CTU

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

F 3 Faculty of Electrical Engineering
Department of Control Engineering

Master's Thesis

CAN FD Support for Space Grade
Real-Time RTEMS Executive

Michal Lenc
michallenc@seznam.cz

May 2024
Supervisor: Ing. Pavel Pisa, Ph.D.

cTu MASTER'S THESIS ASSIGNMENT

CZECH TECHNICAL

UNIVERSITY
IN PRAGUE

I. Personal and study details
4)
Student's name: Lenc Michal Personal ID number: 492387

Faculty / Institute: Faculty of Electrical Engineering

Department / Institute: Department of Control Engineering

Study program: Cybernetics and Robotics
_

Il. Master’s thesis details

4 A
Master's thesis title in English:

CAN FD Support for Space Grade Real-Time RTEMS Executive

Master’s thesis title in Czech:

Podpora shérnice CAN FD pro operacni systém RTEMS

Guidelines:

RTEMS is a mature system used in space and other critical fields. The CAN and CAN FD communication gains momentum
in these areas as well. There exist multiple implementations of standard CAN systems for RTEMS already, but none of
them is on pair with implementations used on GNU/Linux and other RTOSes. The goal of the project is to provide a sound
base for actual and future projects using CAN FD.

1) Familiarize with RTEMS executive and already existing included CAN solutions and alternative approaches from other
RTOSes, SocketCAN, LinCAN, NuttX

2) Design the solution for RTEMS with help or reuse fitting code sources

3) Implement and integrate RTEMS driver for CTU CAN FD

4) Document infrastructure and demonstrate it on pysimCoder generated application

Bibliography / sources:

[1] RTEMS User Manual and related documentation, On-Line Applications Research Corporation (OAR) and others,
1988-2020, (available online athttps://docs.rtems.org/)

[2] PiSa, P.: Linux/RT-Linux CAN Driver (LinCAN), Ocera, June 2005-2013, available online
https://cmp.felk.cvut.cz/~pisa/can/doc/lincandoc-0.3.5.pdf

[3] pysimCoder - Open Source Rapid Control Prototyping Development Tool, available online
https://github.com/robertobucher/pysimCoder

Name and workplace of master’s thesis supervisor:

Ing. Pavel PiSa, Ph.D. Department of Control Engineering FEE

Name and workplace of second master’s thesis supervisor or consultant:

Date of master’s thesis assignment: 05.02.2024 Deadline for master's thesis submission: 24.05.2024

Assignment valid until: 21.09.2025

Ing. Pavel Pisa, Ph.D. prof. Ing. Michael Sebek, DrSc. prof. Mgr. Petr Péata, Ph.D.
Supervisor’s signature Head of department’s signature Dean'’s signature

_ J
[ll. Assignment receipt

The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

Date of assignment receipt Student’s signature

CVUT-CZ-ZDP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

Acknowledgement / Declaration

I would like to thank my supervisor
Pavel Pisa for his mentorship of many
projects and for valuable advices and ex-
perience sharing during my bachelor’s
and master’s studies.

My acknowledgment also goes to my
colleagues at Elektroline for giving me
the opportunity to combine my study
and work responsibilities and for creat-
ing a great work environment.

Last but not least, I would like to
thank my family and friends for their
support in my activities.

I declare that the presented work
was developed independently and that
I have listed all sources of information
used within it in accordance with the
methodical instructions for observing
the ethical principles in the preparation
of university theses.

In Prague 24. 5. 2024

Abstrakt

Kritické systémy realného casu, mezi
které patii ridici prvky v automobi-
lech a hromadné dopravée, systémy pro
druzice, zdravotni zafizeni nebo sitové
prvky, casto vyzaduji deterministicky
prenos kritickych zprav mezi zarizenimi.
K tomuto prenosu se mimo jiné vyuziva
sbérnicovy standard Controller Area
Network. Operacni systémy obvykle ke
zjednoduSeni pristupu na CAN sbér-
nici poskytuji obecné rozhrani mezi
aplikacemi a ovladaci radict.

Hlavnim cilem této prace byla im-
plementace takového rozhrani pro ote-
vienou exekutivu redlné casu RTEMS
vyuzivanou také v kosmickych apli-
kacich. Prace dokumentuje design a
vyvoj CAN/CAN FD subsystému pro
RTEMS s podporou prioritnich front,
blokujicitho a neblokujicitho pristupu,
reportu chyb, rozhrani pro konfiguraci
kontroléru a dalsich funkci. Prace méla
za cil poskytnout potrebné rozhrani k
vyuzivani CAN sbérnice a k implemen-
taci budoucich radict. Jako prvni byl
k testim a demonstraci vybran CTU
CAN FD radic.

Préace také narazi na zndmy problém
inverze priorit béhem arbitrazni faze na
CAN sbérnici a navrhuje jeho feseni. To
pocitd s dynamickou redistribuci hard-
ware bufferti fadi¢e na prioritni fronty.
Toto Teseni umoznuje vyuziti vsSech
bufferti fadice pri zachovani spravného
odchoziho potadi CAN zprav. Navrzeny
algorithmus je opét otestovan na CTU
CAN FD radici.

Klicova slova: RTEMS, operacni
systémy realného casu, softwarovy CAN
stack, CAN sbérnice, inverze priorit,
prioritni fronty, CAN fadi¢, CTU CAN
FD, Xilinx Zynq

/ Abstract

Vi

Critical real-time control fields such
as automotive, public transport, space
systems, medical devices, or network-
ing systems often require deterministic
transmission of safety-critical messages
between devices. Controller Area Net-
work bus standard is widely used for
these purposes. To provide complete
and unified access to CAN bus devices,
operating systems implement common
CAN stacks used as an interface be-
tween applications and device drivers.

Implementation of such a stack for
open-source space grade RTEMS exec-
utive is the key part of this thesis. It
documents the design and development
of a full-featured CAN/CAN FD stack
for RTEMS with support for multiple
priority classes, blocking and nonblock-
ing access, error reporting, controller
configuration interface, and more. The
work aims to provide a sound base for
CAN bus usage and future controller
implementation. Support for CTU
CAN FD IP core, chosen as the first
target for testing and demonstration, is
implemented as well.

The thesis also deals with the com-
mon problem of CAN bus arbitration
phase priority inversion. It proposes
the solution of dynamic redistribution
of CAN transmission buffers to priority
classes that allow mapping of all con-
troller’s transmission buffers to priority
classes while preserving the correct
The proposed al-
gorithm is once again demonstrated on
CTU CAN FD target.

Keywords: RTEMS, real-time oper-
ating system, CAN software stack, CAN
bus, priority inversion, priority classes,
CAN controller, CTU CAN FD, Xilinx

Zynq

transmission order.

Contents

1 Introduction 1

2 Real Time Executive for
Multiprocessor Systems 3

2.1 Introduction 3
2.2 Resources 4
221 Task 4
2.2.2 Interrupt Handler 4
2.2.3 Semaphore 5
2.2.4 Mutex 5)
2.3 Build Process 5
2.3.1 Build System Setup 6
2.3.2 BSPBuild 6

2.3.3 FreeBSD Library Build . . .6
2.4 Application Build with OMK . .7
2.4.1 Xilinx Zynq MzAPO Board .7
2.4.2 1386 using QEMU

3 CAN/CAN FD Stack for RTEMS 8

3.1 Controller Area Network 8
3.2 RTEMS CAN Stack Basic
Principles 10
3.2.1 FIFO Queues 11
3.3 Application Programming
Interface 12
3.3.1 Opening and Configur-
ing Queues 12
3.3.2 Bit Time Calculation 13
3.3.3 Mode Setting 15
3.3.4 Chip Start and Stop 16
3.3.5 Controller Related In-
formation 16
3.3.6 CAN Frame Represen-
tation 17
3.3.7 Frame Transmission 18
3.3.8 Frame Reception 19
3.3.9 Hardware Timestamping . 19
3.3.10 Controller’s Statistics . 19
3.4 Controller Initialization . 20
3.5 Driver Interface 21
3.5.1 Frame Transmission 21
3.5.2 Frame Reception 22
3.6 Error Reporting 23
3.7 Source Code Organization . . . 24
4 CAN Bus Priority Inversion
Problem 26
4.1 Introduction 26

/

4.2 Common Solutions
4.3 Dynamic Allocation of TX
Buffers to Multiple Priority
Groups
4.3.1 Priority Classes Mapping
4.3.2 Example
4.3.3 Algorithm Requirements . .

5 CTU CAN FD Driver
5.1 Core Specification
5.2 Implementation to RTEMS

5.2.1 Worker Thread

5.2.2 Mapping Priority

Classes to Buffers

5.2.3 Timestamping

6 Results and Demonstrations
6.1 RTEMS CAN Stack Mutu-
al Latency Profiles
Dynamic Allocation
Demonstration with
RTEMS and CTU CAN FD . .
Stack Functionality
Demonstration with
pysimCoder
6.4 OrtCAN CAN/CANopen
6.5 Documentation
6.6 Test Applications

6.6.1 can_ register

6.6.2 can_ list_ registered

6.6.3 can_set test dev

6.6.4 can_ lway

6.6.5 can_ 2way

6.6.6 can_ gateway

6.6.7 can_ latency

7 Conclusion

6.2

6.3

A Source Code
B Glosary
References

Vii

33
35

36

36

38

40

.41

42
42
42

. 42

42
43
43
43
43

a4
a5
a6
a7

/ Figures

viii

3.1

Standard and Extended CAN

Frame Format 9
Standard and Extended CAN

FD Frame Format................ 9
Message flow in graph
edges/FIFOs.................... 11
CAN Priority Inversion Vi-
sualization 26
Dynamic Allocation of TX
buffers ...l 28

Dynamic Allocation of TX
buffers with Middle Priority ... 29

CTU CAN FD IP core struc-

tUre ..o 31
CTU CAN FD Worker
Thread.................cooial 32
CAN LaTester Visualization... 36

CAN Message Latency Mea-

surementoiiian.. 37
RTEMS CAN Stack Latency
Profile..........cooiiii 37
RTEMS CAN Stack Latency
Profile with Networking........ 38
CAN Bus State without Dy-
namic Allocation 39
High-priority message laten-
cy profile......... ... 39
CAN Bus State with Dynam-
ic Allocation.................... 40

pysimCoder CAN interface 41

Chapter 1
Introduction

Real Time Executive for Multiprocessor Systems', abbreviated as RTEMS, is an open
source real time operating system (RTOS) designed mainly for embedded devices. It
supports POSIX application programming interface, making the designed application
compatible with for example GNU/Linux or NuttX operating systems as well. RTEMS
is widely used in critical real time control fields, such as space systems, medical devices,
or networking systems. These are the fields where transfers of critical messages between
used devices are usually required and Controller Area Network (CAN) bus standard
is an ideal choice to ensure the highest priority message gets precedence over lower
priority ones in case of collision on the bus.

However, the executive does not have a general purpose CAN/CAN FD stack imple-
mentation that would provide a common application interface. Instead of that, target
dependent solutions in applications/BSPs are required for current CAN drivers. This
might be sufficient for some applications but a common stack with blocking and non-
blocking access, priority classes, or message filtering is a necessity for more complex
usage.

The main goal of the thesis was to design and implement a common CAN/CAN FD
stack that would implement features needed for full utilization of CAN bus, provide the
missing unification of the application interface for CAN controllers and simplify both
the porting of new drivers and CAN bus usage from the application perspective. The
presented implementation of RTEMS common CAN stack is based on the Linux kernel
loadable module LinCAN developed at Czech Technical University in Prague by Pavel
PiSa in the early 2000s and subsequently used in real time applications for decades. It
is based on message FIFO queues, organized into oriented edges between chip drivers
and CAN users, that are responsible for message transfers from the application to the
controller and vice versa.

A common setback of general purpose CAN drivers utilizing software FIFO queues
is the bus arbitration priority inversion problem. It occurs when the bus is saturated
by middle priority messages from one controller and a mix of low and high priority
messages to transmit is pending on the other controller. In that case, high priority
message is blocked by medium priority one and thus priority inversion scenario occurs.

The usual solution is to introduce priority classes assigned from CAN message iden-
tifier ranges and route messages to different queues based on those classes. Mapping
priority classes to a limited count of the controller’s hardware transmission buffers,
however, tends to be challenging. This is caused by controllers usually providing trans-
mission of messages based on their CAN identifiers or in the fixed order determined by
the TX buffer index.

However, the transmission order based on CAN identifiers can not be used if the
preservation of the message order determined by the application is required. On the
other hand, using more priority FIFO classes requires sending messages in the order
determined by those classes. As a result, the correct transmission order should send

! https://www.rtems.org/

https://www.rtems.org/

messages based on their priority class and keep the order within one priority class. This
usually forces the CAN driver to limit transmission to one buffer per class or even to
one buffer at all and thus not utilize the full potential of the controller.

The solution proposed in scope of this thesis solves arbitration priority inversion
problem by extending the common solution of FIFO queues for each priority class. This
solution of multiple traffic classes is extended by adding the dynamic redistribution of
CAN transmission buffers to these classes. This way, the controller may use all its
hardware transmission buffers, and the correct transmission order is preserved. Open
source CTU CAN FD IP core developed at Czech Technical University was chosen for
the demonstration of presented solution. It supports the abort of currently queued TX
buffer and the buffer priority updates, which changes the requested buffer transmission
order, on the fly.

The thesis starts with chapter 2 introducing the reader to RTEMS executive, its basic
principles, and compilation steps for thesis results reproduction. The core part of the
thesis, the implementation of new full-featured CAN/CAN FD stack to RTEMS is de-
scribed in chapter 3. The implemented infrastructure is described from both theoretical
and implementation based perspective. The next chapter faces the priority inversion
problem on CAN bus and proposes a solution that can be used with the implemented
infrastructure. This chapter is more focused on theoretical part. Practical impacts are
discussed in chapter 5 together with the implementation of CTU CAN FD controller.
The thesis is completed with chapter 6 presenting the achieved results.

The text is partially based on a science article published at the 18th international
CAN Conference in 2024 [1].

