
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of master’s thesis

Migration of Atlantis inventory system's PHP backend to C#,

including architectural considerations

Bc. Duc Minh Pham

Ing. Jiří Hunka

Informatics

Web Engineering

Department of Software Engineering

until the end of summer semester 2024/2025

Instructions

The objective of the project, in collaboration with colleague Bc. Max Hejda, is to migrate

the existing functional backend of the Atlantis warehouse system, which is in PHP, to C#

using the .NET framework. Due to the extensive scope and to ensure isolation of the task,

the focus of this work is on the architecture, technical setup of the project and the main

technological concepts aimed at a smooth and seamless transition between the

mentioned technologies, which brings a significant amount of challenges. A secondary

goal involves a part of the actual implementation.

1. Analyze the backend solution, including previous works on the Atlantis warehouse

system. Also analyze the technologies currently used, including the capabilities of the

C# language (.NET). Further, analyze the possibilities and consequences of migrating

between languages in such a large project.

2. Based on analysis, together with Bc. Max Hejda, design a suitable backend solution

and ideal migration procedures.

3. Properly consult the proposals with the instructor and the developers of the Atlantis

warehouse system.

4. Implement a usable part of the backend using the procedures you have designed.

5. Design and execute suitable testing methods for the backend portion of your

implementation.

6. Test the final implementation either in a production or a testing environment.

7. Evaluate the final solution and suggest future modifications.

Electronically approved by Ing. Jaroslav Kuchař, Ph.D. on 13 February 2024 in Prague.

Master’s thesis

Migration of Atlantis inventory system’s
PHP backend to C#

Bc. Pham Minh Duc

Department of Software Engineering
Supervisor: Ing. Jiří Hunka

May 8, 2024

Acknowledgements

I would like to thank Ing. Jiří Hunka for his guidance during the creation
of this thesis, my thanks also go to my family, who supported me during my
studies.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46(6) of the Act, I hereby grant a nonexclusive au-
thorization (license) to utilize this thesis, including any and all computer pro-
grams incorporated therein or attached thereto and all corresponding docu-
mentation (hereinafter collectively referred to as the “Work”), to any and all
persons that wish to utilize the Work. Such persons are entitled to use the
Work in any way (including for-profit purposes) that does not detract from its
value. This authorization is not limited in terms of time, location and quan-
tity. However, all persons that makes use of the above license shall be obliged
to grant a license at least in the same scope as defined above with respect to
each and every work that is created (wholly or in part) based on the Work, by
modifying the Work, by combining the Work with another work, by including
the Work in a collection of works or by adapting the Work (including trans-
lation), and at the same time make available the source code of such work at
least in a way and scope that are comparable to the way and scope in which
the source code of the Work is made available.

In Prague on May 8, 2024 …………………

Czech Technical University in Prague
Faculty of Information Technology
© 2024 Minh Duc Pham. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Pham, Minh Duc. Migration of Atlantis inventory system’s PHP backend
to C#. Master’s thesis. Czech Technical University in Prague, Faculty of
Information Technology, 2024.

Abstrakt

Projekt Atlantis je skladový systém původně vyvinutý v PHP. Systém zahr-
nuje frontend, backend, databázi a další doprovodné komponenty, které více
než 3 roky spravuje společnost Jagu s.r.o. Systém je úspěšný, ovšem setkává
se s problémy týkajicí se rozšiřitelnosti, výkonu a udržitelnosti kvůli výběru
platformy. Tato diplomová práce se bude zabývat přechodem projektu At-
lantis z PHP do jazyka C# na platformě .NET. Hlavním cílem je pečlivě
naplánovat a provézt částečnou migraci backendového systému, přičemž zajis-
tit kompatibilitu s původním systémem, jeho frontendem a databází, a to bez
narušení jejich funkcionality. To zahrnuje analýzu současného systému a úz-
kou spolupráci s členy týmu. Zaměření této práce je technický setup projektu,
architektura a technologické myšlenky zaměřeny na přechod mezi zmíněnými
technologiemi. Vzhledem k rozsahu práce nebude práce pokrývat kompletní
implementaci celého backendu. Výsledkem bude pevný základ, na kterém bude
migrace prováděna, včetně strategií a nástrojů potřebných pro process migra-
ce. Přínosy nové architektury byly demonstrovány prostřednictvím částečné
implementace, která byla spuštěna na prostředí podobném produkčnímu.

Klíčová slova .NET, Čistá architektura, CQRS, DDD, Strangler Fig pat-
tern, UML, Návrhové vzory

vii

Abstract

The Atlantis project is a warehouse inventory system originally built in PHP,
the system includes a frontend, backend, database and other accompanying
components maintained by Jagu s.r.o for over 3 years. While the system
has been successful, it has faced some extensibility, performance, and main-
tainability challenges due to the platform choice. This thesis discusses the
transition of Atlantis from PHP to C# on the .NET platform, aiming to take
advantage of the enterprise features of .NET. The main goal is to carefully
plan and carry out the migration of the backend system, making sure it can
still work with the old PHP system to avoid disrupting current functions. This
involves analyzing the current system and working closely with team mem-
bers. The focus of the thesis is the technical setup of the project, architecture
and technical knowledge to support a seamless transition between the men-
tioned technologies. Due to the sheer scale of the system, it will not cover the
complete implementation of the entire backend. This thesis will ensure that
the new backend can still communicate with the existing components like the
frontend and database without issues. The final outcome will be a foundation
upon which the migration will be carried out, including strategies and tools
needed for the process. We demonstrated the benefits of the new architecture
through partial implementation which was showcased on a production-like
environment.

Keywords .NET, Clean architecture, CQRS, DDD, Strangler Fig pattern,
UML, Design patterns

viii

Contents

Introduction 1

An important note - NDA 3

I Analysis 5

1 Analysis of Atlantis 7
1.1 Qualitative and Quantitative research approaches 7

1.1.1 Phases of analysis . 8
1.2 Analysis of previous works - Ing. Pavel Kovář 10

1.2.1 System architecture - Authorization 10
1.2.2 Used technologies . 12

1.3 Analysis of previous works - Ing. Oldřich Malec 14
1.3.1 Existing system . 14
1.3.2 Used technologies . 14

1.4 API Categories . 15
1.5 Code observations . 22

1.5.1 Cross-cutting concerns 24

2 Symfony vs .NET 27
2.1 Troubles with the current system 27
2.2 Previous efforts . 27
2.3 Performance . 28

2.3.1 Symfony (PHP) . 28
2.3.2 .NET (C#) . 29

2.4 Compatibility . 30
2.5 Conclusion . 31

3 Migration strategies 33
3.1 Full migration . 33
3.2 Phased migration . 34

3.2.1 Strangler Fig Pattern 34
3.2.2 A façade as the interceptor 34

ix

3.2.3 The phases of Strangler fig pattern 35
3.2.4 Migration by features 37
3.2.5 Migration by blocks . 37

3.3 Phased migration - database . 38
3.3.1 New database . 38
3.3.2 Backwards-compatible database 38

3.4 Conclusion . 39

II Design 41

4 Architecture 43
4.1 Why Architecture matters . 43
4.2 Current architecture . 44
4.3 Enhanced architecture . 45

4.3.1 SOA/Microservices . 45
4.3.2 Monolith . 46

4.3.2.1 Selecting the architecture 47
4.4 Clean Architecture . 48

4.4.1 Understanding Clean Architecture 49
4.5 CQRS and Domain Driven Design (DDD) 51

4.5.1 Final note on system design 52
4.6 30,000-foot Overview . 53

4.6.1 Naming the new system - Squid 53
4.7 10,000-foot Overview - Strangler façade 54

4.7.1 Key factors . 56
4.8 10,000-foot Overview - Squid API 57

IIIImplementation 59

5 Implementation - Squid API 61
5.1 Motivation . 61

5.1.1 Cooperation with Max 62
5.2 Clean architecture in .NET . 62
5.3 CQRS and DDD implementation 63
5.4 Validation . 65
5.5 Database . 67
5.6 Authentication and Authorization 67

5.6.1 Porting Octopus Authentication and Authorization . . . 68
5.6.2 Permission-based Authentication and Authorization . . 69
5.6.3 API Documentation - Swashbuckle library 73
5.6.4 Logging . 73

x

6 Implementation - Strangler façade 75
6.1 Modes of the Strangler façade 77

6.1.1 Using Octopus mode . 79
6.1.2 Using Comparison mode 80
6.1.3 Using Squid mode . 81

6.2 Implementation details - Integration issues 83

IVTesting 85

7 Testing 87
7.1 Manual testing . 87
7.2 Automated testing . 88

7.2.1 Basics of automated testing 88
7.2.2 Unit testing . 88
7.2.3 Integration testing with throwaway Docker containers . 89

7.3 Resetting of database between tests 91
7.4 Seeding database - for testing 92
7.5 Snapshot testing . 94
7.6 Tying it all together . 96
7.7 Test Driven Development - TDD 98

7.7.1 Summary . 99
7.8 E2E Testing . 99
7.9 Developer feedback . 99

7.9.1 Feedback Conclusion . 103

8 Conclusion 105

Bibliography 107

A Acronyms 113

B Contents of enclosed SD-Card 115

xi

List of Figures

1.1 Introspection authentication flow 11
1.2 Swordfish - current state . 15
1.3 Decision tree - classification . 16
1.4 UML Diagram Centered on Supplier 17
1.5 Activity diagram of External Order POST endpoint 18
1.6 Activity diagram of Move Products POST endpoint 19
1.7 Activity diagram of Location Transfer POST endpoint 20

3.1 Strangler Façade migration phases [1] 35

4.1 Application layer - Service layer . 45
4.2 Microservices[2] . 47
4.3 Monolith[3] . 48
4.4 Clean architecture[4] . 50
4.5 DDD - Bounded context[5] . 52
4.6 High-level overview of the Octopus system 53
4.7 Squid system - draft . 54
4.8 High-level overview of the Squid system 55
4.9 Strangler façade modes . 56
4.10 Squid Api - Clean architecture . 58

5.1 Squid - Implementation Dependency structure 63
5.2 CQRS basic approach . 64
5.3 CQRS with Mediator approach . 64
5.4 Squid - Implementation ”thin” controllers 64
5.5 Validation pipeline behavior . 66
5.6 Authorized back-channel httpclient 69
5.7 Keycloak - Permission policy . 70
5.8 Keycloak audience validation . 72

6.1 Middleware - order of execution [6] 75
6.2 Middleware structure [6] . 76
6.3 Middleware - Strategy selector . 77
6.4 Middleware - Strategy selector sequence diagram 78
6.5 Strangler - Octopus mode . 79

xiii

6.6 Strangler - Grafana Dashboard . 82
6.7 Integration - Authorization headers 84

7.1 Test Containers usage . 90
7.2 Conflict of tests - Database state 92
7.3 Snapshot testing - snapshot example 96
7.4 Snapshot testing - Diff window . 97
7.5 E2E testing - Production clone environment 99

xiv

List of Tables

1.1 REST Endpoints for Authorization Token Introspection Flow . . . 12

3.1 Criteria for block/feature Extraction [7] 36

4.1 Comparison of Monolithic and Microservices Architectures 48

7.1 Simple CRUD migration estimate 101

List of Code listings

5.1 Role-based authorization using Angler 69
5.2 Permission-based authorization using Keycloak 71
6.1 Traditional Assert Example . 78
6.2 Strangler Configuration - Time window 82
6.3 Strangler Configuration - Percentage 83
6.4 Strangler Configuration - User 83
6.5 Strangler Configuration - Enabled 83
7.1 Traditional Assert Example . 95
7.2 Assert with Verify example . 95
7.3 Sample test - improved . 96
7.4 Sample test - fully optimized 97

xv

Introduction

The project in focus of this thesis is the Atlantis project. Atlantis is a ware-
house management application used by companies across the Czech Republic.
It implements end-to-end processes for many concurrent actors in a small to
mid-sized warehouse.

Atlantis is a culmination of several components, including the backend,
frontend and database system. Which have been maintained and developed
for over three years by the owning company - Jagu.

Beginnings

The project has been in use by paying clients since its creation and serves
them as a critical part of the infrastructure. The beginnings of the project
were defined as part of Ing. Pavel Kovař’s Master’s thesis [8]. The outputs of
which were very close to being finalized and usable as a stand-alone warehouse
management system. The User interface (UI) was delivered by Ing. Oldřich
Malec in his Master’s thesis [9]

Background

Developed using PHP, the system has been serving well. It was adapted to
work with the domain requirements and served as a stable platform for the
initial phases of the application lifetime. After some time the requirements
started shifting towards features for which PHP was no longer the optimal
choice. It struggles with scalability, maint-inability and performance in com-
plex high-load business processes.

Thus, a decision was made to migrate the Atlantis warehouse system to
a more optimized and robust platform: C# on the .NET platform. Such
a decision was not made lightly as it is not only a change of programming lan-
guage but rather a long-term strategic choice for the team, whose composition
highly favors the .NET ecosystem with experience in many different projects.
Further advantages and disadvantages will be discussed in chapter 2.

1

Introduction

The problem
The Atlantis warehouse system has been reliable, but the slowly growing com-
plexity has made the project hard to maintain and even harder to update the
codebase. Key issues being the difficulty of working with database entities,
their mapping to objects, and general reply latency. Unfortunately, switching
to the C# platform is not instant, and despite adequate and deep analysis, it
is impossible to be perfect.

A critical part of the development of the application will be its backward
compatibility with the PHP system. As we slowly migrate parts of the system,
it is crucial to maintain the original processes and logic, allowing parallel
functionality with the original warehouse system. This requirement ensures
uninterrupted service, safety, and integrity during the migration period.

Project goals
The most important goal of this thesis is to carefully plan and implement the
transition of the Atlantis warehouse system backend from PHP to C#. Part
of this will be a deep analysis of the current system, working with colleagues
from the team who will be adopting this project, and the implementation
itself using .NET framework to rebuild the architecture, implement critical
solution infrastructure, and provide a rich and seamless experience for future
developers.

Part of the goal is to implement a part of the system to demonstrate the
functionality and advantages of the new architecture. This thesis will aim to
provide a strategies for migration, as well as ideas, and tools to be used in the
process.

Scope
This thesis focuses on the architectural redesign and technical setup for the
transition of the Atlantis system backend to C#. While it includes implement-
ing a portion of the system, it does not cover the complete reimplementation
of the entire backend.

We will be analyzing strictly the backend system, leaving out the frontend
and other user interfaces. Precautions ensuring interface compatibility will be
in scope of the backwards compatibility aspect of the solution.

2

An important note - NDA

This thesis is accompanying work done for Jagu s.r.o. for which I have signed
a Non-Disclosure Agreement (NDA). I will be more general and objective while
describing problems during the project and the roadblocks ahead. The code
produced will not be available in the attachments, rather it will be accessible
only through the internal company source code management system. This
approach safeguards the company’s intellectual property while allowing me to
discuss the theoretical and methodological aspects of my work.

3

Part I

Analysis

5

CHAPTER 1
Analysis of Atlantis

The Atlantis system, developed in PHP was initially made to improve on the
”Sysel” inventory system. Overall it has succeeded in bringing many new
features which has aided its growth and its marketability, serving as an all-
in-one package for the whole process management of any small to mid-sized
company.

Atlantis does not only serve as an inventory management platform, but it
handles many parts of merchandise lifetime.

1.1 Qualitative and Quantitative research
approaches

During the analysis of the Atlantis project I have discussed many topics with
many of the engineers working on the project. I have employed mostly Qual-
itative methods of interview. Let us take a look at what these methods are
and how to approach these interviews effectively. Inspiration was taken from
the article ”Guidelines for conducting and reporting case study research in
software engineering” by Per Runeson and Martin Höst [10].

The article suggests a methodological approach to the analysis by first
defining research questions:

• What are the current challenges faced by the Atlantis project?

• What can we do to make this project successful and create an impact?

Methods of data collection

1. Interviews: The interviews are conducted in semi-structured manner
with preset agenda and timeframe.

7

1. Analysis of Atlantis

2. Analysis of documents: Read and analyse project documentation, pre-
vious project works and the code base

3. Observations: Observation of meetings, company priorities and common
daily issues

Out of these three, observations were not sufficiently reached due to not
receiving permission to join the main company communication channels. This
has led to communication issues with many of the team members. Nonetheless,
interviews were conducted with the most active current members of the project
- the main stakeholders of this project, which were in no particular order: The
CEO of the company, the Atlantis project team lead, the project mid-level
engineer and junior engineer.

Quantitative

Quantitative analysis is usually statistical and requires some way to quantify
data to find patterns and relationships. This type of analysis is used when
data can be numerically measured and is structured. This can be, for example,
system performance, which can be properly quantified. Quantitative analysis
helps in validating findings from qualitative analysis by providing statistical
evidence.

Qualitative

In the qualitative analysis, the main goal is to find patterns, themes and
meanings from data collected. This involves processing data collected from
interviews, personal notes and other sources like the codebase. This type of
analysis requires the analysts to immerse themselves into the problem domain
to understand the various contexts and decisions that were made.

1.1.1 Phases of analysis

Phase 1: Ensuring system compatibility

The first phase was following a qualitative approach, which involved a deep
analysis of the existing Atlantis system’s codebase. This step is extremely
important to understand the various architectural decisions, dependencies and
potential challenges that might affect the migration to a new architecture. The
analysis here was mostly document-based, it involved understanding system
documentation, code comments and the structure of the code. This analysis
helps to make sure that the new architecture would be compatible with the
existing system, this was a fundamental step in the process of creating a new
architectural design.

8

1.1. Qualitative and Quantitative research approaches

Phase 2: Team meeting to propose new Architecture

After the first phase a prototype of the architecture was drafted, and a semi-
structured team meeting was conducted to propose the new architecture and
to collect feedback from all the team members. Several concerns were raised
as the result of this meeting:

1. Maintainability: Will this architecture be more maintainable than the
one implemented in Octopus.

2. Phased migration by features or blocks: The system will need to be
deployed in parallel with Octopus, as there are insufficient resources to
fully migrate to the new architecture.

3. Permission-based authorization: The system must support an authoriza-
tion system which is more granular than the one which is implemented
in Octopus.

These issues are discussed in detail as part of this thesis, including the
decision-making process, alternatives, and final implementation. This phase
was extremely important for addressing any issues before implementing the
new architecture.

Phase 3: Interviews with the sources of Concerns

Phase 3 involved conducting detailed one-on-one interviews with the team
members who had raised concerns from the previous phase. In these inter-
views, I have proposed ideas or implemented prototypes on the new architec-
ture as solutions to each of the raised concerns.

• Permission-based authorization: An interview was held with the team
member raising the concern. The results of the meeting are discussed
in subsection 5.6.2

• Maintainability: There was a one-to-one interview with the lead devel-
oper regarding the direction of the architecture, but this will mostly be
the focus of Phase 4, after the implementation is mostly finished

• Phased migration by features or blocks: One-to-one interview was con-
ducted with the corresponding team member

Phase 4: Developer feedback on the new architecture

In the final phase the architecture was tested and deployed. This involved
final feedback for the outputs of this thesis. I will be discussing the results of
this phase at the end of the thesis in section 7.9.

9

1. Analysis of Atlantis

Each of these phases contributed to the project analysis, ensuring that
the final architectural plan is carefully considered and inclusive of input from
the various members of the team. This phased approach makes sure that the
project will progress with the acknowledgment of the team, in a direction that
is expected.

1.2 Analysis of previous works - Ing. Pavel Kovář
Ing. Pavel Kovář’s work [8] set the grounds for the Atlantis project. Pavel’s
work included much of the domain design, which has been implemented either
as part of his work or later after the thesis concluded. I will not be going
too deep into the domain-specific language and usage, as that is not the focus
of this thesis. For the meaning of some of these domain terms, please refer
to Pavel’s thesis. Architectural design and the component interactions within
the technology stack are what we wish to gather in this chapter.

Domain model

The domain model has since changed and been expanded upon by many devel-
opers. Therefore it would not be benefitial to take Pavel’s thesis as a complete
source of truth in this department. I will summarize the used domain structure
and architectural characteristics in chapter 4.

1.2.1 System architecture - Authorization
The system is designed to be modular and reusable. It consists of the mo-
bile/web interface, authorization server, and the main backend part of the
system. The components communicate via REST API. In the same spirit of
modularity, the PHP framework chosen is Symfony [11]. Symfony is a mod-
ular PHP framework that defines sets of reusable open-source components
available through Composer[12].

