
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of master’s thesis

Using malware detection techniques for dependency detection

of R programs

Bc. Petr Adámek

doc. Ing. Filip Křikava, Ph.D.

Informatics

Computer Security

Department of Information Security

until the end of summer semester 2024/2025

Instructions

The R programming language is a popular choice for data science. It features a large

ecosystem of over 19k user-contributed packages hosted at CRAN (The Comprehensive R

Archive Network). CRAN is a curated repository; each submitted package goes through a

series of checks, including the execution of its runnable code, i.e., R programs extracted

from package examples, tests, and vignettes. One way to reduce the risk of malicious or

misbehaving packages entering CRAN is to audit the use of the package dependencies.

This thesis aims to design and implement a tool that will track dependencies of R

programs on Linux and collect them into sandboxed environments.

Analyze methods for tracking dependencies of computer programs used in malware

detection and various sources of non-determinism for sandboxed environments.

Get familiar with the R programming language and study how these methods could be

used for tracing dependencies in R programs.

Design and implement a tool to trace dependencies of R programs.

Design and implement a tool that can create the program sandbox using the recorded

traces.

The resulting tools should become part of the R4R grant; therefore, they should be cleanly

written, reasonably documented, and tested.

Electronically approved by prof. Ing. Róbert Lórencz, CSc. on 16 February 2024 in Prague.

Master’s thesis

Using malware detection techniques for
dependency detection of R programs

Bc. Petr Adámek

Department of Information Security
Supervisor: doc. Ing. Filip Křikava, Ph.D.

May 9, 2024

Acknowledgements

I would like to thank my supervisor, Filip Křikava, who brought this fascinat-
ing topic up to me. For keeping me going with it and supporting me along any
hitches, pitfalls, and boulders on the path to creating this work. My family
for convincing me it is worth going forward with my studies, for all the food
and letting me focus on the work when I needed it the most. And all my
friends who kept my spirits up outside of school.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. I
further declare that I have created the thesis or part of it in the mode of
employee work pursuant to Section 58 of the Copyright Act as an employee
of the Czech Technical University in Prague. This fact does not affect the
provisions of Section 47b of Act No. 111/1998 Coll., the Higher Education
Act, as amended.

In Prague on May 9, 2024

Czech Technical University in Prague
Faculty of Information Technology
© 2024 Petr Adámek. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Adámek, Petr. Using malware detection techniques for dependency detection
of R programs. Master’s thesis. Czech Technical University in Prague, Faculty
of Information Technology, 2024.

Abstract

R is a programming language commonly used in data science. This is possible
due to the large number of publicly accessible packages. To reduce the number
of misbehaving packages, some checks are made. These include automatically
running code examples but still leave a lot of room for manual checking.

A tool that would automatically gather the dependencies of any given R
program could significantly reduce the manual overhead required. It would
also find use in the context of creating an environment in which a program’s
result could be consistently reproduced.

This thesis imitates some of the work done in tools used to analyse or
sandbox potentially harmful programs.

Using the system call interposition mechanisms in the Linux kernel, I have
created a tool which can track dependencies of a given program. These de-
pendencies can then be used to generate a report for auditing or create an
environment in which the program execution can be reproduced.

Even though the tool cannot be directly used for any security-critical pur-
poses due to the used mechanism and its associated race conditions, the tool
is useful in reproducing shell scripts, execution of R programs, and others.

The thesis also mentions many of the variables and potential attack vectors
a complete solution would have to consider, which are often glossed over.
Moreover, other potential manners in which a tracing mechanism such as this
could be implemented are explored.

Keywords sandboxing, reproducibility, R programming language, dynamic
analysis, program dependencies tracking

vii

Abstract

R je programovací jazyk, který se běžně používá v datové vědě. Toto je možné
díky velkému množství veřejně dostupných balíčků. Aby se snížil počet ne-
správně se chovajících balíčků, provádí se několik kontrol. Ty zahrnují auto-
maticky spouštěné příklady kódu, ale i přesto stále zůstává velký prostor pro
nutné ruční kontroly.

Nástroj, který by automaticky shromažďoval závislosti libovolného pro-
gramu napsaného v R, by mohl výrazně snížit nutnou manuální práci. Využití
by našel také v souvislosti s vytvářením prostředí, v němž by bylo možné
konzistentně reprodukovat výsledek programu.

Tato diplomová práce se inspiruje stávajícími řešeními analýzy a sandbo-
xingu potenciálně škodlivých programů.

Použitím mechanismu pro odchycení systémových volání z Linuxového já-
dra jsem vytvořil nástroj, který umí sledovat základní závislosti daného pro-
gramu. Znalost těchto závislostí lze následně využít pro vytvoření zprávy pro
audit nebo vytvoření prostředí, ve kterém lze program reprodukovat.

Nástroj nelze přímo použít pro analýzu škodlivých programů. Zvolený pří-
stup kontroly systmových volání je příliš zranitelný útoky, které využívají
nejasností v pořadí výkonu jednotlivých operací. Přesto je nástroj užitečný
při reprodukci shellových skriptů, spouštění programů R a dalších.

V práci se také zmiňuje celý aparát, proč je možné tuto analýzu provést
a co vše by muselo být vyřešeno pro úplné řešení. Pro tyto účely jsou zmíněny
i jiné metody sledování operací a závislostí, které by mělo být možné využít
pro robustnější řešení.

Klíčová slova sandboxing, reprodukovatelnost, programovací jazyk R, dy-
namická analýza, sledování závislostí programu

ix

Contents

Introduction 1

1 Malware analysis 5
1.1 Determinism . 6
1.2 Program analysis methods . 6
1.3 Evading detection . 9

2 Sandbox construction 11
2.1 Dependency tracking . 12
2.2 Sandbox structure . 13
2.3 Sandboxing boundaries . 14

3 Sources of nondeterminism 21
3.1 Hardware . 21
3.2 Kernel . 22
3.3 Filesystems . 23
3.4 Inherent . 23
3.5 Reproducing the process sandbox 24
3.6 Privilege escalatuion . 25
3.7 Analysis framework detection 25

4 Tracing implementation 27
4.1 User-space based approaches 27
4.2 Kernel-space approaches . 30
4.3 State of the art tracers . 31

5 R4R Tool 33
5.1 R code execution . 34
5.2 The tool API . 34
5.3 Tool architecture . 35

xi

5.4 Tracer - FrontEnd . 36
5.5 Middleend . 42
5.6 Backend . 45

6 Result assessment 49
6.1 Correctness . 49
6.2 Time overhead . 51
6.3 Provided information . 51

7 Current limitations and possible extensions 55
7.1 Potentially legal issues . 55
7.2 Files which should not be shared 55
7.3 Device recording . 56
7.4 Improvements in networking . 56
7.5 Privilege handling . 56
7.6 Multithreading . 56
7.7 Supporting other architectures 57
7.8 Supporting other distributions 57

8 Conclusion 59

Bibliography 61

A Acronyms 67

B Contents of the attatchments 69

xii

List of Figures

2.1 The layers a sandbox could be constructed at 15
2.2 Lua code example of hard to transfer language features 19

5.1 The architecture of the tool . 36
5.2 System call handler mapping . 40
5.3 Utilising template overloads for registration of system call handlers. 41
5.4 Example tracing output . 42

6.1 Average runtimes of a Kaggle project 51
6.2 Average runtimes of a graph render 52
6.3 Time overhead of a traced run . 54

xiii

Introduction

R is a programming language commonly used in data science. But currently
no tools exist for automated analysis of dependencies of R programs.

Package repositories for R such as CRAN1 contain thousands[1] of different
libraries. Checking such large count of packages by only hand would be a very
long process. As such, there are automated methods for getting at least the
most basic checks done. CRAN in particular uses R CMD check which does
an analysis of specific language constructs and then attempts to run code
tests and vignettes - essentially documentation combined with runnable code
examples.[2, Appendix A , 22]

While this can serve as a good starting point to check that everything
seems to work, there is still quite a bit of user involvement. For example the
CRAN repository guidelines explicitly state that ‘Packages should not write
in the user’s home filespace ...’[3]. But no automated check for this seems to
be provided along with the aforementioned checks.

Potential uses. By analysing exactly how the R program interacts with
the computer it is running on, a sandbox could be constructed such that the
R program would behave the exact same inside the sandbox and outside of it.

This approach could be taken even further. These little sandboxed envi-
ronments could then be serialised in some manner and transferred to another
device. Such a sandbox would then solve a part of the R4R grant[4] which
aims to create reproducible environments out of real-world R not just packages
which have to adhere to specific standards.

Portability. While the base principles described in this paper can be
applied to any operating system, the specific described are working with the
Linux kernel and are not trivially transferable. An operating system using a
different kernel — especially if it were not using a unix-based one — would
require significant changes, as the entire tracing and logging mechanism would
have to be reimplemented.

1https://cran.r-project.org/

1

Introduction

Security. Is should be noted, that I am not attempting to create a secure
sandbox. That is I will not preemptively attempt to stop the R program
from causing harm to the system it is being run on or otherwise affecting
it. I will merely be tracing what actions are taken. Nor will I attempt to
explicitly create an environment which would try to contain the workings
of the sandboxed program to just that environment, as that might require
sandboxing vectors I have not considered. The created tool is not meant to
handle every possible case, just the usual one.

The main distinction between what this work covers compared to tradi-
tional anti-viruses is that I only ever need to track the behaviour of a program,
but I will not further create signatures of the files in an attempt to classify it.
Any detection avoiding or sandbox-detecting of a malware sample could be
used by the code I will be working with and needs to be accounted for. This
program never needs to restrict a certain action which would not be restricted
otherwise. I need to ensure all the actions reaching outside of the sandbox are
accounted for and logged.

Sandboxing. The definition of a sandbox I will be working with is ‘We use
the term sandboxing to describe the concept of confining a helper application
to a restricted environment, within which it has free reign.’ [5] The restricted
environment may include functionality which could be used to lift some of the
sandbox restrictions. Or it may in and of itself be insecure as the program we
have attempted to sandbox is malicious and we will not restrict the program
from say spreading to another system over the network.

Sandboxes are generally created with two modules. One is the restrict-
ing engine which ensures that all relevant actions taken will be subject to
restrictions. The other is the policy engine which decides whether or not to
allow individual actions. This can be observed in many different sandboxing
approaches[6]. But the policy being enforced will mimic that of the original
operating system — a sandbox itself where each process can be considered a
helper application.

What I try to create is the most constraining set of rules, which will not
actually restrict the runtime of the program in any way. These are rules which
have to be met for the program to run unimpeded and any outside it are to
be restricted by the sandbox environment.

This issue could also be framed as getting list of all resources the program
depends on and necessary permissions to those resources.

I do not attempt to solve the issue of ensuring resources are recreated
and transferred even if they are on a contained on a different system or get
modified between the start of the program and them getting stored for reuse.
They are merely captured at one point. I do this as I assume the program is
neither self-destructive nor self-modifying. That two runs of a program will
inherently want to produce the same result. This is described in section 5.

Reproducibility. It is also worth mentioning why reproducibility is so
important. Just having the correct files might be enough, to rerun a program

2

and get the same output is good, but it does not necessarily convince us of
the validity of the output. For that re-running the program with a different
input or changing the algorithm in some way may be intended. But if we were
to share only a portion of a library, any form of modification could break the
program in unexpected ways. So, a method which detects the dependencies
on a higher level may be interesting.

But any given program may depend on not just files. But perhaps a specific
external device. Or a specific configuration of his system. Reproducing such
programs is hard, if not outright impossible. The tool is meant to assist a
nontechnical user in creating an environment which can work as a baseline for
gathering all the possible dependencies.

The tool. A prototype is not really sufficient for many of the things
mentioned here. While it may be possible to implement only a portion of
the necessary functionality, in reality, the portion has to be self-contained and
quite exhaustive. Otherwise. even a slightly more complicated program will
break. But since these are functions used in a very limited number of cases,
it is a lot of work which is not seen by the user at all. This thesis is not
attempting to create a prototype which does a lot of things which sort of work
but one thing which it does well and can be further extended.

A tool that can reliably report all of the dependencies could also have
other uses. The tool could alleviate some of the burden of analysing unknown
libraries in CRAN. Not only would it give a good overview of what programs
the library depends on. It could also point out differences between two versions
of a library. To my knowledge, no fully-automated process exists for checking
CRAN packages, and much of the analysis has to be done by hand. If an R
library suddenly gains a new dependency, this tool could raise a red flag and
inform the auditor that a more thorough check might be needed.

3

Chapter 1
Malware analysis

To make an analysis of malware, we first need to say what malware even is. I
will be using the following definition: ‘Malicious code (or malware) is defined
as software that fulfills the deliberately harmful intent of an attacker’ [7, p. 1]

The decision on whether or not any given software is to be considered
malware commonly follows the following procedure described in [7, p. 1] [8,
88:2]

1. A signature of the file is calculated. The signature differs depending on
which anti-virus checks the given file. Getting a relevant signature is a
large part of malware analysis. This signature may be calculated both
on the basis of what the software does on static analysis of the file.

2. If a given signature matches any known software, it is considered to be
that type of software — malware or safe.

3. If the signature is not matched, it is then further analysed by a person
with the assistance of various tools.

Most of the mechanisms used to get a good signature are not important for
this thesis. Nor is the signature matching to other known software a relevant
issue.

The third part of the analysis is the only truly relevant one. I intend to
make use of part of the mechanisms used to gather information about the
executable rather than decision making. Mechanisms used in manual analysis
of a file when automated matching fails can be used for this analysis as well.

The relevant bits can be tools which gather information about a program
in order to restrict further executions of it or a dedicated analyser.[9, 10, 11]
This does not particularly matter.

5

1. Malware analysis

1.1 Determinism
In general, all programs are by definition deterministic. With the same set
of input values, the output shall remain the same. The set of input variables
may be very hard, if not for all practical purposes impossible, to reproduce.

All the different inputs can be considered dependencies. Some are more
or less reliably reproducible than others. The operating system or modules
loaded into it can be considered to be dependencies. So can anything accessible
on the filesystem or network. The goal is to reduce these dependencies to a
set of values which can be then be restricted to a sandbox or transferred to
another system.

Some dependencies may have to be mapped to other resources. For exam-
ple, the fact that ‘file descriptor X cannot be written to’ is not important in
and of itself unless I know what resource the descriptor is referring to. What
is important is the fact that the handle is to a file somewhere on the disk and
that when it is open, it should only allow these privileges to the given user.

But some things simply cannot be restricted nor reproduced easily. Dif-
ferent hardware setups can be considered a dependency. Some software may
only work on specific processor types. Or require having a specific graphics
card. Unless I made a list of all the possible quirks and features of hard-
ware components, it is impossible to determine if a given piece of hardware is
necessary for the functionality of a program.

