
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Circuit Theory

Design and Realization of a Control System
for Controlling Independent Lighting
Sources

Petr Douda

Supervisor: Ing. Jan Havlík, Ph.D.
Field of study: Medical Electronics and Bioinformatics - Medical
Instrumentation
May 2024

ii

Acknowledgements

Thanks.

Declaration

I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with methodical
instructions for observing the ethical prin-
ciples in the preparation of university the-
ses.

Prague, 20. May 2024

iii

Abstract

This Master thesis deals with the de-
sign and implementation of a control sys-
tem suitable for controlling independent
light sources using the Digital Address-
able Lighting Interface (DALI). The sys-
tem employs gateways for connecting the
DALI bus to Wi-Fi, which can accommo-
date most DALI devices. These devices
are subsequently managed through the
gateways from a central web application,
utilizing a custom communication proto-
col based on the Transfer Control Protocol
(TCP). This facilitates significant system
flexibility and remote control from various
devices, including smartphones. The the-
sis further outlines a potential application
of this control system. In this particular
application, the system was effectively uti-
lized for managing individual light sources
in architectural lighting.

Keywords: Control, Lighting, Python,
DALI, Wi-Fi, Gateway, HTTP/REST,
TCP

Supervisor: Ing. Jan Havlík, Ph.D.
Department of Circuit Theory
Faculty of Electrical Engineering
Czech Technical University in Prague

Abstrakt

Tato diplomová práce se zabývá návrhem
a implementací řídicího systému vhod-
ného pro řízení nezávislých světelných
zdrojů pomocí rozhraní DALI (Digital
Addressable Lighting Interface). Systém
využívá brány (Gateway) pro propojení
sběrnice DALI s Wi-Fi, díky tomu umož-
ňuje integraci většiny DALI zařízení. Tato
zařízení jsou spravována prostřednictvím
těchto bran z centrální webové aplikace
s využitím nového komunikačního pro-
tokolu založeného na protokolu TCP
(Transfer Control Protocol). To propůj-
čuje systému flexibilitu a umožňuje vzdá-
lené ovládání osvětlení z různých zařízení,
včetně chytrých telefonů. V práci je dále
nastíněna potenciální aplikace tohoto ří-
dicího systému. V této konkrétní aplikaci
byl systém efektivně využit pro řízení ne-
závislých světelných zdrojů v architekto-
nickém osvětlení.

Klíčová slova: Řízení, Osvětlení,
Python, DALI, Wi-Fi, Gateway,
HTTP/REST, TCP

iv

Contents

1 Introduction 3

1.1 DALI protocol 5

2 Design 7

2.1 Interfaces . 8

2.2 System structure 9

3 Implementation 13

3.1 DALI gateway 13

3.1.1 Communication protocol 13

3.1.2 Gateway algorithm 16

3.1.3 ESP8266 gateway module . . . 19

3.2 Central web server 22

3.2.1 Front-end 22

3.2.2 Back-end 27

4 Functionality verification 35

5 Application 39

6 Conclusion 45

A Bibliography 49

B Control system code 53

v

Figures

1.1 DALI protocol - Forward frame
sent from controller to a controlled
device (light source), Backward frame
sent from controlled device (light
source) to controller as a response to
query type commands, Manchester
encoded bits used in the protocol and
timing can be seen in the bottom.
Image sourced from [3]. 6

2.1 Control system interaction
diagram . 7

2.2 Proposed Wi-Fi network [5] . . . 10

2.3 Control system architecture . . . 11

3.1 Forward message structure: Lx -
bytes containing message length
(m+2n bytes), Ix - identifier bytes,
Ax - DALI address bytes, Dx - DALI
data bytes [5] 15

3.2 Backward message structure: Lx -
bytes containing message length
(m+2n bytes), Ix - identifier bytes, Sx
- Status bytes, Rx - DALI response
data bytes [5] 16

3.3 Communication example 18

3.4 Gateway board with the ESP8266
microcontroller 20

3.5 Gateway module circuit diagram 21

3.6 Central computer - Raspberry Pi 4
[22] . 22

3.7 Control application web interface
viewed from a PC in 1920 x 1080
pixels resolution. 24

3.8 Part of the control application web
interface viewed from a mobile phone
in 915 x 412 pixels resolution. . . . 24

3.9 Vue app elements (green) and
scripts (blue) UML diagram. 26

3.10 UML diagram of the Python
classes used in the control application
back-end . 27

4.1 A diagram of messages sent
between the gateway and control
application in the testing scenario 36

4.2 Messages sent during testing
depicted by individual bytes in
hexadecimal format 37

4.3 Oscilloscope measurement of DALI
bus transmission of DAPC 142 to
short address 1 forward frame . . . 37

4.4 Oscilloscope measurement of DALI
bus transmission of query actual from
short address 1 level forward frame 38

4.5 Oscilloscope measurement of DALI
bus transmission of query actual from
short address 1 backward frame . . 38

vi

5.1 Physical realization of the proposed
DALI gateway. The module with
ESP 8266 microcontroller and DALI
bus circuitry can be seen on top.
Photo courtesy of the NAKI group. 40

5.2 Completed setup with four driver
boxes a Raspberry Pi box a Wi-Fi
router and LEDs. Photo courtesy of
the NAKI group. 41

5.3 Modified control system web
interface. 42

5.4 Light sources connected to the
control system viewed from the front.
Photo courtesy of the NAKI group. 43

5.5 Light sources connected to the
control system pointed to a canvas -
setup for measuring light spectrum of
mixed LEDs. Photo courtesy of the
NAKI group. 43

5.6 Light sources setup for studying
influence of different lighting
characteristic on human depth
perception. Photo courtesy of the
NAKI group. 44

5.7 Test figure used in depth
perception study illuminated with
different spectra and light intensities.
Photo courtesy of the NAKI group. 44

Tables

vii

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

483486 Personal ID number: Douda Petr Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Circuit Theory

Medical Electronics and Bioinformatics Study program:

Medical Instrumentation Specialisation:

II. Master’s thesis details

Master’s thesis title in English:

Design and Realization of a Control System for Controlling Independent Lighting Sources

Master’s thesis title in Czech:

Návrh a realizace řídicího systému pro ovládání nezávislých zdrojů osvětlení

Guidelines:

1. Study the perception of light by humans and living nature. See also the issues of controlling light sources via DALI bus
and wireless communication technologies allowing remote control of independent light sources.
2. Design and realize an electronic system for controlling independent lighting sources controlled via DALI bus.
3. Perform experimental measurements to demonstrate the functionality of the realized system.

Bibliography / sources:

[1] Cajochen, C., Freyburger, M., Basishvili, T., Garbazza, C., Rudzik, F., Renz, C., Kobayashi, K., Shirakawa, Y., Stefani,
O., & Weibel, J. (2019). Effect of daylight LED on visual comfort, melatonin, mood, waking performance and sleep. Lighting
Research and Technology, 51(7), 1044–1062.
[2] BOYCE, Peter. Human factors in lighting, CRC Press, Taylor & Francis 2014.
[3] https://cs.wikipedia.org/wiki/DALI_(rozhraní)

Name and workplace of master’s thesis supervisor:

Ing. Jan Havlík, Ph.D. Department of Circuit Theory, FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 24.05.2024 Date of master’s thesis assignment: 02.02.2024

Assignment valid until: 21.09.2025

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
doc. Ing. Radoslav Bortel, Ph.D.