This part is dedicated to the design of the system’s authorization and
authentication components. The migration of the authorization server itself
to C# is not in the scope of this thesis. However, its integration into the new
system’s authentication and authorization flow is critical and unavoidable.
Alternatives will be discussed as part of section 5.6.

Pavel goes deep into the technical aspects of OAuth 2.0 [13] protocol. For
a more detailed look please check the thesis [8]. I will try to analyze and
summarize the relevant information for this project.

The Authorization server was implemented and was code-named ”Angler”
by which I will refer to it from now on. Angler has two interfaces:

1. User interface (UI)

2. Application Programming Interface (API)

10

1.2. Analysis of previous works - Ing. Pavel Kovář

Client

Client

Authorization Server

Authorization Server

Resource Server

Resource Server

Request access token

(using client credentials)

Return access token

and refresh token

API request

Bearer: access token

Token introspection

(Is token valid? What's the role?)

Token is valid

Role: XYZ

API response

(based on role XYZ permissions)

Figure 1.1: Introspection authentication flow

We will be focusing on the API implementation. Upon further analysis of
the code of Octopus the interactions are described with the diagram∗ 1.1.

Interestingly JWT tokens are used, but not as one would expect. Usually,
JWT tokens are signed by the Authorization server using a secret key. The
clients (the resource servers) should be able to verify the signature by using
the Authorization server’s public key and a matching algorithm.

However, here JWT tokens carry the role information, but cannot be
trusted as the signature cannot be verified. Therefore an introspection end-
point (listed at Table 1.1) is used which will provide trusted claims from the
authorization server directly. This can become a bottleneck. How to improve
this will be discussed in section 5.6.

∗This is from the view of the backend or the ”Resource server” (from OAuth terminology)
we do not distinguish by the origin of the token

11

1. Analysis of Atlantis

Table 1.1: REST Endpoints for Authorization Token Introspection Flow

Endpoint Expected Re-
sponse

Description

/oauth/token

Body: grant_type,
client_id,
client_secret

Access token and
refresh token.

Obtain access token us-
ing client credentials.

/oauth/introspect

Body: token (access
token to introspect)

JSON containing
token validity,
role claims, and
other metadata.

Introspection endpoint
to validate access token
and get role informa-
tion.

There are several roles the users of the system are categorized into:

• ROLE_STOREKEEPER

• ROLE_CHIEF

• ROLE_CUSTOMER

Since then, several others have been added:

• ROLE_PACKER

• ROLE_ORGANIZER

• ROLE_ESHOP

• ROLE_EXTERNAL_HAMSTER

One of the additional requirements expressed by the team was the future
compatibility with a more granular permission-based authorization provider,
like Keycloak.

1.2.2 Used technologies
Pavel has taken care to choose languages that fit the requirements, his expe-
rience and technology stack used at Jagu s.r.o at the time. Here’s an analysis
of the technologies used:

PHP

PHP[14] was chosen as the primary language for developing of the backend
logic. It has great compatibility on many platforms. PHP has been chosen
here due to its simplicity and speed of prototyping.

12

1.2. Analysis of previous works - Ing. Pavel Kovář

Symfony

Symfony, is an open-source framework for PHP. It consists of many small,
reusable components. It has a very active and large community of volunteer
contributors.

PHP and Symfony are the language and framework of choice for this
project, its advantages and disadvantages are later discussed in chapter 2

PostgreSQL

An open-source object-relational database system, PostgreSQL[15] is one of
the most popular database engines. It has stood the test of time on high-
traffic websites, and ensures users can access data without conflicts and data
loss.

Doctrine ORM

Doctrine is an Object Relational Mapping (ORM) for PHP. It allows object-
relational mapping in PHP, by utilizing its proprietary database abstraction
layer (DBAL) to create a unified API for interaction with the database re-
gardless of the specific system (MySQL, PostgreSQL, SQLite, etc...)

Redis

Is used for caching and session management, Redis[16] optimizes the system
performance by reducing load on the database.

Docker

Used for containerization, Docker[17] simplifies deployment and while ensuring
consistency allows the scaling of the application across different environments.

Deployment - CI/CD

The thesis provides details of the deployment and testing procedures to ensure
reliability and stability of the system. Automated deployment tools like Gitlab
CI/CD is used to automatically build and test the solution.

Nginx

Nginx[18] is chosen as the webserver/reverse proxy, it performs well and is very
stable.

13

1. Analysis of Atlantis

1.3 Analysis of previous works - Ing. Oldřich
Malec

While my thesis does not focus on the frontend part of the application, a user-
facing interface is a vital part of the application and one of the main consumers
of the backend in the tech stack.

Ing. Oldřich Malec’s work[9] aimed at analyzing, designing and prototyp-
ing a solution for the frontend of Atlantis. The thesis was done in coordination
with Ing. Pavel Kovář’s work and resulted in a front-end system used and de-
veloped to this day, code-named ”Swordfish”

As Swordfish is not to be rewritten to C#, it is very important for the new
system to be compatible with this frontend application. For this integration,
proper technical analysis and testing is required. We shall continue with the
analysis part here.

1.3.1 Existing system
The user is greeted with the main dashboard of the system as seen on Fig-
ure 1.2. The interface is clean, reactive and intuitive. It utilizes modern
practices, both in design with the application of material design and techno-
logically. Oldřich did a comprehensive analysis on the subject of selecting the
framework of choice and has chosen Vue.js. As I am not experienced with
frontend development, I cannot comment on the strategic impact of choos-
ing Vue.js and its viability in the future, but as one of the selected criteria
for selection of the framework over the others: Github stars doubled since
2018[19], and the project is receiving continual updates, Vue.js has shown
great potential.

The application uses HTTP REST API calls to interact with the backend.
Authentication and security are done via Angler, which utilizes the UI part
of the authorization server, yielding an authentication token of the user at
the end of this interaction. This token is then used in all of the interactions
within the session.

The thesis mentions some performance issues during the development,
which required special precautions for the proper performance of the system.
Caching is therefore heavily utilized.

1.3.2 Used technologies
Vue.js

Vue.js, along with Webpack are the main technologies used in the implemen-
tation of the frontend. Vue has RESTful API design, meaning it interacts
with the backend mainly using Representational State Transfer (REST) calls.
This requires the backend to be stateless and cacheable while adhering to the
usual set of standard REST principles.

14

1.4. API Categories

Figure 1.2: Swordfish - current state

JSON is the main data format for communication between the fronend and
the backend. Serializing and deserializing from JSON needs to be standardized
between these two components.

Authentication and authorization is handled using JSON Web Tokens
(JWT) these tokens are retrieved from an OAuth server. This interaction
must be supported by the backend to correctly validate the given tokens.

1.4 API Categories

It is important to note that since the initial work of Pavel and Oldřich, the
system has grown drastically, over ten times the size in the span of the applica-
tion by estimates of a team member. Atlantis - Octopus now has hundreds of
endpoints (366 at the time of writing). In this section, we will be decomposing
and analyzing a subset of these endpoints and classifying them based on these
criteria 1.3. To respect the agreement with the company, I will intentionally
not go into too much detail with the business processes. I will describe the
endpoints from a purely technical perspective.

OpenAPI endpoint documentation has been used as a high-value source for
cohesive blocks or microservices in the case of the work by[20], though I will
not be using tool-based approaches as discussed in the article. To compensate,
I have consulted these findings with the current lead developer for the Atlantis
project.

15

1. Analysis of Atlantis

Assess Endpoint Complexity

Classification 1

(Simple Migration)
Evaluate Dependencies

Classification 2

(Moderate Migration Difficulty)

Classification 3

(High Migration Difficulty)

CRUD Only Advanced Logic & Validations

Within System Outside System

Figure 1.3: Decision tree - classification

Manufacturer

Classification 1 - Create, read, update and delete (CRUD). A simple, straight-
forward implementation. This endpoint contains basic operations. And can
be used as a first implementation example.

Stock

Classification 1 - CRUD. It has blameable trait, and contains many validations.

Supplier

Classification 1 - CRUD. Has blameable trait and many validations. Can be
seen on Figure 1.4.

Delivery accept task

Classification 1 - One of the simpler concrete task implementations. Task
type: DELIVERY_ACCEPT. Standard Task management, but only approve
and reject.

External order task

Classification 3 - Get endpoints are straight forward. Task type: EXTER-
NAL_ORDER. Post endpoint is very complex. Includes creation and valida-
tion of aggregate addresses for delivery address from buyer contact. Carrier

16

1.4. API Categories

supplier

supplier_id: bigint

billing_address_id: bigint

name: string

ico: string

dic: string

phone: string

website: text

ares_validated: boolean

created_at: carbon_datetime

created_by: bigint

updated_at: carbon_datetime

updated_by: bigint

email: string

address

address_id: bigint

street: string

house_number: string

city: string

postal_code: string

country: string

suburb: string

phone: string

email: string

country_iso_code: string

task_stock_loading

task_id: bigint

delivery_accept_id: bigint

supplier_id: bigint

supplier_address_id: bigint

owner_address_id: bigint

external_order_task_id: bigint

preferred_location: string

supplier_name: string

supplier_ico: string

supplier_dic: string

supplier_phone: string

supplier_email: string

owner_name: string

owner_ico: string

owner_dic: string

owner_phone: string

owner_email: string

invoice_number: string

delivery_number: string

strict_mode: string

owner_bank_account_prefix: string

owner_bank_account_number: string

owner_bank_account_bank_code: string

owner_bank_account_iban: string

owner_bank_account_swift: string

task_delivery_accept

task_id: bigint

supplier_id: bigint

external_order_task_id: bigint

invoice_number: string

delivery_number: string

delivery_type: string

task_delivery_accept_item

delivery_accept_item_id: bigint

delivery_accept_id: bigint

product_id: bigint

instance_id: bigint

quantity: integer

Figure 1.4: UML Diagram Centered on Supplier

service properties validation, other properties initialization, order items vali-
dation. Items are reserved, and message sent on message bus. Can be seen
on Figure 1.5.

Location transfer task

Classification 2 - Standard task handling, task type LOCATION_TRANSFER.
Move from source to destination is complex multi-step process with heavy val-
idation.

Move products task

Classification 2 - Moving of products from inside one warehouse/subwarehouse
to another location within that warehouse/subwarehouse. Transfer modes:
Free, NoExtra, Exact. A simplified diagram can be seen on Figure 1.6

Move products task Items

Classification 3 - Moving of items within the move products task, very complex
with heavy validation. Can be seen on Figure 1.7.

Stock picking task

Classification 3 - Task type: STOCK_PICKING. Has capability to merge two
different stock picking tasks, Creates shipments if external order. Message bus
utilized to communicate context to shipment handlers. Reservations created
for items in scope.

17

1. Analysis of Atlantis

Start Create External Order

Get Buyer Delivery Address

Address is Null?
yes no

Throw MissingDeliveryAddressException Begin Transaction

Fetch and Persist new Addresses

Prepare Carrier Service Parameters

Process Each Parameter

Parameter is Null?
yes no

Rollback Transaction

Throw MissingServiceParameterException

Create and Add Parameter Value

Persist Parameter Value

More Parameters?
yes

Set Additional Order Details

Prepare Items

Validate and Add Each Item

Item Validation Fails?
yes no

Rollback Transaction

Throw Exception Based on Error

Add Item to Order

More Items?
yes

Persist ExternalOrder

Check Contracted Carrier

Carrier is Not Contracted?
yes no

Rollback Transaction

Throw CarrierNotContractedException

Create Validation Shipment

Validation Fails?
yes no

There is missing rollback here Throw ValidateShipmentException

Flush to Generate Order ID

Attempt to Create Product Reservations

Rollback Transaction

Throw ReservationFailedException

yes

Reservation Fails?
no

yes

Order With Reservation?
no

Flush and Commit Transaction

no

no

Figure 1.5: Activity diagram of External Order POST endpoint

18

1.4. API Categories

Receive API Request

Create Form Request

Create and Submit Form

Form Valid?
no yes

Send Form Errors Check Access

Calls validateCreateRequirements

to check item quantities
Validate Item Quantities

Send Conflict with Blocking Items

yes

Unsatisfied Items?
no

yes

Items Set?
no

Task creation involves setting properties,

adding items, and saving to database.
Create Move Products Task

Send Created Response

Figure 1.6: Activity diagram of Move Products POST endpoint

Stock picking task set items

Classification 3 - Complex multi-step processes with the moving of items,
many state checks, and permission validations. Global item locking, Moving
to temporary locations.

Stock taking task items

Classification 1 - CRUD with heavy validations. Permission validation, Form
validation, Duplicate Serial validation, Location validation, duplicate valida-
tion.

19

1. Analysis of Atlantis

Receive API Request with taskId

Retrieve Task by Id

Task not found
yes no

Send Not Found Response Check Edit Access

Create and Submit Form

Form not valid
yes no

Send Form Errors Check if Task is In Progress

not in progress
yes no

Send Conflict Response Check for Allowed Filled Locations

Check if Destination is Empty

Throw FilledLocationException

yes

Destination not Empty
no

yes

Filled Locations not Allowed
no

Lock Source and Destination Locations

Source or Destination not found
yes no

Rollback and Return False Check Allowed Locations for SubStocks

Locations not Allowed
yes no

Throw NotAllowedLocationForSubStockException Check for Blocking Tasks

Blocking Tasks Exist
yes no

Throw BlockingTasksException Perform Item Movements

Movement Failed
yes no

Throw MissingProductItemException Persist Changes

Commit Transaction

Send No Content Response

Figure 1.7: Activity diagram of Location Transfer POST endpoint

Subordinate stock transfer task

Task type: STOCK_TRANSFER. Classification 2 - Classic task implemen-
tation management of task state. Creation of Substock Transfer creates reser-
vations for each of the transferred items. Reservations lower the perceived
quantity.

Subordinate stock transfer task Items

Classification 3 - There are many moving parts, transaction begins, item
is locked, decreased from source, increased in target, and validations scattered
across whole process. At the end is there check whether items are blocked by
different stock picking tasks.

This process is very complex, with each step there are failure states, short-
circuiting the process. Global item locking

Task attachments

Classification 2 - CRUD for file attachments. Handling of files uploaded by
users is required. Attachments can be images, csv files, pdf files. Files retain

20

1.4. API Categories

name given from user. These files are to be handled with utmost diligence,
file safety is a very important and often underestimated problem. According
to [21], Caution is needed when providing users with the ability to upload files
to a server. Attackers may attempt to:

Execute denial of service attacks. Upload viruses or malware. Compromise
networks and servers in other ways.

This endpoint was a topic of discussion within the development team,
including the lead management. The decision was made to move this object
handling to MinIO[22] in the near future.

Task

Classification 2 - There are two endpoints that represent the base class of
different task classifications. Each task can have different states, types, and
priorities. Object link creation reflects the concrete type, allowing for a de-
tailed view.

Task Notes

Classification 1 CRUD - Notes are added per each task, they are viewed in
generic task aggregate. They represent message of assignee currently working
on such task.

Task report

Classification 2 - 2 get endpoints - Requires generation of signed links which
are later accessed to download HTML or PDF formats of task details. Purely
read function, possible to be deferred asynchronously.

Task Entries - Time entries

Classification 1 - CRUD - Serves as time spent management on each task, it
is on generic task. Which is the base class of all other types of tasks. Time
management is handled in central datatable, referenced by task ids. Discussed
with a member of the team regarding the inefficiencies of such a design, a bet-
ter approach was discussed, but ultimately, it is not in the scope of this thesis,
as database changes are not possible.

User

Classification 3 - This endpoint acts as an adapter to the Angler authentication
endpoint. Due to current bottleneck issues with Angler, some changes may be
necessary. The aim is to either re-implement a similar solution or improve it
by using the existing User database table. The User table can be periodically
synced with Angler at certain intervals alleviating constant calls by using

21

1. Analysis of Atlantis

the database instead. Based on input from the development team, Angler
is expected to be migrated soon.

Permissions with a more granular structure are to be designed in 5.2.
Leveraging greater control over all users of specific resources can be imple-
mented via integration with Keycloak, which is part of the stack and has been
on the horizon for future development.

Currently, the user data is cached in memory. With possible changes
coming from external applications going undetected. Polling and/or webhooks
are to be implemented. Sadly, the current infrastructure cannot support this
approach.

This was a subject of discussion with the team, including members who
implemented the founding projects. It was agreed to go in the direction of
optimizing these interactions by moving the data into the database, with the
possibility of webhook sync triggers in the future.

Export & Import

Classification 3 - This part of the application handles the import and export
of the state of the application. The handling is deferred over the message
bus, signaling some separation. This part of the application can perhaps be
separated as a cohesive block rather than be migrated as a feature in the same
place. The difference will be discussed in subsection 3.2.5.

Shipments

Classification 3 - Shipments are another part of the application deserving of
similar treatment as Export & Import. The logic is complex and already
separated using the message bus. A similar approach to migrate as a cohesive
block to a separated component can be taken.

1.5 Code observations
This section contains observations of some code/architecture smells or anti-
patterns after a detailed analysis. Note that these opinions may be subjective
and not necessarily always negative. Some of these problems are problems
with the language itself (PHP, Symfony and its modules) which might force
developers to use certain practices that are not very friendly.

Connascence
Connascence is a term that I first discovered in the book ”Fundamentals of
Software Architecture: An Engineering Approach” by Mark Richards and Neal
Ford [23]. In this book the authors use connascence to describe the amount of
coupling between different components of the software system. Connascence

22

1.5. Code observations

defines a vocabulary for describing how changes in one part of the system
might require changes in another, therefore impacting the system’s maintain-
ability and flexibility. Connascence is highlighted as one of the key concepts
in understanding relationships within the system, allowing developers to write
more decoupled code.

An example of connascence can be two methods in different objects are
so closely related that changing one requires changes to the other, they indicate
a form of connascence. The relevant types are:

• Connascence of Name: Multiple components must agree on the name of
an entity or property, this is one of the most prominent in the solution.
The naming of individual properties is often hardcoded, in many places,
in the database filter definitions, in the mapping of forms to specific
types, and in the setters in the individual entity repositories.

• Connascence of Type: Components must agree on the type of an entity
or property. While the language is dynamically typed, types are needed
in many places, like validation and persistence. Type definition is also
not straightforward, often requiring a comment block with @var com-
ponents, multiply this by the need to duplicate the type definition in
many places.

• Connascence of Position: Components must agree on the order of val-
ues. Positional parameters are one of the examples of this type of con-
nascence. An example provided was array_walk(parameters, function)
and array_map(function, parameters)

While these types of connascence are undesired, they are also the least
urgent. It is good to be conscious of connascence when designing systems or
refactoring solutions due to the complex nature of coupling.

CRUD operations

Create, Read, Update and Delete operations. Most of these endpoints fall
into this simple category. The implementation revolves around managing the
entities in the database, without much domain logic.

Complex operations

There seem to be many fairly complex operations that handle states across
different operations. Perhaps it would be a good idea to move this state
handling to a separate component, some workflow engines could be used for
the handling of these complex long-lasting multi-step processes. This would
simplify the application layer by focusing mostly on business logic instead of
state handling. These workflow engines often have fairly simple syntax and/or
interfaces that can be updated by people focusing on the business side.

23

1. Analysis of Atlantis

Blameable trait

Blameable, commonly known as Auditable, is a desired characteristic for fre-
quently changed objects. The task object tracks the user who modifies it, the
user who created it, and the respective datetimes.

Validations

Validation is observed on many endpoints, varying in complexity. Either static
value validations, like string length. There are validations using the database,
like the uniqueness of some properties. There should be focus on simplifying
this layer in the new implementation, perhaps treating it as a cross-cutting
concern.

Task operations

Task is the aggregate root for many of the deriving task implementations. The
task manager manages task notes, attachments, and the state of the task.

Message bus

The message bus acts as the interface for out of process calls, these should be
respected and carried over to the new implementation.

”Reservations” and Moving of items

These rely on pessimistic system-wide locking, which can be prone to dead-
locks and invalid states. Locking can perhaps be rewritten in event sourcing
approach, I have found some articles online which have used this approach [24]
or a simpler approach with optimistic locking can be used.

1.5.1 Cross-cutting concerns
Cross-cutting concerns are software aspects that affect the whole application.
These are application-wide functionalities that might span several layers, but
they should be centralized in one location. Cross-cutting concerns must be
implemented on the architectural level. These include:

• Security: Authentication and Authorization

• Logging: The persistence and availability of logs and tooling to invoke
logging during execution

• Monitoring: The monitoring of performance and wellness of the system

• Exception handling: Handling errors or invalid states during the execu-
tion

24

1.5. Code observations

• Performance: This can be in the form of caching or scaling of the appli-
cation

Code smells

Here we will discuss some code smells, please note these are opinionated.
However, I will try to be constructive and offer solutions

• Seems there are way too many attributes and cluttered controllers

• Inability to call controllers directly from code, requires service to be
implemented, thus coupling to the service, but without validation, very
error prone when called from different request scope.

