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Abstrakt: Práce se věnuje energetické kalibraci detektoru SuperNEMO. Super-
NEMO je experiment zaměřený na hledáńı dvojného bezneutrinového beta roz-
padu - hypotetického procesu, jehož objev by byl významný krok na poli neu-
trinové fyziky a částicové fyziky v̊ubec. K měřeńı energíı využ́ıvá SuperNEMO
segmentovaný kalorimetr, který se skládá z tzv. optických modul̊u (OM). Kali-
brace OM bude prováděná pomoćı elektron̊u emitovaných systémem 42 kali-
bračńıch zdroj̊u obsahuj́ıćıch 207Bi. Měřené energetické spektrum těchto elek-
tron̊u je ovlivňováno řadou efekt̊u. Práce navrhuje dvě skupiny korekćı těchto
efekt̊u: optické korekce a korekce energetických ztrát. Dále také popisuje kom-
pletńı algoritmus navržený k aplikaci energetických korekćı na kalibračńı data a
extrakci kalibračńıch parametr̊u jednotlivých OM. Algoritmus je nakonec použit k
źıskáńı prvńıho spolehlivého odhadu energetických rozlǐseńı OM. Ty se pohybuj́ı
v rozsahu od 10 do 14% pro většinu modul̊u. Jako vedleǰśı produkt je extrahován
tlak plynu uvnitř detektoru, jehož výsledkem je 0,82 bar, což se bĺıž́ı skutečnému
tlaku 0,88 bar, a lze to chápat jako ověřeńı korekćı energetických ztrát.
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Introduction

The Standard Model (the SM) of particle physics is currently the most successful
theory of elementary particles and their interactions. It has managed to successfully
predict the existence of many particles as well as unify the theory of Strong, Weak
and Electromagnetic interactions. Despite that, it is already clear that the theory is
only valid for a limited energy scale, as there are several known problems which it
cannot explain. For example, gravity has not yet been included into the theory of
fundamental interactions. Another problem is the existence of dark matter, which has
been observed through its gravitational interaction with astronomical objects, but has
not been described on a fundamental level. Finally, the Standard Model cannot describe
the imbalance of amount of matter and antimatter in early stages of the universe. This
so-called baryon asymmetry is in contradiction with conservation of lepton number
assumed by the Standard Model. These unsolved phenomena and theories attempting
to explain them are commonly referred to as physics beyond the Standard Model
(BSM).

A possible field, in which an advancement beyond the scope of the Standard Model
could be made, is the field of neutrino physics. Neutrino is an elementary particle very
rarely interacting with matter. It exists in three masses and three flavours: electron,
muon and tau neutrino. The key discovery, which revealed neutrinos as a possible clue
to BSM, was the discovery of neutrino oscillations. It revealed that neutrinos change
their flavour while travelling through space. The implication of this discovery is that
neutrinos have non-zero mass. This is in contradiction with massless neutrinos often
assumed in the Standard Model calculations. Absolute values of the three neutrino
masses have yet not been determined, as neutrino oscillation experiments are only
sensitive to their differences.

A possible way to measure neutrino masses is through measurement of 0νββ-decay
half-life. The problem of such measurement is that the existence of 0νββ-decay is only
hypothetical and has yet not been experimentally confirmed. So far, experiments have
only been able to set a lower limit on its half-life, which is in the order of 1026 years
(measured for example by GERDA for 76Ge). For different isotopes, the limit can
differ. This would make the 0νββ-decay the rarest phenomenon observed by humans.
0νββ-decay is characteristic by emission of two electrons. This simultaneous emission
of two electrons can be experimentally observed. The key element of a 0νββ-decay
experiment is differentiating 0νββ-decay from a more common 2νββ-decay, also emit-
ting two electrons. This background created by the 2νββ-decay cannot be removed,
but a distinction between the two decays can be done through energy spectra of the
electrons. For the 2νββ-decay, the spectrum is continuous, while for the 0νββ-decay,
the spectrum is only composed of a single energy.

One of the experiments attempting to observe the 0νββ-decay is the SuperNEMO
experiment. SuperNEMO uses a unique tracko-calo design, allowing it to not only
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measure energies of the electrons but also reconstruct their trajectories. This addi-
tional information allows for strong background suppression as well as measurement
of different properties of the decay, such as angular distribution of the electrons. The
SuperNEMO detector is composed of 3 main parts. In the middle there is a source
foil containing 6.11 kg of 82Se acting as a source of 0νββ-decay. The source foil is
sandwiched between two sections of the tracker. Tracker is a wire chamber composed
of 2034 cells operating in Geiger mode, which is used to detect particle trajectories. Fi-
nally, the detector is surrounded by the calorimeter used to measure electron energies.
The calorimeter is composed of smaller optical modules (OMs). These are scintillation
detectors composing of a block of plastic scintillator and a photomultiplier tube (PMT).
For an experiment attempting to detect a phenomenon this rare, strong background
suppression is very important. Because of that, the whole experiment is placed inside
the LSM underground laboratory, which ensures reduction of cosmic rays. Significant
attention has also been given to selection of radiopure materials for construction of the
detector, as well as to construction of a system of shielding, which suppresses external
background.

As the main goal of the experiment is energy measurement, a precise energy cali-
bration of OMs needs to be done. For this purpose, a calibration system has been con-
structed. This calibration system uses 42 207Bi sources. These sources can be placed on
precise positions in the middle of the detector. During a calibration measurement, the
sources emit electrons with discrete energy spectrum. These pass through the tracker
and are detected by OMs. Based on the spectrum measured by OMs, calibration pa-
rameters for each individual OM can be extracted. There are several effects which
can influence the calibration. First, before reaching an OM, electrons have to pass
through gas in the tracker as well as through a layer of Mylar and nylon. This results
in energy losses which influence the measured spectrum. Thanks to the knowledge
about electron trajectories, it is possible to calculate the amount of lost energy and
correct this effect. Another factor which needs to be taken into account is a group of
effects taking place during interaction of the electron with an OM. These effects add
non-linearity to the OM response, as well as dependence of the response on the point
in which energy of the electron was deposited. These effects can be corrected using
so-called optical corrections. Finally, these corrections have to be implemented into
a software which would be able to automatically process calibration data, apply the
corrections and extract calibration parameters for each OM.

The first chapter provides a short introduction into the neutrino physics. It
briefly covers the history which led to the discovery of neutrino oscillations and to the
hunt for the 0νββ-decay. Then it summarizes different experimental approaches to
0νββ-decay detection and some results achieved by experiments in recent years.

The second chapter describes the SuperNEMO detector in more detail. It de-
scribes individual parts of the detector and the reasoning behind their design.

The third chapter of the thesis is where the practical part begins. It first describes
different pieces of software and data formats to manipulate both simulated and real
data. It also introduces a set of data cuts which was used on the calibration data
throughout the whole work. At the end of the chapter, the structure of calibration
data is described.

The fourth chapter is devoted to two groups of energy corrections: optical cor-
rections and energy loss corrections. The primary attention is directed towards the
latter group, as the development of a suitable energy loss model is one of the main
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goals of this work. It first discusses flaws of an energy loss model proposed in previous
work and then introduces an improved model based on the Bethe-Bloch formula.

The fifth chapter combines methods from chapters 3 and 4 into a single algorithm,
which is able to apply cuts on the calibration data, apply energy correction and extract
calibration parameters for each OM. It is explained that the calculation of calibration
parameters leads to a problem of numerical minimization. This problem is then solved
using the Downhill simplex method.

Finally, The sixth chapter uses the presented methods to calculate energy reso-
lutions of OMs.
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Chapter 1

The history of neutrino physics and
neutrinoless double beta decay

1.1 Discovery of the neutrino

In the 1920s, the existence of protons and electrons has already been known. Atoms
were considered to comprise these elementary particles in their bound states [1]. In the
proton-electron model, beta decay is a process in which an electron is emitted, and the
proton number is raised by one

(A,Z) → (A,Z + 1) + e−, (1.1)

where (A,Z) is a nucleus with nucleon number A and proton number Z and e− is an
electron. Based on the energy conservation, the kinetic energy of the electron should
be equal to the energy released in the decay

Te = (MA,Z −MA,Z+1 −me) c
2, (1.2)

where MA,Z and MA,Z+1 are masses of the nucleus before and after the decay respec-
tively, me is the rest mass of the electron and c is the speed of light. The experiments
have shown, however, that the energy spectrum of the electrons is continuous and that
their energies are lower than Te calculated by (1.2). This was surprising, as it seemingly
contradicts the law of energy conservation.

The solution to this problem has been proposed in 1930 by Wolfgang Pauli [2]. He
explained the continuous spectrum by assuming the existence of a new, neutral particle
which was emitted in beta decay together with an electron. This particle carries away
the missing energy and went undetected. He named the particle neutron, but later it
was renamed to neutrino by Enrico Fermi.

Proving the existence of neutrino was not an easy task, as it very rarely interacts
with matter. Despite that, the existence was proved in 1956 by the experiment of
Clyde Cowan and Frederick Reines [3]. The experiment was based on inverse beta
decay during which an antineutrino is absorbed by a proton, which results in the
creation of a neutron and a positron

ν̄e + p → e+ + n. (1.3)

The positron then annihilates with a nearby electron creating two 511 keV gamma
photons. A few hundred microseconds after that, the neutron is captured. This results
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Figure 1.1: A scheme of the final Cowan-Reines experiment design. Two water tanks
(blue) are surrounded by tanks containing liquid scintillator and 110 photomultiplier
tubes. The image was adapted from Ref. [4].

in second emission. Based on time coincidence of these two signals, we detect inverse
beta decay.

The Cowan-Reines experiment used 2 water tanks, in which the inverse beta decay
took place. The water tanks were surrounded by large tanks with liquid scintillator.
This setup was surrounded by photomultipliers which detected emitted gamma pho-
tons. A scheme of the detector can be seen in the figure 1.1. The whole detector was
placed near a nuclear reactor serving as a strong source of neutrinos. The experiment
was able to detect (2.88± 0.22) neutrinos per hour, confirming its existence.

1.2 Neutrino properties

A neutrino is an elementary particle well-known for its very rare interaction with
matter. It is a lepton with zero charge which mostly interacts via Weak interaction.
Due to this, it is very hard to detect. Currently, we distinguish three flavours of
neutrinos — electron (e), muon (µ) and tau (τ) neutrino, as well as three masses m1,
m2 and m3. Neutrinos are produced by a number of different sources. These can
be divided into artificial and natural. The most significant artificial source is nuclear
reactors. These can provide high flux of neutrinos, which is often utilized by neutrino
experiments. Examples of natural sources are geological radionuclides, interactions of
cosmic rays with atmosphere, nuclear reactions in stars or explosions of supernovae.
Neutrinos originating from these cosmic sources come to importance in astronomy as
they travel through space almost unaffected. This allows astronomers to use them as
an additional source of information about cosmic events.
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1.2.1 Neutrino flavours

Even before the experimental discovery of neutrino in 1956, it was hypothesised
that the muon neutrino could exist. Its existence was finally proved in an experi-
ment conducted by Leon M. Lederman, Melvin Schwartz and Jack Steinberger at the
Brookhaven National Laboratory in 1962 [5]. The experiment used accelerated pions,
which decay into a muon and a neutrino

π± → µ± + (ν/ν̄) . (1.4)

The muons were stopped by a 13.5 m thick wall while the neutrinos passed through the
wall and continued to a detector where they were observed. In the detector, following
reactions were expected to take place

ν + n → p+ e−, (1.5)

ν̄ + p → n+ e+, (1.6)

ν + n → p+ µ−, (1.7)

ν̄ + p → n+ µ+. (1.8)

If there was only one type (flavour) of neutrino, the reactions resulting in emission
of electrons and muons should be equally abundant. However, the number of muons
observed was significantly higher than electrons. This meant that the resulting charged
lepton “remembered” which charged particle caused the creation of original neutrino
impacting the detector (muon). This led to the conclusion, that there is a second
flavour of neutrino — the µ-neutrino.

After the discovery of τ -lepton in 1975 a third neutrino flavour was hypothesised
[6]. It was observed in 2000 by the DONUT experiment from Fermilab [7].

