
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of master’s thesis

Implementation of the transformation of an OntoUML model in

OpenPonk into its realization in a relational database

Bc. Jakub Jabůrek

Ing. Zdeněk Rybola, Ph.D.

Informatics

Software Engineering

Department of Software Engineering

until the end of summer semester 2024/2025

Instructions

The goal of the thesis is the implementation of the transformation of a conceptual model

in the OntoUML notation created in the OpenPonk application into its corresponding

realization in a relational database while preserving as many integrity constraints

derived from the original OntoUML model as possible.

During the realization, familiarize yourself with the latest version of the OntoUML

notation and the underlying UFO ontology, and the transformation suggested by the

thesis supervisor in his dissertation thesis [1]. Together with the supervisor, revise the

suggested transformation rules in accordance with the latest version of OntoUML.

Design and implement the transformation of an OntoUML model created in OpenPonk

into SQL scripts for creating the relational database structures realizing the original

conceptual model together with its integrity constraints in an Oracle database. The

transformation should be available to run in the OpenPonk application. It should provide

both the SQL scripts for the target database and the intermediate conceptual UML model

and the relational database model with appropriate constraints. These intermediate

constraints do not have to be integrated into OpenPonk, for now.

Document and test the implementation according to the best practices of software

engineering. For the tests, use the model example from [1], eventually other available

models.

Electronically approved by Ing. Michal Valenta, Ph.D. on 22 December 2023 in Prague.

Master’s thesis

Implementation of the Transformation of
an OntoUML Model in OpenPonk into
Its Realization in a Relational Database

Jakub Jabůrek

Department of Software Engineering
Supervisor: Ing. Zdeněk Rybola, Ph.D.

May 9, 2024

Acknowledgements

First, I would like to thank the supervisor of my thesis, Ing. Zdeněk Rybola, Ph.D., for
his valuable time and guidance, and for his research, which my thesis builds upon. I
also thank Ing. Jan Blizničenko for his advice about Pharo programming and OpenPonk
development.

Last but not least, I’d like to express my gratitude to my entire family and friends,
who have supported and encouraged me during my studies.

ii

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources
of information in accordance with the Guideline for adhering to ethical principles when
elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated by the
Act No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that the
Czech Technical University in Prague has the right to conclude a licence agreement on
the utilization of this thesis as a school work pursuant of Section 60 (1) of the Act.

In Prague on May 9, 2024.

iii

Czech Technical University in Prague
Faculty of Information Technology
© 2024 Jakub Jabůrek. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been
submitted at Czech Technical University in Prague, Faculty of Information Technology.
The thesis is protected by the Copyright Act and its usage without author’s permission is
prohibited (with exceptions defined by the Copyright Act).

Citation of this thesis
JABŮREK Jakub. Implementation of the Transformation of an OntoUML Model in
OpenPonk into Its Realization in a Relational Database. Master’s thesis. Prague: Czech
Technical University in Prague, Faculty of Information Technology, 2024.

iv

Abstract

This thesis deals with the implementation of an automated transformation of an Onto-
UML conceptual model to SQL. The implementation is developed as an extension of the
OpenPonk modeling platform and is written in the Pharo programming language. An ap-
proach to the transformation that preserves constraints implied by the OntoUML model is
studied, then a framework for the implementation of model transformations is developed,
and the transformation is implemented and integrated with OpenPonk.

Keywords OntoUML, UML, relational database, SQL, transformation, constraints, Open-
Ponk, Pharo

Abstrakt

Práce se zabývá implementací automatické transformace konceptuálního OntoUML mo-
delu do SQL. Implementace je vytvořena jako rozšíření modelovacího nástroje OpenPonk,
a programována v jazyce Pharo. Je popsán princip transformace, který zachovává omezení
implikovaná OntoUML modelem. Následně je vytvořeno řešení pro implementaci transfor-
mací modelů, a navržená transformace je implementována a integrována do OpenPonku.

Klíčová slova OntoUML, UML, relační databáze, SQL, transformace, omezení, Open-
Ponk, Pharo

v

Contents

1 Introduction 1
1.1 Goals of This Thesis . 2
1.2 Structure of the Thesis . 2

2 State of the Art 3
2.1 Conceptual Modeling . 3

2.1.1 Unified Modeling Language . 4
2.1.2 Unified Foundational Ontology . 6
2.1.3 OntoUML . 6

2.2 Relational Database Management Systems 9
2.2.1 Relational Model . 10
2.2.2 Structured Query Language . 11
2.2.3 Oracle Database . 11

2.3 Data Modeling . 12
2.3.1 Entity–Relationship Model . 12
2.3.2 Data Modeling Profile of the Unified Modeling Language 13

2.4 Object Constraint Language . 13
2.5 Realization of an OntoUML Model in SQL 14

2.5.1 Transformation of an OntoUML Model to UML 14
2.5.2 Transformation of a UML Model to a Relational Model 18
2.5.3 Realization of a Relational Model in Oracle Database 22

3 Analysis 29
3.1 OpenPonk . 29

3.1.1 Data Model . 30
3.1.2 Transformation of an OntoUML Model to UML 31

3.2 Pharo . 33
3.2.1 Code Organization . 33
3.2.2 Source Code Versioning . 34
3.2.3 Package Management . 34
3.2.4 Graphical User Interface . 35

3.3 Transformation Revision for the Latest OntoUML Version 35
3.3.1 Changes in OntoUML . 35
3.3.2 Enumerations . 36

3.4 Software Requirements . 36
3.4.1 Functional Requirements . 36

vii

3.4.2 Non-Functional Requirements . 37

4 Design 39
4.1 Framework for Transformations . 39
4.2 Transformation Engine . 40
4.3 Moco Library . 42
4.4 Data Model . 42

4.4.1 UML Data Model . 42
4.4.2 OntoUML Data Model . 43
4.4.3 Relational Data Model . 44
4.4.4 Oracle SQL Data Model . 46
4.4.5 OCL Data Model . 46

4.5 Transformation Rounds . 47
4.6 User Interface . 49

4.6.1 Toolbar Menu . 49
4.6.2 Question Dialog . 49
4.6.3 Results Window . 50
4.6.4 Settings . 50

5 Implementation 51
5.1 Transformation Engine . 51

5.1.1 Adding Elements and Linking Source with Output Elements . . . 51
5.1.2 Selecting Elements and Managing Metadata 52
5.1.3 Constructing Models . 53
5.1.4 Transformation Options . 53
5.1.5 Transformation Execution . 53
5.1.6 Naming Utilities . 54

5.2 Transformation Rules . 55
5.2.1 OpenPonk OntoUML to Moco OntoUML 55
5.2.2 OntoUML to UML . 57
5.2.3 Preprocessing UML for the Relational Model 62
5.2.4 UML to a Relational Model . 63
5.2.5 Relational Model to Oracle SQL 66
5.2.6 Moco UML to OpenPonk UML . 67
5.2.7 Moco RDB to OpenPonk UML . 68

5.3 User Interface . 68
5.3.1 Transformation Transcript . 68
5.3.2 Toolbar Item . 69
5.3.3 Transformation Command . 69
5.3.4 Moco Playground . 70

5.4 Code Repository . 70
5.5 OpenPonk Build . 71

5.5.1 Project Saving Workaround . 71

6 Evaluation 73
6.1 Functional Testing . 73
6.2 Differences in Generated Names . 74

6.2.1 OntoUML to UML . 74
6.2.2 UML to a Relational Model . 75

6.3 Transformation of the Example Model . 75
6.3.1 OntoUML to UML . 76
6.3.2 UML to a Relational Model . 76

viii

6.3.3 Realization of Constraints and Resulting SQL Model 77
6.3.4 Summary . 78

7 Conclusion 79
7.1 Summary . 80
7.2 Contributions of this Thesis . 80

Bibliography 81

Attachments 85

A Example Model 87
A.1 OntoUML Model . 88
A.2 UML Model . 90
A.3 Relational Model . 92
A.4 Realization in SQL . 94

B Transformation Rules 95
B.1 OpenPonk OntoUML to Moco OntoUML 95
B.2 OntoUML to UML . 97
B.3 Preprocessing UML for the Relational Model 98
B.4 UML to a Relational Model . 98
B.5 Relational Model to Oracle SQL . 98
B.6 Moco UML to OpenPonk UML . 99
B.7 Moco RDB to OpenPonk UML . 99

ix

List of Figures

2.1 Instances of Class, Node and Actor UML classifiers 4
2.2 Annotated example of a UML class element 5
2.3 Annotated example of a UML relationship . 5
2.4 UML generalization . 6
2.5 Entity–Relationship model . 13
2.6 UML model using the Data Modeling Profile 13
2.7 Transformation of an OntoUML Kind and SubKind (left) to UML (right) . . 15
2.8 Optimization (right) of a generalization set (left) 15
2.9 Transformation of an OntoUML Role (top) to UML (bottom) 16
2.10 Transformation of an OntoUML Phase (left) to UML (right) using exclusive

phase associations . 17
2.11 OntoUML Phase transformed to UML via an abstract phase 17
2.12 Transformation of an OntoUML Mode (left) to UML (right) 18
2.13 Transformation of a UML class (left) to a table (right) 18
2.14 Transformation of a one–to–many association (top) to a foreign key (bottom) 19
2.15 Transformation of a UML generalization set (left) to referencing tables (right) 20

3.1 OpenPonk user interface . 30
3.2 Inheritance hierarchy of an OPUMLClass class in OpenPonk 30
3.3 Object diagram of the composition of an element that represents an OntoUML

Kind . 31
3.4 Sequence diagram of the transformation of an OntoUML class to UML in

OpenPonk . 31
3.5 Pharo user interface . 35

4.1 Class diagram of UML data model . 43
4.2 Class diagram of an excerpt from the OntoUML data model 44
4.3 Class diagram of an excerpt from the relational data model 45
4.4 Class diagram of the Oracle SQL data model 46
4.5 Class diagram of an excerpt from the OCL data model 47
4.6 Wireframe of the OpenPonk window toolbar 49
4.7 Wireframe of the transformation option choice dialog 49
4.8 Wireframe of the transformation transcript window 50
4.9 Settings Browser in Pharo . 50

6.1 OntoUML model with a Role (left), the proposed optimization (middle), and
the result of the implemented optimization (right) 76

xi

6.2 Manually applied generalization set optimization (left) and result of the im-
plemented transformation (right) . 77

A.1 Example OntoUML model . 89
A.2 Transformed UML model . 91
A.3 Transformed relational model . 93

xii

List of Listings

2.1 SQL SELECT statement . 11
2.2 OCL postcondition asserting the value attribute is incremented by one . . . 14
2.3 OCL constraint restricting the values of a discriminator attribute 15
2.4 OCL invariant realizing exclusive phase associations 17
2.5 OCL invariant realizing phase attribute . 17
2.6 OCL mandatory multiplicity constraint . 19
2.7 OCL special multiplicity constraint . 20
2.8 OCL constraint for a disjoint and incomplete generalization set realized by

referencing tables . 21
2.9 OCL postcondition realizing the immutability of target table 21
2.10 OCL postcondition preventing the deletion of the source side of an association 21
2.11 SQL CREATE TABLE statement . 22
2.12 SQL ALTER TABLE statements for primary key and unique constraint 22
2.13 SQL ALTER TABLE statement realizing a foreign key 23
2.14 SQL trigger for the superclass table realizing a generalization set constraint . 23
2.15 SQL subclass INSERT trigger realizing a generalization set constraint 23
2.16 SQL trigger guarding the UPDATE operation for a generalization set constraint 24
2.17 SQL trigger guarding the DELETE operation for a generalization set constraint 24
2.18 SQL trigger definition realizing a mandatory multiplicity constraint at the

constrained table side . 25
2.19 SQL trigger definition realizing a mandatory multiplicity constraint at the

related table side . 25
2.20 SQL trigger definition realizing a special multiplicity constraint at the con-

strained table side . 25
2.21 SQL trigger definition realizing a special multiplicity constraint at the related

table side . 26
2.22 SQL trigger definition realizing an exclusivity constraint at the constrained

table side . 26
2.23 SQL trigger definition for an exclusivity constraint guarding the insertion of

records to a related table . 26
2.24 SQL trigger definition for an exclusivity constraint guarding the change of

records in a related table . 27
2.25 SQL CHECK constraint definition . 27
2.26 SQL trigger definition realizing an immutable column 27
2.27 SQL trigger definition realizing immutable source side of an association . . . 28

3.1 OCL enumeration constraint . 36

xiii

4.1 Algorithm of the Transformation Engine . 41

5.1 Instantiating the transformation engine and executing a transformation . . . 54
5.2 Usage of transformation rule repository . 54
5.3 Displaying transformation transcript . 68
5.4 Prefilled code in Moco Playground . 70
5.5 Installation of Moco using Metacello . 71

xiv

List of Tables

2.1 Tabulated example relation . 10

4.1 List of data types in the relational data model 45
4.2 List of transformation rounds . 48

5.1 Methods for converting between naming conventions 54
5.2 OpenPonk OntoUML to Moco OntoUML class transformation rules 56
5.3 OpenPonk OntoUML to Moco OntoUML association transformation rules . . 56
5.4 OpenPonk OntoUML to Moco OntoUML part–whole relationship transforma-

tion rules . 57
5.5 OntoUML to UML class transformation rules 58
5.6 OntoUML to UML mixin transformation rules 58
5.7 UML to RDB data type mapping . 64
5.8 Column data type mapping for Oracle Database 66
5.9 RDB to SQL transformation rules for OCL constraints 67
5.10 Package list of Moco . 70

6.1 Functional test suites . 74
6.2 Difference in the number of generated elements 77

A.1 List of elements in the example OntoUML model 88
A.2 List of elements in the example UML model 90
A.3 List of elements in the example RDB model 92
A.4 List of generated SQL statements . 94

B.1 List of OpenPonk OntoUML to Moco OntoUML transformation rules 95
B.2 List of OntoUML to UML transformation rules 97
B.3 List of UML to UML for RDB transformation rules 98
B.4 List of UML to RDB transformation rules . 98
B.5 List of RDB to SQL transformation rules . 98
B.6 List of Moco UML to OpenPonk UML transformation rules 99
B.7 List of Moco RDB to OpenPonk UML transformation rules 99

xv

Abbreviations

API Application Programming Interface

DBMS Database Management System

DDL Data Definition Language

DML Data Manipulation Language

E/R Entity–Relationship Model

GUI Graphical User Interface

OCL Object Constraint Language

OOP Object–Oriented Programming

RDB Relational Database

RDBMS Relational Database Management System

SQL Structured Query Language

UFO Unified Foundational Ontology

UML Unified Modeling Language

xvii

Chapter 1
Introduction

In software engineering, an approach known as model-driven development proposes that
software systems be developed by constructing a model of the problem domain (i.e. the
area the software intends to address), and then transforming the model to the final realiza-
tion of the software. A model provides abstraction — the engineer can focus on solving the
problem domain while not being concerned with the details of the final implementation. [1,
p. 1–2]

Several modeling standards and notations exist, providing varying levels of abstraction
and precision [2]. The higher the level of abstraction is, the bigger the gap between
the model and its realization may be. Moreover, the model may be built without even
considering a particular target platform, or multiple realizations of the same model may be
derived. Yet, when an appropriate approach to the construction of the model is employed,
even an abstract model can be precise.

OntoUML is a conceptual modeling language — it describes the structure of the do-
main, its elements, and relationships. Therefore, the gap between the model and its
potential realization can be quite high. It is based on the Unified Modeling Language
(UML) and the Unified Foundational Ontology (UFO), and is ontologically well-founded:
based on cognitive science, philosophy and mathematical theory of sets and relations [3,
p. 3]. As a result, OntoUML models can be precise and accurate.

In computer-aided software engineering, computer modeling tools are used to build and
work with the model. When a suitable modeling tool and a quality model are combined,
the transformation of the model to its implementation can be automated [4, p. 2–5].

The target platform of a software model may be, for example, the source code that
implements the software system in a particular programming language, or the definition
of the data storage for the system. A common approach to data management — especially
in complex systems — is the usage of a database.

OpenPonk is a modeling tool that provides support for OntoUML models [5]. In To-
wards OntoUML for Software Engineering: Transformation of OntoUML into Relational
Databases, a possible approach to the realization of an OntoUML model in a database is
presented [6].

In this thesis, we adopt the transformation approach from [6], and implement it in
OpenPonk — creating a tool capable of automatically transforming any OntoUML model
to its realization in a relational database.

1

1. Introduction

1.1 Goals of This Thesis
This thesis aims to implement the transformation of an OntoUML model to its realization
in a relational database proposed in [6] as an extension of the OpenPonk modeling tool.
The implementation intends to preserve all integrity constraints defined in the referenced
approach, and to realize all OntoUML to UML transformation alternatives.

Ultimately, the objective is to create a software product capable of automatically
transforming OntoUML models to SQL.

1.2 Structure of the Thesis
The thesis is structured in a way that follows the development process of the implemented
software.

∘ In Chapter 1: Introduction, the motivation and goals of the thesis are established.

∘ In Chapter 2: State of the Art, the background for this thesis is introduced. Conceptual
modeling, UML and OntoUML are discussed, as well as relational databases and the
specification of model constraints. Finally, the approach to the transformation of an
OntoUML model to a relational database from [6] is explained.

∘ In Chapter 3: Analysis, an overview of the technologies used during the implementation
is provided. OpenPonk and the Pharo programming language are discussed, and
software requirements for the implementation of the transformation are developed.
Also, the proposed transformation approach is revised to work with the latest version
of OntoUML.

∘ In Chapter 4: Design, the approach to the implementation is established — including
the basis of the algorithms that realize the transformation, the data model, and the
structure of the source of the implementation. Also, a design of the user interface is
provided.

∘ In Chapter 5: Implementation, the details of the implementation and its integration
with OpenPonk are described.

∘ In Chapter 6: Evaluation, the implementation is tested, and verified against an exam-
ple OntoUML model.

∘ In Chapter 7: Conclusion, the results of the thesis are summarized.

2

Chapter 2
State of the Art

In this chapter, the current state of the art related to conceptual and data modeling,
database management systems, and model constraint specification is described. The chap-
ter is structured as follows.

∘ In section 2.1, the Unified Modeling Language, the UML Class diagram, the Unified
Foundational Ontology, and OntoUML are described.

∘ In section 2.2, the relational model, the SQL language, and Oracle Database are
discussed.

∘ In section 2.3, the entity–relationship data model, and the Data Modeling Profile for
UML are explained.

∘ In section 2.4, the OCL language for specifying model constraints is introduced.

∘ Finally, in section 2.5, the transformation of an OntoUML model to SQL proposed
in [6], which is implemented in this thesis, is summarized.

2.1 Conceptual Modeling
Models in the context of software engineering aid the analysis of a particular application
domain, construction of a software system, precise communication about the software
system and the domain, and can be used to assess and further improve the implemented
system. [7, p. 543]

The software engineering industry utilizes various kinds of models, depending on the
use case for the model. Conceptual models in particular are used to describe the appli-
cation domain in an abstract way while utilizing common concepts shared by all involved
stakeholders. In other words, a conceptual model reflects the way people think about the
domain. [7, p. 544–545]

To further distinguish between different types of software models, we can use the
following distinction that Unified Modeling Language makes [8, p. 13].

Structural Models. Their main focus is on the static features of the system. They de-
scribe entities, their properties, and the relationships between them.

Behavioral Models. They are used to model dynamic features of the system, such as
interactions between components or processes in the system.

3

2. State of the Art

The topic of this thesis is the transformation of an OntoUML conceptual model to a re-
lational database; as OntoUML models software structure and also the relational model
is a structural model, we focus on structural models.

Typical use cases in software engineering require all stakeholders to agree on the mean-
ing of the model, as ambiguities could prevent efficient work with the model or even cause
incorrect implementations to be developed. Therefore, it is common to use a standardized
form of modeling, where the meaning of model features is precisely defined and a partic-
ular graphical notation is prescribed. In the case of structural software models, the most
widely used and recognized standard is the Unified Modeling Language [9, p. 7].

2.1.1 Unified Modeling Language
The Unified Modeling Language (UML) is a standardized language for the specification,
visualization, construction, and documentation of software systems [10, p. 13], currently
developed at the Object Management Group. It provides standard semantics and notation
for many types of models used in software engineering.

2.1.1.1 UML Metamodel
Elements in a UML model may represent a wide range of different concepts. For this
reason, the language includes a concept of classifiers, which are part of the UML meta-
model. They define structural and behavioral characteristics (called features), and visual
style (or shape) of model elements that are instances of these classifiers. [10, p. 119–120]

Figure 2.1 illustrates instances of three different UML classifiers: Class, Node and
Actor.

Class

Actor

Node

Figure 2.1: Instances of Class, Node and Actor UML classifiers

To support specialized modeling use cases, UML users may define their own stereotypes [10,
p. 80]. They can bring additional semantics or change the shape of the element they are
applied to.

A set of stereotypes (plus other types of extensions) can be packaged to form a pro-
file [10, p. 83–84]. A UML profile can be reused (applied) in other models. By providing
this standardized extension mechanism, UML can be customized while maintaining com-
patibility with conformant general modeling tools [8, p. 3].

2.1.1.2 UML Class Diagram
A Class diagram in UML refers to a model that uses classifiers and stereotypes that
describe the structure of an object-oriented software system: classes, interfaces, gener-
alizations, and associations. This subsection provides a non-exhaustive overview of the
notation used in class diagrams.

Classes

Elements drawn as simple rectangles represent the classes in the software system. The
name of the class is shown at the top; in case the class is abstract, its name will be in

4

2.1. Conceptual Modeling

italics. The class diagram models classes (object templates), not individual class instances.
Class elements can contain compartments, separated from the name or other compart-

ments by a line. The two most used compartment types are attributes and operations
compartments. Attributes compartment contains the list of attributes of the class and
their data types. Operations compartment lists the methods of the class, their param-
eters, and return type. Additionally, features in these compartments also indicate their
visibility using symbols in front of their name and are underlined when they are static.

An annotated example of a class element is provided in figure 2.2.

«utility»
I18n

- activeLanguage: String
+ languages: String [0..*]

+ translate(String): String

Visibility

Attribute name

Attributes Static attribute
Multiplicity

Type

Operation name
Parameter type Return type

Stereotype
Class name

Operations

Figure 2.2: Annotated example of a UML class element

Relationships

Classes within the system usually do not operate in isolation. To show that there exists
a relationship between two classes, a line is drawn connecting the both of them. UML
also allows relationships between more than two elements, which are drawn as diamonds
with lines connecting them to all participating elements.

A name that describes the relationship may be written above the line, the individual
relationship sides can be named as well. Each side can define its multiplicity, that is, the
minimal and maximal amount of instances of the individual that are in a relationship
with the other side.

An annotated example of a relationship between two classes is provided in figure 2.3.

I18n TranslatedStringlocale translation

1

defines

0..*
Multiplicity Stereotype

Side labelRelationship name

«relationship»

Figure 2.3: Annotated example of a UML relationship

Additionally, the relationship may be specified as an aggregation, in which the instance
on one side can be considered to be a part of the instance on the other side. The meaning
of aggregation in UML is purely conceptual. [10, p. 67–68]

Alternatively, the relationship may be specified as a composition. In this case, the part
may be included in at most one composite object at a time, and upon destruction, the
composite object has a responsibility to destroy all its owned objects as well. [8, p. 110]

In a class diagram, an aggregation is visualized by an empty diamond at the side of
the container, a composition by a filled diamond at the side of the owner.

Generalizations

To indicate a generalization relationship, a line between the general and specific classifiers
is drawn with a triangle at the side of the more general individual. As per the UML

5

2. State of the Art

standard, the specific classifier then inherits certain features of the general classifier [8,
p. 98]. A classifier may be the general for multiple specific classifiers, as well as a specific
classifier may have multiple general classifiers.

In order to better define classification hierarchies, multiple generalizations with the
same general classifier may be grouped into a generalization set. A generalization set
may be defined as either complete or incomplete: in a complete set, every instance of the
general classifier must also be an instance of at least one of the specific classifiers. On
the other hand, an incomplete generalization set permits instances of the general classifier
that are not an instance of any of the specific ones. [8, p. 117-118]

Additionally, a generalization set may be defined as either disjoint or overlapping: in
an overlapping set, an instance of the general classifier may be an instance of multiple
specific classifiers, whereas in a disjoint set, the instance can be an instance of at most
one of the specific classifiers. [8, p. 118]

Since UML 2.5, generalization sets are by default incomplete and overlapping, in prior
versions, they defaulted to incomplete and disjoint. [8, p. 119, 11, p. 79]

An example of a generalization with a generalization set is provided in figure 2.4.

String

StaticString TranslatedString

{disjoint, incomplete}

Figure 2.4: UML generalization

2.1.2 Unified Foundational Ontology
The Unified Foundational Ontology (UFO) is a universal ontology that combines theo-
ries from formal ontology in philosophy, cognitive science, linguistics and philosophical
logic [12, p. 1], and provides foundations for domain analysis in conceptual modeling [12,
p. 4].

The ontology is divided into three layers [3, p. 3–4].

UFO–A. Deals with aspects of structural conceptual modeling — types, properties and
relationships.

UFO–B. Deals with behavioral aspects, such as events or processes.

UFO–C. Builds on UFO–A and UFO–B and studies social aspects of entities.

This thesis focuses on structural conceptual models, which are covered by UFO–A. The
theory is summarized in section 2.1.3, where its realization in a UML model is discussed.

2.1.3 OntoUML
OntoUML was developed as an ontologically well-founded version of UML, realizing the
UFO–A theory [3, p. 4]. OntoUML can be considered a profile of UML, as it defines class
and relationship stereotypes, which correspond to types introduced in UFO.

An OntoUML model defines types: abstract bundles of characteristics shared among
their concrete instances; this corresponds to classes in standard UML. Types are instan-
tiated into individuals. [13, p. 3]. A single individual may instantiate multiple types.

6

2.1. Conceptual Modeling

Additionally, the language operates with the ontological notion of identity, which is
used to distinguish individuals from one another. Each individual must have exactly one
source of identity (in other words, exactly one type of all types the individual might in-
stantiate can be an identity provider). Types that have an identity (whether inherited or
provided by themselves) are classified as sortals, types that have no identity are classi-
fied as non-sortals. Non-sortals are used to characterize individuals that follow different
identity principles. [13, p. 4–5]

Finally, the set of types that a particular individual instantiates can change during the
course of its lifetime. This is a notable difference between OntoUML and regular UML
or common OOP languages. Types that the individual must instantiate in all situations
are classified as rigid, types that may or may not be instantiated by the individual at any
given time are classified as anti-rigid [13, p. 4]. As anti-rigid types are optional to the
existence of an individual, they cannot provide identity.

2.1.3.1 Class stereotypes

Each type in an OntoUML model must have a stereotype. Stereotypes declare the rigidity
and identity principle of the type, and provide additional ontological information and
constraints to the type. This subsection lists all class stereotypes that OntoUML provides.

Rigid Sortals

Kind. A standalone rigid construct that provides identity. [14, p. 5]

SubKind. Represents a rigid specialization of identity providers. May specialize all rigid
sortals and aspects that provide identity. Does not provide identity itself. [14, p. 5]

Quantity. In general, represents a maximally topologically connected amount of matter.
For example, water is a Quantity, as it can be virtually infinitely divided into mul-
tiple smaller instances. A Quantity may contain other Quantities via a Part–Whole
relationship with «SubQuantityOf» stereotype. Provides identity. [15, p. 33]

Relator. A rigid construct that provides identity, but is existentially dependent on other
individuals: it must always be connected directly to at least one Mediation relation.
It represents the truth-maker of a Material relation, (in other words, it represents the
properties of that relation). It can be specialized by SubKinds, Phases, and Roles,
and generalized by Categories and Mixins. [15, p. 36–37]

Collective. Represents a whole with a homogeneous internal structure: all parts are per-
ceived equally, and there are no distinctions between roles and responsibilities of the
individual parts. Members are connected with the Collective via a relationship with
MemberOf stereotype. Provides identity. [15, p. 29]

Anti-Rigid Sortals

Role. Represents an anti-rigid existentially dependent specialization of an identity provider.
Must be always connected to at least one mandatory relation with Mediation stereo-
type. [15, p. 24]

Phase. Specializations whose instantiation depends on the intrinsic properties of the in-
dividual may be represented as Phases. A Phase must always be part of a phase
partition: a generalization set disjoint and complete. [15, p. 20]

7

2. State of the Art

Rigid Non-Sortals

Category. An abstract mixin that aggregates common properties of individuals with dif-
ferent identity principles. [15, p. 43]

Anti-Rigid Non-Sortals

RoleMixin. Represents a mixin specifically for Roles that aggregate instances with differ-
ent identity principles. [15, p. 48]

PhaseMixin. Similarly to a RoleMixin, a PhaseMixin is a supertype for Phases with
different identity principles. [15, p. 47]

Semi-Rigid Non-Sortals

A semi-rigid type acts as a rigid type for its rigid subtypes, and as an anti-rigid type for
its anti-rigid subtypes.