Head of department’s signature
Ing. Jan Havlík, Ph.D.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1

2

Chapter 1

Introduction

Light is among the most important factors that influence almost all living
organisms on our planet. In addition to facilitating sight, it also governs
circadian rhythms. “Circadian systems exist in a wide range of life, from
unicellular organisms to humans, in insects, plants, fish, birds, and mammals.
Furthermore, there are cyclic patterns that occur over the seasons, called
circannual rhythms, such as the seasonal breeding of mammals and seed
germination in plants. These are believed to be controlled by the gradual
change in the light / dark ratio that occurs over the seasons, as signaled by
the circadian system.” [1].

Lighting influences a plethora of aspects of our daily lives. Lighting
conditions, for example, influence our depth perception [16], and therefore
our performance in tasks where judging distances is important. Our sleep
cycles are governed by changes in lighting; therefore, inappropriate lighting
can lead to reduced alertness and other issues [15]. Changes in the spectrum
of ambient lighting also have an impact on human perception and well-being.
As documented in [2]: “We have evidence that a daylight-LED solution
has beneficial effects on visual comfort, daytime alertness, mood, and sleep
intensity in healthy volunteers.” All these factors make lighting in the context
of living organisms and especially humans a topic of great interest.

Given the importance of lighting, it is desirable to control it as best as
possible. In both biomedical engineering and general engineering practices,
there is frequently a requirement to independently manage multiple light
sources or to individually regulate the spectral channels of multispectral light
sources. Common uses include managing light sources for phototherapy and

3

1. Introduction
manipulating their spectral distribution or controlling lighting technology.
Furthermore, remote control of light sources is beneficial in certain scenarios.

A common method to control light sources is through the use of the DALI
bus. Digital Addressable Lighting Interface (DALI) is an open standard for
communication with lighting technology. DALI is a two-wire multimaster bus.
DALI bus is specified by a series of technical standards under IEC 62386. A
DALI network consists of one or more controllers, input devices, control gear
with DALI interface (e.g. LED drivers and dimmers) and a bus power supply
with current limitation [9].

Although the DALI bus can extend up to 300 meters according to the
standard, there are numerous benefits to transmitting DALI communications
through a computer network, including the potential for wireless connectivity.
Such wireless communication might be implemented using a WiFi network, a
LoRa network [17], which is a radio network designed for long-distance data
transmission, or a Zigbee network [14]. Controlling light sources wirelessly
can be critical in situations where the position of the luminaires must be truly
independent. One example such situation can be an application in exterior
lighting where light sources must be controlled from a single point; however,
they are separated by a road. Although it would be arguably possible to use
wired communication even in this case, it would limit the traffic on the road,
and thus a wireless approach is favorable.

There are some devices available on the market that allow remote control
of devices on the DALI bus. These are, for example, the R091 - Modbus
TCP/DALI converter device, which serves as a Modbus TCP server (accepts
Modbus TCP commands) and web server, and controls a DALI bus [4].
However this has several drawbacks:

.The module does not support wireless communication and would require
a second device connected via Ethernet to allow it.. Due to the different nature of Modbus [18] to DALI it adds additional
complexity to the communication protocol.. It does not allow for the control of multiple DALI networks at the same
time.

4

.................................... 1.1. DALI protocol

Probably the most advanced and versatile solution on the market is provided
by Zencontrol [25]. Their solution meets all technical requirements, supports
wireless communication across multiple DALI networks, and has a central
web interface. However, it is aimed towards large-scale projects and may be
too complicated/costly to set up and maintain for smaller applications. Such
as research projects that do not require a solution with a full cloud support
complete with analytics and power monitoring.

Another available solution comes from Foxtron in the form of DALIweb
and DALInet devices [7]. These devices also allow wireless communication
with DALI and have a central web interface. However, only the central web
application is wirelessly available (DALIweb device), and individual DALI
networks (DALInet devices) must be connected via wires. Although this
could be overcome by using multiple DALIweb control units, it would be
needlessly expensive.

The goal of this thesis is thus to design and implement a control system
for multiple independent light sources. A system that would overcome the
shortcomings of the solutions listed above and that would meet all technical
requirements. The system must meet the following requirements:

. It has to allow for independent positioning and control of the light sources
which utilize DALI drivers.. It must facilitate positioning of the luminaires in the range of tens of
meters from each other..The designed control system must be suitable for various applications
where flexibility and expandability are key features allowing the system
to be adapted for each individual project.. It must also be lightweight, and thus cost effective for smaller projects.

1.1 DALI protocol

In this thesis a basic version of the DALI communication protocol is used. The
protocol uses Manchester encoding with logic levels and timing of encoded
bits that can be seen at the bottom of Figure 1.1. The protocol uses a
master-slave architecture and can support multi-master configuration. Basic
version of the DALI protocol uses two types of frames (see Figure 1.1):

5

1. Introduction
.A 16-bit forward frame that is sent from master device (application

controller) to a controlled device also called control gear (e.g. a light
source). The first 8 bits of this frame contain an address which allows
the frame to be designated as a broadcast for all devices, a broadcast
for a specific group address, or a message for a single device. The other
8 bits store the data/command that are to be sent to the controlled
devices..An 8-bit backward frame that is sent the other way as a response to
query-type commands. This frame contains the queried data such as the
current light level the light source is set to.

All frames use one start bit and two stop bits. Expanded versions of this
protocol also use other longer forward frames, such as 24-bit or 32-bit. In
addition, input devices such as switches or light sensors that use these longer
frame types are supported by the protocol. However, these longer frames are
not used in this thesis, and therefore neither are any input devices.

Figure 1.1: DALI protocol - Forward frame sent from controller to a controlled
device (light source), Backward frame sent from controlled device (light source)
to controller as a response to query type commands, Manchester encoded bits
used in the protocol and timing can be seen in the bottom. Image sourced from
[3].

6

Chapter 2

Design

In this chapter the theoretical design of the control system and it’s overall
structure are discussed. The control system is to be designed to function as
described in Figure 2.1. It controls multiple DALI light sources over multiple
DALI networks. It also supports inputs from multiple users at the same time.
The light sources may be placed arbitrarily. The best suited communication
protocols for this application and types of hardware are also discussed in this
chapter.

Figure 2.1: Control system interaction diagram

7

2. Design
2.1 Interfaces

As specified in the assignment for this thesis, the light sources would be
controlled via the DALI bus. The light sources can all be connected to the
same DALI bus, or each light source can be connected to its own DALI bus
or any combination of these. Given that the control system will need to be
able to connect multiple DALI busses which do not have to be physically
positioned next to each other.

To facilitate independent positioning of the light sources/DALI busses, it
is necessary to use wireless communication. It would be impractical and
sometimes even impossible to use wired communication with luminaires
positioned further apart or, for example, over a road from each other. I
have decided to use Wi-Fi [11] for all wireless communication throughout
the control system. The main reasons for this decision are: Wi-Fi is readily
available in many places where the system could be used or can be easily set
up using a relatively cheap commercially available Wi-Fi Access Point (AP).
It also allows for the creation of mesh networks or the use of commercially
available repeaters for applications that require positioning of the lights over
larger distances. Using Wi-Fi also allows the system to be connected to
the Internet without any modifications, which makes it preferable to other
technologies such as Bluetooth [13] or Z-wave [24]. One drawback of Wi-Fi is
its higher energy consumption compared to technologies such as Bluetooth or
Zigbee. However, each light source is expected to have a comparatively much
larger power consumption than the control system itself. Thus, the power
consumption of the wireless technology used will not have a significant impact
on overall energy consumption. In addition, the new Wi-Fi HaLow technology
described in the standard [12], which provides a superior range and lower
power consumption, makes a compelling argument for the use of Wi-Fi. With
the use of Wi-Fi from the start, the system can be easily upgraded to use
Wi-Fi HaLow in the future.

