboxing is also
more recent than the traditional VM approach and is generally discouraged.
Because of this, it is not as battle-tested as a VM hypervisor. However, some
technologies try to mitigate the shared kernel vulnerabilities by implementing
an alternative to the missing hypervisor layer to a container runtime. One such
technology is called gVisor, which will be discussed in future section 4.3.3.3.

Sandboxing 28

4.3.3.1 Docker

Docker is the most well-known container engine out there. Docker has a two-
part client-server architecture. First, the docker daemon (dockerd). The
daemon acts like a server and listens for API requests managing docker ob-
jects like images and containers. The second part is the docker client, which
interacts with the user and sends commands to dockerd.

Docker is written in the Go programming languages and uses namespaces
and groups, as described in the previous section. [43] A big concern for docker
was that it used to run dockerd only as root, which allowed somebody with
access to creating containers to do almost anything. Specifically, Docker allows
to share a directory between the Docker host and a guest container, and it
allows to do so without limiting the access rights of the container. This means
somebody can start a container where the /host directory is the / directory
on the host. [44] Nowadays, docker offers a rootles mode. However, the rootles
mode has limitations on what storage drivers it can use; Cgroup is supported
only when running with a group v2 and systemd, and AppArmor and other
features are not supported. [45]

4.3.3.2 Podman

Podman is a daemonless, open source, Linux native tool designed to make it
easy to find, run, build, share, and deploy applications using Open Containers
Initiative (OCI) Containers and Container Images. It uses OCI-compatible
container runtime to create running containers. It also tries to keep its com-
mand line interface (CLI) similar to the docker interface so people who come
from docker do not have to learn new commands. [46] By being daemonless,
it allows running containers without root access, making it safer to use.

4.3.3.3 gVisor

gVisor is an open-source Linux-compatible sandbox that runs anywhere existing
container tooling does. It enables cloud-native container security and portabil-
ity. [47] In more depth, it is an application kernel, written in Go programming
language, that implements a substantial portion of the Linux system call in-
terface. It includes OCI-compliant container runtime, which can be used with
existing container engines like docker or podman. [48]

It is an alternative to a VM hypervisor and rule-based executions such as
SELinux. The difference between their architecture can be seen in figure 4.6.
The gVisor acts as a guest kernel that intercepts containerized application
system calls without translation through virtualized hardware. [48]

The gVisor has two distinct parts: Sentry and Gofer. The Sentry is a kernel
that runs containers and responds to system calls made by the application.
It is started in a seccomp container without access to file system resources
which have to be mediated through Gofer. The Gofer is used to provide file

Sandboxing 29

Host hardware

Host kernel

Limited system calls

Container

System calls

Application ...

System calls

Application

Container

Host hardware

Host kernel

System calls

Hypervisor

VM

System calls

Application

Guest
kernel

...

Virtual hardware

VM

System calls

Application

Guest
kernel

Virtual hardware

Host hardware

Host kernel

Limited system calls

Application

gVisor

Container engine

Strong isolation

VMs Containerization Rule-based
execution

Figure 4.6 Differences between VMs, containerization and ruled-based execution

system access to the containers. Both are instantiated for each container and
communicate together via the 9P protocol. [48] The two parts are pictured on
figure 4.7

4.3.4 Wasm Runtime
Another interesting sandboxing method is to develop a runtime where all the
computation runs. This is an efficient method when one has access to a source
code that must be run or when an application does not have the necessary
permissions to start a VM or a container. A use case from the real world can
be an internet browser that has to handle the execution of untrusted JavaScript
code. The execution of the javascript code can be made safer when running
it in a runtime, which acts like a sandbox. An example is a V8, javascript
runtime used in Google Chrome. [49]

A Wasm has a similar story. It was designed to be run in a browser with
near native speed. As a result, its design is inherently sandboxed. The core
Wasm specification has multiple features that create this sandbox environ-
ment [28]:

1. The call stack is inaccessible – Return addresses from calls and spilled
registers are stored in memory only the implementation can access. This
mitigates stack-smashing attacks that target return addresses.

2. Pointers are offset to linear memory – Pointers in source languages are
compiled to offsets into linear memory. This hides implementation details

Sandboxing 30

Host hardware

Host kernel

Container

Application

gVisor

9PSentry Gofer

Limited system calls System calls

System calls

Figure 4.7 gVisor components (adapted from gVisor documentation [48])

like virtual addresses from applications. As a bonus, all accesses within
linear memory are checked to stay in bounds.

3. Checked jump destinations – All destinations of direct and indirect branches
and calls are checked, so it is not possible to jump into the middle or outside
of a function.

4. Interactions with the host are through imports and exports – All interac-
tions with the host have to be made explicit by either importing a function
from the host or exporting from the Wasm module.

5. No undefined behavior – Wasm spec does not permit undefined behavior.
Although there sometimes might be multiple possible behaviors, they are
always defined.

Together with these features, different Wasm runtimes can offer even more
protection. For instance, the Wasmtime runtime adds a 2GB guard region to
a linear memory, and where it can, it zeroes out the memory after a Wasm
instance is finished. Moreover, it adds explicit checks to determine whether a
Wasm function should be considered to stack overflow. [28]

Part II

Implementation

31

Chapter 5

Build pipeline design

5.1 Requirements

The result of the design and implementation has to be a complete pipeline,
which takes source code as its input and returns Wasm binary on its output.
The design has to consider the security and scalability of the solution. The
pipeline results must be observable and communicated to the outside. The
following sections will describe the functional and non-functional requirements
of the work in greater detail.

5.1.1 Functional
FR 1 – The user can send application source code written in Rust with its
metadata to a REST API. The source code has to be compiled and stored
accordingly.

FR 2 – The source code can be versioned. Every successfully built appli-
cation has to have a version. A user has to be able to create a new version
of the application via REST API.

FR 3 – User can delete an application version or edit its metadata via
REST API.

FR 4 – User can observe the success or failure of the running build via
REST API.

FR 5 – User can observe information about running builds and completed
builds via REST API.

FR 6 – User can observe information about uploaded application versions
via REST API.

32

Architecture 33

5.1.2 Non-functional
NFR 1 – Support only applications written in Rust, but design the solution
in such a way that it will be possible to add other languages with a small
effort.

NFR 2 –Design solution in such a way that all storage technology can be
easily switched to another technology.

NFR 3 – Compilation has to be secure. Design the solution in such a way
that compilation will not endanger anything running on the infrastructure.

NFR 4 – Use sandboxing techniques to secure compilation.

NFR 5 – The sandboxing has to be designed in such a way that in case
it is deemed not secure enough, it will be easily replaceable for another
solution.

NFR 6 – The solution has to store source code, compiled binary, and logs
on the object storage platform.

NFR 7 – Solution should work asynchronously to not block user requests.

5.2 Architecture

Considering functional and non-functional requirements, a few design choices
were considered. The architecture will be composed of three components based
on the operations needed to be done:

Client facing API – According to functional requirements, the client has to
be able to work with the pipeline via REST API. This component is re-
sponsible for defining the API and, based on user requests, making sure
the source code is compiled and stored and that the build results are ob-
servable.

Compilation – The compilation component has to do one job, compile source
code safely, and return Wasm binary together with build logs in case some-
thing goes wrong.

Persistent storage – The persistent storage component must ensure all data
is stored correctly. This includes storage of source code, logs, and Wasm
binary in the object storage platform and storage of metadata about the
build.

These three parts roughly correspond with the three-layer architecture,
which has a presentation layer (Client-facing API), business logic (Compila-
tion), and persistent storage. However, future sections will study why such
architecture is not ideal in more detail. Nevertheless, the pipeline will need to
represent the three elements somehow.

Architecture 34

Build pipeline

Compile source code

User facing APIA
P

I

User

Store compiled files

Compilation

Persistent storage

Figure 5.1 Single component architecture

5.2.1 Single component
The most simple architecture is putting everything into a single component.
The component is then supposed to handle all logic, no matter its purpose. It
provides REST API to its users, compiles applications, and, in the end, saves
data to persistent storage. This directly corresponds to the three-layered ar-
chitecture. Its diagram can be seen in figure 5.1. Although easy to implement,
this component does not provide sufficient isolation of the compilation pro-
cess, which could endanger other processes running on the same machine and
potentially get access to a database. That is a big problem in contradiction
with NFR 3. It also suffers from another issue: scaling.

The compilation is inherently a more complex operation than processing
API requests or saving data. This means that when faced with a large num-
ber of requests, the compilation will become a bottleneck, the API will not
be able to process more requests, and data will not be saved at the pace it
potentially could be. This could be dealt with by spawning more compilation
machines. However, having everything in a single component introduces un-
necessary overhead because API and saving to persistent storage would also
be duplicated, which it does not have to.

5.2.2 Multiple components
Based on the previous reasoning about the single-component solution, it is
clear that the compilation component has to be isolated on its own to achieve
better security and scaling potential. A similar reasoning could also be applied
to the persistent storage component. This creates a design that is close to
microservice architecture, where every functionality is a service. A diagram of
this approach can be seen in figure 5.2.

Having multiple components is good, it enables scaling by spawning more

Architecture 35

User

Persistent storage

A
P

I

User
facing API

Compilation

Compile source code

Return compiled binary

Persist data

Figure 5.2 Every component separated into its own service

of them, and with the use of load balancing it enables utilizing as much as
possible. However, there is a slight oversight in the use case of the build
pipeline. Storage needs to save source code, binary, and potentially logs, all
these files combined could have based on testing on real user data around 5MB,
which is a considerable amount of data that would be sent between multiple
components.

This issue could be mitigated by using a slightly different service topology.
The initial design suggested sending all files that came from the compilation
back to the caller which would then manage saving of the data. However,
the compilation could send data directly to storage. This would help with
the problem. Moreover, considering the compilation has to be asynchronous,
the compilation component cannot return its results to the caller immediately
anyway.

This last note signals that compilation has to send data to some other
endpoint other than the caller, which could be the storage. Nevertheless, the
results of the compilation have to be preprocessed before they are saved to the
storage because the compilation component should have as minimal amount
of responsibility as possible to limit potentially dangerous operations. That
creates space for another component that would be responsible for evaluat-
ing compilation results. The component will be called evaluator. The new
architecture with evaluator would look like this 5.3.

5.2.3 Somewhere in between
Although creating a custom microservice for every functionality might be ben-
eficial, it introduces additional complexity to the system. This complexity can
be justified by scaling potential and resilience, but sometimes, when these two
values are not the system’s primary concern, it can be better to merge some
services together and instead build a singular system with clearly separated
boundaries.

Architecture 36

User

Compilation complete

Persistent storage

A
P

I

User
facing API

Compilation

Compile source code

Evaluator

Persist data

Figure 5.3 Multiple components with evaluator

User
Compilation complete

Compilation

Orchestrator

User facing APIA
P

I

Persist data

Evaluator

Persistent storage

Compile source code

Figure 5.4 Final design with two separate services

This thesis utilizes the latter approach, while it would not be wrong to
create a service for every functionality some of them are so small that they
could be integrated into another service. For these reasons, the final cho-
sen design has only two components: The isolated compilation service and
customer-facing API with storage and evaluator. The final design is in figure
5.4.

Each component will be described in the following sections. The Orches-
tration (5.3) will design customer-facing API with the evaluator. The Compi-
lation (5.4) shows how a compilation component with a compilation sandbox
could work. Furthermore, at last, the Storage (5.5) describes what storage
elements are needed and how other components should work with it.

5.2.4 Comunication between components
When multiple components are involved, they have to communicate in some
way. In a world of microservices, there are two prevalent methods of com-
munication between services: REST API and using messages with a message

Orchestration 37

queue. [50] Both offer their pros and cons.
The REST API is a simple interface used primarily for lightweight, main-

tainable, and scalable services. They are not dependent on any particular
protocol, but the most used is HTTP. It is designed around stateless commu-
nication, so all information has to be included in the request. Additionally,
the request also expects a corresponding response. [50] In the case of the build
pipeline this would mean the orchestration component would send a request to
the compiler and the compiler would have to respond immediately, the response
would however be only information that the source code was accepted and not
result of compilation, because compilation takes long time. Although nothing
is wrong with this approach, it is unidiomatic, and data could be lost when
the compilation component is overwhelmed with too many requests. Similar
would be the communication on the other end when the compiler completes
the build and wants to send built data to the evaluator. However, this second
case is more in terms with the request/response way of REST APIs.

The second approach using messages and message queues utilizes pub-
lish/subscribe pattern where one service can publish a message to a message
queue, and other services can subscribe to the message queue. This eliminates
the problem when the subscriber (compilation component) is unavailable be-
cause the queue would store the compilation request until some subscriber is
again available. It would also offer a way how to load balance between multiple
compilation workers. The downside of this approach is the introduction of a
new technology that has to be maintained and additional complexity.

Even though it seems at first like only one of these approaches can be used.
There is nothing stopping someone who would like to use a combination of
both. For example, a message queue can be used to send compilation requests
to the compilator, and REST API can be used to send built data to the
evaluator. This approach would make perfect sense and would be in terms with
both styles. Ultimately, the thesis chose only the REST API approach because
of the added complexity and technology that would have to be maintained.

5.3 Orchestration

To describe and design the workflow of the pipeline as best as possible, the
thesis first looks into the orchestration component, which is the entry point
of the pipeline. For now, it assumes the orchestration can persist with any
necessary data. How the orchestration saves data will be explained in the
storage section.

The orchestration component is responsible for orchestrating the build
pipeline. Based on input via API, it manages what is saved to the database
and what is sent for compilation. It is divided into two distinct parts:

Orchestration 38

Customer facing API – The public entry point to the pipeline that users
of the pipeline can use. It contains all operations necessary to manage
applications and submit source code for build.

Evaluator – The evaluator is a private endpoint that can be utilized by the
compilation component when it completes its work.

5.3.1 Customer facing API
The API has to contain all functionality needed by functional requirements.
This means there has to be an endpoint for the following operations:

Build a new application (FR 1)

Create a new version of an application (FR 2)

Edit information about an application (FR 3)

Delete version of an application (FR 3)

Show status of version build (FR 4)

Show build information (FR 5)

Show application version information (FR 6)

After looking into the required functions, a few observations can be made.
Building a new application could be considered as building version 0 or 1 of
a new application. Another one is that the status of a version build could
be contained in the build information. This squashes FR 1 with FR 2 into
one function and FR 4 with FR 5 into another one. Some functions will also
be added to have some way of grouping and retrieving application versions.
These functions will create, update, and delete empty applications without
any versions. All operations will be described in the following sections with a
detailed definition of the API in appendix B.

5.3.1.1 Application operations

The application is a way how to group versions. An application has to contain
three essential fields: application owner, application name, and description.
Users of the pipeline should be able to create, update, and delete applications.
The update operation should be possible only on name and description, the
owner should not be able to change.

Orchestration 39

Orchestrator
:User facing API

Compiler
Orchestrator

:Evaluator
Orchestrator

:Storage

Create version build

Submit source code for compilation

Code submitted

Compilation complete

Persist data

Create version

Figure 5.5 Sequence diagram of version creation

5.3.1.2 Version operations

Version operations are a bit different from regular CRUD. However, all CRUD
operations should be possible to execute only on a specific subset of version
fields. The Version must contain the following fields: application it belongs to,
semantic version it represents, description, application configuration, source
code, binary, and logs.

Create – Creation has to create a new version build and then submit source
code for compilation to the compilation service. It has to be asynchronous
so the user does not wait until the compilation is complete. A sequence
diagram documenting how the creation should behave is in figure 5.5.