Many malware may decide not to employ their payload based on fragments
found on the operating system.[8, 88:2][12] The values upon which this change
of behaviour is based are the exact values that have to be tracked. The de-
pendencies of a program. I have to ensure they are the same in the sandboxed
environment as they are in the live environment.

1.2 Program analysis methods
Programs can be analysed using two main approaches — static and dynamic
analysis.[8, 88:2] Both have some flaws that make them more or less suited for
this work.

Two key terms for any sort of analysis are soundness and completeness.
An analysis is sound when it will always mark all occurrences of thing it is
meant to detect — it may return false positives. An analysis is complete when
it will never produce false negatives, missing things it is meant to detect.

In an ideal world, a complete and sound analysis would be required. This
proves to be impossible as will be explained in the following sections.

A trivial sound analysis would say that the program requires the exact
way the filesystem is set up to be the same, or even that the entire computer
has to be setup in the same way, including the PIDs of processes. Such an
analysis would surely be sound as there are no files which it could miss. If I

6

1.2. Program analysis methods

were to run the program with the same filesystem state, it would produce —
assuming no other dependencies are present — the same output. The analysis
is very likely not complete as the odds of having a program depending on all
the files on a filesystem are very low.

It is not impossible for that to be the case. A person could launch

ls -lR /

and list information about all files on the system.

1.2.1 Static Analysis
Static analysis works by searching the binary code of the program itself. It
attempts to get information about the program without ever having to run
the program.

This analysis is particularly vulnerable to many code obfuscation tech-
niques which may cause the analysis to quickly lose precision and relevance.
[11, 8, 13]

Even if I were able to guarantee that the input program I encounter will
not be obfuscated or even that I have access to the source code of it, this
will not be sufficient. There are ways in which the values of variables can be
encoded such that resolving these encoded constants to actual useful values
end up as an NP-hard problem.[11]

Moreover, it will not solve the issues where nondeterminism is introduced
into the program at runtime through some other manner.

I could try to enforce that the variables input by the user are constant for
this subset of the issue. The naive approach would only suggest that closing
the input stream - ensuring EOF is always reached - and a pre-set program
environment variables could be sufficient. This would not to consider other
avenues in which user-dependent input can be reached in runtime. This is
further discussed in 3.

This does not mean that, in a very specific environment, static analysis
could not be used for sandboxing. Taking a very specific programming lan-
guage with constraints such that the invariants which I need to enforce are
met could be done. And before loading a program, I would have to prove
that the program does not do anything that I would consider malicious. This
would, however, still allow for attacking the sandbox itself — as described in
section 2.2 the most high level attack vectors attacks either via exploiting the
analysis, compiler, or code execution environment. The existence of a general
language which meets such criteria would directly contradict Rice’s theorem.

Methods for ensuring this can still be done exist. For example the Linux
kernel eBPF mechanism [14] does this by not being a true Turing complete
language. It restricts the code length, disallows loops and such. Furthermore,
it ensures that all interactions with the outside world, the provided API, are
done with valid arguments, not that some generic correctness is reached.

7

1. Malware analysis

1.2.2 Dynamic Analysis

Dynamic analysis consists of actually running the program and observing its
behaviour. This will intrinsically only ever cover a very specific code path.

A much more sophisticated approach, which attempts to resolve all possi-
ble code paths does exist. This is referred to as symbolic execution. It involves
solving a series of constraints on all code branching points and resolving the
branched paths with a new set of constraints.

It is possible to use this in very specific circumstances running in a very
specific sandbox to extend dynamic analysis in some ways to attempt to detect
code paths executing based on sources of nondeterminism which may be used
by malware to avoid detection. [7, p. 1]

This is, however, very technically and computationally expensive and is
unsuitable for our needs as it needs to be run in a machine which can deter-
ministically execute code even in a multithreaded context and can revert the
machine state.

Using just plain dynamic analysis can be done in two ways. Either the
program can be run under a debugger for the sake of examining behaviour of
specific parts of the code. Or the program can be examined for its interactions
with the outside world. [8, 88:2] Since I assume to work with code which is
effectively opaque to me, only the latter approach is viable.

There are security issues bound to using dynamic analysis as it involves
running the code in an environment which may be modified or otherwise used
for communication by the running code. [8, 88:2]

Due to the nature of only executing a singular code path, dynamic analysis
results will differ wildly depending on the input presented. It is very dependent
on any sources of non-determinism. [7, p. 1]

My dynamic analysis can never be sound and complete for all possible
program inputs. It can potentially satisfy these requirements for a very specific
set of input values.

1.2.3 Manual program analysis

Manual analysis can either be done by slowly observing the behaviour of a
program being run under a debugger. Alternatively, some form of sandbox
is employed to observe the behaviour of the program being run in a known
state.[15][16][7, pp. 1-2]

These tools rely on the entire environment being well known. They also
require all programs to be transferred to the target. Instead, my tool is mean
to run on the target machine and observe the changes made there. Because
of this, the tools cannot be taken and directly reused.

8

1.3. Evading detection

1.3 Evading detection
Malware evasion detection can take many forms depending on which type of
analysis it is meant to avoid.

In the case of attempting to avoid signature-based detection, changing just
a couple of bytes can result in the signature being marked different. And as
such is fairly easy to avoid by for example encrypting the program data. [7,
pp. 6-7] This approach may involve both static and dynamic analysis but is
still susceptible to change even if not behavioural change occurs.

The following detection avoiding mechanisms all have to do with modifying
how the program behaves in runtime or otherwise In general when a program
detects it is running under analysis it may decide to not deploy its payload and
instead only act as a normal piece of software.[8, 88:14] If I were to detect all
possible sources of nondeterminism and successfully recreated them in a new
environment, this could be entirely sidestepped as then the program would
always act in the same manner.

Another approach to avoiding detection to execute code at a higher pro-
tection level.[8, 88:13] Essentially making some privileged, untraced portions
of the sandbox execute code on behalf of the malware itself. Although this
may seem like an issue in the design of the sandbox itself and could be avoided
if engineered better, it may be an intrinsic part of how the software operates.
When getting new hardware, a driver for it may have to be loaded into the
kernel or be unusable otherwise. However, since this path exists, it can be
potentially abused.

If I am talking about sandboxing purely in user-space, any way in which
the sandboxed program gets root privileges will have the potential for the root
privileges getting abused to avoid detection.

When a sandbox gets constructed it intrinsically has to consider a portion
of the code to be immutable and for the codeto behave in a certain well-known
way. This separation will be further discussed in the chapter 2.

9

Chapter 2
Sandbox construction

As was hinted at in the previous chapter, I will be using some form of dynamic
analysis. For static analysis to be usable, I’d have to constrains on the running
program which may not be possible for an arbitrary input which is not tailored
for a specific execution environment.

The analysis will consist of running the unknown user code in some known
environment which will allow me to keep track of what it uses. I will be calling
this environment a sandbox.

To ensure a consistent definition of a sandboxing is used, I will be using
the following definition: ‘We use the term sandboxing to describe the concept
of confining a helper application to a restricted environment, within which it
has free reign.’ [5]

Sandbox can be considered as a blanket term for a restricted environment
- a distinction does not have to be made whether the sandbox is a VM, an
isolated computer, or just some user-space mechanism.

Innately, a sandbox has no concept of security. A sandbox is only an
environment which can then, in some manner, communicate with the outside
world. If no such mechanism were present, the sandbox would be useless.
The only communication that could happen would effectively be done by side
channels not meant for communication — such as observing the power draw
of the processor. The defined way to communicate with the outside world will
be referred to as the API of the sandbox.

Using the sandbox for security purposes is the same as enforcing some
sort of policy on the provided API. This can be a firewall, user access rights,
seccomp, or even an antivirus program. All of these approaches take your
request to the provided API and decide if the request should be allowed to
happen and in what scope.

For a sandbox to be secure I need to to prevent the part, where malware
‘fulfills the deliberately harmful intent of an attacker.’ But even defining what
harmful intent is is hard and outside of the scope of a particular sandboxing

11

2. Sandbox construction

mechanism.
Realistically, a sandbox is just the mechanism behind the policy enforce-

ment. Not policy enforcement itself. Anti-viruses are policy enforcers that
use some form of sandbox. Malware analysis tools are programs which do not
enforce a policy, but instead log relevant communication going through the
API.

It should be noted that the restricted environment may not be as small
as a quick glance would suggest. The numerous ways of escaping a chroot
environment on Linux if a user has sufficient permissions [17] should be suffi-
cient indicator of this. But proving that a certain invariant is not accessible
in any way in a sandbox may end up as a variation of the halting problem in
a system not designed for such a usecase.

There are many differences between different types of sandboxes, but only
two are important for this work.

The first distinction is the scope of the sandbox. Is just one process being
sandboxed? Or is it the entire system? This is covered in the section 2.3.

The second is the actual policy enforcement mechanism used. How am
I enforcing what I want on a provided API It may be based on debugging
facilities, antivirus mechanisms or other logging features. The reason this is
covered explicitly is because an existing sandbox may be used. One which I
cannot modify due to whatever reason. This is further explored in the section
4.

2.1 Dependency tracking
To ensure that all the possible sources are captured or at least accounted for,
thesis makes use of existing sandboxing mechanisms. Traditionally, sandbox-
ing is used by operating systems to separate individual processes or even whole
systems using virtualisation. Each individual sandbox has its own rights to
system and other resources. [18]

To gather all the dependencies, I wish to create the smallest possible sand-
box such that the behaviour of the run program will not be affected and then
analyse that sandbox. The construction of a sandbox is important as it should
guarantee nothing outside of the restricted environment will be accessed or
otherwise affected and thus the program behaviour should be retained.

The sandbox I am constructing here need not necessarily be secure. The
resulting program is not meant to be a security-critical thing. Running the
code may still cause a computer to be infected if it, for example, directly
demonstrates an attack on the host system or infects other computers on the
network. Preventing such things is beyond the scope of this thesis. I merely
keep track of a subset of the behaviour of the program.

There are many layers at which a sandbox could be constructed. Each
layer describes some sort of boundary which is being communicated across.

12

2.2. Sandbox structure

Each layer separates the running environment into two parts. The trusted
code base part and the unknown untrusted part, which may do anything.
By having good knowledge of the API and the trusted code all dependency
accesses can be kept track of.

Depending on the layer a sandbox is implemented at, different methods
for detecting a presence of an analysis framework may be present. These
along with the resources present in the sandbox are considered as the possible
sources of nondeterminism. Although logically, they should be considered
dependencies anyway and are mostly used as sanity checks.

A minimal sandbox would be a sandbox which does not contain any de-
pendencies necessarily needed for the program to run unimpeded.

Each constructed sandbox has to have a distinct API through which all
communication will happen. If the API could be curcumvented,

This thesis does not attempt to ensure a sandbox is isolated even in the
presence of possible side-channel attacks or otherwise communications. These
will only be mentioned in the list of possible dependencies.

2.2 Sandbox structure
To summarize what construes a sandbox. A sandbox requires a distinct API
which will encapsulate all possible communication between a trusted, priv-
ileged part of an application and untrusted, sandboxed code. Some sort of
policy enforcement mechanism may be added upon this API. This entire con-
cept hinges on the fact that there is some method of ensuring that the API
cannot be bypassed.

Thus, each sandbox will have at least three man directions of attack from
the inside of the sandbox.

1. The API enforcement

2. The API implementation

3. The sandbox policy

A simple example would be in a Unix system. The kernel-space/user-space
processor ring separation is the underlying mechanism for API enforcement.
The API are system calls. Or more precisely, due to the enforcing mechanism,
all faults which end up executing code in kernel mode. Practically, these are
system calls though other interrupts can be considered a part of the API. The
policy is, for example, that by default processes cannot access each other’s
address space. A case of attacks would be:

1. The processor incorrectly handles a specific instruction leading to mem-
ory being leaked.2

2https://downfall.page/

13

2. Sandbox construction

2. A buffer overflow in the implementation3

3. The policy enforcer incorrectly handles an API commonly used for an-
other case and allows for access of memory from an arbitrary memory
location as a side-effect.

2.3 Sandboxing boundaries

A sandbox could be implemented at a couple of distinct layers. Each layer
comes with a different kind of API through which communication is done and
different resources which may be accessed.

The sections are ordered from the lowest-level approach to the highest-
level approach. All higher level approaches have to somehow consider all the
resources the lower level approaches handle. For example, when examining
at the hardware level, only blocks of data coming from the hard drive would
be observed, while at the kernel level, I would consider contents of files or
directories.

The higher level API give more semantic information to what is happening,
so it will always be a trade-off. Some layers may even greatly simplify the
handling of certain specifics of lower layers.

Any particular separation layer has to be unavoidable. The API it also has
to be granular enough and contain enough information for the needed policy
to be enforced properly.

Each of these layers has to somehow be enforced. That is, something has
to ensure the API has to be used for communication.

Another thing to consider is that as more nuances are added with each
layer, the policy will inevitably have to grow more complicated to account for
all the possible variations of all the lower layers.

This enforcement is typically implemented using some combination of
hardware and software. Even the separation of virtual and physical mem-
ory depends on a software handler for assignment of new pages in the case of
allocation.

It is also worth mentioning that for the sake of dependencies a sandbox
does not need to be reproduced in its entirety. Only the functionality inside the
sandbox has to remain the same. For example if a hypervisor made network
devices inaccessible, then there is no need to reproduce a hypervisor and the
inaccessible devices — just the lack of network devices.

The separation proposed here is similar to the separations mentioned in
other papers such as[19]. And the layer are shown in the image 2.1.

3https://nvd.nist.gov/vuln/detail/CVE-2023-6238

14

2.3. Sandboxing boundaries

Hardware layer

CPU

Hypervisor

So
m
e
ot
he

r
O
S

Kernel

userspace
process

C std lib

Unknow code

R Interpreter Libraries

Some devices

Figure 2.1: A diagram showing all the possible communication layers which
could be sandboxed

2.3.1 Hardware layer
The first layer a sandbox could be implemented at is the hardware level. The
communication happening in between the processor and other peripheries.
Or from another point of view, the communication between the kernel — or
possibly hypervisor if it is present — and peripheries.

It does not provide much semantic information as if I wanted to use a
sandbox on this layer, I would require a complex understanding of the proto-
cols used for communication. As such, the semantic information would need
to be somehow side-loaded in the creation of the sandbox.

A working example of an implementation of this is a network firewall. It
could be implemented using a distinct device on the network, which decides
on what communication is allowed to pass through between other computers.
It also requires specific knowledge of the trusted side of the network — such
as which ports devices are actually meant to be listening on and so on.

It points to a first possible source of differences. Different hardware can
lead to different behaviour of the program.