To provide a way for the user to communicate with the system and control
the light sources, I have decided to use a web application. Using a web
interface provides the benefit of being able to control the luminaires from
any device such as a phone or a computer available to the user of the control
system. It also does not require any installation process on the user device
as opposed to a conventional computer or phone application. This also
makes it inherently platform-independent and usable across all of the different
operating systems. For convenience of the user, this web application should
also be central and aggregate all the light source controls in one page as
opposed to having a web page/application for each luminaire individually.

8

................................... 2.2. System structure

2.2 System structure

As there can be multiple DALI busses controlled by the system, each one of the
busses will have to be connected to a device that will facilitate connection to
the Wi-Fi network. Also, the web user interface has to be hosted somewhere.
Now, two different structures are possible:

. Distributed control - Each DALI bus will be connected to a small com-
puter which will provide the Wi-Fi capabilities and one/multiple of them
will host the web application.. Centralized control - Each DALI bus will be connected to a small com-
puter with Wi-Fi capabilities and the web application will be hosted on
central computer separately.

The first approach has the advantage of redundancy in the sense that the
control can be theoretically executed through any of the computers. However,
distributed systems are generally harder to implement and debug. The
centralized control system would be easier to implement. It could also use a
more powerful central computer to run a complex web interface and use cheap
microcontrollers to connect the individual DALI busses. However, in the
distributed system all the computers must be able to run the web application,
thus leading to an increase in the cost of the solution or simplifying the web
application for cheaper microcontrollers. As being cost-effective is one of the
requirements for the control system, I have decided on centralized control
structure. Therefore, the resulting control system would be constructed as
follows [5]:

.DALI controlled lights would be connected to microcontrollers with
Wi-Fi capabilities to facilitate connection to a Wi-Fi network. This
microcontroller should be simple and cheap as there could be a lot of
individual lights thus needing a lot of microcontrollers..There would be one central computer. A personal computer or a single-
board computer which would host a web application providing the control
interface for all the individual luminaires connected to the network..A commercially available Wi-Fi AP would be used to create the network.
To this network, the microcontrollers, the central computer, and any
devices accessing the web application would be connected.

9

2. Design
The complete design of the system can be seen in Figures 2.2 and 2.3.

I also needed to decide how to handle communication between the DALI
busses and the control application through the microcontrollers. The first
option was to implement some kind of custom protocol. I would define
a set of higher-level messages (possibly HTTP) representing the different
DALI commands along with their parameters. These commands would then
be transmitted from the control application to the microcontrollers which
would translate them to the corresponding low-level data bytes according to
the DALI protocol and send them to the DALI bus. However, this would
necessitate defining each DALI command individually and would mean a
lot of work and code both on the side of the control application and on
the microcontrollers. In light of that, I decided for a second option, which
was implementing the microcontrollers as gateways. In this way, the control
application would send messages already containing the exact DALI data
bytes needed, and the microcontroller would only forward them to the DALI
bus. In this way, the microcontrollers are agnostic to the data being sent
and inherently support all the DALI commands available and do not need
to be configured for each individual DALI bus. The commands have to be
implemented only on the side of the control application, which is easier and
also means that the gateways can be potentially used with a different control
application in the future without the need for any modifications making the
entire solution more flexible and customizable.

Figure 2.2: Proposed Wi-Fi network [5]

10

................................... 2.2. System structure

Figure 2.3: Control system architecture

11

12

Chapter 3

Implementation

In this chapter, the concrete hardware and software used to implement the
control system design outlined in the previous chapter 2 are described. My
own protocol used to transmit DALI data wirelessly is specified (see Figures
3.1 and 3.2). This chapter also contains a description of the DALI gateway
hardware, firmware, and algorithm for receiving and forwarding messages.
Lastly, the central control computer and application are discussed in detail.
The user interface can be seen in Figures 3.7 and 3.8.

3.1 DALI gateway

3.1.1 Communication protocol

The communication protocol is the central piece of the implementation of
the gateway between Wi-Fi and the DALI bus. As such, it was important
to choose a suitable existing protocol on top of which the sending of DALI
messages could be implemented so it would be simple and efficient. The
first choice would be to follow the DALI technical standard [10] and use
one of the approaches described there. Such an approach would be to
use communication over the User Datagram Protocol (UDP). The UDP is
connectionless and supports unicast, multicast, or broadcast addressing. As
such it is similar to how the DALI protocol works, it is fast and low level,
which are great advantages. In spite of this, UDP communication has some

13

3. Implementation
significant disadvantages. It has no mechanism to ensure that all data packets
are delivered and does not guarantee the order of delivery of the individual
packets sent. I would have to implement this functionality myself or account
for these shortcomings in the control application. Also, if I wanted to send
data over the internet its main advantage of similar addressing to DALI would
be lost as broadcast and multicast cannot really be used over the Internet.

Another option was to use ModbusTCP; however, as discussed in the
Introduction 1, I did not find this protocol advantageous for transmitting
DALI data frames, as the resulting Modbus register structure would be very
complicated.

When I started developing this control system and the DALI gateway, I
have actually used the Hypertext Transfer Protocol (HTTP) [19] to transmit
data to the gateway. This had the huge advantage, that I did not need the
control application to be functional and I could easily send data from my
browser. This was a great benefit for debugging the gateway implementation
and DALI communication in general. However, in the end, I decided not to
use HTTP in favor of switching to the Transaction Control Protocol (TCP)
for the communication.

TCP is used to communicate over the computer/IP network in a reliable,
ordered, and error-checked way. [21] This is done using a client-server connec-
tion over which a data stream is sent. These properties make it preferable for
this application, as the order of frames is important for certain DALI com-
mands. It is also lower level than HTTP and, therefore, has lower overhead.
The only disadvantage of using TCP is that it does not support boadcasting
to multiple devices/gateways at once. However, this can be easily resolved in
the control application.

I had to implement some extensions on top of TCP to overcome some of the
issues that come with wireless communication, such as higher latency. Simply
transmitting DALI data frames one by one over TCP was not an option for
several reasons. Firstly, in certain situations several DALI data frames need
to be transmitted after each other within a specified time window. However,
this could not be guaranteed given the nature of wireless communication over
Wi-Fi. To solve this, I allowed for sending multiple DALI data frames in
a batch that would be forwarded to the DALI bus all at once. Secondly, I
wanted to prevent the gateway from misinterpreting other messages possibly
received by chance for DALI commands sent from my control application.
An example of this could be an HTTP request made to the gateway. I have
solved this issue by using a unique identifier of the gateway in the messages,
so only messages containing this identifier would be considered and other
"random" messages would be dropped. I have also included the number of

14

.................................... 3.1. DALI gateway

bytes that should be received at the beginning of the message to determine
when the TCP connection/socket should be closed.

The resulting communication protocol then works as follows: When a socket
connection is established, one forward message / command of a specified
format can be received (see Figure 3.1). After that, a corresponding backward
message/response (see Figure 3.2) is sent back, and the socket connection is
closed. The messages consist of three segments [5]:

. 2 bytes - containing the number of bytes that constitute the next two
parts (m+2n). This segment is mandatory..m bytes - containing a unique identifier of the gateway. In my implemen-
tation, it is 6 bytes of the gateways MAC address. If this identifier is
unknown by the control application, it can be obtained from the gateway
by sending an empty message consisting only of the first segment with a
value of 0. This will trigger a response containing the identifier in the
second segment. This segment is mandatory if any commands follow.. 2n bytes - containing:. Either n two byte DALI frames in 8 bit address + 8 bit data format

in case of the forward message. This segment is optional.. Or n two-byte response frames in 8 status + 8 bit DALI data format
in case of the backward message (in order, one for each command
received in the forward message). The status byte contains either 255
if a valid response was received from the DALI bus or 0 otherwise.