• Transactions are not global, therefore are easy to forget. Mistakes are
made when rollback is not initiated.

• Access to view tasks is done in controller - should be moved to generic
validator

FR1: Backwards compatibility with the frontend
This series of requirements specifies the importance of the new system to
support the other components within the technology stack. One of the main
parts being the frontend written in Vue.js code-named Swordfish.

FR2: Backwards compatibility with the OAuth server
Octopus uses a proprietary OAuth server codenamed Angler. Support of this
technology enables the integration of components using Angler as the primary
authentication service in their workflow.

FR3: Backwards compatibility with CI/CD methods
Octopus runs in Docker[17] running alongside the database, Redis[16] and
Minio[22]. They are deployed to production environments via Docker swarm.
The new system shall not deviate too much from these used technologies.

FR4: Improved maintainability
The goal of this requirement is to improve the maintainability and deploya-
bility of the system. To learn from Octopus and provide the developers with
a productive environment for efficient programming. The new system should
have a clean, modular codebase to simplify future maintenance and reduce
the effort for testing and implementing modifications.

25

1. Analysis of Atlantis

FR5: Permission based authorization system
Feedback was given from the development team to support other authorization
providers in the future. This requirement specifies the need for the architecture
to support multiple authorization providers. The old, backwards-compatible
Oauth system, and a different permission-based system in the future.

FR6: Architectural support of domain processes
The new architecture should support the processes of Octopus. It will support
the extracted Cross-cutting concerns from subsection 1.5.1 and Domain-level
functionalities from section 1.5

NFR1: Safety of the new system - risk management
Octopus has been developed over a long period of time. The features work
as expected and are depended upon by clients. Therefore a sufficient plan and
development strategy needs to take place for a safe and efficient migration
from Octopus.

NFR2: Performance of the new system
Developed in PHP the system was not designed primarily with performance
or scalability in mind. The new system shall be more efficient than Octo-
pus. Having less response time the application can serve more requests better
utilizing the system resources.

NFR3: Documentation
The system should provide documentation of the interfaces similar to Octopus.

NFR4: Reliability
The new system should be highly stable, with mechanisms to fall back on the
old system in case of failures.

26

CHAPTER 2
Symfony vs .NET

The Atlantis system, developed in PHP-based architecture served as a great
platform for the first implementation for such a complex system. In its creation
PHP posed as a simple, but powerful language allowing for quick drafts of
complex functionality. In its nature it allowed for fast delivery and deployment
of new features and updates.

However, as the system grows in complexity, the limitations of the tech-
nology start to show up.

2.1 Troubles with the current system
While effective in its early stages, Atlantis soon found challenges with main-
tainability and performance, due to its PHP backend. Performance issues
became apparent when the system struggled to serve higher request volumes,
leading to worse performance and response times.

Maintaining the solution also became increasingly more challenging, with
the codebase becoming cumbersome and modifications requiring more and
more effort and testing. This, and the nature of the project requiring more
features as time went on, unavoidably leads to a less architecturally sound
project with less desirable outcomes.

2.2 Previous efforts
Attempts have been made to fix some of the limitations (bottlenecks) of the
Atlantis system. Improvements and optimizations to the PHP codebase have
been made on a recurring basis to improve stability and performance. These
fixes included refactoring of code, improving database calls, and interactions
with other parts of the system.

27

2. Symfony vs .NET

However, these improvements provided only temporary fixes without han-
dling the root cause: the inherent nature and unsafety of the PHP framework.
Thus ideas were made to rebuild on a more suitable and safe platform, with
.NET being a good alternative. The .NET framework with its type safety,
better performance and maintainability could serve Atlantis in its complex
business requirements and future growth.

2.3 Performance
Talking about performance is not an easy topic. Both frameworks Symfony
(PHP) and .NET (C#) are mature frameworks, that have been incrementally
improving on this front since their inception. It is generally believed that
.NET is the more efficient of the two, supported by independent research like
the TechEmpower benchmarks [25]. Some research on a smaller scale has
been done by Andrei Descalu [26]. While the results are also clearly in favor
of .NET, Andrei points out the difficulty of making PHP perform as well as it
can.

While PHP has become significantly more efficient with the coming of
PHP 8 and its numerous performance enhancements, it still is playing an
unfair game compared to .NET, but why?

2.3.1 Symfony (PHP)

Interpreted language

PHP is a dynamically typed interpreted language [14], it is read and executed
on the fly by the interpreter. This allows for quick development and deploy-
ment, which leads to slower execution times compared to compiled languages.
There is an inherent overhead with interpreting code at runtime.

Runtime

Modern PHP versions (version 8 at the writing of this thesis) have massively
improved in terms of performance, thanks to Just-In-Time (JIT) compilation.
This optimization is targeted to CPU-bound applications.

According to Nikita Popov (one of the lead contributors to PHP code on
this front), the introduction of JIT in PHP 8 leads to “Significantly better
performance for numerical code, slightly better performance for ’typical’ PHP
web application code, and the potential to move more code from C to PHP,
because PHP will now be sufficiently fast.“[27].

Note Nikita is referring to PHP 8, not Symfony, which has even less of an
impact due to many optimizations done by the project on top of the PHP code.
In the case of Atlantis there are no significant performance improvements

28

2.3. Performance

because web application performance depends more on I/O operations and
database calls than on raw computation speed.

Development practices

According to Andreid Descalu’s article [26], PHP is very difficult to run well
on production, requiring careful configuration and attention to detail. To run
PHP well, third-party dependencies need to be added Apache/fpm, PHPUnit,
xdebug, etc... Which are not trivial to configure and maintain.

Writing well-performing code in Symfony requires a deep understanding of
all of the framework components. Developers need to do their due diligence in
providing optimized database queries and managing object serialization/de-
serialization. Symfony does provide tools for optimizing these processes. Un-
fortunately, using these tools in an unoptimized way (which is common) will
greatly reduce performance.

2.3.2 .NET (C#)
Compiled language

C# is a strongly typed compiled language, meaning it can be compiled AOT
(Ahead-Of-Time) into processor-specific machine code, which allows it to out-
perform many interpreted languages. However, this is often not used by de-
fault. By default, .NET C# is compiled into Intermediate Language (IL),
which is then compiled by a JIT compiler at runtime into machine native
code. This is generally good for longer-running processes, as the code is op-
timized on the fly, which is not possible with AOT as the code is generated
only once. [28]

Runtime

ASP.NET Core is designed to support high-demand scenarios, making it
a great choice for web applications that are needed to perform thousands
of requests per second. These claims are supported by credible sources like
[25], according to which .NET ranks high compared to other frameworks.

Development practices

C# and the .NET framework are designed with performance in mind. It has
built-in asynchronous interfaces supporting async/await pattern, which allows
non-blocking truly asynchronous function execution. This is perfect for I/O-
focused tasks, as asynchronous calls can be executed in parallel regardless of
being run on the same thread, allowing .NET to serve many parallel requests.

C# is a strongly typed language which helps prevent bugs related to dy-
namic typing. However, developers are required to adopt more disciplined
coding practices to benefit from this.

29

2. Symfony vs .NET

2.4 Compatibility
In this section, I would like to discuss the compatibility between these two
technologies. PHP and C# on .NET are completely different languages with
very different syntax. The migration between these languages will involve
more than just translating code, there will be new tools, frameworks and
development practices that will need to be learned and adopted by the team.
Let us explore some frameworks and their alternatives in the .NET ecosystem

Doctrine - Entity Framework Core

Let us get the most important comparison out of the way first. These ORM
(Object–relational mapping) frameworks are used to map database objects to
entities in the application. Entity Framework Core is the .NET alternative
that is not only more powerful and faster but also benefits from the strongly
typed language. Migrations are very similar and offer in-code database state
management. As several members of the team pointed out, this change alone
will act as a dramatic improvement of the system’s performance and main-
tainability.

cURL, JSON, Mbstring, XML - Built in

Many PHP extensions are built in the .NET Framework itself, like System.Text,
System.Xml, HttpClient, System.Globalization or System.Text.Encoding to
name a few. Microsoft has a fairly hands-on approach in developing their
platform, many of the core functionalities of applications are available by us-
ing the built-in namespaces.

Serialization is also fairly important in a backend application, a JSON
serializer is usually used both at the input and output of the application.
The .NET framework provides its own (fairly new) implementation in Sys-
tem.Text.Json or Newtonsoft.Json can be used in more complex scenarios.

Symfony Security, Console, Form, Dotenv - Built in ASP.Net Core

Symfony is the PHP framework of choice in the solution and it brings in
many available functionalities. Many of which are built in the ASP.Net Core
framework, these include the

• Security: Security abstractions are built into the ASP.NET framework
with great extensibility. The interfaces can be implemented for vari-
ous identity providers, more details can be found at [29]. This will be
discussed more in-depth later

• Dotenv: Envrionment configuration is done using appsettings.json and
appsettings.Production.json files, this is also built in functionality and
is also very extensible. Further reading at [30]

30

2.5. Conclusion

• Logging: Logging abstractions and several providers are also provided
by the framework, this is extensible to many providers, both delivered
by .NET, .NET foundation projects, or the community [31]

• Messaging: Currently this is not built in the framework, but will be
coming in .NET 9 in the future, currently a very popular (and very well
supported) package is MassTransit [32]

• Deployability: The application in our case is deployed on Docker, where
recently (.NET 5/6) has greatly improved upon and supports the plat-
form out of the box with images and tooling maintained by Microsoft[33].
The applications built on newer .NET versions can also run on Windows,
Linux or MacOS which greatly improves developer setup.

Redis, MinIO, PostresSQL, Keycloak, Angler clients

These components are used by Octopus to fulfil various tasks like caching,
object persistence or OAuth providers.

• Redis: StackExchange.Redis library is used for Redis communication

• MinIO: Though the component is not currently used, the team showed
interest in moving to this technology soon. MinIO is built to be com-
patible with AWS S3, which is supported on .NET

• PostgresSQL: The database is supported by open-source library
Npgsql.EntityFrameworkCore.PostgreSQL, which implements the inter-
faces for Entity Framework Core

• Angler, Keycloak: The OAuth security flow is supported directly by the
framework using the Microsoft.AspNetCore.Authentication.OpenIdConnect
package, though some custom logic will be needed to implement some
details

2.5 Conclusion
Due to a fairly pragmatic technology selection on the side of Octopus, many
of these technologies are easily adopted on .NET side. This aligns with my
preference to rely on external frameworks as little as possible. Making software
rely on external frameworks is a recipe for fragile applications, which have
drastic implications when some core libraries are decommissioned. We will go
one step further with this idea by structuring the application to decouple the
functionality from the frameworks as much as possible in the section 4.4.

31

2. Symfony vs .NET

FR7: Performance optimization
The new .NET system must serve requests with improved performance com-
pared to the old PHP system.

FR8: Performance monitoring
To facilitate and track the progression of the first task, implement a tracking
mechanism for the performance of the system.

FR9: Use compatible technologies
Utilize packages discussed in section 2.4 to implement key functionalities of
the system like data persistence, logging, and authentication/authorization.

NFR5: Knowledge transfer
Provide knowledge transfer to the development team on .NET best practices
and the structure of the new system to allow better future development.

32

CHAPTER 3
Migration strategies

The migration of Atlantis from PHP to C# .NET will be challenging. A strate-
gic plan is required to make sure the transition will be as smooth as possible.
The goal will be to research the best path of action for this migration to min-
imize risk and downtime. We also need to make sure that the resources spent
building these migration tools do not outweigh the resources needed to just
migrate all in one go.

3.1 Full migration

The optimistic but naive approach is to migrate fully to C# in one go. Ar-
guably this is the simplest approach and often is a go-to with some smaller
projects, but why would we think it might not work here?

The positives

1. Simplicity: A full migration is straightforward. During the migration
changes can be made which are not backwards-compatible. Architec-
ture, database, and interface changes can be made extremely quickly.
When completed, the team can fully focus on the new solution without
maintaining the old one.

2. Consistent: The state will always be fully on one platform, no integration
is required between the old and new implementation. The codebase
will be fully in C# which might allow better coding practices, more
performance and easier maintenance.

33

3. Migration strategies

The negatives
1. Risk: This approach is very risky. A bad migration can have significant

consequences for the stakeholders of the system: the clients. Which
might have a very damaging impact on the company. A failed migra-
tion might cause long downtime, inconsistent functionality, long feature
delivery time, or bad performance.

2. Resource intensive: Requires a big investment in time and resources
from the managerial point of view. The complete application must be
rewritten, tested, and deployed before any benefits can be drawn. This
can put a big strain on the development team budget.

3.2 Phased migration
Phased migration is an approach to migrating of an application from one
type of platform to another, in this case from PHP to C# in a manageable,
incremental process, hopefully minimizing downtime and integration problems
with the existing system.

By breaking the problem into smaller chunks - phases, the developer can
focus on a specific part of the application, working in parallel with other team
members. Members make sure each part is fully migrated before continuing
onto the next. In this part we will be discovering the concept of phased
migration, the granularity of such an approach, and the strategy for data
handling during migration of the database.

We shall now define the Strangler Fig Pattern, which shall guide us in the
migration of the project.

3.2.1 Strangler Fig Pattern
The Strangler Fig Pattern is a type of phased migration. “Incrementally
migrate a legacy system by gradually replacing specific pieces of functionality
with new applications and services. As features from the legacy system are
replaced, the new system eventually replaces all of the old system’s features,
strangling the old system and allowing you to decommission it..“[1]

The name comes from the strangler fig tree. This tree grows around an-
other tree, eventually replacing it

3.2.2 A façade as the interceptor
The Strangler Fig Pattern defines a gradual migration approach to a new
system, while keeping the old system to handle features that haven’t been
migrated yet. This presents the challenge of managing two distinct imple-
mentations. Having two implementations of the system means we need to

34

3.2. Phased migration

Figure 3.1: Strangler Façade migration phases [1]

define for the client interfaces, which implementation to use for which use
case.

The strangler façade comes as a solution to this problem. Defining a rout-
ing layer that intercepts the requests and routes requests to where they should
be served. As seen in the illustration 3.1, the strangler façade serves until mi-
gration is complete, after which the layer is no longer needed.

It helps minimize risk and allows for any speed of migration. Over time,
as features are migrated to the new system, the legacy system is eventually
”strangled” and is no longer necessary. Once the whole process is complete,
the legacy system can be fully retired.[1]

A great benefit is the optimization of resources of this approach. We max-
imize usage of the legacy system, while focusing on high-priority replacements
in the new system.

3.2.3 The phases of Strangler fig pattern

Based on [7], there are five steps to applying the Strangler Fig pattern:

1. Service identification

To identify sections to be migrated, it is recommended to use Domain Driven
Design (DDD) to create a universal language to describe the terms and con-
cepts in the business domain. It tries to involve both technical and business
knowledge to identify the entity classes and relationships.

Several techniques can be applied during this process. The research men-
tions event storming [34], domain storytelling [35], and user story mapping.
These are useful for retrieving requirements and gathering a higher-level do-
main understanding. While they are helpful and very well-documented, they
are not useful in our case, as the general domain knowledge is contained within
the team and can be retrieved using qualitative interviews.

At the end of this step, we shall have an understanding of how to split the
solution into cohesive blocks or features, by which we will track the migration.

35

3. Migration strategies

Table 3.1: Criteria for block/feature Extraction [7]

Criteria
Score Rationales/Benefits

Function soon to be
Modified

{0, 40} Extracting this kind of services can
avoid making changes directly to the
legacy system.

Performance Problem [0, 20] If a block/feature consumes many re-
sources and may affect the performance
of other modules, it should be ex-
tracted early.

Core Function [0, 20] If the extracted service includes core
functions, the extraction usually brings
more benefits, like scalability or main-
tainability

Related Service [0, 10] It would be better if an extracted
feature/service collaborates with other
migrated blocks/features.

Separate Service [0, 10] Extracting this feature/block is easier
than other candidates.

2. Preparatory task

In this step, the communication and technical aspects of the migration plat-
form are implemented. As an example, an API gateway or some other Stran-
gler façade is implemented to route requests to and from the legacy and new
implementation. The façade is then deployed alongside the new solution.

3. Prioritization

Prioritizing which blocks/features to migrate first is an important step. The
research suggests a reference approach for this step.

When a block or feature is identified and expected to be migrated, a score
is given based on Table 3.1. The feature/block with highest scores should
bring the highest benefit when migrated first. Note that the ”Function soon
to be modified” score is not a range like the rest but rather a given value based
on true or not. If the feature is soon to be modified the score is 40, else it is 0.

4. Implementation

After prioritizing and choosing which feature or block to migrate, comes im-
plementation, integration, and testing. Features and blocks implemented use
models and interfaces of the legacy system, creation and reusing of infrastruc-

36

3.2. Phased migration

ture is part of the implementation, but it shall not interfere with the legacy
system at this time.

5. Removing legacy code

This is the final phase of the Strangler Fig pattern. The legacy system and
the new system have been working concurrently without effect on users. The
new implementation has been fully tested and integrated into the solution in
a production environment. Therefore, the legacy code, which this new code
has replaced, can now be safely removed.

3.2.4 Migration by features

Now that we defined the steps of migration, let us define how we might want to
split the solution into cohesive units. One approach is with features. A ”fea-
ture” is a specific piece of functionality that delivers some service to the user.

Based on [36], a feature is a group of requirements that describe what the
software should do. The definition focuses on what the feature is supposed to
achieve without getting into details of how it will be implemented in code.

In a warehouse management system, it might be user authentication,
stocking of items, listing of products, etc... While migrating by features,
one would select one of these features and migrate it from the legacy system
to the new one, while the rest of the application stays the same.

Each feature should be isolated, allowing for rigorous testing for that spe-
cific feature. It shall not affect any other features. With this approach, it
is necessary to maintain and have infrastructure in place for handling of this
migrated feature. Part of the system will be on new codebase, and part will
be legacy.

3.2.5 Migration by blocks

Migration by blocks is similar to the previous approach but divides the appli-
cation into larger units or ”blocks”. These blocks are a sum of several tightly
coupled features that represent some part of domain logic.

With a warehouse system, it might be some batch order processing, report
export or delivery processing. With block migration, the whole block will be
migrated at once.

The block is larger and less granular than features. It usually contains
multiple functionalities. The migration of a block might require more starting
commitment and effort but could save on resources by implementing tight
coupling without splitting into individual features. There is an opportunity
here to shift into more decoupled communication between modules, using
messaging or event-driven architecture.

37

3. Migration strategies

3.3 Phased migration - database
The database is an important part of any system. It represents the state of
the application. Having multiple databases means multiple concurrent states.

3.3.1 New database
A migration often includes the creation of a new database schema. This has
benefits and drawbacks.

Benefits

1. Performance: We can optimize the database to improve the performance
of the application, this might improve scenarios where database was
a bottleneck.

2. Modernization: This is inherently ties to the first point, but there are
different approaches to databases that might be better supported in
.NET and could not work on the legacy system. Like multi-tenancy or
more optimized database entity inheritance.

Disadvantages

1. Complexity: This will add much complexity to an already resource-
intensive migration

2. Testing: There will be much more testing needed to ensure data integrity.

3. On-boarding: The teammight need more time to adjust since the database
might be very different.

4. Resource-intensive: More time, budget, and coders needed.

3.3.2 Backwards-compatible database
In some cases the legacy database can be used, especially if it succeeds to serve
clients and there would not be enough benefit to develop a new database.

Benefits

1. Simpler transition: When using legacy database, the old system can act
as fallback - a safety net, when new system fails

2. Real data: Since the legacy system uses the database, we can test the
new solution on real production data, allowing much improved testing.

3. No database sync: Using one database, there is no need for synchroniza-
tion of databases.

38

3.4. Conclusion

Disadvantages

1. No (limited) schema changes: This was touched on above, there cannot
be any big changes to the database, as they would affect the legacy sys-
tem. Such changes would also need to be synchronized to be supported
at the same time on both systems.

2. Locks - Transaction management: It is important to avoid transaction
conflicts between the two systems. In some cases, there might be custom
locking, which needs to be migrated fully.

Special care needs to be taken with the migration of a backward-compatible
database. Automated testing and monitoring are critical for this approach to
work. We need to ensure that changes in one system do not break the other.