Mixin. Represents a generic mixin that aggregates common properties of its subtypes,
suitable for generalization of rigid and anti-rigid individuals at the same time. [15,
p. 51]

Aspects

Both aspect types are rigid and provide identity.

Quality. When the intrinsic property has a structured value (e.g. color or position), it
can be represented by a Quality. A Quality is existentially dependent on its bearer,
and must be connected to it via a Characterization relation. [15, p. 60]

Mode. They are similar to Qualities but represent properties that have no structured
value. A Mode must be connected to a bearer via a Characterization relation. [15,
p. 56]

2.1.3.2 Relationship stereotypes
Similarly to types, relations are also categorized by OntoUML based on their ontological
meaning using various stereotypes.

Associations

Formal. Represents a relation that holds between two or more individuals directly and
can be reduced to a comparison of the characterizations of the related individuals (e.g.
cheaper–than). [15, p. 63–64]

Material. Constructed as derived relations from Relators and Mediation relations. The
Relators provide structure to the Material relation and they mediate the relata of the
relation. [15, p. 66]

Mediation. Forms the existential dependence relation between a Relator and the individ-
uals it mediates. [15, p. 68]

Characterization. Represents the relation between a bearer and a Quality or Mode (the
feature). [15, p. 69]

Derivation. When Material relations are derived from Relators, the Derivation relation is
used to connect the Material relation with the corresponding Relator [15, p. 70]. This
is a special kind of relation, where one side of the relation is a relation, not a class.

8

2.2. Relational Database Management Systems

Part–Whole Aggregations

Parthood relations are significant from a cognitive perspective, and for this reason, they
are fundamental in OntoUML as well [16, p. 141]. OntoUML provides deeper semantics
for part–whole relations than standard UML via the following means:

Shareability. Refines the concept of aggregation from UML: a shareable part may belong
to multiple wholes at a single time, an exclusive part may belong to at most one whole
at any given time.

Essential Parthood. Specifies that the whole is existentially dependent on the part, and
the instance of the part cannot change during the lifetime of the whole. [17, p. 6–7]

Inseparability. The same principles as in essentiality apply, except from the part side: the
part is existentially dependent on the whole, and the whole instance cannot change. [17,
p. 9]

The visual representation of shareability in an OntoUML diagram overrides UML aggre-
gation: a shareable part has an empty diamond on the opposite side, an exclusive part
a filled diamond.

Relations with an essential part have an essential constraint drawn next to the rela-
tionship line, similarly, relations with an inseparable part carry an inseparable constraint.
The essential constraint is by definition applicable only to relations with rigid wholes;
anti-rigid types have an equivalent immutable part constraint. Similarly, only relations
with a rigid part can be inseparable, those with an anti-rigid part must be constrained
with immutable whole.

Part–Whole relations can be expressed by applying the following stereotypes:

ComponentOf. Represents a relation between a part and the whole of a functional com-
plex. Transitivity of the relation is not prescribed by OntoUML, it depends on the
context. [15, p. 76]

Containment. Used to associate a Quantity with its container [15, p. 77]. As the Quantity
represents a maximally topologically connected amount of matter within the container,
multiplicities of both sides of the relation must be exactly one.

MemberOf. Represents a relation between a Collective and its members. A Collective
may have another Collective as its member, but the MemberOf relation is not transi-
tive. [18, p. 149–151]

SubCollectionOf. Allows nesting of Collectives: both parts of the relation must be Col-
lective individuals and, as opposed to the MemberOf relation, SubCollectionOf is
transitive. [18, p. 149–150]

SubQuantityOf. Represents further division of a Quantity (e.g. oxygen is a part of air).
All parts of a Quantity are essential, both sides of the SubQuantityOf relation must
have multiplicities of exactly one. This relation is transitive. [19, p. 13]

2.2 Relational Database Management Systems
Lots of software systems have the requirement to process and store data, sometimes
of complex structure and large volume. Instead of designing and implementing custom
storage solutions, these systems can use a Database Management System (DBMS).

A DBMS is a dedicated software system that should possess certain capabilities [20,
p. 3–4], as follows.

9

2. State of the Art

Large Datasets. A DBMS should be capable of efficiently storing and processing even
large amounts of data, given adequate computing power and good database design.

Persistence. The managed data should be stored until the software system requests them
to be deleted. They are not limited to e.g. a single execution of a procedure within
the software system, and should persist between system restarts.

Sharing. The DBMS should support concurrent access to the managed data, that is,
multiple clients should be able to query and manipulate the data without the possibility
of corrupting it.

Reliability. The DBMS should handle software and hardware errors, and ensure the man-
aged data remains consistent after events such as a system crash or a power outage.

Efficiency. Clients should be able to query and manipulate managed data quickly. Usu-
ally, it is the responsibility of the database designer to construct efficient queries, and
to use features provided by the DBMS to build an efficient database structure.

Various kinds of database management systems exist: relational, object-oriented, docu-
ment, and graph are some examples. Each kind may be suitable for different use-cases,
and presents a different model for the managed data. In this thesis, we focus on Relational
Database Management Systems (RDBMS).

2.2.1 Relational Model
The relational model for databases was originally proposed by Edgar Codd in 1970: Given
sets 𝐷1, 𝐷2, … , 𝐷𝑛, a relation is a subset of the Cartesian product 𝐷1 × 𝐷2 × ⋯ × 𝐷𝑛. In
other words, it is a set of 𝑛-tuples (𝑎1, 𝑎2, … , 𝑎𝑛) where 𝑎𝑖 ∈ 𝐷𝑖. The sets 𝐷1, … , 𝐷𝑛 are
referred to as the domains of the relation. [21]

Relations are often tabulated, and labels are added to each domain to convey their
meaning [22, p. 3]. An example of a tabulated relation is provided in table 2.1. By
assigning labels to domains, a non-positional notation is introduced, where domains are
called attributes and their labels can be used to refer to them [20, p. 18].

Name Age City
John Doe 42 London
Fulano de Tal 64 Madrid

Table 2.1: Tabulated example relation

Since relations are sets, the order of elements is unimportant, and as such it cannot be used
to refer to an element. Codd states that a relation normally contains a combination of one
or more domains that uniquely identify the relation’s elements, and proposes designating
that combination as the primary key of the relation [21, p. 4].

To support cross-referencing other elements, Codd further introduces foreign keys [21,
p. 4] as combinations of one or more domains in a relation that correspond to the primary
key of another relation (not excluding the same one).

2.2.1.1 Implementation of the Relational Model

Relational database management systems are an inexact implementation of the relational
model. Relations correspond to tables in RDBM systems, tuples to rows, and elements

10

2.2. Relational Database Management Systems

of the tuples to columns. Usually, there is more than one table in a single database
instance. [23, p. 3–5]

In the relational model, relations are sets — they are unordered and cannot contain
duplicate elements. In database systems that implement the relational model, these two
constraints typically do not apply: rows in tables are ordered (although no particular
order is guaranteed) and two or more rows with exactly the same values may be present.

Additionally, relational databases may allow incomplete data to be inserted: rows
where some of the columns do not have a value. A special value, typically referred to
as NULL, is then inserted in place of the empty columns by the database management
system. [23, p. 5]

Concepts of primary and foreign keys are also implemented in common relational
databases, the RDBMS then ensures the constraint expressed by those keys are not vi-
olated. More types of constraints may be supported: usually a unique key, which forces
the combination of participating columns to have a unique value within the whole table,
and a NOT NULL constraint, which prevents empty values in the column.

2.2.2 Structured Query Language
To increase interoperability between clients and various RDBM systems, Structured Query
Language (SQL), originally developed for IBM’s System R, was standardized and adopted
by many other relational databases. [20, p. 85]

An example SQL statement that retrieves columns Name and Age from rows in table
People that have London stored in the City column is provided in listing 2.1.

Listing 2.1: SQL SELECT statement

SELECT Name, Age FROM People WHERE City = 'London'

SQL is used not only to retrieve data from a database, its features can be divided into
multiple parts:

Data Manipulation Language. Retrieval and manipulation (i.e. inserting, updating and
deleting) data in tables.

Data Definition Language. Definition of tables and integrity constraints.

Transaction Control Language. Management of transaction processing within a partic-
ular connection to the database.

Data Control Language. Assignment of access rights to objects in the database.

Although SQL is standardized, vendors of RDBM systems often provide their own ex-
tensions, have different sets of supported data types, or make minor changes to the SQL
syntax in general. Therefore it is not always guaranteed that an SQL statement writ-
ten for one RDBM system can be successfully executed on another. For this reason, we
consider SQL to be an implementation-specific model.

2.2.3 Oracle Database
Oracle Database is an enterprise-grade object–relational DBMS. It uses SQL for data
querying and manipulation, and a procedural extension PL/SQL to implement stored
procedures and triggers [24, p. 10]. This thesis aims to implement the transformation of
an OntoUML model to a series of SQL DDL statements for Oracle Database version 12c.

11

2. State of the Art

The object-oriented extensions of Oracle Database allow users to define custom com-
plex data types, inheritance and behavior [24, p. 11]. However, since our aim is to realize
the OntoUML model in a relational database only, we will not make use of these OO
aspects.

2.2.3.1 Realization of Constraints

Oracle Database natively supports common constraints explained in subsection 2.2.1.1:
primary keys, unique constraints, and foreign keys. Custom constraints can be imple-
mented in various ways:

Check Constraints. A CHECK constraint defines a boolean expression that must evaluate
to TRUE for a DML statement to succeed [24, p. 119]. CHECK constraints are defined at
table level and cannot contain subqueries [25].

Views. A view is defined by an SQL query; when querying the view, the underlying
query gets executed and its result is returned to the client [24, p. 103]. Views may be
updatable: in this case, INSERT, UPDATE, and DELETE statements may be executed on
them, and the database will ensure only records visible by the view may be inserted.
However, only views conforming to certain criteria are updatable. [26]

Triggers. Triggers are stored procedures that run whenever an INSERT, UPDATE, or DELETE
operation occurs in a table. Being written in PL/SQL, they are the most powerful
way of defining database constraints. [24, p. 120–121] An invalid DML operation can
be prevented by the trigger raising an error.

2.3 Data Modeling
A data model is a kind of structural model that describes data elements, their properties,
and the relationships between them. Data models usually have a lower level of abstraction
than conceptual models — they are closer to the platform that will realize them.

2.3.1 Entity–Relationship Model
Various types and notations for data modeling exist, suitable for different use cases. For
modeling the schema of a relational model, Peter Chen in 1976 proposed the Entity–
Relationship (E/R) model [27]. An E/R model has the following components:

Entities. To reiterate, in a relational model, a relation is a set of tuples. In an entity–
relationship model, a tuple represents an entity and, as such, a set of tuples is an
entity set. In the E/R model, the entity set receives a name and is diagrammed as
a rectangle.

Attributes. Attributes of a particular relation are inscribed in ellipses and connected to
the appropriate entity set.

Relationships. Related entity sets are connected by a line with a diamond containing the
label of the relationship in the middle. At the side of each entity set, its multiplic-
ity is written out to express how many entities are participating in the relationship.
Optionally, the role of an entity set may be indicated by attaching a label to its side.

12

2.4. Object Constraint Language

An example E/R model in Chen’s original notation, which describes a relation set with
people and their passports, is shown in figure 2.5.

PERSON PASSPORT
DOCUMENTHOLDER

NAME AGE CITY ISSUED

N
PER–PAS

1

Figure 2.5: Entity–Relationship model

Following the principles of Chen’s work, alternative notations for the E/R model later
emerged. In the following subsection, we explain a UML-based notation, which is used in
database diagrams throughout this thesis.

2.3.2 Data Modeling Profile of the Unified Modeling Language
The schema of a relational database can be modeled using the standard UML Class
diagram, with classes representing tables, attributes representing columns, associations
representing foreign keys, and operations representing constraints.

To introduce RDBMS-specific concepts in UML, Rational Software1 proposed the
UML Data Modeling Profile [28]. It is not a ratified extension by the Object Management
Group, but is supported by a number of UML modeling software.

It provides stereotypes for tables, columns, primary, unique and foreign keys, and
several other constructs commonly used by RDBM systems. It is not tied to a specific
RDBMS implementation, however.

An example UML model that uses the Data Modeling Profile and models the same
schema as the E/R model in figure 2.5 is provided in figure 2.6.

PEOPLE

«column»
*PK ID: NUMBER(38)
* NAME: VARCHAR2(300)
* AGE: NUMBER(38)
 CITY: VARCHAR2(400)

«PK»
+ PK_PEOPLE(NUMBER)

PASSPORTS

«column»
*PK ID: NUMBER(38)
* ISSUED: DATE
*FK PERSON_ID: NUMBER(38)

«FK»
+ FK_PASSPORT_HOLDER(NUMBER)

«PK»
+ PK_PASSPORTS(NUMBER)

0..*

(PERSON_ID = ID)

«FK»1

Figure 2.6: UML model using the Data Modeling Profile

2.4 Object Constraint Language
Object Constraint Language is a extension to UML, standardized by the Object Man-
agement Group [29, p. 3]. It is a declarative language used to specify constraints in the
model that cannot be expressed by UML alone, and, since version 2, OCL can be used to
define any expression (e.g. the body of an operation or a derived attribute) [29, p. 16].

In this thesis, the constraint definition aspect of OCL is considered. Three types of
constraints can be defined, depending on when the condition should be checked:

1The company Rational Software was the original developer of UML in 1994, before it was adopted
by the Object Management Group.

13

2. State of the Art

Invariants. An invariant is a constraint that must hold true for the complete lifetime of
its context [29, p. 27]. In OCL, invariants are declared with the keyword inv.

Preconditions. A precondition is a constraint defined in the context of an operation
that must be satisfied before the operation can be executed [29, p. 33]. In OCL,
preconditions are declared with the keyword pre.

Postconditions. A postcondition constraints the effect of an operation — that is, the state
of the system after the operation has been executed [29, p. 33]. In OCL, postconditions
are declared with the keyword post. The expression in a postcondition refers to
values after the completion of the operation; to access the value before the operation
was executed, a @pre postfix can be used. An example of an OCL postcondition is
provided in listing 2.2.

Listing 2.2: OCL postcondition asserting the value attribute is incremented by one

context Counter::increment() post:
self.value = self.value@pre + 1

2.5 Realization of an OntoUML Model in SQL
The transformation of an OntoUML model to a series of SQL DDL statements for Oracle
Database was proposed by Dr. Zdeněk Rybola in [6]. This section contains a summary
of this transformation.

In his approach, the author divides the transformation into three phases [6, p. 3]:

1. transformation of the OntoUML model to plain UML,
2. transformation of the UML model to a relational model,
3. and conversion of the relational model to SQL DDL statements for Oracle Database.

The referenced work also focuses on preserving as many constraints derived from the
OntoUML model as possible in the intermediate UML and relational models, as well as
in the final realization in SQL.

2.5.1 Transformation of an OntoUML Model to UML
In this step, the types and relationships defined in an OntoUML model are transformed
to standard classes and relationships in a UML model. In cases where the semantics of
the OntoUML model cannot be accurately represented in standard UML, OCL constraint
are derived to preserve the meaning of the original model.

Kinds and SubKinds

As Kind and SubKind types do not require special handling, they can be transformed to
UML by simply converting them to classes. Their attributes, relationships, generaliza-
tions, and generalization sets are also transformed to the UML model as-is. [6, p. 60] An
example of such transformation is provided in figure 2.7.

14

2.5. Realization of an OntoUML Model in SQL

«Kind»
Document

+ number: String

«SubKind»
Passport

Document

+ number: String

Passport

Figure 2.7: Transformation of an OntoUML Kind and SubKind (left) to UML (right)

In the discussion, an optimization of generalization sets with empty subclasses is pro-
posed [6, p. 70–71]: When all subtypes in a generalization set are empty, they can be
discarded and replaced by a discriminator attribute on the supertype. The attribute
then indicates which types the individual currently instantiates. An example of such
optimization is provided in figure 2.8.

«Kind»
Document

«SubKind»
IdCard

«SubKind»
Passport

{disjoint, incomplete}

Document

+ discriminator: String

Figure 2.8: Optimization (right) of a generalization set (left)

Additionally, an OCL constraint that ensures only valid values can be stored in the dis-
criminator column must be derived [6, p. 71]. The set of allowed values depends on the
disjoint and covering properties of the generalization set: when the generalization set is
incomplete, instantiation of the supertype must be allowed, when the generalization set
is overlapping, instantiation of all combinations of the subtypes must be allowed. The
OCL enumeration constraint derived from the OntoUML model in figure 2.8 is provided
in listing 2.3.

Listing 2.3: OCL constraint restricting the values of a discriminator column

context Document inv EN_Document_Type:
self.discriminator = 'Document' OR self.discriminator = 'IdCard'

OR self.discriminator = 'Passport'

Roles and Relators

Role types are transformed to UML classes. The generalization relationship between the
role and its identity bearer cannot be represented as generalization in UML, since roles
are anti-rigid. Instead, the class generated from the role is connected to its identity
bearer using a regular association, with multiplicity of 0..1 at the side of the role, and
multiplicity of 1..1 at the side of the identity bearer. Additionally, the side of the identity
bearer must be immutable. [6, p. 61–62]

Relators are also transformed to UML classes, and Mediation relationships to associ-
ations. Since relators are existentially dependent on other individuals, the opposite side

15

2. State of the Art

of the relator must be mandatory and immutable. [6, p. 65–66] Furthermore, as Material
relationships are only derived from mediations and relators, they are not transformed to
the UML model at all [6, p. 66].

An example of the transformation of roles, including the mandatory relator mediating
them, is provided in figure 2.9.

«Kind»
Person

«Role»
IdentifiedPerson

«Relator»
Issuance

«Kind»
IdCard

«Role»
IssuedDocument1..*

«mediation»

11..*

«mediation»

1

Person

IdentifiedPerson

IdCard

IssuedDocumentIssuance
1..*1

{frozen}

0..1

1
{frozen}

1..* 1
{frozen}

0..1

1
{frozen}

Figure 2.9: Transformation of an OntoUML Role (top) to UML (bottom)

Additionally, the possibility of optimization of empty roles is discussed: When only an
empty class representing the original role is generated, it can be removed from the opti-
mized model, and the identity bearer can be connected directly to the truth-maker. The
minimal multiplicity at the side of the truth-maker must be set to zero so that individuals
that do not instantiate the role can exist. [6, p. 73–74]

Furthermore, a discussion on the optimization of empty relators is provided: The
empty class generated from a relator may be discarded, and the classes generated from
the mediated roles connected by an association generated from the derived material rela-
tionship. [6, p. 74–75]

Phases

OntoUML uses the generalization relationship to connect phases to their identity bearer.
Similar to the transformation of roles, this relationship cannot be represented by a gener-
alization in UML. Since the phase partition is disjoint and covering, simple associations
cannot be used either. Two alternative transformation options are discussed. [6, p. 62–63]

The first option is to use exclusive phase associations. In this approach, classes gener-
ated from phases are connected to their identity bearer via an association, and an OCL
constraint is derived to ensure the identity bearer is connected to exactly one phase of the
phase partition. [6, p. 63–64] An example of such transformation is provided in figure 2.10
and the derived OCL constraint in listing 2.4.

16

2.5. Realization of an OntoUML Model in SQL

«Kind»
IdCard

«Phase»
Valid

«Phase»
Expired

{complete, disjoint}

IdCard

Valid Expired

0..1

1
{frozen}

0..1

1
{frozen}

Figure 2.10: Transformation of an OntoUML Phase (left) to UML (right) using exclusive phase
associations

Listing 2.4: OCL invariant realizing exclusive phase associations

context IdCard inv EX_IdCard_Condition:
self.valid <> OclVoid XOR self.expired <> OclVoid

The second option is to create an abstract phase connected to the identity bearer using an
association. Standard UML generalization set can then be used to specialize the abstract
phase with concrete phases, without the necessity for additional OCL constraints. [6,
p. 64–65] An example of the OntoUML model introduced in figure 2.10 using an abstract
phase is provided in figure 2.11.

IdCard Validity

Valid

Expired

{complete, disjoint}

11
{frozen}

Figure 2.11: OntoUML Phase transformed to UML via an abstract phase

Optimization of empty phases is also discussed. When all classes generated from phases of
a particular phase partition are empty, the entire partition can be replaced by a discrimi-
nator attribute on the identity bearer. As in the case of the optimization of generalization
sets, an additional enumeration OCL constraint must be generated. [6, p. 72–73] An ex-
ample of such enumeration constraint is provided in listing 2.5.

Listing 2.5: OCL invariant realizing phase attribute

context IdCard inv EN_IdCard_Condition:
self.condition = 'Valid' OR self.condition = 'Expired'

Mixins

Mixins are transformed to classes in the UML model with their generalization relationships
preserved. Since mixins are abstract, the generated classes must also be abstract. [6, p. 65]

Aspects

Mode and Quality types are transformed to standard UML classes. The Characteriza-
tion relationship between an aspect and its bearer is transformed to a UML association.

17

2. State of the Art

Additionally, because aspects are existentially dependent on their bearer, the side of the
bearer is mandatory and immutable. [6, p. 66–67]

An example of a transformation of a mode is provided in figure 2.12.

«Kind»
Passport

«Mode»
Design

1

«characterization»

1

Passport Design

11
{frozen}

Figure 2.12: Transformation of an OntoUML Mode (left) to UML (right)

Furthermore, in the case of qualities, both sides of associations generated from Charac-
terization relationships are to be made immutable. [6, p. 67]

Part–Whole Relationships

Aggregations expressing part–whole relationships are transformed to standard associa-
tions in the UML model — the aggregation feature of standard UML is not utilized. [6,
p. 68–69]

As explained in subsection 2.1.3.2, part–whole relationships in OntoUML can express
part shareability. However, as this constraint can be effectively represented by proper
multiplicity at the side of the whole, only the multiplicity is used in the UML model to
realize the shareability property. [6, p. 67–68]

To express the essentiality and inseparability of the relationship, appropriate sides of
the UML association are set immutable. [6, p. 68]

2.5.2 Transformation of a UML Model to a Relational Model
After the OntoUML model is transformed to UML, the resulting UML model is trans-
formed to a relational model. In [6], the author focuses on the transformation of constructs
and constraints generated when processing the original OntoUML model. This section
contains a summary of that transformation.

Classes and Attributes

UML classes are transformed to tables, and attributes are usually transformed to table
columns. Additionally, an artificial primary key column is generated, so individuals can
be uniquely identified within the database. [6, p. 78–79] An example of the transformation
of a simple UML class is provided in figure 2.13.

Person

+ name: String
+ age: Integer
+ city: String [0..1]

PERSON

«column»
*PK PERSON_ID: NUMBER(38)
* NAME: VARCHAR2(200)
* AGE: NUMBER(38)
 CITY: VARCHAR2(200)

«PK»
+ PK_PERSON(NUMBER)

Figure 2.13: Transformation of a UML class (left) to a table (right)

When the minimal multiplicity of an attribute is zero, the corresponding column is defined
as NULLABLE, otherwise as NOT NULL. When the maximal multiplicity of an attribute is
greater than one, it cannot be realized as a simple column. Instead, it must be refactored to
a new table that will store the individual values. The attribute table will be related to the

18

2.5. Realization of an OntoUML Model in SQL

original table via a many–to–one association with the originally requested multiplicity. [6,
p. 79]

Associations

In general, associations are realized by foreign keys. As this realization is uni-directional,
the direction of the relationship is important:

∘ In the case of one–to–one associations with both mandatory or both optional sides,
any direction can be used. [6, p. 82]

∘ For one–to–one associations where only one side is optional, the foreign key is placed
in the table corresponding to the optional side of the association. [6, p. 82]

∘ In the case of many–to–one associations, the foreign key is placed in the table repre-
senting the many side of the association. [6, p. 81]

∘ Many–to–many associations cannot be directly realized by foreign keys. First, they
must be decomposed to two many–to–one relationships; then the preceding rules ap-
ply. [6, p. 80–81]

An example of the transformation of a many–to–one association is provided in figure 2.14.

Person Passport
1..*1

PERSON

«column»
*PK PERSON_ID: NUMBER(38)

«PK»
+ PK_PERSON(NUMBER)

PASSPORT

«column»
*PK PASSPORT_ID: NUMBER(38)
 FK PERSON_ID: NUMBER(38)

«FK»
+ FK_PASSPORT_PERSON(NUMBER)

«PK»
+ PK_PASSPORT(NUMBER)

1..*

(PERSON_ID = PERSON_ID)

«FK»
1

Figure 2.14: Transformation of a one–to–many association (top) to a foreign key (bottom)

Mandatoriness of the target side (in other words, the table that is being referenced by
the foreign key constraint), if applicable, is ensured by setting the referencing column
NOT NULL [6, p. 82]. Additionally, if the source maximal multiplicity is one, a unique key
constraint is also added to the referencing column [6, p. 93].

In cases where the source side is mandatory, an additional OCL constraint must be
generated [6, p. 93]. An example is provided in listing 2.6.

Listing 2.6: OCL mandatory multiplicity constraint

context PERSON inv MUL_PASSPORT_PERSON_ID:
PASSPORT.allInstances()->exists(p | p.PERSON_ID = self.PERSON_ID)

UML also allows special multiplicities, that is, values different from 0, 1 and *. In the
case such multiplicity is used, a special multiplicity OCL constraint must be generated
to ensure data validity [6, p. 93]. An example of a special multiplicity constraint that
requires all people to own at least two but no more than four passports is provided in
listing 2.7.

19

2. State of the Art

Listing 2.7: OCL special multiplicity constraint

context PERSON inv MUL_PASSPORT_PERSON_ID:
def c ount: Integer =

PASSPORT.allInstances()->count(p | p.PERSON_ID = self.PERSON_ID)
2 <= c ount AND c ount <= 4

Generalizations

In [6], three approaches to the realization of a generalization relationship in a relational
database are discussed:

1. single table for the entire generalization set [6, p. 85–88],
2. separate tables for all possible combinations of instantiated classes [6, p. 88–89],
3. and separate tables for each subclass with a reference to the table representing the

superclass [6, p. 89–93] — referencing tables.

In their discussion, the author considers the realization of a generalization relationship
via referencing tables the most useful [6, p. 105]. For this reason, in our approach, we
focus on this option.

To realize the referencing tables approach, a table for the superclass and a table for
each of the subclasses are generated. Additionally, the primary key in tables corresponding
to the subclasses is constrained by a foreign key referencing the table representing the
superclass. [6, p. 90]

Furthermore, a discriminator column is generated in the superclass table. The col-
umn indicates which classes are instantiated by the record. [6, p. 89–90] Possible values
in the column depend on the disjoint and covering properties of the generalization set:
for incomplete generalization sets, allowed values include the superclass, for overlapping
generalization sets, allowed values include all combinations of subclasses. [6, p. 91]

An example of the transformation of a generalization set via referencing tables is
provided in figure 2.15.

Document

IdCard Passport

{incomplete,
disjoint}

DOCUMENT

«column»
*PK DOCUMENT_ID: NUMBER(38)
* DISCRIMINATOR: VARCHAR2(8)

«PK»
+ PK_DOCUMENT(DOCUMENT_ID)

ID_CARD

«column»
*pfK ID_CARD_ID: NUMBER(38)

«FK»
+ FK_ID_CARD_DOCUMENT(ID_CARD_ID)

«PK»
+ PK_ID_CARD(ID_CARD_ID)

PASSPORT

«column»
*pfK PASSPORT_ID: NUMBER(38)

«FK»
+ FK_PASSPORT_DOCUMENT(PASSPORT_ID)

«PK»
+ PK_PASSPORT(PASSPORT_ID)

0..*

(PASSPORT_ID = DOCUMENT_ID)
«FK»

1

0..*

(ID_CARD_ID = DOCUMENT_ID)

«FK»

1

Figure 2.15: Transformation of a UML generalization set (left) to referencing tables (right)

An additional OCL constraint must be introduced to ensure the validity of the discrimi-
nator column, as well as the existence (and non-existence) of rows in tables representing
the subclasses [6, p. 91–92]. An example of such constraint is provided in figure 2.8.