Figure 3.1: Forward message structure: Lx - bytes containing message length
(m+2n bytes), Ix - identifier bytes, Ax - DALI address bytes, Dx - DALI data
bytes [5]

15

3. Implementation

Figure 3.2: Backward message structure: Lx - bytes containing message length
(m+2n bytes), Ix - identifier bytes, Sx - Status bytes, Rx - DALI response data
bytes [5]

3.1.2 Gateway algorithm

To the communication protocol described above corresponds Algorithm 1 at
the side of the gateway. First, the gateway microcontroller connects to a
specified Wi-Fi AP and starts listening for TCP connections on a specified
port. The DALI interface is also initialized and a buffer for messages is
created. A unique identifier is set to the MAC address of the microcontroller,
but any other arbitrary sequence of bytes can be chosen (lines 1-5). After a
TCP connection is established via socket the first two bytes of the data stream
containing the following message length in bytes are read and this number is
parsed and stored in msg_len (lines 5-8). If msg_len is 0 no DALI commands
follow. This type of message is used to check if the gateway is "alive" or when
the control application does not know its unique identifier. The gateway
responds by sending a message containing the length of its identifier and its
identifier (lines 9-12). If there are DALI commands to be processed that is
msg_len > 0 the specified number of bytes is read into buffer. It is then
checked if the first length of identifier bytes in buffer after the two bytes
containing msg_len match the identifier assigned to that particular gateway.
Otherwise, the message is dropped (lines 14-15). After that, each pair of bytes
following the identifier in buffer is interpreted as one DALI command. Each
command is sent via the DALI bus, and an attempt to receive a response
is made (lines 16-18). If a valid DALI backward frame is received, the first
byte of the command in buffer is set to 255 and the following second byte
is set to the DALI backward frame that was received. Otherwise, the two
bytes are zeroed (lines 19-23). After that buffer now containing the backward
message/response is sent via socket and socket is closed.

16

.................................... 3.1. DALI gateway

Algorithm 1: Gateway message handling
1 server = Connect to Wi-Fi AP and start a TCP server at specified port;
2 DALI_bus = Initialize DALI interface;
3 buffer = ∅;
4 identifier = MAC address of the device;
5 while server is running do
6 socket = Wait until a connection to server occurs and accept it;
7 buffer = Read 2 bytes from socket;
8 msg_len = Parse message length from data in buffer ;
9 if msg_len == 0 then

10 Write length of identifier in first 2 bytes of buffer ;
11 Write identifier in the following bytes of buffer ;
12 Send buffer using socket;
13 else
14 buffer = Read msg_len of bytes from socket;
15 if buffer contains identifier then
16 foreach two byte command in buffer after identifier until

msg_len do
17 Send command using DALI_bus;
18 response = Read one byte response from DALI_bus;
19 if Read successful then
20 Write 255 to first byte of command in buffer ;
21 Write response to second byte of command in buffer ;
22 else
23 Write 0 to the 2 bytes of command in buffer ;

24 Send buffer using socket;

25 Close socket;

A communication using this gateway algorithm is depicted in Figure 3.3.
First, the Control application sends an empty message to find out if there is
a gateway available and what identifier does it have assigned. The gateway
responds with a message containing its identifier (in my case, its MAC
address). After that, the control application can send a message containing
the received identifier and DALI forward frames to be sent via the DALI
bus. To which the gateway responds with a similar message containing the
status byte (255 if a valid response was received 0 otherwise) and the DALI
backward frames in place of the corresponding DALI forward frames from the
previous message. More messages can then be exchanged in the same way.

17

3. Implementation

Figure 3.3: Communication example

18

.................................... 3.1. DALI gateway

3.1.3 ESP8266 gateway module

I have used a module with an ESP 8266 microcontroller [6] as a gateway
between the DALI and the Wi-Fi network. This module was already available
when I started working on this thesis and is not part of my work. Due to no
being constructed specifically for this application, the module has some parts
that are unused. The gateway module in its circuit diagram can be seen in
Figures 3.4 and 3.5, respectively. The gateway consists of the following parts
depicted in Figure 3.5:

.Top left - circuit for converting between 12V DALI bus signals and two
3.3V GPIO pins (DALI_TX and DALI_RX) of the ESP8266.Top Middle - headers for external connections.Top right - piezo element, which is not used in this thesis. Bottom left - ESP8266 microcontroller board. Bottom Middle - real time clock circuit, which is not used in this thesis.Middle right - power source for the microcontroller and other 5V compo-
nents. Bottom right - current source for the DALI bus

Frames to and from the DALI bus are received using the two GPIO
pins connected to the DALI bus. Two functions are implemented for the
purposes of sending and receiving data in the microcontroller. The function
DaliTransmitCMD accepts two bytes of a DALI command as an argument and
transmits them to the DALI bus by setting the logic level of the DALI_TX
with the appropriate delays according to the DALI protocol (see Figure 1.1).
The receiving is done using the DaliReadResponse function. This function
has two arguments, a pointer to a status byte and a pointer to a data byte.
Then the DALI_RX pin is read. If a backward frame is received in a two-
packet window, it is stored in the data byte and the status byte is set to 255.
Otherwise, both bytes are zeroed, and the function returns. The rest of the
ESP8266 code is implemented according to Algorithm 1 described previously.

19

3. Implementation

Figure 3.4: Gateway board with the ESP8266 microcontroller

20

.................................... 3.1. DALI gateway

Figure 3.5: Gateway module circuit diagram

21

3. Implementation
3.2 Central web server

I have decided to use a Raspberry Pi 4 (see Figure 3.6) as the central computer
that runs the control web server. This single-board computer is small and has
enough power to run the application. However, any other computer running
Linux could be connected to the network with the gateways and used to run
the web server. Other operating systems could also be used, though it would
probably necessitate some changes in code. The server back-end is written in
Python 3.12 using the Flask Web Framework. The front-end is written in
HTML, CSS using Bootstrap 5, and Typescript using the Vue.js framework.
The application is automatically run on startup of the Raspberry Pi from
the script start.sh using the systemd tool.

Figure 3.6: Central computer - Raspberry Pi 4 [22]

3.2.1 Front-end

The user interface is contained within a single web page where all the controls
for the luminaires can be found. As the web page is implemented with the use
of Bootstrap 5 all the elements and their layout are responsive. This allows
the user interface to conform to the resolution of the device from which it is
viewed. This user interface can be seen in Figures 3.7 (viewed from a full HD
monitor) and 3.8 (viewed from a smart phone screen). Note that when using
a smaller smartphone screen the whole interface does not fit on the screen

22

.................................. 3.2. Central web server

at once and needs to be scrolled. For this reason, Figure 3.8 only contains a
part of the interface.

The web interface structure reflects the relationships of the systems indi-
vidual components. At the top of the page there is a dark bar containing
general application elements such as a logo and controls, which are displayed
independently of the configuration of the rest of the system. Each of the gray
cards corresponds to a single gateway. Inside the gray cards white cards can
be found. These each correspond to a luminaire connected to that particular
gateway. The white cards then contain input elements that control the set-
tings of their corresponding luminaire, such as its light intensity. If there are
multiple devices/luminaires connected to a single gateway, additional input
elements are displayed at the top of the gateway gray card. These inputs are
used to control all the devices connected to the gateway at once. For example,
if I want to turn off all the lights, I can use the red button at the top of
the gray card and do not have to turn off each light individually using the
white card inputs. Only inputs that all connected devices have in common
are displayed, which in this case does not really matter as there is only one
type of luminaire. However, it would be useful if more types of devices were
connected. All the cards and input elements displayed on the Web page are
automatically generated according to the current state of the system. If there
is only one gateway active in the network, only one gray card is generated if
another gateway is activated, another gray card is generated and so on.