The relevant portions for this thesis are:

• RAM

• GPU

• Hard disks and other persistent storage

• Other devices on the network

To explain the reasoning for the inclusion of some of these components.
Each program will have a lower bound on the amount of RAM required to

15

2. Sandbox construction

function properly. A program demonstrating a specific exploit 4 might require
a very specific setup of the memories.

What GPU is present may very well affect the functionality of a program.
If utilising CUDA for any calculations, an absence of a conforming GPU will
make the program stop working. R also has some libraries that use CUDA,
such as Rpud5.

The persistent storage specifics are less relevant when operation in the scale
of files, folders, and such. But if I were to try and sandbox such operations
on this layer, some operations may even be cached by the kernel itself and I
would only know which areas of the storage devices had been used. But with
no semantics.

If a computer is connected to any network, I would require complex knowl-
edge of each device the computer can communicate with. This may prove to be
impossible if I connect the computer to the internet. No matter the enforced
policy, a method for subverting it will probably exist unless communication
is restricted to a select few well-known devices.

Many other devices could get connected to the computer and affect the
way it works. This includes USB disks, keyboards and mouse, display devices,
audio devices, and others. While this may seem overkill, there may be reasons
for restricting access to such parts of the system. If I did not consider video
devices at all and allowed anything to be passed through this channel, it could
be used for data exfiltration from the sandboxed system. The project [20] uses
the EM side-channel to reproduce video passed over wires. But even just the
fact that the program is communicating with another device is problematic,
as it should be reproduced.

2.3.2 Hypervisor layer

These two next layers are not separated by a physical barrier. Instead, privi-
lege ring levels of a processor are used. This means that from now on all code
actually depends on CPU architecture compatibility.

One of the privilege levels is the hypervisor, which allows multiple different
kernels to operate in the context of one processor.

On its own, it works mostly as an isolation layer. Policy enforcement at
this layer consists mostly of granting access to different resources for different
virtual machines. This can be seen in hypervisor configurations shown in [21].

This layer still does not provide a sufficiently fine-grained access to re-
sources as the most distinct point are operating systems while using something
in the context of processes is necessary.

4https://en.wikipedia.org/wiki/Row_hammer
5https://github.com/cran/rpud

16

2.3. Sandboxing boundaries

2.3.3 Kernel layer

This is the layer most programs will operate on. It separates the privileged
kernel-space code from unprivileged user-space code. While having root priv-
ileges does effectively subvert the sandbox, as it allows loading new arbitrary
code into the kernel via kernel modules, in the case of unprivileged programs
many assumptions can be made. This layer is enforced by the protection rings
of the CPU.

Any API function of this layer will be referred to as syscall(system call).
A limited number of ways in which context switches between user mode

and kernel mode can be made exist. All of these are hardware mechanisms.
A subset of these will be used for communication. Although, in theory, a

page fault could be intentionally invoked from an arbitrary address and thus
be used as means for communication. I consider this to be unimportant for
this particular usecase and will assume that the syscalls are the only API used
for actual communication.

In this thesis I will only be concerned with the Linux kernel. And even
that brings enough complexity.

Utilising a sandbox at this layer would allow for the usage of the pre-
existing OS process-based sandbox.

The kernel can cause wildly different results for operations on different
files depending on which filesystem they are on and if they are a file or a
special device. While the API is the same, the semantics of writing to a file
on an EXT4 filesystem and writing to a file in the virtual procfs filesystem
are completely different operations. One eventually results in the data being
written to an underlying physical device while the other will alter information
about a process in the kernel — such as the name6.

Because kernel modules can create custom files, providing new API to the
sandbox and they can affect the kernel, they have to be known and accounted
by the sandbox policy engine as otherwise a module could provide a custom
device interaction with which would result in unknown behaviour and possibly
alter the state the sandbox assumes the process is in.

It is also worth mentioning that the kernel contains other isolation mech-
anisms which will be covered in the chapter 4.

2.3.4 Language layer

The last layer mentioned here is the language layer. By utilising specific lan-
guage features or subsets of a language some form of isolation can also be at-
tained. This method is completely orthogonal to the previous ones mentioned
and is independent of the underlying implementation. The same behaviour

6Writing to /proc/self/comm - see https://www.man7.org/linux/man-
pages/man5/proc.5.html

17

2. Sandbox construction

could be enforced whether the code is running in an interpreter, a virtual
machine or on bare metal.

Depending on which layer exactly the language is used — and the API
provided by it — all of the issues mentioned in the aforementioned layers have
to be considered.

One of the benefits of this approach is the potential for improved semantics
of a given call. For example, the discontinued Java security mechanism gives
the entire call stack of context.[22] In R this could give the policy engine
information on which library is being used for this specific call or which library
calls are actually being utilised.

Aside from using language features for enforcing a sandbox cannot be
subverted a technique called software fault isolation can be utilised for ensuring
a given piece of code adheres to a specific restriction which had been decided
upon.[23] This is very hard to get right and will not be discussed further as I
do not considered this approach viable to the issue at hand.

Library shimming

One way to implement this is to enforce all code will communicate with the
outside world using only libraries which have the policy enforcement embedded
inside them. This could be done by utilising LD_PRELOAD7. This cause a
specified path to be searched for libraries before any other.

Overall the library replacement path is not viable. While some projects[24]
have successful utilised it, they suffer issues with programs not compiled under
C. There is a lack of an API enforcement. Attempting to shim all possible
libraries is an enormous task, and there is no guarantee that no library will
explicitly make a call to the underlying API by itself. Almost any program
could do it. A more robust solution[25] of a similar problem ends up utilising
kernel features to ensure functionality.

This mostly covers the options for sandboxing code compiled to native
code. There are many nuances not covered here. If I had access to the compiler
used to create all of the binaries, I could enforce — with a variation of Software
fault isolation — that only the one library is always invoked for any underlying
API usages. The same could be said for the underlying sandbox API. This is
however not by any means trivial to enforce and prove to be correct.

Interpreter isolation

If I have a language running in an interpreter — or a VM, the difference is
only in the provided API for this case — a unique opportunity arises.

If no native language language libraries are loaded for the language code
to call, only the default packages have to be shimmed for some sort of policy
enforcement mechanism. This would sidestep the issues of any underlying

7https://www.man7.org/linux/man-pages/man8/ld.so.8.html

18

2.3. Sandboxing boundaries

local sharedTable = {} ;
function c l o s u r e (key){

return sharedTable [key] ;
}
keyTable = {} ;

sharedTable [keyTable] = 123 ;
assert (c l o s u r e (keyTable) == 123) ;

Figure 2.2: A Lua code example. The resulting state which would be practically
impossible to transfer to another virtual machine.

compiled language implementation specifics and the policy engine could be
built into the standard library of the language.

This, however, requires that all loaded libraries consist of language code.
Not direct native code.

Debugging facilities of a language could be used to a similar effect. When
a native code invocation happens, a policy engine would then be invoked. But
such a policy engine could equally as well be built into the libraries themselves.

Language features

The last possible sandbox can be construed inside the language itself.
This also allows for more fine-grained isolation of data while allowing for

sharing of values which would have changed semantics if they were to be
serialised transferred between two interpreters and if they were used in two
sandboxes inside the same interpreter.

Take the Lua code on the figure 2.3.4where tables are considered first-class
variables: Tables are first-class values. But what if the table identity does not
get preserved when transferring values. Transferring the sharedTable and
keyTable variable separately by serialising them would result in the keyTable
variable containing a different value than the sharedTable does. Also, clo-
sures are practically unsharable as the context they are bound to is basically
impossible to reproduce.

The kernel-space/user-space like separation could be simulated by these
means instead of the syscall-based API. I just need the language to not be
able to invoke an arbitrary native function.

Another example usage of this would be wrapping of all provided native
functions in policy enforcing wrappers. Not all languages can however safely
hide values

19

2. Sandbox construction

Utilisation for R

Unfortunately, R is not suitable for this sort of sandboxing. While R does run
in an interpreter and as such the interpreter could be modified to allow for
sandboxing, it is common for R libraries to consist of native code. There is no
guarantee that the native code libraries will not invoke syscalls manually nor
that the native code will depend on all syscalls being indirectly invoked by a
specific library that I have decided to shim. For many cases, tracing the C
standard library may end up being sufficient - this is, however, not guaranteed
and both [24] and [25] have shown it to not be ideal.

Another consideration is the sheer size of some of the standard libraries.
On my system, the c++ standard library exports 6169 functions8 and the c
standard library exports 30239. Compared to the less than 400 system calls
of the kernel10, this is a much larger attack surface.

Moreover, this would not resolve the issue where if a new helper process is
spawned, there are no guarantees for the process to be an R program or any
other program I have knowledge of.

8nm -D /usr/lib/x86_64-linux-gnu/libstdc++.so.6.0.30 | wc -l
9nm -D /usr/lib/x86_64-linux-gnu/libc.so.6 | wc -l

10https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscalls/syscall_64.tbl

20

Chapter 3
Sources of nondeterminism

As has previously been outlined, I will need to track all possible sources of
nondeterminism. I am interested in what can cause the program to have a
different output at the same execution point. By definition, programs are
deterministic. Any and all nondeterminism cannot come from the program
code but from the hardware it is running on or the environment it is running
in. If I ensured all sources of nondeterminism return the same value, the
program would have to produce the same result.

But having a sandbox which would perfectly reproduce the dependencies
for one exact program is also meaningless. Recording all the sources of non-
determinism and reproducing them identically is not a good solution.

Not only would this be extremely difficult to pull off in the face of a
multithreaded program. If I decided to change anything about the sandboxed
program’s behaviour — in-line with other access rights already required —
the program would not behave as it should since the reproduced API may no
longer be semantically correct. After all, it is just a recording with no logic
behind it.

I need to recreate the initial conditions so that the program will enact the
same behaviour. For potential sources independent of the initial state, the
user should at least warned.

In general, I don’t consider side channel attacks. No matter what sort of
sandbox I construct, side channel attacks are something no sandbox can really
help with. Sandboxing is about constricting a specific API. Side channels are
creating a new API effectively attacking the policy enforcement. These attacks
may exploit various hardware bugs which I cannot easily consider as a part of
the provided API.

3.1 Hardware
The lack of some devices may cause incompatibility, such as a missing GPU.

21

3. Sources of nondeterminism

On the other hand, a missing audio device might not affect our program at
all, as the rest of the operating system will substitute it with another one. But
this cannot really be decided as a program could depend on a specific feature
of that device. As such, any mismatch in the underlying hardware may be a
relevant issue, unless we can decide which exact device we are working with.

Another issue is the internal state of any connected device. I we are com-
municating with another PC over the network, there is no way to reproduce
the state of the other PC. In general this cannot really be solved, and such a
sandbox cannot be automatically constructed.

A significant change in the CPU architecture may cause the entire program
to be inoperable. This does not have to be any complex feature; even the most
basic CPUID11 instruction used to identify a processor and its features can
make the actual instructions executed differ.

Realistically, the only way to ensure compatibility in these regards is to
make a list of the original hardware specifics and then check them against
specifics at sandbox startup.

3.2 Kernel
The kernel also has some state which may be unobservable from user-space. At
the very least, most kernels should be started relocated to a random address
via Kernel Address Space Layout Randomization[26]. Other variables may
also apply. Any loaded modules or kprobes(see section 4.2.2), even the exact
state of all processes in the OS are saved in the kernel.

But even discounting communication with running processes, previously
ran processes could have created shared memory sections which could be ac-
cessed by a pre-defined key.[27]

All sorts of configuration are technically stored on the filesystem but real-
istically have affected the Kernel when loading. The simplest example is the
fstab file[28] which causes a filesystem to be mounted.

When the sandbox runs, there will be no knowledge of what configurations
are used and from where they are used. A prime example are mounts. Mount-
points are not inherently stored on a filesystem — rebooting with a mount
will unmount it — and yet they act as directories in many manners.

The semantics of different handled syscalls will be talked about in the tool
implementation chapter 5.4.3 as they are tied to my solution for handling
them.

The semantics behind users and their home directories or even passwords
are entirely a user-space mechanism. The kernel merely switches an internal
ID associated with a process.[29]

As user-related values which are relevant for the sandbox should be ac-
cessed directly by some process in the sandbox and thus be detectable. This

11https://www.felixcloutier.com/x86/cpuid

22

3.3. Filesystems

may, however, rely on executing an suid binary and the kernel not interrupting
such a tracing mechanism.

3.3 Filesystems
Filesystems are a troublesome terminology. There are three different types of
filesystems which need to be named separately.

Firstly, physical filesystems which are persistent filesystems sort on some
medium. Secondly, there are virtual filesystems which are used by Linux to
provide an API for interaction with parts of the kernel — such as procfs or
devfs. Lastly there is the view of these filesystems provided by the Kernel
which the users actually interact with. When referring to the filesystem, I am
referring to the view of the filesystems provided by the kernel.

All of these systems work like directed acyclic graphs with some nuances.
Generally, the structure consists of files and directories. But not all files have
to referencible from a filesystem. It is possible to unlink a file and yet until
a file descriptor to that file exists, it will not be deleted. Physical filesystems
may also include a mechanism for unique identification of different entities —
e.g. inodes. These can be used, for example, to detect if two files are actually
the same file.

Any file that is interacted with can be considered a dependency. But a
user does not interact with a single filesystem. In theory, interacting with files
from two different physical filesystems may carry its own implications. The
trivial implication is that a hard link cannot be created between them. But
this may also carry implications for path resolution. The openat syscall[30]
has a flag RESOLVE_NO_XDEV which restricts path resolution to the same
physical filesystem.

3.4 Inherent
Some sources of nondeterminism that cannot be properly handled are going
to appear due to the nature of the hardware we use nowadays.

Processors contain multiple cache levels. Depending on the state of the
caches the processor time necessary to execute a given instruction may vary
wildly. As such, any interactions with processor time is bound not to be
deterministic. This is used in many timing-based cache attacks.[31, 32]

Speaking of time, the real current time is also an issue. If a program inter-
acts with the outside world having a valid current time is important, otherwise
some authentication algorithms will fail as they give a certain timeframe when
a token is valid. Even certificates have a validity interval. So interactions with
the current time will inherently lead to nondeterminism which cannot be easily
reproduced.

23

3. Sources of nondeterminism

When multiple programs or threads work with the same data or depen-
dencies, the output can end up reordered in the best case. In a worse case the
programs have introduced some worse form of a race condition. Depending on
the number of cores, the way the scheduler decides to schedule threads, the
way caches are set up, the speed of the RAM which contains the data of my
program, or even hardware interrupts happening invisible to the sandbox can
affect the order or result of operations. There is no reasonable way to create
a reproducible environment in the face of these issues unless we forcibly run
the program in an environment which can enforce determinism.