Chapter 2
Real Time Executive for Multiprocessor
Systems

This chapter introduces Real Time Executive for Multiprocessor Systems, the main
system used in this thesis, to the reader and discusses its usage and advantages. Com-
pilation steps for the target used for result demonstration are presented at the end of
the chapter.

The goal of this chapter is not to supplement comprehensive documentation provided
by RTEMS project itself, but to introduce its concepts used for CAN/CAN FD stack
implementation to readers not familiar with the executive. RTEMS documentation
should be studied to obtain information about its concepts surpassing the scope of this
thesis.

I 2.1 Introduction

The development of Real Time Executive for Multiprocessor Systems, commonly abbre-
viated as RTEMS, began in the late 1980s at the request of US Army Missile Command
for executive based on open standards and free of royalties. Thanks to its open source
license, RTEMS quickly became a popular solution for embedded devices even in the
commercial sector [2].

The executive has come a long way since that and is a mature open source real
time operating system used in many critical fields such as military, space, medical, or
industry control systems. RTEMS provides support for commonly used instruction set
architectures including ARM designs, x86 architecture, PowerPC, RISC-V or 32-bit
i386 by Intel [3].

It is compatible with POSIX standard but also provides its own interface used mostly
for kernel functions. Networking, if configured and enabled, is supported by full-
featured IPv4/IPv6 TCP/IP networking stack from FreeBSD project as well as the
DNS server. Most architectures have a subset of board support packages (BSP) that
supports symmetric multiprocessing (SMP) used for targets with multiple processor
cores.

Schedulers optimized for multiple core scheduling are used if SMP support is enabled.
Preemtive round-robin scheduling and timeslices for aperiodic tasks are used. RTEMS
has implemented support for several schedulers, both fixed priority and dynamic task,
fixed job priority for periodic tasks [3].

RTEMS has a shared memory architecture meaning all processes and threads may
access the same data stored in memory. It is a single address space system, therefore
application and kernel reside in the same memory [3].

The kernel is written in C language, but the system also provides support for the
applications written in other programming languages as C+-+, Ada, Java, or Lua for
example. Modified build automation tool Waf is used for the kernel and BSP build and
provides the benefit of having more builds of different architectures/BSPs available all
at once.

I 2.2 Resources

The following sections briefly describe RTEMS handlers and synchronization routines
used in the implementation of CAN/CAN FD stack and CAN controllers. RTEMS
implements most of the presented resources in both POSIX and its own API. While
POSIX API is a better choice for applications, RTEMS API (also called classic) is the
preferable choice for the kernel itself.

B 2.2.1 Task

RTEMS documentation defines a task as the smallest thread of execution that can
compete on its own for system resources [4]. Each task has assigned a priority number
from 1 to 255 with 1 being the highest priority. The task is created by the directive
rtems_task_create() and started by rtems_task_start().

There are various settings available during task creation, for example stack size avail-
able to the task, preemtion settings, interrupt level, and so on. The infrastructure pre-
sented in this thesis uses tasks for the implementation of controller workers responsible
for frame transmission and reception.

The following code shows task creation and start with default options and priority
determined by priority variable. The task is implemented in function worker with
input argument arg.

rtems_task_create(
rtems_build _name('N', 'A', 'M', 'E'),
priority,
RTEMS_MINIMUM_STACK_SIZE + 0x1000,
RTEMS_DEFAULT_MODES,
RTEMS_DEFAULT_ATTRIBUTES,
&task_id

)

rtems_task_start(task_id, worker, arg);

Il 2.2.2 Interrupt Handler

Interrupts, requests for the processor to interrupt current execution and process a dif-
ferent event, are managed through the interrupt manager in RTEMS. This manager
provides necessary directives to attach and manage interrupts.

Interrupt handler is installed with directive rtems_interrupt_handler_install().
This directive takes an interrupt vector number and installs a routine called with
an optional input argument when the interrupt occurs. The following code shows
a unique interrupt handler installation with interrupt number irq calling routine
interrupt_handler without an argument.

rtems_interrupt_handler_install(
irq,
"name",
RTEMS_INTERRUPT_UNIQUE,
interrupt_handler,
NULL

The manager also provides synchronization via rtems_interrupt_lock_acquire()
and rtems_interrupt_lock_release() directives. These functions are used to protect
shared data between an interrupt handler and the thread owning the handler. Maskable
interrupts are disabled during interrupt lock.

These locks were initially used for CAN FIFO queues synchronization before switched
for the mutex mechanism described in section 2.2.4.

Bl 2.2.3 Semaphore

Self-contained binary semaphores (mechanism with integer value 0 or 1) are used to
implement critical sections in the infrastructure (such as read/write operations) or to
wait for some event (until all frames are sent for example).

Both static (compile time) and dynamic (run-time) initialization of the semaphore
is available. Macro RTEMS_BINARY_SEMAPHORE_INITIALIZER is used for the first one
and function rtems_binary_semaphore_init () for the latter. Wait for the semaphore
is implemented in rtems_binary_semaphore_wait () function. It returns immediately
if the current semaphore value is 1, otherwise the thread is blocked and waits for
semaphore to change its value to 1. Since this can wait indefinitely, the user can
use rtems_binary_semaphore_wait_timed_ticks() to wait with a defined timeout or
rtems_binary_semaphore_try_wait() to return with an error if the semaphore is not
set.

Function rtems_binary_semaphore_post() wakes up the highest priority waiting
thread or increments the value to 1 if no thread currently waits on the semaphore.

Examples of semaphore usage can be found in section 5.2 describing the implemen-
tation of CTU CAN FD controller.

B 224 Mutex

Mutual exclusion, often referred to as a mutex, is a synchronization mechanism ensuring
a task does not enter a critical section if another task is already present in it. RTEMS
implements mutual exclusion with self-contained objects. These can be initialized ei-
ther statically with macro RTEMS_MUTEX_INITIALIZER or dynamically at run-time with
rtems_mutex_init() function.

Locking is performed with rtems_mutex_lock() call, unlocking can be done with
rtems_mutex_unlock(). The CAN/CAN FD stack was initially implemented with
more lightway and general interrupt locks for synchronization but later was rewritten
to mutual exclusion as it is more fitting for this usage. It is a more systematic solution
that ensures CAN worker or CAN API calls cannot delay higher priority tasks when
CAN related tasks are iterating inside CAN subsystem.

However, there are some disadvantages in this approach. Usage of mutexes does not
allow to fill the CAN stack FIFO queues directly from an interrupt, but controller has
to use a dedicated thread for this. Also, the choice of mutexes over interrupt locks
caused small slowdown of CAN stack about approximately 6 micro seconds per frame.

B 2.3 Build Process

RTEMS build can be separated into three major steps: setting up the build system,
BSP build and build of the networking stack (can be omitted if network subsystem is
not required). The build example is done for ARM based Xilinx Zynq ZedBoard BSP
used for result demonstration in this thesis.

Il 2.3.1 Build System Setup

Source directories can be obtained either from project GIT repositories or stable releases
can be downloaded from project websites. These steps present the first option as the
work of the thesis is done against current development version of RTEMS.

mkdir rtems-git

cd rtems-git

git clone https://gitlab.rtems.org/rtems/rtos/rtems.git

git clone \
https://gitlab.rtems.org/rtems/tools/rtems-source-builder.git rsb
git clone https://gitlab.rtems.org/rtems/pkg/rtems-1libbsd.git

Now with source directories obtained, the target directory for system build has to
be selected. Directory /opt/rtems/6 is used in this example. This is the path where
RTEMS build target specific dependencies (GCC, GDB or Binutils for example) are
located. These utilities can be built by following command.

cd rsb/rtems
. ./source-builder/sb-set-builder --prefix=/opt/rtems/6 6/rtems-arm

Other architecture (rtems-i386 for example) can be specified instead of rtems-arm
and more architectures can be built with common /opt/rtems/6 prefix as source builder
creates specific subdirectory for each architecture.

Il 2.3.2 BSPBuild

With architecture dependencies built and ready, board support package can be built.
The initial configuration for Xilinx Zynq ZedBoard is set up by following command.

cd rtems-git/rtems
./waf bspdefaults --rtems-bsps=arm/xilinx_zynq_zedboard > config.ini

File config.ini can be edited and configuration changed based on user requirements
(for example RTEMS_POSIX_API and RTEMS_SMP might be enabled). Following options
were modified in our build for our BSP support.

RTEMS_POSIX_API = True
RTEMS_SMP = True
ZYNQ_UART_KERNEL_IO_BASE_ADDR = ZYNQ_UART_O_BASE_ADDR

Once configured, board support package can be installed to previously selected
/opt/rtems/6 with following commands.

./waf configure --prefix "/opt/rtems/6"
./waf
./waf install

Il 2.3.3 FreeBSD Library Build

FreeBSD Library is required if networking stack (support for TCP/IP protocol for
example) is used. It is once again built using Waf tool.

6

cd rtems-git/rtems-1libbsd

git submodule init

git submodule update rtems_waf

./waf configure --prefix="/opt/rtems/6" \
--rtems-bsps=arm/xilinx_zynq_zedboard \
—--buildset=buildset/default.ini

./waf

./waf install

I 2.4 Application Build with OMK

For the development and testing, OMK Make-System! was used to build the CAN/CAN
FD stack, CTU CAN FD driver, and test applications. This section shows how to build
the source code to reproduce the demonstration and results documented in chapter 6.
It is currently possible to reproduce most of the tests on both Xilinx Zynq target and

i386 architecture using mainline x86-64 QEMU. The source code can be obtained from
CTU FEE GitLab repository.

git clone https://gitlab.fel.cvut.cz/otrees/rtems/rtems-canfd.git

B 2.4.1 XilinxZynq MzAPO Board

The build for Xilinx Zynq board is straightforward once the BSP is compiled and
installed as described in previous sections.

export PATH=$PATH:/opt/rtems/6/bin
make

These commands builds the RTEMS kernel image with CAN/CAN FD stack, CTU
CAN FD driver, and test applications. The image can be loaded to the board with
boot from Trivial File Transfer Protocol (TFTP), the detailed description is available
on OTREES wiki pages.?

Bl 2.4.2 i386 using QEMU

The presented CAN/CAN FD stack can also be tested using mainline QEMU
gemu-system-x86_64 by compiling the application for i386 target. It is necessary to
build and install support for i386_pc686 RTEMS targer. The steps are similar for
Xilinx Zynq target described above. Once the build system is setup, the following may
be used to compile and install BSP support.

cd targets/i386_pc686
./1386-rtems-sys.cfg

This script automates board support package installation. It is possible to run QEMU
target with following commands.

export PATH=$PATH:/opt/rtems/6/bin

cd targets/i386_pc686

./setup-host-socketcan # might be required with sudo
./gemu-i386-pc686-2x-ctu-pci-build
./qemu-i386-pc686-2x-ctu-pci-run

L http://rtime.felk.cvut.cz/omk/
2 https://gitlab.fel.cvut.cz/otrees/rtems/work-and-ideas/-/wikis/home

http://rtime.felk.cvut.cz/omk/
https://gitlab.fel.cvut.cz/otrees/rtems/work-and-ideas/-/wikis/home

Chapter 3
CAN/CAN FD Stack for RTEMS

This chapter describes the implementation of a common CAN/CAN FD stack to
RTEMS executive. Some RTEMS concepts introduced in section 2.2 are used here so
readers not familiar with the executive is recommended to read it as well.

CAN standard and its basic principles are shortly presented at the beginning of this
chapter. This is to provide a basic understanding of the requirements for CAN stack
implementation. The rest of the chapter then focuses on CAN/CAN FD stack for
RTEMS and its implementation.

I 3.1 Controller Area Network

Controller Area Network protocol (abbreviated as CAN, often referred to as CAN bus)
is a vehicle bus standard developed in the early 80s at Bosh. It is currently heavily used
in an automotive industry as a main communication protocol between car’s computation
units, but it also has its place in other fields, including real time control. The physical
layer consists of two differential wires, CAN_L and CAN_H, ground wire and optional
voltage supply wire.

The bus has two defined states: recessive (logical one) and dominant (logical zero)
with the latter one preserved on the bus if different states are sent from multiple con-
trollers at the same time. This characteristic is important for medium access control.
CAN bus is a multi master protocol with stochastic access control (meaning there is
no central node defining who can transmit) called Carrier-Sense Multiple Access with
Collision Resolution (CSMA/CR). If occurs, collisions are resolved based on the data
priority of messages competing for the bus.

The collisions are resolved during the arbitration phase, where each message has its
unique identifier defining its priority. Since the dominant state wins over the recessive
state, a message with the highest priority (the lowest identifier number) wins over
messages with lower priorities and can transmit the message. The message transmission
is called the data phase. Other messages compete for the bus again during the next
arbitration phase.

Example: Suppose we have two controllers and 3 bit wide identifier for a message.
Controller A wants to send a message with the identifier 0x1 (001 binary) and B a
message with 0x2 (010 binary). During the arbitration phase, identifiers are compared
bit by bit starting from most the significant bit. Therefore, for the first bit (0 for
both), nothing will be determined as both controllers drive the bus to the dominant
state. However, for the second bit (0 for A, 1 for B), controller A drives the bus to the
dominant state and wins over the recessive state driven by B. As a result, a message
with the identifier 0x2 loses the arbitration and leaves the bus to a higher priority
message.

CAN frame has two possible formats: base frame format with 11 bit identifier and
extended frame format with 29 bit identifier. The message can also be sent with RTR
flag, defining it is a remote transmission request for a given identifier. Both standard
and extended CAN frame formats are depicted in Figure 3.1.

SOF 11 bit RTR IDE 1] DLC Data Payload CRC ACK EOF
1 bit Id 1 bit 1 bit 1 bit | 4 bits 8 Bytes 15 bits 1 bit 7 bits
A
Standard CAN Frame
SOF Frame Control Data Frame EOF
1 bit Header Field Payload Trailer
General Structure
SOF | 11bit| SSR | IDE | 18 | RTR| 11 0 | DLC Data Payload RE | ack | EOF
1 bit Id 1 bit 1 bit bitid| 1bit | 1 bit 1 bit 4 bits 8 Bytes bits 1 bits | 7 bits

Extended CAN Frame

Figure 3.1. Visualization of standard and extended CAN Frame format (Source: [5]).