20

2.5. Realization of an OntoUML Model in SQL

Listing 2.8: OCL constraint for a disjoint and incomplete generalization set realized by referencing
tables

context DOCUMENT inv GS_Document_Type:
def Document_Instance: Boolean = self.DISCRIMINATOR = 'Document'

AND NOT(ID_CARD.allInstances()->exists(i | i.DOCUMENT_ID = self.DOCUMENT_ID))
AND NOT(PASSPORT.allInstances()->exists(p | p.DOCUMENT_ID = self.DOCUMENT_ID))

def IdCard_Instance: Boolean = self.DISCRIMINATOR = 'IdCard'
AND ID_CARD.allInstances()->exists(i | i.DOCUMENT_ID = self.DOCUMENT_ID)
AND NOT(PASSPORT.allInstances()->exists(p | p.DOCUMENT_ID = self.DOCUMENT_ID))

def Passport_Instance: Boolean = self.DISCRIMINATOR = 'Passport'
AND NOT(ID_CARD.allInstances()->exists(i | i.DOCUMENT_ID = self.DOCUMENT_ID))
AND PASSPORT.allInstances()->exists(p | p.DOCUMENT_ID = self.DOCUMENT_ID)

Document_Instance OR IdCard_Instance OR Passport_Instance

Immutability

In UML, associations (more precisely, their sides) and attributes may be set immutable.
To preserve this constraint in the realization in a relational database, additional OCL
constraints must be derived [6, p. 99]. Depending on the position of the immutability
constraint, three cases are distinguished:

Immutability of the Target Table. Since the target side of the association is defined by
a foreign key in the source side, it is possible to realize the immutability constraint
by an OCL postcondition that ensures the value of the referencing column does not
change [6, p. 100]. An example of this condition is provided in listing 2.9.

Listing 2.9: OCL postcondition realizing the immutability of target table

context PASSPORT::UPDATE() post IM_PASSPORT_PERSON_ID_UPD:
self.PERSON_ID = self.PERSON_ID@pre

Immutability of the Source Table. To realize this immutability constraint, the disasso-
ciation of the record in the source table from the target record must be prevented.
Therefore, changing the value of the foreign key that realizes the association must
be disallowed, and removal of the entire source record must be disallowed as well. [6,
p. 101–102] An example of an OCL postcondition that prevents changing the value of
the foreign key is provided in listing 2.9, and an example of a constraint that prevents
the deletion of the source record is provided in listing 2.10.

Listing 2.10: OCL postcondition preventing the deletion of the source side of an association

context PASSPORT::DELETE() post IM_PASSPORT_PERSON_ID_DEL:
self.PERSON_ID = OclVoid OR NOT (PERSON.allInstances()->

exists(p | p.PERSON_ID = self.PERSON_ID@pre))

Immutability of an Attribute. To disallow the change of an attribute, an OCL postcon-
dition that ensures the value of the corresponding column is unchanged must be gen-
erated [6, p. 103]. An example of such a condition is provided in listing 2.9.

21

2. State of the Art

2.5.3 Realization of a Relational Model in Oracle Database
The last phase of the transformation of an OntoUML model to SQL is the transformation
of the intermediate relational model to a series of SQL DDL statements. The author in [6]
focuses on the realization in Oracle Database, therefore so does this thesis. This section
contains a summary of this transformation.

OCL constraints specific to the transformation of an OntoUML model to SQL do not
have built-in equivalents in Oracle Database. In [6], three approaches to the realization
of these constraints are discussed [6, p. 118–128]:

Views. A database view can be used to hide data that violate the defined constraints.
When executing INSERT, UPDATE, and DELETE operations on an updatable view, it can
also prevent creating invalid data. However, violations caused by DML operations on
the underlying tables cannot be prevented. [6, p. 118–120]

Check Constraints. A CHECK constraint defines a condition that all rows in a table must
meet. However, since Oracle Database does not allow subqueries in the definition of
a CHECK constraint, it cannot be used to realize constraints that reference multiple
tables. [6, p. 120–121]

Triggers. Triggers are executed on specified events, such as when inserting or updating
a row in a table. The operation can be canceled by throwing an exception from the
trigger, which entirely prevents creating invalid data. Because they can contain very
complex logic, they can be used to realize all constraints derived from the original
OntoUML model during the transformation. [6, p. 122]

In [6], the author discusses the possible realization of each type of constraint using all
three options. Later, they conclude the best realization is using triggers, except for the
enumeration constraint, which is best realized by a CHECK constraint [6, p. 169]. In this
thesis, only the recommended approaches are considered.

Tables and Columns

In SQL, tables and columns are defined via a CREATE TABLE statement [6, p. 116]. An
example of this statement is provided in listing 2.11.

Listing 2.11: SQL CREATE TABLE statement

CREATE TABLE "PERSON" (
"PERSON_ID" NUMBER(32) NOT NULL,
"NAME" VARCHAR2(200) NOT NULL,
"AGE" NUMBER(32) NOT NULL,
"CITY" VARCHAR2(200));

Additionally, an ALTER TABLE statement must be generated for the definition of the pri-
mary key and unique constraints [6, p. 116]. An example of these statements is provided
in listing 2.12.

Listing 2.12: SQL ALTER TABLE statements for primary key and unique constraint

ALTER TABLE "PERSON" ADD CONSTRAINT "PK_PERSON" PRIMARY KEY ("PERSON_ID");

ALTER TABLE "PERSON" ADD CONSTRAINT "UQ_PERSON_NAME" UNIQUE ("NAME");

22

2.5. Realization of an OntoUML Model in SQL

Foreign Keys

To realize the foreign key constraint, an appropriate ALTER TABLE statement must be
generated [6, p. 117]. To support efficient manipulation of a large number of records [6,
p. 117–118], foreign keys are declared as deferred — the RDBMS enforces them only at the
end of the transaction, not immediately upon inserting or updating data [30].

An example of the definition of a foreign key in SQL is provided in listing 2.13.

Listing 2.13: SQL ALTER TABLE statement realizing a foreign key

ALTER TABLE "PASSPORT" ADD CONSTRAINT "FK_PASSPORT_PERSON_ID"
FOREIGN KEY ("PERSON_ID") REFERENCES "PERSON" ("PERSON_ID")
DEFERRABLE INITIALLY DEFERRED;

Generalization Set Constraints

To realize the generalization set constraint, which ensures the existence of records in tables
representing the subclasses based on the value of the discriminator column, a number of
CREATE TRIGGER statements is generated.

First, the original OCL invariant may be violated by an INSERT or UPDATE operation
on the table representing the superclass [6, p. 133]. An example trigger definition for this
case is provided in listing 2.14.

Listing 2.14: SQL trigger for the superclass table realizing a generalization set constraint

CREATE TRIGGER "GS_DOCUMENT_TYPE"
BEFORE INSERT OR UPDATE ON "DOCUMENT" FOR EACH ROW
DECLARE "l_count" NUMBER := 0;
BEGIN
SELECT COUNT(*) INTO "l_count" FROM DUAL WHERE (
(:new."DISCRIMINATOR" = 'Document'
AND NOT EXISTS (SELECT 1 FROM "PASSPORT" WHERE "PASSPORT_ID" = :new."DOCUMENT_ID")
AND NOT EXISTS (SELECT 1 FROM "ID_CARD" WHERE "ID_CARD_ID" = :new."DOCUMENT_ID"))

OR (:new."DISCRIMINATOR" = 'IdCard'
AND NOT EXISTS (SELECT 1 FROM "PASSPORT" WHERE "PASSPORT_ID" = :new."DOCUMENT_ID")
AND EXISTS (SELECT 1 FROM "ID_CARD" WHERE "ID_CARD_ID" = :new."DOCUMENT_ID"))

OR (:new."DISCRIMINATOR" = 'Passport'
AND EXISTS (SELECT 1 FROM "PASSPORT" WHERE "PASSPORT_ID" = :new."DOCUMENT_ID")
AND NOT EXISTS (SELECT 1 FROM "ID_CARD" WHERE "ID_CARD_ID" = :new."DOCUMENT_ID"))

);
IF "l_count" = 0 THEN
raise_application_error(-20101, 'OCL constraint GS_Document_Type violated!');

END IF; END;

Then, inserting records in tables representing the subclasses, which reference an already
existing record in the superclass table, is forbidden [6, p. 133]. As generalization sets are
rigid, records in subclass tables must be created in the same transaction as the record in
the superclass table. An example trigger definition for this case is provided in listing 2.15.

Listing 2.15: SQL subclass INSERT trigger realizing a generalization set constraint

CREATE TRIGGER "GS_DOCUMENT_TYPE_PASSPORT_INS"
BEFORE INSERT ON "PASSPORT" FOR EACH ROW

23

2. State of the Art

DECLARE "l_count" NUMBER := 0;
BEGIN
SELECT COUNT(*) INTO "l_count" FROM DUAL WHERE EXISTS (
SELECT 1 FROM "DOCUMENT" "d" WHERE "d"."DOCUMENT_ID" = :new."PASSPORT_ID");

IF "l_count" > 0 THEN
raise_application_error(-20101, 'OCL constraint GS_Document_Type violated!');

END IF; END;

Furthermore, in tables representing the subclasses, changing the reference to the superclass
record in an UPDATE operation is forbidden [6, p. 133]. An example trigger definition for
this case is provided in listing 2.16.

Listing 2.16: SQL trigger guarding the UPDATE operation for a generalization set constraint

CREATE TRIGGER "GS_DOCUMENT_TYPE_PASSPORT_UPD"
BEFORE UPDATE ON "PASSPORT" FOR EACH ROW
DECLARE "l_count" NUMBER := 0;
BEGIN
IF :old."PASSPORT_ID" <> :new."PASSPORT_ID" THEN
SELECT COUNT(*) INTO "l_count" FROM DUAL WHERE EXISTS (
SELECT 1 FROM "DOCUMENT" "d" WHERE "d"."DOCUMENT_ID" = :old."PASSPORT_ID"
OR "d"."DOCUMENT_ID" = :new."PASSPORT_ID");

END IF;
IF "l_count" > 0 THEN
raise_application_error(-20101, 'OCL constraint GS_Document_Type violated!');

END IF; END;

Finally, the DELETE operation in tables representing the subclasses is forbidden in case
the referenced record in the superclass table still exists [6, p. 133]. An example trigger
definition for this case is provided in listing 2.17.

Listing 2.17: SQL trigger guarding the DELETE operation for a generalization set constraint

CREATE TRIGGER "GS_DOCUMENT_TYPE_PASSPORT_DEL"
BEFORE DELETE ON "PASSPORT" FOR EACH ROW
DECLARE "l_count" NUMBER := 0;
BEGIN
SELECT COUNT(*) INTO "l_count" FROM DUAL WHERE EXISTS (
SELECT 1 FROM "DOCUMENT" "d" WHERE "d"."DOCUMENT_ID" = :old."PASSPORT_ID");

IF "l_count" > 0 THEN
raise_application_error(-20101, 'OCL constraint GS_Document_Type violated!');

END IF; END;

Mandatory Multiplicity Constraints

For a mandatory multiplicity constraint, two CREATE TRIGGER statements must be gen-
erated. First, a trigger must check that when inserting or updating a record in the
constrained table (i.e. the table where the foreign key is located), a related record exists
in the related table [6, p. 146]. An example of this trigger is provided in listing 2.18.

24

2.5. Realization of an OntoUML Model in SQL

Listing 2.18: SQL trigger definition realizing a mandatory multiplicity constraint at the con-
strained table side

CREATE TRIGGER "MUL_IDCARD_PERSON_ID"
BEFORE INSERT OR UPDATE ON "PERSON" FOR EACH ROW
DECLARE "l_count" NUMBER := 0;
BEGIN
SELECT COUNT(1) INTO "l_count" FROM "ID_CARD" "i"
WHERE "i"."PERSON_ID" = :new."PERSON_ID";

IF "l_count" = 0 THEN
raise_application_error(-20101, 'OCL constraint MUL_IDCARD_PERSON_ID violated!');

END IF; END;

Second, a trigger must be defined on the related table verifying that after executing an
UPDATE or DELETE operation, all records in the constrained table are referenced by a record
in the related table [6, p. 147]. An example of such trigger is provided in listing 2.19.

Listing 2.19: SQL trigger definition realizing a mandatory multiplicity constraint at the related
table side

CREATE TRIGGER "MUL_IDCARD_PERSON_ID_REL"
AFTER UPDATE OR DELETE ON "ID_CARD"
DECLARE "l_count" NUMBER := 0;
BEGIN
SELECT COUNT(1) INTO "l_count" FROM "PERSON" "p" WHERE
NOT EXISTS (SELECT 1 FROM "ID_CARD" "i" WHERE "i"."PERSON_ID" = "p"."PERSON_ID");

IF "l_count" > 0 THEN
raise_application_error(-20101, 'OCL constraint MUL_IDCARD_PERSON_ID violated!');

END IF; END;

Special Multiplicity Constraints

The realization of special multiplicity constraints is similar to mandatory multiplicity
constraints, except the triggers are not merely checking for existence of the required
records, but verify the number of records as well [6, p. 146–147].

First, an example of a CREATE TRIGGER statement verifying the appropriate number
of related records exist is provided in listing 2.20.

Listing 2.20: SQL trigger definition realizing a special multiplicity constraint at the constrained
table side

CREATE TRIGGER "MUL_PASSP_PERSON_ID"
BEFORE INSERT OR UPDATE ON "PERSON" FOR EACH ROW
DECLARE "l_count" NUMBER := 0;
BEGIN
SELECT COUNT(*) INTO "l_count" FROM "PASSPORT" "p"
WHERE "p"."PERSON_ID" = :new."PERSON_ID";

IF NOT ("l_count" BETWEEN 2 AND 4) THEN
raise_application_error(-20101, 'OCL constraint MUL_PASSP_PERSON_ID violated!');

END IF; END;

Second, an example of a CREATE TRIGGER statement that checks all records in the con-

25

2. State of the Art

strained table have the appropriate number of related records is provided in listing 2.21.

Listing 2.21: SQL trigger definition realizing a special multiplicity constraint at the related table
side

CREATE TRIGGER "MUL_PASSP_PERSON_ID_REL"
AFTER INSERT OR UPDATE OR DELETE ON "PASSPORT"
DECLARE "l_count" NUMBER := 0;
BEGIN
SELECT COUNT(1) INTO "l_count" FROM "PERSON" "p" WHERE NOT (
(SELECT COUNT(*) FROM "PASSPORT" "p2" WHERE "p2"."PERSON_ID" = "p"."PERSON_ID")
BETWEEN 2 AND 4);

IF "l_count" > 0 THEN
raise_application_error(-20101, 'OCL constraint MUL_PASSP_PERSON_ID violated!');

END IF; END;

Exclusivity Constraints

To realize the association exclusivity constraint, a number of CREATE TRIGGER statements
must be generated. First, when inserting or updating a record in the table representing
the source side, a trigger must check that exactly one table contains a record referencing
the checked one [6, p. 154]. An example of this trigger is provided in listing 2.22.

Listing 2.22: SQL trigger definition realizing an exclusivity constraint at the constrained table
side

CREATE TRIGGER "EX_ID_CARD_PHASE"
BEFORE INSERT OR UPDATE ON "ID_CARD" FOR EACH ROW
DECLARE "l_count" NUMBER;
BEGIN
SELECT COUNT(1) INTO "l_count" FROM DUAL WHERE (
(EXISTS (SELECT 1 FROM "EXPIRED" "e" WHERE "e"."BEARER" = :new."CARD_ID")
AND NOT EXISTS (SELECT 1 FROM "VALID" "v" WHERE "v"."BEARER" = :new."CARD_ID"))
OR (NOT EXISTS (SELECT 1 FROM "EXPIRED" "e" WHERE "e"."BEARER" = :new."CARD_ID")
AND EXISTS (SELECT 1 FROM "VALID" "v" WHERE "v"."BEARER" = :new."CARD_ID")));

IF "l_count" = 0 THEN
raise_application_error(-20101, 'OCL constraint EX_ID_CARD_PHASE violated!');

END IF; END;

Furthermore, a CREATE TRIGGER statement must be generated for all tables representing
the related sides. The trigger checks that when inserting to the related table, no record
in the rest of the related tables references the same record in the constrained table as the
one that is being inserted. [6, p. 155] An example of such trigger is provided in listing 2.23.

Listing 2.23: SQL trigger definition for an exclusivity constraint guarding the insertion of records
to a related table

CREATE TRIGGER "EX_ID_CARD_PHASE_VALID_INS"
BEFORE INSERT ON "VALID" FOR EACH ROW
DECLARE "l_count" NUMBER;
BEGIN
SELECT COUNT(1) INTO "l_count" FROM DUAL WHERE (
EXISTS (SELECT 1 FROM "EXPIRED" "e" WHERE "e"."BEARER" = :new."BEARER"));

26

2.5. Realization of an OntoUML Model in SQL

IF "l_count" > 0 THEN
raise_application_error(-20101, 'OCL constraint EX_ID_CARD_PHASE violated!');

END IF; END;

Additionally, a CREATE TRIGGER statement must be generated for all related tables, which
checks that after executing an UPDATE or DELETE operation all records in the constrained
table still have a corresponding record in exactly one related table [6, p. 155]. An example
of this trigger is provided in listing 2.24.

Listing 2.24: SQL trigger definition for an exclusivity constraint guarding the change of records
in a related table

CREATE TRIGGER "EX_ID_CARD_PHASE_VALID_UPD_DEL"
AFTER UPDATE OR DELETE ON "VALID"
DECLARE "l_count" NUMBER;
BEGIN
SELECT COUNT(1) INTO "l_count" FROM "ID_CARD" "i" WHERE NOT (
(EXISTS (SELECT 1 FROM "EXPIRED" "e" WHERE "e"."BEARER" = "i"."CARD_ID")
AND NOT EXISTS (SELECT 1 FROM "VALID" "v" WHERE "v"."BEARER" = "i"."CARD_ID"))
OR (NOT EXISTS (SELECT 1 FROM "EXPIRED" "e" WHERE "e"."BEARER" = "i"."CARD_ID")
AND EXISTS (SELECT 1 FROM "VALID" "v" WHERE "v"."BEARER" = "i"."CARD_ID")));

IF "l_count" > 0 THEN
raise_application_error(-20101, 'OCL constraint EX_ID_CARD_PHASE violated!');

END IF; END;

Enumeration Constraints

An enumeration constraint is realized in SQL by defining a CHECK constraint in the con-
strained table [6, p. 160–161]. An example of such constraint is provided in listing 2.25.

Listing 2.25: SQL CHECK constraint definition

ALTER TABLE "ID_CARD" ADD CONSTRAINT "EN_ID_CARD_VALIDITY" CHECK (
"VALIDITY" = 'Valid' OR "VALIDITY" = 'Expired');

Immutability Constraints

The immutability constraint generated by an immutable attribute or for the target side
of an association is realized by a trigger, which checks that an UPDATE operation did not
change the value of the constrained column [6, p. 163]. An example of this trigger is
provided in listing 2.26.

Listing 2.26: SQL trigger definition realizing an immutable column

CREATE TRIGGER "IM_PASSP_PERSON_ID_UPD"
BEFORE UPDATE ON "PASSPORT" FOR EACH ROW
BEGIN
IF :old."PERSON_ID" <> :new."PERSON_ID" THEN
raise_application_error(-20101, 'OCL constraint IM_PASSP_PERSON_ID violated!');

END IF; END;

27

2. State of the Art

In the case of an association with an immutable source side, a trigger preventing the
deletion of records in the source table that reference existing records in the target table
is generated [6, p. 163–164]. An example of such trigger is provided in listing 2.27.

Listing 2.27: SQL trigger definition realizing immutable source side of an association

CREATE TRIGGER "IM_PASSP_PERSON_ID_DEL"
BEFORE DELETE ON "PASSPORT" FOR EACH ROW
DECLARE "l_count" NUMBER;
BEGIN
SELECT COUNT(1) INTO "l_count" FROM DUAL WHERE (EXISTS (
SELECT 1 FROM "PERSON" "p" WHERE "p"."PERSON_ID" := :old."PERSON_ID"));

IF :old."PERSON_ID" IS NOT NULL AND "l_count" > 0 THEN
raise_application_error(-20101, 'OCL constraint IM_PASSP_PERSON_ID violated!');

END IF; END;

28

Chapter 3
Analysis

This chapter provides an overview of the technologies used for the implementation, revises
the transformation of an OntoUML model to SQL, and specifies requirements for the
implemented software. It is structured as follows.

∘ In section 3.1, the modeling tool OpenPonk is described, and an existing implementa-
tion of the transformation of an OntoUML model to UML is discussed.

∘ In section 3.2, Pharo, the programming language used for the implementation, is
introduced.

∘ In section 3.3, the transformation of an OntoUML model to SQL is revised for the
latest version of OntoUML.

∘ In section 3.4, software requirements for the implementation are listed.

3.1 OpenPonk

OpenPonk is a modeling platform developed at the Faculty of Information Technology,
Czech Technical University in Prague. It aims to support processes concerning software
and business engineering. At the time of publication of this thesis, OpenPonk features
support for various model types and notations, notably (within the context of this thesis)
the following ones [5]:

UML Class diagram. Semi-complete support for the UML 2.5 metamodel is available.
UML models can be exported and imported via the XMI format.

OntoUML. Supports the ontologically-focused profile for UML, has support for model
validation and detection of anti-patterns. Implements transformation of an OntoUML
model to UML.

More types of models and notations are supported, though they are not relevant to the
topic of this thesis. On the other hand, OpenPonk does not support any notation specific
to relational modeling, such as the Data Modeling profile for UML.

A screen capture of OpenPonk editing an OntoUML model is shown in figure 3.1.

29

3. Analysis

Figure 3.1: OpenPonk user interface

OpenPonk is written in Pharo 11, which is an implementation of the Smalltalk program-
ming language and runtime environment. Its source code is publicly available under the
MIT license.

This thesis aims to implement the transformation of an OntoUML model to SQL
in OpenPonk, therefore this section discusses the implementation details of OpenPonk.
Since no developer documentation or reference is available, the discussion is based on
reverse-engineering efforts.

3.1.1 Data Model
This section explains the internal representation of both a UML and an OntoUML model
in OpenPonk. Note that model and diagram are different concepts: a model is a data
container for information about the investigated domain, and a diagram is a graphical
visualization of the model.

The implementation in OpenPonk closely mirrors the UML standard — the elements
available to the end user (for example, a class element or a Kind element) are instantiated
by a chain of inheritance of classifiers, and by compositions of structural and behavioral
features and stereotypes.

The inheritance hierarchy of OPUMLClass, which represents a class in the UML model,
is shown in figure 3.2. Not all class properties are visible in the diagram.

OPUMLMetaElement

+ appliedStereotypes
+ directGeneralizations
+ sharedGeneralizations
+ uuid

OPUMLElement

+ ownedElements

OPUMLClass

+ isAbstract
+ ownedAttributes
+ nestedClassifiers

Figure 3.2: Inheritance hierarchy of an OPUMLClass class in OpenPonk

In figure 3.3, an object diagram is provided, which illustrates the composition of a model
element that represents an OntoUML Kind. The object diagram shows a concrete instance
of OPUMLClass class named Person, and the numerous classifiers and OntoUMLKind stereo-
type applied to it.

30

3.1. OpenPonk

Person: OPUMLClass

Person: OPUMLBehavioredClassifier

Person: OPUMLClass

Person: OPUMLClassifier

Person: OPUMLEncapsulatedClassifier

Person: OPUMLNamedElement

Person: OPUMLNamespace

Person: OPUMLPackageableElement

Person: OPUMLParameterableElement

Person: OPUMLRedefinableElement

Person: OPUMLStructuredClassifier

Person: OPUMLTemplateableElement

Person: OPUMLType

Person:
OntoUMLKind

stereotypes

generalizations generalizations

Figure 3.3: Object diagram of the composition of an element that represents an OntoUML Kind

In OpenPonk, the visual appearance of an element in a diagram, and its behavior and
features in the model are defined together by the element’s class and the applied classifiers
and stereotypes.

The model itself is an instance of class OPUMLPackage, which declares the applied
profiles and contains a collection of the model elements. A model belongs to a project;
a project is represented by an instance of the OPProject class, and can contain multiple
models.

3.1.2 Transformation of an OntoUML Model to UML

An existing implementation of the transformation of an OntoUML model to UML is
present in OpenPonk. The transformation is initiated by a transformation controller,
which delegates it to classes responsible for the transformation of specific element types.
A sequence diagram illustrating the message flow for the transformation of classes is
provided in figure 3.4.

Controller Query ClassTransformer classTransformation:
TransformClass

classCollection:
Collection

getEntities

:classTransformation

transformClasses

getTransformation

:class

do

transform

transform

:class

:classCollection

Figure 3.4: Sequence diagram of the transformation of an OntoUML class to UML in OpenPonk

31

3. Analysis

3.1.2.1 Conformance to the Proposed Transformation
The implementation of the transformation of an OntoUML model to UML in OpenPonk
was realized independently of the proposal in [6]. In this subsection, the differences in the
existing implementation and the transformation principles developed in [6] are discussed.

Generalizations

1. Generalization sets are not transformed: they are missing from the resulting UML
model.

Kinds and SubKinds

1. When the class is a part of a covering generalization set, the supertype should always
be set abstract, this is not done automatically.

Roles

1. In addition to the generated association, an attribute referencing the role class is also
generated in the identity bearer, and always named attribute. Only the association
should be generated.

2. Wrong multiplicity is set at the side of the role: 1..1 is set, it should be 0..1.

3. The side of the identity bearer should be set immutable, the current implementation
leaves it mutable.

Phases

1. Only realization by exclusive phase associations is implemented, realization by an
abstract phase is not available.

2. In addition to the generated association, an attribute referencing the phase class is also
generated in the identity bearer, and always named attribute. Only the association
should be generated.

3. Wrong multiplicity is set at the side of the phase: 1..1 is set, it should be 0..1.

4. The side of the identity bearer should be set immutable, the current implementation
leaves it mutable.

5. Multiple phase partitions can be defined within a single type, the current implemen-
tation does not distinguish between them in the resulting UML model.

6. An OCL exclusivity constraint should be generated, the current implementation only
puts “XOR” as the name of all the associations.

RoleMixins and PhaseMixins

1. They should be transformed to abstract classes that generalize their subtypes. The
current implementation realizes them as concrete classes associated with the subtype.

Mixins and Categories

1. The resulting UML class should be set abstract, they are transformed to concrete
classes by the current implementation.

32

3.2. Pharo

Relators

1. Derived material relationships should be discarded from the UML model to prevent
redundancy and inconsistencies, the current implementation retains them.

2. In the transformed material associations, the side opposite of the relator should be set
immutable, it is currently left as mutable.

Qualities, Modes, and Quantities

1. The side of the bearer should be set immutable, the current implementation leaves it
mutable.

Part–Whole Relationships

1. Currently, the shareability of the part is transformed to UML aggregation (empty
diamond to empty diamond) or composition (full diamond to full diamond). Instead,
it should be discarded.

2. Essential and inseparable constraints should make the appropriate side of the trans-
formed association immutable; currently, they are ignored.

3.2 Pharo
Pharo is a pure object-oriented and dynamically-typed programming language and run-
time based on Smalltalk. It has fundamental differences in comparison to object-oriented
languages that evolved from C (such as C++ or Java) [31]:

Run-Time Class and Object Modification. Classes and objects can be modified while
the program that is using them is executing. For example, an instance variable can be
added to already existing instances of a class, or an object can be replaced by another
one and all references will immediately point to the new object.

Dynamic Inheritance. The supertype of a class can be changed during run-time.

Pure Object-Oriented Approach. By design, everything in Pharo is an object. That
includes, for example, even integers, booleans, classes, or messages. Objects commu-
nicate by sending messages (instead of invoking methods).

Software as Objects. Pharo does not work with source code text, instead, it represents
the software as objects. Its integrated development environment (IDE) must be used
to view, edit, and export source code.

Pharo code is compiled and executed in a virtual machine, which is available for Windows,
MacOS, and Linux operating systems. The virtual machine executes bytecode from an
image, to which it can also persist the immediate state of the virtual machine and restore
it during the next execution. The image is stored on disk as a single file.

3.2.1 Code Organization
In Pharo, classes are organized into packages. Packages may not be nested, but they can
be further divided into tags. Instead of nesting, dashes in package or tag names are used,
for example Pkg-SubPkg.