3.4 Conclusion
The migration of Atlantis from PHP to C# .NET, will be complex. It should
be managed through a phased approach using the Strangler Fig Pattern. This
method minimizes risk by allowing incremental replacements of the old system,
ensuring the project remains stable and functional throughout the transition.
It provides an iterative way to implement changes, which will optimize resource
usage and maintain operational continuity.

FR10: Backwards compatibility with the database

The database (PostgreSQL) will be shared between the old system (Octopus)
and the new system. The new system will be required to support the used
schema.

FR11: Façade Implementation

Develop a strangler façade to intercept requests and route them appropriately
during migration phases.

FR12: Implement parallel deployment of the two systems

Facilitate the communication between the old and new system on one envi-
ronment.

FR13: Feature or Block Migration

Implement migration on a feature-by-feature or block-by-block basis.

39

3. Migration strategies

FR14: Testing and validation
Implement rigorous testing to ensure that migrated components are functional

NFR6: Modularity of the new system
The system’s architecture will need to be at least as modular and organized
as the Octopus system. The system will be divided into features or blocks
based on which it will be slowly migrated.

NFR7: Use Strangler Fig Pattern
Use the strangler fig pattern as the guideline for the migration.

NFR8: Minimize downtime
The result of the migration strategy shall impact the system downtime as little
as possible so as not to disrupt the business.

40

Part II

Design

41

CHAPTER 4
Architecture

Software architecture is the foundation upon which software systems are built.
It defines not only the structure and dependencies between components, but
also the interactions within to create a cohesive and effective system. One of
the more influential books for me in this field was The Clean Architecture by
Robert C. Martin [4], where he mentions one of the main objectives of good
architecture:

“The goal of software architecture is to minimize the human resources
required to build and maintain the required system.“[4].

Let us set the goals of this chapter:

1. Assess Current Architecture: Analysis was part of chapter 1

2. Apply Modern Architectural Practices: We will discuss these in this
chapter

3. Use Migration Strategies: Analysed as part of chapter 3.

4.1 Why Architecture matters
Reducing risk

• Technical debt: Without a proper, well-defined architecture, the lack of
initiative from the developers, or lack of funding, the project can easily
spiral into a ”Big ball of mud” [37]. A robust architecture provides
a framework for making good decisions that prevent impulsive solutions
likely to cause problems later.

• Scalability: As the business grows, the software needs to grow along with
it. With increasing loads and new functionalities, the system must be
flexible enough to accommodate this without sacrificing performance.

43

4. Architecture

• Integration: Large systems usually involve integrating multiple systems
together. With a well-planned architecture, these integrations shall be
simplified by creating well-defined structures to accommodate these in-
teractions. (clean architecture, separation by layers)

Resource optimization

• Modularity: When designing architectures it is important to keep mod-
ularity as one of the key values. A modular system divided into man-
ageable components or services facilitates ease of maintenance, faster
development and allows teams to work independently of each other,
greatly enhancing productivity.

• Agility: A good architecture will align with the needs of the business,
allowing it to respond to changes in an agile way. By facilitating new
features for new opportunities in a timely manner without inducing more
risk and increasing human resources costs.

• Future-proofing: By anticipating future needs of the system, a well-
defined architecture can ensure it remains relevant. This foresight can
help prevent overhauls in the future.

4.2 Current architecture
Due to the switch to another language (C#), the code will need to be rewrit-
ten. We plan to use many strategies used in the development of Octopus
as a starting point. However, Octopus has been developed for a considerable
period, we can learn from the mistakes made and create a better architecture.
Analysis was made in chapter 1, which we will use to build a more efficient
system.

The solution follows a standard Monolithic MVC approach structure:

• Controllers: Controllers handle the incoming HTTP requests, process
them by invoking application services, and return the appropriate re-
sponses. The controllers are structured by the provided features/use
cases for example: handling Users, Delivery Accept tasks, etc... The
controllers parse the input, validate the forms, invoke the respective
application service and format the output.

• Models: Models represent the business logic of the application. They are
responsible for retrieving data, handling the ORM entities and returning
data to the controller. The structure of the models folder is organized
into the feature-specific subfolders making the folders fairly organized
and easy to navigate.

• Views: Views are not represented in the solution.

44

4.3. Enhanced architecture

Database - Database Layer

User Service - Application Layer

User endpoints - API Layer

Entities

ServiceMethod1 ServiceMethod2 ServiceMethod3 ServiceMethod4 ServiceMethod5

Endpoint1 Endpoint2 Endpoint3 Endpoint4 Endpoint5

uses uses uses uses uses

calls calls calls calls calls

Figure 4.1: Application layer - Service layer

The solution, in general, is well-structured and easy to navigate. Unfor-
tunately, a lot of the code is cluttered due to the constant data retyping and
a fairly hands-on approach to entity handling, but this is mostly due to the
Symfony platform.

A fairly common pattern of an API-Layer (Controller), and Application/-
Database layer (Models) is shown on Figure 4.1.

4.3 Enhanced architecture
In this section, we aim to introduce some modern practices when building new
architectures. Architecture is a fairly subjective topic. Each developer is used
to some way of doing things, and dictating how a developer should structure
their code is divisive and often leads to prolonged, passionate discussions on
what is better.

The main values for the new architecture:

• Maintainability (FR4): The application shall be simple to develop and
maintain

• Testability (FR14): The application shall be very testable

• Loose coupling (NFR6): The architecture should be loosely coupled, to
enable migration and the possible separation of some modules

4.3.1 SOA/Microservices
One of the important considerations is the migration straight to microservice-
focused architecture. Microservices are very testable and loosely coupled,
as they have fairly firm interfaces to be able to communicate with each other,

45

4. Architecture

a simple representation is at Figure 4.2. Unfortunately they are often very
hard to maintain. Developers often find writing the code for microservices to
be very straightforward. The problem comes with deployability and mainte-
nance.

Benefits

• Scalability: The microservices allow parts of the application to scale
independently, which can be more cost-effective than a monolithic ap-
proach

• Resilience: The services are fairly independent, failure in one might not
bring the whole system down.

• Mix match technologies: It can be possible to have multiple languages
and frameworks deployed at the same time

• Team independence: Teams working on the project can work indepen-
dently

Disadvantages

• Complexity: Managing microservices is incredibly complex. Dealing
with distributed systems involves working with network latency issues,
message handling. A huge stack is harder and costly to maintain

• Databases: With microservices, each microservice manages its own database,
which brings the difficulties with transaction handling and eventual con-
sistency.

• Testing: Unit testing is not sufficient, usually replicating the whole stack
is necessary to sufficiently test the application

• Deployability: Deployment in microservices is often overlooked, but it
is one of the most challenging problems with microservices. Maintaining
continuous deployment, orchestrating service initialization and whole
application monitoring can be very resource-intensive

4.3.2 Monolith
Benefits

• Simplicity: Monolithic applications are simple to develop, test and de-
ploy. Scaling is also simple, usually requiring to copy the setup to an-
other machine.

46

4.3. Enhanced architecture

Figure 4.2: Microservices[2]

• Better for small teams: The simplicity leads to the system being viable
for a smaller 4-7 member team. The work is usually possible to be split
when the application is well structured.

• Testing: No need to create large networks of services, debugging is simple

Disadvantages

• Scalability: This can be an issue if some parts of the application need
to be scaled rather than the whole application. This can be expensive

• Slow development: In teams of more people and in a system with tight
coupling, it might become problematic to work in parallel due to large
amount of possible conflicts, extending the time of delivery.

4.3.2.1 Selecting the architecture

Selecting the right architecture is not always about having the most features,
but about having the appropriate structure for the task at hand.

The comparison is summarised in Table 4.1. But to reiterate, with the mi-
croservice architecture, the issues start with additional components in the ap-
plication stack, such as messaging and transaction handling to ensure eventual
consistency, API gateways/proxies, and service bus implementations. The
issues continue with DevOps, like the order of startup initialization, error
handling, and versioning.

It seems that with this project, we should lean more towards the Mono-
lithic architecture, given the scale of the team and the requirements of the
system do not indicate the benefits of a microservices architecture would be
fully utilized. Also, many sources often overlook the upfront cost of invest-
ment into a microservice architecture. In my opinion, starting a project with

47

4. Architecture

Figure 4.3: Monolith[3]

Trait/
Architecture

Monolithic Microservices

Simplicity Easier to develop, test, and
deploy. Suitable for small
teams.

Complex setup and op-
erations, needs advanced
CI/CD.

Performance Faster in-process communi-
cation.

Possible latency with ser-
vice communication.

Scalability Scales as a single unit, less
efficient.

Services scale indepen-
dently, more flexible.

Table 4.1: Comparison of Monolithic and Microservices Architectures

microservices from the start can actually be a significant operational and fi-
nancial burden.

With that in mind, we shall not be disregarding the idea completely.
A more modular approach to a monolithic architecture could mean that in
the future a migration to microservices is possible. We should allow such
an architecture to incrementally evolve from the monolithic architecture if
required.

4.4 Clean Architecture
Clean architecture is a term coined by Robert C. Martin, the author of the
book ”Clean Architecture: A Craftsman’s Guide to Software Structure and
Design” which is mentioned at the start of the chapter. Previously named the

48

4.4. Clean Architecture

”Hexagonal architecture” or ”Ports-and-Adapters architecture”, Clean Archi-
tecture has become a standard in well-structured solutions, which has been
recognized by Microsoft themselves[3]. In this section, I would like to explore
the design psychology behind the Clean architecture and why going with this
route could bring some well-needed restructuring to the Octopus system.

4.4.1 Understanding Clean Architecture
Clean architecture is modeled as a set of concentric circles representing differ-
ent areas of a software solution as seen on Figure 4.4.

1. Entities: Is at the core of the model, entities represent the enterprise
business rules. An entity is an object with methods and sets of data
structures. They are the least likely to change when there are external
changes. For example, one would not expect the domain entities to
change when the UI (or in our case a DTO) changes.

2. Use Cases: One layer above are the use cases, which contain the appli-
cation logic. The use cases orchestrate the entities based on the inputs
and outputs of the application.

3. Interface adapters: In this layer external dependencies (interfaces) which
are defined in the layer closer to the center are implemented, for example,
the database interactions, application services, etc... One would also find
JSON serializers which are used to convert Hypertext Transfer Protocol
(HTTP) requests to internal data structures to used by the use cases.

The dependency rule

The dependency rule is one of the fundamental concepts behind the Clean
architecture, it dictates that code dependencies must point inwards. Nothing
in the inner circle should know anything about anything in an outer circle. For
example, a domain entity should not know about the database engine, web
frameworks, or external services used. By following this rule, it is impossible to
fall into the circular dependency trap, which can create very hard to maintain
code.

Benefits of Clean architecture

• Testability: The architecture promotes high testability by separating the
use case and domain layers from the UI and the database. This isolation
allows the creation of simpler and targeted unit tests, which do not rely
on external components. Having high testability is the key to having
reliable and dependable software development cycles.

49

4. Architecture

Figure 4.4: Clean architecture[4]

• Maintainability: With clear separation of layers and the encapsulation
of business logic, Clean Architecture simplifies maintenance. Developers
can work independently on different layers of the architecture.

• Flexibility: By applying separation of concerns on the level of the Clean
architecture, one can create software that is very flexible to changes.
This is further enhanced by following DDD and Command and Query
Responsibility Segregation (CQRS), which is fully supported by the ar-
chitecture.

Important considerations - Learning curve

With the clean architecture, it is important to get used to the decoupled na-
ture of the system. Developers might be used to a standard MVC (Model View
Controller) structure, even MC (Model Controler) structure in backend sys-
tems. It is important to understand the responsibilities of each layer to avoid
misplaced application logic that could lead to a violation of the dependency
rule.

50

4.5. CQRS and Domain Driven Design (DDD)

4.5 CQRS and Domain Driven Design (DDD)
DDD and CQRS (Command Query Responsibility Segregation) are architec-
tural patterns that can provide great benefits to a complex system like At-
lantis, especially in combination with Clean architecture. The integration can
improve maintainability and scalability by separating responsibilities.

CQRS

CQRS splits the application into two parts:

• Commands: The command side handles the creation, updating, and
deletion of data. The commands encapsulate the operations which change
state or mutate the data.

• Query: The queries handle data retrieval (the non-mutating) operations.

This separation increases performance and scalability by allowing each side
to be scaled independently. For example, the queries can all be cached, while
the commands cannot. This can be abstracted using the mediator pattern,
allowing generic caching mechanisms. Microsoft has a nice article on this in its
design pattern section which can be found here [38]. The article shows some
further extensions that can be made to this pattern with event-sourcing and
messaging. We will be implementing this pattern in its basic form, allowing
these extensions to be made in the future.

DDD

DDD focuses on complex domain logic that encapsulates business processes.
It aims to provide a place to define high-level processes (that are encoded in
code), inside the individual ”bounded contexts”. Bounded contexts are logical
boundaries around a coherent and consistent domain. This is illustrated by
Martin Fowler, another great software architect, in diagram Figure 4.5.

There are several types of objects which are usually at the core of a DDD
system:

• Entities/Value Objects: Entities carry identity - a user, an order. Value
objects do not, for example color, currency etc...

• Aggregates: An aggregate is a cluster of domain objects (entities and
value objects) that can be treated as a single unit for data changes.

• Domain events: These events reflect state changes within the domain,
for example Task completed, Task assigned, Task created, etc... These
are events which are propagated through the domain after the action
was made. These events can be captured within the application layer to
propagate messages, perform actions etc...

51

4. Architecture

Figure 4.5: DDD - Bounded context[5]

• Repositories: Repositories are used to encapsulate the logic needed to
access data for aggregates (entities, value objects)

4.5.1 Final note on system design

For me, designing a good architecture means being defensive by keeping
as many doors open as possible, allowing future expansions to be added in
a way that affects the core system as little as possible. This means imple-
menting modular code, minimal dependency on specific frameworks, and ad-
hering to the SOLID principles. Even though we will be discussing specific
technologies in further sections, the code will be built to rely on as few spe-
cific providers as possible, fulfilling one of the core principles of the Clean
Architecture.

The most daunting part of the Clean Architecture is the initial setup, cre-
ating firm interfaces for databases, identity providers, etc... After the initial
investment in the solution setup is done, the long-term benefits of a cleaner,
flexible, and more maintainable solution are undeniable. In my opinion, the
complexity that is introduced is greatly outweighed by the benefits. Imple-
menting the Clean architecture from the start sets a solid foundation for the
future of the software system.

With that in mind let us take a look at the current architecture of Octopus
and showcase the direction we will take the new system.

52

4.6. 30,000-foot Overview

Frontend (Swordfish)

OAuth Server (Angler)

Octopus Backend System

Databases

Vue.js Application

Authentication Service

Legacy API

Database

sends requests

receives responses

read/write operations
utilizes for

OAuth token validation

Figure 4.6: High-level overview of the Octopus system

4.6 30,000-foot Overview
Atlantis in its current state contains 4 major components:

1. Swordfish: The frontend application

2. Octopus: The backend application

3. Angler: The OAuth authentication application

4. The persistence: PostgreSQL and Redis

There are some other components in the ecosystem like Pufferfish (ETL Appli-
cation), Redis and Minio (Databases) which I am omitting from the diagrams
for the sake of simplicity. The system we wish to design for the new applica-
tion as part of this chapter is the ”Octopus Backend System” in Figure 4.6.

4.6.1 Naming the new system - Squid
Let us name the system ”Squid”. The name is not of my own making but
has been a product of team discussion and my colleague Max’s initiative. Let
us, from now on, use ”Squid” as the codename for the backend system built
in .NET. Squid will be packaged as a direct replacement of ”Octopus” - the
current backend system.

53

4. Architecture

Frontend (Swordfish)

Squid Backend (.NET System)

Databases OAuth Server (Angler)

Octopus Backend System

Vue.js Application

Squid API

Database Authentication Service

Octopus API

Figure 4.7: Squid system - draft

First let us address FR1, FR2 and FR10. These requirements specify the
backward compatibility with the old system components. With these require-
ments, we could simply replace ”Octopus Backend system” from Figure 4.6 to
”Squid Backend system” and simply develop ”Squid API” from the beginning.
However, FR12 specifies the requirement of deploying these systems in parallel
with each other. Therefore, we shall draft this simple approach at Figure 4.7.

With this schema, we violate requirements NFR1, NFR4, and NFR8 by
coupling the migration to the frontend. Basically requiring the frontend ap-
plication to facilitate routing based on the migration phase†, this will induce
more risk on an already functioning system. With these requirements, we
intend to shift all of the migration handling to the Squid system, this allows
us in case of critical failure to transfer back control to the old system as a sort
of kill-switch. How this would look can be seen in Figure 4.8.

With this structure, we expect the new application to be deployed along-
side the rest of the stack. We therefore, need to fulfill (FR3) for which we will
use Docker compatibility is confirmed in section 2.4.

4.7 10,000-foot Overview - Strangler façade
In this section, we shall dive deeper into the structure of the Strangler façade
and our commitment to NFR7.

The strangler façade needs to have at least 3 modes:

1. Octopus mode (Bypass mode): The façade redirects the request to the
legacy Octopus system.

†The front end would need to decide which application to go to for each request.

54

4.7. 10,000-foot Overview - Strangler façade

Frontend (Swordfish)

Squid Backend (.NET System)

Databases OAuth Server (Angler)

Octopus Backend System

Vue.js Application

Squid API

Strangler Facade

Database Authentication Service

Octopus API

sends requests

receives responses

Figure 4.8: High-level overview of the Squid system

2. Ghost mode: The façade clones the request to both systems, returning
the response from legacy system.

3. Squid mode: The façade redirects the request to the new Squid system.

It will need to choose which mode to execute based on the migration
phase of each feature or block, fulfilling NFR1 and NFR7. Let us look at how
we should design the modes in Figure 4.9. The strangler facade should act
as a sort of proxy between Octopus and Squid systems.

This façade allows us to go forth with FR13 (Feature and Block migration)
and allows us to use Squid without having all features migrated from Octopus.
Given a request which comes targeting feature X endpoint the facade will
execute:

1. Feature X is not migrated -> Octopus mode

2. Feature X is implemented but is not fully trusted -> Ghost mode

3. Feature X is implemented and is fully trusted -> Squid mode

55

4. Architecture

Client

Client

Strangler Facade

Strangler Facade

Octopus System

Octopus System

Squid System

Squid System

Send HTTP Request

alt [Octopus Mode]

Request

Response

[Ghost Mode]

Clone Request

Request

Request

Response

Response

Compare Responses

[Squid Mode]

Request

Response

Return Response

Figure 4.9: Strangler façade modes

4.7.1 Key factors

Aspects to focus on ordered by priority:

• Reliability (NFR4): The façade in its various modes, especially Octopus
mode, should be fully reliable. Ideally it shall contain as little points of
failures as possible. The façade will become part of the critical infras-
tructure and therefore, should be reliable.

• Compatibility with Frontend (FR1): This façade will become a new layer
between the frontend (Swordfish) and the backend (Octopus) as shown
in Figure 4.8. We shall make sure the systems will be compatible.

• Feature or Block Migration (FR13): The façade shall direct the request
based on its migration phase.

56

4.8. 10,000-foot Overview - Squid API

• Monitoring (FR2): The façade in its Ghost mode will provide valuable
data when comparing the responses, which can be used by the develop-
ment team to resolve bugs and inefficiencies.

With these factors in place, NFR7 shall also be partly fulfilled.

4.8 10,000-foot Overview - Squid API
The Squid API shall follow the modern practices aligned in the chapter 4. It
will allow us to:

1. Modularity (NFR6): Facilitate all required architectural features, en-
abling compatibility of all features from Octopus to be migrated in co-
hesive modules (features or blocks)

2. Maintainability (FR4): Keep open doors for architectural features that
might improve some of the processes

3. OAuth Compatiblity (FR2): It shall be compatible with Octopus au-
thentication providers

4. Documentation (NFR3): The architecture will be self-documenting or
shall allow the documentation level possible with Octopus

The structure of the SquidAPI will follow the Clean architecture structure
as seen in Figure 4.10. The colors are chosen to represent corresponding layers
as in Figure 4.4. This structure follows the Dependency rule of all dependen-
cies pointing inwards, with no cyclic dependencies and with the domain logic
at the core of the application.