Original CAN protocol (nowadays referred to as CAN CC) speed is limited to 1
Mbit/s for a bus length of 50 meters. This limitation, caused by arbitration phase
synchronization requirements, was overcome with Controller Area Network Flexible
Data-Rate (abbreviated as CAN FD) protocol enhancing standard CAN format. It
utilizes bit rate switching between arbitration and data phases: keeping the arbitration
at the original speed but sending data faster. The speed of CAN FD frames can be
up to 8 Mbit/s on 50 meters, although lower values are currently used in the industry.
Automotive standard, for example, is 500 Kbit/s for arbitration and 2 Mbit/s for data
rate.

Another advantage of CAN FD frames is the larger maximal data payload. While
standard CAN frame has only up to 8 bytes of data, flexible data format can transfer
up to 64 bytes. The limitation of CAN FD frames is a backward incompatibility.
Therefore, CAN FD frames can be used only if every controller in the network is FD
capable. CAN FD frames, both standard and extended format, are visualized in Figure
3.2

Standard CAN frame

SOF 11 bit RTR IDE r0 DLC Data Payload CRC ACK EOF
1 bit Id 1 bit 1 bit 1bit | 4 bits 64 Bytes 15 bits 1 bit 7 bits

A
SOF Frame Control Data Frame EOF
1 bit Header Field Payload Trailer

S
SOF | 11bit| SSR | IDE | 18 | RTR | 1 0 | DLC Data Payload RC | ack | EoF
1 bit Id 1 bit 1 bit bitid| 1bit | 1 bit 1 bit 4 bits 64 Bytes bits 1 bits | 7 bits

Extended CAN frame

Figure 3.2. Visualization of standard and extended CAN FD Frame format (Source: [5]).

With standard CAN and CAN FD already established and heavily used in industry
including automotive, the third generation of CAN is finding its way to some end
applications. Protocol called Controller Area Extended Data-Field Length (CAN XL),
standardized in 2018, extends data field up to 2048 bytes. The bit rate switching

9

between arbitration and data phase introduced in CAN FD is used as well. This
protocol is not supported by the current version of RTEMS CAN/CAN FD stack, but
it may be a goal of future projects.

Various CAN stack implementations can be found across operating systems.
GNU /Linux has a SocketCAN networking stack that utilizes socket API and provides
a similar interface to TCP/IP protocol. This approach is slowly being implemented in
other operating systems such as NuttX or Zephyr, although very limited and only as
an alternative to the already existing character device drivers.

While SocketCAN has the advantage of similar API to TCP/IP protocol and the
socket concept also fits CAN network, there are some setbacks. It internally uses
different frame formats for standard CAN, CAN FD and CAN XL with CAN FD
and CAN XL flags divided between lower three bits of frame identifier and separate
flag field. Also, real time operating systems like RTEMS may benefit from having a
separate simpler API compared to SocketCAN API. Moreover, usage of SocketCAN in
RTEMS would require enabled TCP/IP support. This is not ideal if the target does not
support networking or if the system is memory limited. TCP/IP support in RTEMS
comes from full-featured BSP stack, which is powerful but also demands a considerable
amount of resources.

I 3.2 RTEMS CAN Stack Basic Principles

The common CAN/CAN FD stack implementation developed for RTEMS executive
is based on LinCAN infrastructure developed as a loadable module for Linux kernel
at Czech Technical University in the early 2000s. The infrastructure utilizes message
FIFO queues organized into oriented edges between controller drivers and CAN users.
Both controller and application then hold ends of connected edges. These edges are
then responsible for message transfers from an application to a controller and vice versa.

RTEMS provides POSIX interface including a standard character device, therefore
each CAN controller is registered as a device into /dev device file directory. Standard
naming (can0, canl and so on) might be used for device registration, but it is possible
to use any different scheme. The usage of POSIX character device interface allows the
application to use standard read/write/ioctl system calls for CAN bus transmission
and setup. Operations read() and write() are used to read CAN message from FIFO
queue and write new message to the queue, respectively. Stack and controller can
be configured and set up by various ioctl() calls that are described throughout this
chapter. This includes setting of bit timing values, CAN mode operation, or creation
of new queues (priority classes).

The device can be opened in both blocking and nonblocking mode and one device
can be opened from multiple applications. Read and write operations wait on binary
semaphore until the frame can be passed to the framework in reception or there is
space to enqueue the frame for transmission. The nonblocking mode can be used in
combination with polling functions implemented by ioctl calls. As opposed to standard
socket polling, the current implementation of RTEMS CAN framework can not poll
both RX and TX in one call. Instead, separate calls for RX available and TX ready
have to be used. User defined timeout, specified as a time interval in the monotonic
clock scale and passed as an input argument, is internally recalculated to an absolute
time against the monotonic clock (absolute time, usually since system startup, that
does not jump forward or backwards as opposed to real-time clock).

The stack supports both standard and CAN FD frames with general can_frame
structure described in section 3.3.6. Support for CAN XL frames is not implemented,

10

but further extension should be possible without the redefinition of basic principles
introduced in scope of this thesis.

B 3.2.1 FIFO Queues

Edges/FIFOs between the application and controller are divided according to their
direction and priority and inserted into the correct list on its input and output ends.
The interconnection of one CAN controller with two user applications is illustrated in
Figure 3.3. The input ends of edges/FIFOs are held in an inlist, the inactive/empty out
ends in an idle list, and active out ends are held in an active list corresponding to the
edge priority. The controller and application then examine the active list and determine
if there are any messages to process (either TX or RX based on edge direction).

App/User 1

edges
with

CAN Controller

ends

App/User 2

-
= convoller =
== controller idle
= orvirtual [
— — inlist

Figure 3.3. Message flow in graph edges/FIFOs (Source: [6]).

The current implementation specifies up to three FIFO queue priorities for edges
routing messages from users to the controller. Each queue has an assigned priority
from 0 to 2 where 2 is the highest. CAN message sent from the application to the
infrastructure is inserted into the correct queue according to CAN identifier match
with the queue ID mask. The controller’s driver then takes frames from FIFO queues
according to their priority class and transmits them to the network.

Successfully sent frames are echoed through queues back to opened file instances
except the sending one (this is the default filter setting). The echo capability is fully
configurable and can be turned off if required.

One TX and one RX queue (from an application point of view) is created for each
of the opened instances by default. These queues have the lowest priority, default filter
mask (no echo to sending instance and no error frames) and FIFO size for 64 messages
configured by default. Allocated space for one CAN frame differs based on the used
controller. If the chip is FD capable, queue slots are allocated for CAN frames with up
to 64-data bytes, otherwise only slots for 8 data bytes are allocated. These queues are
created by default to provide simple access to the network for users who do not need
to create priority classes or more complicated filters.

If more complex queue setting is required, the user can create a new one with a dedi-
cated ioctl call. This is also useful for creating more TX queues with different priorities,

11

representing commonly used priority classes in fact. Queues (edges) and their ends are
disconnected and discarded either upon the user’s call or during close operation. The
stack ensures all outgoing messages already written by the user are sent before discard-
ing the edges, therefore no message is lost. This operation is by default performed in
blocking mode (regardless of what mode the instance was opened), meaning close()
function blocks the calling thread until all messages are sent to the network. Non-
blocking close behavior is configurable, the edges then still remain allocated until all
messages are sent, but close operation is successfully finished without delay.

I 3.3 Application Programming Interface

This section describes the application programming interface (API). This includes con-
figuration of both framework and controller and transmission and reception of CAN
messages (frames). The section is written in the order the typical application will op-
erate with CAN stack: first opening instance, configuration, and then transmission/re-
ception.

Il 3.3.1 Opening and Configuring Queues

As mentioned in section 3.2, every controller/device is registered as a node into /dev
namespace. Since API is provided with standard POSIX calls, function open() can be
used to obtain device file descriptor. It also respects standard 0_NONBLOCK option in
the call.

int open(const char* pathname, int flags);

This descriptor returned by open() call is then used to access the device. Opening
device will create new TX and RX edge between application and controller with default
settings as described in 3.2.1. New queue can be created from the application with
ioctl() call RTEMS_CAN_CREATE_QUEUE.

ssize_t ioctl(fd, RTEMS_CAN_CREATE_QUEUE, &queue_param) ;

Input parameter queue_param is a can_queue structure containing configuration
options (direction, priority, data length, buffer size, filter). Preprocessor defines
RTEMS_CAN_QUEUE_RX and RTEMS_CAN_QUEUE_TX can be used to select queue direction.
Structure can_filter holds the CAN frame identifier and flag filters, ensuring only
frames matching this filter are passed to the queue’s ends. Fields id and flags holds
identifier bits and flags, respectively, required in CAN frame to be assigned to the
corresponding FIFO queue. In other words, it specifies that only specific identifiers or
flags shall be assigned to the queue. Members with _mask postfix are used to mask out
identifiers or flags that are forbidden for a given FIFO queue.

This can be used to set if an application shall receive echo or error frames or to
implement priority class mapping based on identifier range. Setting all fields of the
structure to zero means all frames are passed through the queue.

struct can_filter {
uint32_t id;
uint32_t id_mask;
uint32_t flags;
uint32_t flags_mask;
18

12

struct can_queue {
uint8_t direction;
uint8_t priority;
uint8_t dlen_max;
uint8_t buffer_size;
struct can_filter filter;

};

It is possible to create queues with a configurable number of slots (frames the FIFO
can hold) and data length for one slot. These characteristics are set by buffer_size
and dlen_max fields, respectively. It is possible to set a maximum data length of only
up to 64 bytes (CAN FD data length), otherwise ioctl call results in an error. Setting
data length or FIFO size to a negative value also causes an error. Default values — 8
bytes for standard CAN controller and 64 bytes for CAN FD capable controller — are
set if data length is set to zero.

Note that every opened instance has its own FIFO queues/edges between the appli-
cation and the driver. This means queues created for one instance will not affect the
other one even if both instances opened the same device.

Queues for given instance can be removed/discarded by RTEMS_CAN_DISCARD_QUEUES
command. It is possible to discard all TX queues at once, all RX queues at once, or all
queues at once regardless of direction. The type of queues to be discarded is selected by
integer parameter type, defines RTEMS_CAN_QUEUE_RX and RTEMS_CAN_QUEUE_TX can be
used once again. These defines are basically a bit mask and bitwise or operation can be
performed on them. This way, the user may discard both RX and TX queues at once.

ssize_t ioctl(fd, RTEMS_CAN_DISCARD_QUEUES, type);

Discarded TX queues ensure all messages are transmitted to the network according to
the rules described in 3.2.1. The limitation of discarding only all TX or all RX queues at
once is caused by the application knowing only a file descriptor for the opened instance.
It does not have direct knowledge of internal arrangements and possibility to discard
queues one by one would require additional multiplexing and would complicate both
application and stack interface.

It is also possible to flush the queues. Once again, this operation can be imposed
only on all TX or/and all RX queues at once, similarly to RTEMS_CAN_DISCARD_QUEUES.

ssize_t ioctl(fd, RTEMS_CAN_FLUSH_QUEUES, type);

B 3.3.2 BitTime Calculation

While passing the desired bit rate and calculating bit time constants according to this
parameter is commonly used in hobby projects or even in industrial applications without
precise bit timing requirements, some applications may require a different approach.
This is, for example, a case in an automotive industry where raw controller specific bit
timing parameters have to be used.

To satisfy both approaches and the user’s requirements, the infrastructure imple-
ments ioctl call allowing to pass bit rate or defined raw bit timing parameters. In case
of bit rate usage, the constants are calculated by the infrastructure and selected to
match the defined bit rate. The advantage of this approach is the easier configuration
as the user only defines the desired bit rate. On the other hand, user can define those

13

parameters directly in an application and pass them through the ioctl call to the con-
troller’s registers. This is more demanding, but ensures correct timing parameters are
set.

ssize_t ioctl(fd, RTEMS_CAN_SET_BITRATE, &set_bittiming);

The ioctl call RTEMS_CAN_SET_BITRATE unifies both approaches by passing a pointer
to structure struct can_set_bittiming. The definition of the structure follows.

struct can_bittiming {
uint32_t bitrate;
uint32_t sample_point;
uint32_t tq;
uint32_t prop_seg;
uint32_t phase_segl;
uint32_t phase_seg2;
uint32_t sjw;
uint32_t brp;

};

struct can_set_bittiming {
uintl6_t type;
uintl6_t from;
struct can_bittiming bittiming;

};

Field type selects whether nominal bit time or data bit time (for CAN FD ca-
pable chips only) should be set. Preprocessor defines CAN_BITTIME_TYPE_NOMINAL
and CAN_BITTIME_TYPE_DATA are recommended to be used. This approach also
allows future extension of CAN XL bit time settings. Subsequent field from se-
lects whether the bit time is calculated from a given bit rate or whether the values
are already precalculated and passed through can_bittiming structure. Defines
CAN_BITTIME_FROM_BITRATE and CAN_BITTIME_FROM_PRECOMPUTED are prepared for
this.

Example: Suppose the user has CAN FD capable controller and wants to configure
nominal bit rate to 500000 and data bit rate to 2000000 (those are standard values used
in automotive indrustry). Nominal bit timing is calculated from given bit rate, data
bit timing is given as precomputed values. The configuration would require following
structures and ioctl calls.

static struct can_set_bittiming nominal = {
.type = CAN_BITTIME_TYPE_NOMINAL,
.from = CAN_BITTIME_FROM_BITRATE,

{

500000,

.bittiming

.bitrate
+
};

static struct can_set_bittiming data = {

.type = CAN_BITTIME_TYPE_DATA,
.from = CAN_BITTIME_FROM_PRECOMPUTED,

14

.bittiming = {
.tq = 10,
.prop_seg = 18,
.phase_segl = 18,
.phase_seg2 = 13,
.sjw = 1,
.brp = 1,

b

};

ioctl(fd, RTEMS_CAN_SET_BITRATE, &nominal);
joctl(fd, RTEMS_CAN_SET BITRATE, &data);

Bit time setup via ioctl call, although being recommended, is not mandatory. These
values can be instead passed to the controller’s initialization function during board
initialization (if supported by the controller) or filled directly to its private structure.