Reading uninitialised memory may be more or less of a issue depending
on how it is viewed. The Kernel will zero out any memory which it initially
provides to prevent data from being leaked to another process. This can
even be an issue on other devices connected to the computer, such as a GPU
as demonstrated by [33]. Reading such memory is not inherently an issue.
But semantically this means that a piece of memory was allocated and not
initialised before being used. Is one of the ways in which programs may begin
to act unpredictably. There is no real way for the sandbox to detect this. In
theory, this should be reproducible, but any form of nondeterminism in the
memory allocator used by the program will lead to unreproducible behaviour.

3.5 Reproducing the process sandbox
At this layer, we are essentially tracking a process — or more specifically a
tree of processes stemming from one spawned process. There are ways in
which this tree may interact with other process trees. This can be done via
modifying a file used by both groups — such behaviour would be very hard to
detect as it is a mostly user-space-based communication. From kernel space
we only ever see accesses to the same files, not knowing whether intentional —
or unintentional — communication is happening. The methods for tracking
accesses to a filesystem outlined in the previous chapter could be used for
handling these changes.

A process has multiple variables associated with itself in the kernel. Most
of these can be seen as the potential flags of the clone[34] call.

• memory space

• thread group

• System V semaphor undo list

• signal handlers

• thread local storage

• the parent PID

24

3.6. Privilege escalatuion

• namespaces

• debugger attachment

Some parts of this list are more easily reproduced than others. Assuming
we control the process which spawns the sandboxed program, we can ensure
that all but the memory space will be the same. The memory space is im-
possible to reproduce due to the most basic exploitation protection technique
ASLR(address space layout randomisation).

Special care has to be taken when creating a new process as it theoretically
could retain some information from the parent. For example, the alarm12

mechanism is retained across execution of a new program but not clone.
There are also the capabilities of a program that greatly influence the

potential operations a program can execute.13 Closely tied to this is the
no_new_privs attribute from prctl14.

Another value which cannot be easily managed is the PID of the parent
process or even the process itself. This depends on what other programs are
running on the system and what state the Kernel is in. This can be mitigated
using namespaces(see chapter 4.1.3). Other groups a process is a part of which
will be covered later.

3.6 Privilege escalatuion
One of the potential malware evasion techniques is privilege escalation. When
a sandbox executes any sort of code which will affect the behaviour of the
kernel in unexpected ways, the sandbox cannot guarantee to be complete.
The scope of the escalation does not matter at that point. I could affect any
layer above the userspace and be undetected due to the layer I have chosen to
implement the sandbox at.

3.7 Analysis framework detection
Some tools used to detect that a given executable is running exist. For example
the pafish tool 15 for windows checks the following information which could
be used to detect the presence of a framework.

• registry

• cpuid instruction

• timing of various instructions
12https://www.man7.org/linux/man-pages/man2/alarm.2.html
13https://www.man7.org/linux/man-pages/man7/credentials.7.html
14https://www.man7.org/linux/man-pages/man2/prctl.2.html
15https://github.com/a0rtega/pafish

25

3. Sources of nondeterminism

• sandbox specific operating system configuration, such as network rules

• presence of a debugger

• known usernames

• drive names, sizes

• memory size

• uptime

• sleep duration consistency

• presence of user-space hooks — essentially detecting if a DLL injection-
like mechanism is happening

• mouse presence and interaction

• know sandbox-specific DLLs

A similar list of techniques can be found especially for windows [35] but
categorically they are the same as has been listed so far. Other tools for
automated detection, such as 16, exist, but they are focused on the Windows
platform.

16https://github.com/LordNoteworthy/al-khaser

26

Chapter 4
Tracing implementation

The policy enforcement part of a sandbox can equally be utilised for tracing
purposes. Instead of deciding if a certain call should be allowed to proceed,
the call can be logged in some way.

I need to trace programs on a process-based granularity. Any layer lower
than the kernel layer is not usable for this application.

If I were to sandbox purely at the hypervisor layer, the entire OS startup
process would have to be logged as well. The tool would be quite cumbersome
to use and require getting information back from the kernel. It would require
knowing how the kernel keeps track of processes. But that goes against the
principle that a sandbox should consider the code inside it as insecure.

Since this use case is not really suitable for any sort of language based
isolation, all that is left is using the kernel layer.

This does not mean that the implementation cannot make use of the hy-
pervisor for sandboxing. Cooperation between the kernel and a hypervisor is
possible, as has been demonstrated by[13].

The kernel provides many facilities for potential sandboxing of user-space
programs. I will explore them here with evaluation of suitability for keeping
track of dependencies.

4.1 User-space based approaches

The Linux syscall API provides many ways in which one program may affect
another. Some of them could be used to track dependencies.

An issue permeating all of the user-space solutions that would have to be
resolved with this approach is keeping a track of relevant PIDs. Linux does
not provide any way to obtain the PID of the creator of a given process. So an
API which would only attempt to operate on PIDs is insufficient on its own.

27

4. Tracing implementation

4.1.1 Inode watchers
In a world where the only dependencies which I will try to reproduce are files
on the system, just seeing what occurs on the filesystem should be enough.

The Linux kernel has a dedicated inotify[36] API for this purpose. The
reason why it cannot be used is that the API cannot distinguish which pro-
cess had made an interaction. To quote the documentation ‘The inotify API
provides no information about the user or process that triggered the inotify
event.’ [36]

Moreover, the watcher gets attached to a specific inode and does not re-
curse further in the directory tree. A watcher would have to be created for
each directory on the entire filesystem. And any newly mounted filesystems
would be missed.

4.1.2 Filesystem watcher
Another approach is the newer fanotify[37] API for watching filesystem events.

The events provided by this API contain the PID of the invoker, so pro-
cesses interactions could now be tracked. This approach would involve mark-
ing all relevant mounts, filesystems, and notifications as tracked. By then
logging each notification, a complete list of all filesystem dependencies should
be created.

It is to be noted that this API also provides a method for denying ac-
cess to a given operation. This could be a method in which our sandboxed
program could communicate with an unsandboxed program and would make
all programs which are watching relevant directories with permission checks
dependencies of the sandboxed program.

4.1.3 Isolation mechanisms
In Linux, namespaces[38] are means of isolation of resources. While these
could be used for improving reproducibility somewhat as they can ensure that
the sandboxed program cannot access some dependent resources in the first
place. But they do not provide any means with which to trace used files.
Furthermore, their usage is essentially an attempt in creating a well-know,
reproducible environment in the host system — rather than analysing the
existing one.

Control groups[39] are another way to restrict access to resources for a
group of processes. These are more along the lines of hardware resources, open
file handles and such. They are an effective sandboxing utility for preventing
DOS-like attacks, not for fine grained access control.

Other control mechanisms include user IDs, Group IDs, or Session IDs
[40]. These are relevant for reproduction purposes and access control. Not so
much for process isolation or tracing.

28

4.1. User-space based approaches

4.1.4 System call interposition
Another major way to trace events happening is to directly interpose ourselves
between the kernel and a user-space application. This has been shown to work
with many issues in the past. [41, 42]

This approach is inherently prone to race conditions since system calls may
be executed in parallel. By simply seeing the calls, it is not quite possible to
even safely check the parameters of the call with the guarantee that they will
not be modified [42].

Seccomp

Seccomp[43] is a feature relating to sandboxing of programs. One of the things
it offers is to install a custom syscall filter. This is used by some programs
[44] to voluntarily restrict themselves.

The filter is written using cBPF a subset of eBPF(extended Barkley packet
filter). It is not eBPF, which is commonly used in other parts of the kernel.
The filter is inherently stateless. Moreover, there is no way to dereference
user-space pointers for data inspection. But while some attempts have been
made to extend the kernel to support eBPF it is not yet a part of the mainline
kernel. [45]

Even if all of this were added to the kernel, there is no simple way of
getting arbitrary-length strings out of eBPF. [46]

So, the filter cannot be used directly to do the logging. However, there are
methods for utilising seccomp to invoke other facilities, which could be used.

For one, the filter can say that a given syscall should be audited — SEC-
COMP_RET_LOG. This means that the action will be logged in the audit
log. The audit log is a systemd feature[47] and would make systemd a hard
dependency[48]. Without it, the seccomp filter will not actually log anything.
Furthermore, what data is logged cannot be configured and thus it is unknown
if the output would even be consistent across kernel versions.

Another potential result of a filter is that a ptrace (see section 4.1.4) tracer
should be notified - SECCOMP_RET_TRACE. This comes with other secu-
rity implications noted down in the manual. Then the behaviour is essentially
the same as with a ptrace-based tracer.

The last potential usage is via SECCOMP_RET_USER_NOTIF which
would instead devolve into another process having to execute the operation
on behalf of the sandboxed program. This is not really useful for our usecase,
unless some form of emulation of syscalls is necessary.

Ptrace

Ptrace[49] is the Linux syscall for all debugger-related purposes. Just about
any debugger-related action is routed through this system call. A program(the
tracer) traces another program (the tracee) and can essentially cause arbitrary

29

4. Tracing implementation

modifications of the tracee. The tracer can trace any action the tracee per-
forms. A tracee is any individual thread rather than a process, meaning the
tracer has to ensure it is attached to all threads.

One limitation of a ptrace-based approach is that it will significantly affect
the traced application. Meaning detection of a debugger is possible in many
ways. And not only detection. Even the behaviour of some syscalls changes,
such as blocking reads, when made by a process that is being debugged. Fur-
thermore, tracing across an suid boundary requires special permissions.

4.2 Kernel-space approaches
If I wanted to use some form of tracing from the kernel itself, there is no need
to directly modify the kernel code for my needs. The kernel already has some
built-in mechanisms for tracing events.

These may have completely different semantics as, for example, path reso-
lution operates on the level of nodes on the filesystem, whereas the user-space
API have to actively seek these values to interact with them in this manner.

Any usage of these parameters depends on understanding the specific part
of the kernel that is being traced, including all possible ways to bypass it.
Incorrect usage could be just as bad, or even worse, than using just plain
system call interposition mechanisms.

4.2.1 Linux security modules
Linux security module(LSM) is a framework for a hooking into functionality
provided by the kernel at points which may require access rights. They need to
be compiled as part of the kernel and cannot be loaded as individual modules
at runtime. [50]

Compared to a simple system call interposition mechanism, these calls are
made in the internals of the kernel when all relevant values have already been
transferred into kernel-space and no race conditions should occur.

Instead of writing a full-blown kernel module, it is possible to write eBPF
filters for these modules and load them at runtime for modern kernels.[51, 52]

4.2.2 Kernel tracing
Another avenue is the one used by the tool bpftrace(see section 4.3.1). This
involves the usage of some kernel built-in mechanisms for debugging or per-
formance accounting.

The first approach worth mentioning are kprobes. These are hooks that
allow adding a tracing routine to most parts of the kernel. This essentially
works as if breakpoints with dedicated handler functions were used with a
debugger.[53]

30

4.3. State of the art tracers

The other are kernel tracepoints. These are pre-declared places in the
kernel which may be traced. Compared to kprobes, these points do not patch
the kernel when it is executing, but at compile time. [54].

4.3 State of the art tracers
Some tools which trace program interactions with the kernel and or filesystem
already exist. This section contains description of the most significant ones.

4.3.1 bpftrace

Bpftrace17 is a tool which aggregates a bunch of different tracing mechanisms
and adds a unified API for interacting with them.

As the name suggests, the programs for this tool are written in eBPF.
But they may be inserted into various parts of the kernel, essentially allowing
for debugging of the kernel. The tracing mechanisms are not limited to just
kernel tracing, but to user-space programs and libraries as well.

I have not found a simple way in which to keep a track of processes which
should be traced from inside this tool. And tracing the entire kernel is unde-
sirable as it may produce many false-positives.

4.3.2 strace

Strace18 is a utility which internally utilises ptrace to track syscalls made by
a tracee.

This tool creates a reasonable textual dump of the performed system calls.
That is all it really does. Theoretically, a parser could be added on top of
strace to then filter out relevant bits of the information it had parsed. But
for the purposes of this thesis not all syscalls or all their arguments will be
relevant.

It also shows off that seccomp can be used instead of ptrace to, I presume,
ensure the tracer is not notified of all syscalls but only the ones which the
BPF program decides should be traced.

4.3.3 CARE

CARE19 is a tool built to create an exact reproduction of a program. It creates
an archive of all accessed files along with a script which recreates the initial
set of environment variables and reruns the command.

17https://github.com/bpftrace/bpftrace
18https://github.com/strace/strace
19https://proot-me.github.io/care/

31

4. Tracing implementation

This seems to be doing exactly what I am envisioning for this thesis. But
the exact approach is very different. To ensure more compatibility, the tool is
built over the tool PRoot20.

The tool PRoot seems to emulate many necessary system calls to allow
unprivileged users to perform privileged operations such as mount or chroot.
Essentially translating operations on the filesystem through itself to provide
a consistent filesystem view. Glancing at the source code shows that the tool
also attempts to keep the API stable in translating ptrace syscalls and trying
to allow for nested tracing.

Conceptually, it does what I will be doing with tracking dependencies. I
will attempt to avoid any system call emulation if possible.

4.3.4 fakechroot
Fakechroot[24] is a tool that modifies the c standard library and, in doing so,
modifies relevant calls to convince the sandboxed process that the current user
is in fact UID 0. The tool does no do tracing in and of itself, but the same
mechanism could be used to instead log the actions rather than modify the
return values.

The ways in which the tool can be bypassed have already been mentioned
in the chapter 2.3.4.

20https://proot-me.github.io/

32

Chapter 5
R4R Tool

I need a program that can track the dependencies of R programs. But, as
was outlined previously, keeping track of all dependencies is not possible. So
a subset has to be chosen and expanded as realistically needed.

This will be done based on a couple of assumptions and needs.

• Programs we are tracing are not actively malicious and will not actively
try to introduce race conditions into the running code.

• This includes not modifying the values of strings and other structures
pointed to by pointers passed into the kernel while a syscall is executing.

• The programs should not use ptrace as it is after all mainly a debugging
mechanism, not an inter-process communication tool.

• The programs will not be actively destructive and if a program runs
multiple times it will depend on the same files and will not attempt to
destroy its own dependencies.

• The program will not attempt to subvert the detection by any pre-
established communication side channel on the host, e.g. a filesystem
watcher.

• The tool, due to the intention of usage within the R4R grant, should
not require the users to install potentially problematic kernel modules
nor require unnecessary privileges.

If the assumption on variable dependencies were not true, the tool would
have to persist the dependency in some manner before the program is allowed
to interact with it.

The tracing will be implemented using ptrace. But as this is knowingly
not a secure mechanism undetectable by the running code, the tool will be
designed such that replacing the ptrace tracer should be simple enough.