Read – Read should return all information about the version except source
code, binary, and logs. The user does not need to see those, so they can
be omitted. An exception is when the version build fails. Then, the logs
should be visible. However, this functionality does not belong to the version
but to the version build.

Update – The user should be able to update all version fields mentioned
except the application it belongs to, source code, binary, and logs.

Delete – Deletion will remove the application version with all data. This
includes all information about the application build and files stored in
object storage.

5.3.1.3 Version build operations

Version build is an internally managed entity, so it must only be observable
via read operation. Users should be able to retrieve information about builds

Compilation 40

of specific applications and look at their logs. A new version build should be
created when the source code is submitted to the compiler component so it
can be tracked. The result should be updated by the evaluator component
described below based on the build result.

5.3.2 Evaluator
The evaluator is responsible for accepting successful and failed builds from the
compilation component. Its job is to store data based on the build status.
When the build finishes successfully, it should be marked as successful in per-
sistent storage, and binary and logs should be saved with it. A similar case is
when the build fails, the build has to be marked as failed and only logs should
be persisted so a user can see what happened.

This can be achieved by having two private endpoints which are available
only to the compiler component. They cannot be public because someone could
easily post the wrong data to them. The first endpoint is for a successful build,
and the second is for a failed one. Definitions for both are in appendix C.

5.4 Compilation

The compilation is the main element of this thesis. It is supposed to be safe
and extensible so future changes can be implemented easily. As already stated,
the compilation is separated into its own isolated component, so if anything
fails, it does not affect other processes and databases. The compiler component
communicates with the outside world via REST APIs. It exposes one endpoint
to the orchestration component, which is used to submit source code for build.
At the end of the build, it calls the evaluator API to signal that the build
finished either successfully or with a failure. The compilation can be altogether
separated into six stages:

1. Accept build request.

2. Prepare sandbox.

3. Supply data to the sandbox.

4. Build the code in the sandbox.

5. Retrieve data from the sandbox.

6. Send build result to the evaluator.

Based on this workflow, a compilation could be further separated into three
components: Request handler(1,6), Build service (2), Build pipeline(3-5). The
request handler is responsible for the input and output of the compilation. Its
job is to accept requests, parse data from them, call the build service, which

Compilation 41

CompilationHandler

+ handle_incoming_request(build_id, source_code)

- signal_successfull_build(
build_id
binary,
logs

)

- signal_failed_build(
build_id,
logs

)

BuildService

+ build_source_code(build_id, source_code): (Option<binary>, logs)

BuildPipeline

+ run(Sandbox)

- supply_data_to_sandbox(Sandbox, data)

- run_compilation(Sandbox)

- retrieve_sandbox_data(Sandbox)

SandboxProvider

+ get_sandbox(ApplicationLanguage): Sandbox

Sandbox

+ copy_to_sandbox(from, to)

+ run(command)

+ copy_from_sandbox(from, to)

Orchestrator
:User facing API

Orchestrator
:Evaluator

Compiler

Figure 5.6 Architecture of compiler component

does the compilations, and send the results of the build when the compilation
ends. Build service is a reusable service used to build source code. If, for some
reason, the input and output communication method of the whole compilation
component would change, the build service should remain the same. It prepares
a sandbox in which everything potentially dangerous runs and starts a build
pipeline with that sandbox. A build pipeline is the definition of all the steps
that have to be taken to build a Wasm binary. A diagram of the structure is
in figure 5.6.

5.4.1 Compilation sandbox
The sandbox is the core of the whole compilation process. It has to make
sure nothing malicious happens during the build process, and it has to be
replaceable if a chosen technology is shown to be insufficient. Because of the
latter part, the solution is divided into a Sandbox and Sandbox provider.

Compilation 42

5.4.1.1 Sandbox

Sandbox is the unit of isolation. It must have a clearly defined interface for
working with it.

Sandbox’s primary function is to execute a command safely. This leads to
the first method of the sandbox run(command: String). The run command
is a method that accepts a string, which defines the command that is supposed
to be executed inside the sandbox.

The command is a regular string because the sandbox’s concrete implemen-
tation must be replaceable and every sandbox could support different function-
ality. The string is so generic that it does not matter what sandbox is used, and
concrete implementation can handle it. Another solution would be to create
a common command abstraction that concrete sandboxes could implement.
However, that would be too much work for a relatively small benefit.

Sandbox also has to be able to receive data. This can be achieved by hav-
ing a second method copy_to_sandbox(from: String, to: String). This
method serves as an input to the sandbox. Parameter from is a string defin-
ing input file from the host, and to is the location inside the sandbox under
which the file should be located. Concrete sandboxes have to ensure that this
method’s implementation is correct and does not provide access to the host
via this file.

The third and final operation that the sandbox should be able to do is
to copy files from inside the sandbox to the host. This is because after the
source code is compiled inside the sandbox, the binary has to be brought out to
the host. This method is copy_from_sandbox(from: String, to: String).
The from parameter is a string defining location inside the sandbox, which
should be copied into the host. The second parameter, to, is a string defining
the location in the host where the file will be copied.

5.4.1.2 Sandbox provider

The sandbox provider is the component responsible for creating, maintaining,
and providing sandboxes to the build service. It was designed as a way for
the build service to retrieve a sandbox without knowing concrete sandbox
implementation beforehand.

The second responsibility is ensuring the sandboxes are prepared when a
build request is issued. This can make the build process faster by eliminating
the startup time of the sandbox. This could be particularly useful when using
VM sandboxes because of their well-known slow boot times.

Sandboxes can be requested by two criteria: Sandbox technology and sand-
box purpose. It could be possible to have two sandboxing technologies used
simultaneously. Nevertheless, for simplicity, the thesis chose to select only
one. The second criterion, the sandbox purpose, corresponds to a compiled
language. To comply with NFR 1, the thesis has to assume that it works with

Storage 43

EntityRepository

entity_operation_C()

entity_operation_D(): Entity

Orchestrator

EntityService

+ entity_operation_A()

+ entity_operation_B()

Physical storage

Persistent storage

Figure 5.7 Architecture of storage

multiple languages and that every language uses a different toolchain for com-
pilation. The solution could put all possible technologies inside one sandbox,
but it would be too cumbersome. The sandbox definition would take more
space and instantiation more time. As a result, the thesis chose to separate
the sandboxes for each language.

The sandbox provider should expose one method responsible for retriev-
ing sandboxes: provide_sandbox(language: ApplicationLanguage). This
method takes one argument that specifies which language the sandbox targets.
Based on the language, the provider selects a prepared sandbox and returns it
to the caller. As a side-effect, it issues the creation of a new sandbox to keep
a buffer of prepared sandboxes at hand.

5.5 Storage

Permanent storage is required so applications, their versions, and builds can
be tracked across requests and retrieved later, in compliance with FR 4, FR
5, and FR 6. To also comply with NFR 2, the chosen storage must be easily
replaceable by another technology. This requires a level of abstraction over
physical storage. This can be achieved by utilizing the repository pattern,
designed for precisely this reason.

A repository contains all the logic one can execute over an entity. This in-
cludes CRUD and other operations. Creating an abstract contract (the reposi-
tory interface) that concrete implementations must uphold will allow replacing
one implementation with another. Every entity will have its repository, which
will define its operations.

Repositories will then be used inside Storage services. These services will
act as an entry point into the storage without creating a separate microservice.
Services will offer a public interface that clearly defines what operations can
be done over the storage. They will be used by the orchestrator component to
persist build information and save data after compilation is done. Figure 5.7
shows a diagram of this structure.

While repositories and services create a horizontal layering of the storage
architecture, a vertical layering can also be described that will outline stor-
age features. The thesis will define two vertical slices: Metadata and Object
storage. Figure 5.8 outlines the layering. The following sections will closely

Storage 44

Application service

Application
repository

Metadata storage

Object respository

Object storage

Service layer

Repository
layer

Storage layer

Metadata
slice

Object slice

Version build service Version service

Version build
repository

Version repository

Figure 5.8 Layering of storage architecture

examine them and describe what entities, repositories, and services they work
with.

5.5.1 Metadata
The metadata part of the storage stores information about applications, ver-
sions, and version builds, for instance, names, dates of creation, and keys to
object storage.

Altogether, the metadata segment will contain three entities, one for each
mentioned part. Entities are shown in figure 5.9. Services for those reposito-
ries/entities will have the following functionality:

Application : Create, Read, Update, Delete, ReadAll

Application version : Create, Read, Update, Delete, ReadAll

Version build : ReadAll,

5.5.2 Object storage
The object storage is, according to NFR 6, used to store all files generated
by compilation. Keys to the files will be stored inside the version and version
build entity in the metadata database. An alternative to storing keys in the
metadata database would be storing all information in some special file in
object storage, but this solution has bad ergonomics and would be difficult to
work with.

The object storage cannot be accessible by itself. This means there will
not be a public service that someone could use to retrieve these files. Object

Storage 45

Application

id: Uuid

owner_id: i64

name: String

created_at: DateTime

notes: String

Version

id: Uuid

VersionInformation

application_id: Uuid

version: String

application_language: ApplicationLanguage

phases: Vec<String>

conf: Option<String>

notes: String

created_at: DateTime

source_code_location: String

binary_location: String

logs_location: String

VersionBuild

id: Uuid

VersionInformation

application_id: Uuid

version: String

application_language: ApplicationLanguage

phases: Vec<String>

conf: Option<String>

notes: String

created_at: DateTime

state: BuildState

logs_location: Option<String>

Figure 5.9 Metadata entities

storage will be only accessible via a repository, which will be used by some
other service maintaining versions and version builds. This arrangement is
shown in figure 5.8.

Object storage will have only one entity, the ApplicationData entity,
which will have only two fields: id and data.

Chapter 6

Build pipeline implementation

6.1 Related work

This thesis builds upon existing CDN edge computing infrastructure and adds
an important part so applications can be compiled and executed on it. The
infrastructure can be divided into four parts:

1. Nginx

2. SDK

3. Build pipeline

4. Application distribution

Nginx is the technology used to power edge servers. The nginx contains
a proxy-wasm application that implements the necessary pieces described in
section 3.5.3. It uses Wasmtime as its Wasm runtime of choice, controlled by
bindings written in C language. Wasm modules are instantiated and called
from a Lua enabled by OpenResty [51]. Applications can be written in Rust
language with the use of SDK, which hides the proxy-wasm implementation.
Once applications written in Rust are developed, they have to be compiled
by hand and put into a special folder from which automatic file syncer will
distribute them across edge servers.

This thesis aims to automatize the manual compilation part, and thus, it
does not focus on any other parts already implemented.

6.2 Used technologies

The implementation part of this thesis uses many different technologies to
enable building the best solution possible. This section will describe what are
the selected technologies and the thinking process that led to their selection.

46

Used technologies 47

6.2.1 Rust
Rust was selected as the main programming language in which all code will
be written. It was partly due to the already existing infrastructure, which was
written in rust, and also due to its key values and ecosystem. The Rust’s key
values are: Performance, Reliability and Productivity. [52]

Performance is achieved by having no runtime or garbage collector. Never-
theless, having no garbage collector doesn’t mean the language is not memory-
safe. The second key value of Rust is reliability. It has a rich type system and
ownership model that guarantees the aforementioned memory safety together
with thread safety, enabling the elimination of many classes of bugs at compile-
time. [52]

Lastly, the best value for active development is probably productivity. Rust
has vast documentation and a friendly compiler with useful error messages.
It offers tooling with an integrated package manager and build tool, smart
multi-editor support with type auto-completion and type inspections, auto-
matic formatter, and more. [52]

Rust is also very close to the WebAssembly. It offers the tolling necessary to
build Wasm apps, and it is also used by notable Wasm runtimes like Wasmtime
(3.4) and Wasmer1.

6.2.2 Tokio async runtime
Tokio is an asynchronous runtime for the Rust programming language. It
provides the building blocks needed for writing network applications. It gives
the flexibility to target a wide range of systems, from large servers with dozens
of cores to small embedded devices.[53] Async runtimes are libraries used for
executing async applications. [54]

Tokio was chosen because it is a popular asynchronous runtime with HTTP,
gRPC, and tracing frameworks. It is also used in other CDN projects, so there
is no need to learn other technologies.

6.2.3 S3 SDK
The thesis chose an S3 SDK for working with object storage due to S3 being
prominent on the market and because many object storage solutions have a
compatible API. The S3 SDK is provided as a part of the AWS SDK for
Rust. The AWS SDK for Rust (the SDK) provides Rust APIs to interact with
Amazon Web Services infrastructure services. Using the SDK, one can build
applications on top of Amazon S3, Amazon EC2, DynamoDB, and more. [55]

1https://github.com/wasmerio/wasmer

Used technologies 48

6.2.4 MinIO
MinIO is a high-performance, S3 compatible object store. It is built for large-
scale AI/ML, data lake, and database workloads. It is software-defined and
runs on any cloud or on-premises infrastructure. [56] The thesis uses it as an
object storage for testing. This is possible because of the S3-compatible store.

MinIO comes with a prepared Docker image, which is designed to be run in
Podman or Docker. Only editing MINIO_ROOT_USER and MINIO_ROOT_PASSWORD
environment variables that set user credentials and access keys to the storage
is enough to be able to use MinIO comfortably.

6.2.5 Sqlx
SQLx is an async, pure Rust SQL crate featuring compile-time checked queries
without a DSL. [57] It is an easy way how to implement a persistent layer that
utilizes relational databases and SQL. By being truly asynchronous, it can be
leveraged by other async Rust libraries like Tokio to its maximal potential.

It is database agnostic supporting PostgreSQL(6.2.6), MySQL2, MariaDB3

and SQLite4 and async runtime agnostic supporting async-std5, tokio(6.2.2)
and actix6 runtimes.

6.2.6 PostgreSQL
For metadata storage, the thesis chose the PostgreSQL database. It is a pow-
erful, open-source object-relational database system that uses and extends the
SQL language combined with many features that safely store and scale the most
complicated data workloads. [58]

It is a popular database that has earned a strong reputation for its proven
architecture, reliability, data integrity, robust feature set, extensibility, and the
dedication of the open-source community behind the software to consistently
deliver performant and innovative solutions. [58]

It runs on all major operating systems, has a long history, and has a con-
tainer Image prepared for an easy start without needing any bigger prepara-
tion. Only providing a few environment variables is enough to start a config-
ured PostgreSQL database. These variables are:

POSTGRES_USER – Creates database user.

POSTGRES_PASSWORD – Sets password for the used.

POSTGRES_HOST – Hostname of the postgres database.
2https://www.mysql.com/
3https://mariadb.org/
4https://www.sqlite.org/
5https://async.rs/
6https://actix.rs/

Used technologies 49

POSTGRES_DB – A database name created in the PostgreSQL.

6.2.7 Firecracker vs gvisor
When selecting which technology should be used for sandboxing, two of them
stood out from the research as a safe and efficient choice: firecracker (4.3.2.2)
and gVisor (4.3.3.3).

They are used to achieve practically the same goal: providing a fast and
secure sandbox. However, both technologies had to implement a different part
of the puzzle. Firecracker had to make safe, isolated VMs faster, while gVisor
had to make fast containers more secure. In the end, both are successful
products that are used in production by giant cloud computing companies,
firecracker by AWS Labmda and AWS Fargate [37] and gVisor by Google [47].
This comparison naturally starts a debate about which one to use, which
was explored in a study Blending Containers and Virtual Machines: A Study
of Firecracker and gVisor [59], comparing both firecracker and gVisor with
additional Linux containers (LXC).