57

4. Architecture

Squid WebAPI Solution

«Web»

WebLayer

«Application»

ApplicationLayer

«Domain»

DomainLayer

«Infrastructure»

InfrastructureLayer

DataStores OAuth provider

ControllersDocumentation

Command HandlersQuery HandlersObject interfaces - DTOs

Domain Entities

Database ContextAuthentication Services

PostgreSQL Minio

Redis

AnglerKeycloak

Calls

Uses

Implements

sends commands

sends queries

Figure 4.10: Squid Api - Clean architecture

58

Part III

Implementation

59

CHAPTER 5
Implementation - Squid API

In this chapter we will focus on the actual implementation of the backend,
the future replacement of the Octopus backend API. We will be adhering to
the concepts outlined in the previous chapters like Clean Architecture, CQRS
etc... The goal of this work is to set a solid foundation for the solution in
.NET using well-established practices. By the end of the chapter, we will have
a functioning system with many of the features and infrastructure adopted
from Octopus in a production-ready state. A crucial component which is in
scope of the implementation and will sit conceptually above the backend API
is the strangler component. This component will allow this system to work in
tandem with the legacy Octopus system, we will discuss the implementation
in the next chapter.

5.1 Motivation
One of the books that were very influential for me and my road as a developer
has been ”The Clean Coder: A Code of Conduct for Professional Program-
mers” [39] by Robert C. Martin (again!). The author was able to distill the
essence of being a professional developer into a book, he was able to give ex-
perienced insight into what being a professional means. The general points
were:

1. Professionalism: The word used throughout the book has many implicit
meanings. The author defines professionalism to include taking responsibility
for one’s work, producing high-quality code, and thinking about how it affects
clients, colleagues, and the organization.

2. Code Quality: The book highlights the importance of writing clean,
manageable, and maintainable code. The author, Martin, promotes practices
that improve code quality, such as Test Driven Development (TDD), contin-
uous, persistent refactoring, and commitment to the SOLID principles.

61

5. Implementation - Squid API

3. Discipline and Continuous Learning: The field of software development
is still evolving, and the author highlights the importance of learning and
updating knowledge with the current new technologies and best practices.
Having good discipline is very important to being a valuable asset to the
team, to commit to doing the best job possible.

4. Communication: Effective communication is a key skill of a professional
developer. This includes clear communication with team members, clients,
and business stakeholders. Martin points out the unfortunate circumstance
in which developers do not expect to communicate much when starting their
career working at a computer, but the opposite is the truth. Communication
as a software developer is one of the most important aspects of the job, be it
by providing project status, admitting mistakes, or standing by own principles
even when under pressure to compromise on the quality.

5.1.1 Cooperation with Max
I have worked closely with Bc. Max Hejda during the Analysis and Imple-
mentation phases. Max has been instrumental in the DevOps department,
helping the project by implementing the CI/CD pipelines, retrieving access
for various shared components, and ultimately deploying the project. Max
will be further expanding upon the project in his Master’s thesis.

Scrum - project collaboration

We have utilized the scrum agile framework as the collaboration template for
this project. As there were only two of us, we have decided to use a simpler
version:

1. Sprint planning and retrospectives: We held a planning/retrospective
meeting at the beginning of each sprint. This involved closing fin-
ished tickets and identifying prioritized and feasible tasks for completion
within the next sprint. The planning occurred in 2 week intervals.

2. Weekly stand-ups: As we were in constant communication, this served
more as a generic check-up on the progress of the tickets or by discussing
any obstacles we were encountering.

3. Tooling: For tracking tickets, we used the company Redmine instance,
and for communication, we used the company Slack messaging instance.

By incorporating scrum practices we improved the workflow of planning
future work. This was structured and flexible enough to work for our use case.

5.2 Clean architecture in .NET
The application is divided into 4 projects (not including tests)

62

5.3. CQRS and DDD implementation

Figure 5.1: Squid - Implementation Dependency structure

1. Domain: Equivalent to the ”Entities” layer in the Clean architecture, it
encapsulates the domain logic and rules.

2. Application: Equivalent to the ”Use Cases” layer, it contains the appli-
cation logic of the application. It interacts with the domain entities to
fulfill the specific usecases.

3. Infrastructure: This project implements the interfaces in the lower inner
layers, like identity and other external services.

4. ApiWebApp: This project serves as the ”frontend” of the backend appli-
cation, in the sense that it contains the controllers. It also serves as the
startup project and ties all of the projects into an executable.

5.3 CQRS and DDD implementation
The CQRS pattern was implemented using the MediatR library [40] this
is a lightweight implementation of the mediator pattern (discussed in my Bach-
elor’s thesis [41]). We can see the simple CQRS pattern at Figure 5.2 and the
enhanced version using MediatR at Figure 5.3. Please note that the illus-
tration makes it seem as the mediator is some singleton service and a single
point of failure, this is not the case. The mediator is scoped to the request
lifetime, a new one is created for each request - like with the Command/Query
handlers. It’s job is to abstract away the communication between the Con-
troller and the Application layer, creating incredibly light controllers (as seen
on Figure 5.4) and also allowing additional logic to be added in the form of
”Behaviors”.

63

5. Implementation - Squid API

Database - Database Layer

Endpoint1 handler Endpoint2 handler Endpoint3 handler Endpoint4 handler Endpoint5 handler

User endpoints - API Layer

Entities

CommandHandler1 CommandHandler2 QueryHandler3 QueryHandler4 QueryHandler5

Endpoint1 Endpoint2 Endpoint3 Endpoint4 Endpoint5

updates updates reads reads reads

sends command sends command sends query sends query sends query

Figure 5.2: CQRS basic approach

Database - Database Layer

Endpoint1 handler Endpoint2 handler Endpoint3 handler Endpoint4 handler Endpoint5 handler

User endpoints - API Layer

Entities

CommandHandler1 CommandHandler2 QueryHandler3 QueryHandler4 QueryHandler5

Endpoint1 Endpoint2 Endpoint3 Endpoint4 Endpoint5

Mediator

updates

routes

updates

routes

reads

routes

reads

routes

reads

routes

sends command sends command sends query sends query sends query

Figure 5.3: CQRS with Mediator approach

Figure 5.4: Squid - Implementation ”thin” controllers

64

5.4. Validation

When the controllers are this light-weight, we can basically ”call” the
endpoints from within another use-case by creating a new Command/Query
object. This is a much better approach than implementing an application
service, because these internal requests cannot skip the validation steps. In
our implementation, all the controllers do is swagger documentation (return
codes, comments) and authorization role specification.

What are behaviors?

MediatR behaviors are ”decorated” (Decorator pattern referenced in my pre-
vious thesis[41]) around the logic of the handlers. They are a powerful feature
that allows developers to implement cross-cutting concerns across all requests
that go through MediatR. Behaviors are essentially middleware components
that can execute code before and after the next component in the pipeline,
which is typically the (Command/Query) request handler. This capability
is very similar to ASP.NET Core middleware, which is discussed in the next
chapter section 6.

An implemented use case is global validation handling, which is executed
at the start of any request (if the request has a validator). But this can be
expanded like global logging per request, exception handling or caching of
Query requests etc...

DDD with MediatR

While unfortunately, I was not able to define much of the Domain in DDD,
mostly because of the commitment to FR10, which disallows database changes.
The support is there to define higher-level processes inside the ”Domain” layer
of the clean architecture. MediatR (IPublisher) can then be used in con-
junction with EFCore’s database transaction interceptors to dispatch domain
events for specific operations with the database. This creates a clean environ-
ment to define the processes without coupling to lower-level interactions like
messaging, this can rather be handled in the Application layer with INotifica-
tionHandlers which can handle the specific domain events.

It is important to note that with DDD it is easy to go the route of the
”Anemic Domain Model” anti-pattern, where the developers define most of
the logic inside the application layer and use the entities only for data. This
is discussed in an article by Martin Fowler [42]. In my experience, this anti-
pattern is a common pitfall, but not a big problem in simple use-cases.

5.4 Validation
One of the use cases for the mediator pattern is validation. Validation is a cross-
cutting concern within the application architecture that must be consistently
applied independent of application business logic.

65

5. Implementation - Squid API

Client

Client

MediatR

Pipeline

MediatR

Pipeline

FluentValidation

Behavior

FluentValidation

Behavior

Validation

Rules

Validation

Rules

CQRS Handler

(Command/Query)

CQRS Handler

(Command/Query)

Send Request

Invoke Validation

Apply Validation Rules

Validation Results

alt [if Valid]

Proceed with Request

Process Request

Return Response

Return Response

[if not Valid]

Return Error

Return Validation Error

Figure 5.5: Validation pipeline behavior

These validators are fully integrated with dependency injection, giving
them access to a wide range of services, including the database necessary for
complex validation scenarios. To match the error handling customizability of
Octopus, custom error codes and messages can be returned from the valida-
tions, reflecting the exact validation error. Validation should not be handled
in the controller. It shall be handled using generic pipelines allowing further
extension like more validators, validator inheritance and recursive validation.

The validators are implemented as plug-ins, and are automatically invoked
if defined for any command/query objects. This utilizes the mediator and
CQRS patterns to full potential. The developer can create a validator for any
request coming into the system, including requests coming from the applica-
tion itself! By defining validators in its own separate layer we follow the single
responsibility principle and remove the responsibility from the controllers. An
example flow can be observed at Figure 5.5.

FluentValidation

A .Net library with fluent API allowing verbose and customizable validation
definitions - [43]. This library has implemented many common validation
rules, which are very robust. They also implement asynchronous interfaces
allowing support of IO operations like validation via the database. It supports
automatic documentation generation, allowing the rules to be reflected in the
Swagger UI.

66

5.5. Database

5.5 Database
The database is an integral part of the solution, but as we discussed in previous
chapters, one of the requirements is FR10 - the backward compatibility with
the Octopus database. In this solution we are using Entity Framework Core
(EFCore) [44] developed by Microsoft as the ORM of choice. This ORM
is incredibly powerful compared to Doctrine on the PHP side and therefore
can greatly simplify many of the interactions.

We are also leveraging the Automapper and Entity Framework synergy
with projections (ProjectTo Queryable extensions). This minimizes SELECT
N+1 query problems, which are fairly common when using ORMs.

Scaffolding the database

The database needs to be adopted to be used with Squid. Thankfully, EFCore
supports ”scaffolding” or ”reverse-engineering” [45], this is a functionality by
the library to generate supporting code that can be used to interact with
the database. In our case, this generates entities and the DBContext, which
is used to interact with the database.

As the application will be executed in parallel with Octopus (FR12) the
application needs to also support the database in future states. Therefore, the
application needs to support future Octopus database migrations. A script
was provided to re-run the scaffolding when needed. This approach is not
fool-proof and requires some effort to sync up the changes from Octopus. This
information was communicated to the team, as Squid needs to be synchronized
with Octopus at the database level.

However, from my observations, Octopus has only made minor changes to
the database recently. Therefore, it might be a better approach to synchronize
manually by reflecting the changes in the EFCore code.

5.6 Authentication and Authorization
When talking about security it is important to distinguish the differences
between these two terms.

• Authentication: Determines ”who” someone is

• Authorization: What the person can do in the scope of the application
(permissions)

In ASP.NET Core there are abstractions encapsulating ”Claims” of a user,
usually properties like ”name”, ”email”, ”date of birth” are formed around
the user’s identity. This is a fair bit more granular than only role-based au-
thentication, it is named a ”ClaimsIdentity” which can contain several claims.
This concept goes one step further in something called ”ClaimsPrincipal”,

67

5. Implementation - Squid API

which can contain several ClaimsIdentities. This is a set of Identities one
user might have which together serve as the identifier of the user. In code,
we have abstracted away from this, enabling DDD to be applied to the user
as a stand-alone entity. I recommend this well made article by Andrew Lock
on the subject [46].

With Authentication out of the way, Authorization is no less extensible
with Claims-based authorization which builds on top of the Claims authen-
tication, by using the data from the ClaimsPrincipal to authorize the user.
However here we can discover that Claims-Based authorization is built on
top of Policy-Based authorization for which Claims are verified using a Claim
Requirement and Roles as Role Requirement.

5.6.1 Porting Octopus Authentication and Authorization

Using the theory above we shall implement what is currently used in Octopus.

Authentication - Angler

Angler uses a fairly proprietary authentication flow using introspection which
is drafted at Figure 1.1. To implement this flow, I have chosen to create an
application-wide HTTP message handler which can be used to communicate
with the Auth service. The handler can create an authorization token for itself
to request introspections on user tokens. Making this generic allows this logic
to be reused across different use cases to communicate within the stack as an
authorized user.

The result is a back-channel Httpclient that is used for the introspection re-
quests, allowing us to retrieve ClaimsIdentity for each access token, a sequence
diagram is at Figure 5.6. This allows us to consolidate a ClaimsIdentity for
each user.

Authorization

In Octopus there are a set number of roles, outlined in Table 1.2.1. Using
the ClaimsIdentity object consolidated in the authentication part we can use
the role-based authorization system [47]. To replicate the authorization on an
endpoint-per-endpoint basis. For example ”/manufacturers” GET is allowed
for roles ”ROLE_CHIEF”, ”ROLE_STOREKEEPER” and ”ROLE_PACKER”,
but the POST endpoint allows only ”ROLE_CHIEF”. This replicates the
functionality of role-based authorization of Octopus. An example of the GET
endpoint is shown at Code listing 5.1 along with the attribute needed to repli-
cate the functionality from Octopus.

68

5.6. Authentication and Authorization

Client Code

Client Code

JwtTokenHttpClientHandler

JwtTokenHttpClientHandler

Angler - OAuth provider

Angler - OAuth provider

SendAsync(request, cancellationToken)

alt [Token is Expired or Not Set]

Request AccessToken

tokenResponse

Update _accessToken

Update _expirationDate

Request UserInfo(_accessToken)

Return UserInfo

Return Response

Figure 5.6: Authorized back-channel httpclient

1 [AuthorizeRoles(Role.Chief, Role.Storekeeper, Role.Packer, Role.
Organizer, Role.ExternalHamster)]

2 public async Task<PagedResult<ManufacturerDTO>> GetManufacturers(
3 [FromQuery] GetManufacturersPaginatedQuery query)
4 {
5 return await _sender.Send(query);
6 }

Code listing 5.1: Role-based authorization using Angler

5.6.2 Permission-based Authentication and Authorization
As part of FR5, we are implementing a proof of concept permission-based
authentication and authorization using Keycloak.

What is Keycloak

Keycloak is a standalone authentication server, not dissimilar to Angler, where
applications can delegate authentication and authorization. Keycloak sup-
ports standard protocols like OAuth for integration with web-based applica-
tions.

Authentication

Instead of Angler, the user is routed through Keycloak’s login page. After
authentication, Keycloak provides access tokens in the form of JWT, which
contain their roles and permissions. Keycloak’s JWT differ from the Angler
tokens by having a verifiable signature, therefore not requiring a separate
(introspection) call to the authentication service from the backend to verify
the access token.

69

5. Implementation - Squid API

Figure 5.7: Keycloak - Permission policy

The verification is completely handled by .NET’s built in support of JWTs,
in the background the the JWT is decrypted revealing the ”authority” of the
token, the application then goes to discover the public key and algorithm (this
can be cached) of the authority to verify the signature.

Authorization

Keycloak supports the standard role-based authorization that Angler sup-
ports, meaning it can at least replace the functionality of Angler. On top
of that it supports claims-based authorization, where trusted claims can be
added to the JWT and permission-based authorization. Using permission-
based authorization Keycloak uses defined policies - which use a specific policy
language documents configured on the Keycloak admin console.

An example of such a policy can be seen on Figure 5.7. This permission
is defined as a combination of 3 components:

• Resource: Manufacturers endpoint - this is what Keycloak is protecting

• Scope: Read - I have defined read/write, but can be different operations

• Policy: This is where one can specify for whom this permission applies,
either a role, a claim or even a specific user as I have set here ”TestUser”

The permission is easily defined in code, thanks to the authorization ab-
stractions in place, an example shown at Code listing 5.2. You might note
that the role-based authorization can be kept from Angler because roles can
be supported solely by Keycloak if the data are replicated over from Angler.

70

5.6. Authentication and Authorization

1 [AuthorizeRoles(Role.Chief, Role.Storekeeper, Role.Packer, Role.
Organizer, Role.ExternalHamster)]

2 [Authorize(Policy = Permissions.ReadManufacturers)]
3 public async Task<PagedResult<ManufacturerDTO>> GetManufacturers(
4 [FromQuery] GetManufacturersPaginatedQuery query)
5 {
6 return await _sender.Send(query);
7 }

Code listing 5.2: Permission-based authorization using Keycloak

Audience - security measure

An example of unlimited audience - which is default behavior:

1. JWT is requested by the an attacker

2. The JWT was meant to be used on Octopus, but due to the unlimited
audience, the attacker uses the JWT to access a different application
(Application B)

3. Application B might interpret the roles and claims differently (perhaps
roles are reused), the attacker receives access to application which was
not intended

Keycloak has support for audience, its documentation is available at [48].
With this set up the roles in Keycloak carry a ”scope” for which the role
is used (for example squid-atlantis). The audience can be set up to be added
automatically based on the roles of the user requesting the JWT, however the
protocol states that an audience cannot be granted to the application that
is requesting it, in cases of low trust like this. Therefore there are two clients,
one for the frontend to issue new JWT tokens for Squid (Audience: atlantis-
squid) and the second client is for Squid to communicate with Keycloak on
permission validation. A diagram describing the flow is at Figure 5.8.

Why not use it now?

It is proof of concept because it will not be used in the foreseeable future, due
to the coupling with Octopus and its authorization system - Angler. If this
was used as the sole authorization mechanic, the Strangler implementation
would become unusable due to the mismatching access tokens used during the
request.

An example: The client uses an access token retrieved from Angler on
endpoint ”/manufacturers”, the strangler implementation will clone the re-
quest to Octopus, and to Squid. If we used the Keycloak integration here, the
request on Squid will return 403 (Forbidden) due to the unrecognized access
token.

This keycloak integration can be used if:

71

5. Implementation - Squid API

User

User

Frontend Client

(Issuer)

Frontend Client

(Issuer)

Keycloak

(Auth Server)

Keycloak

(Auth Server)

Squid

(Audience)

Squid

(Audience)

Request access

Authenticate & Request token

Issue JWT

with audience=[squid-atlantis]

Based on roles of user

Provide JWT

Request service

JWT included

Verify JWT Audience

alt [JWT Audience is valid]

Provide requested service

[JWT Audience is invalid]

Access denied

Audience verification ensures

that the token was intended for Squid

Figure 5.8: Keycloak audience validation

1. Octopus is fully migrated to Squid, Angler will be decommissioned

2. Octopus will be changed to support Keycloak instead of Angler, decom-
missioning Angler

3. Swordfish - the frontend will be changed to allow some hybrid authenti-
cation approach with access token in headers (Angler) and access token
in cookies (Keycloak)

Developer feedback

This was implemented to fulfill one of the concerns raised during Phase 2 of
the Atlantis analysis in chapter 1. The concern was that a new system that
could not support this more granular permission system was doomed from
the start, as this was the natural progression of the authorization system to
support further growth of the system. The previous role-based system was
not sufficient.

A one-on-one interview was conducted with the senior developer who raised
the concern, and this implementation fulfilled his expectations.

72

5.6. Authentication and Authorization

Conclusion

The functionality is implemented and it is highly abstracted thanks to .NET
interfaces like ClaimsPrincipal. I have implemented a simple kill-switch in
configuration named ”UseKeycloak” which will switch between the OAuth
providers Angler/Keycloak. When set up correctly, as shown here, no code
change is needed to onboard permission-based authorization.

5.6.3 API Documentation - Swashbuckle library

The goal of the API documentation was to at least match the granularity and
flexibility of Octopus’s API documentation, in addition making it as auto-
matic as possible. This was achieved by using the natively supported Swash-
buckle.AspNetCore [49]. The library has a simple setup and is very con-
figurable. It automatically generates an interactive Swagger documentation
which can be used as a basic interface for the backend. The implementation
matches the flexibility of Octopus with some added benefits:

• The documentation site acts as a usable interface, needing only a JWT
token to be fully functional. (OAuth login is also ready to be used‡)

• The model is auto-generated using the validation rules of FluentValida-
tion which are used in the validation layer, providing detailed rules for
each property.

• The documentation can be expanded by using XML comments around
the code [50], which are automatically rendered in the SwaggerUI.

The API Documentation can be leveraged as a tool for showcasing the appli-
cation, like how it served Octopus. But, with the additional functionalities it
can be fully utilized for testing and development.

5.6.4 Logging

Logging will be a very important part of this application. In general, logging
provides insight into the behavior of the application when deployed. Not only
does it help with debugging, but it allows us to monitor the application’s
performance, fulfilling (FR8) and possibly (FR7).