33

5. R4R Tool

The result of the tool should not depend on the tracer used and how it
was interpreted. It should only require a list of dependencies and be able to
create the sandbox or a report based on this.

First, I assume that tracing interactions with the view of the filesystem
should be sufficient for a rudimentary dependency analysis. This is supported
by the fact that the CARE program, which solves a very similar problem,
works by tracing operations on the filesystem.

Ideally, the tool should at least warn the user if access to unreproducible
dependencies is detected.

Interactions with any potential graphical user interface or other manage-
ment engine such as systemd have not been explored and are assumed to use
the standard communication avenues the kernel provides.

The program is also currently not designed to work with user programs
that require the user to explicitly terminate them. The program could be
designed to attempt to create the report upon receiving the first kill signal
along with passing the signal to the child. A prime example where this could
be used is the ping utility on Linux.

The system calls which are actually handled are system calls which have
been encountered while testing the tool and I have deemed to be the most
important to be handled. This means the amount of handled system calls is
far from exhaustive.

5.1 R code execution
R research code is usually created in R notebooks21. They are very similar to
Jupyter notebooks22 from python. The notebooks are just specially formatted
files with inline executable code.

The code inside the notebooks can be executed in batchs from the com-
mandline using rmarkdown::render(). Documentation for R libraries is also
often created using this method. Otherwise R code is just source code with
no special surprises and is executed using the R interpreter.

The specifics of the language are unimportant for this tool as due to the
nature of libraries, oftentimes native code is executed and that needs to be
traced as well.

The way library-based dependencies are handled are referred to in the
section 5.6.1.

5.2 The tool API
Since all R programs can be executed using just the commandline, we can
create our tool such that it will be passed arguments as if the program were

21https://bookdown.org/yihui/rmarkdown/notebook.html
22https://jupyter.org/

34

5.3. Tool architecture

to be executed normally by pre-pending the tool executable to the usual way
to launch the program. And the tool can be, as far as executing, agnostic to
the used program.

./tracer [executable] <arguments to executable>

Care has to be taken not to accidentally pass only a part of a script to the
executable.

./tracer cat /etc/passwd | cut -d: -f1

Will only trace the cat call. Not the cut call as well. This can be worked
around by wrapping them in an explicit execution in a shell. But this can be
assumed to be common knowledge for a user.

./tracer bash -c 'cat /etc/passwd | cut -d: -f1'

The tool will not restrict the execution of the program in any way. It only
traces what the tool is doing for further analysis.

The stdout an stderr of the traced file will be redirected to a file so it is
separated from output of the tool.

5.3 Tool architecture

There are three main parts of the tool.
The frontend, the tracing implementation in and of itself. This layer con-

sists of the ptrace specifics and handling of traced system calls.
The middleend. This layer will essentially emulate information the kernel

keeps about a process and duplicate what a kernel is doing, regardless of what
mechanism will be used to catch different syscalls. I does not emulate the
actual execution itself but it does keep track of information such as the file
descriptor table. It mostly translates operations on kernel identificators to
actual dependencies.

The backend which takes the dependencies in a pre-define form. It will
not have to care about what tracer was used to gather the information. It can
either produce some sort of a report or a way for a sandbox to be set up.

The architecture is also shown on the figure 5.1.
The entire tool is written in C++ due to the close relation between the

system call API and C. Any of the layers could be written in another language,
though data transfers would have to be handled in some way and would add
unnecessary complexity for a prototype.

35

5. R4R Tool

Tracer

ptrace event

Middlend

Process...

Child proces...

R -e ”...”

Backend

Report

Figure 5.1: A diagram showing the communication between different portions
of the tool and the traced program

5.4 Tracer - FrontEnd
The only tracer implemented is a ptrace-based tracer. Alternatively, this could
be replaced by piggybacking on strace and parsing its output or some other
alternative mentioned in the last chapter.

If we wanted to use an LD_PRELOAD mechanism, or some form of in-R
tracing the middleend would have to be replaced as well. This is due to the fact
that it would operate on different layers. The API and resources passed around
by the C standard library or even R are wildly different from what the kernel
provides. And the middleend would have to either provide a compatibility
layer for changing FILE*s to handles or even have to be expanded to account
for objects which cannot be easily represented by kernel resources.

If the tool were to ever be expanded with some form of in-kernel module
it is prudent for the middleend to be replaced as well. While a proof-of-
concept tracing mechanism can be created that uses the existing middleend,
it fails to actually utilise many of the benefits of using the kernel-space. A
trivial implementation could potentially eliminate the inherent race condition
in using a ptrace-based mechanism, while letting the middleend recreate much
of what the kernel already does.

36

5.4. Tracer - FrontEnd

Using ptrace will also mean that the tracer cannot trace itself, as a pro-
gram cannot have more than one tracer. CARE attempts to resolve this by
emulating the behaviour of ptrace.

5.4.1 Process tracing

The root of the entire sandboxed process tree is the tracer itself. It spawns a
child with its stdout and stderr redirected to predefined files. This redirection
may cause differences in output as a program can detect if it is outputting to
a file or an attached terminal. After the child spawns but before it executes
the new image, it marks itself to be traced via PTRACE_TRACEME.

When tracing syscalls the tracer is notified twice. Once at syscall entry
and once at syscall exit. While no official method of deciding whether a syscall
was just entered or exited, in my testing the return value from the syscall is the
error code -ENOSYS23. This can be used alongside the heuristic of whether
or not a syscall has been entered so far to detect which part of the syscall the
tracee is in.

But these are not the only values which have to be caught. If a process is
stopped via a signal, that has to be handled as well. Strace has a very nice
document on which cases should be handled for a complex enough program24.
Many of these quirks are not handled correctly by my program. I assume
that no process will suddenly die due to a signal, nor that a thread group will
terminate without first terminating individual children. While the system
may handle such cases it has not been tested.

The very first issue arises from the waiting for child processes. As in
my testing, any non-trivial program ends up spawning at least one another
program.

As even the most trivial invocation of R is actually an interpreted bash
script which sets up the R environment, it is necessary to correctly handle at
least the process forking properly. This means that multiple processes have
to be handled.

5.4.2 Multi process handling

While one of the variations of the wait function25,26 can be easily used to wait
for any child process, this results in an issue.

Child processes can be marked as traced right away with the correct ptrace
flags. But the wait function cannot wait for just one TID, as this would break
the tracer in case of blocking system calls. This means that the state of each

23https://man7.org/linux/man-pages/man3/errno.3.html
24https://github.com/strace/strace/blob/master/doc/README-linux-ptrace
25https://www.man7.org/linux/man-pages/man2/wait4.2.html
26https://www.man7.org/linux/man-pages/man2/wait.2.html

37

5. R4R Tool

thread has to be handled separately — including possible syscall arguments
and such.

Currently, there is no way to tell which process spawned another process.
One option is that forking syscalls such as clone27 or fork return the new

pid on exit. But the clone call may be slower than the child spawning process.
The child process will notify the tracer that it had been spawned before the
parent ever returns. Or even worse, if the CLONE_VFORK flag is used, the
parent call will not return until the child has terminated.

The creating process has to be known for middleend purposes. As of now
the system keeps track of all processes which are currently in some form of
a clone call and have not been assigned a child thread and makes a guess at
which process is the real parent.

There is no need to nonblocking wait for any other events to try and seek
which process may have spawned the thread — such a thread could not have
entered the syscall yet.

But how should syscalls themselves be handled?

5.4.3 Syscall number mapping

Before I get to the actual details of what needs to be handled about a syscall,
a different question has to be answered. How are syscalls mapped to actual
functions in the kernel? The specifics of the API and ABI may differ wildly
depending on the operating system used. Basically any trap which causes
execution of code in kernelspace could be used. Apparently, Windows used
invalid instruction errors at one point in time.[55] The syscall man page28

mentions a lot of different options for executing a trap.
They all have one thing in common: a syscall number is passed into the

kernel in some way. On the x64 it gets passed in the RAX register and at least
for the purposes of ptrace is stored into the ORIG_RAX value. This number
has to be mapped to a handler. The handler is cannot be directly bound to a
number directly as the numbers may vary between architectures.

Due to the possible ABI differences, the ABI-specific functionality is hid-
den away in a single file that could be quite easily replaced.

To generate the mappings, kernel headers are used and all references are
done using SYS_<syscall name> macros. To get a complete list which could
potentially be handled, a dump was created using the ausyscall29 tool. When
compiling on another system, the names of syscall may get mismatched but
the kernel headers therein should be correct and the correct handler should
be called.

27https://www.man7.org/linux/man-pages/man2/clone.2.html
28https://www.man7.org/linux/man-pages/man2/syscall.2.html
29https://linux.die.net/man/8/ausyscall

38

5.4. Tracer - FrontEnd

5.4.4 Syscall handling

When faced with handling of syscalls a design choice had to be made. How
shall the tracers syscall handlers be described?

While functionally the same, there are multiple approaches which can be
taken, but they all end up in the same manner. I need an entry handler,
an exit handler, and a way to pass a variable structure between the exit and
entry. As a bonus, I also added a logging handler for mostly development and
debugging purposes.

While an argument could be made that there is no need for an explicit
entry handler — we could just store the register values at function entry and
restore the arguments at exit. This is not quite applicable as some syscalls
will block in the syscall or will never return.

Most syscalls are only parsed and the relevant parts are sent to the mid-
dleend for further handling.

This essentially means that we need to either solve this using virtual dis-
patch or using a very large switch-case. The virtual dispatch turns out to
contain a switch-case in and of itself in the form of actually creating relevant
objects.

My solution consists of a generic handler used for dynamic dispatch and a
template which is specialised for each relevant syscall. The template itself and
the virtual interface don’t actually enforce the relation, it is merely convention.

To not have to specify a huge switch-case manually the object creation
is handled using a c++ std::unordered_map based solution. Unless inserted
into the map, the mapper will create some form of a default handler. This is
shown on the figure 5.2

This solution creates a unique_ptr. If I wanted to avoid allocating memory,
the benefits of using a template-based solution appear. While C++ does not
contain any reflection as of now, the necessary parts can be emulated using
the correct API. Since all syscall handlers are templates with a numeric key
and the key is mostly continuous with only a couple hundred options, this
can be looped through by detecting that a specialisation exists. And for all
existing template specialisations a handler can be inserted into the map. This
does, however, require all the relevant headers to be included and not error
will be printed if a new handler is added but not registered for this map. The
relevant portion of teh code is shown in the figure 5.4.4.

Since we can loop through all known handlers, an in-language code gen-
erator which would convert this solution to a large switch-case can be later
created. The virtual dispatch could be removed entirely, but performance
testing is needed.

The loop could also be used to remove the dynamic allocation. Since all
the classes are known, along with their needed space and alignment, a constant
buffer could be created in the process state, which would serve for this purpose.

39

5. R4R Tool

struct Sysca l lHand l e r {
virtual ~Sysca l lHand l e r () = default ;
. . . the ac tua l API

}

template<size_t sysca l lNr>
class TSyscal lHandler ;

// Handler f o r the Open s y s c a l l
template<>
struct TSyscal lHandler<SYS_open> : public OpenHandler {} ;

in l ine std : : unique_ptr<Sysca l lHandler> createNul lOpt () {
return std : : make_unique<ErrorHandler >() ;

}

struct Mapper {
std : : unordered_map<int , dec l type (createNul lOpt)∗> map ;
std : : unique_ptr<Sysca l lHandler>
get (dec l type (map) : : key_type sy s c a l lN r) const {
auto i t = map . f i nd (s y s c a l lN r) ;
i f (i t != map . end ()) {

return (i t−>second) () ;
}
else {

return createNul lOpt () ;
}

}
} ;

Figure 5.2: How are the system call handlers initialised

40

5.4. Tracer - FrontEnd

template<int nr = MaxSyscallNr>
void f i l l e r _ d e s c (dec l type (Mapper : : map)& map) {

i f constexpr (IS_COMPLETE(TSyscal lHandler<nr>)) {
map . emplace (nr , [] () {
return std : : make_unique<TSyscal lHandler<nr>>();
}) ;

}
i f constexpr (nr < 0) {

return ;
}
else {

f i l l e r_d e s c <nr − 1>(map) ;
}

} ;

Figure 5.3: Utilising template overloads for registration of system call handlers.

This would not remove all memory allocations in the handlers, as they often
allocate in and of themselves, but would remove the most obvious one.

It is also interesting that many system calls end up being handled by the
very same handler with different flags. For example, fork/vfork and clone are
different system calls which all translate into a clone call.

5.4.5 Syscall logging
Due to the nature of this program, we keep a track of all operations on handles
of any kind. This means that, unlike strace, this program can output known,
translated values. This is especially interesting for writes reads and others.
But even open is really internally calling openat which provides an optional
working directory other than the current working directory. This allows me
to provide more human-readable output of the actual semantics of a given
program. A portion of sample output is listed in the figure 5.4.5

5.4.6 Shared libraries
One of the main reasons for choosing ptrace as the prototype was that it
should be able to trace any used library. But will it actually detect that a
shared library is being loaded?

As it turns out, yes, it will. For executing a program, the kernel maps
the executed image into memory along with vDSO30 objects (one of those
is the dynamic linker31). And the dynamic linker then proceeds to use the

30https://www.man7.org/linux/man-pages/man7/vdso.7.html
31https://www.man7.org/linux/man-pages/man8/ld.so.8.html

41

5. R4R Tool

newfstatat(/home/adamep/R/.../Meta/features.rds,"",-167648) = 0
read(/home/adamep/R/.../Meta/features.rds) = 123
read(/home/adamep/R/.../Meta/features.rds) = 0
lseek(/home/adamep/R/.../Meta/features.rds) = 123
read(/home/adamep/R/.../Meta/features.rds) = 0
close(/home/adamep/R/.../Meta/features.rds) = 0
newfstatat(AT_FDCWD,"/home/adamep/R/.../libs",-156096) = -2
readlink(AT_FDCWD,"/home") = -22

Figure 5.4: A small portion of logged system calls when the tool is created with
logging enabled.

standard syscall API to load further shared libraries into the process space.
This means that the dynamic linker needs to be detected and listed as a
dependency explicitly in some other manner.

5.5 Middleend
The middleend is essentially a kernel emulator combined with a logger.

The initial intention was for it to only serve as a logger but the emula-
tion functionality was iteratively added as it was needed for individual syscall
handling. A large part of the emulation could be instead replaced by reading
the information off of the procfs.

5.5.1 The emulator
The emulating portion of the tool. For a finished product as much of this
functionality should be deferred to the operating system itself to prevent bugs
which come up from incorrectly mirroring the kernel. But due to the sep-
aration of logic, the changes should only be necessary in the middleend. If
anything, such changes would result in some syscalls no longer needing a han-
dler.