1.2.2 Neutrino oscillations

The Sun produces energy through fusion of light nuclei. Most of the energy is
produced in the so-called proton-proton cycle, in which protons are fused into helium
nuclei. Electron neutrinos are also emitted in these nuclear reactions. Part of the solar
neutrino flux passes through Earth. In the 1960s, Raymond Davis and John Bahcall
measured the flux of solar neutrinos in an experiment known as the Homestake exper-
iment. They used 400 000 litres of C2Cl4 to capture neutrinos through the following
reaction

νe +
37Cl → 37Ar + e−. (1.9)

Through subsequent measurement of argon abundance, it was possible to calculate the
neutrino flux. The expected theoretical flux was 9.3±1.3 SNU while the flux measured
by the Homestake experiment was only 2.56 ± 0.32 SNU (One solar neutrino unit =
one interaction per 1036 target atoms per second) [8]. At first, it was assumed that
there is an error in solar models, but even their modification could not explain the
discrepancy.

In 1958, Bruno Pontecorvo proposed a solution for the problem [9]. He hypothesised
that neutrinos can spontaneously change their flavour as they travel through space.
This phenomenon is called neutrino oscillations. Thanks to neutrino oscillations, part of
the solar electron neutrinos could change their flavour along the way to earth. Neutrinos
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of different flavours than electron would not be detected by experiments conducted at
that time, as they were only sensitive to electron neutrinos.

Neutrino flavours and masses have their corresponding eigenstates. Let us denote
|ν1⟩, |ν2⟩ and |ν3⟩ the mass eigenstates and |νe⟩, |νµ⟩ and |ντ ⟩ the flavour eigenstates.
Thanks to the superposition principle, the relationships between the eigenstates can
be written as

|να⟩ =
∑
j

U∗
αj |νj⟩ , (1.10)

|νj⟩ =
∑
α

Uαj |να⟩ , (1.11)

where |να⟩ are the flavour eigenstates, |νj⟩ are the mass eigenstates and Uαj are elements
of the so-called Pontecorvo – Maki – Nakagawa – Sakata (PMNS) matrix. Using the
matrix notation, we can also rewrite the relationships as |νe⟩

|νµ⟩
|ντ ⟩

 =

 Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

 |ν1⟩
|ν2⟩
|ν3⟩

 . (1.12)

The matrix is unitary to conserve norm of the wave functions. The propagation of
mass eigenstates can be described by plane wave solutions as

|νj (t)⟩ = e−i(Ejt−p⃗j x⃗) |νj (0)⟩ , (1.13)

where Ej is the energy of the j-th mass eigenstate, t is the time from the start of the
propagation, x⃗ is the position of the particle and p⃗j is its momentum. Quantities are
expressed in natural units (c = 1, h̄ = 1). For |p⃗j| = pj ≫ mj, we can write

Ej =
√
p2j +m2

j ≃ pj +
m2

j

2pj
≈ E +

m2
j

2E
, (1.14)

where E is the energy of the particle to be detected. This approximation holds thanks
to ultrarelativistic nature of neutrinos. Thanks to high velocities of neutrinos, we have
t ≈ L. Combining (1.13) and (1.14), we get

|νj (t)⟩ = e−i
m2

jL

2E |νj (0)⟩ . (1.15)

The probability that a neutrino originally of flavour α will later be observed as having
flavour β is

Pα→β = |⟨νβ|να (L)⟩|2 . (1.16)

Substituting from equations (1.10) and (1.15) into (1.16) we get

Pα→β =

∣∣∣∣∣∑
j

U∗
αjUβje

−i
m2

jL

2E

∣∣∣∣∣
2

. (1.17)

The PMNS matrix is unitary, and it can, thus, be seen as a rotation in 3D space. We
can factorize the matrix into a product of three matrices, each representing a rotation
around one coordinate axis
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U =

 Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

 =

 1 0 0
0 c23 s23
0 −s23 c23

 c13 0 s13e
−iδ

0 1 0
−s13e

iδ 0 c13


 c12 s12 0

−s12 c12 0
0 0 1

 eiα1/2 0 0
0 eiα2/2 0
0 0 1

 ,

where cij = cos θij, sij = sin θij introducing so-called mixing angles θij. Then it is
sufficient to calculate (1.17) only for these simpler matrices. This allows us to restrict
ourselves to a case with only two neutrino flavours(

|να⟩
|νβ⟩

)
=

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)(
|ν1⟩
|ν2⟩

)
, (1.18)

Now we can substitute the matrix elements into (1.17) to get

P (να → νβ) = sin2(2θ) sin2

(
∆m2

ijL

4E

)
, (1.19)

where E is the neutrino’s energy, L is the distance it has travelled and ∆m2
ij = m2

i −m2
j

is the difference of squared eigenmasses of i-th and j-th state. For the probability to
be non-zero, at least one of the ∆m2

ij values have to be non-zero. This condition is
met only if at least one of the neutrino masses is non-zero. The existence of neutrino
oscillations thus implies non-zero neutrino mass.

The first experiment to observe neutrino oscillations was SuperKamiokande in 1998
[10]. It measured the flux of atmospheric muon neutrinos. It received neutrinos emit-
ted in the atmosphere above the detector as well as neutrinos, which were emitted on
the other side of Earth and had to pass through the Earth to reach the detector. The
amount of muon neutrinos arriving from the other side of Earth was lower than the
amount arriving to the detector from above. This difference was the result of muon
neutrinos oscillating into different flavour while passing through Earth. The existence
of neutrino oscillation was also confirmed three years later by Sudbury Neutrino Ob-
servatory (SNO) [11]. The experiment was focused on solar neutrinos, but contrary to
the preceding experiments, SNO was able to detect all three neutrino flavours. This
experiment has shown that the solar models were correct and the discrepancy in solar
neutrino flux was caused by neutrino oscillations.

1.2.3 Neutrino mass

Even though, we know that the neutrino mass is not zero, its absolute value is
yet to be measured. Currently, we are only able to measure differences ∆m2

ij through
neutrino oscillation physics. More specifically, experiments measure the so-called solar
mass splitting (∆m2

21 ≃ 7.6×10−5 eV2) and the atmospheric mass splitting (|∆m2
31| ≃

2.5× 10−3 eV2) [12]. From matter effects in the Sun, it is known that ∆m2
21 > 0. ∆m2

31

is measured via neutrino oscillations in vacuum, which only depend on its absolute
value. Because of that, the sign of ∆m2

31 is unknown.
This ambiguity in the sign of ∆m2

31 leaves us with two possible orderings of neutrino
masses. These orderings can be seen in the figure 1.2. As electron is the lightest particle
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Figure 1.2: Two possible orderings of neutrino masses are currently considered —
normal ordering and inverted ordering. In the picture, we can see their compari-
son. Coloured bars represent mass eigenstates as superpositions of flavour eigenstates.
(∆m2)sol is the solar mass splitting and (∆m2)atm is the atmospheric mass splitting.
The figure was adapted from Ref. [13].

out of electron, muon, tauon triplet, it is intuitively expected that the mass eigenstate
with the highest abundance of electron flavour would be the lightest one. This is
called “normal ordering”. The second option is so-called “inverted ordering” where the
eigenstate with the lowest electron flavour abundance is the lightest one.

There are three main approaches of neutrino mass measurement. The first one is
based on single beta decay. It is sensitive to the effective neutrino mass

mβ =

√√√√ 3∑
i=1

U2
eim

2
i . (1.20)

The effective mass is determined from precise measurement of the end of the beta spec-
trum. The current limit has been set by the KARTIN experiment: mβ < 0.8 eV [14].
The second approach is based on cosmological models. Neutrinos play an important
role in formation of cosmological structures. Thanks to that, it is possible to estimate
the sum of mass eigenvalues

∑
mi based on astronomical observations. Its current

limit is at
∑

mi < 0.12 eV and has been set by the Planck collaboration [15]. The last
approach of mass measurement is based on neutrinoless double beta decay and will be
described in the following section.

1.3 Double beta decay

1.3.1 Two-neutrino double beta decay (2νββ)

Two-neutrino double beta decay is a type of radioactive decay predicted by Maria
Goeppert-Mayer in 1935. In 2νββ two neutrons in the atomic nucleus are transformed
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into two protons followed by emission of two electrons and two antineutrinos [16]:

(A,Z) → (A,Z + 2) + 2e− + 2v̄e. (1.21)

For the decay to occur, its Q-value (defined as a difference between nucleus mass after
and before the decay) has to be positive. The mass of the nucleus can be written as

m(Z,N) = Zmp +Nmn −
EB(Z,N)

c2
, (1.22)

where m(Z,N) is the mass of the nucleus with Z protons and N neutrons, mp and mn

are rest masses of proton and neutron and EB(Z,N) is binding energy of the nucleus.
The sum Zmp + Nmn represents the total rest mass of unbound nucleons. In the
nucleus, additional energy EB(Z,N) is required to keep it bound. According to the
formula E = mc2, this energy decreases the nucleus mass. We can express the binding
energy using semi-empirical Weizsäcker equation

EB = aVA− aSA
2/3 − aC

Z(Z − 1)

A1/3
− aA

(N − Z)2

A
+ δ(N,Z), (1.23)

where A is the mass number and aV , aS, aC , aA and δ(N,Z) are measured constants
belonging to so-called volume term, surface term, Coulomb term, asymmetry term and
pairing term, respectively.

• The volume term aVA is based on the strong nuclear force. The strong nuclear
force has very short range, so the nucleons interact mostly only with their neigh-
bours. The number of interacting nucleon pairs grows approximately with A.
The volume of the nucleus also grows with A, which explains the name of the
term.

• The surface term aSA
2/3 is a correction of the volume term. It accounts for the

nucleons on the surface of the nucleus, which have fewer neighbours than nucleons
deep within the nucleus.

• The Columb term aCZ(Z−1)/A1/3 comes from the electrostatic repulsion between
the protons. If we approximate the nucleus as a uniformly charged sphere, it can
be shown that the electrostatic potential energy is proportional to Z(Z−1)/A1/3.

• The asymmetry term aA(N − Z)2/A comes from the Pauli exclusion principle.
The principle states that no two identical fermions can occupy exactly the same
quantum state in an atom. We can imagine that protons and neutrons have two
respective sets of quantum states which they occupy. The more nucleons of one
type in the nucleus, the higher energy levels they occupy. Because of this, the
total energy of states occupied by protons and neutrons is lower for the nuclei
with balanced number of protons and neutrons than for the unbalanced ones.

• The pairing term δ(N,Z) comes from the spin coupling of the nucleons.

The pairing term can take on three different values

δ(N,Z) =


ap√
A

Z,N even (A even),

0 A odd,

− ap√
A

Z,N odd (A even).

(1.24)
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(a) (b)

Figure 1.3: a) Dependency of mass of nuclei with a mass number A = 107 on proton
number Z. Green points represent individual isotopes, green and yellow arrows rep-
resent decays β− and β+. b) Same graph but for nuclei with A = 106. This time,
isotopes find themselves on two parabolas. Red arrow represents double beta decay.
The figure was adapted from Ref. [17].

Let us consider a nucleus with odd number of nucleons (e.g. A = 107). In this case
δ(N,Z) will be equal to zero and the equation (1.23) then gives a quadratic relationship
between the binding energy and the proton number. This can be seen in the figure
1.3a. We can see that A stays the same for all isotopes, as beta decay only changes
Z. The nucleus tends to undergo beta decay to reach the most stable isotope, which
is Z = 47 in this case. A more interesting situation arises when considering a nucleus
with even number of nucleons (e.g. A = 106). In this case, δ(N,Z) can either be
ap/

√
A or −ap/

√
A. Thanks to that, we get two parabolas, which can be seen in the

figure 1.3b. The nucleus is decaying towards the most stable isotope. A spontaneous
single beta decay transition to nucleus with Z = 47 is not possible because Z = 47 has
a higher binding energy. The only way to reach a more stable isotope is then directly
to Z = 47 through double beta decay (red arrow in the figure 1.3b). Such isotopes
where standard beta decay is forbidden are ideal to observe double beta decay, since
standard beta decay would otherwise produce very strong background.

1.3.2 Neutrinoless double beta decay (0νββ)

Neutrinoless double beta decay is a mode of double beta decay without the emission
of neutrinos:

(A,Z) → (A,Z + 2) + 2e−. (1.25)

It has been predicted by Wendell H. Furry in 1939 [18] but so far it has not been
observed. Its existence would be possible if neutrino was a Majorana particle (its
own antiparticle). This decay is not allowed in the SM as it violates lepton number
conservation, thus creating particles without equivalent amount of antiparticles. The
existence of the 0νββ-decay would mean a breakthrough in particle physics, since it
would imply Majorana nature of neutrinos. It could potentially lead us to physics
beyond the SM and, finally, it would also help us to determine the mass of neutrino
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because its half-life is in direct relationship with neutrino mass:

1

T 0ν
1/2

= |mββ|2G0ν(Qββ, Z)
∣∣M0ν

∣∣2 , (1.26)

where T 0ν
1/2 is half-life of 0νββ-decay, G0ν(Qββ, Z) is the phase-space factor, |M0ν | is

the matrix element of 0νββ-decay and mββ is the effective neutrino mass defined as

mββ =
3∑

i=1

U2
eimi, (1.27)

where Uei are elements of PMNS matrix (eq. 1.12) and mi are mass eigenvalues.
To determine the value of mββ we also need to know G0ν(Qββ, Z) and |M0ν | besides
0νββ-decay half-life itself. While G0ν(Qββ, Z) only depends on the Qββ-value and the
proton number Z and can be calculated very precisely, |M0ν | is a result of complicated
nuclear models and brings more uncertainty into the equation. This, however, does
not change the fact that 0νββ-decay could potentially be used as a tool for neutrino
mass estimation.