33

3. Analysis

Packages and tags do not represent namespaces — there cannot exist multiple classes
with the same name, even in different packages. To prevent collisions, it is recommended
to prefix the name of the class with an abbreviation of the project name [32, p. 9].

Smalltalk, and therefore Pharo as well, uses a particular syntax for message (method)
sending: a unary message (i.e. without arguments) is sent using its name only (e.g. aFile
close), while in the case of keyword messages (i.e. with one or more arguments), the
arguments are inserted in the message name (e.g. aFile write: 'hello' atLine: 42).

3.2.2 Source Code Versioning
Pharo does not store source code in the image — every time a change made in the IDE
is saved, the code is compiled and the virtual machine works only with the compiled
representation1. The original source code is recorded next to the image file in a changes
file. Additionally, a sources file with the source code of Pharo’s built-in classes is provided
with each base Pharo image; the changes file contains all changes that occurred in the
image since the sources file was generated. [33, p. 10–11]

Standard practice in software engineering is to check in source code to a version con-
trol system, which records history, allows annotating changes, and enables collaboration
between multiple developers. Common language-agnostic version control systems record
changes made to source code files.

The purpose of the changes file generated by Pharo is not to serve as a version control
system — because all changes are recorded in a single file, it would make collaboration
impractical, and it would not be possible to limit which classes should be watched for
changes.

Instead, Pharo can integrate with Git2, a distributed version control system, via its
own implementation of a Git client called Iceberg. In Iceberg, packages are linked with
a Git repository. When committing changes, Iceberg exports the source code of classes in
the linked packages to individual files, which are then stored in the repository.

Pharo also includes a Smalltalk-specific version control system named Monticello3.
Since OpenPonk packages use Git, we focus on Git as well.

3.2.3 Package Management
To use code written by other developers, users must download and install it into their
Pharo images. Alternatively, the developer may offer a pre-built image with their software
already included — this just shifts the responsibility of installing packages into the image
on the developer, however.

Pharo includes Metacello4, a package management system for Smalltalk. It allows
users to load packages from repositories and resolve package dependencies.

A Metacello project is defined via a baseline. The baseline specifies what packages
are included in the project, the order in which they must be loaded, and dependencies
on external projects. The baseline is declared as a class with a name beginning with
BaselineOf and ending with the name of the project, and is stored within a package with
the same name as the class. The baseline package must be included in the repository with
the source code of the project.

Metacello can install projects from local directories, remote repositories, and is also
integrated with Iceberg.

1It is possible to run an image without the associated changes file. In that case, the IDE will not be
able to display the source code of the objects in the image.

2More information about Git are available at https://git-scm.com/.
3The Monticello home page is available at http://www.wiresong.ca/monticello/.
4More information about Metacello can be found at https://github.com/Metacello/metacello.

34

https://git-scm.com/
http://www.wiresong.ca/monticello/
https://github.com/Metacello/metacello

3.3. Transformation Revision for the Latest OntoUML Version

3.2.4 Graphical User Interface
The graphical user interface (GUI) of Pharo is realized in a way similar to virtual machines
running entire operating systems: a single window in the host system is opened, and
windows and other graphics are drawn inside the host window. A screen capture of the
contents of a Pharo host window on the first launch of a standard image is shown in
figure 3.5.

Figure 3.5: Pharo user interface

Pharo provides a standard GUI framework called Spec. Internal Pharo tools as well as
OpenPonk use Spec to build their user interface. Spec provides basic GUI widgets, such
as labels, buttons, text boxes, etc. Developers create more complex widgets and entire
user interfaces by composing and customizing the widgets provided by Spec. [34, p. 1–2]
User interfaces created in Spec are platform-independent: behavior and appearance of
widgets are different from native applications, and are the same across all platforms that
run Pharo.

3.3 Transformation Revision for the Latest OntoUML
Version

The transformation of an OntoUML model to UML proposed in [6] was developed against
the then-up-to-date version of OntoUML. In this section, the differences between the latest
OntoUML version available at the time of writing of this thesis and the OntoUML version
used in [6] are discussed, and the transformation principles summarized in subsection 2.5.1
are revised to be applicable to the current OntoUML version.

Note that OntoUML is not formally versioned, therefore the comparison is based on
the description of OntoUML constructs provided in [6] and in subsection 2.1.3.

3.3.1 Changes in OntoUML
1. Quality and Mode are no longer called Moments, they are now categorized as Aspects.

The semantics important for the realization of the transformation remain unchanged.

2. Relators were originally considered as Moments, the current version of OntoUML
categorizes them as rigid sortals. The original transformation remains valid, as the

35

3. Analysis

relevant ontological properties did not change: in both OntoUML revisions, relator
types are rigid and provide identity to their instances.

3. Relationship stereotype «Constitution», originally used to characterize a quantity by
a sortal other than a quantity [6, p. 46], no longer exists and has no direct replacement.
Therefore, the part of the transformation responsible for transforming this stereotype
can be discarded.

The comparison indicates that the transformation of an OntoUML model to UML sum-
marized in subsection 2.5.1 need not be amended for the latest OntoUML version.

3.3.2 Enumerations
The transformation of UML enumerations is not considered in [6], however, they are used
in real-world conceptual models. For this reason, we extend the transformation of a UML
model to a relational model with the support for enumerations.

When transforming an association between a class and an enumeration, a new VARCHAR
column is generated in the table representing the class. The literals of the enumeration are
collected and a new enumeration OCL constraint is generated, which restricts the possible
values of the column to the enumeration literals. An example of an OCL enumeration
constraint generated from an enumeration with literals FAIL and PASS is provided in
listing 3.1.

Listing 3.1: OCL enumeration constraint

context TEST inv EN_TEST_RESULT:
self.RESULT = 'FAIL' OR self.RESULT = 'PASS'

UML enumeration elements themselves do not appear in the transformed relational model,
they only materialize as columns and OCL constraints.

3.4 Software Requirements
The main objective of this thesis is to implement the transformation of an OntoUML
model to SQL. Following the best practices of software engineering [35, p. 63], this section
discusses the requirements imposed on the implementation. The requirements listed in
this section serve as the input specification for the design and realization of the imple-
mentation.

3.4.1 Functional Requirements
First, functional requirements are discussed. Functional requirements describe the ex-
pected functionality of the software: the interface and the behavior of the implementa-
tion [35, p. 64].

Functional Req. 1 (Transformation of OntoUML Model to SQL). The software transforms
any input OntoUML model to a sequence of SQL DDL statements that realize the con-
ceptual model in Oracle Database. The transformation shall adhere to [6] and its revision
for the latest version of OntoUML.

In the transformation of OntoUML to UML, all proposed transformation options and
optimizations shall be implemented. In the transformation of UML to a relational model,
generalizations shall be transformed via referencing tables. Finally, when transforming

36

3.4. Software Requirements

the relational model to SQL, only the realization of OCL constraints in SQL recommended
in [6, p. 169] needs to be implemented.

Functional Req. 2 (Inspection of Intermediate Models). The software allows the user to
inspect the intermediate UML and relational models generated during the transformation
to SQL.

Functional Req. 3 (Transformation Interactivity). During the transformation, when multi-
ple transformation options of a particular construct are implemented (e.g. transformation
of a phase by exclusive associations or an abstract phase), the software allows the user
to choose which option should be used. Similarly, the user chooses whether to apply the
implemented model optimizations or not.

Functional Req. 4 (Model Iteration). The user interface of the software shall support
iterative model development: it should be convenient for the user to go back to the
original OntoUML model, make changes, and execute the transformation again.

3.4.2 Non-Functional Requirements
In this subsection, non-functional requirements are listed. Non-functional requirements
specify the properties and characteristics of the implementation (e.g. used technologies)
and the rest of the software development process (e.g. testing) [35, p. 65].

Non-Functional Req. 1 (Integration with OpenPonk). The software loads the input Onto-
UML model from OpenPonk. Also, the entire transformation process is started from
the OpenPonk user interface. Furthermore, the software should be easily installable to
OpenPonk as a plugin, and be ready to be integrated into the official distribution of
OpenPonk.

Non-Functional Req. 2 (Transformation Extensibility). It shall be possible to easily modify
the implemented transformation later. In particular, it should be possible to add trans-
formations to different SQL dialects while reusing the transformation to UML and the
relational model.

Non-Functional Req. 3 (Verification of Correctness). The correct realization of the trans-
formation and constraints should be verified against the model in [6]; for constructs and
constraints not covered by the model in [6], custom test cases should be developed.

37

Chapter 4
Design

In this chapter, the basis for the implementation of the transformation, and the data model
are constructed, the transformation process is refined, and user interaction is designed.
The chapter is structured as follows.

∘ Section 4.1 lists common features and requirements for the implementation of a model
transformation.

∘ In section 4.2, a basis for the implementation of a model transformation is defined.

∘ In section 4.3, the Moco library, which will contain the implementation of the trans-
formation, is introduced.

∘ In section 4.4, the representation of OntoUML, UML, relational, and SQL models is
designed.

∘ In section 4.5, the transformation of an OntoUML model to SQL is deconstructed into
seven rounds.

∘ In section 4.6, the user interface is designed.

4.1 Framework for Transformations
As described in section 2.5, the transformation of an OntoUML model to SQL is realized
in three phases. First, the OntoUML model is transformed to UML, then to a relational
model, and finally to SQL. In line with the practices of good software design, a common
framework should exist, which will implement common tasks related to model transfor-
mations, and which will be used by the particular transformation phases.

In this section, we describe the features that such a framework should have in order to
make the implementation of transformations efficient and convenient for the developer.

1. The transformation framework should be independent of the type of the particular
transformation. As at least three types of models will be transformed (OntoUML,
UML and relational), a transformation framework that provides generic utilities for
manipulating the models and for execution of the transformation should exist.

2. It should be possible to decompose the transformation as much as possible. Given
the algorithm for the transformation of certain elements can be quite complex, the
cognitive complexity should be reduced by splitting the transformation code as much

39

4. Design

as the developer of the transformation deems appropriate. For example, the developer
should not be forced to implement the transformation of the entire model within
a single class.

3. The transformation framework should be able to handle transformations with depen-
dencies. For example, it should be possible to defer an individual transformation of
an element that requires a transformation of a related element to be executed first.

4. Transformations should be able to produce additional metadata that can be used in
further transformations. For example, when two transformations generate otherwise
indistinguishable elements that need to be transformed differently in another trans-
formation phase, it should be possible to attach information for later distinction.

5. It should be possible to query which elements were generated from a particular input
element. For example, when transforming a relationship between two elements, it is
necessary to retrieve the elements that were generated from the sides of the relation-
ship, so they can be connected in the transformed model as well.

6. The transformation framework should support the definition of multiple transforma-
tion options of a single element. During the execution of the transformation, the user
should be asked which option should be executed. It should be possible to generate the
options dynamically, for example, based on the contents of the currently transformed
element.

7. It should be possible to generate multiple output elements from a single input element,
and even no output elements at all. In other words, the cardinality of the relationship
between an input element and its output elements should be 1:N, where N ∈ {0, 1, …}.

OpenPonk already implements a transformation of an OntoUML model to UML (see sub-
section 3.1.2). However, the existing implementation does not follow the transformation
proposed in [6]. Furthermore, the current implementation via controllers and transformers
lacks some of the features that were identified when specifying the requirements for the
transformation framework. Therefore, going forward, we will not use the existing imple-
mentation. Instead, a new transformation framework will be designed and implemented.

4.2 Transformation Engine
In this section, we design the realization of the transformation framework specified in
section 4.1. The result of the design is the Transformation Engine — a framework that
supports the implementation of a transformation of any kind of model.

First, the containers for the model and individual elements, which support the real-
ization of requirements listed in section 4.1, are described in definitions 4.1 and 4.2. An
example of their usage is provided in example 4.1.

Definition 4.1 (Wrapped Model). Similar to a regular model, a Wrapped Model is a con-
tainer for model elements. A wrapped model is constructed from another existing (regular)
model by wrapping each of its elements in a wrapped element.

Definition 4.2 (Wrapped Element). A Wrapped Element is a container that stores one
model element and a set of additional metadata necessary for the transformation process.

Example 4.1 (Purpose of the Wrapped Model and Wrapped Elements). As the transforma-
tion process is implemented using narrowly focused transformation rules (discussed later),
there may be one rule that transforms OntoUML kinds to UML classes, and an entirely

40

4.2. Transformation Engine

separate rule for transforming associations between OntoUML kinds to associations be-
tween UML classes. The latter rule needs to know which UML classes the OntoUML
kinds were transformed to, in order to create a UML association relationship between
them. This information is stored in the wrapped element’s metadata.

In definition 4.3, we describe the realization of the core of the transformation frame-
work. Furthermore, the algorithm for the transformation engine is provided in listing 4.1.

Definition 4.3 (Transformation Engine). The Transformation Engine (T. E.) is a set of
three nested program loops. The input of the T. E. is a wrapped model. The output of
the T. E. is another wrapped model, with transformation rules applied. The outmost loop
in the T. E. is a do–while loop that repeats until the output model no longer changes. The
middle loop in the T. E. iterates over a list of transformation rules, in the order of their
priority. The innermost loop is again a do–while loop that ends when no changes to the
output model are made.

Listing 4.1: Algorithm of the Transformation Engine

1: repeat
2: for all rule ∈ transformationRules do
3: repeat
4: execute(rule)
5: until ¬ didChange(outputModel)
6: until ¬ didChange(outputModel)

This definition of the T. E. allows the realization of deferred transformations — when
a particular element cannot be transformed due to unmet dependencies, the transforma-
tion rule can skip the element, then, the dependencies will be transformed, and the original
transformation rule will be executed again in the subsequent iteration of the outermost
loop.

Finally, the definition 4.4 describes how a particular transformation logic is specified
for the execution within the transformation engine.

Definition 4.4 (Transformation Rule). A Transformation Rule (T. R.) is an object. Each
transformation rule defines a priority property that determines the order of execution of
a collection of multiple transformation rules (from highest to lowest). Furthermore, each
T. R. implements an execute method, which performs the transformation. In a T. R., it
is forbidden to modify the input model, except for its metadata and the metadata of its
elements. Additionally, a T. R. must handle repeated executions and avoid transforming
a single element multiple times.

Note that the definition 4.4 imposes little restrictions on the actual transformation
logic. This allows implementations of transformation rules of various complexity — for
example, a single rule that atomically transforms multiple elements, or a rule that does
not operate on the input model at all, but manipulates only the output model.

It follows from listing 4.1 that the transformation stops once the output model ceases to
change. Therefore, the requirement for correct handling of multiple executions of a single
transformation rule in definition 4.4 is important. It is the responsibility of transformation
rules to ensure the transformation does not end up in an infinite loop.

Furthermore, the transformation engine does not enforce that all elements in the input
model be transformed. It is the responsibility of the client to verify the transformation
result is complete.

41

4. Design

4.3 Moco Library
In order not to interfere with upstream OpenPonk source code, features implemented
as a part of this thesis are bundled in a library called Moco1 separate from OpenPonk
packages. OpenPonk’s source code is not modified at all.

As Moco is an extension for OpenPonk, it is also written in Pharo 11. The library
consists of the following parts:

∘ the transformation engine and data classes for the wrapped model,
∘ code for the user interface and integration with OpenPonk,
∘ data classes for OntoUML, UML, the relational model, SQL, and OCL,
∘ and the implementation of transformation rules for the transformation rounds listed

in section 4.5.

4.4 Data Model
In this section, data structures for representing the input, intermediate and output models
are designed. In total, the transformation deals with five kinds of models:

∘ OntoUML,
∘ UML Class model,
∘ OCL,
∘ the relational model,
∘ and SQL statements.

The data structures are intended for use within the transformation process. Therefore,
they are designed for easy manipulation by transformation rules, and they may not be
able to represent all features of the particular model kind.

4.4.1 UML Data Model
To represent a UML model in memory, it is possible to either reuse the data model imple-
mented in OpenPonk, or develop a custom one. As it was explained in subsection 3.1.1,
OpenPonk’s representation of UML models is versatile, however, that also makes it rather
complex.

When considering models that our transformation is applicable to, only a subset of
the features that OpenPonk’s data model offers is required:

Classes. Name, indicator of whether the class is abstract or concrete, and attributes.

Attributes. Name, data type, multiplicity, immutability, visibility, and indicator whether
the attribute is static.

Associations. Name, indicator whether the association is derived, and source and target
sides. For association sides, name, class, multiplicity, navigability, visibility, aggrega-
tion, composition, and immutability need to be represented.

Enumerations. Name and enumeration literals.

Generalizations. Generalization relationship, generalization sets. For generalization sets,
the disjoint and covering constraints need to be represented as well.
1Moco is an acronym that stands for “model converter”.

42

4.4. Data Model

In order to simplify the development of transformation rules that work with UML models,
a custom data model is implemented. The data model is designed specifically for use
within the transformation to a relational model — for example, behavioral features, such
as operations, are ignored in our data model.

The design of the data model for UML models is provided as a class diagram in
figure 4.1.

MocoUmlClass

+ name: String
+ abstract: Boolean

MocoUmlAttribute

+ name: String
+ static: Boolean
+ immutable: Boolean

MocoUmlVisibility

+ visibility: String

MocoUmlMultiplicity
MocoUml

MultiplicityBound

+ value: Integer [0..1]

MocoUmlType

+ name: String

MocoUmlAssociation

+ name: String
+ derived: Boolean

MocoUmlAssociationSide

+ name: String
+ frozen: Boolean
+ navigable: Boolean

MocoUml
AssociationAggregation

+ type: String [0..1]

MocoUmlEnumeration

+ name: String

MocoUmlEnumerationLiteral

+ name: String

MocoUmlGeneralization

MocoUmlGeneralizationSet

+ name: String
+ covering: Boolean
+ disjoint: Boolean

0..*

members

0..* 1

attributes

0..*

0..*

visibility

1

0..*

visibility

1

0..1

multiplicity

1

0..*

element

1

1

literals
0..*

0..1

multiplicity

1

0..*

type

0..1

1
source,
target

2

0..*

aggregation

1

1

lower, upper

2

0..*

supertype,
subtype

2

Figure 4.1: Class diagram of UML data model

4.4.2 OntoUML Data Model

As OntoUML can be considered a profile of UML, reasoning in subsection 4.4.1 is appli-
cable to the representation of OntoUML models as well. In addition to standard UML
constructs, OntoUML-specific features need to be supported:

Class Stereotypes. «Kind», «SubKind», «Role», «Phase», «Relator», «Collective»,
«Quantity», «RoleMixin», «PhaseMixin», «Mixin», «Category», «Mode», «Quality».

Relationship Stereotypes. «Formal», «Material», «Mediation», «Characterization»,
«Structuration», «ComponentOf», «Containment», «MemberOf», «SubCollectionOf»,
«SubQuantityOf».

Associations. Shareability of association sides, association essentiality and inseparability.
In contrast with UML, aggregation and composition are not used in OntoUML.

To represent class and relationship stereotypes, a different approach than in OpenPonk
is adopted: instead of attaching stereotypes to a generic UML class, the proposed data
model uses inheritance, as illustrated in figure 4.2.

43

4. Design

MocoOntoUmlClass

+ name: String
+ abstract: Boolean
+ providesIdentity: Boolean
+ attributes: MocoOntoUmlAttribute [0..*]

MocoOntoUmlKind

MocoOntoUmlSubKind

MocoOntoUmlRole

MocoOntoUmlPhase

MocoOntoUmlRelator

etc.

MocoOntoUmlAssociation

+ name: String
+ derived: Boolean
+ source: MocoOntoUmlAssociationSide
+ target: MocoOntoUmlAssociationSide

MocoOntoUmlSpecializedAssociation

MocoOntoUmlMediationAssociation

MocoOntoUmlCharacterizationAssociation

etc.

MocoOntoUmlPartWholeAssociation

+ essential: Boolean
+ inseparable: Boolean

MocoOntoUmlComponentOfAssociation

MocoOntoUmlMemberOfAssociation

etc.

Figure 4.2: Class diagram of an excerpt from the OntoUML data model

In Pharo, multiple inheritance is not allowed [33, p. 131], whereas in UML, multiple stereo-
types can be applied to a single classifier instance. Nevertheless, in OntoUML, no two
stereotypes can be applied to a type at the same time, therefore the realization by inher-
itance is sufficient.

Some classes representing OntoUML class and relationship stereotypes (as listed in
subsection 2.1.3) are omitted from figure 4.2. They follow the same nomenclature and
generalization pattern as the classes shown in the diagram.

Primitives, such as MocoUmlMultiplicity, are reused by the OntoUML data model.
Complex structures and concepts with changed meaning or additional properties (e.g.
MocoOntoUmlAttribute) are not reused nor inherited but reimplemented.

4.4.3 Relational Data Model
To perform transformations to and from the relational model, it is necessary to represent
the following constructs:

Tables. Name, columns, and constraints.

Columns. Name, nullability, and data type.

Constraints. Primary keys, unique constraints, and foreign keys need to be represented.
Primary keys and unique constraints declare the columns to which the constraint ap-
plies, foreign keys declare the referencing columns and the referenced table and columns
referenced within. In addition to constraint-specific properties, each constraint is iden-
tified by its name.

Relational data modeling is not supported in OpenPonk, therefore no data model can
be readily reused. In line with the realization of UML and OntoUML data models, the
relational data model is also implemented from scratch. A class diagram of the proposed
data model is provided in figure 4.3.

44

4.4. Data Model

MocoRdbTable

+ name: String

MocoRdbColumn

+ name: String
+ nullable: Boolean

MocoRdbDataType

+ typeName: String

MocoRdbConstraint

+ name: String

MocoRdbPrimaryKey

MocoRdbForeignKey

MocoRdbUniqueKey

MocoRdbTypeInteger

MocoRdbTypeVarchar

etc.

1

constraints
0..*

1

columns

0..*

1
type

1

Figure 4.3: Class diagram of an excerpt from the relational data model

In figure 4.3, some classes representing data types are omitted. The full list of data type
classes is provided in table 4.1.

4.4.3.1 Data Types

The proposed relational data model is designed as implementation-independent. As far as
our approach is concerned, all of the mentioned RDB constructs are implemented equally
by common RDBM systems, except for data types.

Although several data types are predefined in the SQL standard, RDBMS implemen-
tations deviate from this part of the standard, and the supported sets of data types vary
between them. For this reason, in table 4.1, we introduce a custom set of data types,
independent of any particular RDBMS implementation.

Data Type Description Class Name

INTEGER Whole number. MocoRdbTypeInteger

DOUBLE Floating-point number. MocoRdbTypeDouble

CHAR Single character. MocoRdbTypeChar

VARCHAR Variable-length string. MocoRdbTypeVarchar

DATE Year, month, and day (without timezone). MocoRdbTypeDate

DATETIME Year, month, day, hours, minutes, and sec-
onds (without timezone).

MocoRdbTypeDateTime

TIMESTAMP Number of seconds since the Unix epoch. MocoRdbTypeTimestamp

BOOLEAN True or false value. MocoRdbTypeBoolean

BLOB Binary data. MocoRdbTypeBlob

Table 4.1: List of data types in the relational data model

Note that the proposed data types do not necessarily conform to the SQL standard either.
For example, the DATETIME type is not defined in the standard [36, p. 11].

45

4. Design

4.4.4 Oracle SQL Data Model
We define the elements of an SQL data model as SQL DDL statements that instantiate
a relational database. As summarized in subsection 2.5.3, there are three types of DDL
statements used in the proposed transformation:

CREATE TABLE. In this statement, the name of the table, columns, primary keys, and
unique constraints are defined.

ALTER TABLE. This statement is used to define foreign keys.

CREATE TRIGGER. The majority of OCL constraints are realized by defining a trigger in
the database.

Since the SQL model exclusively acts as the output model of the transformation (i.e.
it is only written, never read), it is sufficient to store raw SQL fragments instead of
representing the SQL syntax in an object model. This approach also greatly reduces the
implementation complexity.

For each statement type, our SQL data model defines a lightweight container for raw
SQL text, as shown in figure 4.4.

MocoSqlOracleCreateTable

+ name: String
+ columnDefinitions: String [0..*]
+ constraintDefinitions: String [0..*]

MocoSqlOracleAlterTable

+ table: String
+ statement: String

MocoSqlOracleCreateTrigger

+ name: String
+ time: TriggerTime
+ event: TriggerEvent
+ table: String
+ granularity: TriggerGranularity [0..1]
+ body: String

«enumeration»
TriggerTime

 BEFORE
 AFTER

«enumeration»
TriggerEvent

 INSERT
 UPDATE
 DELETE
 INSERT OR UPDATE
 UPDATE OR DELETE
 INSERT OR UPDATE OR DELETE

«enumeration»
TriggerGranularity

 EACH ROW

Figure 4.4: Class diagram of the Oracle SQL data model

Fragments of SQL text that shall be printed as-is when the model is exported to an
executable SQL file are stored in properties:

∘ columnDefinitions and constraintDefinitions of MocoSqlOracleCreateTable,
∘ statement of MocoSqlOracleAlterTable,
∘ and body of MocoSqlOracleCreateTrigger.

4.4.5 OCL Data Model
The OCL data model needs to be able to represent the invariants and conditions derived
during the various transformation phases. To limit complexity, we do not attempt to
design a generic OCL model that would be able to represent every possible OCL constraint.
Therefore, we represent each identified type of OCL constraint as a separate class with
appropriate properties. The OCL data model is shown in figure 4.5.

46

4.5. Transformation Rounds

MocoOclConstraint

+ name: String
+ context: Object

+ printOclTo(WriteStream)

MocoOclInvariant

MocoOclEnumerationConstraint

+ attribute: MocoUmlAttribute
+ values: String [0..*]

MocoOclRdbEnumerationConstraint

+ column: MocoRdbColumn
+ values: String [0..*]

MocoOclCondition

+ operation: String

MocoOclPostCondition

MocoOclRdbImmutableColumnCondition

+ column: MocoRdbColumn

etc.

etc.

Figure 4.5: Class diagram of an excerpt from the OCL data model

With this design, no OCL code is generated when constructing elements of the OCL data
model — instead, it is produced by the particular instance when calling the printOclTo
method. Similarly, when the OCL data model is used as an input to a transformation
rule, the rule can determine the type and meaning of a constraint element from its class,
without needing to parse and understand the OCL source code.

The diagram in figure 4.5 omits some model classes that represent constraint types (as
listed in section 2.5). They follow the same naming and generalization patterns as those
shown in the diagram.

Note the distinction between a model and a data model — a model is a description of
a software system using various notations (such as OntoUML, UML or a relational model),
while the term data model in this section refers to the collection of data structures used
to represent a model. In contrast to OntoUML, UML, and relational models, there is no
standalone OCL model. Instead, the elements of the OCL data model appear in UML
and relational models.

4.5 Transformation Rounds
As explained in section 2.5, the transformation proposed in [6] is not performed by trans-
forming the OntoUML model directly to SQL, rather it is separated into three independent
phases:

1. transformation of the OntoUML model to UML,
2. transformation of the UML model to a relational model,
3. and transformation of the relational model to an SQL script.

In addition, our approach is concerned with the integration of the transformation with
OpenPonk, and with precise implementation details of the transformation. Thus, the three
aforementioned phases alone are not sufficient. The complete implementation consists of
seven transformation rounds in total:

1. First, the OntoUML model must be constructed using the data structures described in
subsection 4.4.2. As specified by non-functional requirement 1, the source of the Onto-
UML model is an OpenPonk project. Therefore, before any further transformations

47

4. Design

can take place, the model needs to be transformed from OpenPonk data structures to
Moco data structures.

2. Next, the OntoUML model is transformed to a UML model, as described in subsec-
tion 2.5.1.

3. According to [6], the next phase is the transformation of the UML model to a relational
model. However, certain UML constructs need to be refactored before they can be
transformed to a relational model:

∘ class attributes with upper multiplicity greater than one,
∘ class attributes with data types referencing another class or an enumeration,
∘ many–to–many associations,
∘ and enumerations.

Here, the term refactoring refers to the transformation of the aforementioned UML
constructs to different UML constructs. For this reason, these refactorings should be
performed prior to the transformation of the UML model to a relational model, rather
than as part of the transformation to a relational model itself.

4. Then, the preprocessed UML model is transformed to a relational model, as described
in subsection 2.5.2.

5. Next, the relational model is transformed to a sequence of SQL DDL statements, as
explained in subsection 2.5.3.

6. Furthermore, to realize the functional requirement 2, the UML and relational models
need to be displayed to the user. Therefore, an additional transformation takes place,
which converts the UML model from Moco data structures to OpenPonk structures.