The fact that I am mirroring the OS goes against what the literature [41]
recommends as the correct course of action. Changing the query to what the
working directory and other status information are should be trivial, but there
are portions of the emulator which cannot be easily removed while using the
syscall API.

File creation

The open syscall [30] can either open an existing file or create a new one. But
unless a flag is specified that a file should only be created, there is no way to
know what happened from the outside world. This means that each open call

42

5.5. Middleend

— whether it eventually fails or not — has to check if a file with the given
name exists.

The issue arises from path resolution. I have to resolve the opened path in
the same manner the kernel would. This will inherently be a race condition,
as another thread could change a directory in the path to a symlink in the
meantime.

Another issue are the semantics. Different access rights are considered
when creating a new file and opening an existing one. By creating it the file
can even be opened with different access rights than are actually granted to
the created file.

File descriptors

The path resolution may be started from a file descriptor instead of the work-
ing directory. This leads to a need to keep track of all open files. and which
values they are pointing to. But these open file descriptors may be manipu-
lated in other ways, duplicated or otherwise overwritten.

By emulating this behaviour instead of falling back to asking the kernel
about a particular file descriptor, many unrelated and unnecessary syscalls
have to be handled.

The behaviour is not even properly cloned right now as I do not respect
the close on exec flag which can be set on file descriptors. This means that I
may resolve a file descriptor which has already been closed and will only know
so because the associated traced system call fails.

Sockets can also be used to share file descriptors between two processes.
This would require complex knowledge of both processes using a unix socket
and emulating what the kernel does to share the file descriptor. This is cur-
rently not resolved.

Path resolution

When opening any relative path, the path must be appended to the base
and resolved. This may happen in just about any function operating on the
filesystem. For simplicity I use algorithms provided by the c++ filesystem
library for all my path resolution needs.

This means that the kernel behaviour may not be perfectly replicated.
Long-term, an algorithm of this sort will still need to remain in the mid-

dleend due to logging needs, which are covered later.

Process information

Currently I also keep track of the current working directory of all processes.
This should be extended to include information about the user and group IDs
which the process may use for access rights.

43

5. R4R Tool

Process execution

Another vexing issue are the actual semantics of file execution resolution.
Execution of a program has a couple of issues. The relevant syscall —

execve/execveat — simply provides a path to the executable in some manner.
But the executed program may do different things depending on the format
of the actual executable. I only ever see that the program intends to execute
a file from a specified path. But the executable itself could either be an actual
binary or it could be an interpreted script instead. This means that the
interpreter would not be detected at all. The only way to truly know which
way a program will be run is to manually open the files themselves and check
if they begin with a shebang32 or not.

This means that I have to emulate the behaviour of the kernel with this
call and if relative paths are used, the path resolution algorithm needs to be
implemented as well.

The actual executed loader could differ due to recognised custom binary
format33, though this is currently not handled in any way.

Furthermore, somewhere in the process initialisation process every pro-
gram seems to call the getrandom syscall. I am unsure if this is to initialise
some internal state or a part of the ASLR but it means that no two processes
will ever be the same unless this is spoofed.

5.5.2 The logger
The actual portion of the middleend which logs all file accesses and other
dependencies. This is the portion of the library which will very likely see little
to no change in the logic behind it if the frontend were ever replaced. But the
API semantics of data tracking are built around the syscall API.

FS unrelated information

Aside from the filesystem dependencies, the environment within which the
process is actually run should also be retained. The various IDs the process
is associated with, the environment variables, the arguments with which the
program is invoked, and the relevant devices the program works with.

So far, the environment variables which would be passed to the execve call
are stored by the tracer along with the arguments. The rest are unhandled.

File interactions

For each file I track, separately from individual file descriptors, the following
information:

32https://en.wikipedia.org/wiki/Shebang_%28Unix%29
33https://docs.kernel.org/admin-guide/binfmt-misc.html

44

5.6. Backend

• Is the file currently on the disk

• Was the file initially on the disk

• Was the file ever deleted

• Was the file ever created

• The type of the file

• For directories — Are the contents necessary

The files are identified by their absolute path on the disk. Floating file de-
scriptors for files which are no longer on the disk are not considered so far. I
have not yet made any effort to merge this tracked information, as that would
require decoupling the logic behind files and locations on the filesystem.

To ensure that no symlinks are missed, I log all accesses to a given file
alongside their paths and required permissions.

A proper solution would require creating a proper graph of the filesystem
and emulating the path resolution algorithm on the local graph. But the graph
would require two sets, one which mirrors the initial state, which needs to be
reconstructed, and another that mirrors the current state.

Note that due to the iterative implementation of this tool, this will not
correctly handle cases where rename34 was called on a pair of directories with
one being a working directory or other edge cases as I have yet to encounter
this syscall actually utilised.

As of now, no mechanism for enforcing a file will be stored for reproduction
before it is modified exists. This could either be done upon the entry to any
syscall which could potentially change its contents or a syscall which would
result in opening a file descriptor which would allow for modifications of the
file. Or a combination of both for calls such as unlink.

5.6 Backend

The goal of the backend is to create a report on all the dependencies a program
has. It can also be used to generate a reproducible environment in which the
tool can be rerun. It only ever depends on the information provided to it by
the middleend, it will never try to query the frontend directly.

The distribution-specific package managers have been chosen because that
is the distribution I have on hand, not for any other reason.

34https://linux.die.net/man/2/rename

45

5. R4R Tool

5.6.1 Package dependencies
Many files with which a program interacts may not actually be files created by
the user. They may be well-know executables downloaded from the Internet.
If we were able to figure out how to download a file, the dependency could
be moved from only files to packages. A public package is guaranteed to not
contain user sensitive data. Moreover, a dependency will probably be on a
package rather than a single file from a package. This means that a larger
part of unexplored code paths would be retained.

If this is chosen as the way forward, a method which checks that the hash
of all file dependencies matches would be desirable, to prevent accidental file
mismatch due to incorrect versioning.

I could miss some relevant configuration file that was modified by the user.
But the modification is not detected in any way. Only the original version is
downloaded. Such issues would be pointed out by the hash checks.

Debian package manager(dpkg)

For finding files in package repositories, dpkg provides the -S flag.35

Unfortunately, finding the corresponding package is never as simple as
making a query on the absolute path of a file. Sometimes, the file is actually
symlinked from elsewhere. Or the file is a hardlink to another location. A
typical usecase for this is with libraries. For example libtinfo.so.6 is a simlink
to libtinfo.so.6.3. This occurs with just about any library. Since programs
rely on the shorter name (libtinfo.so.6), a solution was created.

The developed solution is slow making this one of the longest running parts
of the backend. While using native libraries to speed this up may be possible,
the documentation36 is atrocious, and I was unable to find the functionality I
needed.

Finding the potential package owner is done in three queries. They support
some internal wildcards and are done in the form

• <fullpath>

• */<filename>

• */<filename>.*

To ensure the correct file was found, I match the inode numbers of the
files made with the query with the inode number of the file I wanted to find.
This will resolve both symbolic and hard links. Though if the files were on
different filesystems, the match could result in a false-positive.

This is sufficient to give me a package which I depend on. It does not give
me a way to install the package.

35https://www.man7.org/linux/man-pages/man1/dpkg-query.1.html
36https://www.dpkg.org/doc/libdpkg/

46

5.6. Backend

For package installation I depend on apt.

Advanced Package Tool(apt)

Just having a package version from dpkg is not sufficient to be able to install
a package. The correct remote repository is also needed. In short, apt-cache
policy <packageName> is invoked and parsed to see which remote contains
the specified package.

Sometimes a package has no specified remote. In such a case I fall back
to a version which does and warn the user. I have yet to encounter a package
which was installed directly and has no remote. Such a package would require
the user to provide a way to install the package directly or should fall back to
simply copying the required files.

But just having the list of remotes is not sufficient. The remotes listed
from this command are in a different format than the configuration needed
to install a repository. I sidestep this issue by matching lines in the local
configuration with the required remote.

If a package repository requires specific gpg keys they also need to be
transferred. As of now, I only hardwired the R repository key and left the
rest for the future. They need to be somehow matched from the local store to
the repository and then transferred.

R packages

R packages are mostly independent of the system packages. Some packages
are installed by default along with the executable, but detecting the version
is still necessary.

Resolving just the packages the program was directly dependent on is
insufficient. For a package to be installed, the dependencies required may be
significantly different from the runtime dependencies, since I hit a code path
which does not require them.

To decide if a file belongs to an R package, I replicated the logic R uses to
validate a library before it is loaded. Specifically, R checks for a presence of
specific file in a predefined subfolder.

Invoking an R program, which dumps relevant information about the pack-
age, including the buildtime and runtime dependencies, is done.

Then I search all directories containing R packages, which I have detected
during the program runtime, for missing packages.

Finally, when I have found all packages and their versions, I do a topo-
logical sort of them, to determine the order in which they should be installed
as I need to guarantee the versions will match. Finally, using the remotes R
package, I install the necessary version.

Furthermore, since R packages are often compiled directly on the target
machine, any hash-based verification will likely fail for the compiled code even

47

5. R4R Tool

if the source is the same. This will have to be taken into account when adding
such a check.

5.6.2 Sandboxes
The sandboxes serve two purposes. For one, it will allow the program output
to be reproduced on another system. It will also serve as a guarantee that the
report contains all the necessary dependencies.

Chroot

While chroot is not a good security mechanism, it still has its uses. Namely,
when attempting to make a clean build of a software package or testing out
upgrades of packages without affecting the system itself. [56]

By copying or linking all the relevant files to a new directory structure, we
can test that the given program will still run properly when chrooted into the
directory. This approach is harder to scale when attempting to transfer files
to a completely unrelated device.

Docker Image

Another technology that could be used to create an environment is Docker37.
This is the method I ended up actually properly implementing.

This technology is based on having a base OS image, which is incrementally
modified by different commands. The current OS image this is built upon is
ubuntu:22.04 as that mirrors my development environment.

This provides a baseline system which can then be modified in more flexible
ways than only by overwriting files. It also gives the-end user more control
and semantics over how and why individual files were transferred.

37https://www.docker.com/

48

Chapter 6
Result assessment

There are two important factors which need to be tested for the tool.
The actual correctness of the tool. How well is the tool implemented, what

sorts of programs was it tested on, how confident can we be that the tool
actually detects dependencies? And if the tool can be create a reproducible
environment at all.

The other is the time overhead. How much extra time does the tool take
to allow a program to run.

And lastly a short consideration is made of the usefulness of the evaluated
results.

6.1 Correctness
Most programs I have tested the tool were reproduced in the docker environ-
ment with some caveats. Mostly that dependencies need to be installed using
the package manager as some nuances were missed.

6.1.1 Known issues
When properly testing the tool with various inputs a lot of issues were en-
countered. Follows a list of the currently unresolved issues.

Directories that have only been listed do not retain their contents. That
means a simple command like ls /tmp will not reproduce the contents of the
tmp directory. It will only ensure the /tmp directory exists. While specific
system calls exist for reading the contents of directories, they may not be used.
Opening a file descriptor of a directory and reading from it will proceed to list
the contents of a given directory.

Passing of some signals is not correctly handled. Even a simple sudo
whoami results in the program hanging forever as sudo is not properly notified
of the child termination. The whoami program is left in a zombie state while
sudo is blocked in a poll call. Strace does not suffer from this issue.

49

6. Result assessment

The ioctl system call is not always handled correctly. Since the call changes
its beaviour based on the type of a passed file descriptor, some things are
missed for example the variant which operates on terminals38 can create a file
descriptor which will currently not be known at all.

Suid flags are not respected. Due to the interaction with ptrace, a call to
an suid program will result in the suid flags being discarded. Sudo will result
in the error ‘sudo: effective uid is not 0, is /usr/bin/sudo on a file system
with the ’nosuid’ option set or an NFS file system without root privileges?’.
This works differently if the tracer itself is run with root privileges a call such
as su adamep -c whoami will execute correctly.

The docker build script depends on actually having permissions to all the
relevant files and the files not being device files. It simply copies them over.
A call to su requires access to /etc/shadow which should not be shared for
obvious reasons. But a lack of correct user configuration means that programs
may fail to reproduce properly.

Symbolic and hard links are not reproduced at all. This would break a lot
of programs and indeed it does. Thankfully, these are mostly used in package
configurations. When package files are installed as packages, this has not yet
resulted in any issues.

No effort has been made to retain modification times and the exact access
rights on the transferred files.

Few package-related issues have been found. For one, if a package has no
remote repository, it will be listed with the source as /var/lib/dpkg/status and
most likely need to be installed. This prevents the docker image from being
built.

6.1.2 What works

As it turns out, links are very often used and so is depending on checking of
file or folder existence through directories.

Even R libraries are detected based on the existence of specific files and
only partially based on contents of actual files. When trying to transfer pack-
ages based on accessed files, the packages will miss a couple of files the contents
of which are not actually important and have issues loading.

This means that R programs are not currently reproducible unless the
packages are actually installed rather than just the opened files copied over.

Many simple unix utilities, programs and shells work fine. The process to
build a working version of this thesis has been successfully reproduced. Not
the tool, however.

I tested various Rmarkdown programs taken from the documentation of
various R libraries. I also tested a machine learning-based project from Kag-

38https://www.man7.org/linux/man-pages/man2/ioctl_tty.2.html

50

6.2. Time overhead

type user system real
traced 2:05 33:10 27:01
plain 0:26 0:11 0:25
overhead 380% 17990% 6384%

Figure 6.1: Average runtime in seconds of a sample program taken from Kaggle
when traced and untraced.

gle39 which analyses data of passengers of Titanic. With the package-based
detection of dependencies, these could all be reproduced.

6.2 Time overhead
Currently, the tool is very unoptimised. The time utility was used to determine
the run-time of a program which was compiled not to do any post-analysis or
reporting. This should eliminate any overhead independent of the program
execution. The actual command used was time tracer [program] <args>.

But as it turns out, the overhead is very input dependent. And the de-
pendency analysis takes much longer. The Kaggle project took on average of
three runs for the clean untraced portion of it. Unfortunately, when debugged
the process sees a lot of variance in how long it run. I have had mixed results
running while debugged with one finishing in 23 minutes and one taking over
30 minutes. This major slowdown is most certainly due to the tracer not being
able to handle parallelised programs very well. Using htop most of the child
processes are constantly either suspended or trapped — waiting for the tracer
to handle them — and a single core is fully utilised. This is shown in the table
6.1.

The overhead for analysing the dependencies is even worse. The Keggle
project depended on about 1400 files including temporary files which were
deleted. Gathering the information about which packages they may belong to
took over 20 minutes. Most of this time is spent querying dpkg if a particular
file is perhaps a part of some package. The docker setup took over an hour.

The very simple toy program mentioned in the section 6.3.1 had much
more reasonable results as shown in figure6.2.