1.3.2.1 Principle of detection

The most significant background of the 0νββ-decay is the 2νββ-decay. This is the
main reason why we need to find a distinction between the two. In both cases we
observe two electrons, the difference is, however, in their energy spectrum. In the case
of 2νββ-decay, the two neutrinos carry away a fraction of the total released energy.
The sum of the kinetic energies of electrons is equal to the difference between the
Qββ-value of the decay and the kinetic energy carried by neutrinos. This results in a
continuous spectrum (left spectrum in the figure 1.4). In comparison, during 0νββ-
decay there is no emission of neutrinos, so the energy of electrons is always equal to
the Qββ-value. Which results in a sharp peak (right peak in the figure 1.4). Based on
this fact, 0νββ experiments measure total energy deposited in the detector. If we were
able to recognize the peak at the end of the spectrum, we could confirm the existence
of 0νββ-decay.

1.4 Experiments

There are a number of experiments focusing on the 0νββ-decay. One of the impor-
tant factors of 0νββ experiment is the energy measurement resolution. It is important
to achieve high energy resolution, otherwise the 0νββ peak would be smeared and hard
to distinguish from the rest of the spectrum. The second important factor is the back-
ground suppression. Assuming that the 0νββ-decay exists, it is clear that the process
is very rare, and it is thus important to ensure that the 0νββ is not lost in the back-
ground spectrum. Background suppression can be achieved by combination of different
precautions. On the level of detector design, it is important to ensure radiopurity of
its components and proper shielding against ambient radiation. It is also important to
choose a suitable source isotope, as for some Qββ values the background in the region
of interest is lower. Finally, additional background suppression can be done on the
level of data analysis through data cuts.
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Figure 1.4: Comparison of theoretical 2νββ-decay electron spectrum (left) and 0νββ-
decay electron spectrum (right). Observation of the sharp peak at the end of the
spectrum would mean the existence of 0νββ-decay.

1.4.1 Homogeneous detectors

Most 0νββ experiments use so-called homogeneous design, where the part of the
detector which provides energy measurement also contains an isotope which serves as
the source of 0νββ-decay. These experiments can be further divided based on the
method of energy measurement. A summary of these experiments can be found for
example in [19].

1.4.1.1 Germanium detectors

Germanium detectors use the 76Ge isotope as a 0νββ source. For detection, they
typically use germanium semiconductor diodes made of enriched 76Ge. The advantages
of germanium detectors are very good energy resolution and high detection efficiency.
In recent years, germanium detectors were mainly represented by two experiments:
GERDA [20] and MAJORANA [21]. GERDA used a set of high-purity germanium
devices suspended in a liquid argon cryostat, which provided both cooling and active
shielding of the detector. With this setup, GERDA has achieved a background of
5.2 × 10−4 counts/ (keV · kg · year) and an energy resolution of 3 keV at Qββ =
2039 keV. It has set the lower limit of 0νββ half-life of 76Ge at 1.8 × 1026 yr [22].
MAJORANA achieved even better energy resolution with a set of germanium detectors
placed inside a high purity copper shield. Its lower limit of 0νββ half-life (76Ge) is at
8.3× 1025 yr [23].

Currently, the LEGEND collaboration is aiming to reach a limit of 0νββ half-
life above 1028 years [24]. The first phase of the experiment called LEGEND-200
is currently in development. It uses 200 kg of germanium detectors. LEGEND-200
should improve background suppression by a factor of 2.5 with respect to GERDA and
reach a 0νββ-decay half-life limit of about 1027 years. The second phase, LEGEND-
1000, which should reach the limit of 1028 years, aims at even lower background of
10−5 counts/ (keV · kg · year) (20 times better than LEGEND-200).
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1.4.1.2 Bolometers

The second group of homogeneous detectors uses bolometers composed of enriched
0νββ source isotope. These bolometers operate at very low temperatures. Energy
deposited in the bolometer results in an increase of temperature. Based on this change
in temperature, energy of electrons can be measured. Since the 1990s, bolometers have
been used to study six different nuclides (48Ca, 82Se, 100Mo, 116Cd, 124Sn and 130Te).
A currently running experiment using the bolometric approach is CUORE [25]. It
searches for 0νββ-decay in 130Te using TeO2 crystals for bolometers. It consists of 988
bolometers with a mass of about 750 g each. The energy resolution achieved by CUORE
is 7.7 keV at 3034 keV. So far, the experiment has set a lower limit of 0νββ-decay
half-life of 8.3×1025 yr (130Te) with background of 1.49×10−2 counts/ (keV · kg · year).
The background is mostly caused by α particles generated by surface contamination.

Additional background suppression could be achieved by scintillating bolometers.
Such a detector would use a scintillator containing the isotope of interest and a bolome-
ter placed close to it, which would detect the emitted scintillation light. Coincidence of
scintillation light and heat in the bolometer allows one to distinguish α particles from
electrons or gamma photons. The CUPID experiment aims to use this technology to
improve results of CUORE [26]. Another experiment using scintillating bolometers,
which is currently in development, is AMoRE [27].

1.4.1.3 Xenon time projection chambers

Xenon experiments use the 136Xe isotope as a 0νββ source. The enrichment process
of natural xenon is relatively simple and xenon also has good scintillation properties,
making it suitable for experiments. A recent xenon experiment is EXO. The EXO-200
detector uses a cylindrical time projection chamber filled with 110 kg of liquid xenon
[28]. Energy deposition in the detector produces both scintillation light and ionization.
The deposited energy is then reconstructed from these two signals. EXO-200 set a
lower limit on the 0νββ-decay half-life of 3.5 × 1025 yr (136Xe) with background of
2 × 10−3 counts/ (keV · kg · year). A proposed successor of the EXO experiment is
nEXO [29]. It will consist of a single time projection chamber containing 5000 kg of
xenon. nEXO aims for a background of 7× 10−5 counts/ (keV · kg · year). This should
be achieved by only selecting events from the innermost 2000 kg of xenon, taking
advantage of the short attenuation length of gamma rays. The expected 0νββ-decay
half-life limit set by nEXO is 1.35× 1028 yr (136Xe).

1.4.2 Tracko-calo detectors

In tracko-calo detectors, the source isotope is not included in the calorimeter mea-
suring energies, but they are separated. A tracking detector is placed between the
source and the calorimeter (figure 1.5). The tracker provides information about tra-
jectories of particles passing through its volume. This trajectory measurement opens
new possibilities of data analysis. First, it provides further background suppression
as it reveals which particles did not come from the source. Secondly, in combination
with a magnetic field, it can be used to distinguish between positively and negatively
charged particles based on trajectory curvature. Finally, it can also be used to study
different properties of the double beta decay, such as angular distribution of electrons
or single electron energy spectra. The disadvantage of tracko-calo detectors is that it
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Figure 1.5: A scheme of the tracko-calo detector design. The source is separated from
the calorimeter by the tracker, which measures trajectories of passing particles. The
figure was adapted from Ref. [32].

is not feasible to use very high mass of the source isotope (low density experiment).
This comes from the fact that electrons from the 0νββ decay have to leave the source.
Use of a source of large volume would mean that most of the electrons would be ab-
sorbed in the source itself. Examples of tracko-calo experiments are NEMO-3 [30] or
SuperNEMO which is the main topic of this thesis [31].
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Chapter 2

The SuperNEMO Experiment

The SuperNEMO experiment is placed inside the LSM underground laboratory,
located in the middle of a traffic tunnel going through the border between France and
Italy (figure 2.1). Rock above the laboratory serves as a very effective shielding against
cosmic rays, creating an ideal environment for low background experiments. Currently,
the first SuperNEMO module called SuperNEMO demonstrator is in its commissioning
phase.

The SuperNEMO demonstrator realizes the tracko-calo design using planar geom-
etry 2.2. The source is in a form of a planar foil placed in the middle of the detector.
The tracker is on the sides of the source foil. The calorimeter is segmented into smaller
optical modules (OMs). These are placed around the tracker and the source foil. The
three main components are surrounded by a coil which can be used to create approxi-
mately homogeneous magnetic field inside the detector. Finally, the whole detector is
surrounded by shielding which suppresses ambient radiation.

2.1 Source foil

The source foil contains 6.11 kg of 82Se isotope, serving as a source of 0νββ-decay
[34]. The thickness of the foil is only 0.3 mm. It is important to use a thin layer of the
isotope to ensure that electrons will not lose too much energy in the source itself or even
get absorbed. Several isotopes have been considered to be used as a source from which
82Se has been chosen since it meets multiple important criteria. The first important
thing is the Qββ-value of an isotope. A higher Qββ is generally better as it allows for
better suppression of background produced by 208Tl and 214Bi (see 2.4). Qββ-value of
82Se is 2.996 MeV, which allows for sufficient background suppression. Another source
of background is the 2νββ-decay (see the figure 1.4). It is, thus, important to choose
an isotope with high 2νββ-decay half-life. The value for 82Se is T1/2 = 8.7 · 1019 years.
Finally, we also need to choose an isotope which we are able to shape to the form of a
thin foil.

2.2 Tracker

Tracker allows us to see trajectories of charged particles. It is a wire chamber with
113×9 drift cells on each side of the detector. A schematic view of a tracker cell can
be seen in the figure 2.3a. Each cell consists of a central high-voltage wire (anode)
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Figure 2.1: Scheme of the Fréjus traffic tunnel between France and Italy. LSM under-
ground laboratory containing the SuperNEMO experiment lies approximately in the
middle. The figure was adapted from Ref. [33].

Figure 2.2: A picture of the SuperNEMO demonstrator design. There is the source foil
in the middle, the tracker on its sides and the calorimeter around the detector. The
figure was adapted from Ref. [32].
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(a)

(b)

Figure 2.3: a) Side view of a tracker cell. There is a high-voltage wire (anode) in the
middle and copper rings (cathodes) on its ends. The dashed line represents a passing
electron, which caused an avalanche of electrons and consequential propagation of
plasma along the anode. The figure was adapted from Ref. [35]. b) Electric field in
tracker cells. (top view) Courtesy of Cheryl Patrick (SuperNEMO collaboration).

surrounded by 12 grounding wires. On each end of the anode, there is a copper ring
(cathode). The inside of the tracker is filled with gas (95 % of helium with 4 % of ethanol
and 1 % of argon). Passing particles ionize the gas, creating free electrons which can
be attracted by the electric field around anodes (figure 2.3b). While being pulled to
an anode, electrons ionize another nuclei. This creates electron avalanches, resulting
in a measurable current signal. The time it takes for the avalanche to reach the anode
gives us an information about the particle’s distance from the anode. Some avalanche
electrons recombine with ions close to the anode. This recombination creates photons
which cause further ionization of nearby gas atoms, creating more free electrons. These
electrons are again pulled towards the anode, creating plasma along the anode. This
cycle of ionization repeats, until the plasma reaches both of the cathode end caps.
This results in a cathodic signal. Using the difference of times when the signal hit the
top and the bottom cathode, we can calculate the height in which the particle passed.
Properties of cathodic and anodic signals are discussed in more detail in section 3.2.1.

2.3 Calorimeter

The calorimeter allows us to measure energies of electrons coming from the 0νββ-
decay — the main quantity of interest. The whole calorimeter is segmented and consists
of 712 so-called optical modules (OMs; figure 2.4a). These modules are placed in two
main walls parallel to the source foil, as well as above and below (“gveto”) and on the
sides of the source foil (“xcalo”). Each optical module is a scintillation detector con-
sisting of a photomultiplier tube (PMT) and a block of plastic scintillator (polystyrene;
figure 2.4b). The “xcalo” and “gveto” OMs are reused from the previous experiment
NEMO-3. They use 5” PMTs, and their resolution is 12 % at 1 MeV for “xcalo” and
15 % at 1 MeV for “gveto”. OMs used in the main walls use 8” PMTs and their scin-
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(a) (b)

Figure 2.4: a) A scheme of the calorimeter, depicting its different sections. We divide
the calorimeter into main walls (blue), “xcalo” (red) and “gveto” (green). The figure
was adapted from Ref. [37]. b) Optical module consisting of a photomultiplier tube
and a block of scintilator.

tillator blocks contain two additional substances improving light collection efficiency
of PMT: 0.6 % of para-terphenyl (pTP) and 0.05 % of 1,4-bis(5-phenyloxazol-2-yl)
benzene (POPOP). Several concentrations of these additives have been tested to find
the optimal one [36]. Thanks to that, the main wall modules reach resolution of about
8 % at 1 MeV. The resolutions given in this paragraph are, however, simplified ide-
alized values currently used in the simulation. They are based on real measurements,
but the measurements were carried out in ideal conditions before the calorimeter was
assembled. The actual achieved energy resolutions need to be studied again with for
the fully built detector.