Currently set bit timing values can be obtained from the controller together with
maximum and minimum bit timing constants (these should be defined by the controller
itself) with RTEMS_CAN_GET_BITTIMING call.

ssize_t ioctl(f£d, RTEMS_CAN_GET_BITTIMING, &get_bittiming);

Argument get_bittiming is a pointer to can_get_bittiming structure. This
structure, apart from current bit timing values and controller’s constants, has
field type defining type of bit timing values (nominal or data). Again, defines
CAN_BITTIME_TYPE_NOMINAL and CAN_BITTIME_TYPE_DATA can be used as the type
field is both input and output from ioctl call. Other fields are filled by ioctl according
to actual controller settings.

Bl 3.3.3 Mode Setting

The CAN controller can be used in various modes (FD capable, loop back or listen
only for example). Definitions of supported modes are taken from Linux kernel to
provide a unified approach in settings. Controller specific ioctl call should be used
if some controller supports unique mode not provided in the following table. Mode
setup is done with RTEMS_CAN_CHIP_SET_MODE ioctl command, where selected modes
are passed as 32-bit large unsigned integer.

#define CAN_CTRLMODE_LOOPBACK (1<<0)
#define CAN_CTRLMODE_LISTENONLY (1<<1)
#define CAN_CTRLMODE_3_SAMPLES (1<<2)
#define CAN_CTRLMODE_ONE_SHOT (1<<3)
#define CAN_CTRLMODE_BERR_REPORTING (1 << 4)
#define CAN_CTRLMODE_FD (1<<5)
#define CAN_CTRLMODE_PRESUME_ACK (1<<6)
#define CAN_CTRLMODE_FD_NON_ISO (1<<7)
#define CAN_CTRLMODE_CC_LENS_DLC (1<<8)
#define CAN_CTRLMODE_TDC_AUTO (1<<9)
#define CAN_CTRLMODE_TDC_MANUAL (1<<10)

ssize_t ioctl(fd, RTEMS_CAN_CHIP_SET_MODE, modes);

15

This command sets modes defined in modes argument and disable all the others.
Thus, the same ioctl can be used for both mode enable and disable operations. The
call results in an error if the application tries to set a mode not supported by the
controller. Setting mode is also enabled only if the controller is stopped (see section
3.3.4), otherwise the ioctl call returns an error.

The controller’s driver can have some default modes that are set during controller
initialization. For example, CAN FD capable controllers may have CAN_CTRLMODE_FD
set by default.

B 3.3.4 Chip Startand Stop

Opening the driver instance does not mean the chip is started. Quite the oppo-
site, it is useful not to start the chip during open operation as the configuration
of bit timing or mode might follow. To start the chip, the application should call
RTEMS_CAN_CHIP_START ioctl.

ssize_t ioctl(fd, RTEMS_CAN_CHIP_START);

This operation can be done repeatedly as repeated calls after the chip is started do
not have any effect. There is a possibility to start the chip directly from the board
support layer with function rtems_can_chip_start ().

int rtems_can_chip_start(struct can_chip *chip);

Starting the chip right after initialization at the board support level brings the ad-
vantage of having the controller ready and simplifies the application a bit. However,
correct bit timing or modes should be set before the chip starts, otherwise it may cause
errors on the bus. Similarly, the chip can be stopped with RTEMS_CAN_CHIP_STOP ioctl.
This is required if the user wants to reconfigure the bit timing for example.

ssize t ioctl(fd, RTEMS_CAN_CHIP_STOP);

It is important to check the number of users (applications) using the chip before
turning it off as there can be more than one user per chip. The infrastructure allows
turning off the controller even if there are other users on it. Read and write calls from
other applications return an error in that case.

Il 3.3.5 Controller Related Information

To obtain information about the controller, ioctl call RTEMS_CAN_CHIP_GET_INFO may
be used. It takes integer argument info_type that defines what kind of information
user needs. The information is provided as a return value of an ioctl call.

ssize_t ioctl(fd, RTEMS_CAN_CHIP_GET_INFO, info_type);

Following information can be retrieved from the controller. This ioctl also offers
another way to obtain the currently set bit rate values. As opposite to the approach
presented in section 3.3.2, this way is much easier since there is no need to fill larger
structure. However, only bit rate can be obtained this way.

RTEMS_CAN_CHIP_BITRATE,
RTEMS_CAN_CHIP_DBITRATE,
RTEMS_CAN_CHIP_NUSERS,
RTEMS_CAN_CHIP_FLAGS,
RTEMS_CAN_CHIP_MODE, and
RTEMS_CAN_CHIP_MODE_SUPPORTED.

16

The defines listed above may be used to obtain information from the controller. It is
possible to obtain only one information for one ioctl call. RTEMS_CAN_CHIP_MODE and
RTEMS_CAN_CHIP_MODE_SUPPORTED are used to obtain currently set controller modes
and all modes supported by the controller, respectively. Stop command, described in
section 3.3.4, may benefit from RTEMS_CAN_CHIP_NUSERS providing number of users
currently using the controller. Controller’s flags obtained by RTEMS_CAN_CHIP_FLAGS
provide various information including FD capability of the controller, status of the chip
(configured, running), and so on.

Il 3.3.6 CAN Frame Representation

One CAN message, called frame in RTEMS, is represented by a structure named
can_frame. CAN frame header is statically defined by a separate can_frame_header
structure to simplify the implementation of write operation. It also provides a better
starting point for future extension to CAN XL format.

The frame header has an 8 bytes long timestamp, 4 bytes long CAN identifier, 2 bytes
long flag field and 2 bytes long field with information about data length. The data field
itself is a 64 byte long array with byte access. Only the first 11 bits of the identifier are
valid (29 if an extended identifier format is used). Having any of the upper three bits
set to one indicates an invalid CAN frame format. The user should check frame’s flags
to get information if this is not an error frame generated by the controller.

struct can_frame header {
uint64_t timestamp;
uint32_t can_id;
uintl6_t flags;
uintl6_t dlen;

15

struct can_frame {
struct can_frame_header header;
uint8_t data[CAN_FRAME MAX DLEN];
};

Names of frame fields were selected to at least partially match the usage in other op-
erating systems like GNU/Linux or NuttX. Compared to SocketCAN implementation,
all frame flags are defined only in flags field, and the top three bits of the identifier
are not used except for additional tagging of error frames returned to user. RTEMS
frame format is also unified for both standard CAN and CAN FD (and intended for
CAN XL in the future as well), therefore differences between frame formats are defined
in flags field. The following flags are supported.

CAN_FRAME_IDE,

CAN_FRAME RTR,
CAN_FRAME_ECHO,
CAN_FRAME_LOCAL,
CAN_FRAME_TXERR,
CAN_FRAME_ERR,
CAN_FRAME_FIFO_OVERFLOW,
CAN_FRAME_FDF,
CAN_FRAME_BRS, and
CAN_FRAME_ESI.

17

Flag CAN_FRAME_IDE (identifier extended format) is set automatically if CAN frame
identifier exceeds 11 bits. Flags CAN_FRAME_FDF and CAN_FRAME_BRS (if bit rate switch
between arbitration and data phase is intended) should be set for CAN FD frame
transmission.

Some of these flags are automatically masked for the first queues created during
an instance open operation. These include CAN_FRAME_ECHO and both error flags
CAN_FRAME_TXERR and CAN_FRAME_ERR. Flag CAN_FRAME_FIFO_OVERFLOW is set au-
tomatically by the stack for RX frames and can not be filtered out. It indicates FIFO
overflow occurred, and some frames on the reception side have been discarded. More
specifically, it informs the user there are discarded frames between the frame with
CAN_FRAME_FIFO_OVERFLOW flag and the previous correctly received frame.

Il 3.3.7 Frame Transmission

The application can pass the message to the framework by calling the standard POSIX
write() function. The frame is filtered to the correct FIFO queue based on CAN
identifier match with queue ID mask (this provides the filtering to priority classes if
more queues are used).

It is possible to send only one CAN frame during one write() call. Write size of
the buffer filled with the frame header and data is specified by count parameter. This
size can be easily calculated with can_framsize() function. The function takes the
header size and adds the data length defined in header’s dlen field. Passing incorrect
frame length (less than header size or larger than maximum CAN frame size) results
in an error. Using a frame size larger than the actual part holding header dlen bytes
is acceptable.

ssize_t write(int fd, struct can_frame *frame, size_t count);

This operation is either blocking or nonblocking based on mode in which the file
instance was opened. If opened in blocking mode and target FIFO queue being full, the
thread waits until there is a free space in a FIFO (this occurs when some message was
released from the FIFO upon successful/error transmission). Nonblocking mode can be
used to return from write immediately with error value in that case. Value errno is
set to EAGAIN.

In nonblocking mode, the application may utilize TX polling function implemented
as RTEMS_CAN_POLL_TX_READY ioctl call. The call has timeout argument defined in
timespec structure.

ssize_t ioctl(fd, RTEMS_CAN POLL_TX_READY, &timeout);

The thread waits on ioctl call either until there is a free space in any of the FIFO
queues or until timeout. The application may also require a confirmation that critical
messages were indeed passed from FIFO queue to the network. This functionality is
implemented in ioctl call RTEMS_CAN_WAIT_TX_DONE.

ssize_t ioctl(fd, RTEMS_CAN WAIT _TX DONE, &timeout);
Once again, it has defined timeout as a pointer to timespec structure. This call

waits until all frames from all FIFO queues are transferred to the network or until
timeout.

18

Bl 3.3.8 Frame Reception

Applications can access received messages with standard POSIX call read(). The call
returns an error if the read size specified by count is less than the length of the frame
header. It is possible to read only one frame with one read call.

ssize_t read(int fd, struct can_frame *frame, size_t count);

Once again, this operation is either blocking or nonblocking based on file descriptor
mode. Blocking mode waits indefinitely until there is a RX message available in the
queue, nonblocking mode returns with error if no message is to be read at the moment.

The parameter count gives the read size in bytes. The entire size of CAN frame
(use operator sizeof (struct can_frame)) might be used to ensure all frames are
received, but the user may also specify a smaller read size. If this size is less than the
length of the frame, only the number of bytes specified in count is copied to frame and
EMSGSIZE errno is set. The user can then obtain required length from frame header. It
is not possible to request a read of fewer bytes than the size of the header.

The application can implement polling function on reception side using ioctl call
RTEMS_CAN_POLL_RX_AVAIL. This call has a defined timeout argument, with timespec
structure as previous calls, and waits until there is an available message or until timeout.

ssize_t ioctl(fd, RTEMS_CAN_POLL_RX_AVAIL, &timeout);

Hl 3.3.9 Hardware Timestamping

Some controllers may provide support for precise hardware timestamping. The infras-
tructure provides an ioctl call via which the application may obtain this value. The
argument is a pointer to uint64_t timestamp value.

ssize_t ioctl(fd, RTEMS_CAN_CHIP_GET TIMESTAMP, ×tamp);

B 3.3.10 Controller's Statistics

The controller device driver can keep track of CAN frame statistics. This includes a
number of successfully sent /received frames, bytes or number of errors. The number of
RX overflows, i.e. frames not received because the hardware RX buffer is already full,
can also be tracked.

The statistics can be obtained by ioctl call RTEMS_CAN_CHIP_STATISTICS with ar-
gument statistics providing a pointer to can_stats structure. Support of statistics
tracking is controller dependent, although well written drivers should provide support
for it.

ssize_t ioctl(fd, RTEMS_CAN_CHIP_STATISTICS, &statistics);

struct can_stats {

unsigned long tx_done;
unsigned long rx_done;
unsigned long tx_bytes;
unsigned long rx_bytes;
unsigned long tx_error;
unsigned long rx_error;
unsigned long rx_overflows;
uint8_t chip_state;

19

I 3.4 Controller Initialization

CAN controller has to be initialized (typically allocation of resources and initial setup
of controller’s registers) and register as a character device before being used from an
application via API described in the section 3.3. Although the operation is target
dependent, it is usually done in two steps.

The first step is the initial configuration and initialization of a specific CAN con-
troller (i.e. CTU CAN FD, SJA1000 or MCAN). The presented stack requires the
user to call controller specific function to handle this step. This function, often called
chipname_initialize (where chipname is the name of the controller), allocates and
returns can_chip structure if successful and provides initial setup of the controller. The
function should also fill the can_chip structure fields with the correct default values.
This includes controller’s frequency, default flags, modes, supported modes, bit timing
constants and so on. This step is important to provide correct support of various ioctl
calls presented in previous sections.

System resources like semaphores, interrupt handlers or task threads are also allo-
cated here. However, since the function is controller specific, the implementation and
usage may slightly differ for each chip.

The structure also has a pointer to controller specific structure, also allocated during
initialization. This is controller specific and differs from implementation to implemen-
tation. It is usually used to define controller unique features that do not belong to the
generic structure. It also should be used only in the controller’s driver itself as it is not
a good practice to put target dependent parts into a portable application.

The initialized controller then has to be registered as a character device into /dev
namespace. Function can_bus_register() takes care of this operation. Standard
naming canX is used in the examples, but it is possible to select a different name scheme
per application requirements. The entire process of initialization and registration is
demonstrated on virtual CAN controller in the code below. Note that the code also has
to include can-bus.h header for can_bus structure definition and can_bus_register ()
function declaration. Controller dependent header is also required for the initialization
function.

/* Allocate can_bus structure */
struct can_bus bus = malloc(sizeof(struct can_bus));

/* Initialize virtual CAN controller */

bus->chip = virtual_initialize();

/* Register controller as dev/can0O, returns O on success */
int ret = can_bus_register(bus, "dev/canO");

Note that the user has to specify the path to which the controller is registered, and
this path has to be unique. Chip specific function xxx_initialize() may also have
different input parameters for different chips or can even have a different name according
to chip specific implementation.