This study focuses on two criteria of comparison: Isolation and perfor-
mance. The isolation is measured by comparing how they utilize the Linux
kernel by measuring code coverage of the Linux kernel in response to differ-
ent workloads on each platform. And the performance by tracing memory
utilization, execution times, and network workload.

6.2.7.1 Code coverage

When measuring system call coverage, it is important to state that both gVisor
and firecracker operate in secure computing mode – seccomp. Which restricts
system calls a running process may make. The firecracker uses a seccomp filter,
which allows only 36 system calls to the host kernel, and meanwhile, gVisor
allows 53 without host networking and up to 68 with host networking. Fire-
cracker also supports advanced filtering mode, which restricts values allowed
as arguments to the system calls. [59]

The total code footprint was measured on four microbenchmarks testing
CPU, network, memory, and file write on the tested systems. Table 6.1 shows
the resulting union of line coverage across all workloads out of 806,318 total
lines in the Linux kernel. However, this table doesn’t show anything about
whether the platforms are executing the same code or if there are large non-
overlapping bodies of code. To get this information the study takes a detailed
look at the code executed for different kernel subsystems when running mi-
crobenchmarks exercising that subsystem. It filters out invocations not re-
lated to the application running in the isolation platform and creates a set of
Venn diagrams representing the intersections of code executed by each system.
These diagrams are in figures 6.1, 6.2, 6.3, and 6.4. [59]

Used technologies 50

VEE ’20, March 17, 2020, Lausanne, Switzerland Anjali, Tyler Caraza-Harter, and Michael M. Swift

7403 2079
864

2725

6026 33557

35692

Firecracker LXC

gVisor

(a) CPU workload overall

541 0
0

32

649 0

0

Firecracker LXC

gVisor

(b) /virt

2825 118
104

227

3537 399

1752

Firecracker LXC

gVisor

(c) /arch

2701 0
0

151

3354 0

16

Firecracker LXC

gVisor

(d) /arch/x86/kvm

Figure 4. CPU workload coverage

2 4 6 8 10

No. of instances

0

100

200

300

400

C
P
U

 s
p
e
e
d
(e

v
e
n
ts

 p
e
r

s
e
c
o
n
d
)

host Firecracker LXC gVisor

(a) CPU Speed

2 4 6 8 10

No. of instances

0

10000

20000

30000

T
o
ta

l
p
ro

b
e
s
 p

e
r

in
s
ta

n
c
e

host Firecracker LXC gVisor

(b) LLC Probe
Figure 5. CPU workload

code in the file block/blk-cgroup.c is executed just by gVisor
as an extra check. We will see more such examples in the
following sections.

4.2 Performance
We conduct two experiments to measure how choice of iso-
lation platform affects CPU performance. First, we run the
sysbench CPU benchmark [14] for ten seconds and observe
the number of events it executes. An event is the loop that
finds prime numbers up to a limit. This workload is CPU-
bound, and hence measures the processing overhead of the
platforms. We observe in Figure 5a that all the platforms
perform similarly. As we increase the number of instances
to ten, performance per instance drops 23%.
In the second experiment, we execute LLCProbe [35],

which sequentially probes 4B from every 64B of data within
an LLC-sized buffer, using cache coloring to balance access
across cache sets. To measure the performance, we measure
the number of probes completed in 10 seconds. Figure 5b
reports the average probes observed per instance. There is
a slight drop in performance as the number of instances in-
creases across all the environment, due to overhead of the
platform. All platforms achieve approximately 33k probes
per instance.

4.3 Insights
Despite the user-mode Sentry, gVisor has the largest footprint
and Firecracker the smallest. But, all three platforms exercise
a significant body of code not exercised by the other two.
While not all lines of code are equally likely to be vulnerable
to an exploit, more code indicates potentially higher risk.
Firecracker and gVisor require more architecture-specific

code due to their dependence on hardware virtualization,
which may make portability to other processor architectures
more difficult. Firecracker depends on KVM to achieve the
lightweight virtualization, adding to the lines of code it exe-
cutes in the kernel. gVisor is heavily paravirtualized and also
uses a smaller fraction of this functionality when running
with the KVM platform. LXC does not use this functionality
as it lies on the leftmost side of the isolation spectrum as
seen in Figure 1.
The CPU performance corresponding to these architec-

tural differences does not vary significantly for both the
workloads, as overall there is fairly little kernel involvement.

5 Networking
5.1 Coverage Analysis
We measure code coverage of network operations for each
platform using iperf3 [9], which streams data over TCP/IP.

106

Figure 6.1 CPU workload coverage [59]
Blending Containers and Virtual Machines:
A Study of Firecracker and gVisor VEE ’20, March 17, 2020, Lausanne, Switzerland

7280 2453
2280

3378

5777 30200

41237

Firecracker LXC

gVisor

(a) Network workload overall

2449 808
1923

1003

357 10047

7627

Firecracker LXC

gVisor

(b) /net

0 14
0

0

0 1426

25

Firecracker LXC

gVisor

(c) /net/bridge

239 156
136

69

127 2231

2224

Firecracker LXC

gVisor

(d) /net/core

Figure 6. Network Workload Coverage

Figure 6a shows the overall kernel footprints and Figure 6b
shows the footprints in the /net directory alone. Despite
having an in-Sentry networking stack (including TCP, UDP,
IP4, IP6 and ICMP), gVisor has the highest overall coverage
and surprisingly exercises much of the same code as LXC
under /net. Some parsing of packets still happens in the host
kernel as a sanity check before routing them. Similarly, when
Generic Segmentation Offload (GSO) is enabled in gVisor, the
host kernel does more processing of packets. The /net/bridge
and /net/core directories also show a high overlap among
them with 1,426 and 2,231 lines shared by LXC and gVisor
as presented in Figures 6c and 6d respectively.

Firecracker runs the fewest lines of networking code. This
reflects that most networking happens in the guest OS.

5.2 Code Differences
In comparison to the host, all three isolation platforms exe-
cute more setup code for their network interfaces and more
extra checks across all networking code. dev_get_by_index(),
defined in /net/core/dev.c, searches for a network device; it
only gets executed in LXC and gVisor but not on host and
Firecracker which suggests that gVisor and LXC have the
same type of network interface, i.e., a bridge network.
There are some functions that execute only on some of

the platforms, such as tcp_sum_lost in /net/ipv4/tcp_input.c,
which checks the sum of the packets lost on the wire. This
gets executed 27,719 times in LXC, 3 times in Firecracker and
not executed in gVisor. This shows functionality that gVisor
handles in Sentry; hence not using the kernel network stack
for this processing.

Figure 7a shows the code snippet and Figure 7b shows the
hits (number of times a line executes) for some of the lines.
LXC has the highest hits, more than 100 million, followed by
gVisor, which calls this function 1,805,02012 times showing
1https://stackoverflow.com/questions/46447674/function-coverage-is-
lesser-even-with-100-code-coverage-when-objects-created-in
2https://stackoverflow.com/questions/2780950/gcov-line-count-is-
different-from-no-of-lines-in-source-code

1823bool is_skb_forwardable(const struct net_device ∗dev,
const struct sk_buff ∗skb){

1824unsigned int len;
1825if (!(dev−>flags & IFF_UP))
1826return false;
1827len = dev−>mtu + dev−>hard_header_len +

VLAN_HLEN;
1828if (skb−>len <= len)
1829return true;
1830if (skb_is_gso(skb))
1831return true;
1832return false;
1833}

(a) net/core/dev.c

Hits
Lines LXC gVisor Firecracker
1823 1.012e+8 1.805e+6 0
1825 2.111e+8 5.099e+6 0
1827 2.111e+8 5.099e+6 0
1828 2.111e+8 5.099e+6 0
1830 8.270e+6 9.974e+5 0

(b) Number of hits in net/core/dev.c

Figure 7. Hits in net/core/dev.c

that it handles part of this inside netstack. Firecracker does
not execute this code.

5.3 Performance
We evaluate network performance by measuring bandwidth
and latency. The network bandwidth is measured by run-
ning iperf3 between two Cloudlab machines with a 10 Gbps
network link and the latency by measuring the round-trip
time with ping.

Host and Firecracker achieve the highest bandwidth; LXC
is slightly slower while gVisor is the slowest with 0.805
Gbps3, (805 Mbps) but the aggregate increases to 3.294 Gbps
3We get similar result on Google Cloud Platform (GCP).

107

Figure 6.2 Network Workload Coverage [59]

VEE ’20, March 17, 2020, Lausanne, Switzerland Anjali, Tyler Caraza-Harter, and Michael M. Swift

8830 2562
977

2280

6039 31215

37243

Firecracker LXC

gVisor

(a) Memory workload overall

54 130
43

305

313 1743

5125

Firecracker LXC

gVisor

(b) /mm

211 0
0

3

61 105

468

Firecracker LXC

gVisor

(c) /arch/x86/mm

Figure 13.Memory workload coverage

4KB 8KB 16KB 64KB 256KB 1MB

mmap size

0

250

500

750

1000

T
im

e
(m

s
)

host

Firecracker

LXC gVisor

Figure 14. Total allocation time (without munmap) for 1GB

4KB 8KB 16KB 64KB 256KB 1MB

mmap size

0

200

400

600

T
im

e
(m

s
)

host

Firecracker

LXC gVisor

Figure 15. Total touch time (without munmap) for 1GB

becomes slower when we start unmapping and re-mapping,
so for workloads that do a lot of mmap() and munmap(), this
might come with an overhead. LXC heavily uses the kernel
code with very high hit rates, which makes it less isolated.
But it has high performance, better than Firecracker in some
cases.

7 File access
7.1 Coverage Analysis
Wemeasure coverage with a workload that opens, reads, and
writes to files. Figure 18a shows the overall kernel footprints
and Figure 18b shows the footprints in the /fs directory,

4KB 8KB 16KB 64KB 256KB 1MB

mmap size

0

2000

4000

6000

T
im

e
(m

s
)

host

Firecracker

LXC gVisor

Figure 16. Total allocation+unmap time for 1GB

4KB 8KB 16KB 64KB 256KB 1MB

mmap size

0

500

1000

T
im

e
(m

s
)

host

Firecracker

LXC gVisor

Figure 17. Total touch time (with munmap) for 1GB

which includes VFS code as well as the implementations
for various file systems. We observe that most lines (about
18k) are shared between gVisor and LXC; Firecracker uses
about half of these lines as well.
In our experiments, all three systems use the ext4 file

system. Figure 18c shows that gVisor and LXC exercise more
ext4 code than Firecracker. Storage in Firecracker is provided
by an emulated block device, which is backed by a file on
the host, so there are no directory operations.
gVisor and LXC containers do not directly access ext4

files; rather, they interact with overlayfs, which provides
copy-on-write and stitches together a single file-system view
from multiple ext4 directories. Figure 18d show that LXC

110

Figure 6.3 Memory workload coverage [59]
Blending Containers and Virtual Machines:
A Study of Firecracker and gVisor VEE ’20, March 17, 2020, Lausanne, Switzerland

7280 2453
2280

3378

5777 30200

41237

Firecracker LXC

gVisor

(a) Network workload overall

2449 808
1923

1003

357 10047

7627

Firecracker LXC

gVisor

(b) /net

0 14
0

0

0 1426

25

Firecracker LXC

gVisor

(c) /net/bridge

239 156
136

69

127 2231

2224

Firecracker LXC

gVisor

(d) /net/core

Figure 6. Network Workload Coverage

Figure 6a shows the overall kernel footprints and Figure 6b
shows the footprints in the /net directory alone. Despite
having an in-Sentry networking stack (including TCP, UDP,
IP4, IP6 and ICMP), gVisor has the highest overall coverage
and surprisingly exercises much of the same code as LXC
under /net. Some parsing of packets still happens in the host
kernel as a sanity check before routing them. Similarly, when
Generic Segmentation Offload (GSO) is enabled in gVisor, the
host kernel does more processing of packets. The /net/bridge
and /net/core directories also show a high overlap among
them with 1,426 and 2,231 lines shared by LXC and gVisor
as presented in Figures 6c and 6d respectively.

Firecracker runs the fewest lines of networking code. This
reflects that most networking happens in the guest OS.

5.2 Code Differences
In comparison to the host, all three isolation platforms exe-
cute more setup code for their network interfaces and more
extra checks across all networking code. dev_get_by_index(),
defined in /net/core/dev.c, searches for a network device; it
only gets executed in LXC and gVisor but not on host and
Firecracker which suggests that gVisor and LXC have the
same type of network interface, i.e., a bridge network.
There are some functions that execute only on some of

the platforms, such as tcp_sum_lost in /net/ipv4/tcp_input.c,
which checks the sum of the packets lost on the wire. This
gets executed 27,719 times in LXC, 3 times in Firecracker and
not executed in gVisor. This shows functionality that gVisor
handles in Sentry; hence not using the kernel network stack
for this processing.

Figure 7a shows the code snippet and Figure 7b shows the
hits (number of times a line executes) for some of the lines.
LXC has the highest hits, more than 100 million, followed by
gVisor, which calls this function 1,805,02012 times showing
1https://stackoverflow.com/questions/46447674/function-coverage-is-
lesser-even-with-100-code-coverage-when-objects-created-in
2https://stackoverflow.com/questions/2780950/gcov-line-count-is-
different-from-no-of-lines-in-source-code

1823bool is_skb_forwardable(const struct net_device ∗dev,
const struct sk_buff ∗skb){

1824unsigned int len;
1825if (!(dev−>flags & IFF_UP))
1826return false;
1827len = dev−>mtu + dev−>hard_header_len +

VLAN_HLEN;
1828if (skb−>len <= len)
1829return true;
1830if (skb_is_gso(skb))
1831return true;
1832return false;
1833}

(a) net/core/dev.c

Hits
Lines LXC gVisor Firecracker
1823 1.012e+8 1.805e+6 0
1825 2.111e+8 5.099e+6 0
1827 2.111e+8 5.099e+6 0
1828 2.111e+8 5.099e+6 0
1830 8.270e+6 9.974e+5 0

(b) Number of hits in net/core/dev.c

Figure 7. Hits in net/core/dev.c

that it handles part of this inside netstack. Firecracker does
not execute this code.

5.3 Performance
We evaluate network performance by measuring bandwidth
and latency. The network bandwidth is measured by run-
ning iperf3 between two Cloudlab machines with a 10 Gbps
network link and the latency by measuring the round-trip
time with ping.

Host and Firecracker achieve the highest bandwidth; LXC
is slightly slower while gVisor is the slowest with 0.805
Gbps3, (805 Mbps) but the aggregate increases to 3.294 Gbps
3We get similar result on Google Cloud Platform (GCP).

107

Figure 6.4 File write workload coverage [59]

Used technologies 51

Host Firecracker gVisor LXC
Lines 63.163 77.392 91.161 90.595
Coverage 7.83% 9.59% 11.31% 11.23%

Table 6.1 Union of line coverage across all workloads out of 806,318 total lines in
the Linux kernel. [59]

VEE ’20, March 17, 2020, Lausanne, Switzerland Anjali, Tyler Caraza-Harter, and Michael M. Swift

7403 2079
864

2725

6026 33557

35692

Firecracker LXC

gVisor

(a) CPU workload overall

541 0
0

32

649 0

0

Firecracker LXC

gVisor

(b) /virt

2825 118
104

227

3537 399

1752

Firecracker LXC

gVisor

(c) /arch

2701 0
0

151

3354 0

16

Firecracker LXC

gVisor

(d) /arch/x86/kvm

Figure 4. CPU workload coverage

2 4 6 8 10

No. of instances

0

100

200

300

400

C
P
U

 s
p
e
e
d
(e

v
e
n
ts

 p
e
r

s
e
c
o
n
d
)

host Firecracker LXC gVisor

(a) CPU Speed

2 4 6 8 10

No. of instances

0

10000

20000

30000

T
o
ta

l
p
ro

b
e
s
 p

e
r

in
s
ta

n
c
e

host Firecracker LXC gVisor

(b) LLC Probe
Figure 5. CPU workload

code in the file block/blk-cgroup.c is executed just by gVisor
as an extra check. We will see more such examples in the
following sections.