7. Finally, the relational model is converted to an OpenPonk model as well. However,
since OpenPonk does not support relational data modeling, the result of this trans-
formation round is a UML model loosely corresponding to the relational model.

With the design developed in section 4.2, each of the seven rounds can be implemented
as a set of transformation rules, and executed by the transformation engine. The input
and output of each round are listed in table 4.2 (abbreviations 𝒪𝒫 and ℳ are used to
distinguish OpenPonk and Moco data models respectively).

No. Input Output

1 OntoUML 𝒪𝒫 OntoUML ℳ

2 OntoUML ℳ UML ℳ

3 UML ℳ UML preprocessed for RDB ℳ

4 UML preprocessed for RDB ℳ relational model ℳ

5 relational model ℳ SQL ℳ

6 UML ℳ UML 𝒪𝒫

7 relational model ℳ UML 𝒪𝒫

Table 4.2: List of transformation rounds

48

4.6. User Interface

4.6 User Interface
As described in requirements in section 3.4, the user executes the transformation of the
OntoUML model from the OpenPonk user interface. Furthermore, the transformation
process is interactive — the user chooses between options when multiple transformation
approaches are possible. Finally, the results of the transformation are presented to the
user.

4.6.1 Toolbar Menu
OpenPonk already implements its own version of the transformation of an OntoUML
model to UML, which is executed by clicking on the appropriate item in the toolbar
menu.

We use the same approach for consistency: a new submenu labeled “Moco” is added to
distinguish OpenPonk’s built-in features from our additions, and a “Transform to SQL”
menu item is placed in the submenu. The transformation of the currently open OntoUML
model is executed when the user clicks on the menu item. A wireframe representing the
toolbar menu is shown in figure 4.6.

OpenPonk v Project v Diagram v

Export as PNG...
Export as SVG...

Patterns
Transform to UML
Verification
Git model repository
Moco Transform to SQL

>

>
>
>

Figure 4.6: Wireframe of the OpenPonk window toolbar

4.6.2 Question Dialog
During the transformation, the transformation of a particular element may be realized in
multiple ways. Then, user input is needed to determine which approach should be used.
Each time such input is requested, a dialog window is presented with the question and
buttons for selecting the response. A wireframe of this dialog is shown in figure 4.7.

Choose Transformation Option

Keep in model

The relator “Authorship” has no properties and can be
optimized out. How do you want to proceed?

Remove it from the model

Figure 4.7: Wireframe of the transformation option choice dialog

Multiple question dialogs may appear during the transformation of a single model. To
make the repeated transformation of a particular model more convenient for the user (as
specified in functional requirement 4), the software remembers the answer to each question.
Then, when executing the transformation again on the same model, the question dialog
additionally contains a button that automatically answers all questions the same as during
the previous execution.

49

4. Design

4.6.3 Results Window
When the transformation is complete, the resulting UML and relational models, and the
SQL script are displayed to the user. For showing the UML and relational diagrams,
OpenPonk itself is used — either a new window displaying the diagrams is opened, or the
diagrams are added to the currently opened project, depending on the user’s preference.

The SQL script cannot be sensibly displayed in OpenPonk itself, therefore, a new
window containing a text box with the SQL script is also opened. The window contains
a “Save as” button as well, which opens the standard Pharo file selection dialog, and lets
the user save the contents of the text box to a file. A wireframe of the window is shown
in figure 4.8.

Transformation Transcript

OntoUML UML UML for RDB RDB SQL Save as...

C R E A T E T A B L E " P E R S O N " (
" P E R S O N _ I D " N U M B E R (3 2) N O T N U L L ,
" N A M E " V A R C H A R 2 (2 0 0) N O T N U L L ,
" A G E " N U M B E R (3 2) N O T N U L L ,
" C I T Y " V A R C H A R 2 (2 0 0)) ;

Figure 4.8: Wireframe of the transformation transcript window

In addition to showing the SQL script, the results window also shows plain-text dumps of
the input OntoUML model and the intermediate UML and relational models. The user
switches between them by clicking on the buttons above the text box.

4.6.4 Settings
As mentioned in subsection 4.6.3, the user can choose whether the transformation results
should be displayed in a new OpenPonk window or if they should be added to the project
with the original OntoUML model.

Pharo provides a settings framework, where applications can register class variables
whose values are intended to be changed by users [37, p. 51]. It also has a built-in user
interface where the user can view and modify all registered settings [37, p. 53].

The Pharo settings framework is used for Moco configuration. A screen capture of the
user interface is provided in figure 4.9.

Figure 4.9: Settings Browser in Pharo

50

Chapter 5
Implementation

This chapter details the implementation of the Moco library and individual transformation
rules, and the integration with OpenPonk. It is structured as follows.

∘ In section 5.1, the API provided by the transformation engine is discussed.

∘ In section 5.2, the implementation of every transformation rule is detailed.

∘ In section 5.3, a discussion on the components that facilitate user interaction is pro-
vided.

∘ In section 5.4, the source code repository of the Moco library is discussed.

∘ In section 5.5, a build variant of OpenPonk with Moco integrated is introduced.

5.1 Transformation Engine
As discussed in section 4.2, the basis of the implementation consists of the transformation
engine. The implementation of the transformation engine does not define any transfor-
mation by itself; it provides a base class for implementing transformation rules, the logic
for executing a set of transformation rules, and an API for the transformation rules to
manipulate the transformed model. The implementation of the transformation engine is
located in package Moco-Core.

Throughout this section, we use the term input element to refer to an element in the
input model, output element for an element in the output model, and source element for
an input element linked with a particular output element.

5.1.1 Adding Elements and Linking Source with Output Elements
The MocoTransformationEngine provides API for adding output elements, removing
output elements, and for creating and querying links between an output element and its
source elements.

∘ A new element can be added to the output model by sending addOutputElement:.
However, it is often useful to send addOutputElement:withSource:, which creates
a link between the element in the input model that is the source of the new element
and the output element, and this information can be used by other transformation
rules.

51

5. Implementation

∘ Additionally, if an object needs to be linked with an input element, but not added
to the output model as a separate element, the transformation rule can send at-
Input:putOutputElement:. For example, when a UML association causes a table
column to be generated, the transformation rule can use the message to record which
association is the source of the column, yet the column remains contained in the table
and is not added as a standalone element to the output model.

∘ To retrieve the source element of a particular element in the output model, de-
tectInputElement:1 is sent. Additionally, detectInputElement:ofKind: returns
only a source element that is an instance of the given class, while detectInputEle-
ment:ofKind:notGuarded: also filters out elements with the given guard symbol set.
The transformation engine technically does not prevent a single output element from
having multiple source elements. The detect* messages return the first matching
source element (or nil if none exists), to retrieve the entire collection of matching
elements, each detect* message has its counterpart beginning with select (e.g. se-
lectInputElements:).

∘ To retrieve all elements that were generated from a particular input element, se-
lectOutputElements: is sent. Similarly to selecting source elements, selectOut-
putElements:ofKind: and selectOutputElements:ofKind:notGuarded: and their
detect* variants also exist.

∘ The transformation engine allows the output model to be arbitrarily modified during
the transformation, and this includes removing generated output elements. To safely
remove an output element, removeOutputElement: is sent. This message also takes
care of unlinking the output element from its source elements.

5.1.2 Selecting Elements and Managing Metadata
Selecting elements and metadata from the input or the output model is realized by send-
ing messages to the container of the particular model itself (i.e. the MocoModel class).
Therefore, a transformation rule first sends input or output to the transformation engine,
then it uses the following API to interact with the model.

∘ To return a collection of all elements in the model, elements is sent.

∘ Since filtering by element kind and guards is common, shortcut methods are imple-
mented as well. selectElementsOfKind: is used to select elements that are an in-
stance of the given class, selectElementsNotGuarded: select elements that do not
have the given guard symbol set, and selectElementsOfKind:notGuarded: is a com-
bination of the previous two.

Guard symbols are used to prevent multiple transformations of a single element. Since
a single transformation rule is usually executed more than once, it needs to be able to
distinguish between elements it already transformed and elements that have not yet been
transformed. This is easily achieved by setting a guard symbol (which usually equals
the class name of the particular transformation rule) on each input element once it is
processed by the transformation rule. Then, the rule always selects only input elements
that do not have the guard symbol set.

∘ To add a guard symbol to an element, guard:with: is sent. To manually check
whether a particular element has a guard symbol set, check:isGuarded: is used.
1The detect/select nomenclature is consistent with method names of standard Pharo collections.

52

5.1. Transformation Engine

∘ To add custom metadata to an element, metaOf:at:put: is sent. To retrieve the
metadata, metaOf:at: is used. Metadata are implemented as a dictionary in the
wrapped element, therefore the argument at the position of at: contains the key
under which the data is stored.

∘ Since the transformation engine executes the transformation rules in a loop that ends
once the output model stops changing, it needs to keep track of whether a rule changed
it or not. This is done automatically when sending messages such as addOutputEle-
ment:, but needs to be done explicitly when changing the output model manually (e.g.
adding a column to an already existing table). To indicate the model has changed,
setModified is sent.

5.1.3 Constructing Models
An empty model is constructed by sending new to MocoModel class. When the object is
used as an input model, elements are added to it by sending addElement:.

For transformations that consist of multiple rounds (e.g. the transformation of an
OntoUML model to SQL), addElements: is provided, which accepts a MocoModel and
adds all its elements to the current instance.

Furthermore, if certain metadata should be preserved between transformation rounds,
addElements:keepMeta:, which accepts a collection of the metadata keys that should be
preserved in the new model, is used.

5.1.4 Transformation Options
When an element can be transformed in multiple different ways, the user is asked to
select which option should be used. During the execution of the transformation, the
transformation rule sends a message askChoice: to the transformation engine with an
instance of MocoChoiceBuilder, and the engine returns the option that the user chose.

The transformation rule creates an instance of a MocoChoiceBuilder. The text de-
scribing the transformation options is set by sending question: and individual options
are added by sending addChoice:withId:. The first argument describes the choice, and
the second argument contains a symbol that askChoice: returns if the user picks that
particular choice.

The transformation engine displays a dialog, as designed in subsection 4.6.2, which
lets the user pick the desired transformation option. Then, it records their option in
a choice log. The code that manages the transformation engine can retrieve the choice
log by sending choiceLog. Then, for example, when the same model is transformed the
next time, it can pass it back to the engine by sending choiceLog:. The transformation
engine will offer to answer all questions automatically based on the options recorded in
the choice log.

5.1.5 Transformation Execution
A transformation is executed by creating an instance of MocoTransformationEngine,
adding input elements to the input model, adding transformation rules, and sending the
transform message to the transformation engine. Finally, the transformed model can be
retrieved from the engine by sending output.

Transformation rules need to have a reference to the transformation engine that is
executing them. Therefore, they are instantiated by sending newWithEngine: to their
class.

53

5. Implementation

An example of a code that creates an instance of the transformation engine, adds
transformation rules, and executes the transformation is provided in listing 5.1.

Listing 5.1: Instantiating the transformation engine and executing a transformation

| engine rules |
rules := OrderedCollection with: RuleOne with: RuleTwo.
engine := MocoTransformationEngine new.
engine rules addAll: (rules collect: [:each | each newWithEngine: engine]).
engine input addElement: "...".
engine transform.
^ engine output

To avoid having to list transformation rules manually, Moco provides a MocoTransfor-
mationRuleDynamicRepository. It lists transformation rules within a specific package
and tag, and adds them to the transformation engine. An example of the usage of the
rule repository is provided in listing 5.2.

Listing 5.2: Usage of transformation rule repository

| engine repository |
engine := MocoTransformationEngine new.
repository := MocoTransformationRuleDynamicRepository new

rulesPackage: 'Moco-O2U';
rulesTag: 'Rule';
yourself.

repository injectTo: engine

5.1.6 Naming Utilities
As different types of models have different naming conventions (for example, a class model
usually uses PascalCase formatting for class names, while a relational model typically
uses UPPER_SNAKE_CASE), Moco provides utility methods for transforming between these
conventions. These methods are implemented as class methods of MocoNamingUtils, and
are listed in table 5.1.

Message Example Input Output

toFirstLowerCase: MyClass myClass

toFirstUpperCase: myclass Myclass

toCamelCase: Hello world helloWorld

toPascalCase: hello world HelloWorld

toUpperSnakeCase: MyClass MY_CLASS

toShortName: MyClass mc

Table 5.1: Methods for converting between naming conventions

Additionally, it is often necessary to prevent identifier collisions. Moco provides class
MocoUniqueNameGenerator with class method at:seed:, which accepts a block at the
at: position and a string at the seed: position. The block accepts a string containing

54

5.2. Transformation Rules

the proposed unique name, and returns true if such a name already exists in the context
where it is being requested. First, the seed is proposed, then a number is appended to the
seed and a loop starts that increments the number until the block returns false. Then,
the method returns the final unique name.

5.2 Transformation Rules
The transformation of an OntoUML model to SQL is divided into multiple transformation
rounds, as discussed in section 4.5. Each transformation round consists of the execution of
a set of transformation rules by the transformation engine. The actual implementation of
the transformation logic is located within the transformation rules, which are described in
this section. A list of transformation rules and their priorities is provided in appendix B.

As required in subsection 4.2, the transformation rules are implemented to avoid in-
finite transformation loops by using guard symbols. Furthermore, they are designed so
that the transformation result is always complete, and there is no possibility an element
is left not transformed.

The implementation assumes that only valid models are transformed. When an invalid
model is passed to a transformation rule, the behavior is undefined — an invalid output
model may be produced or an exception may be raised. Thus, transformation rules do not
validate the model (OpenPonk already implements OntoUML model validation), and are
designed to handle invalid models on a best-effort basis (for example, a transformation of
an overlapping or incomplete phase partition simply treats it as if it were complete and
disjoint).

5.2.1 OpenPonk OntoUML to Moco OntoUML
In this subsection, we list the transformation rules that convert an OpenPonk Onto-
UML model to Moco data structures. The transformation rules are located in package
Moco-OpenPonk under the Rule tag. The entire transformation is encapsulated by class
MocoOpenPonkOntoUmlTransformationRound and is executed by invoking the create-
Moco: class method.

5.2.1.1 Classes

Rule 1.1 (MocoOpenPonkOntoUmlClassTransformationRule). Transforms classes with-
out a stereotype from an OpenPonk OntoUML model to Moco OntoUML model. The
class name and the isAbstract property are copied. For each attribute in the OpenPonk
model, a corresponding attribute in the Moco model is created, with the name, visibility,
multiplicity, immutability, isStatic property, and data type copied. Operations defined
in the OpenPonk model are discarded.

In MocoOpenPonkOntoUmlClassTransformationRule, class methods stereotypeSe-
lector and modelClass are defined, which control which classes are selected from the
input model and what class is instantiated in the output model respectively. Then, all
transformation rules for stereotyped classes are implemented as subclasses of rule 1.1,
with the aforementioned class methods overridden to match the stereotype of the classes
they are intended to transform. This approach is known as the Template Method design
pattern [38, p. 325].

The transformation logic for stereotyped OntoUML classes is inherited from 1.1.
A concise list of transformation rules for classes with stereotypes is provided in table 5.2.

55

5. Implementation

1.2 MocoOpenPonkOntoUmlKindTransformationRule «Kind»
1.3 MocoOpenPonkOntoUmlSubKindTransformationRule «SubKind»
1.4 MocoOpenPonkOntoUmlQuantityTransformationRule «Quantity»
1.5 MocoOpenPonkOntoUmlRelatorTransformationRule «Relator»
1.6 MocoOpenPonkOntoUmlCollectiveTransformationRule «Collective»
1.7 MocoOpenPonkOntoUmlRoleTransformationRule «Role»
1.8 MocoOpenPonkOntoUmlPhaseTransformationRule «Phase»
1.9 MocoOpenPonkOntoUmlCategoryTransformationRule «Category»
1.10 MocoOpenPonkOntoUmlRoleMixinTransformationRule «RoleMixin»
1.11 MocoOpenPonkOntoUmlPhaseMixinTransformationRule «PhaseMixin»
1.12 MocoOpenPonkOntoUmlMixinTransformationRule «Mixin»
1.13 MocoOpenPonkOntoUmlQualityTransformationRule «Quality»
1.14 MocoOpenPonkOntoUmlModeTransformationRule «Mode»

Rule Rule Class Name Stereotype

Table 5.2: OpenPonk OntoUML to Moco OntoUML class transformation rules

5.2.1.2 Associations

Rule 1.15 (MocoOpenPonkOntoUmlAssociationTransformationRule). Transforms non-
stereotyped associations from an OpenPonk OntoUML model to a Moco OntoUML model.
The name of the association and the isDerived property are copied.

For each side of the association, the name, visibility, shareability, immutability, naviga-
bility, and multiplicity are copied. The source and target elements are set to the instances
in the output model transformed from the elements in the input model.

Similarly to rule 1.1, class MocoOpenPonkOntoUmlAssociationTransformationRule
also defines template methods stereotypeSelector and modelClass. In subclasses listed
in table 5.3, only the aforementioned methods are overridden, while the transformation
logic is inherited.

1.16 MocoOpenPonkOntoUmlContainmentAssociationTrans-
formationRule

«Containment»

1.17 MocoOpenPonkOntoUmlFormalAssociationTransforma-
tionRule

«Formal»

1.18 MocoOpenPonkOntoUmlMaterialAssociationTransforma-
tionRule

«Material»

1.19 MocoOpenPonkOntoUmlMediationAssociationTransfor-
mationRule

«Mediation»

Rule Rule Class Name Stereotype

Table 5.3: OpenPonk OntoUML to Moco OntoUML association transformation rules

Rule 1.20 (MocoOpenPonkOntoUmlCharacterizationAssociationTransformationRule).
Transforms OntoUML Characterization associations from an OpenPonk model to a Moco

56

5.2. Transformation Rules

model. Inherits the transformation logic from rule 1.15. Additionally, it reverses the
direction of the association if the Quality or Mode is at the source side.

Furthermore, an abstract class MocoOpenPonkOntoUmlPartWholeAssociationTrans-
formationRule that inherits from the transformation rule 1.15 exists. It serves as the base
class for transformation rules that realize the transformation of OntoUML associations
that represent part–whole relationships. In addition to the behavior of the transformation
inherited from rule 1.15, the class also copies the essential and inseparable constraints.
A list of concrete transformation rules that inherit from it is provided in table 5.4.

1.21 MocoOpenPonkOntoUmlComponentOfAssociation-
TransformationRule

«ComponentOf»

1.22 MocoOpenPonkOntoUmlMemberOfAssociationTrans-
formationRule

«MemberOf»

1.23 MocoOpenPonkOntoUmlSubCollectionOfAssociation-
TransformationRule

«SubCollectionOf»

1.24 MocoOpenPonkOntoUmlSubQuantityOfAssociation-
TransformationRule

«SubQuantityOf»

Rule Rule Class Name Stereotype

Table 5.4: OpenPonk OntoUML to Moco OntoUML part–whole relationship transformation
rules

5.2.1.3 Enumerations
Rule 1.25 (MocoOpenPonkOntoUmlEnumerationTransformationRule). Transforms UML
enumerations from an OpenPonk OntoUML model to a Moco model. The name of the
enumeration and the enumeration literals are copied.

5.2.1.4 Generalizations
Rule 1.26 (MocoOpenPonkOntoUmlGeneralizationTransformationRule). Transforms
generalizations from an OpenPonk OntoUML model to a Moco model. For each input
generalization, a generalization in the input model between the output classes transformed
from the supertype and supertype of the generalization in the input model is created.

Rule 1.27 (MocoOpenPonkOntoUmlGeneralizationSetTransformationRule). Trans-
forms generalization sets from an OpenPonk OntoUML model to a Moco model. The
name and the isCovering and isDisjoint properties are copied. For each member of
the original generalization set, the corresponding generalization is selected from the output
model and added to the transformed generalization set.

5.2.2 OntoUML to UML
The second transformation round consists of the transformation of an OntoUML model to
UML. The transformation rules responsible for this round are located in package Moco-O2U
under tag Rule.

The transformation is invoked by calling the transform:withEngine: class method
on MocoOntoUmlToUmlRound. The caller puts a block at the withEngine: position. The
block accepts a single argument containing the transformation engine and can be used for
example to provide a choice log to the engine.

57

5. Implementation

5.2.2.1 Classes

Rule 2.1 (MocoOntoUmlClassTransformationRule). Transforms non-stereotyped classes
from an OntoUML model to a UML model. The name of the class and the abstract
property are copied. For each attribute, the name, immutability, visibility, data type,
multiplicity, and the static property are copied.

The class MocoOntoUmlClassTransformationRule defines class method modelSelec-
tor that specifies the stereotype of the classes that are selected by the transformation
rule from the input model. The transformation logic is implemented in the toUmlClass
method. Subclasses of rule 2.1 override these two template methods to customize the
transformation behavior for specific OntoUML class stereotypes.

The priority of rule 2.1 is lower than the priority of more specific transformation rules,
in order to ensure that stereotyped classes are transformed by the specific rules first. Since
stereotyped classes ultimately inherit from MocoOntoUmlClass, rule 2.1 would pick them
up otherwise.

A list of transformation rules that only override the modelSelector method, thus
keeping the transformation logic the same as in rule 2.1, is provided in table 5.5.

2.2 MocoOntoUmlKindTransformationRule «Kind»
2.3 MocoOntoUmlSubKindTransformationRule «SubKind»
2.4 MocoOntoUmlRelatorTransformationRule «Relator»
2.5 MocoOntoUmlQuantityTransformationRule «Quantity»
2.6 MocoOntoUmlCollectiveTransformationRule «Collective»
2.7 MocoOntoUmlModeTransformationRule «Mode»
2.8 MocoOntoUmlQualityTransformationRule «Quality»

Rule Rule Class Name Stereotype

Table 5.5: OntoUML to UML class transformation rules

Rule 2.9 (MocoOntoUmlCategoryTransformationRule). Transforms classes with the
«Category» stereotype from an OntoUML model to UML. Inherits from rule 2.1, plus
sets the class abstract.

Rule 2.10 (MocoOntoUmlMixinTransformationRule). Transforms classes stereotyped
with «Mixin» from an OntoUML model to UML. Inherits from rule 2.1, plus sets the
class abstract.

Transformation rules for the «RoleMixin» and «PhaseMixin» stereotype inherit from
rule 2.10, as listed in table 5.6.

2.11 MocoOntoUmlRoleMixinTransformationRule «RoleMixin»
2.12 MocoOntoUmlPhaseMixinTransformationRule «PhaseMixin»

Rule Rule Class Name Stereotype

Table 5.6: OntoUML to UML mixin transformation rules

Rule 2.13 (MocoOntoUmlRoleTransformationRule). Transforms classes with the «Role»
stereotype and generalization relationships that include those classes from an OntoUML

58

5.2. Transformation Rules

model to UML. Inherits from rule 2.1. The transformation of the Role class is the same
as for a generic class.

After the transformation of classes is finished, all generalization relationships where
the subtype is a Role and the supertype is not a Mixin or a RoleMixin are transformed
to UML associations.

At the source side of the association is the supertype, the side is labeled identity-
Bearer, is set immutable, and has a minimal and maximal multiplicity of 1. At the target
side of the association is the role with the label role, the minimal multiplicity is set to 0
and maximal multiplicity to 1. The name of the association is the name of the Role class
suffixed with Role.

Rule 2.14 (MocoOntoUmlPhaseTransformationRule). Transforms classes stereotyped
with «Phase» and associated phase partitions from an OntoUML model to UML. Inherits
from rule 2.1. Transformation of the Phase class is the same as for a generic class.

After the transformation of classes is finished, all generalization sets that form a phase
partition are transformed. A phase partition is detected when the generalization set
contains a Phase subtype and the supertype has identity in the OntoUML model. For
each phase partition, the user is asked to select how to transform the partition.

In case all phases in the phase partition have no attributes and are not part of any
associations nor generalizations, the partition is considered as optimizable. If the user
chooses to optimize the partition, all UML classes created from the phases are removed
from the output model. Instead, a discriminator attribute with the same name as the
phase partition is added to the supertype. The data type is String and the minimal and
maximal multiplicity is 1. Additionally, an OCL enumeration constraint (see listing 2.5)
is generated that restricts the values of the discriminator column to the names of the
Phase classes. The name of the constraint is constructed by joining EX_, the name of the
supertype, the name of the phase partition, and Condition with an underscore.

The name of a phase partition is either the name of the generalization set or Phase if
empty. In the case of multiple unnamed generalization sets, a counter is appended to the
partition name beginning with the second partition.

When the user chooses to transform a phase partition using exclusive phase associ-
ations, the generalizations contained in the partition are replaced by associations. At
the source side of each association is the supertype with the label identityBearer, with
a minimal and maximal multiplicity of 1 and set as immutable. At the target side is the
Phase class with the label phase, with minimal multiplicity of 0 and maximal multiplicity
of 1. The name of the association is set to the name of the Phase class. For the phase par-
tition, an OCL exclusive associations constraint (see listing 2.4) is generated with a name
constructed from EX, the name of the supertype, the name of the phase partition and
Condition, all joined with an underscore.

When the user chooses to transform a phase partition using an abstract phase, a new
abstract class is generated with the name constructed from the name of the supertype and
the name of the partition. Then, an association between the supertype and the abstract
class is generated. The supertype is at the source side of the association with the label
identityBearer, a minimal and maximal multiplicity of 1, and is set immutable. The
abstract class is at the target side of the association with the label condition and minimal
and maximal multiplicity of 1. The name of the association is the same as the name of
the phase partition. The generalization set realizing the phase partition is transformed
to a new generalization set with the same name, where the generalizations are rewired to
have the abstract class as their supertype.

59

5. Implementation

5.2.2.2 Associations
Rule 2.15 (MocoOntoUmlAssociationTransformationRule). Transforms associations
with either no stereotype or a «Formal» stereotype from an OntoUML model to a UML
model. The name of the association and the derived property are copied. For each side,
the label, visibility, multiplicity, navigability, and immutability are copied.

The implementation of rule 2.15 also uses the template method design pattern: class
method modelSelector defines which kind of association is selected from the input model,
and instance method toUmlAssociation realizes the transformation.

The priority of rule 2.15 is lower than the priority of more specific transformation
rules, which ensures that stereotyped associations will be transformed by specific rules
first. Otherwise, rule 2.15 would pick up the stereotyped associations, as they inherit
from MocoOntoUmlAssociation.

Rule 2.16 (MocoOntoUmlCharacterizationAssociationTransformationRule). Trans-
forms associations with the «Characterization» stereotype from an OntoUML model to
UML. Inherits from rule 2.15. Additionally, if the association is connected to a Qual-
ity, both sides are set immutable. Otherwise, if a side contains a Mode, that side is set
immutable.

Rule 2.17 (MocoOntoUmlMediationAssociationTransformationRule). Transforms as-
sociations with the «Mediation» stereotype from an OntoUML model to UML. Inherits
from rule 2.15. When the association connect a Relator and a non-relator type, the non-
relator side is set immutable. Additionally, if a Role is at the target side of the association,
the direction is reversed.

Rule 2.18 (MocoOntoUmlMaterialAssociationTransformationRule). Transforms as-
sociations with the «Material» stereotype from an OntoUML model to UML. Within the
class hierarchy, this rule inherits from rule 2.15. However, the toUmlAssociation method
returns nil, which results in the association being removed from the transformed model.

Rule 2.19 (MocoOntoUmlPartWholeAssociationTransformationRule). Transforms as-
sociations with the «ComponentOf», «MemberOf», «SubCollectionOf», and «SubQuanti-
tyOf» stereotypes from an OntoUML model to UML. Inherits from rule 2.15. Additionally,
when the essential constraint is set, the side of the part is set immutable. Similarly, when
the inseparable constraint is set, the side of the whole is set immutable.

Rule 2.20 (MocoOntoUmlContainmentAssociationTransformationRule). Transforms
associations with the «Containment» stereotype from an OntoUML model to UML. In-
herits from rule 2.19. Additionally, always makes the side opposite to the Quantity im-
mutable.

5.2.2.3 Enumerations
Rule 2.21 (MocoOntoUmlEnumerationTransformationRule). Transforms enumerations
from an OntoUML model to a UML model. The entire enumeration element is copied.

5.2.2.4 Generalizations
Note that transformation rules 2.22 and 2.23, responsible for transforming generaliza-
tions, have a lower priority that rules 2.13 and 2.14, which transform roles, phases, and
their associated generalization relationships. As a result, role generalizations and phase
partitions are ignored by rules 2.22 and 2.23.