We will be implementing the current best practice in the field by using
structured logging. With this approach, the log data is formatted in a way
that is easy to query and analyze.

‡The current OAuth provider - Angler does not support CORS on its token endpoint.
This can be used with a different provider like Keycloak.

73

5. Implementation - Squid API

Implementation in .NET

We will be using the Serilog library [51]. This library ingegrates structured
logging into a .NET environment. It supports various sinks (outputs) which
can be configured to output the logs in various formats. For example A console
sink outputs to console, a file sink outputs to a file etc... The library integrates
with the built-in .NET logger abstractions [31] and expands them.

Grafana integration

I have asked the team for access to the logging platform used by the other
applications developed by the company. Which was Loki in combination with
Promtail, these components gather logs directly from the docker container
logs. These logs are consolidated and persisted in Loki, which can be queried
using Grafana. I was surprised to learn that structured logging was not uti-
lized, rather the logs were collected in plain-text form.

This type of logging enriched by additional data enables detailed monitor-
ing and custom dashboards to be built in Grafana. This is heavily utilized in
the next chapter about the Strangler façade implementation, allowing us to
quickly troubleshoot migration implementations compared to Octopus.

74

CHAPTER 6
Implementation - Strangler

façade

In this chapter we will discuss the technologies used to implement the Strangler
façade. The concept of the strangler façade has been discussed in chapter 3.
Let us summarize how middlewares works in .NET in particular and how they
can be utilized for the Strangler façade implementation.

Key characteristics of a .NET middleware

Middlewares are components in the execution pipeline as seen on Figure 6.1.

• Modular: There can be several (or zero) middleware registered in the
execution pipeline, adding and removing a middleware is done during
the startup of the project

Figure 6.1: Middleware - order of execution [6]

75

6. Implementation - Strangler façade

Figure 6.2: Middleware structure [6]

• Ordering: The order can be depended on, and it reflects the order in
which the middleware were registered. It is important to consider this
as one middleware might depend on another

• Dependency injection: Middleware has access to objects and configura-
tions available through dependency injection

It is important to consider that we will be implementing o ne of the few mid-
dlewares of the solution, but many of the functionalities of the .NET platform
like authentication, authorization, or Cross-origin resource sharing (CORS)
handling, are done through already implemented middleware. Which are im-
plicitly part of the execution pipeline.

Middlewares are incredibly powerful tools for handling application-wide
cross-cutting concerns, but they should, in my opinion, be used for very specific
scenarios where one needs to operate on the HTTP headers, status codes, or
responses directly. For use cases tied more to the application logic, MediatR
behaviors should be used.

Let us list what the middleware can do Figure 6.2:

1. It can pass to the next component in pipeline

2. Can execute code before and after the execution of the next component
in the pipeline

3. The middleware can short-circuit the execution and not call the next
component

We will be using all three of these methods in the implementation of the
Strangler façade middleware.

76

6.1. Modes of the Strangler façade

Infrastructure

Middleware

OctopusRedirection

Strategies

StrategySelector

_bypassStrategy : BypassToOctopusStrategy

_squidStrategy : SquidStrategy

_comparisonStrategy : ComparisonStrategy

_featureFlagMappings : FeatureFlagMappings

_featureManager : IFeatureManager

_logger : ILogger<StrategySelector>

IdempotentHttpMethods : HashSet<string>

SelectStrategy(context : HttpContext) : Task<IRedirectStrategy>

IsIdempotent(context : HttpContext) : bool

TryGetFeatureForEndpoint(path : string, method : string, out mapping : FeatureFlagMapping) : bool

ComparisonMiddleware

_next: RequestDelegate

InvokeAsync(context: HttpContext, strategySelector: StrategySelector): Task

IRedirectStrategy

RunStrategy(context: HttpContext, next: RequestDelegate)

BypassToOctopusStrategySquidStrategyComparisonStrategy

1

111

implementsimplementsimplements

Figure 6.3: Middleware - Strategy selector

6.1 Modes of the Strangler façade
The strangler façade has 3 modes:

1. Octopus mode: The façade redirects the request to the legacy Octopus
system, the middleware short-circuits the pipeline and the rest of the
Squid application is no longer executed.

2. Comparison (ghost) mode: The façade clones the request and sends an
identical request§ both to Octopus and to Squid. The responses from the
applications are intercepted and compared. The response from Octopus
is sent back as response regardless of the comparison result.

3. Squid mode: The façade allows the request to pass through the middle-
ware, executing the rest of the pipeline as if the façade was not there.

Strategy selector

The Strategy selector component selects which mode to use on an endpoint
to endpoint basis. The component follows the strategy design pattern. This
is one of the design patterns that I have expanded upon in my Bachelor’s
thesis[41]. The structure is at Figure 6.3, and an example sequence diagram
for a GET endpoint on ”/manufacturers” is at Figure 6.4.

An example configuration:
§The requests are not quite identical, the headers need to represent from which Host the

request originated. Allowing correct URL generation.

77

6. Implementation - Strangler façade

Client

Client

ComparisonMiddleware

ComparisonMiddleware

StrategySelector

StrategySelector

BypassToOctopusStrategy

BypassToOctopusStrategy

ComparisonStrategy

ComparisonStrategy

SquidStrategy

SquidStrategy

GET /manufacturers

SelectStrategy(HttpContext)

alt [Feature Enabled]

Execute strategy

Response

[Feature Defined, Method Idempotent]

Execute strategy

Response

[No feature or not idempotent]

Execute strategy

Response

Return Response

Figure 6.4: Middleware - Strategy selector sequence diagram

1 "FeatureFlagMappings": {
2 "Mappings": [
3 {
4 "Flag": "Manufacturers",
5 "Endpoints": ["/manufacturers.*"],
6 "Methods": ["GET"]
7 },
8 {
9 "Flag": "GetTasks",

10 "Endpoints": ["/tasks$", "/tasks/\\d*$"],
11 "Methods": ["GET"]
12 },
13 {
14 "Flag": "GetDeliveryTasks",
15 "Endpoints": ["/tasks/delivery-accept.*"],
16 "Methods": ["GET"]
17 }
18]
19 },
20 "FeatureManagement": {
21 "Manufacturers": false,
22 "GetTasks": false,
23 "GetDeliveryTasks": false
24 }

Code listing 6.1: Traditional Assert Example

One might note that the endpoint HTTP paths and corresponding meth-
ods are completely flexible and are defined using regex. With this type of
adjustability, it is entirely up to the developer on the scope of endpoints to
divert to Squid. The developer is fully in control of which strategy to exe-
cute for which endpoint. This configuration can be changed at any time, even

78

6.1. Modes of the Strangler façade

Client

Client

StranglerFacade

StranglerFacade

Octopus

Octopus

Request /resource

HTTP 307 Temporary Redirect

URI: /octopus/resource

Request /octopus/resource

Response with data

Figure 6.5: Strangler - Octopus mode

during live execution of the application, but I would recommend keeping this
configuration as part of VCS to ensure consistency and versioning.

6.1.1 Using Octopus mode
The Octopus mode is the default fallback for the implementation. If the end-
point is not implemented or not configured in the configurations. The strangler
façade will automatically choose the BypassToOctopus strategy, completely
skipping all of the logic in the application. This is by design.

This mode is critical to the whole idea of the Strangler pattern and enables
requirements NFR1, NFR4, FR13 and NFR8. Implementation-wise, it is by
far the simplest (also by design). Having bugs here would be unacceptable
and a massive risk to carry. We therefore, went through many hoops to allow
the simplest implementation possible by returning a 307 Moved Temporarily
HTTP status code. With this implementation, it would be up to the client
to redirect to another API endpoint. This came with some integration issues,
which I will discuss later in section 6.2.

Nonetheless, this solution utilizes the nature of redirects built into many
clients, including Axios, which is used in the Frontend Vue javascript appli-
cation - Swordfish. An exemplary sequence diagram is at Figure 6.5. For the
readers who are concerned with performance of this ”jump”, adding an addi-
tional round-trip does have an effect on network latency (though minimal).
There are solutions to this, for example, by changing the 307 Temporary redi-
rect to a 308 Permanent Redirect, which is cached. Note that this might make
the changes less reactive as the cache needs to be invalidated on the client side
for changes to take effect if this approach is taken.

79

6. Implementation - Strangler façade

6.1.2 Using Comparison mode
The implementation reflects the proposed design at Figure 4.9, but the imple-
mentation is a fair bit more complicated than expected and consists of several
steps and each of them needs nontrivial implementation:

1. Request cloning: When a request is received, the system clones the
request and sends one copy to Octopus and another to Squid. This step
is required to ensure both systems get identical input requests.

2. Response intercepting: After the requests are executed, the responses
are intercepted from both systems.

3. Deep JSON comparison: The responses are analyzed and result of this
step is a validation report, with the differences of the two responses if
there are any.

4. Logging and Visualisation: The results of the previous step are logged
to Loki and visualized using Grafana in a dedicated dashboard, enabling
excellent monitoring capabilities.

5. Response routing: For safety, the response that is returned to the client
is always the response from Octopus. This makes sure that the system
behaves as expected during the transition process, while collecting real-
time valuable data.

We might notice that this workflow is impossible with non-idempotent re-
quests. An example would be a HTTP POST request, which would be repli-
cated to both systems, but because they operate on the same database, this
would result in duplicate records. This is a limiting factor for this approach,
and there is a check in code for this not to happen unintentionally. However,
the developer is free to override these safety precautions.

Request Cloning

In this step, the incoming request is cloned and sent to Octopus, special care
is taken here to be as safe as possible. Let us break down the considerations
taken:

• Handling headers: During the cloning of the requests we must copy the
headers. One would expect that copying all headers will be beneficial,
but opposite is true. We instead implemented a whitelist header system,
which is configured currently to copy Authorization headers and Host
headers, for why this is discussed later in section 6.2. Host header is re-
quired because Octopus utilizes URL reflection to generate new URLs
like ”object_link”.

80

6.1. Modes of the Strangler façade

• Network: Also discovered after the mishap with Nginx self DDOS in sec-
tion 6.2 is the use of internal docker network instead of an exposed
domain.

• Reliability: One of the main requirements are NFR1, NFR4 and NFR8.
These refer to the safety of the system when in production, we want to
minimize the impact of these processes on the overall functionality of
the system. We have implemented this to be as robust as possible to
handle exceptions during Squid requests. All occurring exceptions are
logged and traffic is redirected through Octopus, ensuring that errors do
not impact the quality of the service.

Logging and Visualisation

In this step, the differences in the responses between Octopus and Squid are
logged and visualized. Here, we are bearing fruit from the integration with
Grafana and the structured logging we provided in subsection 5.6.4. We are
able to create dashboards and group by the endpoint as seen on Figure 6.6.

The dashboard shows how many requests were successful and how many
were not, grouped by the endpoint path. The reason why the validation failed
can also be discovered by expanding on the logs, which are fully searchable
by the endpoint path. This is thanks to the structured logging, which al-
lows Grafana to index the various properties instead of a full-text search and
pattern matching.

The dashboard also logs the performance of the Octopus and Squid sys-
tems, fulfilling our performance requirements FR7 and FR8.

6.1.3 Using Squid mode

The selector utilizes the incredibly powerful and dynamic Feature management
tooling provided by Microsoft [52]. This is represented by the ”FeatureMan-
agement” section in the Code listing 6.1. In the example, this feature is not
used and set to ”false”, but this can be enabled to fully migrate to Squid for
specific endpoints:

Specific Time window

This will direct all traffic for the GET method on endpoints ”/tasks/delivery-
accept.*” for a set time window Code listing 6.2. It can be utilized to test
during nonbusiness critical times.

81

6. Implementation - Strangler façade

Figure 6.6: Strangler - Grafana Dashboard

1 "GetDeliveryTasks": {
2 "EnabledFor": [
3 {
4 "Name": "Microsoft.TimeWindow",
5 "Parameters": {
6 "Start": "Mon, 22 April 2024 13:59:59 GMT",
7 "End": "Tue, 23 April 2024 00:00:00 GMT"
8 }
9 }

10]
11 }

Code listing 6.2: Strangler Configuration - Time window

Specific percentage

This is for the same path and method, but instead of a time frame, it uses
a percentage to determine whether to direct the request to Squid Code list-
ing 6.3. Note that when this is used, the decision is cached, and whether the

82

6.2. Implementation details - Integration issues

feature is enabled or disabled is saved for the duration of the session.
1 "GetDeliveryTasks": {
2 "EnabledFor": [
3 {
4 "Name": "Microsoft.Percentage",
5 "Parameters": {
6 "Value": 50
7 }
8 }
9]

10 }

Code listing 6.3: Strangler Configuration - Percentage

Specific targeting - User

Again, the same method and path, but this time, the testing is targeted to
a specific user or group Code listing 6.4. This works without issue, as we are
using Microsoft’s authentication and authorization abstractions.

1 "GetDeliveryTasks": {
2 "EnabledFor": [
3 {
4 "Name": "Microsoft.Targeting",
5 "Parameters": {
6 "Audience": {
7 "Users": [
8 "vedouci"
9]

10 }
11 }
12 }
13]
14 }

Code listing 6.4: Strangler Configuration - User

Fully migrated

When we are satisfied and want to let Squid handle the requests for the end-
point, simply setting the flag to true will permanently enable the feature Code
listing 6.5.

1 "GetDeliveryTasks": true

Code listing 6.5: Strangler Configuration - Enabled

6.2 Implementation details - Integration issues
Here, I would like to point out some integration issues that showed up after
the deployment. This was done in collaboration with Max, who facilitated
the deployment of the application. The monitoring tooling, especially logging
via Loki/Grafana was instrumental in debugging these issues.

83

6. Implementation - Strangler façade

Client

Client

Squid Application

Squid Application

octopus.sklad.*.cz

octopus.sklad.*.cz

sklad.*.cz/octopus

sklad.*.cz/octopus

Request with Authorization Headers

Redirect (307) to octopus.sklad.*.cz

Request without Authorization Headers

Authorization headers are dropped

Redirect (307) to sklad.*.cz/octopus

Request with Authorization Headers

Authorization headers are retained

Figure 6.7: Integration - Authorization headers

Integrating redirect calls
Redirecting has worked well when tested on localhost (Octopus bypass mode),
but modern browsers have fairly strict rules for redirect, especially when it
comes to authorization headers. This manifested in the redirect call to Octo-
pus, always returning 401 Unauthorized even when the Authorization header
was sent to Squid. A simplified sequence diagram is shown at Figure 6.7. This
was later fixed by not using a different subdomain for the redirect to Octopus.

Self DDOS - Nginx header overload
After deploying the environment and using the Comparison mode. There were
weird overload 500 errors coming from the application, followed by hundreds
of logs per request. The culprit turned out to be the one component which
was not replicated on the development machine - the Nginx reverse proxy.
The proxy works by adding headers to each request coming through. Due to
a similar issue as in previous section the proxy continually redirected the same
request hundreds of times, which rendered the application useless.

The solution was to avoid the reverse proxy completely when using the
Comparison mode by using the internal docker network. This additionally
greatly improves the performance by reducing the number of jumps to reach
Octopus.

84

Part IV

Testing

85

CHAPTER 7
Testing

The availability and correctness of the endpoints is the utmost priority. There-
fore testing has been critical during the development process. We went above
and beyond to provide a complete testing and monitoring suite with quick
feedback, simplicity of usage, and flexibility in its employment. Let us start
with some testing strategies which were used during the development of the
solution.

7.1 Manual testing
While manual tests are not ideal, they are inherently part of any developer’s
toolbox. It is the simplest and fastest way to test functionality. It is im-
portant when doing a proof of concept implementation or a quick prototype
application.

Manual tests provide quick feedback for newly written code without the
overhead of creating code for the test. Therefore, it is used the most dur-
ing the early stages of development when features are being fleshed out and
rapid iteration is important. Manual testing is useful for catching unexpected
behavior or errors that automated tests are not designed for at this phase.

Manual tests were done by myself and my colleague Bc. Max Hejda during
our development of the application. They allow us to quickly check whether
the various parts of the infrastructure are connected as expected, the autho-
rization does not fail, or whether the documentation is generated how it should
be. These tests make sense when they are done rarely and do not benefit from
repeated executions. However, as the application becomes more mature, the
need for automated testing is needed.

Manual tests are not reliable, they are not repeatable, and are inefficient.
They grow out of control as the project grows larger.

87

7. Testing

7.2 Automated testing
Automated testing is one of the most important parts of the modern software
development process, especially as the application grows and the complexity
along with it. This method ensures consistent results, repeatability and can
massively reduce regression issues.

7.2.1 Basics of automated testing
The benefits

• Speed: Automated tests are quick to execute, which provides quick feed-
back to the developer, usually before deployments are made. This feed-
back loop allows programmers to deliver safe code without the need to
wait for long manual tests.

• Consistency: Automated tests can be executed the same way every time.
This gives consistent results with every test run, which helps to identify
regressions and errors quickly, as any change is reported immediately
when there is a difference from the expected results.

• Scalability: When the software inevitably grows, it becomes impossible
to manually (consistently) test every part of the solution. Automated
tests can easily cover large amounts of code with incomparable precision.

Types of automated tests

• Unit tests: Tests focusing on the smallest individual units of code, usu-
ally these tests are isolated and can be optimized to be executed in
parallel.

• Integration tests: These tests are made to test the interfaces between
components within the stack, like the database, Redis, and the Docker
network itself. These tests are important to make sure that different
parts of the system work together as expected.

• E2E tests: End-to-End (E2E) testing is testing of user interactions with
the system. These tests are important to verify the functionality of the
whole application from the perspective of the user.

7.2.2 Unit testing
The unit testing is implemented using xUnit.net. “xUnit.net is a free, open-
source, community-focused unit testing tool for the .NET Framework.“[53].
This testing framework is also used by Microsoft’s .NET Core team and is (at
the time of writing) the most popular unit testing framework for .NET.

88

7.2. Automated testing

The AAA Pattern

Widely used and considered a standard in the industry is the AAA pattern of
unit tests:

• Arrange: The test environment and test data are prepared

• Act: The functionality that is being tested, is executed

• Assert: The outcome is verified and compared to expectations

There are exceptions to this rule, but usually, all three sections are needed
to validate the functionality of a feature. We will be referring to these sections
of the unit tests later, as we optimize and apply more advanced techniques.

Integrating into the development process

Unit testing is most effective when fully integrated into the development pro-
cess, let us discuss some methods:

• Test-Driven Development (TDD): In TDD, developers are encouraged
to write tests before they write the related code. We shall discuss this
methodology later in section 7.7.

• Automated test execution: The power of Unit testing comes from the
repeated execution and verification. Therefore the development environ-
ment (MSBuild) can be configured to run these tests after a successful
build.

• Continous Integration (CI): In CI environment (GitLab) the unit tests
are run automatically on a shared pipeline, every time a change is com-
mitted to the git repository. This helps catch errors before they are
merged to the shared branch. The implementation of this will be part
of my colleague Bc. Max Hejda’s thesis.

7.2.3 Integration testing with throwaway Docker containers
In this section, we will discuss how a reproducible testing environment or
”Integration” environment is set up for integration tests. The goal of these
tests is to test the external dependencies of the application.

The stack that is replicated contains three images 1. Redis 2. PostgreSQL
3. Octopus

These containers are configured to mimic the environment of a real produc-
tion instance. Environment variables are modified to be able to run Octopus
in this environment.

89

7. Testing

Workflow

Test Containers

Setup

Set Up

RunTests

Run Tests

CleanUp

Clean Up

PostgreSQL

Destroy PostgreSQL Container

Redis

Destroy Redis Container

Octopus

Destroy Octopus Container

Ryuk

Figure 7.1: Test Containers usage

Testcontainers

We are utilizing the Testcontainers library[54] for the initialization of the
docker stack. This library uses the available docker API to orchestrate the
setup of the docker network and to manage the lifetime (creation and disposal)
of the managed docker container instances. Let us explore the container life-
cycle (illustration at Figure 7.1):

• Initialization: Testcontainers spawns a watcher container named Ryuk¶,
and the containers within the configured stack.

• Test execution: Tests are executed on the wired-up containers without
any intervention from Testcontainers (the application communicates di-
rectly with the containers).

¶The name references the Japanese Anime/Manga ”Death Note” where Ryuk is the god
of death and orders death by writing names into the ”Death Note”. Similarly, the container
keeps track of the created containers and destroys the containers after the tests are finished.