4.2 Performance
We conduct two experiments to measure how choice of iso-
lation platform affects CPU performance. First, we run the
sysbench CPU benchmark [14] for ten seconds and observe
the number of events it executes. An event is the loop that
finds prime numbers up to a limit. This workload is CPU-
bound, and hence measures the processing overhead of the
platforms. We observe in Figure 5a that all the platforms
perform similarly. As we increase the number of instances
to ten, performance per instance drops 23%.
In the second experiment, we execute LLCProbe [35],

which sequentially probes 4B from every 64B of data within
an LLC-sized buffer, using cache coloring to balance access
across cache sets. To measure the performance, we measure
the number of probes completed in 10 seconds. Figure 5b
reports the average probes observed per instance. There is
a slight drop in performance as the number of instances in-
creases across all the environment, due to overhead of the
platform. All platforms achieve approximately 33k probes
per instance.

4.3 Insights
Despite the user-mode Sentry, gVisor has the largest footprint
and Firecracker the smallest. But, all three platforms exercise
a significant body of code not exercised by the other two.
While not all lines of code are equally likely to be vulnerable
to an exploit, more code indicates potentially higher risk.
Firecracker and gVisor require more architecture-specific

code due to their dependence on hardware virtualization,
which may make portability to other processor architectures
more difficult. Firecracker depends on KVM to achieve the
lightweight virtualization, adding to the lines of code it exe-
cutes in the kernel. gVisor is heavily paravirtualized and also
uses a smaller fraction of this functionality when running
with the KVM platform. LXC does not use this functionality
as it lies on the leftmost side of the isolation spectrum as
seen in Figure 1.
The CPU performance corresponding to these architec-

tural differences does not vary significantly for both the
workloads, as overall there is fairly little kernel involvement.

5 Networking
5.1 Coverage Analysis
We measure code coverage of network operations for each
platform using iperf3 [9], which streams data over TCP/IP.

106

Figure 6.5 CPU workload [59]

6.2.7.2 Performance

Performance was observed in four categories:

1. CPU – Measured by running a CPU benchmark for ten seconds and ob-
serving the number of events it executes.

2. Network – Measured by bandwidth and latency.

3. Memory allocation cost – Measured by allocating and freeing memory with
mmap() and munmap() system calls.

4. I/O throughput – Measured with a microbenchmark that performs reads
and writes of various sizes on a 1 GB file.

Results for each respective category are in figures 6.5, 6.10, 6.6, 6.7, 6.8,
6.9, 6.11 6.12. [59]

6.2.7.3 Outcomes

Firecracker’s microVMs are effective at reducing the frequency of kernel code
invocations but had a much smaller impact on reducing the footprint of ker-
nel code. Running workloads under Firecracker often expanded the amount of
kernel code executed with support for virtualization.

The gVisor design leads to much-duplicated functionality: while gVisor
handles the majority of system calls in its user-space Sentry, it still depends
on the same kernel functionality as Linux containers. Thus, its design is inher-
ently more complicated, as it depends on multiple independent implementations
of similar functionality. In contrast, LXC relies on a single implementation

Used technologies 52

VEE ’20, March 17, 2020, Lausanne, Switzerland Anjali, Tyler Caraza-Harter, and Michael M. Swift

8830 2562
977

2280

6039 31215

37243

Firecracker LXC

gVisor

(a) Memory workload overall

54 130
43

305

313 1743

5125

Firecracker LXC

gVisor

(b) /mm

211 0
0

3

61 105

468

Firecracker LXC

gVisor

(c) /arch/x86/mm

Figure 13.Memory workload coverage

4KB 8KB 16KB 64KB 256KB 1MB

mmap size

0

250

500

750

1000

T
im

e
(m

s
)

host

Firecracker

LXC gVisor

Figure 14. Total allocation time (without munmap) for 1GB

4KB 8KB 16KB 64KB 256KB 1MB

mmap size

0

200

400

600

T
im

e
(m

s
)

host

Firecracker

LXC gVisor

Figure 15. Total touch time (without munmap) for 1GB

becomes slower when we start unmapping and re-mapping,
so for workloads that do a lot of mmap() and munmap(), this
might come with an overhead. LXC heavily uses the kernel
code with very high hit rates, which makes it less isolated.
But it has high performance, better than Firecracker in some
cases.

7 File access
7.1 Coverage Analysis
Wemeasure coverage with a workload that opens, reads, and
writes to files. Figure 18a shows the overall kernel footprints
and Figure 18b shows the footprints in the /fs directory,

4KB 8KB 16KB 64KB 256KB 1MB

mmap size

0

2000

4000

6000

T
im

e
(m

s
)

host

Firecracker

LXC gVisor

Figure 16. Total allocation+unmap time for 1GB

4KB 8KB 16KB 64KB 256KB 1MB

mmap size

0

500

1000

T
im

e
(m

s
)

host

Firecracker

LXC gVisor

Figure 17. Total touch time (with munmap) for 1GB

which includes VFS code as well as the implementations
for various file systems. We observe that most lines (about
18k) are shared between gVisor and LXC; Firecracker uses
about half of these lines as well.
In our experiments, all three systems use the ext4 file

system. Figure 18c shows that gVisor and LXC exercise more
ext4 code than Firecracker. Storage in Firecracker is provided
by an emulated block device, which is backed by a file on
the host, so there are no directory operations.
gVisor and LXC containers do not directly access ext4

files; rather, they interact with overlayfs, which provides
copy-on-write and stitches together a single file-system view
from multiple ext4 directories. Figure 18d show that LXC

110

Figure 6.6 Total allocation time (without munmap) for 1GB [59]

VEE ’20, March 17, 2020, Lausanne, Switzerland Anjali, Tyler Caraza-Harter, and Michael M. Swift

8830 2562
977

2280

6039 31215

37243

Firecracker LXC

gVisor

(a) Memory workload overall

54 130
43

305

313 1743

5125

Firecracker LXC

gVisor

(b) /mm

211 0
0

3

61 105

468

Firecracker LXC

gVisor

(c) /arch/x86/mm

Figure 13.Memory workload coverage

4KB 8KB 16KB 64KB 256KB 1MB

mmap size

0

250

500

750

1000

T
im

e
(m

s
)

host

Firecracker

LXC gVisor

Figure 14. Total allocation time (without munmap) for 1GB

4KB 8KB 16KB 64KB 256KB 1MB

mmap size

0

200

400

600

T
im

e
(m

s
)

host

Firecracker

LXC gVisor

Figure 15. Total touch time (without munmap) for 1GB

becomes slower when we start unmapping and re-mapping,
so for workloads that do a lot of mmap() and munmap(), this
might come with an overhead. LXC heavily uses the kernel
code with very high hit rates, which makes it less isolated.
But it has high performance, better than Firecracker in some
cases.

7 File access
7.1 Coverage Analysis
Wemeasure coverage with a workload that opens, reads, and
writes to files. Figure 18a shows the overall kernel footprints
and Figure 18b shows the footprints in the /fs directory,

4KB 8KB 16KB 64KB 256KB 1MB

mmap size

0

2000

4000

6000

T
im

e
(m

s
)

host

Firecracker

LXC gVisor

Figure 16. Total allocation+unmap time for 1GB

4KB 8KB 16KB 64KB 256KB 1MB

mmap size

0

500

1000

T
im

e
(m

s
)

host

Firecracker

LXC gVisor

Figure 17. Total touch time (with munmap) for 1GB

which includes VFS code as well as the implementations
for various file systems. We observe that most lines (about
18k) are shared between gVisor and LXC; Firecracker uses
about half of these lines as well.
In our experiments, all three systems use the ext4 file

system. Figure 18c shows that gVisor and LXC exercise more
ext4 code than Firecracker. Storage in Firecracker is provided
by an emulated block device, which is backed by a file on
the host, so there are no directory operations.
gVisor and LXC containers do not directly access ext4

files; rather, they interact with overlayfs, which provides
copy-on-write and stitches together a single file-system view
from multiple ext4 directories. Figure 18d show that LXC

110

Figure 6.7 Total allocation+unmap time for 1GB [59]

VEE ’20, March 17, 2020, Lausanne, Switzerland Anjali, Tyler Caraza-Harter, and Michael M. Swift

8830 2562
977

2280

6039 31215

37243

Firecracker LXC

gVisor

(a) Memory workload overall

54 130
43

305

313 1743

5125

Firecracker LXC

gVisor

(b) /mm

211 0
0

3

61 105

468

Firecracker LXC

gVisor

(c) /arch/x86/mm

Figure 13.Memory workload coverage

4KB 8KB 16KB 64KB 256KB 1MB

mmap size

0

250

500

750

1000

T
im

e
(m

s
)

host

Firecracker

LXC gVisor

Figure 14. Total allocation time (without munmap) for 1GB

4KB 8KB 16KB 64KB 256KB 1MB

mmap size

0

200

400

600

T
im

e
(m

s
)

host

Firecracker

LXC gVisor

Figure 15. Total touch time (without munmap) for 1GB

becomes slower when we start unmapping and re-mapping,
so for workloads that do a lot of mmap() and munmap(), this
might come with an overhead. LXC heavily uses the kernel
code with very high hit rates, which makes it less isolated.
But it has high performance, better than Firecracker in some
cases.

7 File access
7.1 Coverage Analysis
Wemeasure coverage with a workload that opens, reads, and
writes to files. Figure 18a shows the overall kernel footprints
and Figure 18b shows the footprints in the /fs directory,

4KB 8KB 16KB 64KB 256KB 1MB

mmap size

0

2000

4000

6000

T
im

e
(m

s
)

host

Firecracker

LXC gVisor

Figure 16. Total allocation+unmap time for 1GB

4KB 8KB 16KB 64KB 256KB 1MB

mmap size

0

500

1000

T
im

e
(m

s
)

host

Firecracker

LXC gVisor

Figure 17. Total touch time (with munmap) for 1GB

which includes VFS code as well as the implementations
for various file systems. We observe that most lines (about
18k) are shared between gVisor and LXC; Firecracker uses
about half of these lines as well.
In our experiments, all three systems use the ext4 file

system. Figure 18c shows that gVisor and LXC exercise more
ext4 code than Firecracker. Storage in Firecracker is provided
by an emulated block device, which is backed by a file on
the host, so there are no directory operations.
gVisor and LXC containers do not directly access ext4

files; rather, they interact with overlayfs, which provides
copy-on-write and stitches together a single file-system view
from multiple ext4 directories. Figure 18d show that LXC

110

Figure 6.8 Total touch time (without munmap) for 1GB [59]

Used technologies 53

VEE ’20, March 17, 2020, Lausanne, Switzerland Anjali, Tyler Caraza-Harter, and Michael M. Swift

8830 2562
977

2280

6039 31215

37243

Firecracker LXC

gVisor

(a) Memory workload overall

54 130
43

305

313 1743

5125

Firecracker LXC

gVisor

(b) /mm

211 0
0

3

61 105

468

Firecracker LXC

gVisor

(c) /arch/x86/mm

Figure 13.Memory workload coverage

4KB 8KB 16KB 64KB 256KB 1MB

mmap size

0

250

500

750

1000

T
im

e
(m

s
)

host

Firecracker

LXC gVisor

Figure 14. Total allocation time (without munmap) for 1GB

4KB 8KB 16KB 64KB 256KB 1MB

mmap size

0

200

400

600

T
im

e
(m

s
)

host

Firecracker

LXC gVisor

Figure 15. Total touch time (without munmap) for 1GB

becomes slower when we start unmapping and re-mapping,
so for workloads that do a lot of mmap() and munmap(), this
might come with an overhead. LXC heavily uses the kernel
code with very high hit rates, which makes it less isolated.
But it has high performance, better than Firecracker in some
cases.

7 File access
7.1 Coverage Analysis
Wemeasure coverage with a workload that opens, reads, and
writes to files. Figure 18a shows the overall kernel footprints
and Figure 18b shows the footprints in the /fs directory,

4KB 8KB 16KB 64KB 256KB 1MB

mmap size

0

2000

4000

6000

T
im

e
(m

s
)

host

Firecracker

LXC gVisor

Figure 16. Total allocation+unmap time for 1GB

4KB 8KB 16KB 64KB 256KB 1MB

mmap size

0

500

1000
T
im

e
(m

s
)

host

Firecracker

LXC gVisor

Figure 17. Total touch time (with munmap) for 1GB

which includes VFS code as well as the implementations
for various file systems. We observe that most lines (about
18k) are shared between gVisor and LXC; Firecracker uses
about half of these lines as well.
In our experiments, all three systems use the ext4 file

system. Figure 18c shows that gVisor and LXC exercise more
ext4 code than Firecracker. Storage in Firecracker is provided
by an emulated block device, which is backed by a file on
the host, so there are no directory operations.
gVisor and LXC containers do not directly access ext4

files; rather, they interact with overlayfs, which provides
copy-on-write and stitches together a single file-system view
from multiple ext4 directories. Figure 18d show that LXC

110

Figure 6.9 Total touch time (with munmap) for 1GB [59]VEE ’20, March 17, 2020, Lausanne, Switzerland Anjali, Tyler Caraza-Harter, and Michael M. Swift

2 4 6 8 10

No. of instances

2.5

5.0

7.5

10.0

A
g
g
r.

 b
a
n
d
w

id
th

 (
G

b
p
s
)

host

Firecracker

LXC

gVisor

gVisor+host

Figure 8. Aggregate Network Bandwidth
06/12/2019 host_net.svg

file:///Users/shally/Downloads/profiling/host_net.svg 1/1

Flame GraphReset Zoom

new_sync_write

i..

all

__GI___libc_write

vfs_write

_..
copy_user_enhanced_fast_string

tcp_write_xmit

sk_

iperf3

nf_..

entry_SYSCALL_64_after_hwframe

_..

__tcp_tran..
r..

ipv4..

t..
skb

sock_write_iter

release_sock

sock_sendmsg

[unknown]

t..

__ip_loca..
ip_local_out

tcp_tsq_handle..
_copy_from_iter_full_..

__vfs_write

inet_sendmsg

ip_queue_..

tcp_sendmsg_locked

t..

tcp_sendmsg

sys_write

nf_hoo..

tcp_release_cb

do_syscall_64

Figure 9. Host network profile

06/12/2019 fc_net.svg

file:///Users/shally/Downloads/profiling/fc_net.svg 1/1

Flame GraphReset Zoom

alloc_skb_with_frags
copy_user_enhanced_fast_string

netif_receive_skb_internal

ip..

ip_forward_finish

entry_SYSCALL_64_after_hwframe

i..

__syscall

nf..neigh_..

skb_copy_datagram_from_iter

n..
s..

tun_get_user

get_page_from_f

ip_forward

copy_page_from_iter

n..

nf..

__alloc_pages_nodem

_..

ip_rcv

all

__netif_receive_skb

nf..