The process of initialization and registration can be either implemented in the board
support package and done during board startup or in an application itself. However,
the latter complicates the application’s portability to different controllers.

20

I 3.5 Driver Interface

Every controller driver has to interact with the infrastructure to receive messages from
FIFO queues (transmission from an application point of view) and to send messages
back (reception from an application point of view). To achieve this, the controller
holds ends (a container or a graph node) to which edges are connected. These ends
should be initialized during controller initialization described in section 3.4. Function
canqueue_ends_init_chip() is provided to initialize the controller’s side ends.

int canqueue_ends_init_chip (
struct canque_ends_dev_t *qgends_dev,
struct can_chip *chip,
rtems_binary_semaphore worker_sem

)

This function also assigns worker_sem, a self-contained binary semaphore (refer to
section 2.2.3). It is used by the framework to inform the controller’s side about new
message being available in FIFO queues. A controller can also use this semaphore to
trigger its worker thread in response to an interrupt coming from the hardware.

Driver should also register several functions used by ioctl calls (if supported). These
are assigned through can_chip_ops structure. Not used functions should be assigned
a NULL value.

It is also possible to have driver specific ioctl calls. The common layer passes all calls
that are not recognized to controller’s specific function (if assigned in can_chip_ops
structure) and let the controller deal with them. This way options unique to just
one controller (not defined in control modes for example) can be set up during its
implementation and registration or even based on application requirements.

All functions and structures required for the driver implementation are included with
can-devcommon.h header file. The driver should therefore include this header to utilize
all functions mentioned in this section.

Il 3.5.1 Frame Transmission

The controller has to retrieve a message from one of the FIFO queues to transmit it
to the network. The information about new message being available in FIFO queues
is announced to the controller through the already mentioned binary semaphore. The
process of waiting for the semaphore varies based on the controller’s implementation.
One of the possible designs is the implementation of worker thread as an infinite loop
and waiting for a semaphore there. The thread can manage frame transmission and
reception once a semaphore is posted.

The message can be retrieved from the framework with canque_test_outslot ()
function. This function retrieves the oldest ready slot from the highest priority edge
(FIFO queue) and, therefore tries to send high priority class first. It is implemented
as a for loop iterating through all queues starting with the highest priority one. This
is fitting for the current maximum number of 3 priorities per opened instance, but it
would not be optimal if more classes were used. The addition of bit map, holding active
classes in it, and iterating only through active classes would be a fitting extension if
more than 3 classes were used.

int canque_test_outslot(
struct canque_ends_t *qgends,
struct canque_edge_t **qedgep,

21

struct canque_slot_t **slotp

)

Once retrieved from the framework, the CAN frame (represented by slot structure
canque_slot_t) can be inserted into the controller’s hardware buffer and sent to the
network. The canque_test_outslot () does not free the slot’s space in the FIFO, but
holds it until the transmission is finished. This is an important feature of the stack
that allows hardware buffer abort and slot transmission rescheduling. The controller
should inform the framework by calling canque_free_outslot() function upon suc-
cessful transmission of the message to the network or in case of transmission error. The
function frees the allocated slot in the FIFO queue.

int canque_free_outslot(
struct canque_ends_t *qgends,
struct canque_edge_t *qgedge,
struct canque_slot_t *slot

)

The framework also provides a unique feature to push slots back to the correct
FIFO and schedule the slot for later processing. This is useful in case of transmission
abort. The abort might be used when some later scheduled low-priority frame occupies
the hardware TX buffer, which is urgently demanded for a higher priority pending
message from other FIFO for example. Scheduling for later processing is implemented
in canque_again_outslot () function.

int canque_again_outslot(
struct canque_ends_t *qgends,
struct canque_edge_t *qgedge,
struct canque_slot_t *slot

E

The previously described function canque_test_outslot() retrieves the slot from
the FIFO once called. This is not convenient in case there is no free space in the
controller’s hardware TX buffers. The preferable option would be to just check whether
there is some pending message from a higher priority class compared to priority classes
inserted in buffers. This can be done with canque_pending outslot_prio().

int canque_pending_outslot_prio(
struct canque_ends_t *qgends,
int prio_min

)

The minimal priority of the FIFO queue to be considered is defined by prio_min
argument. The controller should deal accordingly with pending frame from a higher
priority class to avoid priority inversion problem. This is in detail described in chapter
4 and section 5.2.2.

Bl 3.5.2 Frame Reception

Frame reception is usually triggered in a controller with RX interrupt. The driver
should read the message, assign correct flags to structure can_frame and then pass the
frame to FIFO queues. Function canque_filter_frame2edges() is prepared for this.

int canque_filter_ frame2edges(
struct canque_ends_t *qgends,

22

struct canque_edge_t *src_edge,
struct can_frame *frame,
unsigned int flags2add

)3

Argument src_edge defines optional source edge for echo detection, argument
flags2add optional additional flags. These are omitted for standard CAN frame
reception, but can be used for sending echo frame upon successful transmission or for
the case of error frames reporting for example.

The usage of mutexes — refer to section 2.2.4 for more details — in the infrastructure
does not allow to fill the queues, i.e. call canque_filter_frame2edges() function,
directly from an interrupt handler. Instead, the controller has to use a dedicated thread
for this operation. The example of such a worker thread used in CTU CAN FD driver
is described in section 5.2.1.

The frame structure presented in section 3.3.6 holds the length of the data in bytes.
This is much more comfortable for application usage, but the controller has to con-
vert this value to 4 bit data length code before sending it to the network. Function
rtems_canfd_len2dlc() provides a unified way to do this and supports conversion for
both standard and FD frames.

static inline uint8 t rtems_canfd_len2dlc(uint8_t len);

The return value of the function is the calculated data length code. The conversion
is done with the lookup table for all possible values.

I 3.6 Error Reporting

CAN frame has two flags that can be used for error reporting: CAN_FRAME_TXERR
and CAN_FRAME_ERR. The first one is used to report frame transmission error. This
error might be caused by various errors in the controller’s hardware transmission
buffer and is controller dependent. In this case, the controller should send the
frame that caused the error back to its opened instance — source edge argument of
canque_filter_frame2edges function described in section 3.5.2 might be used — with
added CAN_FRAME_TXERR flag. Therefore, the original message, its identifier, and flags
shall remain the same and only additional flag is inserted.

The infrastructure sends the transmission error frame only to the first available edge
(matching identifier range and flags) of a given opened instance. This is to avoid error
frames spamming multiple reception queues. Error flag CAN_FRAME_TXERR is filtered
out by default queue settings.

The rest of the errors are sent to the application with CAN_FRAME_ERR. This includes
error counter (active, passive, and bus off status), RX buffer overflows, bus errors,
arbitration lost errors, and so on. These errors, their detection, and handling are
controller specific. However, the stack defines the format in which CAN error frame
should be sent to the application. This format is partially taken from SocketCAN
implementation to provide easier understanding, but there are some differences.

Error frame format has the flag set to CAN_FRAME_ERR value. It is not forbidden to
have other flags present as well, but these might be masked out for some queues, so
caution is in place. Since error frame only contains information about the error and not
about the frame that caused it (it even might not know what frame caused it), other
fields can be freely used to pass error information.

23

CAN identifier is used to inform about error type. This field can have more error types
present (for example both controller error and arbitration lost error) if needed. The
stack also sets the 31st bit of CAN identifier to a logical one, notifying the application
the identifier is invalid concerning the standard CAN frame. The following errors types
are supported:

CAN_ERR_TXTIMEOUT /* TX timeout */,
CAN_ERR_LOSTARB /* lost arbitration */,

CAN_ERR_CRTL /* controller problems */,
CAN_ERR_PROT /* protocol violations */,
CAN_ERR_TRX /* transceiver status */,
CAN_ERR_ACK /* received no ACK on transmission */,

CAN_ERR_BUSOFF /* bus off */,

CAN_ERR_BUSERROR /* bus error */,
CAN_ERR_RESTARTED /* controller restarted */, and
CAN_ERR_CNT /* error counter values */.

Having error types located in CAN frame identifier brings the possibility to create
new RX queues with identifier mask set in such a way that only some of these errors are
propagated to the application. Additional information providing a deeper description
of raised errors are also available in data fields for some error types. Only a standard
frame with 8 byte long data field is used.

The first byte (8 bits) of data — data[0] — field keeps detailed information regarding lost
arbitration error (CAN_ERR_LOSTARB). This just informs in what bit the arbitration was
lost. Another field stores controller related problems (CAN_ERR_CRTL). This includes
RX or TX overflows and the controller changing its error state (error active, warning,
passive).

Protocol related violations (CAN_ERR_PROT) are stored in data[2] and data[3] fields.
The first mentioned informs what kind of violation is present. This may be incorrect bit
stuffing, controller incapability to generate dominant, or recessive bit or bus overload
for example. The following field provides the location of this violation.

Transceiver status (CAN_ERR_TRX) is located in data[4] field. This is used to report
hardware layer issues such as missing wire or wire being short-circuited to ground or
supply voltage. The sixth data field — data[5] — is reserved and not used. The in-
frastructure also reports a number of the current values of TX and RX error counters
(CAN_ERR_CNT). These data are passed through data[6] and data[7] fields for transmis-
sion and reception, respectively.

I 3.7 Source Code Organization

The implementation of RTEMS CAN/CAN FD stack is separated into several source
code files and header files. The latter will be located in cpukit/include/dev/can
directory once the stack is merged to the RTTEMS mainline, and source codes will be
located in cpukit/dev/can/ folder. The directory selection is consistent with other
device drivers as SPI or 12C.

Accessible FIFO queue functions (most of them presented in section 3.5) are imple-
mented in can-queue. c source file with a header named can-queue.h. The header file
defines both queues and ends structures and also static inline functions used for FIFO
queue implementation.

24

Initialization of kernel (character device) side of queues is located in can-quekern.c
file, driver (controller) side in can-devcommon.c. The latter includes header
can-devcommon.h! providing structure definitions and function declarations used for
controller implementation. This includes the already presented structure can_chip for
example. Apart from its C file, the header is also supposed to be included from source
files implementing the controller. The general bus functions as open/read/write/ioctl
operations are implemented in can-bus.c file to match the organization of SPI or
I2C stacks. Header can-bus.h? declares CAN bus registration function described in
section 3.4 and can_bus structure. It should be included from the BSP layer for the
registration of the controller.

Functions used for bit timing calculation from a given bit rate are located in
can-bittiming.c file. The infrastructure also provides a simple virtual CAN con-
troller that can be used for stack testing and also serves as an example for future
controllers. This virtual driver is located in can-virtual.c file.

Headers can-queue.h and can-devcommon.h were already introduced. From an ap-
plication perspective, the most important include is can.h®. This file provides all
defines, ioctl calls, and structures required to operate with the infrastructure from ap-
plication layer. It also includes other headers providing CAN frame definition, filter
structure, statistics or bit timing. This header file is the only required one to operate
with CAN bus character device through standard POSIX calls.

CAN frame structure is written in can-frame.h file, filter structure is located in
can-filter.h header, statistics are implemented in can-stats.h and bit timing struc-
tures in can-bittiming.h. Detail description of CTU CAN FD related files is available
in section 5.2.

! https://otrees.pages.fel.cvut.cz/rtems/rtems-canfd/doc/doxygen/html/can-devcommon_8h.
html

2 https://otrees.pages.fel.cvut.cz/rtems/rtems-canfd/doc/doxygen/html/can-bus_8h.html

3 https://otrees.pages.fel.cvut.cz/rtems/rtems—canfd/doc/doxygen/html/can_8h.html

25

https://otrees.pages.fel.cvut.cz/rtems/rtems-canfd/doc/doxygen/html/can-devcommon_8h.html
https://otrees.pages.fel.cvut.cz/rtems/rtems-canfd/doc/doxygen/html/can-devcommon_8h.html
https://otrees.pages.fel.cvut.cz/rtems/rtems-canfd/doc/doxygen/html/can-bus_8h.html
https://otrees.pages.fel.cvut.cz/rtems/rtems-canfd/doc/doxygen/html/can_8h.html

Chapter 4
CAN Bus Priority Inversion Problem

This chapter introduces CAN bus arbitration priority inversion problem to the reader
and proposes a solution by introducing the TX buffers dynamic allocation mechanism.
This chapter deals with the theoretical part of the problem and its solution. The
implementation of presented algorithm to CTU CAN FD target controller is described
in the following chapter, results can be found in section 6.2.

I 4.1 Introduction

CAN bus arbitration phase ensures the message with the highest priority (i.e. the
lowest identifier) preempts the messages with lower priority (i.e. higher identifier). A
problem occurs when the bus is fully saturated by middle priority messages from one
or more controllers and a mix of low and high priority messages is pending on the other
controller. If all controller’s hardware TX buffers are filled with these low priority
messages, middle priority messages will always take precedence over low priority ones.
This means that high priority messages will not be sent until other controllers stop or
pause their messages stream (or indefinitely).

The problem, when low priority message, correctly preempted by middle priority
message, is holding a resource (hardware TX buffers) required by high priority message
and thus indirectly delaying the execution of it, is called priority inversion in computer
science. The problem mostly occurs in task scheduling, however it can affect CAN bus
as well.

High priority All HW
| di .
“irames with :Ilrf:;? Controller flooding
0x20 ID filled the bus with
with CAN Bus middle priority
Low priority frar_'tfs frames with 0x500
class sending wi . -
frames with 0x700 identifier
0x700 ID identifier
Controller A Controller B

Figure 4.1. Visualization of CAN Bus Arbitration Priority Inversion.

The priority inversion problem is visualized in Figure 4.1. In this visualization,
controller B floods the bus with 0x500 identifier while controller A tries to send a mix
of 0x20 and 0x700 identifiers. However, if all hardware buffers are already filled with
low priority 0x700 identifier, high priority 0x20 will never get to the arbitration phase
and is incorrectly held by the middle priority message on the bus as a result.