6.3 Provided information
When testing the project taken from Kaggle, an alarming observation was
made. And even the basic execution is troublesome, as the project directly
states its dependencies, but they are incomplete. When running the project,

39https://www.kaggle.com/code/erikbruin/titanic-2nd-degree-families-and-majority-
voting

51

6. Result assessment

type user system real
traced 0:2.6 0:3.7 0:9.2
plain 0:2.3 0:1.0 0:3.9
overhead 13% 270% 135%

Figure 6.2: Average runtime in seconds of a simple program for creating a
histogram in pdf.

it will error out unless at least 2 other packages are installed. This highlights
just how difficult manual tracking of dependencies is.

The tested project directly used 171 different system packages and exe-
cuted 11 different executables. When installing in the docker, this results in
having to install 489 dependencies with some libraries already present.

And these are just the dependencies of this one run, not even of the used
libraries. The R dependencies are just as large. The program directly required
106 packages — and to install 131 different packages need to be installed.

And if that weren’t enough, this entire setup depends on 324 other files —
398 including temporaries. Odds are that at least one of those configuration
files will differ on my system from the file on the maker’s system.

Keeping a track of this manually, in a world where one dependency change
can break the entire program is extremely hard.

6.3.1 A simple histogram
So a question comes up. Is this a common, normal occurrence? Will even a
seemingly simple program which creates output depend on this many files and
different dependencies?

A program 6.3.1 which just prints a very simple histogram and is ren-
dered using rmarkdown::render(”./sampleHist.Rmd”, ”pdf_document”) gives
us more interesting statistics. The seemingly simple program renders inter-
nally using pandoc and latex to eventually end up as a pdf. This involves
using 666 files, 122 system packages and 42 R packages and depends on 16
different executables including perl, sed, and pdflatex.

Rendering to HTML changes a large part of the dependencies, turning
these modest numbers to 845 files, 158 system packages and 46 R packages.

The resulting histogram can be seen in 6.3

52

6.3. Provided information

l ibrary (kn i t r)
l ibrary (ggp lot2)
df <− data . frame (

Run = factor (c (” Pla in ” , ”Traced”)) ,
Seconds=c (27 , 60∗27+1)) ;

ggp lot (df , aes (Run , Seconds)) +
geom_bar (stat = ” i d en t i t y ”)

53

6. Result assessment

ggplot(df, aes(Run, Seconds)) +
geom_bar(stat = "identity")

0

500

1000

1500

Plain Traced
Run

S
ec

on
ds

1

Figure 6.3: A simple histogram showing the difference in traced run and an
untraced run of the Kaggle project.

54

Chapter 7
Current limitations and possible

extensions

As of now the tool tracks a basic set of filesystem dependencies and provides
a framework for adding more dependencies. But it still has many limitations
on what it can and cannot do. I will cover some of the potential pitfalls the
tool could encounter and extensions which could be utilised.

7.1 Potentially legal issues
If the resulting environment of the tool were just simply taken and transferred
to another system, a question of legality appears. Especially if it were shared
openly on the Internet rather than as the user’s own backup.

The sandboxed program could depend on libraries which have to be shared
in a specific way depending on their licence, such as ffmpeg40. There is no
way to guarantee that they will be transferred including all the components
using just the dependency detector. The package resolver mitigates much of
this issue, but will never resolve files which were not actively touched.

A way for the user to decide if files are safe to share and if any files need
to be bundled along with the environment needs to be implemented.

7.2 Files which should not be shared
This raises another issue. I assume that files are safe to transfer over, but this
may not always be right.

Would anyone willingly share their .ssh folder with the Internet? On the
other hand, some keys will be necessary if the program depends on them.

40https://ffmpeg.org/legal.html

55

7. Current limitations and possible extensions

But there is no simple way to determine which files are unsafe to share.
While access rights allowing only the user himself access may be a good indi-
cator, they are not a definitive answer.

Some form of substitution for the dependencies should be added.

7.3 Device recording
In the face of communication with external devices, any form of determinism
cannot be guaranteed.

This could be potentially resolved if the communication with the device
were recorded and replayed in some manner. Tools such as umockdev41 exist
for this purpose. It might be possible to utilise this to allow user input into
the sandboxed program.

7.4 Improvements in networking
Currently, network traffic is not handled at all. This could be extended with
actual understanding of the some well-know underlying protocols.

For example, DNS resolution could allow for limiting access to just some
websites. And it could determine which remote devices the program actually
depends on.

Alternatively, even basic understanding of which processes are communi-
cating over a socket is necessary for the analysis. It is required to ensure that
only traced processes are communicating among themselves on the system.

7.5 Privilege handling
The tool currently does not check which user and privileges it is running with.

The tool could see more usage if it had a way to gain privileges for just
the tracing portion of it, so that suid programs could be correctly traced.
Currently, the sandboxed programs must manually drop their privileges rather
than this being done in the tracer.

7.6 Multithreading
For simplicity’s sake, the initial implementation contains no multithreading.
The entire tool is purely single threaded.

This means that any traced program gets its system calls serialised and
until one system call has been handled no other can begin or exit. This could
be improved if a way to spread out the tracees among multiple tracers was
devised.

41https://github.com/martinpitt/umockdev

56

7.7. Supporting other architectures

Though testing would be needed to actually measure any performance
changes.

7.7 Supporting other architectures
Currently, only the ABI for x64 is implemented. For another architecture to
be supported, two things have to be considered.

If the system call API is not the same, the individual handlers may need
to be modified.

The system call ABI will differ, so the way system call arguments are
resolved needs to be changed. Moreover, the current way that reading strings
from user tracees is implemented may break if the endianness changes as the
code has not been tested.

7.8 Supporting other distributions
Right now the tool assumes Ubuntu with dpkg and apt is used. This could
be extended to more distributions and package managers.

Support for R packages from sources other than CRAN could be imple-
mented.

This is an extension touching only the backend of the tool. The other
parts of the tool do not care for the specific distribution as long as the API
remains the same.

57

Chapter 8
Conclusion

This thesis had four main goals all of which were reached.
In the chapters 1, 2, and 3 I explored the ways in which a sandbox could be

implemented and summarised the potential limitations and issues. R turned
out not to be possible to sandbox on a language level due to the widespread
usage of native libraries and requires a more general approach.

Chapter 4 considers all the other possible methods for program tracing of
which I chose to use ptrace to trace system calls made by all processes of a
process tree. I have shown this approach to work for R programs, and many
unix shell scripts and utilities, though it has many limitations as of yet as
shown in chapter 6.

Because of the chosen technology, the dependency tracker is not secure and
could be bypassed using a clever enough program, especially by abusing race
conditions. Moreover, some parts of the system call API are not handled yet.
For these reasons, the tool should not be directly used in any security-related
setting.

The tool which traces the required dependencies along with the creation
of a sandboxed environment is covered the chapter 5. While it is possible to
create a sandbox which constrains a particular programs behaviour, tracing
all dependencies is hard. As such a subset of the program was created, which
traces many, but not all, of the dependencies on the filesystem.

But since dependencies often take the form of packages rather than indi-
vidual files, much work was put into resolving file dependencies to package
dependencies instead. Because of this, a potential sandbox or analyst has
much more semantic information about the actual dependencies.

The sandbox is implemented using docker images for ease of transfer,
though the actual construction is problematic.

The tracer has significant performance overhead even discounting the time
it takes to analyse dependencies and create the reproducible environments,
but no effort has been made in this regard and there are options for potential

59

8. Conclusion

performance gains. Many of the possible improvements are covered in the
chapter 7.

60

Bibliography

1. TEAM, CRAN. Contributed Packages [online] [visited on 2024-05-02].
Available from: https://cran.r-project.org/web/packages/index.
html.

2. WICKHAM, Hadley; BRYAN, Jenny. R packages [online]. 2nd ed. Se-
bastopol, CA: O’Reilly Media, 2023 [visited on 2024-05-02]. Available in
html format from https://r-pkgs.org/.

3. TEAM, CRAN. CRAN Repository Policy [online] [visited on 2024-05-
02]. Available from: https://cran.r-project.org/web/packages/
policies.html.

4. R4R: Reproducible Data Analyses for All [online]. Publications Office
of the European Union, 2024-01 [visited on 2024-05-02]. Available from:
https://cordis.europa.eu/project/id/101081989.

5. GOLDBERG, Ian; WAGNER, David; THOMAS, Randi; BREWER, Eric.
A Secure Environment for Untrusted Helper Applications (Confining
the Wily Hacker). In: Proceedings of the Sixth USENIX UNIX Secu-
rity Symposium. 1996. Available also from: https://www.usenix.org/
legacy/publications/library/proceedings/sec96/full_papers/
goldberg/goldberg.pdf.

6. MAASS, Michael; SALES, Adam; CHUNG, Benjamin; SUNSHINE, Joshua.
A systematic analysis of the science of sandboxing. PeerJ Computer Sci-
ence. 2016, vol. 2, e43. Available from doi: 10.7717/peerj-cs.43.

7. MOSER, Andreas; KRUEGEL, Christopher; KIRDA, Engin. Exploring
Multiple Execution Paths for Malware Analysis. In: 2007 IEEE Sym-
posium on Security and Privacy (SP ’07). 2007, pp. 231–245. Available
from doi: 10.1109/SP.2007.17.

61

https://cran.r-project.org/web/packages/index.html
https://cran.r-project.org/web/packages/index.html
https://r-pkgs.org/
https://cran.r-project.org/web/packages/policies.html
https://cran.r-project.org/web/packages/policies.html
https://cordis.europa.eu/project/id/101081989
https://www.usenix.org/legacy/publications/library/proceedings/sec96/full_papers/goldberg/goldberg.pdf
https://www.usenix.org/legacy/publications/library/proceedings/sec96/full_papers/goldberg/goldberg.pdf
https://www.usenix.org/legacy/publications/library/proceedings/sec96/full_papers/goldberg/goldberg.pdf
https://doi.org/10.7717/peerj-cs.43
https://doi.org/10.1109/SP.2007.17

Bibliography

8. OR-MEIR, Ori; NISSIM, Nir; ELOVICI, Yuval; ROKACH, Lior. Dy-
namic Malware Analysis in the Modern Era—A State of the Art Survey.
ACM Comput. Surv. 2019, vol. 52, no. 5. issn 0360-0300. Available from
doi: 10.1145/3329786.

9. GOONASEKERA, Nuwan; CAELLI, William; FIDGE, Colin. LibVM:
An architecture for shared library sandboxing. Software: Practice and
Experience. 2014, vol. 45. Available from doi: 10.1002/spe.2294.

10. FLEURY, Nicolas; DUBRUNQUEZ, Theo; ALOUANI, Ihsen. PDF-Malware:
An Overview on Threats, Detection and Evasion Attacks [online]. 2021
[visited on 2024-05-02]. Available from arXiv: 2107.12873 [cs.CR].

11. MOSER, Andreas; KRUEGEL, Christopher; KIRDA, Engin. Limits of
Static Analysis for Malware Detection. In: Twenty-Third Annual Com-
puter Security Applications Conference (ACSAC 2007). 2007, pp. 421–
430. Available from doi: 10.1109/ACSAC.2007.21.

12. A0RTEGA. GitHub. Pafish [online]. b497899 on Nov 9, 2021 [visited on
2024-05-03]. Available from: https://github.com/a0rtega/pafish.

13. LEON, Roee S.; KIPERBERG, Michael; LEON ZABAG, Anat Anatey;
ZAIDENBERG, Nezer Jacob. Hypervisor-assisted dynamic malware anal-
ysis. Cybersecurity. 2021, vol. 4, no. 1, p. 19. issn 2523-3246. Available
from doi: 10.1186/s42400-021-00083-9.

14. SCHULIST, Jay; BORKMANN, Daniel; STAROVOITOV, Alexei. Linux
Socket Filtering aka Berkeley Packet Filter (BPF) [online] [visited on
2024-05-02]. Available from: https://www.kernel.org/doc/html/v5.
12/networking/filter.html.

15. BAYER, Ulrich; KRUEGEL, Christopher; KIRDA, Engin. TTAnalyze:
A Tool for Analyzing Malware. In: 2006. Available also from: https:
//api.semanticscholar.org/CorpusID:11273952.

16. KIRAT, Dhilung; VIGNA, Giovanni; KRUEGEL, Christopher. BareBox:
efficient malware analysis on bare-metal. In: Proceedings of the 27th
Annual Computer Security Applications Conference. Orlando, Florida,
USA: Association for Computing Machinery, 2011, pp. 403–412. AC-
SAC ’11. isbn 9781450306720. Available from doi: 10.1145/2076732.
2076790.

17. EARTHQUAKE. GitHub. chw00t: chroot escape tool [online]. 1fd1016 on
Jun 13, 2019 [visited on 2024-05-03]. Available from: https://github.
com/earthquake/chw00t/.

18. SILBERSCHATZ, Abraham; GALVIN, Peter; GAGNE, Greg. Chap-
ter 14 Protection [online]. In: Operating System Concepts, 9th edition.
John Wiley & Sons, 2013. isbn 978-1-118-06333-0. Available also from:
https://archive.org/details/operating-system-concepts-9th-
edition/.

62

https://doi.org/10.1145/3329786
https://doi.org/10.1002/spe.2294
https://arxiv.org/abs/2107.12873
https://doi.org/10.1109/ACSAC.2007.21
https://github.com/a0rtega/pafish
https://doi.org/10.1186/s42400-021-00083-9
https://www.kernel.org/doc/html/v5.12/networking/filter.html
https://www.kernel.org/doc/html/v5.12/networking/filter.html
https://api.semanticscholar.org/CorpusID:11273952
https://api.semanticscholar.org/CorpusID:11273952
https://doi.org/10.1145/2076732.2076790
https://doi.org/10.1145/2076732.2076790
https://github.com/earthquake/chw00t/
https://github.com/earthquake/chw00t/
https://archive.org/details/operating-system-concepts-9th-edition/
https://archive.org/details/operating-system-concepts-9th-edition/

Bibliography

19. GOONASEKERA, Nuwan A.; CAELLI, William J.; SAHAMA, Tony.
50 Years of Isolation. In: 2009 Symposia and Workshops on Ubiquitous,
Autonomic and Trusted Computing. 2009, pp. 54–60. Available from doi:
10.1109/UIC-ATC.2009.86.

20. MARTINMARINOV. GitHub. TempestSDR [online]. ff37de8 on Jul 4,
2023 [visited on 2024-05-03]. Available from: https://github.com/
martinmarinov/TempestSDR.

21. MARTINS, José; PINTO, Sandro. Shedding Light on Static Partitioning
Hypervisors for Arm-based Mixed-Criticality Systems. In: 2023 IEEE
29th Real-Time and Embedded Technology and Applications Symposium
(RTAS). 2023, pp. 40–53. issn 2642-7346. Available from doi: 10.1109/
RTAS58335.2023.00011.