2.3.1 Optical module geometry identifier

To identify individual parts of the SuperNEMO detector, a so-called geometry iden-
tifier (GID) is used. For the purposes of this work, the OM GID is the most important.
Each of the three groups of OMs (main wall, xcalo, gveto) has its respective GID for-
mat. GID of main wall modules is in format M:side:column:row (ex. M:1.4.9). Here
side is either 0 or 1 denoting Italian or French side respectively, column is an inte-
ger from 0 to 19 and row is an integer from 0 to 12. Gveto GID is in format of
G:side:row:column (ex. G:1.1.7). This time row is 0 or 1 denoting bottom or top of
the detector respectively and column is an integer from 0 to 15. The xcalo GID format
is X:side.part.column.row (ex. X:1.0.0.9). Here we also introduce the “part” number
(0 or 1) because on each side of the detector there are two groups of xcalo OMs (see
figure 2.4a). For xcalo the column number is either 0 or 1 and the row number goes
from 0 to 15.
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2.4 Background

When searching for a phenomenon, so rare as 0νββ-decay, a careful study of back-
ground is especially important. There are several sources, which are able to produce
electron pairs with total energy in our region of interest, mimicking the signal of 0νββ-
decay. We divide background sources into two groups: internal and external. Internal
background originates from decaying contaminants of the source foil. In contrast, ex-
ternal background comes from all other sources outside the source foil. These can
be contaminants of other parts of the detector, as well as radiation and radionuclides
coming from outside the detector.

2.4.1 Internal background

The first process causing the appearance of internal background is the 2νββ-decay
of 82Se. This background cannot be removed, as it comes from the source isotope
itself, which obviously has to be present. The only way to deal with this background is
to achieve sufficient energy resolution to differentiate the 2νββ energy spectrum from
0νββ.

Other two sources of internal background are beta decays of 208Tl and 214Bi. The
Qβ value of 208Tl is 5 MeV, which is above the Qββ-value of 82Se allowing it to mimic
the signal. The mimicking can happen in following ways [38]:

• Beta decay accompanied by an electron conversion

• Beta decay followed by Møller scattering of beta particles in the source foil

• Beta decay to an excited state, deexcitation by emitting a gamma ray followed
by Compton scattering

The Qβ value of 214Bi is 3.3 MeV, which is also higher than Qββ of 82Se. 214Bi
decays into 214Po. The 214Po then α decays to 210Pb with a short half-life of 0.164 ms.
This coincidence of β electron and α can be recognized and suppressed thanks to the
track reconstruction.

2.4.2 External background

External background can generally come either in the form of electrons or high
energy gammas. An external electron can transverse the whole tracker perpendicularly
to the source foil. This leaves a track in both halves of the tracker, which can look
like a 0νββ event. Such events, however, can be recognized thanks to timing of the
calorimeter as times of two subsequent hits caused by a single electron are different from
times of hits caused by two electrons coming from the source foil. External gammas can
again create background through different interactions. These can be electron-positron
pair creation, two consecutive Compton scatterings or a Compton scattering followed
by a Møller scattering.

External background can come from a wide range of sources. These can be cosmic
muons, natural radionuclides present in the environment of the underground laboratory,
or even radionuclides present in different parts of the detector. A detailed discussion
of all sources can be found in [38]. A major source of external background is 222Rn. It
emanates from the mountain into the environment of the laboratory. 222Rn is a very
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Figure 2.5: Shielding layers of the SuperNEMO detector: anti-radon shielding (left),
iron shielding (middle), neutron shielding (right).

diffusive gas, allowing it to enter the inside of the tracker. Through decay within the
238U decay chain, 222Rn produces 214Bi. 214Bi can then decay in proximity of the source
foil, mimicking the 0νββ signal as described in the previous section.

2.5 Shielding

In order to reduce external background as much as possible, it is necessary to ensure
sufficient shielding of the detector. The detector is shielded against cosmic rays by 1700
meter thick layer of rock above the underground laboratory. This reduces the flux
of cosmic muons by six orders of magnitude compared to the surface. Measurements
performed inside the laboratory measured muon flux of Φµ = 4.73 m−2d−1 [39]. Besides
this natural shielding, there are also multiple layers installed around the detector.
To reduce the amount of 222Rn inside the detector, an air recycling system has been
developed. The detector is enclosed in a tent, which is connected to a filtration system.
Air inside the tent circulates through the filtration system, where 222Rn is captured by
activated charcoal. A significant portion of background gamma photons comes from
neutron capture, which is why strong neutron shielding is also important. Neutrons
are effectively shielded by materials containing elements with low atomic number. In
the SuperNEMO experiment, neutron shielding will be constructed from polyethylene
bricks filled with water. As a gamma shielding, on the other hand, we need material
with high density and atomic number. A layer of iron shielding has been chosen for
this purpose. All shielding layers can be seen in the figure 2.5. The effect of neutron
and gamma shielding on measured background spectrum can be seen in the figure 2.6.
A first part of the iron shielding is currently being installed, as can be seen in the figure
2.7.

2.6 Energy calibration system

Before we can start to measure energies of electrons and to look for the peak at the
end of the double beta decay spectrum (figure 1.4) we need to calibrate the calorimeter.
It is important to realize that properties of individual OMs will slightly differ as well,
as they will slowly change with time. Therefore, it is necessary to calibrate each OM
individually and to perform the calibration measurements periodically in sufficient time
intervals.
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Figure 2.6: Simulated two electron background spectra with neutron and gamma shield-
ing and without it. We can see that the use of shielding leads to background reduction
of about two orders of magnitude. The figure was adapted from Ref. [38].

Figure 2.7: Photos from currently ongoing iron shielding installation.
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(a) (b)

Figure 2.8: a) A 207Bi calibration source consisting of a Mylar foil, a copper frame and
a small droplet of 207Bi in the middle (not visible). b) Automatic deployment system
used to position the calibration sources in the middle of the detector. The small orange
rectangles represent the calibration sources. The figure was adapted from Ref. [34].

The calibration measurement will be performed using a system of 42 calibration
sources. Each source contains a small droplet of 207Bi sandwiched between two trans-
parent Mylar foils. The foils are stretched into a copper frame so that the 207Bi droplet
is in the middle (figure 2.8a). The positions of the 207Bi droplets have been measured to
ensure that they did not leak under the frame [34]. Before the calibration measurement,
we need to place the calibration sources on chosen positions inside the detector. These
positions should be the same for each calibration measurement. During this process,
the detector also must stay sealed so that there are no leaks of the tracking gas. To
place the sources in the middle of the detector, an automatic deployment system has
been built (figure 2.8b). This system consists of 6 rods connected to stepper motors,
using which we can place the calibration sources on precise positions along the source
foil.

2.6.1 Principle of energy calibration
207Bi atoms can undergo so-called internal conversion (IC) — a process during which

an excited nucleus transfers its energy to one of the orbital electrons. This results in
an emission of the electron and an X-ray. The electron can come from any of three
electron shells commonly referred to as K, L and M-shells, where K is closest to the
nucleus having the highest probability of IC and M is the most distant one with the
lowest probability of IC. In a calibration measurement, we detect these IC electrons.
We can then use the measured data to find a relationship between known energies of
IC electrons and a charge collected in the optical module. Since the excitation energies
of the nucleus are discrete as well as ionisation energies of electrons from different
shells, the spectrum of IC electrons is also discrete. Having discrete spectrum is ideal
for calibration, because it allows us to assign concrete energies to measured peaks
(contrary to continuous spectrum of β-decay, for example). Moreover, energies of 207Bi
electrons are equally spaced (482, 976 and 1682 keV), which is also good for precision
of the calibration. In the figure 2.9 we can see a simplified decay scheme of 207Bi
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Figure 2.9: A simplified decay scheme of 207Bi containing the most frequent transitions.
207Bi can emit gamma rays through gamma decay or electrons and X-rays through
internal conversion.

containing IC electrons from the K-shell. Finally, 207Bi IC energies cover the interval
of typical energies of electrons from double beta decay of 82Se.
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Chapter 3

SuperNEMO data formats and
calibration data processing

3.1 Simulated data

In order to perform simulations, SuperNEMO collaboration uses its own simulation
system called Falaise [40]. The system is based on Geant4 package developed in CERN
[41]. Falaise contains information about geometry of the detector, properties of its
parts, different types of decays, etc. It also offers a simple user interface which contains
a range of options from which a user can choose to set up a simulation. Thanks to
this, the setup of a simulation is very quick and convenient.

For standard use, Falaise offers 3 programs — flsimulate, flreconstruct and flvi-
sualize. Flsimulate simulates passage of particles through the detector. It produces
information about particle interactions in materials and about energy deposited in
different points of particle’s trajectory. Flsimulate provides detailed simulation data
about particles, which is not available in actual measurements. An output of Falaise
simulation comes in a form of so-called brio file. Inside this file, data are divided into
data banks. Data produced by flsimulate are saved in SD bank (Simulated Data). It
contains information about particle types, energies, trajectories and individual inter-
actions. A visualization of the SD bank from a single event can be seen in the figure
3.1a.

Data produced by flsimulate can be further processed by flreconstruct. A run of
flreconstruct consists of so-called pipeline modules. These modules can perform dif-
ferent tasks from printing the data to complex analysis. As the name suggests, it is
possible to chain pipeline modules, so that the output of one module is the input of the
next one. A user can use predefined modules as well as define new ones to customize
data processing. The main purpose of flreconstruct is to provide response of the detec-
tor based on data produced by flsimulate. The output of flreconstruct is another brio
file. This file contains the SD bank previously produced by flsimulate as well as 4 other
banks. First of them is CD bank (Calibrated Data). This bank contains quantities
detected by different parts of the detector, including their uncertainties. Then there
are TCD (Tracker Clustering Data) and TTD (Tracker Trajectory Data) banks. TCD
contains information about clusters of tracker hits. These clusters should correspond
to tracks of individual particles. From these clusters, trajectories of individual parti-
cles are extracted using a tracking algorithm. These trajectories are saved into TTD
bank. Finally, there is PTD bank (Particle Track Data) which contains information
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(a) (b)

Figure 3.1: In the figure a), we can see an example of visualized data from the SD
data bank. There is an electron (blue curve) coming from a calibration source to an
OM (red). Along the way, it passes through several tracker cells (coloured circles). In
the figure b), we can see data reconstructed based on the SD bank. There is a cluster
of tracker hits (red) saved in the TCD bank, a reconstructed track (blue) saved in the
TTD bank and two vertices of the track (green) saved in the PTD bank. The energy
measured by the triggered OM is saved in the CD bank. The picture b) was edited
with respect to the original flvisualize output to emphasise individual data banks.

reconstructed from its trajectory. These are the charge of the particle and vertices at
the start and at the end of the trajectory. A visualization of reconstructed data banks
can be seen in the figure 3.1b.

The third Falaise program called flvisualize is used to visualize data produced by
flsimulate and flreconstruct. Examples of such visualization are figures 3.1a and 3.1b.
The main benefit of flvisualize is that it allows us to gain an intuition about data and
to check whether the simulation behaves as we expect.

3.2 Real data

During the real measurement, SuperNEMO uses a complex system of electronics
to extract signals from the tracker and the calorimeter. Since saving continuous signal
from the whole detector would be very inefficient, SuperNEMO uses a trigger system
to decide when to keep the data. Trigger looks for time and space coincidence between
signal from the tracker and the calorimeter. Once the trigger condition is met, the
signal from the whole detector (measured during a small time window around the
trigger time) is saved. A unique trigger ID is assigned to these data. Signals from
both the tracker and the calorimeter have characteristic waveforms, which are used to
extract information about the particle’s trajectory and energy.