26

4.2 Common Solutions

I 4.2 Common Solutions

This problem is usually solved by introducing priority classes and messages being routed
to different queues based on their priority class assigned from CAN message identifier
ranges. Mapping priority classes to a limited count of the controller’s hardware trans-
mission buffers however tends to be challenging. This is caused by controllers usually
providing transmission of messages based on their CAN identifiers or in the fixed order
determined by the TX buffer index.

However, application and sometimes even protocol implementations usually require
the preservation of message order, even if different CAN identifiers are used. This com-
mon requirement disqualifies the message transmission order based on CAN identifier.
On the other hand, more priority FIFO classes lead to the need to send messages in the
order determined by those classes. Usually, the driver limits the transmission to one
buffer per class or even to one TX buffer at all and thus not using the full potential of
the controller.

I 4.3 Dynamic Allocation of TX Buffers to Multiple
Priority Groups

The priority inversion problem described above can be solved by adding the dynamic
redistribution of CAN transmission buffers to priority classes. This approach therefore
keeps the common solution of assigning CAN messages to priority classes based on
identifier range and having a FIFO queue for each class.

After the message is released by the application to the queue structure, it is inserted
into the proper priority class based on the identifier match filter. The controller’s driver
is notified of the new TX message to be processed and checks whether it has a space in
hardware buffers.

If there is a free space available in hardware buffers, the message is inserted into
the free one. The insertion of the new message into one of the buffers is followed by
transmit sequence reorganization to ensure the correct transmission order based on both
priority class and application defined order. In general, the buffer with newly inserted
message has to be placed in the transmit sequence after all messages of the same or
higher priority class but before all messages of a lower priority class. This way the
controller ensures the messages from the higher priority class are sent first and also the
order of messages within the same priority class, defined by one or more applications,
is preserved.

If no space is available, the controller checks whether a message of lower priority class
occupies the buffers. If yes, the last message of the lowest priority class occupying TX
buffer is replaced by the pending message and scheduled for later processing. Transmit
sequence reorganization follows if the new message is inserted. The message replacement
poses some requirements on both CAN stack and controller. The stack has to support
pushback messages and must schedule them for later processing, so they are not lost,
and the controller must be able to abort TX buffer processing if needed. The algorithm
requirements on both the software stack and CAN controller are discussed in detail in
section 4.3.3.

B 4.3.1 Priority Classes Mapping

The sequence of buffers to be transmitted is stored in the TX order array holding the
numbers of hardware buffers as they should be processed. The priority classes are

27

mapped as continuous ranges in this array using TX order tail array where each entry
represents the tail index in the transmission sequence array for a given priority class.

The tail points one position beyond the last allocated slot for the corresponding class.
Only the tail is needed as the head for the highest priority class is fixed and heads for
lower priority classes are at the exactly same position as the previous priority class
tail. This tail is used for the insertion of new frames if the array is not full or for
reorganization when inserting new frames into the array.

Bl 4.3.2 Example

This example is provided for CAN stack with three priority classes with priorities 0
(low), 1 (middle), and 2 (high) and a controller with 4 HW buffers. The application(s)
passed four messages to the controller in this order: low priority message, high priority
message, low priority message and high priority message.

The relationship between hardware buffers, SW queues, and the usage of TX order
array mapping is visualized in Figure 4.2. The messages are inserted into the following
hardware buffers: first low priority message to buffer 0, first high priority message to
buffer 3, second low priority message to buffer 2, and second high priority message
to buffer 1. The buffer order does not match the insertion order because other mes-
sages might have been inserted into those buffers previously, and therefore they were
replaced in different order. Moreover, the buffer numbering is not important here as
the transmission sequence is defined TX order array.

0 1 2 priority
Tx order tail 41212
Head prio 2
ﬁxed_
Tx order array] 2| 0|1 [3 |— Firstto
« send
Reuse forprio |4 |5 |6 |7 fixed
High prio (2) - T 7
1 1 1 X p-
LdEha: T™xXB3 [
K To
. . Tx p. 4| bus
Middle pm TXB 2 | arbi-
| TXp. 6 trati-
TxB 1 |©n
Low prio (0) -
Tx p.5
oTe TxB 0
~ SW queues/FIFOs CAN controller
Tx buffers

Figure 4.2. Visualization of dynamic allocation of TX buffers.

Without rotation of buffer priorities, this insertion order would mean the controller
would try to send a low-priority message first and in a better case delay a high-priority
message or in a worse case cause priority inversion problem. However, the presented

28

approach reorganizes the hardware buffer priorities and as a result, buffers 3 and 1 are
sent in prior to buffers 0 and 2, ensuring the correct priority and application-based
order. TX order tail array moved priority classes tails to position 2 for high and middle
priority classes, therefore new messages from those classes would be inserted there and
lower priority classes would move left. Note that the tail has to be moved also for all
lower priority classes, therefore middle priority class is moved as well.

Adding a new high priority or a middle priority message would result in low priority
from TX buffer 2 transmission deactivation and being pushed to software FIFO if not
sent yet. Buffer 2 would then be reused for the new message. The situation, where low
priority message in buffer 2 was replaced by middle priority message and transmission
order was correctly reorganized, is depicted in Figure 4.3

0 1 2 priority
Tx order tail 4 2
(J VZ J (Head prio 2
Tx order array| 2 3 |—» Firstto
« send
Reuse forprio |4 |5 |6 |7 fixed
High prio (2) - T 7
X p.
LdEha: T™xXB3 [
K To
. . Tx p. 4| bus
Middle prio (1) - TxB 2 | arbi-
| TXp. 6 trati-
TxB 1 |©ON
Low prio (0) -
Tx p. 5
o1 TxB 0
- SW queues/FIFOs CAN controller
Tx buffers

Figure 4.3. Visualization of dynamic allocation of TX buffers after middle priority frame
insertion.

The results of presented mechanism and demonstration on real hardware are available
in section 6.2. The mechanism is presented on RTEMS CAN infrastructure and CTU
CAN FD core on educational kit MicroZed APO.

Il 4.3.3 Algorithm Requirements

While the algorithm is generic and not tied to the presented infrastructure or CTU CAN
FD controller, there are some requirements both stack and controller have to fulfil to
use this solution. This section presents them and provides some possible workarounds
if available.

An obvious requirement for CAN stack is the support of multiple priority queues.
The number of queues is up to stack implementations, but at least three possible queues
should be considered to satisfy application requirements. The stack also has to provide

29

a feature to return frames passed to the controller back to the FIFO in case of buffer
abort. The returned message should be scheduled for later processing. In general, this
means the stack has to keep the slot allocated until notified of successful transmission
or error. This, in fact, is also done in Socket CAN, therefore possible extension to Linux
kernel should be possible.

From the controller side, the requirements might be a bit more demanding. There
must be a way to determine the order in which the transmission hardware buffers
should be sent to the network. This might be a problem for some controllers that do
not support local priority for message buffers but only consider the identifier of the
inserted frame or even just fixed FIFO order. The possibility to change the priorities of
hardware buffers on the fly — without deactivating them — provides a huge advantage
for the presented algorithm. Without this feature, the controller would have to disable
all buffers for which the priority shall be changed, modify the value, and enable them
again. This might cause a small delay between frame transmissions. Hardware buffer
abort feature is also required, but this is supported by most of the current controllers.

30

Chapter 5
CTU CAN FD Driver

This chapter describes open source CTU CAN FD core developed by Ondrej Ille ini-
tially at the Department of Measurement of FEE at CTU under the lead of Jifi Novak
and later self-funded. The IP core was later rearchitected to functional general purpose
CAN/CAN FD controller and equipped with TX priority register used for cyclic FIFO
in the frame of the CAN FD Open Cores Support Linux Kernel Based Systems project
funded by Digiteq Automotive led by Pavel Pisa as the solution architect at the De-
partment of Control Engineering of FEE at CTU. The support for the IP core is also
included in Linux kernel mainline [7].

Short introduction of the core specification is followed by the description of its im-
plementation to RTEMS executive.

I 5.1 Core Specification

The developed core is a softcore written in VHDL without vendor-specific libraries. It
can be configured with up to 8 independent TX buffers for messages with each buffer
having its own state and three bit priority number. These priorities can be used for
FIFO behavior simulation in case only one FIFO queue is supported for TX messages
as in SocketCAN for example. Each buffer is then assigned with a different priority
and those priorities are rotated after the transmission is completed [8].

INTERRUPT | [interrupt CTU CAN FD
D manager
Bit
RX Filtered RX Tilming
buffer RX |RXframe| Frame | frame < > Prescaler
LECESS) puffer | filters [CAN
Memory | TXT protocol | Rx
; X lect
mmglsters buffer fames| Tx |ioedl T core | Data [CAN_RX
access| TXT > Arbitrator > Bus sample CAN_TX
buffers ||H EX >
ata

Figure 5.1. CTU CAN FD IP core structure (Source: [§]).

The core is compliant with ISO 11898-1:2015 standard and supports CAN FD com-
munication protocol. It is equipped with a 64-bit clock counter common to all CAN
FD interfaces and provides timestamp with 10 nanoseconds resolution [9] for the case
of Zynq integration.

I 5.2 Implementation to RTEMS

This core was chosen for first RTEMS implementation as it supports the abort of
currently queued TX buffer and the buffer priority updates on the fly which changes
the requested buffer transmission order. This capability is useful for dynamic allocation

31

of TX buffers algorithm presented in the previous chapter. The possibility to measure
precise timestamp is also useful for latency testing.

The driver is implemented in ctucanfd subdirectory as the implementation is
split into more files. This approach is also used by Linux kernel for example. The
core of the controller is implemented in ctucanfd.c, rest of the code is placed in
header files. This includes ctucanfd_priv.h defining CTU CAN FD controller private
structure, ctucanfd_kframe.h mapping frame format to CTU CAN FD registers,
ctucanfd_kregs.h defining registers’ offsets and fields and ctucanfd_txb.h with
static inline functions for hardware buffer rotations. The first two files are autogen-
erated and taken from Linux kernel with the license being changed to more permissive
one on approval from all original authors.

The entry point for CTU CAN FD controller initialization is the function
ctucanfd_initialize() defined in installed header ctucanfd.h.

struct can_chip *ctucanfd_initialize(
uint32_t addr,
rtems_vector_number irq,
int ntxbufs,
rtems_option irq_option,
unsigned long can_clk_rate

)+

The caller has to pass base address to which registers are mapped, interrupt num-
ber interrupt, number of transmission hardware buffers, setup and clock rate as argu-
ments. Interrupt can be setup to either shared (RTEMS_INTERRUPT_SHARED) or unique
(RTEMS_INTERRUPT_UNIQUE). The latter causes less overhead, but can not be used if
more controllers are attached to the same interrupt number.

This function initializes CTU CAN FD private structure and generic CAN structure
can_chip. Interrupts and semaphores are also initialized here with worker task being
started as well. This task takes care of frames transmission and interrupt handling. The
chip is not started yet as already described in 3.3.4; this has to be handled either from
application with proper ioctl call or function rtems_can_chip_start() can be called.
However, correct bit timing and modes should be set before starting the controller.
CAN FD mode is already set by default by the initialization function, but other modes
are disabled.

Bl 5.2.1 WorkerThread

It was already mentioned the transmission and interrupt handing is done from a worker
thread. This thread is implemented in the function ctucanfd_worker(). It is an
infinite while loop waiting on a binary semaphore. This semaphore is posted either
from the infrastructure if a new frame is to be sent or from an interrupt handler if a
new interrupt is received. Therefore, the interrupt handler itself just disables interrupts
and releases the worker execution through the semaphore.

Semaphore post

¢ ISR not empty
Handle Interrupts «| Check Interrupt ISR empty\ Handle Transmission +|Enable Interrupts and
(error, RX, TX done) ”| Status Register ” | Wait on Semaphore

Figure 5.2. Simplified visualization of CTU CAN FD worker thread.

32

The simplified logic of the worker thread is depicted in Figure 5.2. It can be seen the
worker first handles all interrupts (RX frame available, TX interrupt, error interrupt)
and once they are all done it checks whether there is a new frame to be transmitted.

RX frame available interrupt leads to new frame reception. This process is imple-
mented in functions ctucanfd_receive() and ctucanfd_read_rx_frame() with the
latter one also passing the received frame to the infrastructure edges. Transmission
interrupt reports a change in the status of TX buffers. This way the driver determines
whether the message was transmitted successfully, aborted by the controller or ended
with an error.

In case of successful transfer, the frame is echoed back to opened file instances if
configured by the infrastructure. The frame’s slot in the FIFO queue is cleared at this
moment as well as the hardware TX buffer used for frame transmission. Aborted frame
can not be cleared from FIFO queue, but has to be kept there and rescheduled for later
transmission. In case of transmission ending with error, both FIFO outslot and HW
buffer are cleared.

The transmission has to be handled differently based on whether there is a free
space in some hardware transmission buffer or not. If yes, the controller just adds a
new frame to one of the free TX buffers (function ctucanfd_insert_frame()) and
reorganizes the order array (function ctucanfd_txb_add()) as already describes in 4.
The reorganization is necessary, so the oldest frame from the highest priority class is
processed in the next arbitration phase.

The implementation is a bit different in case there is no free buffer to fill the
message into. In that case, the controller has to check whether any of the pend-
ing frames (frames the infrastructure wants to pass to the hardware buffer) is from
a higher priority class than the frames already inserted in hardware buffers (function
canque_pending_outslot_prio()). If yes, it has to push the correct frame from the
buffer back to the FIFO with the abort command executed on the buffer. TX interrupt
handles the push back as already described.

Bl 5.2.2 Mapping Priority Classes to Buffers

As already discussed in 4.3.1, priority classes have to be mapped to hardware transmis-
sion buffers in order to support the dynamic redistribution and avoid possible priority
inversion. Section 4.3.1 presented the generic approach with TX order represented with
an array. However, this can be enhanced if the controller has up to 8 hardware buffers
as 32-bit large unsigned integer can be used to represent the order in which the buffers
are sent. This is because 0x01234567 value, representing transmit order with buffer 0
(having the priority 7) being sent first, fits into 32 bits.