90

7.3. Resetting of database between tests

• Cleanup: After the testing is done, the containers are removed. Ryuk
makes sure that even if the application crashes, the containers are deleted.

The considerations:

• Environment variables: Surprisingly many environment variables are
replicated for the correct startup of Octopus.

• Networking: The Testcontainers library, by design does not work with
hardcoded ports. To allow asynchronous execution (to avoid port con-
flicts), it randomizes ports given after container creation. But the ports
within the container itself can be static. Therefore docker network is set
up to facilitate communication between containers.

• Waiting strategy: Testcontainers provides some waiting strategies that
make sure the container is ready to serve requests before proceeding
with the tests. The order of activation is critical for the correct func-
tioning of the Octopus container. Thankfully, Redis and PostgreSQL
are implemented by the Testcontainers library as they are fairly com-
mon in many applications. However, Octopus’s configuration needs to
be created manually.

• Healthcheck: The Octopus CI/CD pipeline defines a liveness check that
determines when the Octopus container has started successfully. How-
ever, this check is insufficient for our requirements. As our tests are run
by a machine, we need Octopus to start serving requests immediately.
To ensure this, we have implemented a real readiness check that confirms
a successful connection to the database, authorization server, Redis and
it physically confirms the readiness by polling for a valid answer on one
of the endpoints.

Thanks to Testcontainers, we have created a significantly better integra-
tion pipeline than by managing the integration environment manually. The
integration testing is possible on any docker-compatible API. Therefore, it
is simple to run on the local machine or in the GitLab CI/CD pipeline, allow-
ing quick feedback on integration failures.

7.3 Resetting of database between tests
While Testcontainers helps with the environment setup, where it facilitates
the availability of a running database docker container to execute tests on.
After the throwaway database is set up, its state is on the tests themselves
to handle. Let us imagine the following scenario in Figure 7.2. To mitigate
the illustrated problem, we can instruct Testcontainers to create a database
for each test, but that might be hundreds of tests, which can be extremely
resource-intensive.

91

7. Testing

Tester

Tester

Test Suite

Test Suite

Test Database

Test Database

Test 1 Execution

runs Test 1

insert data

data inserted

test operations

operations complete

Test 1 passes

Test 2 Execution

runs Test 2

test operations

Uses data left from Test 1

unexpected results

Test 2 fails

Figure 7.2: Conflict of tests - Database state

Using Respawn to manage Database state

Respawn [55] is a library that is designed to clear databases between tests,
which is the exact use case we are looking for. In the background, Respawn
connects to the database and keeps track of the tables that are utilized, after
a reset is invoked, Respawn generates and executes SQL on the test database
to return it back to a clean slate.

7.4 Seeding database - for testing
Since Octopus works with very complex data, with many interconnected rela-
tionships in it’s database. It is important to mimic these complex datasets for
testing purposes for Squid to ensure compatibility with the Octopus database.
Unfortunately, as one might expect, manually creating this data is very time-
consuming and repetitive after some time.

Let us take the task from the supplier entity diagram as an example Fig-
ure 1.4. To test a GET Query, we need to stub the complex object into the
database, to test against. An Address, a Supplier, and some example Tasks,
ideally more of each in different configurations to demonstrate the 1:n re-
lationships. Each of the entities contains around ten properties, where the

92

7.4. Seeding database - for testing

properties need to correctly match valid business format constraints like the
correct length of string values, unique email, etc... There are several solutions
that might come to mind

1. Automate the generation: There are libraries like Autofixture[56] or
Bogus[57], which can be used for this purpose. But after much fiddling
around, programming these libraries to produce valid production-like
data is very tedious

2. Use POST functionality: We can use the Task create command, which
needs to implement the validation of these constraints, but that would
couple the GET testing with the POST testing. It would not be possible
only to test GET without POST for scenarios where the POST endpoint
is not expected to be delivered.

Overview of the problem

1. Fake data is generated for an object - ”Arrange” section

2. Data is inserted into the database - ”Arrange” section

3. Data is fetched and tested with application logic - ”Act” and ”Assert”
section

Note that the 1. and 2. steps are irrelevant to the testing. They pose
as boilerplate code written purely for the test to work. The goal of the test
is to verify the functionality of the application layer - the logic behind step
3. However, without steps 1 and 2, the testing is impossible. How can we
improve this?

Proposed improvement

As Octopus is already a fully functioning system, we can collect data from the
database for testing purposes on Squid. The plan is to create a backup of the
database and utilize it to run tests. This approach would greatly simplify the
”Arrange” phase of the testing process.

1. Create a Database dump: Capture the current dump using tools like
pg_dump to gather the state of the database.

2. Use the database dump: Use the dump to seed the database inside
the scope of the test. This would serve as a baseline dataset for all
integration tests and unit tests in Squid. This approach would greatly
simplify the ”Arrange” phase of testing by using a realistic dataset that
is captured from a valid database on which Squid will work on.

93

7. Testing

With the database dump available when the developers need it, the testing
becomes very simple. Let us summarize the benefits of this approach:

• Reduce time to set up a test: This will reduce the ”Arrange” part of the
test drastically by removing the need to insert data manually.

• Tests will be more accurate: Testing data will be the exact data that
is used on the development environment, which is proven to be stable
with Octopus and, therefore, can be used as a reference.

• Octopus rebasing: Octopus is bound to change at some point in time,
along with its database schema. With these tests, simply updating the
dump shall provide valid testing of the new database schema on Squid.

For this to work, the database dump will need to be upgraded based on
the current live Octopus version to validate the compatibility between the
two solutions. The developers are aware of this approach and will need to
synchronize the database releases in the future. This is regardless of this
database testing approach, this shall only ease the transition.

7.5 Snapshot testing
Due to the complex data structure testing that is needed to confirm compati-
bility with Octopus, snapshot testing has proven as a very powerful technique
to improve efficiency with writing tests. The technique allows us to shorten
the ”Assert” phase of the unit tests, many times reducing it to a single line of
code.

Principles of Snapshot Testing

The specific implementation that is used is the Verify package[58]: “Verify
is called on the test result during the assertion phase. It serializes that result
and stores it in a file that matches the test name. On the next test execution,
the result is again serialized and compared to the existing file. The test will
fail if the two snapshots do not match: either the change is unexpected, or the
reference snapshot needs to be updated to the new result.“[58].

Test writing workflow

1. Test creation: Create tests with the standard ”Arrange”, ”Act” and
”Assert” structure.

2. Initial run and Fail: On the first test run without an existing snapshot,
a failure is expected. This triggers a diff window that highlights the
differences between the expected and the actual output.

94

7.5. Snapshot testing

3. Subsequent runs: If changes were approved and snapshot was created or
updated, the subsequent runs will be compared against that snapshot.
Tests pass if the current output matches the snapshot, they will fail if
not.

1 // Arrange
2 var manufacturer = new Manufacturer
3 {
4 ManufacturerId = 2,
5 Name = "test1",
6 Abbreviation = "TM1",
7 CreatedAt = DateTime.Now,
8 CreatedBy = 0
9 };

10 await Scope.AddAsync(manufacturer);
11
12 var query = new GetManufacturersByIdQuery { ManufacturerId =
13 manufacturer.ManufacturerId };
14
15 // Act
16 var result = await Scope.SendAsync(query);
17
18 // Assert - this is what we aim to improve
19 result.Should().NotBeNull();
20 result!.Id.Should().Be(manufacturer.ManufacturerId);
21 result.Name.Should().Be(manufacturer.Name);
22 result.Abbreviation.Should().Be(manufacturer.Abbreviation);
23 result.ExternalId.Should().Be(manufacturer.ExternalId);
24 result.CreatedBy.Should().Be(1);
25 result.CreatedAt.Should().BeCloseTo(DateTime.Now,
26 TimeSpan.FromMilliseconds(10000));

Code listing 7.1: Traditional Assert Example

1 // Arrange
2 var manufacturer = new Manufacturer
3 {
4 ManufacturerId = 2,
5 Name = "test1",
6 Abbreviation = "TM1",
7 };
8 await Scope.AddAsync(manufacturer);
9

10 var query = new GetManufacturersByIdQuery { ManufacturerId =
11 manufacturer.ManufacturerId };
12
13 // Act
14 var result = await Scope.SendAsync(query);
15
16 // Assert - Improved
17 await Verify(result);

Code listing 7.2: Assert with Verify example

The result will be a snapshot similar to Figure 7.3. This serialized object
will be used for subsequent tests. If there is a discrepancy, a diff window will
be prompted Figure 7.4, which will show the exact difference. Note that the
window shown is the Rider diff tool, but any diff tool can be used, in fact even

95

7. Testing

Figure 7.3: Snapshot testing - snapshot example

a manual text editor can work here. The output is a verified serialized JSON
representation of the tested object.

The snapshot is now also part of the git repository and is available to be
checked as part of code reviews by other team members.

7.6 Tying it all together
Let us summarize the implemented techniques:

1. Database seeding - Dev environment database dump

2. Testcontainers - throwaway Docker containers for testing

3. Snapshot testing - first result is serialized, subsequent tests are compared
with the serialized version

With this setup we have very powerful tests which do not require much
work at all - with code at Code listing 7.3, and snapshot generated in Fig-
ure 7.3.

1 [Fact]
2 public async Task ShouldReturn_Valid_SeededDb()
3 {
4 // Arrange
5 await Scope.SeedDatabase();
6
7 var query = new GetManufacturersByIdQuery { ManufacturerId = 24 };
8
9 // Act

10 ManufacturerDTO result = await Scope.SendAsync(query);
11
12 // Assert
13 await Verify(result);
14 }

Code listing 7.3: Sample test - improved

96

7.6. Tying it all together

Figure 7.4: Snapshot testing - Diff window

For tests written for the migration effort, we can take this one step further.
Let us imagine we want to test the response from Squid for endpoint ”/man-
ufacturers”. We can leverage all of the techniques above by using a snapshot
generated by Octopus.

An example of how a test like that would look like is at Code listing 7.4. In
this example test, the initial snapshot is generated by a fully functioning local
Octopus instance, which is spun up on Testcontainers (on-demand) for the
purpose of this test and wired up to the database and Redis. This snapshot
is then used as a reference when compared with the response from Squid.

This setup, along with the incredibly powerful techniques above, utilizes
the incredible .NET in-memory test server [59] to serve requests for testing.

1 [Fact]
2 public async Task ShouldReturnAllManufacturers_Paginated()
3 {
4 // Arrange
5 await Scope.SeedDatabase();
6
7 // Act & Assert
8 await Scope.VerifyAgainstOctopusApiResponse(
9 $"/manufacturers?itemsPerPage=10");

10 }

Code listing 7.4: Sample test - fully optimized

With the ongoing migration, the endpoint responses from Squid are re-
quired to be fully backward-compatible with Octopus. With this testing suite,
we can achieve this goal with much greater speed, while mitigating risk by hu-
man error.

97

7. Testing

7.7 Test Driven Development - TDD
With TDD, one defines the test first before writing the tested code. The test
can be extremely simple, such as the existence of a function or the return of
a specific reply based on input. But even these simple tests provide important
insight into the development process. The methodology pushes the developer
to design the components first before diving into the code.

TDD provides a more disciplined approach to programming. By following
the principles, the developers are encouraged to think about the structure and
the naming before the functionality of the components. Martin, the author of
the book ”The Clean Coder: A Code of Conduct for Professional Program-
mers” [39] highlights TDD as an essential part of a professional programmer’s
toolkit.

With the implementation of several testing strategies, we shall motivate
the developer working on the migration, to go with TDD.

Fluent assertions
The assertions are enhanced by incorporating ”Fluent Assertions”[60].

Traditional Assertion Example:

string ValueA = "Some text";
string ValueB = "Different text";
Assert.IsTrue(ValueA == ValueB);

Error:
Expected: True But was: False

Fluent Assertion Example:

string ValueA = "Some text";
string ValueB = "Different text";
ValueA.Should().BeEquivalentTo(ValueB);

Error:
Expected ValueA to be equivalent to "Different text" with
a length of 14, but "Some text" has a length of 9, differs
near "Som" (index 0).

In my experience, the more complex the test, the greater the effort put
into communicating with future developers about why the test fails, the ini-
tial constraints, and why this test must succeed. The verbose and readable
messages greatly improve the process of debugging, sometimes removing the
need to execute the test with a debugger active.

98

7.8. E2E Testing

Figure 7.5: E2E testing - Production clone environment

7.7.1 Summary
By utilizing Snapshot testing, Database seeding, and Octopus test containers,
the integration testing consists of only defining which endpoint of Squid and
Octopus to test. There is a symbiosis that emerges from the use of these very
powerful technologies the result is greater than the sum of its parts.

7.8 E2E Testing
As a final test, we are performing full end-to-end testing by deploying the
whole stack, including the front end, onto a production clone environment.
This environment contains a clone of the database with real data. But instead
of Octopus the front end is pointed at Squid.

The testing was successful, showcasing the redirecting approach working
as expected, which can be seen on Figure 7.5 as 307 redirects. These redirects
instruct the front end to fetch data from Octopus for endpoints that are not
fully migrated.

7.9 Developer feedback
After the architecture was implemented and the project was set up, I con-
ducted several interviews with the team on feedback for the implementation
to gather ideas on what was done well, what to improve, etc. This was the
phase 4 of the overall analysis done as charted in chapter 1.

In the following section, I have given each participant of the research a code
change to perform in Squid. The goal is to gauge how maintainable the new
architecture is and whether productivity and testability were improved.

99

7. Testing

The questionnaire

1. What is your experience with .NET and PHP, if relevant provide other
languages you are familiar with. Do you have any experience with Oc-
topus/Atlantis? If so, please describe how extensive it is.

2. When performing the code change please note down information that
you needed to look up, what interested you, what you needed to find
out. - does not need to be structured

3. Describe the process of testing your implementation, the process of find-
ing out that it really works as it should.

4. Please describe how long it took you to make the changes, whether it
is sustainable or not, whether you found it comfortable to work in this
environment, and what could be improved?

The three developers who participated in the questionnaire are developers
who will be maintaining the solution in the future for the company.

The Lead developer of Octopus

Due to time pressure, change was not made on Squid, but thanks to the
extensive knowledge of Octopus, the developer provided some estimates of
the time needed for the implementation. I was on hand to show the relevant
code that needed to be added in C#.

1. Experience with PHP/Symfony for 4 years, .NET 1 year of experience.
Worked on Atlantis for 4 years and is responsible for the application

2. The user looks for documentation of the project, struggles with startup
of the project

4. An estimate was given for a fairly straight forward CRUD endpoint
migration at Table 7.1. While these are rough numbers, much of the
time saving comes from the powerful database framework, Automapper,
and validation pipelines which can save a (proportionally) large amount
of time compared to PHP/Symfony.

100

7.9. Developer feedback

Table 7.1: Simple CRUD migration estimate

Endpoint Octopus estimate Squid estimate
DTO object 40 minutes 15 minutes
GET
Paginated

1 hour (+ 30 minutes
documentation)

30 minutes

GET by Id 10 minutes
POST 1 hour 10 minutes 30 minutes (+ 10 min-

utes validators)
DELETE 20 - 30 minutes 10 minutes
PUT 40 minutes 15 minutes

Total 4 hours 30 minutes 2 hours

Mid-level engineer

For this category, I asked my colleague Bc. Max Hejda, to provide his point
of view on a change he made during the project.

1. ”I have minimal experience with .NET (actually, this is the first major
work I’ve done in it - I did a few minor things on another .NET project).
With PHP, I have quite extensive experience from both work and school-
related and pseudo-school projects. I work with Nette, Symfony. I did
a few smaller development tasks on Atlantis but didn’t know the Atlantis
domain much. Additionally, I am actively involved in DevOps operations
at Atlantis.”

2. ”I had to get quite familiar. It is actually the second strongly typed
language I have used for web application development (the first was Java
in Distributed Systems). It was very interesting to get acquainted with
EF (probably the most well-developed ORM I’ve encountered so far),
AutoMapper.”

3. ”I did the testing using a prepared methodology with snapshot testing
against Octopus. Using this method, I tested the GET requests. The
remaining operations were tested using integration tests, to ensure the
logic matches the underlying code of Octopus.”

4. ”The Stocks CRUD took me about 10 hours including tests. A relatively
large part took understanding how CRUD works in Octopus and figuring
out how to properly implement this in .NET. The actual implementation
was quite comfortable.”

101

7. Testing

Junior engineer

1. ”I have never programmed in .NET or PHP. My primary language
is TypeScript, the closest I’ve come to .NET would be Java and Kotlin,
in which I’ve only worked on school projects and assignments. I have no
experience with Atlantis.”

2. • ”The first issue was with the JaguFilterable dependency (unlike
others, it didn’t import automatically and even with the correct
GitLab login, it required additional manual steps which I needed
help with, but eventually, it was resolved according to the readme
here).”

• ”The README instructions for importing the DB dump (in Oc-
topus) had underscores instead of hyphens in the container name,
which tripped me up for a bit (it’s hard to notice).”

• ”On the Wiki of Octopus, it’s hard to figure out what each access
is for, and there was a wrong link, which was very confusing (thus
it wasn’t clear at all from where I should copy the access data into
Postman).”

• ”Generally, there was a lot new, but I mostly understood it intu-
itively from the context of the project.”

3. ”I tested the Squid API through Swagger and Postman - trying to enter
both invalid and valid values, etc. (the address was interesting). I did
the same on Octopus, where I really appreciated the comparison strategy
because it saved a lot of work, and I would like it if something similar
could be done for commands, though I understand that it wouldn’t be
as straightforward. Then I also uncovered a few errors while implement-
ing unit tests on handlers.” ”I think the current testing method covers
the vast majority of problems, but it relies a lot on having people who
are not lazy to explore Octopus behavior and resolve specific behaviors
(see creating an empty default address in the DB if null is received in
the create request).”

4. ”The changes took me about 12 hours, but that includes getting the
project up and running and understanding everything necessary to write
it. It was a good work environment, the project is clear enough for
a newcomer to orient themselves in a reasonable amount of time. The
only thing that might be worth documenting is the flow from controller
to DB (i.e., everything that needs to be considered and what it affects
along the way), because that was sometimes a bit of black magic.”

The junior engineer accomplished one of the CRUD migrations, which ended
up taking around 12 hours, including project setup. Unfortunately, many of
the issues that arose were caused by the environment setup on the Octopus

102

7.9. Developer feedback

side. Altogether, this is a favorable result. The implementation can be imme-
diately deployed thanks to the layer of safety with the strangler façade, which
immediately started testing the traffic with the new solution.

7.9.1 Feedback Conclusion
With the varied developer backgrounds, this research strives to find the com-
mon issues among all levels of seniority. The team has a diverse set of skills
from various different technologies. Let us explore some of the issues that
arose.

• Documentation: The documentation seems to be lacking, which is un-
derstandable. My experience revolves around .NET. Therefore, the
setup of the development environment came naturally to me. How-
ever, this was not something that is quite as simple for people with less
experience with .NET. As a remediation, I have contributed to the team
Wiki with various aspects of the solution, and I have created a detailed
step-by-step setup guide for the environment, which is available in the
solution README.

• Learning curve: The migration to .NET has a learning curve, especially
for those less experienced with strongly typed languages. However, Au-
tomapper and Entity Framework were highlighted as beneficial for sim-
plifying database operations.

• Onboarding: For new developers, some structured initial approach with
frequent feedback sessions and detailed walkthroughs of the architecture
could be beneficial to lessen the initial challenges.

Overall, the migration project shows promise, with solid expectations from
the experienced developers and successful initial implementations by the team.
By addressing the challenges highlighted here, the company can look forward
to a smooth transition to the .NET platform.

103

CHAPTER 8
Conclusion

In this thesis, we tackle the challenge of migrating the Atlantis inventory sys-
tem from a PHP backend to .NET. This migration was more than translating
code, rather it was a strategic upgrade that makes the system more robust,
scalable, and easier to maintain, preparing it for future growth.

We have done our due diligence in maintaining compatibility with existing
systems used by the company, like the frontend, the database, and authenti-
cation services, to ensure the transition does not disrupt the system’s ongoing
operations. This, in conjunction with the implementation of the Strangler Fig
pattern, will make sure the business runs smoothly during the migration.

The new system is designed to be organized and easy to maintain through
the use of the Clean Architecture, CQRS, and DDD. These architectural pat-
terns improve on the previous architecture by dividing responsibilities and
creating a more modular design. During the implementation of the new sys-
tem, the status was closely communicated with the team, who’s members later
participated in a survey by making changes and confirming the improvement
in the maintainability of the solution.