3.2.1 Tracker signal

A tracker cell consists of three parts — anode, top cathode and bottom cathode (see
the figure 2.3a). Each of these parts provides its own voltage signal. A raw signal from
anode and both cathodes can be seen in the figure 3.2. Here t0 is the drift time it takes
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for the electron avalanche to reach the anode wire from the original point of ionization.
t5 and t6 are times when the plasma propagating along the anode wire reaches the
bottom and the top cathode, respectively. An important thing to notice here is that the
spikes in the cathodic signal are accompanied by spikes in the anodic signal. Because
of that, the spikes in the anodic signal represent the exact same information as the
cathodic signals. The only difference is that, purely from the anodic signal, we are
not able to distinguish which spike corresponds to the bottom cathode and which
corresponds to the top one. Since voltage waveforms have variable amplitudes, we
cannot define a single voltage threshold. Because of that, it is more convenient to work
with derivatives of these waveforms. An example of the differentiated cathodic signal
and anodic signal can be seen in figures 3.3 and 3.4 respectively. We can see that in the
anodic signal, we define 4 new timestamps t1 to t4. These can be used as a substitute
for t5 or t6, if one of them is missing. Ideally, times t0 to t6 should be measured from
the time of the tracking gas ionization. This time, however, is not known, so we need
to choose a different timestamp which is as close to the time of ionization as possible.
For this purpose, we choose the time in which an OM was triggered by the particle.
This is illustrated in the figure 3.5. In the figure ta is the time of ionization, tb is
the time when the electron avalanche reaches the anode, te is the time it takes the
particle to reach the OM from the point of ionization and tOM is the time when the
OM was triggered. For all reasonable cases, electrons detected by SuperNEMO can be
considered relativistic. This means that the time te is in order of ns, while t0 is in order
of µs. Thanks to that, we can consider tOM to be very close to ta and approximate
t0 = tb − ta ≈ tb − tOM .

Timestamps t5 and t6 are used to calculate the vertical coordinate of particle’s tra-
jectory. Based on the length of the tracking wire and the speed of plasma propagation,
we can calculate the height in which the particle passed the wire. The drift time t0
represents an information about horizontal distance in which the particle passed the
tracking wire. The radius in which the particle passed the anode is calculated from t0
using so-called drift model. A drift model describes the relationship between the drift
time and the radius. This relationship depends on the shape of electric field around
the anode. The shape has been studied by both experiments and simulations, resulting
in two drift models. These can be seen in the figure 3.6. The red line represents the
experimental drift model, while the blue line represents the one based on simulations.
We can see that both of the models are piecewise functions. The first part of the model
describes radii from 0 to 22 mm. In this interval, the models describe an approximately
circular field in the central part of the tracker cell. In the interval from 22 to 22

√
2 mm

(∼ 31.1 mm), the models describe the edges of the tracker cell. For radii larger than
22
√
2 mm, the models are extrapolations without meaningful information.

3.2.2 Calorimeter signal

A typical waveform recorded by an OM when hit by a particle can be seen in the
figure 3.7. The integral of the waveform is proportional to the total charge collected
in the OM during interaction with the particle. This charge is in relationship with the
energy deposited in the OM. Finding this relationship is the goal of the calibration.
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Figure 3.2: Cathodic and anodic signal of a tracking cell. We can see that t0 corresponds
to propagation of electron avalanche to the anode. t5 and t6 are times when the
plasma propagating along the anode reaches the bottom cathode and the top cathode,
respectively. In the anodic signal, there are two spikes corresponding to spikes in signal
of bottom and top cathode. Courtesy of SuperNEMO collaboration.

Figure 3.3: Differentiated cathodic signal. We can see two timestamps t5 and t6 cor-
responding to times when plasma reaches the bottom and top cathode. Courtesy of
SuperNEMO collaboration.
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Figure 3.4: Differentiated anodic signal. t0 represents the drift time and t1 to t4 repre-
sent times when plasma reaches the bottom and top cathode. Courtesy of SuperNEMO
collaboration.

Figure 3.5: An illustration of approximation in drift time calculation. Here ta is the
time of ionization, tb is the time when the electron avalanche reaches the anode, te is
the time it takes the particle to reach the OM from the point of ionization and tOM is
the time when the OM was triggered. We do not know ta to calculate t0 = tb − ta, but
because te is very short, we can approximate tb with tOM . This applies for all tracker
hits.
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Figure 3.6: A plot of two drift models describing the relationship between the radius
in which a particle passed an anode r and the drift time t0. The red line corresponds
to a model obtained through experiments, while the blue line represents one based on
simulations. The figure was adapted from Ref. [42].

Figure 3.7: An example of waveform captured by an OM. The integral of the waveform
corresponds to the energy of the particle.
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3.2.3 SuperNEMO data formats

SuperNEMO uses a number of data formats to save and process data. These range
from unstructured and simple ones used during the data acquisition (DAQ) to more
structured ones which should provide a clear representation of the data suitable for
data analysis.

3.2.3.1 Commissioning binary data (CBD)

Raw signals from the SuperNEMO detector are processed by so-called SNCrateSW
DAQ software, which produces data files in what we call Commissioning Binary Data
format. Data from the detector come in 6 data streams, resulting in 6 CBD files. Each
file comes from one DAQ crate (3 from tracker, 3 from calorimeter). Signals in this
format are not ordered by time nor their trigger ID. CBD are, however, very compact,
optimized for the DAQ and serve as a basis for more structured formats.

3.2.3.2 Raw hit data (RHD) and Raw trigger data (RTD)

6 CBD files obtained during measurement run are later converted into 6 Raw Hit
Data files. Each of these files contains signals from one part of the detector, sorted
by their trigger IDs. These 6 files are then converted into one Raw Trigger Data file.
This file contains signals from the whole detector, sorted by their trigger ID. This
format represents signals as they are registered by readout electronics after a trigger.
RTD format can already be used for data analysis, but it still contains some low-level
information. It is more suitable for diagnostic of DAQ rather than for complex analysis
tasks.

3.2.3.3 Raw event data (RED)

Finally, the RTD file is converted into Raw Event Data using an event builder
which looks for triggers in a small time window and merges data with different trigger
IDs into events based on their time coincidence. The idea is that these events provide
similar data structure as events produced by simulation software Falaise. This makes
working with RED files very natural for people previously working with simulations.

3.2.3.4 Unified digitized data (UDD)

Even though the RED format can already be quite conveniently used by data an-
alysts, the final goal is to unify data formats of simulated and real data. UDD is a
step in this direction. Real data formats up to RED were processed by a software sep-
arate from Falaise called SNFrontEndElectronics (SNFEE). UDD contains the same
information as RED, but the data are in a form of Falaise data bank and are saved
into a brio file readable by Falaise. The difference between UDD and the data banks
produced by Falaise simulation is in the type of information included. The UDD bank
contains information about electronic signals measured by different parts of the detec-
tor. These signals have to be further processed to extract physical quantities such as
energy. This requires calibration of detector components. In the case of simulation, on
the other hand, we get the physical quantities right away as a model of the electronics
is not included in the simulation.
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Figure 3.8: A diagram representing relationships between different data banks. Real
data will be transformed from the low level CBD formats up to the same data banks,
which are produced by Falaise simulations.

3.2.3.5 Future formats

The final step is to produce the same data banks as those produced by simulation
based on the UDD data. First, the data from UDD will be transformed into pCD
(pre-Calibrated Data). This new data bank contains preprocessed information from
UDD. Some detailed information from UDD is discarded, and only the values needed to
reconstruct the physical quantities of interest are kept. Finally, from the pCD format,
the same data banks as the ones from the Falaise simulation will be produced. The
continuity of all described data banks can be seen in the figure 3.8.

3.3 Calibration data

In the present, more than 100 hours of data with calibration sources deployed have
already been measured. Measurement runs without the calibration sources have also
been performed. These allow us to study the amount of background which we can
expect in the calibration data. In the table 3.1 we can see a list of measurement runs
data of which were used for analysis presented throughout this work.

3.3.1 Event

Data files in the RED format were used for analysis throughout the whole work. We
can see an example of a typical event in the figure (3.9). Each event contains tracker
hits and OM hits. A tracker hit gives us information about signal captured by a single
tracker cell. It consists of tracker cell ID and timestamps extracted from anodic and
cathodic signal (figures 3.3 and 3.4).

OM hit contains OM ID, time when the OM was triggered and information about
measured waveform. The integral of the waveform is calculated to extract total col-
lected charge, which gives us information about the particle’s energy. The timestamp
from the OM is also useful, since this is the reference time from which the timestamps
t0 to t6 of tracker cells are measured (section 3.2.1).

3.3.2 Event selection

The first step in the data analysis is to filter out the background events using a
properly chosen set of data cuts. In the case of calibration data, we only want to
keep the events where an electron comes from a calibration source and hits an OM.
Recognizing such events requires precise knowledge about event geometry.
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Run number Date Measurement length Number of events Type
1086 JUL/31 ∼ 3 h 5 · 106 calibration run
1087 JUL/31 ∼ 10 h 4.4 · 106 background run
1090 AUG/01 ∼ 3 h 6 · 106 calibration run
1093 AUG/01 ∼ 10 h 5.3 · 106 background run
1097 AUG/02 ∼ 3 h 5.5 · 106 calibration run
1100 AUG/02 ∼ 10 h 5.5 · 106 background run
1105 AUG/03 ∼ 3 h 8.2 · 106 calibration run
1108 AUG/03 ∼ 10 h 4.3 · 106 background run
1112 AUG/04 ∼ 3 h 6.9 · 106 calibration run
1115 AUG/04 ∼ 10 h 4.7 · 106 background run
1119 AUG/05 ∼ 3 h 6.2 · 106 calibration run
1126 AUG/06 ∼ 3 h 8.2 · 106 calibration run
1133 AUG/07 ∼ 3 h 5 · 106 calibration run
1149 AUG/11 ∼ 3 h 5.2 · 106 calibration run
1156 AUG/12 ∼ 3 h 6.1 · 106 calibration run
1163 AUG/13 ∼ 3 h 6.5 · 106 calibration run
1170 AUG/14 ∼ 3 h 6.3 · 106 calibration run
1175 AUG/15 ∼ 3 h 6.4 · 106 calibration run
1180 AUG/16 ∼ 3 h 6.3 · 106 calibration run
1190 AUG/19 ∼ 3 h 5.3 · 106 calibration run
1195 AUG/20 ∼ 3 h 6.2 · 106 calibration run
1200 AUG/21 ∼ 3 h 5.8 · 106 calibration run

Table 3.1: A list of measurement runs, data of which were used for analysis, presented
throughout this work.

Figure 3.9: An example of 207Bi calibration event. Coloured circles represent tracker
hits. Red rectangles represent triggered OMs.
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Figure 3.10: An example of a reconstructed electron trajectory. Red circles represent
radii measured by tracker cells, the red box represents triggered OM, light blue rect-
angles represent calibration sources and the blue line is the reconstructed trajectory.
The figure was adapted from Ref. [42].

3.3.2.1 Track reconstruction

Data in the RED format only give us an information about which tracker cells were
triggered and about the signal which they measured. On a basic level, we could only
check which tracker cells were triggered and based on this information decide which
events to keep. This method, however, completely ignores any information about the
vertical coordinate of the trajectory and even in the horizontal plane it is very imprecise.

The power of the tracker is in the fact that it allows us to very precisely reconstruct
the whole trajectory of the particle. First, a drift model is applied to find in which
height and how far from the wire the particle has passed. We can represent the infor-
mation obtained by each tracker cell with a circle in given height. The second step is to
fit these circles with a straight line (figure 3.10). This is done by a tracking algorithm.
For simulated data, the tracking algorithm implemented in Falaise can be used. This
algorithm, however, has not been converted to work with real data. Because of that,
we use a different algorithm (currently in development) for both simulated and real
data throughout the whole thesis [42]. Based on the reconstructed line, we find two
vertices. The first one is the intersection of the line with the source foil plane, and the
second line is the intersection with an OM front face.

3.3.2.2 Cut conditions

The goal is to design data cuts which would discard as many background events
as possible while keeping most of the good 207Bi events. The main two criteria we
want to verify is whether the first vertex lies close to a calibration source and whether
the second vertex lies on a front face of a triggered OM (like in the figure 3.11). In
order to do this, we need to know exact positions of the sources and the OMs. This
might seem trivial, as we know the dimensions of detector parts, but it is important
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Figure 3.11: An example of a calibration event which would pass data cuts. The first
vertex lies close to a calibration source (light blue rectangle) and the second vertex lies
on a front face of a triggered OM (red rectangle).

to verify these values based on data. It is also important to understand that for the
purpose of cuts, we do not really need to know the absolute dimensions of the detector
parts. We only need to know where the tracker “sees” them. What we need to extract
are some apparent positions which depend on the track reconstruction itself, not the
real dimensions of the detector. If the reconstruction method changes, we might get
different apparent positions, but this would not affect the cuts.