Using operations on unsigned integers means the resulting code for message pro-
motion or demotion just consists of bitwise operations and shifts, therefore entirely
omitting if statements and loops and resulting in speeding up the code execution. TX
order tail still has to be implemented as an array thought. The implementation of
promotion and demotion with 32-bit unsigned integer can be seen below.

#define TXT_DONE 0x4

#define TXT_BF 4

#define TXT_MASK oxf

#define TXT_ANY DONE ((TXT_DONE << (O * TXT_BF)) | \
(TXT_DONE << (1 * TXT_BF)) | \
(TXT_DONE << (2 x TXT_BF)) | \
(TXT_DONE << (3 = TXT_BF)) | \

33

(TXT_DONE << (4 * TXT_BF)) | \
(TXT_DONE << (5 * TXT_BF)) | \
(TXT_DONE << (6 * TXT_BF)) | \
(TXT_DONE << (7 * TXT_BF)))

#define TXB_BF 4

#define TXB_MASK Oxf

#define TXB_ALL Oxffffffff

#define TXB_SH(idx) ((idx) * TXB_BF)

Firstly, there is a set of defines to check all TX buffer statuses in CTUCANFD_TX_STATUS
core registers (matches TXT prefix). The TXB_BF specifies that four bits are used to
store the state, priority and order of single TX buffer. TXB_MASK represents bit-
mask of corresponding size and TXB_SH bit shift to given index in the array represented
by nibbles in 32-bit unsigned integer.

Slot demotion is used if the frame is removed from the hardware buffer. In that case,
it has to be demoted to the last position. For example, if TX buffer order is 0x76543210
and CTUCANFD_TX_PRIORITY is set to 0x01234567, then the state after buffer 0 is sent
will be 0x07654321 with value 0x12345670 in CTUCANFD_TX_PRIORITY register. This
way buffer 1 will have the highest priority (7) and buffer 0 the lowest (0).

static inline uint32_t ctucanfd txb_slot_demote(
uint32_t txb_order,
int from,
int to

uint32_t txb_order_new;

uint32_t txb_move = (txb_order >> TXB_SH(from)) & TXB_MASK;
uint32_t mask_from = TXB_ALL << TXB_SH(from);

uint32_t mask_to = TXB_ALL << TXB_SH(to);

txb_order_new = txb_move << TXB_SH(to);

txb_order_new |= txb_order & (~mask_from | (mask_to << TXB_BF));
txb_order new |= ((txb_order >> TXB_BF) & ~mask_to) & mask_from;
return txb_order_new;

3

The opposite to ctucanfd_txb_slot_demote() function is slot promotion by
ctucanfd_txb_slot_promote(). This function is used if a new message is added to
one of the buffers. The transmission order has to be reorganized to reflect priority
classes and the order determined by the application. This generally means placing the
buffer to the tail of its priority class.

static inline uint32_t ctucanfd_txb_slot_promote(
uint32_t txb_order,
int from,
int to

uint32_t txb_order_new;
uint32_t txb_move = (txb_order >> TXB_SH(from)) & TXB_MASK;
uint32_t mask_from = TXB_ALL << TXB_SH(from);

34

uint32_t mask_to = TXB_ALL << TXB_SH(to);
txb_order_new = txb_move << TXB_SH(to);
txb_order_new |= (txb_order) & (~mask_to |
(mask_from << TXB_BF));
txb_order new |= (((txb_order & mask_to) & ~mask_from) << TXB_BF);
return txb_order_new;

}

The implementation of these functions can be found in ctucanfd_txb.h header file.
The functions are currently implemented only for CTU CAN FD driver, but they might
be used for other controllers with up to 8 hardware buffers and the possibility to assign
them a different priority. Controllers with more than 8 hardware buffers shall use
standard array operations.

B 5.2.3 Timestamping

CTU CAN FD provides precise hardware timestamping with 10 nanoseconds resolution
and a counter with 64 bits. This value is global for all cores in the design, therefore
timestamp values can be compared even between separate cores.

The timestamp value is split into two separate registers, CTUCANFD_TIMES-
TAMP_HIGH providing upper 32 bits and CTUCANFD_TIMESTAMP_LOW
providing lower 32 bits. The correct way to read those registers is to start with
the upper value, then read the lower value and then again the upper value. If the
new upper value does not match the previously read one, an overflow occurred and
both upper and lower values should be read again. The simplified implementation of
ctucanfd_get_timestamp() function can be seen below.

upper = ctucanfd_read32(priv, CTUCANFD_TIMESTAMP_HIGH) ;
lower = ctucanfd_read32(priv, CTUCANFD_TIMESTAMP_LOW);
upper_check = ctucanfd_read32(priv, CTUCANFD_TIMESTAMP_HIGH) ;
if (upper != upper_check) {
upper = ctucanfd_read32(priv, CTUCANFD_TIMESTAMP_HIGH);
lower = ctucanfd_read32(priv, CTUCANFD_TIMESTAMP_LOW) ;

*timestamp = ((uint64_t)upper << 32) | lower;

This function is routed to a common ioctl call RTEMS_CAN_CHIP_GET_TIMESTAMP
described in section 3.3.9. It is also used to timestamp newly received frames.

35

Chapter 6
Results and Demonstrations

This chapter provides results and demonstrations of RTEMS CAN/CAN FD stack
developed in scope of this thesis and thoroughly described in chapter 3. Various latency
profiles were measured to evaluate the stack performance. This chapter also briefly
describes used test applications and demonstration with pysimCoder rapid development
tool.

All tests and demonstrations were done on educational kit MicroZed APO. This kit
is used in many computer science coursers at CTU FEE and is based on MicroZed
evaluation kit with Xilinx Zyng-7000 system on chip.

B 6.1 RTEMS CAN Sstack Mutual Latency Profiles

RTEMS CAN stack latencies were partially tested on LaTester infrastructure originally
developed for continuous CAN bus latency testing on Linux kernel [10]. In this setup,
the device under test (DUT) functions as a CAN gateway: receives messages from
CAN bus A and instantly sends it to CAN bus B. The measuring system generates and
receives CAN/CAN FD frames and provides precise timestamping measurement. The
connection of this framework is available in Figure 6.1.

Ethernet LAN

MZAPO serial + power
DUT Qoerre e
CAN bus A CAN bus B i .

a T

MZAPO
Measuring device

Figure 6.1. CAN LaTester connection scheme (Source: [7]).

The latency measuring starts once CAN frame is sent to the bus and ends once the
entire message is received. This is depicted in Figure 6.2. The length of the message on
the link at given nominal and data bit rates is subtracted from the latency. The final
result is the time it takes the DUT to read received message from CAN bus A controller,
process it and forward it into TX buffer of the controller connected to CAN bus B. In
other words, it is a time the frame spent in software stack [7] [9]. The advantage

36

of using the same hardware and framework as for Linux kernel tests is possibility to
compare RTEMS and GNU/Linux CAN latencies, respectively character device stack
and SocketCAN latencies, in the future.

CAN bus 0 msg

CAN bus 1 msg'

message latency

_—
time

Figure 6.2. CAN message latency measurement (Source: [7]).

The testing framework has several options for which the latencies can be measured.
Both standard and FD frames can be tested and modes once and flood are available.
The latter floods the bus, while mode once always waits for the message to be received
back before sending another one. Measured latencies for system without any other
tasks (such as network) can be seen in Figure 6.3.

RTEMS CAN Stack Read to Write Latency Cumulative Histogram

104,

103,

Message Count
S

101, = ONCE
once-fd

e floOd

= flood-fd

25 30 35 40 45
Latency [us]

Figure 6.3. RTEMS CAN stack read to write latency profile.

Another latency measurement was done with enabled networking stack and MicroZed
APO board hosting a simple HT'TP web server displaying dummy data. This was done
to provide some way to stress the networking stack. Priorities of CAN tasks were
selected higher compared to networking and web server tasks.

Two types of measurements were done for enabled networking. At first, latencies were
measured with enabled networking stack and running web server. Then, the server was
stress tested with siege tool providing additional load for the networking stack. Since
CAN priorities were selected the highest, the expectation for the measurement without
web server stress are the latencies approximately the same as without networking stack

37

6. Results and Demonstrations

at all. These values should get worse if hosted HT'TP web server is stress loaded by an
external tool.

RTEMS CAN Stack Read to Write Latency Cumulative Histogram with Networking

(unload latency profiles as dashed lines for comparison)

1044 e
103,
o
C
>
IS}
o
9102,
©
%]
%]
[}
=
10/
m— ONCE
once-fd
e flooOd
100 == flood-fd
30 35 40 45 50 55 60 65

Latency [us]

Figure 6.4. RTEMS CAN stack read to write latency profile with enabled networking.

The measurement results can be seen in Figure 6.4. The bold full lines are the
data measured with stress loaded HT'TP server, dashed thin ones are without external
load. It can be seen latencies without load are just slightly worse than the ones with
disabled networking presented in Figure 6.3. The results got worse when HTTP server
is stress loaded, but still those values are not bad. Maximum latency difference is up
to 20 micro seconds, which can be caused by networking critical sections with disabled
interrupts, interrupt handling, context switching between cores, competing for cache
memory between CAN and network tasks and so on. Overall, the measured latencies,
both with and without networking, look really promising.

It should be noted that RTEMS executive has single address space. Therefore, CAN
gateway used in these measurements is basically kernel gateway and not user space
gateway.

I 6.2 Dynamic Allocation Demonstration with RTEMS
and CTU CAN FD

The ability of dynamic allocation of TX buffers to priority groups, presented and
described in chapter 4 was demonstrated on educational kit MicroZed APO. The
programmable logic part was configured with four independent CTU CAN FD IP
cores/CAN FD controllers, each one with four TX buffers. The application ran on
RTEMS executive and used the newly introduced common CAN/CAN FD stack.

The goal of the test was to demonstrate the ability of high priority messages to
preempt low priority messages located in controller’s HW buffers. To achieve this, one
controller was fully loading the CAN bus with 8 bytes long messages. These messages
had identifier 0x500 that served as middle priority identifier. The second controller

38

6.2 Dynamic Allocation Demonstration with RTEMS and CTU CAN FD

was accessed from two separate applications with one attempting to send messages
with 0x700 identifier (low priority message) without delay between messages (basically
flood) and second attempting to send 8 byte long messages with 0x20 identifier.

next
arbitration

Controller A I< l< I< I< l<
Data l Data l Data l Data l Data l
Controller B

Figure 6.5. CAN bus state without dynamic allocation of TX HW buffers. Priority inver-
sion occurs.

lost
arbitration _|

time

If only traditional driver with FIFOs would be used, the high priority messages would
wait indefinitely for low priority ones to leave four TX buffers. Those would of course
never leave, because the bus was fully loaded by middle priority ones and thus low
priority message would never win the arbitration phase. This situation is depicted in
Figure 6.5, where controller A propagates low priority to arbitration phase. These
frames of course lose the arbitration to middle priority frames sent from controller B.

CAN High Priority Message Latency Profile for 10,000 Messages in Burst of Size 4

103,
=
C
3 10?4
o]
]
o
©
"]
v
9]
=
101,
= First Message
=== Second Message
=== Third Message
100 | ==== Fourth Message

0 100 200 300 400 500
Write-to-receive latency [us]

Figure 6.6. High priority message latency profile.

39

6. Results and Demonstrations

The high priority messages were sent in the burst of size 4 and the application
subsequently waited long enough to send those messages to the bus. These messages
were passed to the controller through the queue with higher priority and filter set
to match only 0x20 identifier. The latency profile in Figure 6.6 shows the write-to-
receive latency in microseconds for 10,000 sent high-priority messages. RX side times-
tamps are captured at Start of Frame bit and delivered in frame’s timestamp field
to the test application. The TX time is read from the CTU CAN FD IP core by
RTEMS_CAN_CHIP_GET_TIMESTAMP ioctl call (refer to section 3.3.9) exactly before frame
write operation.

The black vertical lines represent the length of one 8-byte long message transmission
(about 130 microseconds). It can be seen the first message is transmitted to the network
almost immediately in the best case. The delay is caused by framework latency (time it
takes to propagate the frame through queues to the controller and save it to HW bulffer,
see section 6.1). The worst case is given by an interval corresponding to the blocking of
transmission by an already started middle priority message transmission that occupies
the bus. Subsequent three messages follow immediately after the previous ones.

From bus point of view, high priority frames are now propagated to the arbitration
phase correctly and win the arbitration against frame from controller B. This can be
seen in Figure 6.7.

next
arbitration
lost
arbitration _|
L2) 2)
0 Data 0 Data 0 Data 0 Data
Controller A - - - - -
Data I< l Data
Controller B

time

Figure 6.7. CAN bus state with dynamic allocation of TX HW buffers.

I 6.3 Stack Functionality Demonstration with
pysimCoder

The framework was also tested against pysimCoder rapid application development tool.
It is developed by Professor Roberto Bucher as an open source project with the goal
to provide alternative to proprietary Matlab/Simulink for educational purposes and
possibly even for simple industrial applications [11].

There is an active development effort towards pysimCoder at CTU, including support
for NuttX operating system or run time monitoring and tuning of model parameters. In
this demonstration, pysimCoder was ported to RTEMS and simple application demon-
strating CAN frames send and receive was created.

40

The initial version of common CAN bus interface was also introduced for this demon-
stration. Application generated by pysimCoder consists of multiple blocks. Target spe-
cific blocks, motor control block for example, may use CAN bus to communicate with
the hardware and there may be more than one of these blocks in the diagram. In this
case, each block usually listens to different CAN frames (different identifier). Some
common pysimCoder interface, capable of registering messages to be received, is useful
in this case.

In the developed interface, pysimCoder’s blocks registers identifier to receive during
their initialization. This creates one slot for the message with given identifier in pysim-
Coder’s common interface. Block can then read from this slot during its periodically
called in/out function. CAN frame read/write is implemented in target specific code
with frame reception done in a separate thread. Frame transmission is performed as
blocking write.