The implementation of the architecture has been tested on a production-
like environment, with all of the components deployed. This critical step
has shown that the implemented Strangler façade is stable and can be used
as a foundation for fully migrating to the new system. The monitoring capa-
bilities also showed improved performance of the new system.

The project still has a long way to go. The tooling provided as part of
the thesis can be used as a foundation to migrate the rest of the system in
a controlled, phased manner.

In conclusion, the thesis provides a detailed plan for system migration
that evaluates both the old and new technologies. It serves as a useful guide
for similar migration projects, showing how to update complex systems with
minimal impact on daily operations.

105

Bibliography

[1] Microsoft Azure Architecture Center: Strangler Fig pattern. 2024, ac-
cessed: 2024-03-23. Available at: https://learn.microsoft.com/en-us/
azure/architecture/patterns/strangler-fig

[2] Microsoft: Microservices architecture style. 2024, accessed: 2024-
04-24. Available at: https://learn.microsoft.com/en-us/azure/
architecture/guide/architecture-styles/microservices

[3] Microsoft: Common web application architectures. 2024, accessed: 2024-
04-24. Available at: https://learn.microsoft.com/en-us/dotnet/
architecture/modern-web-apps-azure/common-web-application-
architectures

[4] Martin, R.: Clean Architecture: A Craftsman’s Guide to Software
Structure and Design. Martin, Robert C, Prentice Hall, 2018, ISBN
9780134494166. Available at: https://books.google.cz/books?id=
8ngAkAEACAAJ

[5] Fowler, M.: Bounded Context. 2014, accessed: 2024-05-04. Available at:
https://martinfowler.com/bliki/BoundedContext.html

[6] Microsoft: Middlewares in ASP.NET Core. 2024, accessed: 2024-04-
19. Available at: https://learn.microsoft.com/en-us/aspnet/core/
fundamentals/middleware

[7] Li, C.-Y.; Ma, S.-P.; Lu, T.-W.: Microservice Migration Using Stran-
gler Fig Pattern: A Case Study on the Green Button System. In
2020 International Computer Symposium (ICS), 2020, s. 519–524, doi:
10.1109/ICS51289.2020.00107.

[8] Kovář, P.: Backend skladového systému. Master’s thesis, Czech Technical
University in Prague, Faculty of Information Technology, 2019. Available
at: https://dspace.cvut.cz/handle/10467/82591

[9] Malec, O.: Frontend skladového systému. Master’s thesis, Czech Technical
University in Prague, Faculty of Information Technology, 2019. Available
at: https://dspace.cvut.cz/handle/10467/86593

107

https://learn.microsoft.com/en-us/azure/architecture/patterns/strangler-fig
https://learn.microsoft.com/en-us/azure/architecture/patterns/strangler-fig
https://learn.microsoft.com/en-us/azure/architecture/guide/architecture-styles/microservices
https://learn.microsoft.com/en-us/azure/architecture/guide/architecture-styles/microservices
https://learn.microsoft.com/en-us/dotnet/architecture/modern-web-apps-azure/common-web-application-architectures
https://learn.microsoft.com/en-us/dotnet/architecture/modern-web-apps-azure/common-web-application-architectures
https://learn.microsoft.com/en-us/dotnet/architecture/modern-web-apps-azure/common-web-application-architectures
https://books.google.cz/books?id=8ngAkAEACAAJ
https://books.google.cz/books?id=8ngAkAEACAAJ
https://martinfowler.com/bliki/BoundedContext.html
https://learn.microsoft.com/en-us/aspnet/core/fundamentals/middleware
https://learn.microsoft.com/en-us/aspnet/core/fundamentals/middleware
https://dspace.cvut.cz/handle/10467/82591
https://dspace.cvut.cz/handle/10467/86593

Bibliography

[10] Runeson, P.; Höst, M.: Guidelines for conducting and reporting case
study research in software engineering. Empirical Software Engineer-
ing, 2009, ISSN 1573-7616, doi:10.1007/s10664-008-9102-8. Available at:
https://doi.org/10.1007/s10664-008-9102-8

[11] Community, S.: Symfony PHP Framework. 2024, accessed: 2024-03-27.
Available at: https://symfony.com/

[12] Adermann, N.; Boggiano, J.: Composer: Dependency Manager for PHP.
2024, accessed: 2024-03-26. Available at: https://getcomposer.org/

[13] Hardt, D.: The OAuth 2.0 Authorization Framework. RFC 6749, RFC
Editor, Oct 2012, accessed: 2024-03-27. Available at: https://www.rfc-
editor.org/rfc/rfc6749.txt

[14] Group, T. P.: PHP: Documentation. 2023, accessed: 2024-03-19. Avail-
able at: https://www.php.net/docs.php

[15] Group, P. G. D.: PostgreSQL: The World’s Most Advanced Open Source
Relational Database. 2024, accessed: 2024-03-27. Available at: https:
//www.postgresql.org/

[16] Labs, R.: Redis. 2024, accessed: 2024-03-27. Available at: https://
redis.io/

[17] Inc., D.: Docker: Empowering App Development for Developers. 2024,
accessed: 2024-03-31. Available at: https://www.docker.com/

[18] Sysoev, I.: nginx: HTTP and reverse proxy server. 2024, accessed: 2024-
03-27. Available at: https://nginx.org/

[19] Vue.js: The Progressive JavaScript Framework. 2024, accessed: 2024-03-
27. Available at: https://vuejs.org/

[20] Baresi, L.; Garriga, M.; De Renzis, A.: Microservices Identification
Through Interface Analysis. In Service-Oriented and Cloud Computing,
editace F. De Paoli; S. Schulte; E. Broch Johnsen, Cham: Springer In-
ternational Publishing, 2017, ISBN 978-3-319-67262-5, s. 19–33.

[21] Microsoft: File uploads in ASP.NET Core. 2024, Accessed: 2024-03-14.
Available at: https://learn.microsoft.com/en-us/aspnet/core/mvc/
models/file-uploads?view=aspnetcore-8.0

[22] MinIO, I.: MinIO: High Performance, Kubernetes Native Object Storage.
2023, accessed: 2024-04-05. Available at: https://min.io/

[23] Richards, M.; Ford, N.: Fundamentals of Software Architecture: An Engi-
neering Approach. O’Reilly Media, 2020, ISBN 9781492043409. Available
at: https://books.google.cz/books?id=wa7MDwAAQBAJ

108

https://doi.org/10.1007/s10664-008-9102-8
https://symfony.com/
https://getcomposer.org/
https://www.rfc-editor.org/rfc/rfc6749.txt
https://www.rfc-editor.org/rfc/rfc6749.txt
https://www.php.net/docs.php
https://www.postgresql.org/
https://www.postgresql.org/
https://redis.io/
https://redis.io/
https://www.docker.com/
https://nginx.org/
https://vuejs.org/
https://learn.microsoft.com/en-us/aspnet/core/mvc/models/file-uploads?view=aspnetcore-8.0
https://learn.microsoft.com/en-us/aspnet/core/mvc/models/file-uploads?view=aspnetcore-8.0
https://min.io/
https://books.google.cz/books?id=wa7MDwAAQBAJ

Bibliography

[24] Engineering, S.: Event Sourcing for an Inventory Avail-
ability Solution. 2024, accessed: 2024-04-12. Available at:
https://engineering.salesforce.com/event-sourcing-for-an-
inventory-availability-solution-3cc0daf5a742/

[25] TechEmpower Framework Benchmarks. Accessed: 2024-03-19. Available
at: https://www.techempower.com/benchmarks/

[26] Dascalu, A.: Benchmarks: .NET vs PHP vs Go vs NodeJS. 2020, ac-
cessed: 2024-03-19. Available at: https://andreidascalu.medium.com/
benchmarks-dotnet-vs-php-vs-go-vs-nodejs-98a0ec9b56ef

[27] Popov, N.: Discussion on PHP 8 JIT. 1 2019, accessed: 2024-03-19.
Available at: https://externals.io/message/103903#103927

[28] Microsoft: ReadyToRun Overview. 2023, accessed: 2024-03-19. Available
at: https://learn.microsoft.com/en-us/dotnet/core/deploying/
ready-to-run

[29] Microsoft: ASP.NET Core Security. 2024, accessed: 2024-04-28. Available
at: https://learn.microsoft.com/en-us/aspnet/core/security/

[30] Microsoft: Configuration in ASP.NET Core. 2024, accessed: 2024-04-
28. Available at: https://learn.microsoft.com/en-us/aspnet/core/
fundamentals/configuration/

[31] Microsoft: Logging in ASP.NET Core. 2024, accessed: 2024-04-
28. Available at: https://learn.microsoft.com/en-us/aspnet/core/
fundamentals/logging/

[32] Patterson, C.; other contributors: MassTransit. 2024, accessed: 2024-04-
28. Available at: https://masstransit-project.com/

[33] Microsoft: Building .NET Docker Images. 2024, accessed: 2024-04-
28. Available at: https://learn.microsoft.com/en-us/aspnet/core/
host-and-deploy/docker/building-net-docker-images

[34] Event Storming: Event Storming Resources. 2024, accessed: 2024-03-20.
Available at: https://www.eventstorming.com/#resources

[35] Domain Storytelling: Quick Start Guide. 2024, accessed: 2024-03-20.
Available at: https://domainstorytelling.org/quick-start-guide

[36] Banerjee, M.; Roy, S. R.; Kumar, C.: Feature Oriented Programming:
A step towards flexible composition of modular programming. In 2012 1st
International Conference on Recent Advances in Information Technology
(RAIT), 2012, s. 369–373, doi:10.1109/RAIT.2012.6194448.

109

https://engineering.salesforce.com/event-sourcing-for-an-inventory-availability-solution-3cc0daf5a742/
https://engineering.salesforce.com/event-sourcing-for-an-inventory-availability-solution-3cc0daf5a742/
https://www.techempower.com/benchmarks/
https://andreidascalu.medium.com/benchmarks-dotnet-vs-php-vs-go-vs-nodejs-98a0ec9b56ef
https://andreidascalu.medium.com/benchmarks-dotnet-vs-php-vs-go-vs-nodejs-98a0ec9b56ef
https://externals.io/message/103903#103927
https://learn.microsoft.com/en-us/dotnet/core/deploying/ready-to-run
https://learn.microsoft.com/en-us/dotnet/core/deploying/ready-to-run
https://learn.microsoft.com/en-us/aspnet/core/security/
https://learn.microsoft.com/en-us/aspnet/core/fundamentals/configuration/
https://learn.microsoft.com/en-us/aspnet/core/fundamentals/configuration/
https://learn.microsoft.com/en-us/aspnet/core/fundamentals/logging/
https://learn.microsoft.com/en-us/aspnet/core/fundamentals/logging/
https://masstransit-project.com/
https://learn.microsoft.com/en-us/aspnet/core/host-and-deploy/docker/building-net-docker-images
https://learn.microsoft.com/en-us/aspnet/core/host-and-deploy/docker/building-net-docker-images
https://www.eventstorming.com/#resources
https://domainstorytelling.org/quick-start-guide

Bibliography

[37] Foote, B.; Yoder, J.: Big Ball of Mud. 1997, accessed: 2024-04-24. Avail-
able at: http://www.laputan.org/mud/mud.html

[38] Microsoft: Command and Query Responsibility Segregation
(CQRS). 2024, accessed: 2024-05-04. Available at: https:
//learn.microsoft.com/en-us/azure/architecture/patterns/cqrs

[39] Martin, R.: The Clean Coder: A Code of Conduct for Profes-
sional Programmers. Robert C. Martin Series, Pearson Education,
2011, ISBN 9780132542883. Available at: https://books.google.cz/
books?id=ik0qCTVzl44C

[40] Bogard, J.; other contributors: MediatR. 2024, accessed: 2024-05-04.
Available at: https://github.com/jbogard/MediatR

[41] Pham, M. D.: FitLife - game about studying at FIT. Bachelor’s thesis,
Czech Technical University in Prague, Faculty of Information Technology,
2022. Available at: https://dspace.cvut.cz/handle/10467/1016022

[42] Fowler, M.: Anemic Domain Model. 2003, accessed: 2024-05-04. Available
at: https://martinfowler.com/bliki/AnemicDomainModel.html

[43] Skinner, J.; other contributors: FluentValidation. 2024, accessed:
2024-05-03. Available at: https://github.com/FluentValidation/
FluentValidation

[44] Microsoft; other contributors: Entity Framework Core. 2024, accessed:
2024-04-27. Available at: https://github.com/dotnet/efcore

[45] Microsoft: Scaffolding - Entity Framework Core. 2024, accessed: 2024-
04-12. Available at: https://learn.microsoft.com/en-us/ef/core/
managing-schemas/scaffolding

[46] Lock, A.: Introduction to Authentication with ASP.NET Core.
2024, accessed: 2024-04-29. Available at: https://andrewlock.net/
introduction-to-authentication-with-asp-net-core/

[47] Microsoft: Role-based authorization in ASP.NET Core. 2024, ac-
cessed: 2024-04-29. Available at: https://learn.microsoft.com/en-us/
aspnet/core/security/authorization/roles

[48] Keycloak: Audience Support in Keycloak. 2024, accessed: 2024-05-01.
Available at: https://www.keycloak.org/docs/latest/server_admin/
#audience-support

[49] Morris, R.; other contributors: Swashbuckle.AspNetCore. 2024, accessed:
2024-05-03. Available at: https://github.com/domaindrivendev/
Swashbuckle.AspNetCore

110

http://www.laputan.org/mud/mud.html
https://learn.microsoft.com/en-us/azure/architecture/patterns/cqrs
https://learn.microsoft.com/en-us/azure/architecture/patterns/cqrs
https://books.google.cz/books?id=ik0qCTVzl44C
https://books.google.cz/books?id=ik0qCTVzl44C
https://github.com/jbogard/MediatR
https://dspace.cvut.cz/handle/10467/1016022
https://martinfowler.com/bliki/AnemicDomainModel.html
https://github.com/FluentValidation/FluentValidation
https://github.com/FluentValidation/FluentValidation
https://github.com/dotnet/efcore
https://learn.microsoft.com/en-us/ef/core/managing-schemas/scaffolding
https://learn.microsoft.com/en-us/ef/core/managing-schemas/scaffolding
https://andrewlock.net/introduction-to-authentication-with-asp-net-core/
https://andrewlock.net/introduction-to-authentication-with-asp-net-core/
https://learn.microsoft.com/en-us/aspnet/core/security/authorization/roles
https://learn.microsoft.com/en-us/aspnet/core/security/authorization/roles
https://www.keycloak.org/docs/latest/server_admin/#audience-support
https://www.keycloak.org/docs/latest/server_admin/#audience-support
https://github.com/domaindrivendev/Swashbuckle.AspNetCore
https://github.com/domaindrivendev/Swashbuckle.AspNetCore

Bibliography

[50] Microsoft: Getting Started with Swashbuckle in ASP.NET
Core: XML Comments. 2024, accessed: 2024-05-03. Available at:
https://learn.microsoft.com/en-us/aspnet/core/tutorials/
getting-started-with-swashbuckle?view=aspnetcore-8.0&tabs=
visual-studio#xml-comments

[51] Blumhardt, N.; other contributors: Serilog. 2024, accessed: 2024-05-04.
Available at: https://github.com/serilog/serilog

[52] Microsoft: FeatureManagement-Dotnet. 2024, accessed: 2024-04-21.
Available at: https://github.com/microsoft/FeatureManagement-
Dotnet

[53] Newkirk, J.; other contributors: xUnit.net. 2024, accessed: 2024-04-12.
Available at: https://xunit.net/

[54] Hofmeister, A.; other contributors: Testcontainers for .NET. 2024, ac-
cessed: 2024-04-12. Available at: https://dotnet.testcontainers.org/

[55] Bogard, J.; other contributors: Respawn. 2024, accessed: 2024-04-15.
Available at: https://github.com/jbogard/Respawn

[56] Seemann, M.; other contributors: AutoFixture. 2024, accessed: 2024-04-
17. Available at: https://github.com/AutoFixture/AutoFixture

[57] Chavez, B.; other contributors: Bogus - Faker for .NET. 2024, accessed:
2024-04-17. Available at: https://github.com/bchavez/Bogus

[58] Cropp, S.; other contributors: Verify. 2024, accessed: 2024-04-14. Avail-
able at: https://github.com/VerifyTests/Verify

[59] Microsoft: Integration tests in ASP.NET Core. 2024, accessed: 2024-04-
17. Available at: https://learn.microsoft.com/en-us/aspnet/core/
test/integration-tests

[60] Doomen, D.; other contributors: Fluent Assertions. 2024, accessed:
2024-04-12. Available at: https://github.com/fluentassertions/
fluentassertions

111

https://learn.microsoft.com/en-us/aspnet/core/tutorials/getting-started-with-swashbuckle?view=aspnetcore-8.0&tabs=visual-studio#xml-comments
https://learn.microsoft.com/en-us/aspnet/core/tutorials/getting-started-with-swashbuckle?view=aspnetcore-8.0&tabs=visual-studio#xml-comments
https://learn.microsoft.com/en-us/aspnet/core/tutorials/getting-started-with-swashbuckle?view=aspnetcore-8.0&tabs=visual-studio#xml-comments
https://github.com/serilog/serilog
https://github.com/microsoft/FeatureManagement-Dotnet
https://github.com/microsoft/FeatureManagement-Dotnet
https://xunit.net/
https://dotnet.testcontainers.org/
https://github.com/jbogard/Respawn
https://github.com/AutoFixture/AutoFixture
https://github.com/bchavez/Bogus
https://github.com/VerifyTests/Verify
https://learn.microsoft.com/en-us/aspnet/core/test/integration-tests
https://learn.microsoft.com/en-us/aspnet/core/test/integration-tests
https://github.com/fluentassertions/fluentassertions
https://github.com/fluentassertions/fluentassertions

APPENDIX A
Acronyms

API Application Programming Interface.

CORS Cross-origin resource sharing.

CQRS Command and Query Responsibility Segregation.

CRUD Create, read, update and delete.

DDD Domain Driven Design.

HTTP Hypertext Transfer Protocol.

JWT JSON Web Tokens.

ORM Object Relational Mapping.

REST Representational State Transfer.

TDD Test Driven Development.

UI User interface.

113

APPENDIX B
Contents of enclosed SD-Card

readme.txt the file with SD-Card contents description
text.. the thesis text directory

thesis...............the directory of LATEX source codes of the thesis
thesis.pdf............................the thesis text in PDF format

115

	Introduction
	An important note - NDA
	Analysis
	Analysis of Atlantis
	Qualitative and Quantitative research approaches
	Phases of analysis

	Analysis of previous works - Ing. Pavel Kovář
	System architecture - Authorization
	Used technologies

	Analysis of previous works - Ing. Oldřich Malec
	Existing system
	Used technologies

	API Categories
	Code observations
	Cross-cutting concerns

	Symfony vs .NET
	Troubles with the current system
	Previous efforts
	Performance
	Symfony (PHP)
	.NET (C#)

	Compatibility
	Conclusion

	Migration strategies
	Full migration
	Phased migration
	Strangler Fig Pattern
	A façade as the interceptor
	The phases of Strangler fig pattern
	Migration by features
	Migration by blocks

	Phased migration - database
	New database
	Backwards-compatible database

	Conclusion

	Design
	Architecture
	Why Architecture matters
	Current architecture
	Enhanced architecture
	SOA/Microservices
	Monolith
	Selecting the architecture

	Clean Architecture
	Understanding Clean Architecture

	CQRS and Domain Driven Design (DDD)
	Final note on system design

	30,000-foot Overview
	Naming the new system - Squid

	10,000-foot Overview - Strangler façade
	Key factors

	10,000-foot Overview - Squid API

	Implementation
	Implementation - Squid API
	Motivation
	Cooperation with Max

	Clean architecture in .NET
	CQRS and DDD implementation
	Validation
	Database
	Authentication and Authorization
	Porting Octopus Authentication and Authorization
	Permission-based Authentication and Authorization
	API Documentation - Swashbuckle library
	Logging

	Implementation - Strangler façade
	Modes of the Strangler façade
	Using Octopus mode
	Using Comparison mode
	Using Squid mode

	Implementation details - Integration issues

	Testing
	Testing
	Manual testing
	Automated testing
	Basics of automated testing
	Unit testing
	Integration testing with throwaway Docker containers

	Resetting of database between tests
	Seeding database - for testing
	Snapshot testing
	Tying it all together
	Test Driven Development - TDD
	Summary

	E2E Testing
	Developer feedback
	Feedback Conclusion

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed SD-Card