To find the calibration source positions, we use a cumulative histogram of positions
of the first vertex (figure 3.12). We can see that hot spots form around calibration
sources, as the most tracks come from these positions. To extract the source positions,
we simply find the maximum bin in each hot spot, and we take its centre as the
calibration source positions. A more precise statistical method for calibration source
position extraction has already been developed [43] and work in this area of calibration
source position is still ongoing. Once the development would be over, this version will
be used in the final version of the calibration software. For the purpose of this work,
the simple maximum finding method is sufficient.

When we have the source positions, we also need to state how far from these po-
sitions the vertex can be to be accepted. In table 3.2 we can see standard deviations
of vertex positions around individual sources in y and z coordinates. Here we use a
convention where y and z coordinates are parallel to the source foil, z being vertical.
The x-axis is then perpendicular to the source foil. We also choose origin in the middle
of the detector (figure 3.13a). This convention is used through the whole thesis. For
the cut, we require that the vertex lies inside an elliptical area around the source (figure
3.14a). Semi-axes of these ellipses were chosen as 3σ based on values from 3.2. As the
values are only for the first two columns of sources, we take their averages for the other
sources.

In the second criterion, we need to check if the second vertex lies on a triggered OM.
Again, we first need to extract apparent positions of OMs. As in the previous case,
we use cumulative histograms. This time, we construct a separate histogram for each
OM. Each histogram contains second vertex positions from all events where the given
OM was triggered. The second vertices were found as an intersection of the track and
a plane at either x = −435 mm or x = 435 mm (figure 3.13b). We can see an example
of such histogram in the figure 3.12. The vertices are generally clustered inside a
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Figure 3.12: A cumulative histogram of track vertices lying in the source foil plane.
We can see hot spots around calibration sources, which most of the tracks come from.

(a) (b)

Figure 3.13: a) The SuperNEMO coordinate system used throughout the whole thesis.
The origin is in the middle of the detector, y and z axes are parallel to the source
foil and x-axis is perpendicular. Courtesy of the SuperNEMO collaboration. b) The
second vertex of a track (green) is found as an intersection of the track and a plane at
either x = −435 mm or x = 435 mm. The middle of the coordinate basis was moved
compared to (a) for better clarity of the image.
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(a) (b)

Figure 3.14: a) For the calibration source cut, we only accept vertices which lie inside
an ellipse around the calibration source. b) A cumulative histogram of the second track
vertices from events where one chosen OM was triggered. We can see that most of the
vertices lie inside a box. The red box represents the apparent position of the OM.

rectangle. If the track and vertex reconstruction would perfectly correspond to reality,
the rectangle should become a square sized 256×256 mm. The track reconstruction,
however, depends on values such as effective anode length or x-position of the OM
front face. These are only known with certain level of uncertainty. Fortunately, the
uncertainties are not as significant, and we can still consider the vertices to be clustered
inside a 256×256 mm square within a reasonable level of precision. To find the apparent
position of each OM, we can find a 256×256 mm sized box containing the highest
number of counts in the histogram. The position of this box is the apparent position
of the OM front face (red box in the figure 3.14b). Now, for the vertex to be accepted,
we require that it lies inside this box.

Besides checking the vertex positions, we also add two less significant criteria. The

1st column 2nd column
Row σy[mm] σz[mm] Row σy[mm] σz[mm]
1 8.3 10.3 1 8.3 10.4
2 8.3 9.9 2 8.4 9.5
3 8.1 10.1 3 8.4 9.9
4 8.2 10.2 4 8.4 10.3
5 8.2 10.0 5 8.3 10.1
6 8.2 9.8 6 8.4 9.8
7 8.2 10.1 7 8.3 10.4

Table 3.2: A table of vertex position standard deviations around individual calibration
sources in the first two columns. We can see that the standard deviation is higher in
the z-coordinate. The values were taken from [43].
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Figure 3.15: An example of a chaotic calibration event. Such events are excluded by
the data cut checking for number of triggered tracker cells.

first one checks if the number of triggered tracker cells inside a time window from -0.2
to 5 µs relatively to the OM trigger time is lower than 16. This filters out chaotic
events with long trajectories, which could potentially bring more uncertainty to the
results. An example of such event can be seen in the figure 3.15. The choice of the
time interval was based on the fact, that most tracker hits fall into this interval. The
negative value of -0.2 was used because some tracker hits are assigned a negative time
due to delay caused by cable length. The second criterion checks that there are at least
4 tracker hits in an area near the calibration source. For that, we check a rectangular
area sized 242×220 mm (=11×10 tracker cell radii). This can be seen in the figure 3.16.
This condition filters out events where the electron could originate from a Compton
scattering in the middle of the tracker. If such an electron went in the right direction,
it could fake a track coming from a calibration source.

To summarize, for the event to be accepted it has to pass four conditions:

1. The first vertex lies inside an ellipse around a calibration source.

2. The second vertex lies on the front face of a triggered OM.

3. The number of triggered tracker cells inside a small time window is lower than
16.

4. There are at least 4 triggered tracker cells close to the calibration source.

If any of these conditions is not met, the event is discarded.

3.3.3 Calibration spectra

As stated in the chapter 2, the calibration of individual OMs will be performed using
measured energy spectra of 207Bi electrons. We applied the data cuts described in the
previous section on both the background data and the calibration data to find out how
many background events we can expect in energy spectra of OMs. For the background
data, we get on average 0.56 events per hour per OM, while for the calibration data
we get 901 events per hour per OM. This shows that the background is very efficiently
reduced by the data cuts.

In the figure 3.17 we can see an example of an energy spectrum measured by a
single OM compared to its background. We can see two peaks corresponding to the
energies of electrons from the internal conversion of 207Bi. Notice that the x-axis is
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Figure 3.16: A visualization of the data cut for number of triggered tracker cell near a
calibration source. For this event, we check the number of triggered tracker cells inside
the green box. This number has to be at least 4 to pass the cut.

in units of charge, as we yet do not know the calibration parameters to transform the
charge into energy. Each of the peaks actually consists of three discrete energies merged
together. These are the energies of electrons from the K, L and M shells. In the figure
3.18 we can see the theoretical spectrum simulated by Falaise for comparison. In the
table 3.3 we can see intensities of individual peaks in the theoretical spectrum. We
will sometimes refer to the first peak as the 482 keV peak and to the second peak as
the 976 keV peak, referring to the energies of K-shell electrons. We could potentially
observe a third 1682 keV peak, but its intensity is very low so it is hardly recognizable
in spectra of individual OMs. However, it is possible to observe it when combining
data from all OMs.

I482 I555 I567 I976 I1049 I1061 I1682 I1755 I1767
1,52% 0,44% 0,15% 7,03% 1,84% 0,54% 0,026% 0,004% 0,001%

Table 3.3: Intensities of 207Bi internal conversion electron energies.

3.3.3.1 Gain correction

The gain of a photomultiplier measures its ability to amplify the received signal. In
context of OM calibration, the gain determines the amount of charge measured by the
OM after deposition of certain amount of energy in the scintillator. The gain of OMs
can change with time. These changes cause that charge spectra measured in different
times differ by a scaling factor. This can be seen in the figure 3.19. The spectra
were measured by the same OM but with an eight-day time gap. For most OMs the
difference is not as significant, but it is important to deal with the gain variation in
some way, as it can artificially widen the peaks or even deform the spectrum in a way
which makes it impossible to properly fit it.

Let us assume that we have data from N calibration measurement runs. For each
OM, we can correct the gain in the following way. We fit the 976 keV peak in each
run’s spectrum measured by given OM by a sum of three Normal distributions. The
fitting process will be described in more detail in the chapter 4. At this point, it is
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Figure 3.17: An example of the 207Bi spectrum (blue) measured by a single OM
(M:0.5.3) compared to background (red) measured by the same module. The 207Bi
spectrum comes from the 17 calibration runs (∼ 51 h of measurement) from table 3.1
and the background spectrum comes from the 5 background runs (∼ 50 h of measure-
ment). We can see two peaks corresponding to the energies of 207Bi electrons.

Figure 3.18: The theoretical 207Bi electron spectrum simulated by Falaise. We can see
three groups each containing three peaks corresponding to K, L and M shells. The
intensities of individual energies can be found in the table 3.3.

50



Figure 3.19: A comparison of two charge spectra measured by the same OM (M:0.8.8).
The red spectrum (run 1086) was measured 8 days after the blue one (run 1133). We
can clearly see that the spectra differ by a scaling factor. This is caused by variation
in gain of the photomultiplier.

only important that from the fits we extract positions of the 976 keV peak in each run.
Let us call these µ1, µ2 . . . µN . From these positions we then calculate the correction
factor for each run

Kj =
1
N

∑N
i=1 µi

µj

, (3.1)

where j is the index of the given run. Finally, in each run, we iterate through all
measured charges and calculate corrected charges as

Qcorr = KjQ, (3.2)

where Q is the original charge. In the figure 3.20, we can see a comparison of spectra
measured by an OM with bad gain variation. The first spectrum is before application
of the gain correction, and the second is after.

3.3.3.2 Calibration parameter calculation

Based on the measured spectra such as the one in the figure 3.17 we could already
easily extract calibration parameters. We would first fit both of the peaks with a sum
of three Gaussian functions. From the fits we would extract positions of the peaks.
Let us call these Q1 and Q2. We can assume that the relationship between energy
and charge is linear E = ajQ + bj, where aj and bj are the calibration parameters we
are trying to find and j identifies specific OM. Now, since we know that Q1 and Q2

correspond to the energies of 482 and 976 keV, we can simply find aj and bj by solving
a system of two linear equations
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(a) (b)

Figure 3.20: In the picture a), we can see a charge spectrum composed of data from
17 calibration runs 1086-1200 (table 3.1). In the picture b), we see the same spectrum
after application of the gain correction.

E1 = ajQ1 + bj, (3.3)

E2 = ajQ2 + bj, (3.4)

where E1 = 482 keV and E2 = 976 keV.
Using this simple process, we could obtain a set of calibration parameters for each

OM. The quality of calibration parameters obtained in this way would unfortunately
be very insufficient. The reason for that is that this approach completely ignores
significant effects which influence the measured energy spectrum. The nature of these
effects and methods to correct them will be described in the following chapter.
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Chapter 4

Energy corrections

Precise calibration of OMs requires us to account for certain physical effects which
influence the measured 207Bi electron energy spectrum. In the figure 4.1 we can see a
scheme of a calibration event. We can see that the electron first passes through layers
of matter, where it loses part of its energy. Then it reaches an OM, the response of
which is also influenced by several phenomena. Finding suitable models of these effects
which account for these corrections can potentially improve the energy resolution of the
whole experiment. In the following sections, we will describe two groups of corrections:
optical corrections and energy loss corrections.

4.1 Optical corrections

The optical corrections account for effects taking place in OMs themselves. These
effects result in non-uniformity and non-linearity of OMs. By non-uniformity, we refer
to the fact that the response of an OM depends on the point where a particle deposits
its energy. For example, an electron hitting the OM in the corner results in a different
signal than if an identical electron hit the centre. This dependency can be seen in the
figure 4.2a, which depicts a multiplicative factor by which the measured energy differs
from the deposited one. By non-linearity, we mean a deviation from the linear rela-
tionship between the measured charge and the particle’s energy. Ideally, the response
should be perfectly linear, although this is never the case. The optical corrections
describing these effects have already been developed and implemented into Falaise by
Arnaud Huber and Axel Pin [44][45] (in French).

4.1.1 Birks’ law and Cherenkov radiation

The non-linearity of an OM is its deviation from the linear relationship between
measured charge and energy deposited by a particle. The non-linearity of OMs is
influenced by two effects: Birks’ law and Cherenkov radiation. The non-linearity effect
described by the Birks’ law comes from the fact that part of the energy deposited by
the particle results in ionization of molecules instead of scintillation light generation.
The Birks’ law describes light yield of a particle passing through a scintillator as a
function of energy loss per path. It has a form [46]:

dS

dx
=

AdE
dx

1 + kB
dE
dx

, (4.1)
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Figure 4.1: A scheme of an event from calibration measurement. Our goal is to esti-
mate the initial energy Ei from the measured energy Ef by application of the optical
corrections and the energy loss corrections.

where dS
dx

is light yield per path length, dE
dx

is energy loss per path length and A and kB
are constants specific for material of the scintillator and type of the particle. From the
equation (4.1) we can see this effect is more significant for high dE

dx
where dS

dx
saturates,

while for low dE
dx

the relationship approaches linearity.
The second non-linearity effect is the Cherenkov radiation. Cherenkov radiation is

emitted when the particle travels through a block of scintillator faster than the speed
of light in a given material. This effect results in an additional non-linearity in the
amount of light generated in the scintillator and needs to be taken into account in the
calibration.