Common pysimCoder Interface
D Target Write is Message A > Block A
ependent i} :: passed
Code directly to
. y Message A > Block B >
(read/write) target
dependent
code Message B > Block C >

A

Figure 6.8. Visualization of pysimCoder common CAN interface.

Visualization of the interface can be seen in Figure 6.8. In this example, both blocks
A and B want to read the frame with identifier A. Therefore, the interface creates
two slots and saves the message in both of them when received. Frame transmission
from blocks to network also passes through the interface for code unification, but it is
passed directly to the target dependent code. Since CAN frame structure differs from
system to system, pysimCoder just passes the desired identifier, data and optionally
flags. Target dependent code then assigns these values to its CAN frame.

The common CAN interface for pysimCoder’s blocks is still under development and
not yet ready to merged into mainline. At the moment, only RTEMS is partially ported
to this interface with other systems (Linux and NuttX) still using the old interface.

B 6.4 ortcAN cAN/cANopen

An experiment to include new RTEMS CAN/CAN FD API option into OCERA
OrtCAN CAN/CANopen infrastructure has been implemented by Pavel PiSa in
ortcan-vca/libvca/vca_irtems.c!. The code can be build with actual RTEMS
even together with PMSM control application using RVapo RISC-V coprocessor? and
testing is planned in the following months.

! https://sourceforge.net/p/ortcan/ortcan-vca/ci/master/tree/libvca/vca_irtems.c
2 https://gitlab.fel.cvut.cz/otrees/fpga/rvapo-vhdl

41

https://sourceforge.net/p/ortcan/ortcan-vca/ci/master/tree/libvca/vca_irtems.c
https://gitlab.fel.cvut.cz/otrees/fpga/rvapo-vhdl

I 6.5 Documentation

Documentation is automatically generated by a tool named Doxygen. It extracts infor-
mation from comments in source files and headers and generates description of struc-
tures, functions, defines, files and so on. The descriptions with links are very useful
when going through used functions and arguments for example. The link to the gener-
ated documentation can be found in project repository?>.

Another piece of created documentation is a user manual. It refers to how to use the
infrastructure from user point of view and also how to port a new driver to it?.

I 6.6 Test Applications

Several test applications were written during the stack implementation to test the prin-
ciple and measure performance. These are all linked during build steps described in
sections 2.3 and 2.4. This section introduces them and informs the readed how to use
them to reproduce thesis’s results.

B 6.6.1 can_register

This application registers CAN device/controller into dev/canX namespace. Simple
iteration from zero is used, therefore first registered device will get dev/can0O, second
dev/canl and so on. Type of device to register is selected with -t parameter; it can
be either ctucanfd or virtual target.

Example: Initialization of CTU CAN FD driver would be called as
can_register -t ctucanfd

This would register two CTU CAN FD controllers under dev/can0 and dev/canl
(suppose these are the first two registered controllers).

This is a process that would usually be handled from board support layer in RTEMS
based on values obtained from device tree. However, since the stack is not merged
to upstream at the time of writing this thesis, all tests were done from application
layer against clean RTEMS build. Therefore, this application substitutes board level
initialization for CAN device.

B 6.6.2 can_list_registered

This application can be used to list all devices previously registered with can_register
application.

B 6.6.3 can_set_test_dev

It is necessary to set which device drivers shall be used for testing. Application
can_set_test_dev is used for this purpose. It takes to device drivers as input ar-
guments and uses them for subsequent test applications.

Example: Previously initialized CTU CAN FD controller can be set for tests as

can_set_test_dev dev/can0O dev/canl

3 https://otrees.pages.fel.cvut.cz/rtems/rtems-canfd/doc/doxygen/html/index.html
4 https://otrees.pages.fel.cvut.cz/rtems/rtems-canfd/doc/can/can-html/can.html

42

https://otrees.pages.fel.cvut.cz/rtems/rtems-canfd/doc/doxygen/html/index.html
https://otrees.pages.fel.cvut.cz/rtems/rtems-canfd/doc/can/can-html/can.html

The order of parameters matters. In case of 1 way test — please refer to section 6.6.4
— first parameter is used as a sender and second one as a receiver. For 2 way test —
refer to section 6.6.5 — both devices send and receive. It is necessary to specify both
parameters even if they are the same devices (as it is for virtual target for example).

B 6.6.4 can_1way

This application performs one way test where one device acts as a sender and other one
as a receiver. Used devices are specified by can_set_test_dev application.

can_lw [count] [delay] [burst]

It sends [count] number of messages with burst size [burst] and delay between
bursts specified by [delay] arguments.

B 6.6.5 can_2way

This test is the similar to the previous one, except frame transmission is performed in
both ways. Once again, parameters [count], [delay] and [burst] can be specified.
This applies to both devices in this case.

can_2w [count] [delay] [burst]

B 6.6.6 can_gateway

This application implements CAN gateway — an interface between two CAN buses,
possibly with different bit timing settings. It receives messages on the first device
defined with can_set_test_dev application and sends it to the seconds one.

This application is used for mutual latency testing described in section 6.1. Since
RTEMS is a single address space operating system, the application also acts as a kernel
gateway, although implemented in application space.

B 6.6.7 can_latency

This application performs latency testing with priority inversion occuring on the bus.
One device is flooding the bus with middle priority frames while the other is trying to
send mix of low and high priority messages. Please refer to chapter 4 and section 6.2
for further description.

43

Chapter 7
Conclusion

My work done in the scope of this thesis provides RTEMS with long needed full-featured
CAN/CAN FD stack. This brings many new possibilities for CAN bus usage in RTEMS
such as unified approach or POSIX interface. Many new features, including priority
classes, polling functions, operations on FIFO queues, error reporting, controller con-
figuration and control, and others, were also implemented. These can further enhance
CAN bus performance in many applications and implementations even in other oper-
ating systems if ported to.

The latency measurements provided in Section 6.1 indicates the stack can perform
well within commonly expected latencies even when stressed with networking stack.
It shall be noted the measurement was done on a single hardware and architecture,
future measurements with different controllers or MCU architectures may also provide
interesting results.

Chapter 4 dealt with the common problem of priority inversion that may occur
on CAN bus during the arbitration phase. The algorithm, extending the common
solution of multiple priority classes, was extended by dynamic allocation of hardware
transmission buffers to multiple priority groups. The proposed solution allows to utilize
all hardware TX buffers while preserving the correct transmission order. This algorithm
and its results were presented at the 18th international CAN Conference in 2024 [1].

There is a lot of possible future work for upcoming students once the stack gets
approaved by RTEMS maintainers and is merged into project upstream — this process
is already underway with an initial positive response on stack basic principles and op-
erations. RTEMS would benefit from implementing other controllers to the presented
infrastructure like SJA1000, FlexCAN, or MCAN to name a few. Another future de-
velopment goal might be the stack extension to CAN XL format.

44

Appendix A
Source Code

This appendix lists the links to the source code and GIT repositories related to the
project. The ultimate goal is to merge the infrastructure and CTU CAN FD controller
to RTEMS mainline, but the implementation is still under review at the time of the
thesis submission.

This also means there might be some changes to the code based on the review. The
basic infrastructure API was already reviewed with a positive results, therefore changes
in this part are not expected, however the user should verify the current state of RTEMS
CAN stack in the official RTEMS documentation after reading this thesis.

The current implementation of both CAN/CAN FD stack and CTU CAN FD con-
troller can be found as a public repository at CTU FEE GitLab page '. The stack is
implemented in 1ib/candrv directory, test applications are located in rtems_can_test
directory.

! https://gitlab.fel.cvut.cz/otrees/rtems/rtems-canfd

45

https://gitlab.fel.cvut.cz/otrees/rtems/rtems-canfd

Appendix B
Glosary

API
APO
BSD
BSP
CAN
CAN CC
CAN FD
CAN XL
CSMA/CR
CTU
DUT
FEE
FIFO
HW
I0CTL
POSIX
RTEMS
RX

SMP
SW

TX
VHDL

Application Programming Interface

Computer Architecture Course at CTU FEE
Berkeley Software Distribution

Board Support Package

Controller Area Network

Classical CAN

Controller Area Network Flexible Data-Rate
Controller Area Network Extended Data-Field Length
Carrier-Sense Multiple Access with Collision Resolution
Czech Technical University in Prague

Device Under Test

Faculty of Electrical Engineering

First In, First Out

Hardware

Input/Output Control

Portable Operating System Interface

Real-Time Executive for Multiprocessor Systems
Receive

Symmetric Multiprocessing

Software

Transmit

VHSIC Hardware Description Language

46

References

[1] LENC, Michal, and Pavel PiSA. Scheduling of CAN frame transmission when mul-
tiple FIFOs with assigned priorities are used in RTOS drivers. 2024 18th interna-
tional CAN Conference in 2024. 2024, pp. 105-110.

[2] RTEMS PROJECT. Historical Timeline. [cit. 2024-04-03]. Available from https://
devel.rtems.org/wiki/History/Timeline.

[3] BLooMm, Gedare, and Joel SHERRILL. Scheduling and thread
management with RTEMS. SIGBED Rev. New York, NY, USA:
Association for Computing Machinery, feb, 2014, Vol. 11, No. 1,
pp. 20-25. Available from DOI 10.1145/2597457.2597459. Available from
https://doi.org/10.1145/2597457 .2597459.

[4] RTEMS PrOJECT. Task Definition. [cit. 2024-04-19]. Available from https://
docs.rtems.org/branches/master/c-user/task/background.html.

[5] ALiwA, Emad, Omer RANA, Charith PERERA, and Peter BURNAP. Cyberattacks
and Countermeasures For In-Vehicle Networks. 04, 2020.

[6] PiSA, Pavel. Linuz/RT-Linux CAN Driver (LinCAN). [cit. 2024-25-02]. Available
from https://cmp.felk.cvut.cz/~pisa/can/doc/lincandoc-0.3.pdf.

[7] VASILEVSKI, Matéj. CAN Bus Latency Test Automation for Continuous Testing
and Evaluation. master’s thesis. CTU FEE, 2022. Available from https://ds
pace.cvut.cz/bitstream/handle/10467/101450/F3-DP-2022-Vasilevski-
Matej-vasilmat.pdf.

[8] ILLE, Ondrej, Jiff NOVAK, Pavel PiSa, and Maté&j VASILEVSKI. CAN FD open-
source IP core. CAN Newsletter. 2022, Vol. 3/2022, pp. 39-41.

[9] PiSa, Pavel, Jifif NOVAK, Pavel HRONEK, and Matéj VASILEVSKI. Continuous CAN
Bus Subsystem Latency Evaluation and Stress Testing on GNU/Linux-Based Sys-
tems. embedded world Conference 2024. 2024.

[10] JERABEK, Martin. Open-source and Open-hardware CAN FD Protocol Support.
master’s thesis. CTU FEE, 2019. Available from hhttps://dspace.cvut.cz/
handle/10467/80366.

[11] LENC, Michal, Pavel PiSA, and Roberto BUCHER. pysimCoder — Open-Source
Rapid Control Prototyping for GNU/Linux and NuttX. 2023 24th International
Conference on Process Control (PC). 2023, pp. 102-107. Available from DOI
10.1109/PC58330.2023.10217596.

47

https://devel.rtems.org/wiki/History/Timeline
https://devel.rtems.org/wiki/History/Timeline
http://dx.doi.org/10.1145/2597457.2597459
https://doi.org/10.1145/2597457.2597459
https://docs.rtems.org/branches/master/c-user/task/background.html
https://docs.rtems.org/branches/master/c-user/task/background.html
https://cmp.felk.cvut.cz/~pisa/can/doc/lincandoc-0.3.pdf
https://dspace.cvut.cz/bitstream/handle/10467/101450/F3-DP-2022-Vasilevski-Matej-vasilmat.pdf
https://dspace.cvut.cz/bitstream/handle/10467/101450/F3-DP-2022-Vasilevski-Matej-vasilmat.pdf
https://dspace.cvut.cz/bitstream/handle/10467/101450/F3-DP-2022-Vasilevski-Matej-vasilmat.pdf
hhttps://dspace.cvut.cz/handle/10467/80366
hhttps://dspace.cvut.cz/handle/10467/80366
http://dx.doi.org/10.1109/PC58330.2023.10217596

	TITLE
	Specification
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents
	/Figures
	Introduction
	Real Time Executive for Multiprocessor Systems
	Introduction
	Resources
	Task
	Interrupt Handler
	Semaphore
	Mutex

	Build Process
	Build System Setup
	BSP Build
	FreeBSD Library Build

	Application Build with OMK
	Xilinx Zynq MzAPO Board
	i386 using QEMU

	CAN/CAN FD Stack for RTEMS
	Controller Area Network
	RTEMS CAN Stack Basic Principles
	FIFO Queues

	Application Programming Interface
	Opening and Configuring Queues
	Bit Time Calculation
	Mode Setting
	Chip Start and Stop
	Controller Related Information
	CAN Frame Representation
	Frame Transmission
	Frame Reception
	Hardware Timestamping
	Controller's Statistics

	Controller Initialization
	Driver Interface
	Frame Transmission
	Frame Reception

	Error Reporting
	Source Code Organization

	CAN Bus Priority Inversion Problem
	Introduction
	Common Solutions
	Dynamic Allocation of TX Buffers to Multiple Priority Groups
	Priority Classes Mapping
	Example
	Algorithm Requirements

	CTU CAN FD Driver
	Core Specification
	Implementation to RTEMS
	Worker Thread
	Mapping Priority Classes to Buffers
	Timestamping

	Results and Demonstrations
	RTEMS CAN Stack Mutual Latency Profiles
	Dynamic Allocation Demonstration with RTEMS and CTU CAN FD
	Stack Functionality Demonstration with pysimCoder
	OrtCAN CAN/CANopen
	Documentation
	Test Applications
	can_register
	can_list_registered
	can_set_test_dev
	can_1way
	can_2way
	can_gateway
	can_latency

	Conclusion
	Source Code
	Glosary
	References