__dev..

alloc_pages_current

fc_vmm

ip_output

d..

sock_alloc_send_pskb

vfs_write

do_syscall_64

dev_q..

ip_finish_output

nf_h..

ip_finish_outp..

ip_rcv_finish

sys_write

netif_receive_skb

__vfs_write

ip..

ipv..

de..
sch..

new_sync_write
tun_chr_write_iter

__netif_receive_skb_core

Figure 10. Firecracker network profile

at 10 instances. This is likely due to its user space network
stack, which is not as optimized as the Linux network stack.
When using the host networking stack, gVisor is still slowest,
but achieves 3.03 Gbps. The performance of ptrace platform
as stated in the gVisor official guide [21] is faster. The gVisor
network performance for the KVM platform has increased
substantially from its release-20190304 version, nearly by
800%.

To better understand how the different platform architec-
tures use the kernel differently, we show flame graphs [28]
for the sys_write system call in Figures 9–12. Each rectangle
represents a function, and the stacks represent call stacks.
The width represents the fraction of time that function was

06/12/2019 runc_net.svg

file:///Users/shally/Downloads/profiling/runc_net.svg 1/1

Flame GraphReset Zoom

get..

nf_hook_..

ip_queue_xmit

n..

t..

tcp_xm..

i..

i..

__netif_..

__softirq..

i..

rele..

do_syscall_64

__tcp..

irq_exit

__vfs_write

__..
i..

tcp_ret..

nf_ho..

tcp_xm..

__tcp..

br_handl..

ip_..

br_nf_pr..

ip..

process_..

__tcp_push_pe..

entry_SYSCALL_64_after_hwframe

br_nf_p..

do_IRQ

i..

alloc_pa..

ip_rcv

__sk_flush_backlog

tcp_sendmsg

netif_rec..

__softirq..

tcp_sendmsg_locked
sk_page_f..

ip_finish_o..

ret_from_..

n..

n..

ip_rcv..

ip..

_..

sys_write

ip_..

ip_local_out

do_softir..

net..

tcp_ack

ip_finish_ou..

br_nf_h..

__release_sock

do_softir..

na..

iperf3

br_hand..

__allo..

tcp_write_xmit

tcp_v4_do_rcv

__GI___libc_write

net_rx_..

s

br_netif..

tcp..

net_rx_ac..

sock_sendmsg
sock_write_iter

tcp_xm..

__netif_r..

i..

ip_sa..

tcp..
tcp_rcv_established

i..

i..

__netif_r..

tc..

_copy_from_iter_full

__net..

ip_f..

new_sync_write

i..

all

vfs_write

skb_page..

__local_..

mlx..

br_pass..

mlx..
__tcp_transm..

i..

_

_.. i..
ip..

ip_output

ip..

copy_user_enhanced_fast_string

inet_sendmsg

ip_..

__re..

t..

_..

netif_rec..

ml..
i..

[unknown]

ip..

Figure 11. LXC network profile
12/02/2020 runsc_net_new.svg

file:///Users/shally/Documents/runsc_net_new.svg 1/1

Flame GraphReset Zoom

ip_rcv

[runsc]

n..

nf_hook_slow

__local_bh_enable_ip copy_user_enhanced_fast_string

entry_SYSCALL_64_after_hwframe

netif_receive_skb

dev_queue_xmit

n..

[runsc]

skb_copy_datagram_from_iter

nf..

[runsc]

alloc_skb_with_

br_pass_frame_up

[runsc]

[runsc]

do_syscall_64

__softirqentry_text_start
net_rx_action

[runsc]

br_netif_receive_skb

ipt..

[runsc]

vfs_writev

copy_page_from_iter

br_handle_frame

packet_sendmsg

_..

nf_..

sock_sendmsg

[runsc]

mlx5..

nf_con..

ip..

va..

br_nf_hook_thresh
br_nf_pre_routing_finish

netif_receive_skb_internal

do_writev

[runsc]

all

[runsc]

do_softirq_own_stack

dev..

dev_ha..

get_

sock_alloc_send

nf_hook_..

ip_finish_output

__netif_receive_skb_core

ve..

do_iter_write

do_softirq.part.17

[runsc]

i..

ip..

[runsc]

[runsc]

sys_writev

__dev_queue..

ip_rcv_finish

alloc_pag

ipv4_c..

ip_finish_output2

sock_write_iter

[runsc]

ip_sabotage_in

i..

do_iter_readv_writev

process_backlog

[runsc]

dev_queue_xmit

[runsc]

f..
ip_forward_finish

n..

__netif_receive_skb

[runsc]

ip_output

ip_forward

__netif_receive_skb

[runsc]

exe

__dev_queue_xmit

[runsc]

__netif_receive_skb_core

[runsc]

sch_direct..

[runsc]

[runsc]

br_handle_frame_finish

[runsc]

[runsc]

[runsc]

nf_hook_slow

d..
__alloc_

br_nf_pre_routing

Figure 12. gVisor network profile

on the call stack. Several patterns are visible. Compared to
host networking in Figure 9, LXC in Figure 11 has a much
taller stack, which represents the cost of traversing two net-
work interfaces to implement bridging. For gVisor, the trace
is done for the Sentry process that does a lot of processing on
the packet. Firecracker runs TCP in the guest, so it invokes
packet forwarding code at the IP layer and has a much flatter
profile.
We show the aggregate bandwidth as the number of in-

stances increases in Figure 8.With increasing instances, there
is almost no change in aggregate and average bandwidth in
most cases. For gVisor with host networking, the aggregate
increases with more instances, but peaks below the other
platforms at 10 instances.

We measured the round-trip time (RTT) by running ping
for ten seconds and taking the average RTT shown in Table 3.

108

Figure 6.10 Aggregate Network Bandwidth [59]

Blending Containers and Virtual Machines:
A Study of Firecracker and gVisor VEE ’20, March 17, 2020, Lausanne, Switzerland

8826 2041
758

3511

6829 22371

46658

Firecracker LXC

gVisor

(a) File write workload overall

486 579
49

555

568 6349

12491

Firecracker LXC

gVisor

(b) /fs

66 194
0

10

368 667

3339

Firecracker LXC

gVisor

(c) /fs/ext4

0 18
0

0

0 1703

0

Firecracker LXC

gVisor

(d) fs/overlayfs

Figure 18. File write workload coverage

4KB 16KB 64KB 256KB 1MB

Write size

0

250

500

750

1000

W
ri

te
 t

h
ro

u
g
h
p
u
t(

M
B

/s
e
c
)

host

Firecracker

Firecracker+reboot

LXC

gVisor

Figure 19.Write Throughput

4KB 16KB 64KB 256KB 1MB

Read size

0

2000

4000

6000

R
e
a
d
 t

h
ro

u
g
h
p
u
t(

M
B

/s
e
c
)

host

Firecracker(fc+host)

Firecracker+host

Firecracker

LXC

gVisor

Figure 20. Read Throughput

and gVisor have a similar overlayfs footprint, and that (as
expected) Firecracker makes no use of overlayfs.

7.2 Performance
We measure I/O throughput with a microbenchmark that
performs reads and writes of various sizes on a 1 GB file. For
writes, the test creates the file and then writes sequentially.
After each iteration, the file is flushed to disk; the cache is
cleared between each read test.

For the write throughput shown in Figure 19, we run two
variations for Firecracker. In the first case, we run the test
repeatedly on the same microVM. In the second case, we
reboot the microVM before each test. This causes Firecracker
to close and reopen the backing file for its block device,
which may account for the lower performance following a

reboot. Nonetheless, in both cases Firecracker is much faster
than the other platforms because it makes no effort to write
data back to persistent storage. As a result, it operates much
closer to the speed of memory. In contrast, gVisor and LXC
perform very similarly to native Linux; gVisor is a bit slower
for small files where the overhead of calling through the
Sentry is not masked by data movement costs.

Read throughout is shown in Figure 20. Host, LXC, gVisor
all perform similar across all read sizes, as they all must
read from storage. For Firecracker we run three variations:
plain Firecracker flushes the file cache in the microVM only;
Firecracker+host, flushes the cache only in host Linux and
not the microVM, and Firecracker(fc+host) flushes caches
in both locations. When all caches are flushed, Firecracker
behaves similarly to the other platforms, as it must fetch
data from storage. When only the cache in the microVM
is flushed, performance is closer to memory speed, but still
pays the cost of exiting the VM to copy data from the cache in
the host kernel. Finally, when just the host cache is flushed,
performance is near memory speed: the data can still be
accessed from the guest OS cache. Overall, a warm cache
within the microVM results in nearly double the throughput
as a warm cache in the host.

7.3 Insights
Firecracker only uses ext4 as a backing for a virtual disk;
this results in only a moderate footprint since this use case
only involves file-system data, not metadata. In contrast,
gVisor and LXC use overlayfs over ext4; this results in increased
footprint for overlayfs, as well as more ext4 code being exercised
(overlay file systems heavily use metadata in the underlying
file system).

8 Summary
Outcomes The preceding sections analyzed how LXC, Fire-
cracker, and gVisor make different use of kernel functionality,
and how they exercise different kernel code. Our analysis
demonstrated several aspects of these isolation platforms.

111

Figure 6.11 Write Throughput [59]

Blending Containers and Virtual Machines:
A Study of Firecracker and gVisor VEE ’20, March 17, 2020, Lausanne, Switzerland

8826 2041
758

3511

6829 22371

46658

Firecracker LXC

gVisor

(a) File write workload overall

486 579
49

555

568 6349

12491

Firecracker LXC

gVisor

(b) /fs

66 194
0

10

368 667

3339

Firecracker LXC

gVisor

(c) /fs/ext4

0 18
0

0

0 1703

0

Firecracker LXC

gVisor

(d) fs/overlayfs

Figure 18. File write workload coverage

4KB 16KB 64KB 256KB 1MB

Write size

0

250

500

750

1000

W
ri

te
 t

h
ro

u
g
h
p
u
t(

M
B

/s
e
c
)

host

Firecracker

Firecracker+reboot

LXC

gVisor

Figure 19.Write Throughput

4KB 16KB 64KB 256KB 1MB

Read size

0

2000

4000

6000

R
e
a
d
 t

h
ro

u
g
h
p
u
t(

M
B

/s
e
c
)

host

Firecracker(fc+host)

Firecracker+host

Firecracker

LXC

gVisor

Figure 20. Read Throughput

and gVisor have a similar overlayfs footprint, and that (as
expected) Firecracker makes no use of overlayfs.

7.2 Performance
We measure I/O throughput with a microbenchmark that
performs reads and writes of various sizes on a 1 GB file. For
writes, the test creates the file and then writes sequentially.
After each iteration, the file is flushed to disk; the cache is
cleared between each read test.

For the write throughput shown in Figure 19, we run two
variations for Firecracker. In the first case, we run the test
repeatedly on the same microVM. In the second case, we
reboot the microVM before each test. This causes Firecracker
to close and reopen the backing file for its block device,
which may account for the lower performance following a

reboot. Nonetheless, in both cases Firecracker is much faster
than the other platforms because it makes no effort to write
data back to persistent storage. As a result, it operates much
closer to the speed of memory. In contrast, gVisor and LXC
perform very similarly to native Linux; gVisor is a bit slower
for small files where the overhead of calling through the
Sentry is not masked by data movement costs.

Read throughout is shown in Figure 20. Host, LXC, gVisor
all perform similar across all read sizes, as they all must
read from storage. For Firecracker we run three variations:
plain Firecracker flushes the file cache in the microVM only;
Firecracker+host, flushes the cache only in host Linux and
not the microVM, and Firecracker(fc+host) flushes caches
in both locations. When all caches are flushed, Firecracker
behaves similarly to the other platforms, as it must fetch
data from storage. When only the cache in the microVM
is flushed, performance is closer to memory speed, but still
pays the cost of exiting the VM to copy data from the cache in
the host kernel. Finally, when just the host cache is flushed,
performance is near memory speed: the data can still be
accessed from the guest OS cache. Overall, a warm cache
within the microVM results in nearly double the throughput
as a warm cache in the host.

7.3 Insights
Firecracker only uses ext4 as a backing for a virtual disk;
this results in only a moderate footprint since this use case
only involves file-system data, not metadata. In contrast,
gVisor and LXC use overlayfs over ext4; this results in increased
footprint for overlayfs, as well as more ext4 code being exercised
(overlay file systems heavily use metadata in the underlying
file system).

8 Summary
Outcomes The preceding sections analyzed how LXC, Fire-
cracker, and gVisor make different use of kernel functionality,
and how they exercise different kernel code. Our analysis
demonstrated several aspects of these isolation platforms.

111

Figure 6.12 Read Throughput [59]

Orchestration 54

of OS functions in the Linux kernel, and Firecracker relies on a much-reduced
set of kernel functionality for performance.

All things considered, the firecracker did better in terms of kernel code uti-
lization by using the smallest amount of host kernel in all categories except the
virtualization and surprisingly enough the firecracker did better even in terms
of performance. It had lower allocation time and higher I/O throughput. On
the other hand, gVisor won by a small margin in the CPU workload category.
Nevertheless, the differences were so small that they can be disregarded.

The decision of whether to use Firecracker or gVisor was a tough one.
Based on the outcomes of this study together with the facts, that the Fire-
cracker uses a traditional hypervisor that was tested by time and the Fire-
cracker has a much smaller and simpler design. It was chosen as the sandboxing
technology that will be used in the implementation. [59]

6.2.7.4 Development

To make development as smooth and fast as possible for the first iteration of the
pipeline the firecracker is not used. As containerization is used in other projects
the infrastructure and technologies like Gitlab CI were already established. For
this reason, the first iteration uses Podman containers as its sandbox of choice
because of its capability to run as non-root. When paired with gVisor it also
offers a strong isolation which could be used on its own.

6.2.8 Docker
Even though gVisor and containerization were decided not to be used. The
implementation still requires orchestrating its services, like PostgreSQL and
MinIO. For this, the containerization is the perfect tool. Docker will be used
in the project as it is the most prevalent container engine today.

6.3 Orchestration

Orchestration is implemented as a binary rust crate. It is the main entry point
to the system and as a result, also contains end-to-end tests. As proposed in
the design it can be split into two smaller parts: Customer facing API and
Evaluator.

6.3.1 Customer facing API
This part is split into three modules: application, version, version_build.
Each provides API for their respective use case. From these three, the version
module is probably the most interesting as it handles the creation of version
build pictured in the sequence diagram in figure 5.5.

Orchestration 55

All handler functions use a shared state APIState, which contains ser-
vices of the persistent storage and the BuildClient that sends requests to the
compilation component. Implementation wise the create_version function
roughly corresponds to the listing 6.1.

The data is received in a multipart format, which has to be parsed and
converted to a more practical structure for implementation. Then a version
build is created in permanent storage, with information supplied in the request.
After the build is created source code is sent to the compilation service over
HTTP and the version build entity is returned to the create_version caller.

Services used in the code examples are implementing the tower::Service
trait, which is a simplified interface that makes it easy to write network appli-
cations in a modular and reusable way, decoupled from the underlying pro-
tocol. [60] It notably specifies two methods: poll_ready and call. The
poll_ready must be used to determine whether the service can process a
request. It is used to handle backpressure when a service is not ready for the
next request. The call is used to call the service and use its functionality. The
ready() method in the example is a simplified way how to call the poll_ready
method.

6.3.2 Evaluator
The evaluator has one module build_operations, which contains three han-
dlers: build_success, build_fail and build_crash. The first two were
discussed in the design chapter of this thesis however the build_crash wasn’t.