We can describe the non-linearity resulting from Birks’ and Cherenkov effect by a
single formula

Ef = αEBC + β (EBC)
γ , (4.2)

where Ef is the energy observed by the OM, EBC is the deposited energy cleaned of
the Birks’ and Cherenkov effect and α, β and γ are empirical constants. As γ is not an
integer, this formula has to be solved numerically for EBC . This can be done simply
using a standard root finding method. The Newton-Raphson method has been used in
this work. The method is described for example in [47].

4.1.2 Geometrical non-uniformity

When a particle deposits its energy inside the scintillator block, the emitted scin-
tillation light scatters inside the scintillator block (figure 4.2b). How much of this light
is collected by the PMT depends on the point of energy deposition. This results in the
geometrical non-uniformity. This geometrical dependence cannot be described by a
simple model, but has to be based on a simulation of the OM with given geometry and
material properties. We represent the geometrical correction by a single multiplicative
factor depending on the point of energy deposition G (x, y, z). We then calculate the
real deposited energy as

ED =
EBC

G(x, y, z)
. (4.3)

Gammas penetrate deep into the scintillator, which is why we have to consider G
as a function of all three coordinates. In contrast to that, the mean free path of
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(a) (b)

Figure 4.2: a) A slice through the 3D histogram of the geometrical correction multi-
plicative factor. b) A visualization of photon scattering inside the scintillator of an
OM. The number of photons collected by the PMT depends on the point of energy de-
position. This influences the resulting response of the OM. Both figures were adapted
from Ref. [45] (in French).

electrons inside the plastic scintillator medium (polystyrene) is very short. Therefore,
the electrons deposit all of their energy in a very small spot on the front face and do
not penetrate into the OM. Thanks to this, we do not need to consider the depth x
coordinate and G becomes a function of only y and z. The simulation of the geometrical
non-uniformity has been done in the past by Arnaud Huber [45] (in French). Values
of the G factor were saved as a 3D histogram. A slice through this histogram can be
seen in the figure 4.2a. Using this 3D histogram in the Falaise software would be very
memory expensive, which is why there was a desire to replace it with a model which
would not be as memory demanding while not losing too much precision. This was
done by fitting the histogram by a polynomial of the tenth order [44] (in French). This
way we only need 286 coefficients instead of the whole histogram.

4.2 Energy loss corrections

The second group of energy corrections deals with energy losses of 207Bi electrons.
Electrons coming from the calibration sources have to pass through the tracker before
they reach an OM. Because of this, they lose part of their energy in the tracking gas
present in the tracker. Moreover, there is a Mylar foil on the front face of each OM
which ensures better light collection, and also a nylon foil in front of main wall OMs
which improves the gas tightness of the tracker. These foils also add to the energy
losses of electrons.

In the figure 4.3 we can see that the measured spectrum (blue) is shifted to lower
energies compared to the theoretical values (green dots) where they should have been,
were it not for the energy losses. This shift also is not the same for the whole spectrum,
but depends on energy. Less energetic electrons tend to lose more energy. Besides
shifting the peaks, the energy losses also increase the width of the peaks. This worsens
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Figure 4.3: A comparison of a 207Bi spectrum before and after applying a correction
based on the phenomenological energy loss model. We can see that after the correction,
the peaks moved much closer to the theoretical energies. The figure was adapted from
Ref. [48] (in Czech).

the energy resolution of the whole detector. Thanks to the tracker, we have very
precise information about trajectories of electrons. The idea is that we leverage this
information to estimate lost energy of each electron and add it to the measured one.
This can decrease the effect of energy losses to the energy resolution.

4.2.1 Phenomenological model

In the previous work, a phenomenological model of energy losses has been developed
[48] (in Czech). It was assumed that the energy lost along the trajectory depends on
the length of the trajectory d and on the electron’s energy E. The model was based
purely on simulated data. A simulation of 5 · 107 electron events has been used (each
containing one electron). These electrons had uniform energy resolution from 50 to
2000 keV and were emitted from calibration sources (figure 2.8b). A result of this
simulation can be seen in the figure 4.4a. The plot depicts the dependence of the lost
energy on d and E. Each point represents an average energy loss ∆E for a given d and
E. Lost energy of individual electrons was calculated as ∆E = Ei − Ef , where Ei is
the initial energy and Ef is the energy deposited in an OM.

From the simulated data, it was observed that the dependence of ∆E on d (for fixed
E) is linear and the dependence of ∆E on E is approximately exponential. Based on
these observations, the following model has been proposed

∆E (d,E) = (p1d+ p2) e
p3E + p4d+ p5, (4.4)
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(a) (b)

Figure 4.4: a) A dependence of the lost energy on the length of the trajectory d and
electron’s energy E extracted from simulated data. Each of the points represents
an average loss ∆E for a given E and d. b) A fit of the simulated data using the
phenomenological model (4.4).

where p1 to p5 are fitting parameters. We can see that the function combines the linear
relationship in one variable and the exponential one in the other. The simulated data
were fitted using this model. The result can be seen in the figure 4.4b.

The proposed phenomenological model fits the simulated data well. It has been also
applied on the simulated 207Bi spectrum, and it has been shown that the correction
shifts the peaks back very close to the correct energies and that it lowers the FWHM
of the peaks, improving the energy resolution. The effect of the energy spectrum can
be seen in the figure 4.3. There are, however, a number of problems with this model.

The first problem is the high number of fitting parameters. With five fitting param-
eters, we could argue that the model simply overfits the simulated data, which is not
ideal. Using a more sophisticated model, we could lower the number of fitting param-
eters, resulting in more robust correction. Moreover, the parameters do not have any
physical interpretation. It would be better to have parameters which would be directly
linked to the physical properties of the detector so that we could verify if the values
we get are reasonable. The second problem is that the model considered energy losses
in Mylar and nylon to be negligible, which is not the case. These losses added to the
values of ∆E, so they influenced the values of fitting parameters. Because of that, we
can say that they were included in some way. The problem is that the model does not
treat them separately. Finally, this analysis has been done using the Falaise tracking
algorithm and a simulation where the magnetic field was active. Real measurements
have, however, so far been performed without the magnetic filed and the measured data
will be processed with a newer tracking algorithm. To check if these changes affect the
resulting fit, we have replicated the previous analysis for the newer tracking algorithm
and a simulation without the magnetic field. In the figure 4.5 we can see a comparison
of fitting error for the new dataset and the original one. We can see that for the new
dataset, there are areas where the fitting error is significantly higher. It seems that
the phenomenological model no longer provides description as good as in the previous
analysis.

4.2.2 Physics based model

The shortcomings of the phenomenological energy loss model lead us to the conclu-
sion that we need to replace it with a new one. The goal is to find a model with lower
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Figure 4.5: A comparison of fitting error obtained by fitting formula (4.4) to two
different datasets. The new dataset differs from the old one in absence of magnetic
field inside the detector and by using different tracking algorithm.

number of fitting parameters which would be based on physical theory.

4.2.2.1 Bethe-Bloch formula

For low energy electrons, such as those emitted by 207Bi, the prevailing mechanism
of energy losses is ionization of surrounding atoms. These energy losses can be described
by the Bethe-Bloch formula. For electrons, the formula has the following form [49]

dE

dx
=

2πNA⟨Z/A⟩
mec2

(
e2

4πε0

)2
ρ

β2
Φ (E) , (4.5)

where NA is the Avogadro constant, ⟨Z/A⟩ is the average of ratios of atomic numbers
and atomic masses weighted by fraction masses of gas components, me is the rest mass
of electron, e is the elementary charge, ε0 is the permittivity of vacuum, ρ is density of
the material, I is mean excitation energy of the gas, E is energy of the electron, dE/dx
is the mean energy loss per unit of length (stopping power) and

β =
v

c
=

2m0c
2Ek + E2

k

(m0c2 + E2
k)

2 (4.6)

is the relativistic factor. Φ (E) is an energy dependent term of form

Φ (E) = ln
mec

2β2E

2I2 (1− β2)
−

(
2
√

1− β2 − 1 + β2
)
ln 2 + 1− β2 +

1

8

(
1−

√
1− β2

)2

.

(4.7)

4.2.2.2 Calculating energy losses of electrons

There are several concerns regarding the calculation of energy loss using equation
(4.5). First, there are three material specific constants, the value of which we need to
specify. These are ⟨Z/A⟩, ρ and I. For Mylar and nylon, these are tabular values. We
can find them in the table 4.1. For the tracking gas, the situation is more complicated
because we need to calculate the constants based on its composition. ⟨Z/A⟩ is simply
a weighted average of Z/A ratios of all elements contained in the gas,

⟨Z/A⟩ =
∑
i

wiZi

Ai

, (4.8)
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⟨Z/A⟩ ρ[g/cm3] I[keV]
Mylar 0.517964 1.4 0.0787
nylon 0.547912 1.14 0.0639

Table 4.1: Constants used in the Bethe-Bloch formula for Mylar and nylon. ⟨Z/A⟩ was
calculated using formula (4.8). ρ and I were taken from [50].

Element w Z A[g/mol] I[eV]
He 0.629058 2 4.0026 41.8
Ar 0.040018 18 39.948 188
H 0.158962 1 1.0078 19.2
C 0.105874 6 12.011 78
O 0.066088 8 15.999 95

Gas component ω M[g/mol]
He 0.95 4.0026
Ar 0.01 12.011

Ethanol 0.04 15.999

Table 4.2: Table constants used in equations (4.8), (4.9) and (4.11). I was taken from
[50].

where wi are mass fractions of elements of the tracking gas. For the mean excitation
energy I we use formula

I = exp

∑
i wi

Zi

Ai
ln Ii

⟨Z/A⟩
, (4.9)

where Ii are excitation energies of tracking gas elements. The tracking gas consists of
helium, argon, and ethanol, giving us 5 different elements. Values for these elements,
which were used in equations (4.8) and (4.9) can be found in the table 4.2.

The property of the tracking gas which is measured is its pressure, not the density,
appearing in the Bethe-Bloch formula. Assuming that the tracking gas follows the
ideal gas equation, we can express the density as

ρ =
Mmp

RT
, (4.10)

where R is the molar gas constant, T ≈ 298 K is temperature of the tracking gas and
Mm is molar mass of the tracking gas. We calculate Mm as weighted average of molar
masses of gas components,

Mm = ωHeMHe + ωArMAr + ωEtMEt. (4.11)

The values used in this formula can be found in the table 4.2.
From the equation (4.5) we can see that the stopping power dE

dx
depends on the

energy of the electron. This means that to calculate the energy ∆E lost along the
trajectory, we need to integrate the formula. This gives us an equation∫ E1

E2

β

Φ (E)
dE =

2πNA⟨Z/A⟩
mec2

(
e2

4πε0

)2

ρd, (4.12)

where E1 is the initial energy, E2 is the final energy, ∆E = E1 − E2 and d is the
length of the trajectory. The integral on the left side is complicated and cannot be
solved analytically. Luckily, it turns out that for reasonably small ∆E the changes of
the integrand along the integration interval are very small. Thanks to this, we can
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Figure 4.6: Energy losses of electrons passing through 50 µm of Mylar. We can see
that the relative error of the calculation with constant stopping power is lower than
1% when compared to numerical integration of the equation (4.5).

consider β2/Φ (E) to be approximately constant. This allows us to calculate the lost
energy simply as

∆E (d,E) =
dE

dx
(E2) d. (4.13)

The phenomenological model used the same assumption of linear dependence of ∆E
on d, but it arrived to it through a data driven approach, while here we have de-
rived it ab initio. In the figure 4.6 we can see a comparison between the energy loss
calculated using numerical integration of the equation (4.12) and the energy loss calcu-
lated with constant stopping power. The values were calculated for electrons passing
through 50 µm of Mylar. We can see that the error of the constant stopping power
approximation is lower than 1%.