22. COKER, Zack; MAASS, Michael; DING, Tianyuan; LE GOUES, Claire;
SUNSHINE, Joshua. Evaluating the Flexibility of the Java Sandbox. In:
Proceedings of the 31st Annual Computer Security Applications Con-
ference. Los Angeles, CA, USA: Association for Computing Machinery,
2015, pp. 1–10. ACSAC 2015. isbn 9781450336826. Available from doi:
10.1145/2818000.2818003.

23. TAN, Gang. Principles and implementation techniques of software-based
fault isolation. Foundations and Trends® in Privacy and Security. 2017,
vol. 1, no. 3, pp. 137–198. Available from doi: 10.1561/3300000013.

24. DEX4ER. GitHub. fakechroot [online]. b42d1fb on Feb 11, 2020 [vis-
ited on 2024-05-03]. Available from: https://github.com/dex4er/
fakechroot.

25. LURE-SH. GitHub. fakeroot [online]. b2da39c on Oct 24, 2023 [visited on
2024-05-03]. Available from: https://github.com/lure-sh/fakeroot.

26. THE KERNEL DEVELOPMENT COMMUNITY. Kernel Self-Protection
[online] [visited on 2024-05-04]. Available from: https://www.kernel.
org/doc/html/v5.4/security/self-protection.html?highlight=
kaslr.

27. KERRISK, Michael. Linux/UNIX system programming training. shmget(2)
— Linux manual page [online]. 2023-12-22 [visited on 2024-05-03]. Avail-
able from: https://www.man7.org/linux/man-pages/man2/shmget.
2.html.

28. KERRISK, Michael. Linux/UNIX system programming training. fstab(5)
— Linux manual page [online]. 2023-12-22 [visited on 2024-05-03]. Avail-
able from: https://www.man7.org/linux/man-pages/man5/fstab.5.
html.

63

https://doi.org/10.1109/UIC-ATC.2009.86
https://github.com/martinmarinov/TempestSDR
https://github.com/martinmarinov/TempestSDR
https://doi.org/10.1109/RTAS58335.2023.00011
https://doi.org/10.1109/RTAS58335.2023.00011
https://doi.org/10.1145/2818000.2818003
https://doi.org/10.1561/3300000013
https://github.com/dex4er/fakechroot
https://github.com/dex4er/fakechroot
https://github.com/lure-sh/fakeroot
https://www.kernel.org/doc/html/v5.4/security/self-protection.html?highlight=kaslr
https://www.kernel.org/doc/html/v5.4/security/self-protection.html?highlight=kaslr
https://www.kernel.org/doc/html/v5.4/security/self-protection.html?highlight=kaslr
https://www.man7.org/linux/man-pages/man2/shmget.2.html
https://www.man7.org/linux/man-pages/man2/shmget.2.html
https://www.man7.org/linux/man-pages/man5/fstab.5.html
https://www.man7.org/linux/man-pages/man5/fstab.5.html

Bibliography

29. KERRISK, Michael. Linux/UNIX system programming training. setuid(2)
— Linux manual page [online]. 2023-12-22 [visited on 2024-05-03]. Avail-
able from: https://man7.org/linux/man-pages/man2/setuid.2.
html.

30. KERRISK, Michael. Linux/UNIX system programming training. ope-
nat2(2) — Linux manual page [online]. 2023-12-22 [visited on 2024-05-
03]. Available from: https://www.man7.org/linux/man-pages/man2/
openat2.2.html.

31. LIPP, Moritz; SCHWARZ, Michael; GRUSS, Daniel; PRESCHER, Thomas;
HAAS,Werner; FOGH, Anders; HORN, Jann; MANGARD, Stefan; KOCHER,
Paul; GENKIN, Daniel; YAROM, Yuval; HAMBURG, Mike. Meltdown:
Reading Kernel Memory from User Space. In: 27th USENIX Security
Symposium (USENIX Security 18). 2018.

32. KOCHER, Paul; HORN, Jann; FOGH, Anders; GENKIN, Daniel; GRUSS,
Daniel; HAAS, Werner; HAMBURG, Mike; LIPP, Moritz; MANGARD,
Stefan; PRESCHER, Thomas; SCHWARZ, Michael; YAROM, Yuval.
Spectre Attacks: Exploiting Speculative Execution. In: 40th IEEE Sym-
posium on Security and Privacy (S&P’19). 2019.

33. SORENSEN, Tyler; KHLAAF, Heidy. LeftoverLocals: Listening to LLM
Responses Through Leaked GPU Local Memory. 2024. Available from
arXiv: 2401.16603 [cs.CR].

34. KERRISK, Michael. Linux/UNIX system programming training. clone(2)
— Linux manual page [online]. 2023-12-22 [visited on 2024-05-03]. Avail-
able from: https://www.man7.org/linux/man-pages/man2/openat2.
2.html.

35. LTD, Check Point Software Technologies. Evasion techniques [online]. ©
1994-2024 [visited on 2024-05-04]. Available from: https://evasions.
checkpoint.com/.

36. KERRISK, Michael. Linux/UNIX system programming training. ino-
tify(7) — Linux manual page [online]. 2023-12-22 [visited on 2024-05-03].
Available from: https://man7.org/linux/man-pages/man7/inotify.
7.html.

37. KERRISK, Michael. Linux/UNIX system programming training. fan-
otify(7) — Linux manual page [online]. 2023-12-22 [visited on 2024-05-
04]. Available from: https://www.man7.org/linux/man-pages/man7/
fanotify.7.html.

38. KERRISK, Michael. Linux/UNIX system programming training. names-
paces(7) — Linux manual page [online]. 2023-12-22 [visited on 2024-05-
04]. Available from: https://www.man7.org/linux/man-pages/man7/
namespaces.7.html.

64

https://man7.org/linux/man-pages/man2/setuid.2.html
https://man7.org/linux/man-pages/man2/setuid.2.html
https://www.man7.org/linux/man-pages/man2/openat2.2.html
https://www.man7.org/linux/man-pages/man2/openat2.2.html
https://arxiv.org/abs/2401.16603
https://www.man7.org/linux/man-pages/man2/openat2.2.html
https://www.man7.org/linux/man-pages/man2/openat2.2.html
https://evasions.checkpoint.com/
https://evasions.checkpoint.com/
https://man7.org/linux/man-pages/man7/inotify.7.html
https://man7.org/linux/man-pages/man7/inotify.7.html
https://www.man7.org/linux/man-pages/man7/fanotify.7.html
https://www.man7.org/linux/man-pages/man7/fanotify.7.html
https://www.man7.org/linux/man-pages/man7/namespaces.7.html
https://www.man7.org/linux/man-pages/man7/namespaces.7.html

Bibliography

39. KERRISK, Michael. Linux/UNIX system programming training. cgroups
- Linux control groups [online]. 2023-12-22 [visited on 2024-05-04]. Avail-
able from: https://www.man7.org/linux/man-pages/man7/cgroups.
7.html.

40. KERRISK, Michael. Linux/UNIX system programming training. creden-
tials(7) — Linux manual page [online]. 2023-12-22 [visited on 2024-05-
04]. Available from: https : / / man7 . org / linux / man - pages / man7 /
credentials.7.html.

41. GARFINKEL, Tal. Traps and pitfalls: Practical problems in system call
interposition based security tools. In: In Proc. Network and Distributed
Systems Security Symposium. 2003. Available also from: https://cs155.
stanford.edu/papers/traps.pdf.

42. WATSON, Robert N. M. Exploiting concurrency vulnerabilities in sys-
tem call wrappers. In: Proceedings of the First USENIX Workshop on
Offensive Technologies. Boston, MA: USENIX Association, 2007. WOOT
’07.

43. THE KERNEL DEVELOPMENT COMMUNITY. Seccomp BPF [on-
line] [visited on 2022-02-27]. Available from: https://docs.kernel.
org/userspace-api/seccomp_filter.html.

44. PROJECTS, The Chromium. Chromium Docs. Linux Sandboxing [on-
line] [visited on 2024-05-04]. Available from: https://chromium.googlesource.
com/chromium/src/+/HEAD/docs/linux/sandboxing.md.

45. JIA, Jinghao; ZHU, YiFei; WILLIAMS, Dan; ARCANGELI, Andrea;
CANELLA, Claudio; FRANKE, Hubertus; FELDMAN-FITZTHUM, To-
bin; SKARLATOS, Dimitrios; GRUSS, Daniel; XU, Tianyin. Programmable
System Call Security with eBPF. 2023. Available from arXiv: 2302.10366
[cs.OS].

46. BPFTRACE. GitHub. bpftrace [online]. Jan 5 2024 [visited on 2024-
05-04]. Available from: https://github.com/bpftrace/bpftrace/
issues/305.

47. LIASSICA. archlinux. Audit framework [online]. 12 September 2023, at
02:14 [visited on 2024-05-04]. Available from: https://wiki.archlinux.
org/index.php?title=Audit_framework&oldid=787488.

48. LINUX-AUDIT. Github. audit-userspace [online]. 4939b85 on May 3,
2024 [visited on 2024-05-04]. Available from: https://github.com/
linux-audit/audit-userspace.

49. KERRISK, Michael. Linux/UNIX system programming training. ptrace(2)
— Linux manual page [online]. 2023-12-22 [visited on 2024-05-04]. Avail-
able from: https://www.man7.org/linux/man-pages/man2/ptrace.
2.html.

65

https://www.man7.org/linux/man-pages/man7/cgroups.7.html
https://www.man7.org/linux/man-pages/man7/cgroups.7.html
https://man7.org/linux/man-pages/man7/credentials.7.html
https://man7.org/linux/man-pages/man7/credentials.7.html
https://cs155.stanford.edu/papers/traps.pdf
https://cs155.stanford.edu/papers/traps.pdf
https://docs.kernel.org/userspace-api/seccomp_filter.html
https://docs.kernel.org/userspace-api/seccomp_filter.html
https://chromium.googlesource.com/chromium/src/+/HEAD/docs/linux/sandboxing.md
https://chromium.googlesource.com/chromium/src/+/HEAD/docs/linux/sandboxing.md
https://arxiv.org/abs/2302.10366
https://arxiv.org/abs/2302.10366
https://github.com/bpftrace/bpftrace/issues/305
https://github.com/bpftrace/bpftrace/issues/305
https://wiki.archlinux.org/index.php?title=Audit_framework&oldid=787488
https://wiki.archlinux.org/index.php?title=Audit_framework&oldid=787488
https://github.com/linux-audit/audit-userspace
https://github.com/linux-audit/audit-userspace
https://www.man7.org/linux/man-pages/man2/ptrace.2.html
https://www.man7.org/linux/man-pages/man2/ptrace.2.html

Bibliography

50. WRIGHT, Chris; COWAN, Crispin; SMALLEY, Stephen S. Linux Se-
curity Module Framework. In: 2002. Available also from: https://api.
semanticscholar.org/CorpusID:7635257.

51. LAWLER, Frederick. Live-patching security vulnerabilities inside the
Linux kernel with eBPF Linux Security Module [online]. 06/29/2022 [vis-
ited on 2024-05-04]. Available from: https://blog.cloudflare.com/
live-patch-security-vulnerabilities-with-ebpf-lsm/.

52. THE KERNEL DEVELOPMENT COMMUNITY. LSM BPF Programs
[online]. (C) 2020 Google LLC [visited on 2024-05-04]. Available from:
https://docs.kernel.org/bpf/prog_lsm.html.

53. KENISTON, Jim; PANCHAMUKHI, Prasanna S; HIRAMATSU, Masami.
Kernel Probes (Kprobes) [online] [visited on 2024-05-04]. Available from:
https://www.kernel.org/doc/html/latest/trace/kprobes.html.

54. DESNOYERS, Mathieu. Using the Linux Kernel Tracepoints [online] [vis-
ited on 2024-05-04]. Available from: https://www.kernel.org/doc/
html/latest/trace/tracepoints.html.

55. CHEN, Raymond. The hunt for a faster syscall trap [online]. December
15th, 2004 [visited on 2024-05-02]. Available from: https://devblogs.
microsoft.com/oldnewthing/20041215-00/?p=37003.

56. LAHWAACZ.BOT. chroot [online]. 1 February 2024, at 18:03 [visited on
2024-05-04]. Available from: https://wiki.archlinux.org/index.
php?title=Chroot&oldid=799152.

66

https://api.semanticscholar.org/CorpusID:7635257
https://api.semanticscholar.org/CorpusID:7635257
https://blog.cloudflare.com/live-patch-security-vulnerabilities-with-ebpf-lsm/
https://blog.cloudflare.com/live-patch-security-vulnerabilities-with-ebpf-lsm/
https://docs.kernel.org/bpf/prog_lsm.html
https://www.kernel.org/doc/html/latest/trace/kprobes.html
https://www.kernel.org/doc/html/latest/trace/tracepoints.html
https://www.kernel.org/doc/html/latest/trace/tracepoints.html
https://devblogs.microsoft.com/oldnewthing/20041215-00/?p=37003
https://devblogs.microsoft.com/oldnewthing/20041215-00/?p=37003
https://wiki.archlinux.org/index.php?title=Chroot&oldid=799152
https://wiki.archlinux.org/index.php?title=Chroot&oldid=799152

Appendix A
Acronyms

API Application programming interface

API Application binary interface

TCB Trusted code base

FS Filesystem

PID Process ID

TID Thread ID

VM Virtual machine

eBPF extended Barkley packet filter

67

Appendix B
Contents of the attatchments

readme.md............................. the file with contents description
Implementation...... the directory with all practical parts of this thesis
Text the thesis text and LATEX source codes directory

DP_Adamek_Petr_2024.pdf............ the thesis text in PDF format

69

	Introduction
	Malware analysis
	Determinism
	Program analysis methods
	Evading detection

	Sandbox construction
	Dependency tracking
	Sandbox structure
	Sandboxing boundaries

	Sources of nondeterminism
	Hardware
	Kernel
	Filesystems
	Inherent
	Reproducing the process sandbox
	Privilege escalatuion
	Analysis framework detection

	Tracing implementation
	User-space based approaches
	Kernel-space approaches
	State of the art tracers

	R4R Tool
	R code execution
	The tool API
	Tool architecture
	Tracer - FrontEnd
	Middleend
	Backend

	Result assessment
	Correctness
	Time overhead
	Provided information

	Current limitations and possible extensions
	Potentially legal issues
	Files which should not be shared
	Device recording
	Improvements in networking
	Privilege handling
	Multithreading
	Supporting other architectures
	Supporting other distributions

	Conclusion
	Bibliography
	Acronyms
	Contents of the attatchments