60

5.2. Transformation Rules

Rule 2.22 (MocoOntoUmlGeneralizationTransformationRule). Transforms generaliza-
tions from an OntoUML model to a UML model. For all generalizations in the input
model, a corresponding generalization is generated in the output model. Generalizations
that have already been transformed to a different construct (e.g. an association in the
case of roles) are not processed by this rule.

Rule 2.23 (MocoOntoUmlGeneralizationSetTransformationRule). Transforms gen-
eralization sets from an OntoUML model to a UML model. For all generalization sets
in the input model, a corresponding generalization set is generated in the output model
containing the transformed members of the generalization set.

Additionally, if the generalization set is optimizable, the user is asked whether the
set should be optimized. If so, the generalization set is discarded and all members and
subtypes are removed from the output element. Instead, a discriminator attribute is
generated in the class of the supertype. The name of the discriminator attribute is either
the name of the generalization set or discriminator if empty, appended with a counter
starting with the second unnamed generalization set. The discriminator attribute has the
minimal and maximal multiplicity set to 1, its data type is String, and is set immutable.
An OCL enumeration constraint is also generated for the attribute (see listing 2.3), with
the name consisting of EN, the name of the class and the name of the attribute, joined
with an underscore. The allowed values depend on the complete and disjoint properties
of the generalization set: when incomplete, the name of the superclass is included, when
overlapping, all combinations of subtype names are included.

The generalization set is optimizable when the supertype has identity in the OntoUML
model and all subtypes have no attributes, no associations, are not part of any other
generalizations and are not a Role or a Phase.

5.2.2.5 Optimizations
In addition to the phase optimization and the generalization set optimization, which are
included directly in the transformation rules 2.14 and 2.23 respectively, role and relator
optimizations are implemented in separate transformation rules. These transformation
rules have lower priority than the rest of the rules, and modify already transformed ele-
ments in the output model.

Rule 2.24 (MocoOntoUmlRoleOptimizationTransformationRule). Selects roles that
have no attributes, do not participate in more than one Mediation nor in more than one
Material relations, do not participate in any other kind of association, have identity in the
OntoUML, do not have any subtypes, and have no more than one supertype. For each
selected role, the user is asked whether to optimize the role or to leave it unchanged.

The optimization removes the class generated from the role from the output model and
rewires associations so they reference the identity bearer instead of the role and changes
the minimal multiplicity of sides originally containing the role to 0. Additionally, for
associations where the role is at the source side2, the label of the source side is set to the
name of the role.

Rule 2.25 (MocoOntoUmlRelatorOptimizationTransformationRule). Selects relators
that have no attributes, participate in exactly two associations, and are not part of any
generalization relationship. For each such relator, the user is asked whether it should be
optimized or not.

When optimizing a relator, a new association directly connecting the mediated classes
is generated, and the relator with the original associations is removed from the output

2Matches Mediation associations between a role and a relator.

61

5. Implementation

model. The name of the association is set to the name of the relator. The source side
of the generated association references the class from the first original association, and
the multiplicity is calculated as the product of the multiplicity at the class side of the
first original association and the multiplicity at the relator side of the second original
association. Conversely, the target side of the generated association references the class
from the second original association, and its multiplicity equals the product of the mul-
tiplicity at the relator side of the first original association and the multiplicity at the
class side of the second original association. A product of two multiplicities is defined as
[𝑎..𝑏] ⋅ [𝑐..𝑑] = [𝑎𝑐..𝑏𝑑].

5.2.3 Preprocessing UML for the Relational Model
As explained in subsection 4.5, the UML model needs to be refactored before it can be
transformed to a relational model. The transformation rules that realize this preprocessing
are located in package Moco-U2D under tag Rule-Preprocess.

Class method preprocess: of MocoUmlToRdbRound is used to execute this transfor-
mation round.

Rule 3.1 (MocoUmlCopyTransformationRule). Copies all elements from the input model
to the output model.

After all elements are copied to the output model, the remainder of the transformation
rules in this round work on the output model.

Rule 3.2 (MocoUmlCopyFixReferencesTransformationRule). Walks through all ele-
ments in the output model and changes references to elements in the input model to
references to copies in the output model.

Rule 3.3 (MocoUmlEnumerationTransformationRule). Transforms UML enumerations
to String attributes with an enumeration OCL constraint.

First, associations that reference an enumeration are collapsed into attributes: the
association is removed and an attribute is generated in the class. The data type of the
attribute is set to reference the enumeration, the name of the attribute is either the label
at the enumeration side of the association, the name of the association or the name of
the enumeration, depending on which of the aforementioned names is not empty. The
multiplicity of the attribute is set to the multiplicity at the side of the enumeration in the
original association.

Then, for all attributes that reference an enumeration, an OCL enumeration constraint
is generated (see listing 3.1). Allowed values are the names of the literals in the referenced
enumeration. The name of the OCL invariant is constructed from joining EN, the name
of the class, and the name of the attribute with an underscore. Finally, the data type of
the attribute is changed to String.

Transformation rules 3.4, 3.5 and 3.6 are listed in order of decreasing priority. The
order is important, as later rules pick up the changes made in former rules.

Rule 3.4 (MocoUmlNonNativeRdbTypeTransformationRule). Transforms class attributes
that reference another class within the UML model to associations. Each such attribute
is removed from the output model and an association is generated instead.

At the source side is the original class, the minimal multiplicity is set to 0 and the
maximal multiplicity to *. At the target side is the referenced class, the label of the side
is set to the name of the original attribute, visibility, immutability, and multiplicity are
copied from the original attribute as well. The name of the association is constructed by
joining the name of the original class and the name of the attribute.

62

5.2. Transformation Rules

Rule 3.5 (MocoUmlMultiValueAttributeTransformationRule). Replaces class attributes
with maximal multiplicity greater than 1 by a new value class and an association.

For each such attribute, a new class is generated in the output model. The name of
the class is constructed by joining the name of the original class and the name of the
attribute with an underscore. The value class has a single attribute named value, with
the data type of the original attribute and multiplicity copied from the original attribute
as well.

Then, an association from the original class to the new value class is generated. At
the source side is the original class with minimal and maximal multiplicity set to 1. At
the target side is the value class, with multiplicity, visibility, and name copied from the
original attribute. The name of the association is constructed by joining the name of the
original class and the name of the attribute.

When the original attribute is immutable, the value attribute and the target side of
the generated association are set immutable as well.

Then, any OCL enumeration constraints on the original attribute are changed in the
output model, so they restrict the new value class and the value attribute. Finally, the
original attribute is removed from the class.

Rule 3.6 (MocoUmlManyToManyAssociationTransformationRule). Decomposes many–
to–many associations to two one–to–many associations. For each association where the
maximal multiplicity at both sides is greater than 1, an intermediating class is generated.
The name of the class is constructed by joining the following parts with an underscore:

1. the label at the source side of the association or the name of the class at the source
side, if the label is empty,

2. the name of the association or To, if the name is empty,
3. and the label at the target side of the association or the name of the class at the target

side, if the label is empty.

Then, an association from the intermediating class to the source class from the original
association is generated. The multiplicity at the side of the intermediating class is copied
from the source side in the original association, and the multiplicity at the side of the
source class is set to 1. The label from the source side of the original association is copied
to the side with the source class in the generated association.

Second, an association from the intermediating class to the target class from the
original association is generated as well. The multiplicity at the side of the intermediating
class is copied from the target side in the original association, and the multiplicity at the
side of the target class is set to 1. The label from the target side of the original association
is copied to the side with the target class in the generated association.

When the source side in the original association is immutable, the side with the source
class in the first association and the side with the intermediating class in the second
association are set immutable. Similarly, when the target side in the original association
is immutable, the side with the intermediating class in the first association and the side
with the target class in the second association are set immutable.

Finally, the original many–to–many association is removed from the output model.
Also, metadata indicating that the class was generated by this rule is attached to the
element wrapping the intermediating class.

5.2.4 UML to a Relational Model
The fourth transformation round realizes the transformation of a UML model to a re-
lational model. Transformation rules for this round are located in package Moco-U2D

63

5. Implementation

under tag Rule. Class method transform: of MocoUmlToRdbRound is used to execute
this transformation round.

Rule 4.1 (MocoUmlClassTransformationRule). Transforms UML classes to tables in
a relational model. For each class, a new table is created with the same name as the
original class.

An identity column is generated with the name constructed by suffixing the name of
the table with _ID. The data type of the identity column is INTEGER, it is set non-nullable
and a primary key is also generated for the identity column. In case an attribute with
name ID exists in the original class, the identity column is not generated, and the existing
ID attribute is used instead.

Each class attribute is transformed to a table column: the name is copied, the column
is set nullable if the minimal multiplicity of the attribute is 0, otherwise it is set non-
nullable. If the attribute is immutable, an additional OCL immutability constraint is
generated (see listing 2.9). The data type of the column is resolved from the data type of
the attribute according to the mapping in table 5.7.

UML Type Relational Model Type

int, Integer, uint, long, short INTEGER

String VARCHAR(4000)

Date DATE

DateTime DATETIME

Timestamp TIMESTAMP

bool, Boolean BOOL

float, double, Decimal, Number DOUBLE

List, Map, Array, Sequence BLOB

mixed, Object, ByteArray BLOB

char, Character, Symbol, byte CHAR(1)

Table 5.7: UML to RDB data type mapping

Rule 4.2 (MocoUmlAssociationTransformationRule). Transforms UML associations to
foreign keys in the relational model. For each association, a column is generated in the
referencing table. The referencing side is determined as listed below, in list order.

1. When the maximal multiplicity of the source side of the association is greater than 1,
the source side is the referencing side.

2. Conversely, the target side having maximal multiplicity greater than 1 makes it the
referencing side.

3. When the source side is optional and the target side is mandatory, the source side is
the referencing side.

4. Then, when the target side is optional while the source side is not, the target side is
the referencing side.

5. When the target side is navigable, the source side is the referencing side, and vice
versa.

6. Otherwise, the source side is the referencing side.

64

5.2. Transformation Rules

The name of the referencing column is either the label at the referenced side of the
association (i.e. the side opposite of the referencing side), or the name of the primary key
column if the label is empty. The column is set nullable if the minimal multiplicity of the
referenced side of the association equals 0, otherwise it is set non-nullable. A foreign key
is generated on the referencing column.

When maximal multiplicities at both sides of the association are equal to 1, a unique
constraint is generated on the referencing column.

When the minimal or maximal multiplicity (or both) at the referencing side of the
association is greater than 1 and not *, an OCL special multiplicity constraint is generated
on the referencing column (see listing 2.7). Otherwise, if the minimal multiplicity at
the referencing side is 1, an OCL mandatory multiplicity constraint is generated (see
listing 2.6).

When either side of the association is immutable, an OCL immutability constraint is
generated on the referencing column (see listing 2.9). Additionally, when the referencing
side is immutable, an OCL immutability postcondition is generated (see listing 2.10) as
well.

Rule 4.3 (MocoUmlGeneralizationTransformationRule). Transforms UML general-
izations to foreign keys using the referencing tables approach. For each generalization,
a foreign key constraint is generated on the primary key of the table representing the
subclass, which references the primary key of the table representing the superclass.

Additionally, an OCL immutability constraint (see listing 2.9) and postcondition (see
listing 2.10) are generated as well.

Rule 4.4 (MocoUmlGeneralizationSetTransformationRule). Transforms UML general-
ization sets to discriminator columns. For each generalization set, a discriminator column
is generated in the table representing the superclass. The name of the discriminator col-
umn is either constructed by joining DISCR_ and the name of the generalization set with
an underscore, in case the name of the set is empty, it defaults to DISCRIMINATOR. A nu-
meric counter is appended to the name of the column starting with the second unnamed
generalization set. The data type of the discriminator column is VARCHAR with a maximum
length equal to the longest valid value of the column. The column is set non-nullable.

Additionally, an OCL generalization set constraint is generated (see listing 2.8). When
the generalization set is incomplete, the name of the superclass is also a valid value of the
discriminator column. When the generalization set is overlapping, all combinations of the
names of the subtypes are valid values of the discriminator column.

The decomposition of many–to–many associations results in an additional intermediat-
ing class (see rule 3.6). The class is transformed to a database table by rule 4.1, which
automatically generates an identity column. However, per [6, p. 81], such identity col-
umn must not be generated for classes mediating many–to–many associations. Rule 4.5
retroactively (due to having a lower priority than rule 4.1) removes the identity column
from such classes.

Rule 4.5 (MocoUmlMediatingClassOptimizationTransformationRule). Removes gen-
erated identity column from tables representing intermediating classes of decomposed
many–to–many associations. In all tables that originated from classes whose metadata
indicate that they were generated by rule 3.6, the identity column and the primary key are
removed. Instead, a primary key is defined on the two columns included in the existing
foreign key.

Rule 4.6 (MocoUmlOclEnumerationConstraintTransformationRule). Transforms OCL
enumeration constraints from a UML model to a relational model by changing the context

65

5. Implementation

to the table generated from the class and the constrained attribute to the column generated
from it.

Rule 4.7 (MocoUmlOclExclusiveAssociationConditionTransformationRule). Trans-
forms OCL exclusive associations constraints from a UML model to a relational model.
Changes the context of the constraint to the table generated from the original class and
replaces the original condition with a condition that checks for the existence of records
that reference the constrained table.

5.2.5 Relational Model to Oracle SQL
The final step of the transformation of an OntoUML model to SQL is the conversion of
a relational model to a sequence of SQL statements. The transformation rules that realize
this round are located in package Moco-D2S under tag Rule.

This transformation round is executed by calling the transform: class method of
MocoRdbToSqlOracleRound.

Rule 5.1 (MocoRdbTableTransformationRule). Transforms tables in the relational model
to CREATE TABLE SQL statements (see listing 2.11). When transforming column defini-
tions, data types are mapped according to table 5.8.

Additionally, ALTER TABLE statements are generated to define the primary key and
possible unique constraints (see listing 2.12).

Data type mapping in table 5.8 is constructed to match the meaning of relational
model data types (see table 4.1) as accurately as possible. The mapping of INTEGER and
DOUBLE is chosen to support the largest possible range of values.

Relational Model Type Oracle Data Type

INTEGER NUMBER(38)

VARCHAR(𝑛) VARCHAR2(𝑛)
DATE DATE

DATETIME DATE

TIMESTAMP TIMESTAMP(0)

BOOLEAN CHAR(1 BYTE)

DOUBLE FLOAT(126)

BLOB BLOB

CHAR(𝑛) CHAR(𝑛 CHAR)

Table 5.8: Column data type mapping for Oracle Database

Rule 5.2 (MocoRdbForeignKeyTransformationRule). Transforms foreign keys in the
relational model to ALTER TABLE SQL statements for their realization in Oracle Database
(see listing 2.13).

Finally, transformation rules that realize various OCL constraints in SQL are imple-
mented. They generate SQL statements listed in subsection 2.5.3. The rules, including the
type of the OCL constraint and a reference to the listing that contains the SQL statement
that realizes the constraint, are listed in table 5.9.

66

5.2. Transformation Rules

Rule 5.3 (MocoRdbOclEnumerationTransformationRule).
Enumeration (listing 2.5) listing 2.25
Rule 5.4 (MocoRdbOclExclusiveAssociationTransformationRule).
Exclusive association (listing 2.4) listings 2.22, 2.23 and 2.24
Rule 5.5 (MocoRdbOclGeneralizationSetTransformationRule).
Generalization set (listing 2.8) listings 2.14, 2.15, 2.16 and 2.17
Rule 5.6 (MocoRdbOclImmutableColumnTransformationRule).
Immutability (listing 2.9) listing 2.26
Rule 5.7 (MocoRdbOclImmutableAssociationDeleteTransformationRule).
Immutability (listing 2.10) listing 2.27
Rule 5.8 (MocoRdbOclMandatoryMultiplicityTransformationRule).
Mandatory multiplicity (listing 2.6) listings 2.18 and 2.19
Rule 5.9 (MocoRdbOclSpecialMultiplicityTransformationRule).
Special multiplicity (listing 2.7) listings 2.20 and 2.21

Transformation Rule
OCL constraint Realization in SQL

Table 5.9: RDB to SQL transformation rules for OCL constraints

5.2.6 Moco UML to OpenPonk UML
In order to visualize the transformed UML model, it must be converted from Moco data
structures back to an OpenPonk model. The transformation rules that realize this trans-
formation round are located in package Moco-OpenPonk under tag Rule-Uml.

Rule 6.1 (MocoOpenPonkUmlClassTransformationRule). Converts an UML class from
a Moco model to an OpenPonk model. The name of the class, the abstract property, and
attributes (name, data type, visibility, multiplicity, immutability, the static property)
are copied.

Rule 6.2 (MocoOpenPonkUmlAssociationTransformationRule). Converts an UML asso-
ciation from a Moco model to an OpenPonk model. The name of the association and the
derived property are copied. The label, visibility, multiplicity, immutability, aggregation,
and navigation of both sides are copied.

Rule 6.3 (MocoOpenPonkUmlEnumerationTransformationRule). Converts an UML enu-
meration from a Moco model to an OpenPonk model. The name of the enumeration and
the list of literals are copied.

Rule 6.4 (MocoOpenPonkUmlGeneralizationTransformationRule). Converts an UML
generalization from a Moco model to an OpenPonk model. For each generalization, a cor-
responding generalization is generated in the OpenPonk model.

Rule 6.5 (MocoOpenPonkUmlGeneralizationSetTransformationRule). Converts an
UML generalization set from a Moco model to an OpenPonk model. The name of the
generalization set and the disjoint and complete constraints are copied. For each member
of the original generalization set, the corresponding generalization in the output model is
placed in the transformed generalization set.

67

5. Implementation

Rule 6.6 (MocoOpenPonkUmlOclTransformationRule). Writes out OCL constraints as
class comments in an OpenPonk model. For each constraint, a comment with the OCL
code is added to the class referenced by the context of the constraint.

5.2.7 Moco RDB to OpenPonk UML
Transformation rules that perform the conversion of a relational model to an OpenPonk
UML model are located in package Moco-OpenPonk under tag Rule-Rdb. These rules do
not perform the reverse of the transformation of a UML model to a relational model,
instead, they work around the missing support for relational data modeling in OpenPonk
by creating UML classes that look similar to tables in a relational data diagram.

Rule 7.1 (MocoOpenPonkRdbTableTransformationRule). Converts a database table to
a UML class in an OpenPonk model. The name of the generated class is set to the name
of the table. Each column of the table is transformed to an attribute of the class, and the
primary key, foreign keys, and unique constraints are transformed to operations in the
class.

Rule 7.2 (MocoOpenPonkRdbForeignKeyTransformationRule). Transforms foreign keys
to UML associations in an OpenPonk model. Each foreign key is transformed into a nav-
igable association originating at the class representing the table that contains the foreign
key column and targeting the class representing the referenced table. The name of the
association is set to the plain-text definition of the foreign key.

The maximal multiplicity of the target side is always 1, the minimal multiplicity is
either 0 or 1 when the column is nullable or non-nullable respectively. The multiplicity
of the source side is by default 0..* and is further refined if any mandatory multiplicity
or special multiplicity constraints are detected.

Rule 7.3 (MocoOpenPonkRdbOclTransformationRule). Writes out OCL constraints as
class comments in an OpenPonk model. For each constraint, a comment with the OCL
code is added to the class representing the table referenced by the context of the constraint.

5.3 User Interface
In this section, the implementation details of the components that are responsible for
interaction with the user are discussed.

5.3.1 Transformation Transcript
To display the results of the transformation, the client code can open a transcript window
provided by Moco. As illustrated in figure 4.8, the window contains a plain-text dump of
one or more models. The window is implemented using the Spec UI framework in class
MocoTranscriptPresenter. An example of how to display the transformation transcript
window is provided in listing 5.3.

Listing 5.3: Displaying transformation transcript

| window transcript |
window := (MocoSpApplication instance) new: MocoTranscriptPresenter.
transcript := String new writeStream.
MocoModelPrinter print: model to: transcript.
window addSection: (transcript contents) withLabel: 'Model';

open

68

5.3. User Interface

The transformation engine allows any object to be used as a model element. There-
fore, it is the responsibility of the caller to construct the plain-text representation of the
model. However, if all elements of the model understand message printTo: (with a
WriteStream), the MocoModelPrinter class can be used to print all elements in a Moco-
Model to the given stream (as shown in listing 5.3).

5.3.2 Toolbar Item

As designed in subsection 4.6.1, the transformation of an OntoUML model to SQL is
invoked via a toolbar menu within OpenPonk. OpenPonk provides an extension mech-
anism, where third-party code can annotate a class method and provide custom menu
items. For Moco, this is realized in the toolbarMenu: method of MocoToolbarUi.

The toolbarMenu: method creates a “Moco” submenu with items “Transform to
SQL”, which executes the transformation command, and “Open Playground”, which opens
the Moco Playground.

5.3.3 Transformation Command

The entire transformation of an OntoUML model to SQL is performed by calling the
MocoOpenPonkRunTransformationsCommand class. The caller passes a reference to the
OpenPonk instance that contains the input OntoUML model, and then sends the execute
message.

The logic for loading transformation rules, executing transformation rounds, and dis-
playing the results is contained within the command class. This approach is commonly
known as the Command design pattern [38, p. 233].

First, the command retrieves the currently active model from the OpenPonk in-
stance. Then, it executes transformation rounds to ultimately transform the OntoUML
to SQL. After that, a transcript is prepared containing the resulting model of each round,
and the UML and RDB models are transformed back to OpenPonk format.

The command uses the Settings framework, as described in subsection 4.6.4, to deter-
mine how the results should be presented. In order to remain consistent with the behavior
of the built-in transformation of an OntoUML model to UML, a new OpenPonk instance
with the transformed models is opened by default. Alternatively, the user can configure
Moco to add the results of the transformation to the project of the original OntoUML
model.

Finally, the transformation transcript window is also opened. A reference to the
transcript window and the input OntoUML model is saved in a class variable. When
settings indicate that the results should be added to the original OpenPonk project and
it already contains the results of a previous transformation, the user is asked whether the
new results should replace the previous ones. If so, the reference to the transcript window
is used to replace its contents as well. To prevent memory leaks, once the transcript
window is closed, the reference to it and to the source OntoUML model are deleted from
the class variable, and the objects are free to be reclaimed by the garbage collector.

The command class also stores the choice log (see subsection 5.1.4) for the OntoUML
model. During subsequent executions of the transformation command on the same Onto-
UML, the log is restored in the transformation engine. Again, to prevent memory leaks,
the log and the reference to the OntoUML model are deleted when the corresponding
OpenPonk instance is closed.

69

5. Implementation

5.3.4 Moco Playground
Pharo contains a Playground: a console for ad-hoc execution of code. Moco Playground
prefills the code required to load an OntoUML model and to execute the transforma-
tion from OntoUML to SQL. This feature can be used for debugging, transformation
customization, and easy inspection of the raw data models.

When the user chooses the “Open Playground” item in the toolbar menu, a reference
to the currently active OntoUML model is stored as global state in a class variable. This
is necessary so the user can easily retrieve the model, as shown in listing 5.4.

Listing 5.4: Prefilled code in Moco Playground

| openPonkModel ontoModel umlModel dbModel sqlModel |
openPonkModel := MocoOpenPonkModelStorage ontoUmlModel.

ontoModel := MocoOpenPonkOntoUmlTransformationRound createMoco: openPonkModel.
umlModel := MocoOntoUmlToUmlRound transform: ontoModel.
dbModel := MocoUmlToRdbRound transform: umlModel.
sqlModel := MocoRdbToSqlOracleRound transform: (dbModel second).

5.4 Code Repository
The Moco library, including transformation rules, is versioned in a Git repository. The
repository also contains the baseline specification for Metacello, which is used to install
the library into an existing OpenPonk image. A list of packages included in the repository
is provided in table 5.10.

BaselineOfMoco Metacello baseline definition.
Moco-Core Implementation of the transformation engine.
Moco-OpenPonk Integration with OpenPonk, transformation rules for con-

version between Moco and OpenPonk data structures.
Moco-OpenPonk-Tests Functional tests for rules in Moco-OpenPonk.
Moco-OntoUml Data model for OntoUML.
Moco-O2U OntoUML to UML transformation rules.
Moco-O2U-Tests Functional tests for rules in Moco-O2U.
Moco-Uml Data model for UML.
Moco-U2D UML to relational model transformation rules.
Moco-U2D-Tests Functional tests for rules in Moco-U2D.
Moco-Rdb Relational data model.
Moco-D2S Relational model to SQL transformation rules.
Moco-D2S-Tests Functional tests for rules in Moco-D2S.

Package Name Purpose

continued on next page
Table 5.10: Package list of Moco

70

5.5. OpenPonk Build

Moco-SqlOracle Oracle SQL data model.
Moco-Ocl OCL data model.

Package Name Purpose

Table 5.10: Package list of Moco

In listing 5.5, a code snippet that installs Moco from a local copy of the repository
(specified by variable mocoDir) is provided.

Listing 5.5: Installation of Moco using Metacello

Metacello new baseline: 'Moco';
repository: 'tonel://' , mocoDir , '/src';
load.

5.5 OpenPonk Build
A separate repository with a build script that packages OpenPonk, the Moco library, and
the Pharo runtime is provided for the convenience of end users. The build script is exe-
cuted in a GitLab continuous integration pipeline, which publishes prebuilt archives — the
user downloads and extracts the archive, runs a launcher script, and can immediately start
using OpenPonk and Moco. Archives are provided for platforms Windows, Linux, macOS,
and macOS ARM.

Instead of building the entire Pharo image from scratch, release archives of OpenPonk
Class Editor nightly version 76c3099 obtained from the official website3 are included in
the repository. The archives contain the OpenPonk image, the launcher script and the
Pharo runtime. The build script installs the Moco library in the OpenPonk image and
repackages the release archive. Because the OpenPonk version is pinned, inadvertent
breakage due to upstream changes is avoided.

5.5.1 Project Saving Workaround
OpenPonk is not able to save projects that contain class attributes with unknown types4.
An unknown type is any type that is not a UML primitive type, nor a class or enumeration
defined in the model. For example, an attribute with type Date triggers this bug, and an
exception is raised instead of saving the project.

This severely limits the usability of OpenPonk for precise conceptual modeling, as
data types of attributes need to be preserved. To work around this issue, Moco pro-
vides a workaround — before saving, unknown data types are replaced with instances of
OPUMLPrimitiveType with name property set to the original type name.

This workaround is implemented in class MocoOpenPonkSaveWorkaround. Further-
more, the build script that packages OpenPonk with Moco recompiles OpenPonk’s “Save”
and “Save As” commands so they invoke the workaround.

After the workaround is applied, saving and opening projects works correctly. Moco
reads only the name of the attribute type, therefore it is not affected by an attribute
wrongly claiming it contains a UML primitive type.

3OpenPonk release archives can be downloaded from https://openponk.org/#download.
4A bug report is available at https://github.com/OpenPonk/class-editor/issues/21.

71

https://openponk.org/#download
https://github.com/OpenPonk/class-editor/issues/21

Chapter 6
Evaluation

In this chapter, the testing of the implementation and the evaluation of the results of
a transformation of an OntoUML by the implemented library are discussed. The chapter
is structured as follows.

∘ In section 6.1, automated functional testing, which validates the implemented trans-
formation logic, is described.

∘ In section 6.2, the differences in names generated during the transformation between
the transformation proposed in [6] and the implementation are listed.

∘ In section 6.3, the implementation is evaluated using an example OntoUML model,
and the conformance to a reference transformation result from [6] is discussed.

6.1 Functional Testing
The resulting implementation is validated by automated functional tests, which cover the
transformation rules. The aim is to ensure each transformation rule produces a correct
output (as defined in section 2.5), not necessarily to test their internal logic. For this
reason, each test prepares an input model, then executes a single transformation rule,
and asserts that the output model contains the expected content.

Since the tests are automated and designed to run without user interaction, they use
a modified implementation of the transformation engine. It does not display question
dialogs when the transformation rule contains multiple transformation options. Instead,
the answer is provided by the test case. Additionally, it allows the test case to inspect the
options provided by the transformation rules, so it can assert whether the rule correctly
detected the possible transformation options.

Functional tests are implemented using the SUnit framework, which is included in
standard Pharo images. All transformation rule tests inherit from class MocoTransfor-
mationRuleTestCase, which prepares an empty instance of the testing implementation
of the transformation engine for each test case.