In the example that can be seen in Figures 3.7 and 3.8, three gateways
are active on the network, hence three gray cards (Gateway 1, 2, and 3)
are displayed. Gateways 1 and 2 both have two connected luminaires, and
Gateway 3 has only one. The control elements shown are kept simple for
demonstration purposes and also no more was needed at this time; however,
more inputs could be easily added. The inputs are following:

. Find Lights button - In the top right of the page there is a green „Find
lights“ button. By clicking this button, the user can initiate a scan of
the network which finds all the available DALI gateways. When these
are found, the appropriate controls are shown on the web page. In the
mobile view, this button is by default hidden under the "Hamburger"
icon.. Identifier text box - In the top left of each card, a text box containing
the identifier of the luminaire/gateway can be seen. It is by default set
to the gateway MAC address or luminaires short address, however, it
can be easily changed by altering the contents of the text box.. Init devices button - Below the identifier text box, a red „Init devices“
button can be found in the gray Gateways cards. This button performs

23

3. Implementation
initialization of the DALI bus connected to that particular gateway and
sets the short addresses of all the luminaires on the bus. It also creates
the appropriate cards for these luminaires after the page is re-freshed.. Intensity number input - Next to the identifier a number input can be
found. Using this input, the intensity of the light source can be set. The
input has a range of 0 - 100%. No other values can be entered. The
intensity of 0% is equal to the light being OFF and 100% to full intensity.. Intensity slider - Next to the number input is a slider which can be
alternatively used to control the light intensity. Changing the slider also
changes the number input. The slider also operates in the range 0-100%
the same as the number input.. Power OFF button - Next to the slider a red „Power OFF“ button can
be found. This button can be used to turn OFF the light. This is the
same as setting the intensity to 0%. This fact is reflected in the change
of the slider and number input upon clicking the button.

Figure 3.7: Control application web interface viewed from a PC in 1920 x 1080
pixels resolution.

Figure 3.8: Part of the control application web interface viewed from a mobile
phone in 915 x 412 pixels resolution.

24

.................................. 3.2. Central web server

The structure of the front-end code can be seen in Figure 3.9. The front-
end is built on a default Vue template where App element is the root of the
application. Under this root element Navbar element can be found. This is
the dark gray bar on top of the page that contains the logo and green "Find
lights" button. DeviceControlPanel element can also be found. This element
encapsulates all the gateway and luminaire controls, but it is otherwise not
visible on the web page. Under DeviceControlPanel element Device elements
are recursively constructed. Under each of Device elements the user input
elements are then added. These are Toggle, Text, Number, Range, and Button
elements.

Device and user input elements are generated automatically. This is
achieved using a Store which is a data structure in that provides a centralized
access to data from across the web front-end. I have used an existing
module implementing this functionality called Pinia. This Store is initialized
from device_store script under App element. The Store is filled with a
dictionary/JSON describing all the elements to be displayed. This data
is then accessed from Device elements and displayed accordingly by Vue.
The data is transferred from server back-end to the store/front-end using
WebSockets [20] implemented in the SocketIO library which is supported by
Pinia by default. This socket interface is initialized in sockets script and
then used in the used in device_store script. An example of the JSON data
structure describing which elements should be displayed can be seen below:

1 devices: {
2 4C752534C48D: {
3 controls: {Description_box: {..}, Intensity_box: {..}, ..}
4 description: "Gateway 1"
5 devices: {
6 1: {
7 controls: {
8 Description_box: {type: "Text", .. }
9 Intensity_box: {type: "Number", ..}

10 Intensity_slider: {type: "Range", ..}
11 Power_off: {type: "Button", ..}
12 }
13 description: "Light 1"
14 id: ["4C752534C48D", "devices", "1"]
15 }
16 2: {description: "Light 2", controls: {..}}
17 }
18 id: ["4C752534C48D"]
19 }
20 E8DB84E0D442: {description: "Gateway 2", controls: {..}, ..}
21 E8DB84E0D441: {description: "Gateway 3", controls: {..}, ..}
22 }

25

3. Implementation
In this example the ".." represents data which was left out for the sake of
readability. The example corresponds to the screenshot of the Web page
in Figures 3.7 and 3.8. Each value in devices corresponds to one card
displayed on the web page. controls then contain the description of user
input elements. And description is the identifier that is displayed in the
identifier textbox.

User input from the front-end is transferred to the back-end using the same
WebSocket interface from the user input elements (Button, Range ...). To
determine from which input element / device the input originated, id from
the data structure described above is used.

Figure 3.9: Vue app elements (green) and scripts (blue) UML diagram.

26

.................................. 3.2. Central web server

3.2.2 Back-end

The central web server back-end is implemented using the Flask web frame-
work in Python version 3.12. The application structure is based on one of the
commonly used Flask application structures [8]. The application is contained
in one Python module called app. The module is then run by Python from
the file app.py. In the __init__.py file of this module, the Flask application
and classes used for controlling the light sources are initialized. Inside the
\static folder the packaged files containing the Vue front-end application
are stored so that they can be served by the Flask back-end which is done in
routes.py. Front-end to back-end communication is implemented using the
Flask-SocketIO module. The basic functions that handle receiving messages
using WebSockets are implemented in sockets.py. The messages containing
events from the inputs on the web interface are handled in web_controls.py.
Updates to be displayed on the web interface generated by the back-end are
also handled in this file. The functions that are called when a user input
comes from the Web interface are implemented in Controller class. A Unified
Modeling Language (UML) diagram of all classes and their relations can be
seen in Figure 3.10. The classes are then described below.

Figure 3.10: UML diagram of the Python classes used in the control application
back-end

27

3. Implementation
Controller class

The implementation of this class is located in device_control.py file. This
is the main class and contains all the high-level logic used for the control of
the light sources. It is instantiated only once in the __init__.py file. It has
the following methods:

. __init__() method initializes its logger and all the data structures
necessary for storing other subordinate class instances used for light
source control. Instantiates NetworkScanner class which is later used
to find available gateways. A queue to which updates that are to be
displayed on the web interface are pushed. This queue is then read by a
thread located in web_controls.py.. scan_for_devices() method is called when the green "Find lights" button
is pressed on the web interface. All available gateways connected to
the network are then found using the NetworkScanner or loaded from
device_configurations.json file if there are manually added gateways
that were not found automatically. Using this data the appropriate DA-
LIGatewayTCP and DALILight class instances are created and an update
is sent to the front-end so the appropriate controls can be displayed.. get_device_description_dict() method is called when the front-end needs
to be updated. It returns the dictionary containing descriptions of all
the control elements to be displayed on the web interface as described in
the previous subsection 3.2.1.. control_device(device_id: List, control_data: Dictionary) method is
called when a user input for any of the gateways or luminaires is received
from the front-end. The appropriate instance is found using device_id
and control_data is passed to it for further processing.. set_device_description(device_id: List, description: String) method is
used to write data to device_control.py file.. get_device_description(device_id: List) method is used to read data
from device_control.py file.

NetworkScanner class

The implementation of this class is located in scan_network.py file. This
class implements a simple algorithm to check the network in which the central

28

.................................. 3.2. Central web server

computer is located for active gateways. It is instantiated only once in the
Controller class. It has the following methods:

. __init__() method only initializes the logger for this class.. scan(address_range: List, ports: List) method checks the specified ports
of IP addresses in a specified range. First the individual addresses are
"pinged" and if a response is received an empty messages as defined in 1
are sent to the specified ports. If a response from a gateway is received
its address and port are returned from this method. All of this is done
in parallel using the Asynchronous I/O Python library.