It is used as a way how to note that the build failed due to internal error.
All information in this type of build can be wrong and should be treated as
such. The difference between a failed build and a crashed build is that a
failed build failed because of the compilation and always has output logs from
the said compilation. The crashed build doesn’t have to have any information.
Listing 6.2 shows a rough example of the build_fail handler.

First, the data has to be parsed from the multipart format and then the
VersionBuildService is used to update version status to failed. Again, the
tower::Service trait is used to make the code composable and reusable.

Orchestration 56

pub async fn create_version(
State(state): State<Arc<APIState>>,
multipart: Multipart,

) -> Result<Json<VersionBuild>, StatusCode> {
let mut version_build_service = state.version_build_service

.clone();

let new_version = multipart_to_new_version(multipart)
.await?;

let version_build = NewVersionBuild {
version_information: new_version.version_information,

};

let version_build_created = version_build_service
.ready()
.await
.call(VersionBuildRequest::Create(version_build))
.await;

let source_code = new_version.source_code;

// Start of the build pipeline
let build_request = BuildRequest {

id: version_build.id,
language: version_build.application_language.clone(),
source_code,

};

let mut build_service = state.build_service.clone();
let build_task = build_service

.ready()

.await

.call(build_request);

let build_task_submit_result = build_task.await;

Ok(Json(version_build))
}

Code listing 6.1 Create version handler

Orchestration 57

async fn build_fail_exec(
state: Arc<WasmithState>,
version_id: Uuid,
multipart_data: Multipart,

) -> Result<StatusCode, StatusCode> {
let logs = multipart_to_logs(multipart_data).await?;

let mut version_build_service = state.version_build_service
.clone();

let version_build_request = VersionBuildRequest::BuildFail(
version_id, logs);

let version_build_set_as_failed = version_build_service
.ready().await.call(version_build_request).await;

Ok(StatusCode::OK)}

Code listing 6.2 Function handling build fail operation

6.3.3 End-to-end tests
The end-to-end tests are for determining whether all components work together
and provide a build pipeline that was designed. The tests are composed of the
following steps:
1. Docker containers with PostgreSQL, MinIO, and Nginx are started, using

docker compose.

2. Prepared Rust source code is archived.

3. The two servers, the user-facing orchestrator and private compilator, are
started.

4. The archived source code is sent to the orchestrator for processing.

5. Every 10 seconds the orchestrator is polled to check whether a new version
is available. If the version is not available in 30 seconds the test fails.

6. Once a new version is available, the Wasm binary is uploaded to nginx and
activated

7. A request is sent to the resource where the new application should be
active.

8. The response is checked to determine whether the application is working
correctly. The application can, for example, set a new header, which is not
present when the application is not running.

Compilation 58

The tests are also part of the GitLab CI/CD solution which is used for the
versioning of the build pipeline.

6.4 Compilation

The compilation component is separated into its own binary crate. It contains
one handler the builder which controls the build requests. It, similar to the
orchestrator, uses a shared state to contain configuration and all necessary
information.

As proposed in the design, the handler uses a BuildService which works
regardless of the communication model and does everything necessary to com-
pile the code. Build service is also a tower::Service which accepts a request
on its input and as its output returns compiled code with logs. The actual
BuildRequest and response can be seen in the listing 6.3:

pub struct BuildRequest {
pub id: Uuid,
pub language: ApplicationLanguage,
pub source_code: Vec<u8>,

}

pub struct SourceCode(pub Vec<u8>);
pub struct WasmBinary(pub Vec<u8>);
pub struct Logs(pub Vec<u8>);

pub enum BuildServiceResult {
Success(SourceCode, WasmBinary, Logs),
Fail(Logs),
Crash,

}

Code listing 6.3 BuildService request and result

Another interesting part is the implementation of the sandbox. Because the
sandbox has to be replaceable, a trait defining all its operations was created.
The trait is in the next code listing 6.4:

The trait is split into three: UnitializedSandbox and PreparedSandbox
and Sandbox. This is because the implementation wanted to separate a sand-
box that is ready to execute a command and a sandbox that doesn’t have
everything prepared.

These traits are implemented by the PodmanContainer which uses a type
state pattern with two states: Inactive and Running. In the case of pod-
man, the Inactive state corresponds to an inactive container. The inactive
container can be used to copy data to and from but cannot execute any com-

Compilation 59

#[trait_variant::make(Sandbox: Send)]
pub trait LocalSandbox {

type Id: Debug + Display + Eq + Clone + Send + Sync;
type RunError: Error + Send + Sync;

fn get_id(&self) -> &Self::Id;

async fn copy_to(
&mut self,
host_dir: &Path,
sandbox_dir: &Path

) -> Result<(), Self::RunError>;

async fn copy_from(
&mut self,
sandbox_file: &Path,
host_target: &Path,

) -> Result<(), Self::RunError>;
}

#[trait_variant::make(UnitializedSandbox: Send)]
pub trait LocalUnitializedSandbox {

type Id: Debug + Display + Eq + Clone + Send + Sync;
type RunError: Error + Send + Sync;

type AfterInit: PreparedSandbox<RunError = Self::RunError>
+ Sandbox<Id = Self::Id, RunError = Self::RunError>;

async fn init(self) -> Result<Self::AfterInit, Self::RunError>;
}

#[trait_variant::make(PreparedSandbox: Send)]
pub trait LocalPreparedSandbox {

type RunError: Error + Send + Sync;

async fn run_command(
&mut self,
command: &str

) -> Result<Output, Self::RunError>;
}

Code listing 6.4 Sandbox traits

Storage 60

mand. The init method is implemented by starting the container and keeping
it running. This transforms the container into Running state and can execute
commands.

All operations and sandbox preparations are done in the build_pipeline
module. The build_pipeline contains all parts necessary to compile an appli-
cation in a sandbox not depending on the sandbox’s concrete implementation.
The run method of the pipeline is roughly pictured in the code listing 6.5:

The pipeline is divided into stages based on the proposed design, which
outlines the steps necessary to compile source code in the sandbox. There
are three stages: Copy to the sandbox, run compilation, and copy from the
sandbox.

6.4.1 Sandbox provider
Before anything is done in a sandbox, the sandbox has to be created first.
That is done by the podman_provider module, which maintains and pro-
vides the podman container sandboxes. The podman_provider has method
get_sandbox which finds an available sandbox, returns it, and issues the cre-
ation of a new sandbox.

The podman_provider contains a PodmanImage for every possible source
code language (currently only Rust) which it uses to instantiate containers for
the language. The get_sandbox method is roughly outlined in the code listing
6.6:

The creation of the new container is done with every get_sandbox call
which is not ideal. Because it effectively destroys the advantage of having
a buffer of prepared containers and every request creates a new container
regardless. This will be later replaced by an async call which will create a new
container asynchronously.

6.5 Storage

The storage is a library crate, providing services for working with databases.
The crate is divided into four modules: entity, repository, service, and
testing. The odd one out of these four is the testing module. It contains
mock implementations of repositories, so they can be used inside unit tests.

The crate also contains a migration folder, that contains SQL scripts that
when used will create tables and enums necessary to use the database. The
migration folder is used by the sqlx database library during build. The concrete
use of the migration functionality is in the rust build script in listing 6.7.

It by default locates all scripts inside the migration folder of the project.
The files can also be located in another folder, but it would have to be specified
explicitly in the sqlx::migrate!(migration_folder: String) call.

Storage 61

6.5.1 Shared definitions
The storage can be logically split into two sections metadata and objects stor-
age. Each has its own entities and repositories, however some definitions are
common to both. This section will look into them and provide details about
the implementation.

The first element that comes into mind is the Entity trait. The entity
trait is independent on the used storage technology and defines a unit of stor-
age for the application. The trait is very simple. it has only one method
get_id(&self) -> &Self::Id which returns id of the entity. The full defini-
tion is in listing 6.8.

Another common element is the Repository trait. The trait defines oper-
ations create, read, delete, the update operation is defined in separate trait
the UpdateRepository. In hindsight, this design choice is not ideal, reposito-
ries should not share almost any functionality, except some very general ones,
like read_all. Concrete functions should be defined ideally in entity-specific
repositories like ApplicationRepository or VersionRepository. The actual
definition of Repository is in listing 6.9.

6.5.2 Metadata
The metadata section of the storage contains the most storage functionality.
It contains entities: Application, Version, VersionBuild with two enums:
ApplicationLanguage and ApplicationPhase. These entities are indepen-
dent on the used database technology and should remain mostly the same if
different database technology is used. However, some things would need to
change.

Sqlx offers two possible ways how to do a SQL query: query function and
query! macro. These functions also have versions query_as and query_as!
that automatically convert database results into the Rust struct. In order for
the query_as function to work entities have to derive or implement FromRow
trait, which defines how the struct is converted to the database entity. How-
ever, the query_as! macro does not and converts entities automatically. Be-
cause implementation chose to use the macro version and some databases don’t
always support the same data types. When a database or database library
would change, there would be a need to also change data types that are not
supported in the used technology. Nevertheless, that is not a big problem and
it could be solved by having explicit conversion functions. An example of an
entity is in listing 6.10.

Besides entities, the metadata section also contains repositories. All repos-
itories are implemented with the use of sqlx library. The listing 6.11 shows the
implementation of the version build read operation. It uses query_as! macro
to automatically convert to VersionBuild.

Storage 62

6.5.3 Object storage
The object storage contains only one entity and one repository. The entity
is in listing 6.12. The entity contains only data and ID. The repository is
implemented by using AWS S3 SDK for Rust. The create operation of the
repository is in listing 6.13 and shows how the S3 client is used.

The configuration of the object storage is provided at the instantiation of
repositories, this includes access key, access secret, region, and bucket. All
data is stored inside this one bucket.

Storage 63

pub async fn run<S: Sandbox + UnitializedSandbox>(&mut self,
source_code_location: &str,
sandbox_sdk_location: &str,
sandbox_source_code_location: &str,
mut sandbox: S,

) -> PipelineResult {
// Copy base dir into the sandbox
let copy_result = sandbox.copy_to(

&self.base_dir,
Path::new(sandbox_source_code_location)).await

.map_err(|_| Crash)?;
let output_file_name = self.get_wasm_binary_name();
let sandbox_output_location = format!(

"{sandbox_source_code_location}/{output_file_name}");
// Init sandbox
let mut sandbox = match sandbox.init().await

.map_err(|_| Crash)?;

// Run the build in sandbox
let Ok((pipeline_continue, logs)) = run_build_stage(

&mut sandbox, &self.source_language,
sandbox_sdk_location, sandbox_source_code_location,
&archive_name, &sandbox_output_location,

).await else { return Crash; };

if !pipeline_continue {
return Fail(logs);

}
// Copy sandbox output to the output folder
let pipeline_continue = copy_to_output_stage(

&self.id, &mut sandbox,
&self.output_dir, &output_file_name,
&sandbox_output_location,

)
.await;
if !pipeline_continue {

return Fail(logs);
}
finish(&self.output_dir, &output_file_name, logs).await

}
}

Code listing 6.5 Build pipeline

Storage 64

pub async fn get_sandbox(
&self,
source_language: &ApplicationLanguage,

) -> Result<PodmanContainer, PodmanProviderError> {
let available_containers = self.available_containers

.get(source_language);

// Pop a container
let container = available_containers.pop();

let image = self.build_images.get(source_language);

// Create a new container
let new_container = image.create_container().await;
available_containers.push(new_container);

// Return the container
Ok(container),

}

Code listing 6.6 Get sandbox method of sandbox provider

#[tokio::main]
async fn main() {

let db_url = env!("DATABASE_URL");
let db_pool = PgPool::connect(db_url)

.await

.expect("Could not connect to db.");

sqlx::migrate!()
.run(&db_pool)
.await
.expect("Could not run migrations.");

}

Code listing 6.7 Storage library build script

pub trait Entity: Send + Sync {
type Id: Display + Send + Sync;

fn get_id(&self) -> &Self::Id;
}

Code listing 6.8 Entity trait

Storage 65

pub trait Repository<T: Entity>: Send + Sync {
type CreateError: Error + Send + Sync;
type ReadError: Error + Send + Sync;
type DeleteError: Error + Send + Sync;

fn create(
&self,
entity: T,

) -> impl std::future::Future<
Output = Result<T::Id, Self::CreateError>>
+ Send;

fn read(
&self,
id: &T::Id,

) -> impl std::future::Future<
Output = Result<Option<T>, Self::ReadError>>
+ Send;

fn delete(
&self,
id: &T::Id,

) -> impl std::future::Future<
Output = Result<(), Self::DeleteError>>
+ Send;

}

Code listing 6.9 The definition of the Repository trait

Storage 66

#[derive(Eq, PartialEq, Debug, Clone, Serialize, Deserialize)]
pub struct Application {

pub id: Uuid,
pub owner_id: i64,
pub name: String,
pub created: DateTime<Utc>,
pub notes: String,

}

impl Entity for Application {
type Id = Uuid;

fn get_id(&self) -> &Self::Id {
&self.id

}
}

Code listing 6.10 The entity for application

Storage 67

async fn read(
&self,
id: &<VersionBuild as Entity>::Id,

) -> Result<Option<VersionBuild>, Self::ReadError> {
let found = sqlx::query_as!(

VersionBuild,
r#"
SELECT

id,
application_id,
version,
application_language as "application_language: _",
conf,
created,
notes,
phases,
state as "state: _",
path_to_logs

FROM version_build
WHERE id = $1
"#,
id

)
.fetch_one(&self.db_pool)
.await;

match found {
Ok(value) => Ok(Some(value)),
Err(Error::RowNotFound) => Ok(None),
Err(err) => Err(err),

}
}

Code listing 6.11 The version build read operation using sqlx

Storage 68

#[derive(Eq, PartialEq, Debug, Clone)]
pub struct ApplicationData {

pub id: ApplicationDataId,
pub data: Vec<u8>,

}

pub type ApplicationDataId = String;

impl Entity for ApplicationData {
type Id = ApplicationDataId;

fn get_id(&self) -> &Self::Id {
&self.id

}
}

Code listing 6.12 The entity representing data

async fn create(
&self,
entity: ApplicationData,

) -> Result<<ApplicationData as Entity>::Id, Self::CreateError>
{

let key = entity.id;
let body = ByteStream::from(entity.data);

self.s3_client
.put_object()
.bucket(&self.bucket)
.key(&key)
.body(body)
.send()
.await?;

Ok(key)
}

Code listing 6.13 The create operation using S3 SDK

Chapter 7

Build optimizations

This brief chapter will go into detail on how the compilation can be made
better to make resulting Wasm binaries startup and execute faster, limiting
cold start problems for edge computing applications.

7.1 Problem definition

Before the Wasm binary executes, three steps must be taken: Compilation,
instantiation, and initialization. Each step takes some time. Figure 7.1 shows
how these steps are distributed through a developer, build pipeline, and startup
time.