Every transformation rule has an accompanying test class. The test class has the same
name as the tested class plus a Test suffix. Test classes are located in separate packages:
the test packages have the same name as the tested packages plus a -Tests suffix. For
example, a test class for the transformation rule MocoUmlClassTransformationRule from
package Moco-U2D is named MocoUmlClassTransformationRuleTest and is located in
package Moco-U2D-Tests.

73

6. Evaluation

In the case of transformation rules with inherited behavior, the test class only covers
the changed parts, inherited parts are tested by the test class of the rule’s superclass. For
example, since the transformation of an OntoUML Kind from an OpenPonk model to the
Moco model inherits from a generic rule for class transformation, the test class for the
Kind transformation only ensures the correct stereotype is applied, and the transformation
of class attributes, etc. is covered in tests of the generic class transformation rule.

Depending on the particular transformation rule, a single test class may define multiple
test cases: For example, the rule responsible for the transformation of UML associations
to a relational model needs to support one–to–one and one–to–many associations, and
various multiplicity and immutability constraints. The test class creates a separate input
model for each case and verifies all instances are transformed correctly.

As follows from the description of the implementation of transformation rules (see
section 5.2), the order of execution is important, since some rules may depend on trans-
formations executed in earlier rules. For this reason, additional test classes are provided
that assert the correct order of the transformation rules. Transformation rules express
their order by returning a number indicating their priority. The assertions do not enforce
specific priority values, only the relative order is checked.

Packages with test classes are included in the Moco source repository (see section 5.4),
as well as in the Metacello project. Furthermore, each package contains a test suite
definition: a list of test classes. Instead of executing each individual test class, the entire
suite is executed. The list of test suites is provided in table 6.1.

Test Suite Number of Test Cases

MocoOpenPonkTestSuite 64
MocoO2UTestSuite 67
MocoU2DTestSuite 44
MocoD2STestSuite 11

Total 186

Table 6.1: Functional test suites

Finally, the source repository contains pipeline definitions for GitHub and GitLab code
hosting services, which runs all test suites after each push to the repository. This way, the
implementation is automatically tested after change, which reduces the risk of introducing
bugs.

6.2 Differences in Generated Names
The transformation principles were summarized in section 2.5 and revised in section 3.3.
During implementation and testing, further adjustments were made to generated names of
various model elements. Additional name components, more specific names, and entirely
new labels were introduced to resolve potential name conflicts and to improve traceability
(i.e. to better understand the origins of generated elements).

In this section, we list the changes made to the names of generated model elements in
comparison with the transformation proposed in [6].

6.2.1 OntoUML to UML
1. When transforming the generalization relationship between a Role and its bearer, the

74

6.3. Transformation of the Example Model

generated association is named after the role with the Role suffix. Additionally, the
side of the bearer is labeled identityBearer and the side of the role is labeled role.

2. When realizing a phase partition by exclusive phase associations, an OCL condition
is generated. The name of the OCL condition was originally constructed by concate-
nating EX, the name of the type containing the partition, and Condition with an
underscore. Our implementation adds the name of the generalization set after the
name of the type. If empty, Phase is used instead. Furthermore, each association
is named after the particular phase, and the side of the bearer is labeled identity-
Bearer, while the side of the phase is labeled phase.

3. In the transformation of a phase partition by an abstract phase, the name of the
abstract phase class is set to the name of the generalization set. If empty, Phase is
used instead. The name of the association between the type containing the partition
and the abstract phase is set to the name of the generalization set as well, and the
side of the abstract phase is labeled condition, while the side of the type is labeled
identityBearer.

4. During the optimization of a phase partition, a discriminator attribute is generated.
The name of the discriminator attribute is set to the name of the generalization set or
phase if the name is empty. Additionally, the name of the OCL enumeration constraint
is constructed by joining EX, the name of the type containing the partition, the name
of the generalization set, and Condition with an underscore.

5. In the optimization of generalization sets, the names of the discriminator attribute
and the enumeration constraint already contain the name of the generalization set. In
case the name is empty, discriminator is used instead.

6.2.2 UML to a Relational Model
1. When decomposing a many–to–many association into two one–to–many association,

an intermediating class is generated. By default, the name of the class is constructed
by concatenating the name of the source class and the name of the target class with
To. In our implementation, if the source or target are labeled, their label is used
instead of the name of the class. Additionally, if the name of the many–to–many
association is not empty, it is used instead of the To infix.

2. When generating unique and foreign keys, the name of the enclosing table is included
in the name of the constraint1.

3. During the transformation of a generalization set, a discriminator column is generated
in the supertype table. By default, the name of the column is DISCRIMINATOR. Addi-
tionally, if the generalization set is named, the name of the column is set to the name
of the generalization set prefixed by DISCR_. Furthermore, the name of the OCL gen-
eralization set constraint is constructed by joining GS, the name of the supertype class,
and Type with an underscore. However, when the name of the generalization set is
not empty, it is used instead of the Type suffix.

6.3 Transformation of the Example Model
Functional tests in section 6.1 validate the transformation of small isolated groups of
elements. To test the implementation against a larger and more interconnected model,

1At least in Oracle Database, constraint names must be unique within the entire schema.

75

6. Evaluation

we use the example OntoUML model of a library information system from [6]. The
author of [6] also provides the results of the proposed transformation of the OntoUML
model to UML and the relational model, which we compare against the outputs of our
implementation (in this section, they are referred to as the reference results). The input
OntoUML model is provided in appendix A.1.

6.3.1 OntoUML to UML
The output of the OntoUML to UML transformation round matches the reference trans-
formation result, with exceptions listed here. The class diagram of the UML model
generated by the implementation is provided in appendix A.2.

1. Generated names of certain elements are different, as discussed in subsection 6.2.1.

2. The implemented optimization of role PublishedEdition produces a minimal multi-
plicity of 0 at the side of the associated relator, while in the reference result, the side
is mandatory (as shown in figure 6.1). As discussed in subsection 2.5.1, the minimal
multiplicity at the side of the relator must be 0, otherwise individuals that do not
instantiate the role could not exist. Therefore, the output of the implementation is
correct.

«Category»
Edition

«Role»
PublishedEdition

«Relator»
Publication

1
«mediation»

1

Edition

Publication

1
{frozen}

1

Edition

Publication

1
{frozen}

0..1

Figure 6.1: OntoUML model with a Role (left), the proposed optimization (middle), and the
result of the implemented optimization (right)

6.3.2 UML to a Relational Model
The transformation from the UML model to a relational model is affected by differences
from the preceding transformation round. Otherwise, it matches the reference result,
again with the exceptions listed here.

1. Further differences in generated names of elements are introduced, as discussed in
subsection 6.2.2.

2. Some columns have a different data type, due to a different data type mapping, as
listed in tables 4.1 and 5.7.

3. In the reference result, table BOOK_EDITION is missing column EDITION, which origi-
nates in the edition attribute of class BookEdition. The implementation correctly
generates this column.

4. It is not possible to perform the optimization of the generalization set containing
classes RegisteredReader and RegisteredLegalEntity. First, the optimization is
performed in the OntoUML to UML transformation round and is not repeated here.

76

6.3. Transformation of the Example Model

Second, this particular generalization set cannot be optimized automatically, as the
subclasses take part in associations (see transformation rule 2.23). The difference
between the transformation applied manually in the reference result and the output
of the implementation is shown in figure 6.2.

CLIENT

«column»
*PK CLIENT_ID: NUMBER(8)
* DISCRIMINATOR: VARCHAR2(50)
* E_MAIL: VARCHAR2(50)
* PHONE: VARCHAR2(50)
 FK LEGAL_ENTITY_ID: NUMBER(8)
 FK PERSON_ID: NUMBER(8)

LEGAL_ENTITY

«column»
*PK LEGAL_ENTITY_ID: NUMBER(8)
* TITLE: VARCHAR2(50)
* VAT: VARCHAR2(50)

PERSON

«column»
*PK PERSON_ID: NUMBER(8)
 FIRST_NAME: VARCHAR2(50)
* LAST_NAME: VARCHAR2(50)

0..1

(LEGAL_ENTITY_ID =
LEGAL_ENTITY_ID)

«FK»

1

0..1

(PERSON_ID =
PERSON_ID)

«FK»

1

CLIENT

«column»
*PK CLIENT_ID: NUMBER(38)
* E_MAIL: VARCHAR2(4000)
* PHONE: VARCHAR2(4000)
* DISCR_CLIENT_TYPE: VARCHAR2(21)

REGISTERED_LEGAL_ENTITY

«column»
*pfK REGISTERED_LEGAL_ENTITY_ID: NUMBER(38)
 FK IDENTITY_BEARER: NUMBER(38)

LEGAL_ENTITY

«column»
*PK LEGAL_ENTITY_ID: NUMBER(38)
* TITLE: VARCHAR2(4000)
* VAT: VARCHAR2(4000)

REGISTERED_READER

«column»
*pfK REGISTERED_READER_ID: NUMBER(38)
 FK IDENTITY_BEARER: NUMBER(38)

PERSON

«column»
*PK PERSON_ID: NUMBER(38)
 FIRST_NAME: VARCHAR2(4000)
* LAST_NAME: VARCHAR2(4000)

0..1

(IDENTITY_BEARER =
PERSON_ID)

«FK»

1

0..1

(IDENTITY_BEARER =
LEGAL_ENTITY_ID)

«FK»

1

0..1

(REGISTERED_LEGAL_ENTITY_ID
= CLIENT_ID)

«FK»

1

0..1

(REGISTERED_READER_ID =
CLIENT_ID)«FK»

1

Figure 6.2: Manually applied generalization set optimization (left) and result of the
implemented transformation (right)

The relational model diagram generated by the implementation of this transformation
round is provided in appendix A.3.

6.3.3 Realization of Constraints and Resulting SQL Model
Due to a difference in the mandatoriness of the relation between Edition and Publi-
cation, and in the realization of roles RegisteredReader and RegisteredLegalEntity,
the number of derived OCL constraints and the resulting SQL model is different as well.

In table 6.2, differences between the reference model and the results of the implemented
transformation are summarized. A negative difference indicates an element is present in
the reference model but not in the implementation output, and vice versa. Elements in
the RDB model are typeset without indentation; then, SQL statements generated from
an element are listed below it and are indented.

Non-Mandatory Side at Publication

mandatory multiplicity OCL −1
↪ CREATE TRIGGER BEFORE −1
↪ CREATE TRIGGER AFTER −1

Non-Eliminated Roles RegisteredReader and RegisteredLegalEntity

foreign keys −2
↪ ADD FOREIGN KEY −2

Type of Element Diff.

continued on next page
Table 6.2: Difference in the number of generated elements

77

6. Evaluation

immutable column OCL −1
↪ CREATE TRIGGER BEFORE −1
tables +2
↪ CREATE TABLE +2
foreign keys +4
↪ ADD FOREIGN KEY +4
immutable column OCL +4
↪ CREATE TRIGGER BEFORE +4
immutable association delete OCL +2
↪ CREATE TRIGGER BEFORE +2
generalization set OCL +1
↪ CREATE TRIGGER BEFORE +7

Type of Element Diff.

Table 6.2: Difference in the number of generated elements

When comparing the total count of element types in the output of the implemented trans-
formation (see appendix A) with the reference model and accounting for the differences
listed in table 6.2, the same number of elements is obtained2.

6.3.4 Summary
The implemented library successfully transforms the example OntoUML model to SQL. The
resulting script can immediately be used to instantiate a database in Oracle RDBMS.

There are a number of differences between the reference model and the output of the
implemented transformation. All of them are described in sections 6.2 and 6.3, and no
other unexpected differences exist.

2In [6, p. 210], 7 generalization set OCL constraints are recorded. However, considering the RDB
model in [6, p. 211], at most 6 such constraints may exist. Additionally, in [6, p. 212], 3 CHECK constraints
are indicated. However, only enumeration OCL constraints may be realized as CHECK constraints [6,
p. 169], and the model in [6, p. 210] contains only 2 such constraints.

78

Chapter 7
Conclusion

This thesis focused on the implementation of the transformation of an OntoUML model
to SQL. The implementation was realized in the Pharo programming language as an
extension to the OpenPonk modeling tool.

∘ In Chapter 1: Introduction, an introduction and motivation for modeling of software
systems was provided, and goals of the thesis were established.

∘ In Chapter 2: State of the Art, technologies and theories related to the topic of the
thesis were discussed. First, the basics of conceptual modeling were explained, then
Unified Modeling Language, Unified Foundational Ontology, and OntoUML were dis-
cussed. The relational model, Entity–Relationship Model, Data Modeling Profile for
UML, SQL, and Oracle Database were introduced. Specification of constraints in the
OCL language was described. Finally, the transformation of an OntoUML model to
SQL proposed in [6] was summarized.

∘ In Chapter 3: Analysis, prerequisites for the implementation were discussed. The
OpenPonk modeling tool was introduced; its data model was described and its built-
in transformation of an OntoUML model to UML was compared to the transformation
proposed in [6]. Then, relevant concepts of the Pharo programming language were in-
troduced: its distinguishing features, and its approach to source code versioning, pack-
age management, and GUI programming. Furthermore, the transformation approach
in [6] was revised for the current version of OntoUML and extended with support for
UML enumerations. Finally, software requirements were specified.

∘ In Chapter 4: Design, a new rule-based approach for the implementation of model
transformations was designed. Then, Moco library containing the implementation was
introduced. Data models for the representation of OntoUML, UML, relational, SQL
and OCL models, and the user interface were designed. Finally, the transformation
approach was further refined into seven transformation rounds.

∘ In Chapter 5: Implementation, the structure of the implementation was described,
and an overview of the API for building transformation rules was provided. Then,
the implementation details of transformation rules realizing the transformation of an
OntoUML model to SQL were explained. Finally, the implementation of the user
interface and the integration into OpenPonk were discussed.

∘ In Chapter 6: Evaluation, functional tests that validate each transformation rule were
developed. Furthermore, changes to the originally proposed transformation made dur-

79

7. Conclusion

ing the implementation were explained. Finally, the implementation was evaluated
using an example OntoUML model.

∘ In Chapter 7: Conclusion, the results of the thesis are summarized.

7.1 Summary
In this thesis, we successfully analyzed the transformation of an OntoUML model to SQL
proposed in [6], then designed and developed its implementation. During evaluation, the
validity of the implementation was successfully demonstrated on a complex OntoUML
model and further verified by functional tests.

7.2 Contributions of this Thesis
The contributions made in this thesis are as follows.

1. A transformation framework for the implementation of arbitrary model transforma-
tions was created.

2. The transformation of an OntoUML model to its realization in Oracle Database was
implemented.

3. A ready-to-use distribution of the OpenPonk modeling tool, which automates the
transformation of an OntoUML model to SQL, was created.

80

Bibliography

1. MELLOR, Stephen J.; CLARK, Anthony N.; FUTAGAMI, Takao. Model-Driven
Development. IEEE Software. 2003, vol. 20, no. 5, p. 14.

2. BORK, Dominik; KARAGIANNIS, Dimitris; PITTL, Benedikt. A Survey of Model-
ing Language Specification Techniques. Information Systems. 2020, vol. 87, p. 101425.
issn 03064379. Available from doi: 10.1016/j.is.2019.101425.

3. GUIZZARDI, Giancarlo; WAGNER, Gerd; ALMEIDA, João Paulo Andrade; GUIZ-
ZARDI, Renata S.S. Towards Ontological Foundations for Conceptual Modeling: The
Unified Foundational Ontology (UFO) Story. Applied Ontology. 2015, vol. 10, no. 3-4,
pp. 259–271. Available from doi: 10.3233/AO-150157.

4. KAUTZ, Oliver; ROTH, Alexander; RUMPE, Bernhard. Achievements, Failures,
and the Future of Model-Based Software Engineering. In: The Essence of Software
Engineering. Cham: Springer, 2018, pp. 221–236. isbn 978-3-319-73896-3.

5. FIT CTU. OpenPonk modeling platform [online]. 2023. [visited on 2024-04-11]. Avail-
able from: https://openponk.org/.

6. RYBOLA, Zdeněk. Towards OntoUML for Software Engineering: Transformation
of OntoUML into Relational Databases. Prague, 2017. PhD thesis. Czech Technical
University in Prague.

7. EMBLEY, David W.; THALHEIM, Bernhard. Handbook of Conceptual Modeling:
Theory, Practice, and Research Challenges. Berlin, Germany: Springer, 2011. isbn
978-3-642-15865-0.

8. OBJECT MANAGEMENT GROUP. OMG Unified Modeling Language Version 2.5
[online]. 2015. [visited on 2024-04-04]. Available from: https://www.omg.org/spec/
UML/2.5/PDF.

9. BADREDDIN, Omar; KHANDOKER, Rahad; FORWARD, Andrew; MASMALI,
Omar; LETHBRIDGE, Timothy C. A Decade of Software Design and Modeling:
A Survey to Uncover Trends of the Practice. In: Proceedings of the 21th ACM/IEEE
International Conference on Model Driven Engineering Languages and Systems.
Copenhagen Denmark: ACM, 2018, pp. 245–255. isbn 978-1-4503-4949-9. Available
from doi: 10.1145/3239372.3239389.

10. BOOCH, Grady; RUMBAUGH, James; JACOBSON, Ivar. The Unified Modeling
Language User Guide. 2nd ed. Upper Saddle River, New Jersey: Addison-Wesley,
2005. isbn 978-0-321-26797-9.

81

https://doi.org/10.1016/j.is.2019.101425
https://doi.org/10.3233/AO-150157
https://openponk.org/
https://www.omg.org/spec/UML/2.5/PDF
https://www.omg.org/spec/UML/2.5/PDF
https://doi.org/10.1145/3239372.3239389

Bibliography

11. OBJECT MANAGEMENT GROUP. OMG Unified Modeling Language Superstruc-
ture Version 2.4 [online]. 2011. [visited on 2024-04-22]. Available from: https://
www.omg.org/spec/UML/2.4/Superstructure/PDF.

12. GUIZZARDI, Giancarlo; BOTTI BENEVIDES, Alessander; FONSECA, Claudenir
M.; PORELLO, Daniele; ALMEIDA, João Paulo A.; PRINCE SALES, Tiago. UFO:
Unified Foundational Ontology. Applied Ontology. 2022, vol. 17, no. 1, pp. 167–210.
Available from doi: 10.3233/AO-210256.

13. GUIZZARDI, Giancarlo; FONSECA, Claudenir M.; BENEVIDES, Alessander Botti;
ALMEIDA, João Paulo A.; PORELLO, Daniele; SALES, Tiago Prince. Endurant
Types in Ontology-Driven Conceptual Modeling: Towards OntoUML 2.0. In: Concep-
tual Modeling. Cham, Switzerland: Springer, 2018, vol. 11157, pp. 136–150. Available
from doi: 10.1007/978-3-030-00847-5_12.

14. GUIZZARDI, Giancarlo; WAGNER, Gerd; SINDEREN, Marten van. A Formal The-
ory of Conceptual Modeling Universals. In: Proceedings of the First International
Workshop on Philosophy and Informatics, Cologne. Cologne, Germany, 2004.

15. SUCHÁNEK, Marek. OntoUML specification Documentation [online]. 2022. [visited
on 2024-04-04]. Available from: https://ontouml.readthedocs.io/_/downloads/
en/latest/pdf/.

16. GUIZZARDI, Giancarlo. Ontological Foundations for Structural Conceptual Models.
Enschede, The Netherlands, 2005. PhD thesis. University of Twente.

17. GUIZZARDI, Giancarlo. Modal Aspects of Object Types and Part-Whole Relations
and the de re/de dicto Distinction. In: Advanced Information Systems Engineer-
ing. Berlin, Germany: Springer, 2007, vol. 4495, pp. 5–20. isbn 978-3-540-72987-7.
Available from doi: 10.1007/978-3-540-72988-4_2.

18. GUIZZARDI, Giancarlo. Ontological Foundations for Conceptual Part-Whole Rela-
tions: The Case of Collectives and Their Parts. In: Advanced Information Systems
Engineering. Berlin, Germany: Springer, 2011, vol. 6741, pp. 138–153. isbn 978-3-
642-21639-8. Available from doi: 10.1007/978-3-642-21640-4_12.

19. GUIZZARDI, Giancarlo. On the Representation of Quantities and Their Parts in
Conceptual Modeling. In: Proceedings of the 2010 Conference on Formal Ontology
in Information Systems: Proceedings of the Sixth International Conference (FOIS
2010). 2010, pp. 103–116. isbn 978-1-60750-534-1. Available from doi: 10.5555/
1804715.1804728.

20. ATZENI, Paolo; CERI, Stefano; PARABOSCHI, Stefano; TORLONE, Riccardo.
Database Systems: Concepts, Languages & Architectures. New York: McGraw-Hill,
1999. isbn 978-0-07-709500-0.

21. CODD, Edgar F. A Relational Model of Data for Large Shared Data Banks. Com-
munications of the ACM. 1970, vol. 13, no. 6, pp. 377–387. issn 0001-0782, issn
1557-7317. Available from doi: 10.1145/362384.362685.

22. CHAMBERLIN, Donald D. Relational Data-Base Management Systems. ACM Com-
puting Surveys. 1976, vol. 8, no. 1, pp. 43–66. issn 0360-0300. Available from doi:
10.1145/356662.356665.

23. ATZENI, Paolo; DE ANTONELLIS, Valeria; BATINI, Carlo. Relational Database
Theory. Redwood City, California: Addison Wesley, 1993. isbn 978-0-8053-0249-3.

24. GREENWALD, Rick; STACKOWIAK, Robert; STERN, Jonathan. Oracle Essen-
tials: Oracle Database 12c. 5th ed. Sebastopol, California: O’Reilly, 2013. isbn 978-
1-4493-4303-3.

82

https://www.omg.org/spec/UML/2.4/Superstructure/PDF
https://www.omg.org/spec/UML/2.4/Superstructure/PDF
https://doi.org/10.3233/AO-210256
https://doi.org/10.1007/978-3-030-00847-5_12
https://ontouml.readthedocs.io/_/downloads/en/latest/pdf/
https://ontouml.readthedocs.io/_/downloads/en/latest/pdf/
https://doi.org/10.1007/978-3-540-72988-4_2
https://doi.org/10.1007/978-3-642-21640-4_12
https://doi.org/10.5555/1804715.1804728
https://doi.org/10.5555/1804715.1804728
https://doi.org/10.1145/362384.362685
https://doi.org/10.1145/356662.356665

Bibliography

25. ORACLE. Oracle Database SQL Language Reference: constraint [online]. 2017. [vis-
ited on 2024-04-10]. Available from: https://docs.oracle.com/database/121/
SQLRF/clauses002.htm.

26. ORACLE. Oracle Database SQL Language Reference: CREATE VIEW [online].
2017. [visited on 2024-04-10]. Available from: https://docs.oracle.com/databas
e/121/SQLRF/statements_8004.htm.

27. CHEN, Peter Pin-Shan. The Entity-Relationship Model—Toward a Unified View of
Data. ACM Transactions on Database Systems. 1976, vol. 1, no. 1, pp. 9–36. issn
0362-5915, issn 1557-4644. Available from doi: 10.1145/320434.320440.

28. GORNIK, Davor. UML Data Modeling Profile. 2003.
29. WARMER, Jos B.; KLEPPE, Anneke G. The Object Constraint Language: Getting

Your Models Ready for MDA. 2nd ed. Boston, Massachusetts: Addison-Wesley, 2003.
isbn 978-0-321-17936-4.

30. ORACLE. Oracle Database SQL Language Reference: SET CONSTRAINT[S] [on-
line]. 2017. [visited on 2024-04-10]. Available from: https://docs.oracle.com/
database/121/SQLRF/statements_10003.htm.

31. PHARO. Pharo - features [online]. [visited on 2024-04-12]. Available from: https:
//pharo.org/features.

32. DUCASSE, Stéphane. Pharo with Style. Paris, France: Books on Demand, 2021. isbn
978-2-322-18201-5.

33. DUCASSE, Stéphane; RAKIC, Gordana; KAPLAR, Sebastijan; DUCASSE, Quentin.
Pharo 9 by Example. Paris, France: Books on Demand, 2022. isbn 978-2-322-39410-4.

34. FABRY, Johan; DUCASSE, Stéphane. The Spec UI framework. Switzerland: Square
Bracket Associates, 2017. isbn 978-1-326-92746-2.

35. INGENO, Joseph. Software Architect’s Handbook. Birmingham, UK: Packt Publish-
ing, 2018. isbn 978-1-78862-406-0.

36. Database Language SQL — Part 2: Foundation (SQL/Foundation). Geneva, Switzer-
land, 1999-09. Standard, ISO/IEC 9075-2:1999. International Organization for Stan-
dardization.

37. BERGEL, Alexandre; CASSOU, Damien; DUCASSE, Stéphane; LAVAL, Jannik.
Deep into Pharo. Switzerland: Square Bracket Associates, 2013. isbn 978-3-9523341-
6-4.

38. GAMMA, Erich; HELM, Richard; JOHNSON, Ralph; VLISSIDES, John. Design
Patterns: Elements of Reusable Object–Oriented Software. 1st ed. Boston, Mas-
sachusetts: Addison-Wesley, 1994. isbn 978-0-201-63361-0.

83

https://docs.oracle.com/database/121/SQLRF/clauses002.htm
https://docs.oracle.com/database/121/SQLRF/clauses002.htm
https://docs.oracle.com/database/121/SQLRF/statements_8004.htm
https://docs.oracle.com/database/121/SQLRF/statements_8004.htm
https://doi.org/10.1145/320434.320440
https://docs.oracle.com/database/121/SQLRF/statements_10003.htm
https://docs.oracle.com/database/121/SQLRF/statements_10003.htm
https://pharo.org/features
https://pharo.org/features

Attachments

This master’s thesis is accompanied by an archive containing the electronic version of the
thesis and its source code, and the source code and compiled binaries of the implementa-
tion created as part of this thesis. The structure of the archive is shown below.

readme.txt....................................brief overview of the archive contents
bin/......................................compiled binaries of OpenPonk and Moco
thesis/......................................LATEX sources of the text of the thesis

thesis.pdf............................text of the master’s thesis in PDF format
thesis.tex...main source file of the thesis
figures/................................directory with figures used in the thesis
text/..sources of individual chapters

src/..source code of the implementation
moco/...Moco repository
openponk-moco/.................................OpenPonk+Moco CI repository

85

Appendix A
Example Model

To evaluate the implemented transformation, we use the model of a library information
system from [6]. The input OntoUML model and the results generated by the implemen-
tation are structured as follows.

∘ In section A.1, the input OntoUML model is introduced.

∘ The result of the transformation round from the OntoUML model to a UML model is
provided in section A.2.

∘ In section A.3, the result of the transformation of the UML model to a relational model
is provided.

∘ The result of the transformation of the relational model to SQL is summarized in
section A.4.

Additionally, the OpenPonk project files, plain-text model dumps, OCL constraints and
SQL scripts are provided in the attached archive.

87

A. Example Model

A.1 OntoUML Model
The OntoUML model used as the input to the transformation is provided in figure A.1.
A list of types and relations used in the model is provided in table A.1.

Type Count Relation Count

Kind 4 generalization 31
SubKind 4 generalization set 10
Relator 4 Formal 1
Collective 1 Mediation 8
Quantity 0 Material 0
Role 9 Characterization 4
Phase 8 ComponentOf 0
Category 3 Containment 0
RoleMixin 1 MemberOf 1
PhaseMixin 0 SubCollectionOf 0
Mixin 1 SubQuantityOf 0
Mode 3
Quality 1

Table A.1: List of elements in the example OntoUML model

88

A
.1.