DALIGatewayTCP class

The implementation of this class is located in device_control.py file. This
class provides a programming interface to interact with individual gateways.
It is instantiated once per gateway in the Controller class. It has the following
methods:

. __init__(controller: Controller, ip: String, port: Int, identifier: String)
method first initializes its logger. Then instantiates DALIClientTCP
class with the specified port and IP address. After that the gateways
specification is stored in the device_configurations.json file if the
gateway does not already have an entry in this file. Then DALILight
class instances specified in device_configurations.json are created
if there are any. Then a dictionary with a description of user inputs that
should be displayed on the web interface for that particular gateway (not
including its connected luminaires) is initialized. This dictionary is used
by the Controller.get_device_description_dict() method.. handle_control(control_data: Dictionary) method is called from Con-
troller.control_device(). In this method the user input is parsed and
required actions are executed. If the input is a change of the gateways
identifier it is written to device_configurations.json and the update
is sent to the front-end via the Controller queue. If the "Init devices"
button was pressed an initialization of the DALI bus connected to that
gateway is done using its DALIClientTCP class instance. DALILight
class instances are then created for each device found on the bus during
initialization. If its input for one or more luminaires it is passed to the
appropriate DALILight class instances.

29

3. Implementation
DALILight class

The implementation of this class is located in device_control.py file. This
class provides a programming interface to interact with individual light sources.
It is instantiated once per light source in the DALIGatewayTCP class. It has
the following methods:

. __init__(controller: Controller, gateway: GatewayDaliTcp, identifier:
String) method initializes its logger. After that, the light sources speci-
fication is stored in the device_configurations.json file if the light
source does not already have an entry in this file. Then a dictionary
with a description of user inputs that should be displayed on the Web
interface for that particular light source is initialized. This dictionary is
used by the Controller.get_device_description_dict() method.. handle_control(control_data: Dictionary) method contains the executive
code for user input that is related only to a single light source. If
the input is a change of the light sources identifier it is written to
device_configurations.json. The only other option is a change of
light intensity either via the slider, the number input or the "Power OFF"
button (sets intensity to 0). The intensity is converted from the 0-100%
range to the 0-254 range as per DALI specification. This number is then
sent to the DALI bus using the gateways DALIClientTCP instance via
the short address DAPC DALI command. The updated values are then
sent to the front-end via the Controller queue.

DALIClientTCP class

The implementation of this class is located in py_dali_tcp.py file. This class
implements an interface for the DALI bus. In this class a method for sending
DALI forward frames and receiving DALI backward frames is implemented.
Standard DALI commands and advanced procedures are also implemented
in this class. DALI messages and hexadecimal constants used in these
messages are written in the dali_commands.py and dali_constants.py
files respectively. The three files can be used as a standalone Python module
for DALI communication via the gateways. The class has the following
methods:

. __init__(self, ip: String, port: Int, identifier: String or None) method
initializes its logger. If the gateways identifier is not specified, a TCP

30

.................................. 3.2. Central web server

socket is created to the specified IP address and port, and an empty
message is sent. The identifier is then retrieved from the response and
stored.. send_commands(commands: DALICmd) method has a list of individual
DALI command instances as an argument. From the data contained in
this list, a forward message is constructed as specified in Chapter 2 and
sent to the gateway through a TCP socket. The response is then parsed
according to each command specification, and the parsed responses
are returned as a list of Python values. This is the implementation
counterpart to Algorithm 1. An example usage where a max level is set
to all lights on the bus may look like this:

client = DALIClientTCP("10.0.0.2", 4242, "1")
client.send_commands(BroadcastDAPC(254))

. init_devices(address: Int) method performs full initialization of the DALI bus.
All device short addresses are reset and than assigned anew starting from the
address specified as an argument. This is done using send_commands() method.
The list of assigned addresses is then returned..There are many other methods implementing DALI commands in this class.
Such method are for example broadcast_dapc or address_query_actual_level.
These methods usually aggregate a few instances of DALICmd class send
it via send_commands() method and return a response if appropriate. The
implementations of these methods are very simple and self-explanatory, therefore
I will not describe each individual method here.

DALICmd class

The implementation of this class is located in dali_commands.py file. This
class serves to encapsulate the binary data of each individual DALI command.
This data is stored in data attribute. It has a parse method that by default
only returns None. Other command classes inherit from this class and write
their corresponding binary data to data attribute in their __init__ methods
and may override the default parse method if the command is expected to
have a backward frame containing data that will need to be parsed for further
use in Python. An example of such class is BroadcastDAPC.

31

3. Implementation
Data storage

The current configuration of devices/light sources known to the control ap-
plication is stored in the device_configurations.json file. Such JSON
configuration file has a defined structure, an example can look like this:

1 "4C752534C48D": {
2 "description": "Gateway 1",
3 "ip": "192.168.1.121",
4 "port": "4242",
5 "devices": {
6 "1": {
7 "description": "Light 1"
8 },
9 "2": {

10 "description": "Light 2"
11 }
12 }
13 },
14 "E8DB84E0D442": {
15 "description": "Gateway 2",
16 "ip": "192.168.1.120",
17 "port": "4242",
18 "devices": {
19 "1": {
20 "description": "Light 3"
21 },
22 "2": {
23 "description": "Light 4"
24 }
25 }
26 },
27 "E8DB84E0D441": {
28 "description": "Gateway 3",
29 "ip": "192.168.1.120",
30 "port": "4242",
31 "devices": {
32 "1": {
33 "description": "Light 5"
34 }
35 }
36 }

Each key is a MAC address of one gateway with a specification of that
gateway as its value. "description" is the gateways identifier displayed
on the web interface. "ip" and "port" specify the network location of the
gateway. "devices" contain the specifications of light sources connected to
that particular gateway. There each key is a short address of the DALI light

32

.................................. 3.2. Central web server

source and "description" is again the identifier of the light displayed on
the web interface. According to this file, the appropriate devices and controls
are then displayed on the web interface. Provided that the gateways are
connected. The contents of this file are modified automatically if new devices
are found after pressing either the "Find lights" or "Init devices" button on the
Web interface. Or it can be modified manually, for example, if initialization
of the DALI bus is not desired.

Logging

The whole back-end application has function call logging setup. This is done
using the Python Logging module. In each file or class, a logger from this
module is initialized. This logger is then used to output from a @log Python
decorator. The function name, the module from which it was called, and its
arguments are logged. If an exception occurs, it is also logged. The log is
saved to the log.log file. This decorator is implemented in the log.py file.

33

34

Chapter 4

Functionality verification

After implementing the system, I have verified that everything is working
correctly. I have tried passing different edge-case inputs to the web interface.
Of course, I found some minor bugs such as inputting a decimal number
into the light level number input caused an exception because the back-end
was expecting an Int. However, these were quickly fixed, and the web server
behaved as expected.

The main part to which I dedicated the most attention was the communi-
cation between the Web server, the gateway, and the light source connected
to the DALI bus. I verified that it works correctly on multiple scenarios. One
of the scenarios looked like this (see Figure 4.1): I sent an empty message to
a gateway and read the identifier with which it responded. I checked that
the identifier matches the MAC address of the gateways that I knew. Then I
sent a message using this identifier that contains an address DAPC DALI
command. I knew that the address of the light source on the other side of the
gateway was 1, so the command was to set the current light level of the light
source with address 1 to the value of 142. I actually found that the minimum
value that the particular DALI drive supported was around 70, therefore I
selected a higher value. After that, I checked that I received the expected
response of identifier and zeros. After the light source lit up to the expected
brightness, I sent a query actual level DALI command to the same address to
see that the level the light source was set to actually matched the 142 I sent
earlier.