Compilation – Most of this time is taken by compilation. Compilation here
does not mean compilation from source code to the Wasm binary but from
the Wasm binary to the concrete executable. Because of this, runtimes try
to optimize this step the most. [61]

Instantiation – The instantiation is the process that takes a static Wasm
module and makes it a dynamic instance with its state. The instanti-
ation notably allocates and initializes linear memory and tables. The
memory can be allocated either on-demand or via pooling with the use

Compile
to Wasm

Compile
to ASM

Instantiate Initialize

Build
pipeline

Startup
time

Developer
time

Develop

Figure 7.1 Distribution of steps required to run Wasm application

69

Solutions 70

of userfaultfd. Allocating memory on demand with mmap is slow but
simple. The pooling method, on the other hand, is faster. It preallocates
memory into a pool and allows a program to initialize memory pages lazily
when page fault occurs. [61, 62]

Initialization – The last step, the initialization, is a one-time code setup,
which has to be done before the code is executed. It is the responsibility
of the developer that the initialization runs. The initialization can be done
in three ways: Always at the start of the program, Lazily when initialized
data is needed, or ahead-of-time (A). The ahead-of-time is the best option
to reduce time spent on execution. [61]

7.2 Solutions

All mentioned steps introduce an overhead that results in users experiencing
higher latency when initializing Wasm applications. One by one, the thesis
will go into each step and discuss what can be done to reduce the latency.

7.2.1 Compilation
As already mentioned, compilation takes up the most time. Although Wasm
could be theoretically interpreted, wasmtime, for example, does not support
the interpretation of wasm code. Other than that, interpreted code would be
much slower than code compiled into native binary. [62]

To achieve the best compilation time possible, it could be done ahead of
time (AOT). This moves the compilation from the startup time into the build
pipeline time. This could be done quite easily because, for example, wasmtime
offers AOT compilation. However, having a separate build pipeline with a
different CPU architecture from the real machine executing the code creates a
problem. This, however, could be solved by simply compiling the code for the
target architecture or running inside a VM. [61]

7.2.2 Instantiation
Instantiation offers the least amount of pre-computation that can be moved
into the build pipeline time. But one potential for speedup is the pool alloca-
tion mentioned before. Initializing memory lazily increases cold start times by
moving the initialization into the run time, which could be better depending
on the application. However, some applications might require running fast,
and for them, the lazy initialization would introduce too much overhead. [62]

Solutions 71

Compile
to Wasm

AOT
compilation

to ASM
Pre-initialize Instantiate

Build
pipeline

Startup
time

Developer
time

Develop

Figure 7.2 Distribution of steps required to run Wasm application after optimiza-
tion

7.2.3 Initialization
Initialization is another step, although not always possible, which can be done
ahead of time. For this purpose, a tool called Wizer has been created. The
Wizer initializes the code ahead of time and saves a snapshot of the initialized
state to a new Wasm binary. [61]

The pre-initialization with Wizer cannot use host-imported functions with
one exception. The Wasi is optionally allowed. However, the developer must
note that the pre-initialization can be done on completely different machines, so
for example, files do not have to be present when created during initialization,
similar to the AOT compilation. [61]

By applying the Wizer together with other optimization techniques, the
time distribution of the application’s startup would look like in the figure 7.2.
Currently, the build pipeline does not implement any build optimizations but
will in the future.

Chapter 8

Future work

In this chapter, the thesis will go through some aspects of the work that will
be worked on in the future.

8.1 Build optimization implementation

The most notable work that will be done in the future is the implementation
of build optimization techniques. All of the mentioned techniques can be used
to make cold starts as fast as possible. The optimization techniques should
also be configurable, and the user should be able to select whether they want
to enable or disable the optimization.

8.2 Test bed

With the implementation of the build pipeline, users can submit source code
for compilation, which can later be uploaded to Nginx servers. However, users
cannot currently efficiently test their implementation on live servers. Future
pipeline versions should ensure the users can test their application on some
test server so they can debug the code before it goes into production.

8.3 Build client

The build pipeline offers REST API, which the user can interact with. How-
ever, this is not always the best possible way of interacting and some users
might want to use a prepared client through which they can work with the
pipeline more easily. The client could be a CLI application offering commands
that would translate into the calls.

72

Build client 73

Another solution could be to create a web UI that offers the same function-
ality as the CLI client but through a web application. This would provide a
nice user interface where users could see all applications created with all their
versions and active builds. They could also deploy applications to selected
servers with one click.

Summary

This thesis had multiple goals. The first was to analyze edge computing with
WebAssembly and study how they can be used together. Second, to design
and implement a compilation pipeline, which compiles source code into Wasm
binary. There was also an optional goal to try multiple build optimization
techniques to reduce cold start times of Wasm applications running on the
edge.

All required goals were completed successfully. While writing the thesis,
much understanding was gained about edge computing and WebAssembly,
together with information about executing untrusted code with sandboxing.

The thesis analyzed how WebAssembly can safely power edge computing
with its inherently safe runtimes. Furthermore, found a new emerging standard
for using Wasm as a proxy. Based on this analysis, the thesis designed a
solution for how a source code can be compiled to Wasm to be later executed
on edge servers.

The design was then implemented in a Rust programming language, using
other technologies that provided the compilation with a sandbox and other
necessary infrastructure. The implementation was tested to ensure it worked
as expected and the compiled Wasm binary could be deployed to edge servers.

The final optional goal to try different techniques to limit cold start times
of the Wasm binary was completed only partially. The thesis explored ways
to lower the time necessary to load Wasm plugins. However, they were not
added to the final implementation.

74

Appendix A

Proxy-wasm

A.1 Function and callback categories

Integration – Definitions for initialization.

Memory management – Definitions for memory allocation.

Context lifecycle – Definitions for operations on context lifecycle events.

Configuration – Definitions for operations on Wasm VM configuration
event.

Logging – Definitions for logging.

Clocks – Definitions for retrieving time.

Timers – Definitions for setting a timer that executes a function every timer
tick.

Randomness – Definitions for generating random data.

Environment variables – Definitions for retrieving environment variables
from the host.

Buffers – Definitions for reading and writing to special buffers. Access
to these buffers using functions is restricted. Only specific callbacks can
access specific buffers. There are nine buffers:

HTTP_REQUEST_BODY

HTTP_RESPONSE_BODY

DOWNSTREAM_DATA

UPSTREAM_DATA

HTTP_CALL_RESPONSE_BODY

75

Function and callback categories 76

GRPC_CALL_MESSAGE

VM_CONFIGURATION

PLUGIN_CONFIGURATION

FOREIGN_FUNCTION_ARGUMENTS

HTTP Fields – Definitions for reading and writing to HTTP fields such as
request/response headers, request/response trailers, and gRPC
initial/trailing metadata. Again, as seen in the Buffers section, only se-
lected fields can be accessed from selected callbacks.

Common stream operations – Definitions for working with streams. Stream
types the definitions can work with are HTTP_REQUEST, HTTP_RESPONSE,
DOWNSTREAM, UPSTREAM. Downstream is the connection between the client
and proxy, and upstream is the connection between the proxy and the
backend.

TCP/UDP/QUIC streams – Definitions for operations on connection events

HTTP – Callbacks that are executed on data receive events and functions
that send HTTP responses.

HTTP calls – Callbacks that are executed on data receive events and func-
tions that send HTTP requests.

gRPC calls – Definitions for working with gRPC.

Shared Key-Value Store – Definitions for working with a shared key-value
store.

Shared queues – Definitions for working with shared queues.

Metrics – Definitions for working with metrics.

Properties – Definitions for working with properties. Properties are cur-
rently implementation-dependent and not stable.

Foreign function interface (FFI) – Callbacks that execute when a foreign
function is called and functions that call a foreign function.

Unimplemented WASI functions – Definitions for unimplemented WASI
functions that are expected to be present when the Wasm module is com-
piled for the wasm32-wasi target.

All function and callback categories are documented on proxy-wasm github [29].

Types 77

A.2 Types

proxy_log_level_t – The proxy’s log level.

proxy_status_t – The return type of all functions.

proxy_action_t – The type returned in callbacks for proxy events. It can
be either CONTINUE or PAUSE, and it signals whether the caller should stop
processing whatever it does during the callback.

proxy_buffer_type_t – All possible buffer types. All possible values in
this type are described in the previous section 3.5.1 subsection Buffers.

proxy_header_map_type_t – All possible types usable in functions that
are in section HTTP field.

proxy_peer_type_t – Type of peer. It can be either LOCAL, REMOTE or
UNKNOWN. It is used in the callbacks executed on closing
downstream/upstream connection events.

proxy_stream_type_t – The stream type that must be specified in func-
tions for closing or continuing stream.

proxy_metric_type_t – Type of metric used in functions defining metrics.

wasi_errno_t – The return type of functions defined by Wasi.

wasi_fd_id_t – Type of wasi file descriptor. It can be either STDOUT or
STDERR.

wasi_clock_id_t – Type of wasi clock. It can be either REALTIME or
MONOTONIC.

All types are documented on proxy-wasm github [29].

Appendix B

User facing API

B.1 Application

B.1.1 Create
This endpoint creates a new application without any version. Application is
used for grouping versions.

Method : POST

Endpoint : /application

Request body : JSON

{
owner_id: i64,
name: String,
notes: String

}

Response :

Success: Status code 201 with JSON body of created entity.
Fail: Status code according to the failure type.

78

Application 79

B.1.2 Read
This endpoint returns an application based on id.

Method : GET

Endpoint : /application/<application_id>

Response :

Success: JSON of application entity.
Fail: Status code according to the failure type.

B.1.3 Update
Update application information.

Method : PATCH

Endpoint : /application/<application_id>

Request body : JSON

{
name: String,
notes: String

}

Response :

Success: JSON of the updated entity.
Fail: Status code according to the failure type.

B.1.4 Delete
Delete application based on id with all its versions and version builds

Method : DELETE

Endpoint : /application/<application_id>

Response :

Success: Status code 200.
Fail: Status code according to the failure type.

Version 80

B.2 Version

B.2.1 Create
Create new version by submitting source code for build.

Method : POST

Endpoint : /version

Request body : JSON

{
plugin_id: Uuid,
version: Semantic version,
plugin_language: ApplicationLanguage,
phases: Vec<ApplicationPhase>,
conf: Option<String>,
notes: Option<String>,
source_code: Bytes

}

Response :

Success: Status code 201 with JSON of created version build.
Fail: Status code according to the failure type.

Version 81

B.2.2 Read
Read version based on id.

Method : GET

Endpoint : /version/<version_id>

Response :

Success: JSON of version entity.
Fail: Status code according to the failure type.

B.2.3 Update
Update version information.

Method : PATCH

Endpoint : /version/<version_id>

Request body : JSON

{
version: Semantic version,
phases: Vec<ApplicationPhase>,
conf: Option<String>,
notes: Option<String>,

}

Response :

Success: JSON of the updated entity.
Fail: Status code according to the failure type.

B.2.4 Delete
Delete version based on id.

Method : DELETE

Endpoint : /version/<version_id>

Response :

Success: Status code 200.
Fail: Status code according to the failure type.

Version build 82

B.3 Version build

B.3.1 Read all
Read all version builds.

Method : GET

Endpoint : /version_build

Response :

Success: List of all version build entities.
Fail: Status code according to the failure type.

Appendix C

Evaluator API

C.1 Build success

This endpoint is called when compilation is successfull.

Method : POST

Endpoint : /build_success/<version_id>

Request body : JSON

{
source_code: Bytes,
binary: Bytes,
logs: Bytes

}

Response :

Success: Status code 200.
Fail: Status code according to the failure type.

C.2 Build fail

This endpoint is called when compilation has failed.

Method : POST

Endpoint : /build_fail/<version_id>

Request body : JSON

83

Build crash 84

{
source_code: Bytes,
logs: Bytes

}

Response :

Success: Status code 200.
Fail: Status code according to the failure type.

C.3 Build crash

This endpoint is called when compilation has crashed for any reason

Method : POST

Endpoint : /build_crash/<version_id>

Request body : JSON

{
source_code: Bytes,
logs: Option<Bytes>

}

Response :

Success: Status code 200.
Fail: Status code according to the failure type.

Bibliography

1. SHI, Weisong; PALLIS, George; XU, Zhiwei. Edge Computing [Scanning
the Issue]. Proceedings of the IEEE. 2019, vol. 107, no. 8, pp. 1474–1481.
isbn 0018-9219.

2. HONG, Cheol-Ho; VARGHESE, Blesson. Resource Management in
Fog/Edge Computing: A Survey on Architectures, Infrastructure, and
Algorithms. ACM Comput. Surv. 2019, vol. 52, no. 5. issn 0360-0300.
Available from doi: 10.1145/3326066.

3. GÖKÇAY, Erhan. A new multi-target compiler architecture for edge-
devices and cloud management. Gazi University Journal of Science [on-
line]. 2022, vol. 35, no. 2, pp. 464–483 [visited on 2024-02-16].

4. MAARTEN VAN STEEN, Andrew S. Tanenbaum. Distributed systems.
Published By Maarten Van Steen, 2020. isbn 9781543057386.

5. TAKADA, Mikito. Distributed systems for fun and profit [online]. 2024.
[visited on 2023-11-19]. Available from: https : / / book . mixu . net /
distsys/.

6. MATSUDAIRA, Kate. The Architecture of Open Source Applications
(Volume 2) Scalable Web Architecture and Distributed Systems [online].
2024. [visited on 2024-02-22]. Available from: https://aosabook.org/
en/v2/distsys.html.

7. MUSTAFEE, Navonil. Exploiting grid computing, desktop grids and cloud
computing for e-science. Transforming Government: People, Process and
Policy. 2010, vol. 4, no. 4, pp. 288–298. Available from doi: https://
doi.org/10.1108/17506161011081291.

8. MELL, Peter M; GRANCE, Timothy. The NIST definition of cloud com-
puting. 2011. Available from doi: https://doi.org/10.6028/nist.sp.
800-145.

85

https://doi.org/10.1145/3326066
https://book.mixu.net/distsys/
https://book.mixu.net/distsys/
https://aosabook.org/en/v2/distsys.html
https://aosabook.org/en/v2/distsys.html
https://doi.org/https://doi.org/10.1108/17506161011081291
https://doi.org/https://doi.org/10.1108/17506161011081291
https://doi.org/https://doi.org/10.6028/nist.sp.800-145
https://doi.org/https://doi.org/10.6028/nist.sp.800-145

Bibliography 86

9. BUYYA, Rajkumar; BROBERG, James; GOSCINSKI, Andrzej. Cloud
computing: principles and paradigms. Vol. 81. 1st ed. Newark: WILEY,
2010;2011; isbn 9780470887998.

10. ARMBRUST, Michael; FOX, Armando; GRIFFITH, Rean; JOSEPH,
Anthony D.; KATZ, Randy H.; KONWINSKI, Andrew; LEE, Gunho;
PATTERSON, David A.; RABKIN, Ariel; STOICA, Ion; ZAHARIA,
Matei. Above the Clouds: A Berkeley View of Cloud Computing. 2009-
02. Tech. rep., UCB/EECS-2009-28. EECS Department, University of
California, Berkeley. Available also from: http://www2.eecs.berkeley.
edu/Pubs/TechRpts/2009/EECS-2009-28.html.

11. What is the network edge? [online]. 2022. [visited on 2023-12-22]. Avail-
able from: https://www.fortinet.com/resources/cyberglossary/
network-edge#:˜:text=The%20network%20edge%20the%20connection,
administrators%20must%20provide%20solutions%20for..

12. MARCHAM, Alex. Understanding Infrastructure Edge Computing: Con-
cepts, Technologies, and Considerations. 1st ed. Newark: John Wiley &
Sons, Incorporated, 2021. isbn 1119763231;9781119763239;

13. What is NGINX [online]. 2023-06. [visited on 2023-03-10]. Available from:
https://www.nginx.com/resources/glossary/nginx/.