O
ntoU

M
L

M
odel

«Category»
Subject

- name: String
- city: String [0..1]
- country: String

«Kind»
Person

- firstName: String [0..1]
- lastName: String

«Kind»
LegalEntity

- title: String
- VAT: String

«SubKind»
Man

«SubKind»
Woman

«RoleMixin»
Client

- e-mail: String
- phone: String

«Role»
RegisteredReader

«Role»
RegisteredLegalEntity

«Role»
Writer

«Role»
Translator

«Relator»
Authorship

- ratio: Integer [0..1]

«Relator»
Translation

«Role»
WrittenBook

«Role»
TranslatedEdition

«SubKind»
Book

«Kind»
Work

- title: String
- description: String

«SubKind»
Periodical

- ISSN: String
- language: String

«Mode»
BookEdition

- ISBN: String
- edition: String
- language: String

«Mode»
Issue

- number: String
- topics: String

«Characterization»

«Characterization»

«Category»
Edition

- content: String

«Role»
PublishedEdition

«Collective»
Series

- title: String

«Quality»
PostalAddress

- name: String
- street: String
- streetNumber: String
- city: String
- zipCode: String
- country: String

«Role»
Publisher

«Relator»
Publication

- year: Integer

«Mode»
Copy

«Characterization»

«Phase»
Undamaged

«Phase»
Damaged

«Phase»
Destroyed

«Phase»
Borrowed

«Phase»
Discarded

- discardingDate: Date

«Phase»
Available

«Role»
LentCopy

«Relator»
Loan

- borrowingDate: Date
- deadlineDate: Date

«Mediation»

«Mediation»

«Mixin»
StoredItem

- roomNumber: String
- location: String

«Kind»
Furniture

- name: String
- description: String [0..1]

«Category»
EvidenceItem

- evidenceNumber: String

«Phase»
Finished

- returningDate: Date

«Phase»
Ongoing

«Formal»

1..*

«Mediation»

1

1..*

«Mediation»

1

ItemKind
{complete, disjoint}

2..*

«MemberOf»

0..*

WorkGenSet
{complete, disjoint}

1..*

lentTo

1

CopyState
{complete, disjoint}

PersonGender
{complete, disjoint}

ItemCategory
{complete, disjoint}

LoanState {complete, disjoint}

1..*

«Mediation»

1

1

«Mediation»

1
1..*

«Mediation»

1

ClientType
{complete, disjoint}

CopyAvailability
{complete,

disjoint}

EditionType
{complete, disjoint}

1..*

lentCopies

1..*

1..*

of

1

ClientType
{complete, disjoint}

0..*

of

1

ItemKind
{complete,
disjoint}

EditionType {complete, disjoint}

SubjectCat {complete, disjoint}

1

currentLoan

1

SubjectCat
{complete,

disjoint}

1

«Characterization»

1

1..*

«Mediation»

1

ItemCategory
{complete, disjoint}

1..*

of

1

Figure A.1: Example OntoUML model89

A. Example Model

A.2 UML Model
A class diagram of the output of the implemented transformation of the example Onto-
UML to UML is provided in figure A.2. A list of transformed elements is provided in
table A.2.

Classes Count Relations Count

classes 30 generalizations 14
immutable attributes 1 generalization sets 7

associations 22
immutable association sides 20

OCL Constraints Count

exclusive association 1
enumeration 2

Table A.2: List of elements in the example UML model

A list of available options during the transformation from OntoUML to UML and selected
choices follows below.

∘ A phase partition was found. Please se-
lect how to transform Loan and its phases
Ongoing, Finished.

≫ Transform by an abstract phase.

∘ A phase partition was found. Please se-
lect how to transform Copy and its phases
Destroyed, Damaged, Undamaged.

≫ Transform to a phase attribute.

∘ A phase partition was found. Please se-
lect how to transform Copy and its phases
Available, Borrowed, Discarded.

≫ Transform using exclusive phase asso-
ciations.

∘ Types Woman, Man in generalization set
PersonGender at Person have no prop-
erties and can be optimized out.

≫ Replace with a discriminator attribute.

∘ Role Writer has no properties and can be
optimized out.

≫ Keep as is.

∘ Role WrittenBook has no properties and
can be optimized out.

≫ Remove from model.

∘ Role Translator has no properties and
can be optimized out.

≫ Keep as is.

∘ Role TranslatedEdition has no proper-
ties and can be optimized out.

≫ Remove from model.

∘ Role Publisher has no properties and
can be optimized out.

≫ Keep as is.

∘ Role PublishedEdition has no proper-
ties and can be optimized out.

≫ Remove from model.

∘ Role LentCopy has no properties and can
be optimized out.

≫ Remove from model.

∘ Relator Translation has no properties
and can be optimized out.

≫ Remove from model.

90

A
.2.

U
M

L
M

odel

Person

- firstName: String [0..1]
- lastName: String
- personGender: String {readOnly}

Subject

- name: String
- city: String [0..1]
- country: String

LegalEntity

- title: String
- VAT: String

Writer Translator RegisteredReader RegisteredLegalEntity

Authorship

- ratio: Integer [0..1]

Book

Work

- title: String
- description: String

Periodical

- ISSN: String
- language: String

Series

- title: String

BookEdition

- ISBN: String
- edition: String
- language: String

PostalAddress

- name: String
- street: String
- streetNumber: String
- city: String
- zipCode: String
- country: String

Client

- e-mail: String
- phone: String

Publisher

Edition

- content: String

Issue

- number: String
- topics: String

Publication

- year: Integer

Copy

- copyState: String

Borrowed Discarded

- discardingDate: Date

Available

Loan

- borrowingDate: Date
- deadlineDate: Date

LoanState

Ongoing Finished

- returningDate: Date

StoredItem

- roomNumber: String
- location: String

Furniture

- name: String
- description: String [0..1]

EvidenceItem

- evidenceNumber: String

0..*

+writtenBook
1

{frozen}

ItemKind {complete, disjoint}

1..*

lentTo

1
{frozen}

+publishedEdition
1

{frozen}

0..1

+condition1

loanState

+identityBearer
1

{frozen}

1..*

of

1
{frozen}

+phase0..1

borrowed

+identityBearer

1
{frozen}

SubjectCat {complete, disjoint}

+role0..1

registeredReaderRole

+identityBearer

1
{frozen}

+phase0..1

available

+identityBearer

1
{frozen}

+role0..1

translatorRole

+identityBearer1
{frozen}

ClientType
{complete, disjoint}

1..*

1
{frozen}

1..*

of

1
{frozen}

+lentCopy
1..*

{frozen}

lentCopies

0..*

+phase0..1

discarded

+identityBearer1
{frozen}

1

currentLoan

1

1
{frozen}

1
{frozen}

LoanState
{complete,

disjoint}

+role0..1

registeredLegalEntityRole

+identityBearer 1
{frozen}

EditionType
{complete, disjoint}

+role0..1

publisherRole

+identityBearer

1
{frozen}

WorkGenSet
{complete, disjoint} 0..*

of1
{frozen}

0..*

translation

+translatedEdition1..*

+role 0..1

writerRole

+identityBearer

1
{frozen}

SubjectCat {complete, disjoint}

1..*

1
{frozen}

2..*

0..*

ItemCategory
{complete, disjoint}

Figure A.2: Transformed UML model91

A. Example Model

A.3 Relational Model
A diagram using the UML profile for data modeling that shows the result of the imple-
mented transformation of the UML model to a relational model is provided in figure A.3.
A list of transformed elements is provided in table A.3.

Elements Count

tables 33
foreign keys 39
unique keys 12

OCL Constraints Count

generalization set 7
special multiplicity 1
mandatory multiplicity 10
enumeration 2
exclusive association 1
immutable column 35
immutable delete 16

Table A.3: List of elements in the example RDB model

92

A
.3.

R
elationalM

odel

SUBJECT

«column»
*PK SUBJECT_ID: NUMBER(38)
* NAME: VARCHAR2(4000)
 CITY: VARCHAR2(4000)
* COUNTRY: VARCHAR2(4000)
* DISCR_SUBJECT_CAT: VARCHAR2(11)

PERSON

«column»
*pfK PERSON_ID: NUMBER(38)
 FIRST_NAME: VARCHAR2(4000)
* LAST_NAME: VARCHAR2(4000)
* PERSON_GENDER: VARCHAR2(5)

WRITER

«column»
*PK WRITER_ID: NUMBER(38)
*FK IDENTITY_BEARER: NUMBER(38)

AUTHORSHIP

«column»
*PK AUTHORSHIP_ID: NUMBER(38)
 RATIO: NUMBER(38)
*FK WRITER_ID: NUMBER(38)
*FK WRITTEN_BOOK: NUMBER(38)

BOOK

«column»
*pfK BOOK_ID: NUMBER(38)

TRANSLATOR

«column»
*PK TRANSLATOR_ID: NUMBER(38)
*FK IDENTITY_BEARER: NUMBER(38)

TRANSLATOR_TRANSLATION_TRANSLATED_EDITION

«column»
*pfK TRANSLATOR_ID: NUMBER(38)
*pfK TRANSLATED_EDITION: NUMBER(38)

BOOK_EDITION

«column»
*pfK BOOK_EDITION_ID: NUMBER(38)
* ISBN: VARCHAR2(4000)
* LANGUAGE: VARCHAR2(4000)
* EDITION: VARCHAR2(4000)
*FK BOOK_ID: NUMBER(38)

WORK

«column»
*PK WORK_ID: NUMBER(38)
* TITLE: VARCHAR2(4000)
* DESCRIPTION: VARCHAR2(4000)
* DISCR_WORK_GEN_SET: VARCHAR2(10)

PERIODICAL

«column»
*pfK PERIODICAL_ID: NUMBER(38)
* ISSN: VARCHAR2(4000)
* LANGUAGE: VARCHAR2(4000)

SERIES_TO_WORK

«column»
*pfK WORK_ID: NUMBER(38)
*pfK SERIES_ID: NUMBER(38)

SERIES

«column»
*PK SERIES_ID: NUMBER(38)
* TITLE: VARCHAR2(4000)

ISSUE

«column»
*pfK ISSUE_ID: NUMBER(38)
* NUMBER: VARCHAR2(4000)
* TOPICS: VARCHAR2(4000)
*FK PERIODICAL_ID: NUMBER(38)

EDITION

«column»
*PK EDITION_ID: NUMBER(38)
* CONTENT: VARCHAR2(4000)
* DISCR_EDITION_TYPE: VARCHAR2(11)

REGISTERED_READER

«column»
*pfK REGISTERED_READER_ID: NUMBER(38)
*FK IDENTITY_BEARER: NUMBER(38)

CLIENT

«column»
*PK CLIENT_ID: NUMBER(38)
* E-MAIL: VARCHAR2(4000)
* PHONE: VARCHAR2(4000)
*FK POSTAL_ADDRESS_ID: NUMBER(38)
* DISCR_CLIENT_TYPE: VARCHAR2(21)

POSTAL_ADDRESS

«column»
*PK POSTAL_ADDRESS_ID: NUMBER(38)
* NAME: VARCHAR2(4000)
* STREET: VARCHAR2(4000)
* STREET_NUMBER: VARCHAR2(4000)
* CITY: VARCHAR2(4000)
* ZIP_CODE: VARCHAR2(4000)
* COUNTRY: VARCHAR2(4000)

LEGAL_ENTITY

«column»
*pfK LEGAL_ENTITY_ID: NUMBER(38)
* TITLE: VARCHAR2(4000)
* VAT: VARCHAR2(4000)

REGISTERED_LEGAL_ENTITY

«column»
*pfK REGISTERED_LEGAL_ENTITY_ID: NUMBER(38)
*FK IDENTITY_BEARER: NUMBER(38)

PUBLISHER

«column»
*PK PUBLISHER_ID: NUMBER(38)
*FK IDENTITY_BEARER: NUMBER(38)

PUBLICATION

«column»
*PK PUBLICATION_ID: NUMBER(38)
* YEAR: NUMBER(38)
*FK PUBLISHER_ID: NUMBER(38)
*FK PUBLISHED_EDITION: NUMBER(38)

COPY

«column»
*pfK COPY_ID: NUMBER(38)
*FK EDITION_ID: NUMBER(38)
* COPY_STATE: VARCHAR2(9)

BORROWED

«column»
*PK BORROWED_ID: NUMBER(38)
*FK IDENTITY_BEARER: NUMBER(38)
*FK ONGOING_ID: NUMBER(38)

DISCARDED

«column»
*PK DISCARDED_ID: NUMBER(38)
*FK IDENTITY_BEARER: NUMBER(38)
* DISCARDING_DATE: DATE

AVAILABLE

«column»
*pfK AVAILABLE_ID: NUMBER(38)
*FK IDENTITY_BEARER: NUMBER(38)

LENT_COPY_LENT_COPIES_LOAN

«column»
*pfK LOAN_ID: NUMBER(38)
*pfK LENT_COPY: NUMBER(38)

LOAN

«column»
*PK LOAN_ID: NUMBER(38)
* BORROWING_DATE: DATE
* DEADLINE_DATE: DATE
*FK CLIENT_ID: NUMBER(38)

LOAN_LOAN_STATE

«column»
*PK LOAN_LOAN_STATE_ID: NUMBER(38)
*FK IDENTITY_BEARER: NUMBER(38)
* DISCR_LOAN_STATE: VARCHAR2(8)

ONGOING

«column»
*pfK ONGOING_ID: NUMBER(38)

FINISHED

«column»
*pfK FINISHED_ID: NUMBER(38)
* RETURNING_DATE: DATE

EVIDENCE_ITEM

«column»
*PK EVIDENCE_ITEM_ID: NUMBER(38)
* EVIDENCE_NUMER: VARCHAR2(4000)
* DISCR_ITEM_CATEGORY: VARCHAR2(9)

STORED_ITEM

«column»
*PK STORED_ITEM_ID: NUMBER(38)
* ROOM_NUMBER: VARCHAR2(4000)
* LOCATION: VARCHAR2(4000)
* DISCR_ITEM_KIND: VARCHAR2(9)

FURNITURE

«column»
*pfK FURNITURE_ID: NUMBER(38)
* NAME: VARCHAR2(4000)
 DESCRIPTION: VARCHAR2(4000)

1..*

(LOAN_ID = LOAN_ID)

«FK»

1

0..1

(PERIODICAL_ID = WORK_ID)
«FK»

1

1..*

(PUBLISHER_ID =
PUBLISHER_ID)

«FK»

1

0..1

(PUBLISHED_EDITION = EDITION_ID)

«FK»

1

0..*

(WORK_ID = WORK_ID)

«FK»

1

1

(ONGOING_ID =
ONGOING_ID)

«FK»

1

1

(IDENTITY_BEARER = LOAN_ID)

«FK»

1

0..*

(WRITTEN_BOOK = BOOK_ID)

«FK»

1

1..*

(WRITER_ID = WRITER_ID)

«FK»

1

0..*

(EDITION_ID =
EDITION_ID)

«FK»1

0..1 (ISSUE_ID = EDITION_ID)

«FK»

1

0..1

(IDENTITY_BEARER =
PERSON_ID)

«FK»

1

0..1

(BOOK_ID =
WORK_ID)

«FK»

1

0..1

(REGISTERED_LEGAL_ENTITY_ID = CLIENT_ID)

«FK»

1

0..1

(FURNITURE_ID = STORED_ITEM_ID)

«FK»

1

0..1

(IDENTITY_BEARER =
LEGAL_ENTITY_ID)
«FK»

1

0..1

(ONGOING_ID =
LOAN_LOAN_STATE_ID)

«FK»

1

0..1

(FURNITURE_ID = EVIDENCE_ITEM_ID)

«FK»

1

0..*

(LENT_COPY = COPY_ID)

«FK»

1

0..1

(BOOK_EDITION_ID = EDITION_ID)

«FK»

1

0..1

(REGISTERED_READER_ID = CLIENT_ID)

«FK»

1

1..*

(TRANSLATOR_ID = TRANSLATOR_ID)

«FK»

1

0..*

(TRANSLATED_EDITION = BOOK_EDITION_ID)

«FK»

1

1..*

(BOOK_ID =
BOOK_ID)

«FK»1

0..1

(IDENTITY_BEARER
= COPY_ID)

«FK»

1

0..1

(IDENTITY_BEARER =
COPY_ID)

«FK»

1

1..*
(PERIODICAL_ID = PERIODICAL_ID)

«FK»

1

0..1

(IDENTITY_BEARER =
PERSON_ID)

«FK»

1

0..1

(FINISHED_ID =
LOAN_LOAN_STATE_ID)

«FK»

1

0..1

(LEGAL_ENTITY_ID = SUBJECT_ID)

«FK»1

1

(POSTAL_ADDRESS_ID =
POSTAL_ADDRESS_ID)

«FK»

1

0..1

(IDENTITY_BEARER =
LEGAL_ENTITY_ID)

«FK»

1

2..*

(SERIES_ID = SERIES_ID)

«FK»

1

1..*

(CLIENT_ID = CLIENT_ID)

«FK»1

0..1

(AVAILABLE_ID =
STORED_ITEM_ID)

«FK»

1

0..1

(IDENTITY_BEARER = PERSON_ID)

«FK» 1

0..1

(COPY_ID =
EVIDENCE_ITEM_ID)

«FK»

1

0..1

(PERSON_ID = SUBJECT_ID)

«FK» 1

0..1

(IDENTITY_BEARER =
COPY_ID)

«FK»

1

Figure A.3: Transformed relational model

93

A. Example Model

A.4 Realization in SQL
A list of the types of generated SQL statements by the implemented transformation of
the relational model to SQL is provided in table A.4.

Statement Type Count

CREATE TABLE 33
ADD FOREIGN KEY 39
ADD UNIQUE 12
ADD CHECK 2
CREATE TRIGGER BEFORE 115
CREATE TRIGGER AFTER 14

Table A.4: List of generated SQL statements

94

Appendix B
Transformation Rules

In this appendix, a complete list of implemented transformation rules and their priorities
is provided. It is divided according to the designed transformation rounds.

∘ In section B.1, a list of transformation rules that convert an OpenPonk OntoUML
model to a Moco model is provided.

∘ In section B.2, transformation rules that transform an OntoUML model to UML are
listed.

∘ In section B.3, transformation rules that refactor a UML model prior to the transfor-
mation to a relational model are listed.

∘ In section B.4, a list of transformation rules that realize the transformation of a UML
model to a relational model is provided.

∘ In section B.5, transformation rules that convert a relational data model to SQL are
listed.

∘ In section B.6, a list of transformation rules that convert a Moco UML model to an
OpenPonk UML model is provided.

∘ In section B.7, a list of transformation rules that convert a Moco relational model to
an OpenPonk UML model is provided.

B.1 OpenPonk OntoUML to Moco OntoUML
Transformation rules that convert an OntoUML model from OpenPonk data structures
to Moco data model are listed in table B.1.

1.1 MocoOpenPonkOntoUmlClassTransformationRule 100
1.2 MocoOpenPonkOntoUmlKindTransformationRule 100
1.3 MocoOpenPonkOntoUmlSubKindTransformationRule 100
1.4 MocoOpenPonkOntoUmlQuantityTransformationRule 100

Rule Class Name Priority

continued on next page
Table B.1: List of OpenPonk OntoUML to Moco OntoUML transformation rules

95

B. Transformation Rules

1.5 MocoOpenPonkOntoUmlRelatorTransformationRule 100
1.6 MocoOpenPonkOntoUmlCollectiveTransformationRule 100
1.7 MocoOpenPonkOntoUmlRoleTransformationRule 100
1.8 MocoOpenPonkOntoUmlPhaseTransformationRule 100
1.9 MocoOpenPonkOntoUmlCategoryTransformationRule 100
1.10 MocoOpenPonkOntoUmlRoleMixinTransformationRule 100
1.11 MocoOpenPonkOntoUmlPhaseMixinTransformationRule 100
1.12 MocoOpenPonkOntoUmlMixinTransformationRule 100
1.13 MocoOpenPonkOntoUmlQualityTransformationRule 100
1.14 MocoOpenPonkOntoUmlModeTransformationRule 100
1.25 MocoOpenPonkOntoUmlEnumerationTransformationRule 80
1.26 MocoOpenPonkOntoUmlGeneralizationTransformationRule 60
1.27 MocoOpenPonkOntoUmlGeneralizationSetTransformationRule 59
1.15 MocoOpenPonkOntoUmlAssociationTransformationRule 51
1.16 MocoOpenPonkOntoUmlContainmentAssociationTransforma-

tionRule
50

1.17 MocoOpenPonkOntoUmlFormalAssociationTransformationRule 50
1.18 MocoOpenPonkOntoUmlMaterialAssociationTransformation-

Rule
50

1.19 MocoOpenPonkOntoUmlMediationAssociationTransformation-
Rule

50

1.20 MocoOpenPonkOntoUmlCharacterizationAssociationTransfor-
mationRule

50

1.21 MocoOpenPonkOntoUmlComponentOfAssociationTransforma-
tionRule

50

1.22 MocoOpenPonkOntoUmlMemberOfAssociationTransformation-
Rule

50

1.23 MocoOpenPonkOntoUmlSubCollectionOfAssociationTransfor-
mationRule

50

1.24 MocoOpenPonkOntoUmlSubQuantityOfAssociationTransforma-
tionRule

50

Rule Class Name Priority

Table B.1: List of OpenPonk OntoUML to Moco OntoUML transformation rules

96

B.2. OntoUML to UML

B.2 OntoUML to UML
In table B.2, the list of transformation rules that realize the transformation round from
an OntoUML to a UML model is provided.

2.2 MocoOntoUmlKindTransformationRule 100
2.3 MocoOntoUmlSubKindTransformationRule 100
2.4 MocoOntoUmlRelatorTransformationRule 100
2.5 MocoOntoUmlQuantityTransformationRule 100
2.6 MocoOntoUmlCollectiveTransformationRule 100
2.7 MocoOntoUmlModeTransformationRule 100
2.8 MocoOntoUmlQualityTransformationRule 100
2.9 MocoOntoUmlCategoryTransformationRule 100
2.10 MocoOntoUmlMixinTransformationRule 100
2.11 MocoOntoUmlRoleMixinTransformationRule 100
2.12 MocoOntoUmlPhaseMixinTransformationRule 100
2.13 MocoOntoUmlRoleTransformationRule 99
2.14 MocoOntoUmlPhaseTransformationRule 99
2.1 MocoOntoUmlClassTransformationRule 95
2.21 MocoOntoUmlEnumerationTransformationRule 80
2.22 MocoOntoUmlGeneralizationTransformationRule 50
2.23 MocoOntoUmlGeneralizationSetTransformationRule 49
2.16 MocoOntoUmlCharacterizationAssociationTransformation-

Rule
45

2.17 MocoOntoUmlMediationAssociationTransformationRule 45
2.18 MocoOntoUmlMaterialAssociationTransformationRule 45
2.20 MocoOntoUmlContainmentAssociationTransformationRule 45
2.19 MocoOntoUmlPartWholeAssociationTransformationRule 44
2.15 MocoOntoUmlAssociationTransformationRule 43
2.24 MocoOntoUmlRoleOptimizationTransformationRule 10
2.25 MocoOntoUmlRelatorOptimizationTransformationRule 9

Rule Class Name Priority

Table B.2: List of OntoUML to UML transformation rules

97

B. Transformation Rules

B.3 Preprocessing UML for the Relational Model
Transformation rules responsible for refactoring a UML model before its transformation
to a relational model are listed in table B.3.

3.1 MocoUmlCopyTransformationRule 50
3.2 MocoUmlCopyFixReferencesTransformationRule 49
3.3 MocoUmlEnumerationTransformationRule 30
3.4 MocoUmlNonNativeRdbTypeTransformationRule 25
3.5 MocoUmlMultiValueAttributeTransformationRule 23
3.6 MocoUmlManyToManyAssociationTransformationRule 20

Rule Class Name Priority

Table B.3: List of UML to UML for RDB transformation rules

B.4 UML to a Relational Model
In table B.4, the list of transformation rules that realize the transformation round from
a UML to a relational model is provided.

4.1 MocoUmlClassTransformationRule 100
4.3 MocoUmlGeneralizationTransformationRule 90
4.4 MocoUmlGeneralizationSetTransformationRule 89
4.2 MocoUmlAssociationTransformationRule 85
4.6 MocoUmlOclEnumerationConstraintTransformationRule 50
4.7 MocoUmlOclExclusiveAssociationConditionTransformation-

Rule
50

4.5 MocoUmlMediatingClassOptimizationTransformationRule 35

Rule Class Name Priority

Table B.4: List of UML to RDB transformation rules

B.5 Relational Model to Oracle SQL
Transformation rules that realize the transformation round from a relational model to
SQL are listed in table B.5.

5.1 MocoRdbTableTransformationRule 100
5.2 MocoRdbForeignKeyTransformationRule 99
5.3 MocoRdbOclEnumerationTransformationRule 80

Rule Class Name Priority

continued on next page
Table B.5: List of RDB to SQL transformation rules

98

B.6. Moco UML to OpenPonk UML

5.4 MocoRdbOclExclusiveAssociationTransformationRule 0
5.5 MocoRdbOclGeneralizationSetTransformationRule 0
5.6 MocoRdbOclImmutableColumnTransformationRule 0
5.7 MocoRdbOclImmutableAssociationDeleteTransformationRule 0
5.8 MocoRdbOclMandatoryMultiplicityTransformationRule 0
5.9 MocoRdbOclSpecialMultiplicityTransformationRule 0

Rule Class Name Priority

Table B.5: List of RDB to SQL transformation rules

B.6 Moco UML to OpenPonk UML
In table B.6, the list of transformation rules that convert a Moco UML model to an
OpenPonk UML model is provided.

6.1 MocoOpenPonkUmlClassTransformationRule 100
6.3 MocoOpenPonkUmlEnumerationTransformationRule 90
6.4 MocoOpenPonkUmlGeneralizationTransformationRule 65
6.5 MocoOpenPonkUmlGeneralizationSetTransformationRule 60
6.2 MocoOpenPonkUmlAssociationTransformationRule 50
6.6 MocoOpenPonkUmlOclTransformationRule 40

Rule Class Name Priority

Table B.6: List of Moco UML to OpenPonk UML transformation rules

B.7 Moco RDB to OpenPonk UML
Transformation rules that convert a Moco relational model to an OpenPonk UML model
are listed in table B.7.

7.1 MocoOpenPonkRdbTableTransformationRule 100
7.2 MocoOpenPonkRdbForeignKeyTransformationRule 90
7.3 MocoOpenPonkRdbOclTransformationRule 50

Rule Class Name Priority

Table B.7: List of Moco RDB to OpenPonk UML transformation rules

99

	Abstract
	Contents
	List of Figures
	List of Listings
	List of Tables

	Abbreviations
	Introduction
	Goals of This Thesis
	Structure of the Thesis

	State of the Art
	Conceptual Modeling
	Unified Modeling Language
	Unified Foundational Ontology
	OntoUML

	Relational Database Management Systems
	Relational Model
	Structured Query Language
	Oracle Database

	Data Modeling
	Entity–Relationship Model
	Data Modeling Profile of the Unified Modeling Language

	Object Constraint Language
	Realization of an OntoUML Model in SQL
	Transformation of an OntoUML Model to UML
	Transformation of a UML Model to a Relational Model
	Realization of a Relational Model in Oracle Database

	Analysis
	OpenPonk
	Data Model
	Transformation of an OntoUML Model to UML

	Pharo
	Code Organization
	Source Code Versioning
	Package Management
	Graphical User Interface

	Transformation Revision for the Latest OntoUML Version
	Changes in OntoUML
	Enumerations

	Software Requirements
	Functional Requirements
	Non-Functional Requirements

	Design
	Framework for Transformations
	Transformation Engine
	Moco Library
	Data Model
	UML Data Model
	OntoUML Data Model
	Relational Data Model
	Oracle SQL Data Model
	OCL Data Model

	Transformation Rounds
	User Interface
	Toolbar Menu
	Question Dialog
	Results Window
	Settings

	Implementation
	Transformation Engine
	Adding Elements and Linking Source with Output Elements
	Selecting Elements and Managing Metadata
	Constructing Models
	Transformation Options
	Transformation Execution
	Naming Utilities

	Transformation Rules
	OpenPonk OntoUML to Moco OntoUML
	OntoUML to UML
	Preprocessing UML for the Relational Model
	UML to a Relational Model
	Relational Model to Oracle SQL
	Moco UML to OpenPonk UML
	Moco RDB to OpenPonk UML

	User Interface
	Transformation Transcript
	Toolbar Item
	Transformation Command
	Moco Playground

	Code Repository
	OpenPonk Build
	Project Saving Workaround

	Evaluation
	Functional Testing
	Differences in Generated Names
	OntoUML to UML
	UML to a Relational Model

	Transformation of the Example Model
	OntoUML to UML
	UML to a Relational Model
	Realization of Constraints and Resulting SQL Model
	Summary

	Conclusion
	Summary
	Contributions of this Thesis

	Bibliography
	Attachments
	Example Model
	OntoUML Model
	UML Model
	Relational Model
	Realization in SQL

	Transformation Rules
	OpenPonk OntoUML to Moco OntoUML
	OntoUML to UML
	Preprocessing UML for the Relational Model
	UML to a Relational Model
	Relational Model to Oracle SQL
	Moco UML to OpenPonk UML
	Moco RDB to OpenPonk UML