35

4. Functionality verification
During all of that I monitored the voltage on the DALI bus with an

oscilloscope. The actual bytes the messages consisted of can be seen in Figure
4.2. Only the last two bytes of these messages were transmitted over the
DALI bus in the case of the forward frames. In the case of the backward
frames, it was only the last one byte. In Figure 4.3 it can be seen that the
Manchester encoded bits picked up by the oscilloscope match the expected
value of 02 8E of the first DAPC forward frame sent. After that, no backward
frame was sent, as expected. Then in Figure 4.4 the 03 A0 matching the
query actual level command was sent. To that the expected response of 8E
(142 decimal) was received. Therefore, I concluded that the protocol and the
system worked as intended.

Figure 4.1: A diagram of messages sent between the gateway and control
application in the testing scenario

36

................................ 4. Functionality verification

Figure 4.2: Messages sent during testing depicted by individual bytes in hex-
adecimal format

Figure 4.3: Oscilloscope measurement of DALI bus transmission of DAPC 142
to short address 1 forward frame

37

4. Functionality verification

Figure 4.4: Oscilloscope measurement of DALI bus transmission of query actual
from short address 1 level forward frame

Figure 4.5: Oscilloscope measurement of DALI bus transmission of query actual
from short address 1 backward frame

38

Chapter 5

Application

The control system designed and implemented in this thesis is being used
in a research project of Architectural and Festive Lighting in the Context
of Historic Buildings and Spaces (NAKI). One of the aims of this project is
investigating how to implement architectural lighting of historical buildings
in the context of the surrounding environment and ecology. That is how to
light the building for the best experience by people viewing it and also for
minimal negative impact on the surrounding natural environment.

The system was required to control four independently positioned light
sources powered by a battery bank. The lights were to be first used for some
laboratory measurements and then moved outside to illuminate part of a
castle. The light sources consisted of around 20 individual LED chips with
varying light characteristics mounted on heat sinks and four DALI drivers for
those LEDs. The intention was to have only four lights active at the same
time and be able to swap the LEDs quickly.

Therefore, I have assembled four LED driver boxes for those four light
sources. The boxes were designed to be placed in an outside environment.
One of the boxes can be seen in Figure 5.2. Each box contains the following
parts:

.The DALI LED driver - this cannot really be seen in the Figure as it is
located on the bottom of the box..A 12V power supply for the DALI bus and gateway electronics - located
in the top part of the box.

39

5. Application
.The ESP8266 gateway module - located in the middle of the box on top

of the driver..A standard power connector type IEC C14 to connect the 12V power
supply and LED driver to the power grid - located on the right side of
the front panel of the box..An XLR female connector for connecting the LEDs to the DALI driver
in the box - located on the left side of the front panel of the box.

The LEDs were fitted with an XLR male connector. This allows for
connecting the LEDs to the boxes using a standard XLR extension cable
and provides a reliable connection, as the LEDs are expected to be swapped
frequently. The box is then connected to the battery power supply using a
standard power cable. The Raspberry Pi was housed in a similar box with a
power supply and the same power connector. The completed setup can be
seen in Figure 5.1

Figure 5.1: Physical realization of the proposed DALI gateway. The module
with ESP 8266 microcontroller and DALI bus circuitry can be seen on top. Photo
courtesy of the NAKI group.

40

......................................5. Application

Figure 5.2: Completed setup with four driver boxes a Raspberry Pi box a Wi-Fi
router and LEDs. Photo courtesy of the NAKI group.

41

5. Application
I also slightly modified the web interface for this application after consulting

with the team that would be using it. As there is ever only one light source
connected to each gateway, the gray gateway cards have been removed from
the interface. I also removed the input labels because the interface is very
simple. In this way, I was able to save space and fit more of the interface on
a screen of a smart phone, as smart phones were the only type of device used
in this application. The modified interface can be seen in Figure 5.3.

Figure 5.3: Modified control system web interface.

The control system has already been used in several laboratory measure-
ments. Photos from some of the experiments can be seen in the Figures below.
The first two Figures 5.4 and 5.5 depict a setup where light spectra resulting
from a combination of multiple LEDs with different color temperatures were
measured. The light sources were positioned on tripods, and some of the
control system boxes can be seen behind them. In the second two Figures 5.6,
and 5.7. A study of how color temperature and light intensity of the lights
illuminating the little 3D printed bird affect human ability to perceive depth.
These are some of the preliminary experiments that the team has conducted
to gather data about the light sources that they have. These learnings will
then be used to actually light a historical building. It is evident that the full
capabilities of the control system were not used in these measurements and
they could have been conducted with a much simpler wired setup. However,
the measurements were invaluable for testing the control system and proving
that it would be capable of running the light sources in any other application,
including the planned lighting of historical buildings.

42

......................................5. Application

Figure 5.4: Light sources connected to the control system viewed from the front.
Photo courtesy of the NAKI group.

Figure 5.5: Light sources connected to the control system pointed to a canvas -
setup for measuring light spectrum of mixed LEDs. Photo courtesy of the NAKI
group.

43

5. Application

Figure 5.6: Light sources setup for studying influence of different lighting
characteristic on human depth perception. Photo courtesy of the NAKI group.

Figure 5.7: Test figure used in depth perception study illuminated with different
spectra and light intensities. Photo courtesy of the NAKI group.

44

Chapter 6

Conclusion

As awareness of the influence of lighting, its properties and changes during
the day on us humans grows, more sophisticated control systems for light
sources are needed. Such systems must support independent control of many
light sources, to allow for setting the lighting conditions to best suit human
needs. This entails having control over the intensity and spectrum of the
light sources illuminating different parts of a space.

In this thesis, I have proposed a design of a control system that would meet
the needs of modern lighting. The control system is designed for the wireless
control of independent light sources driven by DALI. It consists of a central
control web application/user interface which uses Wi-Fi to connect wirelessly
via gateways to the DALI bus controlling the light sources. A communication
protocol defined specifically for this application is used for communication
between the control application and the gateways. It is built on TCP and
allows for directly transmitting DALI protocol forward and backward frames
through the wireless network. This architecture is advantageous, as this type
of protocol inherently supports any DALI commands without the need to
change anything in the gateway implementation, provided that the frames
have a supported length. The light sources are also controlled from a Web
interface, which allows the user to access the system from any device of their
choice that has a web browser. This combined makes the control system very
flexible and suitable for various applications. The use of Wi-Fi and TCP
theoretically also allows the system to work over the Internet, thus allowing
for remote control from anywhere in the world.

I have physically implemented the control system according to this design. I

45

6. Conclusion......................................
have written the Web interface using the Flask Web framework in Python and
Vue.js. I have hosted this web server on a Raspberry Pi. I have implemented
the gateways using an already existing module that has the electronics
necessary to send and receive messages over the DALI bus and is controlled
by an ESP8266 microcontroller that has Wi-Fi capabilities. I then verified
the functionality of this system by connecting it to light sources with DALI
drivers. I tested that the commands sent via the interface yielded the expected
results and measured the traffic on the DALI bus with an oscilloscope to make
sure that the frames are being sent and received correctly. I have concluded
that the system works as designed and meets all the criteria defined in the
thesis assignment.