14. WEBASSEMBLY COMMUNITY GROUP. WebAssembly Specification
Release 2.0 (Draft 2024-03-05 [online]. Ed. by ROSSBERG, Andreas.
2024. [visited on 2024-03-05]. Available from: https://webassembly.
github.io/spec/core/index.html.

15. Understanding WebAssembly text format [online]. 2024-04. [visited on
2024-04-27]. Available from: https://developer.mozilla.org/en-
US/docs/WebAssembly/Understanding_the_text_format.

16. DORONIN, Oleg; DERGUN, Karina; LOGINOV, Ivan; KORENKOV,
Iurii; DERGACHEV, Andrey. PROBLEM RESEARCH AND DEVEL-
OPMENT OF A TOOL FOR CHECKING APPLICATION BINARY IN-
TERFACE COMPATIBILITY OF VIRTUAL METHOD TABLES. In:
Sofia: Surveying Geology & Mining Ecology Management (SGEM), 2019,
vol. 19, chap. 2.1, pp. 531–537. isbn 1314-2704.

17. WASI SUBGROUP. WASI introduction [online]. 2024. [visited on 2024-
03-05]. Available from: https://wasi.dev/.

18. WASI SUBGROUP. WASI gihub [online]. 2024. [visited on 2024-03-05].
Available from: https://github.com/WebAssembly/WASI.

19. WASI SUBGROUP. WASI interfaces [online]. 2024. [visited on 2024-03-
05]. Available from: https://wasi.dev/interfaces.

20. BYTECODE ALLIANCE. The WebAssembly Component Model [online].
2024. [visited on 2024-03-05]. Available from: https : / / component -
model.bytecodealliance.org.

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html
https://www.fortinet.com/resources/cyberglossary/network-edge#:~:text=The%20network%20edge%20the%20connection,administrators%20must%20provide%20solutions%20for.
https://www.fortinet.com/resources/cyberglossary/network-edge#:~:text=The%20network%20edge%20the%20connection,administrators%20must%20provide%20solutions%20for.
https://www.fortinet.com/resources/cyberglossary/network-edge#:~:text=The%20network%20edge%20the%20connection,administrators%20must%20provide%20solutions%20for.
https://www.nginx.com/resources/glossary/nginx/
https://webassembly.github.io/spec/core/index.html
https://webassembly.github.io/spec/core/index.html
https://developer.mozilla.org/en-US/docs/WebAssembly/Understanding_the_text_format
https://developer.mozilla.org/en-US/docs/WebAssembly/Understanding_the_text_format
https://wasi.dev/
https://github.com/WebAssembly/WASI
https://wasi.dev/interfaces
https://component-model.bytecodealliance.org
https://component-model.bytecodealliance.org

Bibliography 87

21. WEBASSEMBLY COMMUNITY GROUP. WASI I/O [online]. [visited
on 2024-03-05]. Available from: https://github.com/WebAssembly/
wasi-io.

22. WEBASSEMBLY COMMUNITY GROUP. WASI Clocks [online]. [vis-
ited on 2024-03-05]. Available from: https://github.com/WebAssembly/
wasi-clocks.

23. WEBASSEMBLY COMMUNITY GROUP. WASI Random [online]. [vis-
ited on 2024-03-05]. Available from: https://github.com/WebAssembly/
wasi-random.

24. WEBASSEMBLY COMMUNITY GROUP. WASI Filesystem [online].
2024. [visited on 2024-03-05]. Available from: https://github.com/
WebAssembly/wasi-filesystem.

25. WEBASSEMBLY COMMUNITY GROUP. WASI Sockets [online]. [vis-
ited on 2024-03-05]. Available from: https://github.com/WebAssembly/
wasi-sockets.

26. WEBASSEMBLY COMMUNITY GROUP. WASI CLI [online]. [visited
on 2024-03-05]. Available from: https://github.com/WebAssembly/
wasi-cli.

27. WEBASSEMBLY COMMUNITY GROUP. WASI HTTP [online]. [vis-
ited on 2024-03-05]. Available from: https://github.com/WebAssembly/
wasi-http.

28. BYTECODE ALLIANCE. Wasmtime documentation [online]. 2023. [vis-
ited on 2024-03-05]. Available from: https://docs.wasmtime.dev.

29. PROXY-WASM CONTRIBUTORS. WebAssembly for Proxies (ABI spec-
ification) [online]. 2024. [visited on 2024-03-05]. Available from: https:
//github.com/proxy-wasm/spec?tab=readme-ov-file.

30. PELLEGRINO, Giancarlo; BALZAROTTI, Davide; WINTER, Stefan;
SURI, Neeraj. In the Compression Hornet’s Nest: A Security Study of
Data Compression in Network Services. In: 24th USENIX Security Sym-
posium (USENIX Security 15). Washington, D.C.: USENIX Association,
2015, pp. 801–816. isbn 978-1-939133-11-3. Available also from: https:
/ / www . usenix . org / conference / usenixsecurity15 / technical -
sessions/presentation/pellegrino.

31. MAASS, Michael; SALES, Adam; CHUNG, Benjamin; SUNSHINE,
Joshua. A systematic analysis of the science of sandboxing. PeerJ Com-
puter Science. 2016, vol. 2, e43. Available from doi: 10.7717/peerj-
cs.43.

32. AL AMEIRI, Faisal; SALAH, Khaled. Evaluation of popular application
sandboxing. In: 2011 International Conference for Internet Technology
and Secured Transactions. 2011, pp. 358–362.

https://github.com/WebAssembly/wasi-io
https://github.com/WebAssembly/wasi-io
https://github.com/WebAssembly/wasi-clocks
https://github.com/WebAssembly/wasi-clocks
https://github.com/WebAssembly/wasi-random
https://github.com/WebAssembly/wasi-random
https://github.com/WebAssembly/wasi-filesystem
https://github.com/WebAssembly/wasi-filesystem
https://github.com/WebAssembly/wasi-sockets
https://github.com/WebAssembly/wasi-sockets
https://github.com/WebAssembly/wasi-cli
https://github.com/WebAssembly/wasi-cli
https://github.com/WebAssembly/wasi-http
https://github.com/WebAssembly/wasi-http
https://docs.wasmtime.dev
https://github.com/proxy-wasm/spec?tab=readme-ov-file
https://github.com/proxy-wasm/spec?tab=readme-ov-file
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/pellegrino
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/pellegrino
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/pellegrino
https://doi.org/10.7717/peerj-cs.43
https://doi.org/10.7717/peerj-cs.43

Bibliography 88

33. NAIR, Ravi; SMITH, Jim. Virtual Machines. Morgan Kaufmann, 2005.
isbn 1558609105;9781558609105;

34. What is virtual machine manager (VMM)? [online]. 2024-01. [visited on
2024-03-17]. Available from: https://www.infoblox.com/glossary/
virtual-machine-manager-vmm/.

35. Kernel Virtual Machine [online]. 2023. [visited on 2024-03-17]. Available
from: https://linux-kvm.org/page/Main_Page.

36. RED HAT, INC. What is KVM? [online]. 2024. [visited on 2024-03-17].
Available from: https://www.redhat.com/en/topics/virtualization/
what-is-KVM.

37. AMAZON WEB SERVICES. Firecracker official website [online]. 2014.
[visited on 2024-03-17]. Available from: https://firecracker-microvm.
github.io/.

38. FIRECRACKER-MICROVM. Firecracker Design [online]. 2017. [visited
on 2024-04-27]. Available from: https://github.com/firecracker-
microvm/firecracker/blob/main/docs/design.md.

39. WEISSMAN, Zane; TIEMANN, Thore; EISENBARTH, Thomas; SUNAR,
Berk. Microarchitectural Security of AWS Firecracker VMM for Server-
less Cloud Platforms [online]. 2023. [visited on 2024-03-17]. Available from
arXiv: 2311.15999 [cs.CR].

40. MCCARTY, Scott. A Practical Introduction to Container Terminology.
Red Hat Developer. 2018. Available also from: https://developers.
redhat.com/blog/2018/02/22/container-terminology-practical-
introduction#basic_vocabulary.

41. Introduction to Control Groups (Cgroups) [online]. 2024. [visited on 2024-
03-17]. Available from: https://access.redhat.com/documentation/
en-us/red_hat_enterprise_linux/6/html/resource_management_
guide/ch01.

42. Container: privileged mode [online]. 2021. [visited on 2024-03-17]. Avail-
able from: https://learn.snyk.io/lesson/container- runs- in-
privileged-mode/.

43. Docker overview [online]. 2024. [visited on 2024-03-25]. Available from:
https://docs.docker.com/get-started/overview/.

44. Security [online]. 2024. [visited on 2024-03-25]. Available from: https:
//docs.docker.com/security/.

45. Run the Docker daemon as a non-root user (Rootless mode) [online]. 2024.
[visited on 2024-03-25]. Available from: https://docs.docker.com/
engine/security/rootless/.

46. Podman official documentation [online]. 2019. [visited on 2024-03-25].
Available from: https://docs.podman.io/en/latest/.

https://www.infoblox.com/glossary/virtual-machine-manager-vmm/
https://www.infoblox.com/glossary/virtual-machine-manager-vmm/
https://linux-kvm.org/page/Main_Page
https://www.redhat.com/en/topics/virtualization/what-is-KVM
https://www.redhat.com/en/topics/virtualization/what-is-KVM
https://firecracker-microvm.github.io/
https://firecracker-microvm.github.io/
https://github.com/firecracker-microvm/firecracker/blob/main/docs/design.md
https://github.com/firecracker-microvm/firecracker/blob/main/docs/design.md
https://arxiv.org/abs/2311.15999
https://developers.redhat.com/blog/2018/02/22/container-terminology-practical-introduction#basic_vocabulary
https://developers.redhat.com/blog/2018/02/22/container-terminology-practical-introduction#basic_vocabulary
https://developers.redhat.com/blog/2018/02/22/container-terminology-practical-introduction#basic_vocabulary
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/resource_management_guide/ch01
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/resource_management_guide/ch01
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/resource_management_guide/ch01
https://learn.snyk.io/lesson/container-runs-in-privileged-mode/
https://learn.snyk.io/lesson/container-runs-in-privileged-mode/
https://docs.docker.com/get-started/overview/
https://docs.docker.com/security/
https://docs.docker.com/security/
https://docs.docker.com/engine/security/rootless/
https://docs.docker.com/engine/security/rootless/
https://docs.podman.io/en/latest/

Bibliography 89

47. gVisor official website [online]. 2024. [visited on 2024-03-25]. Available
from: https://gvisor.dev/.

48. gVisor official documentation [online]. 2024. [visited on 2024-03-25]. Avail-
able from: https://gvisor.dev/docs/.

49. V8 official website [online]. 2024-04. [visited on 2024-03-25]. Available
from: https://v8.dev/.

50. DAYA, Shahir; ORGANIZATION, International Business Machines Cor-
poration International Technical Support. Microservices from theory to
practice : creating applications in IBM Bluemix using the microservices
approach. Poughkeepsie, Ny Ibm Corporation, International Technical
Support Organization, 2015. isbn 9780738440811.

51. OpenResty offical web [online]. 2024. [visited on 2024-02-10]. Available
from: https://openresty.org/en/.

52. Rust official website [online]. 2018. [visited on 2024-02-10]. Available from:
https://www.rust-lang.org/.

53. Tokio tutorial [online]. 2023. [visited on 2024-02-10]. Available from: https:
//tokio.rs/tokio/tutorial.

54. Asynchronous Programming in Rust [online]. 2024. [visited on 2024-02-
10]. Available from: https://rust-lang.github.io/async-book/08_
ecosystem/00_chapter.html.

55. AWS SDK for Rust [online]. 2024. [visited on 2024-02-10]. Available from:
https://docs.aws.amazon.com/sdk-for-rust/latest/dg/welcome.
html.

56. MINIO, Inc. MinIO — S3 & Kubernetes Native Object Storage for AI
[online]. 2022. [visited on 2024-02-10]. Available from: https://min.io/.

57. LAUNCHBADGE. sqlx github [online]. 2019. [visited on 2024-02-10]. Avail-
able from: https://github.com/launchbadge/sqlx.

58. PostgreSQL official documentation [online]. 2024. [visited on 2024-02-10].
Available from: https://www.postgresql.org/about/.

59. ANJALI; CARAZA-HARTER, Tyler; SWIFT, Michael M. Blending con-
tainers and virtual machines: a study of firecracker and gVisor. In: Pro-
ceedings of the 16th ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments. Lausanne, Switzerland: Association
for Computing Machinery, [n.d.], pp. 101–113. isbn 9781450375542. Avail-
able from doi: 10.1145/3381052.3381315.

60. Trait tower::Service documentation [online]. 2024. [visited on 2024-02-
10]. Available from: https://docs.rs/tower/latest/tower/trait.
Service.html.

https://gvisor.dev/
https://gvisor.dev/docs/
https://v8.dev/
https://openresty.org/en/
https://www.rust-lang.org/
https://tokio.rs/tokio/tutorial
https://tokio.rs/tokio/tutorial
https://rust-lang.github.io/async-book/08_ecosystem/00_chapter.html
https://rust-lang.github.io/async-book/08_ecosystem/00_chapter.html
https://docs.aws.amazon.com/sdk-for-rust/latest/dg/welcome.html
https://docs.aws.amazon.com/sdk-for-rust/latest/dg/welcome.html
https://min.io/
https://github.com/launchbadge/sqlx
https://www.postgresql.org/about/
https://doi.org/10.1145/3381052.3381315
https://docs.rs/tower/latest/tower/trait.Service.html
https://docs.rs/tower/latest/tower/trait.Service.html

Bibliography 90

61. Hit the Ground Running: Wasm Snapshots for Fast Start Up [online].
[visited on 2024-02-16]. Available from: https://fitzgeraldnick.com/
2021/05/10/wasm-summit-2021.html.

62. STACKENÄS, William. An Evaluation of WebAssembly Pre-Initialization
for Faster Startup Times [online]. 2023. [visited on 2024-02-16]. Available
from: https://kth.diva-portal.org/smash/record.jsf?pid=diva2%
3A1763085&dswid=-4303.

https://fitzgeraldnick.com/2021/05/10/wasm-summit-2021.html
https://fitzgeraldnick.com/2021/05/10/wasm-summit-2021.html
https://kth.diva-portal.org/smash/record.jsf?pid=diva2%3A1763085&dswid=-4303
https://kth.diva-portal.org/smash/record.jsf?pid=diva2%3A1763085&dswid=-4303

Contents of the attachment

thesis..............................Thesis source code in LATEX format
thesis.pdf......................................Thesis in PDF format

91

	Acknowledgments
	Declaration
	Abstract
	List of abbreviations
	Introduction
	About this thesis
	Thesis structure
	Related work

	I Research
	Computing systems
	Distributed systems
	Scaling
	Types of distributed systems

	WebAssembly (Wasm)
	Core specification
	Application binary interface (ABI)
	Wasi
	Wasmtime
	Proxy-Wasm

	Security
	Untrusted code
	Potential risks
	Sandboxing

	II Implementation
	Build pipeline design
	Requirements
	Architecture
	Orchestration
	Compilation
	Storage

	Build pipeline implementation
	Related work
	Used technologies
	Orchestration
	Compilation
	Storage

	Build optimizations
	Problem definition
	Solutions

	Future work
	Build optimization implementation
	Test bed
	Build client

	Summary
	Proxy-wasm
	Function and callback categories
	Types

	User facing API
	Application
	Version
	Version build

	Evaluator API
	Build success
	Build fail
	Build crash

	Contents of the attachment