I made a fully fledged version of the control system complete with containers
for the electronics, necessary power supplies, cables, and connectors. This
setup consists of a Wi-Fi router, a box with the Raspberry Pi, and four
gateway boxes each with a DALI driver for one light source integrated. This
setup was requested for the Architectural and Festive Lighting in the Context
of Historic Buildings and Spaces project. The setup was already successfully
used by the team running this project for several laboratory measurements
and will soon be deployed on a castle for outdoor measurements. In the
future, I would suggest the following improvements/changes to the control
system:

.Adding support for advanced DALI functionality - The control system
only supports basic DALI commands using the 16-bit forward frame and
8-bit backward frame. The system does not support any sensors or user
input devices other than the control application. Therefore, it would
greatly benefit from implementing support for longer frames and DALI
2 functionality.. Securing the TCP based protocol - Currently the data is transmitted
over the wireless network unencrypted. This is not advisable and could
be easily resolved with the use of Transport Layer Security protocol
(TLS).. Securing the web server - The web server currently uses the HTTP
protocol and should really be switched to using HTTPS. It also does not
have password protection which should also be implemented.. Improving the front-end - Currently controls to be displayed on the
interface are specified in the back-end Python code. Having a single
front-end element which could be modified from the back-end code was
advantageous in the prototyping phase. However I would implement the
interfaces completely in the front-end in the future, as it would provide
better customizability for the interfaces an also better scalability.

46

...................................... 6. Conclusion

This control system design and implementation was also submitted as a
conference paper for the 29th international conference on applied electronics.
The paper is currently in the review process.

47

48

Appendix A

Bibliography

[1] Peter Robert Boyce. Human factors in lighting. CRC Press, 2003.

[2] C Cajochen, M Freyburger, T Basishvili, C Garbazza, F Rudzik, C Renz,
K Kobayashi, Y Shirakawa, O Stefani, and J Weibel. Effect of daylight
led on visual comfort, melatonin, mood, waking performance and sleep.
Lighting Research & Technology, 51(7):1044–1062, 2019.

[3] DALI specification by DigiKey. https://www.digikey.ro/en/articles/designing-
wired-lighting-control-networks-to-dali-standard Acessed 2024-05-17.

[4] R091 DALI / Modbus TCP converter. https://products.domat-
int.com/en/communication-converters/463-m090.html Acessed 2024-05-
17.

[5] Petr Douda, Jan Havlík, and Lenka Maierová. Independent light source
control using wi-fi to dali gateways. unpublished, 2024.

[6] ESP8266 microcontroller. https://www.espressif.com/en/products/socs/esp8266
Acessed 2024-05-17.

[7] Foxtron Interface pro bezdrátové ovládání DALI sběrnice.
https://www.foxtron.cz/e-shop/sbernice/dali/daliweb Acessed 2024-05-
17.

[8] Miguel Grinberg. Flask web development. " O’Reilly Media, Inc.", 2018.

[9] IEC 62386-101:2022, Digital addressable lighting interface - Part 101:
General requirements - System components. Standard, International
Electrotechnical Commission, 2022.

49

https://www.digikey.ro/en/articles/designing-wired-lighting-control-networks-to-dali-standard
https://www.digikey.ro/en/articles/designing-wired-lighting-control-networks-to-dali-standard
https://products.domat-int.com/en/communication-converters/463-m090.html
https://products.domat-int.com/en/communication-converters/463-m090.html
https://www.espressif.com/en/products/socs/esp8266
https://www.foxtron.cz/e-shop/sbernice/dali/daliweb

A. Bibliography.....................................
[10] IEC 62386-104:2019, Digital addressable lighting interface - Part 104:

General requirements - Wireless and alternative wired system compo-
nents. Standard, International Electrotechnical Commission, 2019.

[11] IEEE 802.11-2020, IEEE Standard for Information Technology–
Telecommunications and Information Exchange between Systems - Local
and Metropolitan Area Networks–Specific Requirements - Part 11: Wire-
less LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications. Standard, IEEE, 2020.

[12] IEEE 802.11-2020, IEEE Standard for Information Technology–
Telecommunications and Information Exchange between Systems - Local
and Metropolitan Area Networks–Specific Requirements - Part 11: Wire-
less LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications. Standard, IEEE, 2020.

[13] IEEE 802.15.1-2005, IEEE Standard for Information technology– Local
and metropolitan area networks– Specific requirements– Part 15.1a:
Wireless Medium Access Control (MAC) and Physical Layer (PHY)
specifications for Wireless Personal Area Networks (WPAN). Standard,
IEEE, 2005.

[14] IEEE 802.15.4-2020, IEEE Standard for Low-Rate Wireless Networks.
Standard, IEEE, 2020.

[15] William DS Killgore. Effects of sleep deprivation on cognition. Progress
in brain research, 185:105–129, 2010.

[16] Michael S Langer and Heinrich H Bülthoff. Depth discrimination from
shading under diffuse lighting. Perception, 29(6):649–660, 2000.

[17] LoRa Specification. https://lora-alliance.org/about-lorawan/ Acessed
2024-05-17.

[18] MODBUS APPLICATION PROTOCOL SPECIFICATION V1.1b3.
https://modbus.org/docs/Modbus_Application_Protocol_V1_1b3.pdf
Acessed 2024-05-17.

[19] RFC 2616, Hypertext Transfer Protocol – HTTP/1.1. Standard, RFC,
1999.

[20] RFC 6455, The WebSocket Protocol. Standard, RFC, 2011.

[21] RFC 793, TRANSMISSION CONTROL PROTOCOL DARPA INTER-
NET PROGRAM PROTOCOL SPECIFICATION. Standard, RFC,
1981.

[22] Raspberry Pi 4 Model B. https://rpishop.cz/raspberry-pi-4/1598-
raspberry-pi-4-model-b-4gb-ram.html Acessed 2024-05-17.

[23] Guido van Rossum, Barry Warsaw, and Nick Coghlan. Style guide for
Python code. PEP 8, Python Software Foundation, 2001.

50

https://lora-alliance.org/about-lorawan/
https://modbus.org/docs/Modbus_Application_Protocol_V1_1b3.pdf
https://rpishop.cz/raspberry-pi-4/1598-raspberry-pi-4-model-b-4gb-ram.html
https://rpishop.cz/raspberry-pi-4/1598-raspberry-pi-4-model-b-4gb-ram.html

..................................... A. Bibliography

[24] Z-wave specification. https://z-wavealliance.org/development-resources-
overview/specification-for-developers/ Acessed 2024-05-17.

[25] Zencontrol. https://zencontrol.com/ Acessed 2024-05-17.

51

https://z-wavealliance.org/development-resources-overview/specification-for-developers/
https://z-wavealliance.org/development-resources-overview/specification-for-developers/
https://zencontrol.com/

52

Appendix B

Control system code

The code of the central web server implementation can be found attached
to this thesis in the directory /code/server. The back-end is written in
Python 3.12 and formatted according to PEP 8 [23]. It is located in the
/code/server/backend directory. The project package requirements can be
found in the file requirements.txt in the same directory. The front-end is
written in Typescript using Vue.js. It is located in the /code/server/frontend
directory.

In the /code/server/device_configuration.json file the light source
and gateway configuration are stored. The web server can be run using the
start.sh script in the same directory.

The code of the ESP8266 gateway implementation can be found attached
to this thesis in the directory /code/gateway. It is written in C++ using
the Arduino framework.

53

	Introduction
	DALI protocol

	Design
	Interfaces
	System structure

	Implementation
	DALI gateway
	Communication protocol
	Gateway algorithm
	ESP8266 gateway module

	Central web server
	Front-end
	Back-end

	Functionality verification
	Application
	Conclusion
	Bibliography
	Control system code