4.3 Application of energy corrections

Let us assume that an OM measures electron energy Ef . This energy is influenced
by the effects described in the previous sections. In the case of unknown initial energy
Ei (such as in double beta decay measurement) we could estimate it by applying
energy corrections on Ef . For the calibration data, we know the initial energies of
207Bi electrons, but to unify the approach, we will still calculate the estimate of initial
energy from Ef . In the figure 4.1 we can see a scheme of a calibration event. We can
see that from Ef we go backwards and apply the corrections for the individual effects
one by one. We first apply the optical corrections (section 4.1) which gives us energy
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ED as

ED(Ef , y, z) =
EBC (Ef )

G (y, z)
, (4.14)

where EBC is the energy calculated directly from Ef by application of the corrections
for Birks’ and Cherenkov effect and G (y, z) is the geometrical correction factor. ED is
an estimate of the actual energy deposited in the OM (cleaned of the optical effects).
From ED we calculate an estimate of Ei by application of the energy loss corrections
(4.2)

Ei (ED, dM , dn, dg; p) =ED (deposited energy)

+ ∆EM (dM , ED) (loss in Mylar)

+ ∆En (dn, ED +∆EM) (loss in nylon)

+ ∆Eg (dg, ED +∆EM +∆En; p) (loss in the gas),

where ∆EM , ∆En and ∆Eg are energy losses in Mylar, nylon and gas respectively,
and dM , dn and dg are distances passed through Mylar, nylon and gas respectively. In
this formula, there are several important things to mention. First, the only parameter
which we state explicitly is the tracking gas pressure. The reason for that is that it will
be used as a fitting parameter later on. The other parameters from the Bethe-Bloch
formula are considered to be known constants, and we do not include them for clarity.
Second, we can see that the energy lost in each layer is calculated using energy at
the end of this layer instead of the energy deposited in the OM. For example, ∆En

is calculated based on ED + ∆EM instead of only ED. This difference is very small,
and simply using ED in all functions would not result in too much error. As we saw
in the figure 4.6 the stopping power changes very little with small changes of energy.
This subtlety, however, does not add any complexity to the calculation. Finally, each
of the energy loss functions depends on the distance passed through a given material.
The distinction between the distances is important for curved trajectories. For straight
trajectories (which we expect since the magnetic field is not active) these distances are
linearly dependent, and we can replace them using a single variable. This can be seen
in the figure 4.7. We can see that we can calculate the values dM , dn and dg from
thicknesses of the layers and the angle θ between the track and the source foil plane
using a simple formula

d =
L

cos θ
, (4.15)

where L is the thickness of a given layer. In our case, we will use values LM = 12 µm,
Ln = 25 µm and Lg = 435 mm for Mylar, nylon and gas respectively. To summarize,
the final formula to estimate Ei from Ef is

Ei (Ef , θ, y, z; p) =
EBC (Ef )

G (y, z)
(deposited energy)

+ ∆EM

(
θ,

EBC (Ef )

G (y, z)

)
(loss in Mylar)

+ ∆En

(
θ,

EBC (Ef )

G (y, z)
+ ∆EM

)
(loss in nylon)

+ ∆Eg

(
θ,

EBC (Ef )

G (y, z)
+ ∆EM +∆En; p

)
(loss in the gas).

(4.16)
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Figure 4.7: A track passing through layers of material. We can see that the distances
passed through these layers can be calculated from the thickness of these layers and
the angle θ between the track and the source foil plane.

4.3.1 Validation of the energy loss corrections using simula-
tion

We have proposed a model where the only value which we consider to be a free
parameter of the model is the pressure of the tracking gas. Notice that this is a big
improvement compared to the phenomenological model, which used 5 free parameters
(equation (4.4)). To validate whether the proposed model corresponds to the energy
losses we observe, we need to find out which value of pressure we need to use to
compensate the energy losses completely. We first attempt to find this value based on
simulated data.

To validate the energy loss corrections, we use a dataset of 108 simulated 207Bi
calibration events. We first choose an arbitrary pressure p. Using this value of p, we
calculate an estimate of initial energy Ei of each detected electron using the method
described in the previous section. This way we get the global energy spectrum of
electrons. Finally, if the energy loss corrections for chosen p compensate the energy
losses exactly, the peaks in the global energy spectrum should be at the theoretical
energies (482, 976 and 1682 keV). To find positions of the peaks, we fit each of them
using a sum of three normal distributions

fj (E;Njk, µjk, σjk, Cj) =
3∑

k=1

NjkN (Ei;µjk, σjk) + Cj, (4.17)

where N (Ei;µjk, σjk) is a normal distribution with mean µjk and standard deviation
σjk, Njk are normalization constants, Cj is an additional constant, j ∈ {1, 2, 3} is an
index of the peak and k denotes an energy line in a given peak (K, L or M shell). The
function (4.17) has 10 fitting parameters. From the theoretical spectrum (figure 3.18)
we know ratios of Njk, µjk and σjk. Thanks to this, we can express the parameters of
the second and the third Gaussian in the sum using the parameters of the first one.
The fitting function then gains the following form,

fj (Ei;Nj, µj, σj, Cj) = NjG (Ei;µj, σj) +
3∑

k=2

nkNkG (Ei; kkµk, skσk) + Cj, (4.18)
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Figure 4.8: An example of a fit of the simulated global energy spectrum for pressure
p = 0.9 bar. Each of the peaks is fitted with a sum of three normal distributions
(equation (4.18)).

where nj, kj and sj are ratios between the parameters. Their values are in the table
4.3. We will keep Cj as a free parameter only for the first peak, as it lies on a plateau
behind the second peak. We will set it to zero for the other two peaks. This leaves us
with 4 fitting parameters for the first peak, and with 3 for each of the other two peaks.
The choice of the fitting function is described in more detail in Ref. [48] (in Czech).
In figure 4.8, we can see an example of a fitted spectrum for p = 0.9 bar.

By repeating the process described above for different values of p, we find a p
for which the peaks are closest to the correct energies. Using this method, we got
p = 0.921 bar. To estimate the uncertainty of this value, we used bootstrapping,
randomly sampling 10% of the original dataset in each iteration. The distribution of p
values after 1000 iterations can be seen in the figure 4.9. We can see that the value of
pressure including uncertainties is p = (0.921± 0.006) bar. The value of pressure used
in Falaise is 0.89 bar. This value does not match the extracted value within uncertainty.
There seems to be a small systematic error of the extracted value. Nevertheless, our
model is able to determine the value of pressure with error of only 0.03 bar, which is
a good confirmation of its reliability.

This way, we have verified that the energy loss model corresponds with the energy

n2 k2 s2 n3 k3 s3 Cj

f1
I555
I482

555
482

√
555
482

I567
I482

567
482

√
567
482

free parameter

f2
I1049
I976

1049
976

√
1049
976

I1061
I976

1061
976

√
1061
976

0

f3
I1755
I1682

1755
1682

√
1755
1682

I1767
I1682

1767
1682

√
1767
1682

0

Table 4.3: Table of coefficients used in fitting function (4.18). The Cj parameter is
kept as a free one only for the first peak, as it lies on a plateau behind the second peak.
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Figure 4.9: A distribution of pressures extracted in 1000 bootstrapping iterations. We
can see that the value of pressure is p = (0.921± 0.006) bar.

losses produced by the simulation. Obviously, this is only a part of the story, as we
mainly need to verify that the model corresponds with the real data. This, however,
cannot be done by the same method. In the simulated data, we get the observed energy
Ef right away, as if the OMs were already calibrated. In the real data, the observed
quantity is charge Q and to apply the corrections we also need to find calibration
parameters for each OM which transform Q into Ef . Instead of only having 1 fitting
parameter being the tracking gas pressure, we will have 2N+1 fitting parameters where
N is the number of OMs. A method to extract these parameters from the calibration
data will be described in the next chapter.
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Chapter 5

Development of the calibration
algorithm

We will again assume that the relationship between observed charge Q and energy
Ef is

Ef = ajQ+ bj, (5.1)

where aj and bj are calibration parameters. The index j denotes a specific OM, as the
parameters are unique for each OM. The observed energy Ef is influenced by the non-
linearity and non-uniformity of the OM, as well as by the effect of energy losses (figure
4.1). These effects add more uncertainty to the measured spectrum. The idea of the
energy corrections described in the chapter 4 is that we can use information from the
tracker to partially reduce this additional uncertainty, resulting in more precise values
of aj and bj. Substituting equation (5.1) into formula (4.16) we get

Ei (aj, bj, Q, θ, x, y; p) =
EBC (ajQ+ bj)

G (y, z)
(deposited energy)

+ ∆EM

(
θ,

EBC (ajQ+ bj)

G (y, z)

)
(loss in Mylar)

+ ∆En

(
θ,

EBC (ajQ+ bj)

G (y, z)
+ ∆EM

)
(loss in nylon)

+ ∆Eg

(
θ,

EBC (ajQ+ bj)

G (y, z)
+ ∆EM +∆En; p

)
(loss in the gas).

(5.2)

We can see that besides parameters aj and bj, which are specific for each OM, Ei now
also depends on values θ, y and z, which are specific for each electron. To demonstrate
the problem which it brings to the extraction of calibration parameters, let us first show
how we would proceed if Ei was only a function of aj, bj and Q (Ei = f (aj, bj, Q)). In
that case, we could again fit the peaks in the spectrum to extract their positions Q1 and
Q2. Knowing that these values correspond to energies E1 = 482 keV and E2 = 976 keV
we would find aj and bj by solving a system of two equations.

E1 = f (aj, bj, Q1) (5.3)

E2 = f (aj, bj, Q2) (5.4)

This is analogical to the approach described in the section 3.3.3.2, only now we have a
general function f . In case of Ei = f (aj, bj, Q, θ, x, y) it is no longer possible to write
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the problem as a system of two equations. The reason for this is that now f is no longer
a function acting on the charge spectrum as a whole, but it is a function acting on each
electron individually. Because of that, it is no longer possible to extract the calibration
parameters from the measured spectrum in a single fit. The only thing we can do is to
choose aj and bj, calculate Ei for all electrons to get the spectrum of initial energies
and only then check if the peaks in the spectrum are at correct positions, verifying our
initial choice of aj and bj.

5.1 Calibration algorithm

To find calibration parameters of each OM, we apply the data cuts described in the
chapter 3 to filter out background events. We also choose a fixed value of p common
for all modules. The choice of this value will be commented on later. Then to find aj
and bj we will proceed in the following way for each OM:

1. Choose arbitrary aj and bj.

2. Calculate Ef = ajQ+ bj for each electron detected by given OM.

3. Apply energy corrections to calculate Ei for each electron detected by given OM
(equation (4.16) from chapter 4).

4. Fit the Ei energy spectrum using functions from the equation 4.18 to find posi-
tions µ1 and µ2 of the first and the second peak.

5. Calculate L (aj, bj) = (µ1 − E1)
2 + (µ2 − E2)

2, where E1 = 482 keV and E2 =
976 keV.

The point of this whole process is that the peaks in the Ei spectrum should be at the
correct energies (482 and 976 keV), provided we have chosen correct aj and bj. The
distance of the peaks from the correct energies is measured by the function L (aj, bj),
the value of which depends solely on the initial choice of aj and bj.

1 We will call this
function a loss function. As we are only fitting two peaks, and we have two unknown
parameters aj and bj it is theoretically possible to find values of these parameters for
which µ1 = E1 and µ2 = E2. In this case L (aj, bj) = 0. This leads us to a conclusion
that we need to find aj and bj for which L reaches its minimum.

5.1.1 Minimisation of the loss function

In the figure 5.1 we can see a visual representation of the process described in the
section 5.1. Obviously, there is no analytical solution to the problem of minimizing
the loss function. The calculation of L (aj, bj) includes operations such as fitting the
energy spectrum, which cannot be dealt with analytically. At the beginning of the
process, we do not know which calibration parameters to choose to get L (aj, bj) = 0.
Only at the end do we learn if the choice of aj and bj was correct. This leads us to use
a numerical method which would allow reaching the minimum efficiently.

1L (aj , bj) also depends on the initial choice of p, but for now we consider p to be fixed and aj and
bj to be unknowns.
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Figure 5.1: A diagram of the calibration algorithm. At the beginning, we apply data
cuts and extract measured charge and trajectory of each electron. After that, we choose
an arbitrary pair of calibration parameters a and b to calculate the spectrum of Ei.
We fit the spectrum and extract the positions of the peaks µ1 and µ2. Based on these
positions, we calculate L (a, b) expressing how far the peaks are from the correct values.
We repeat the process until we find calibration parameters for which L is very close to
zero.

5.1.1.1 Properties of the loss function

The loss function has specific properties which will influence our choice of the
numerical minimization method. In the figure 5.2 we can see an example of the loss
function for one chosen OM. We can see that there is a clear global minimum in the
middle. This is to be expected, as there should not be ambiguity in choice of the
most optimal calibration parameters. The second thing to note is that there are points
in which the value of the function is clearly higher than in their neighbourhood. This
comes from the fact that fitting of the Ei energy spectrum is involved in the calculation
of the loss function. These fits sometimes fail to converge to the optimal solution,
which results in this noise in the loss function. This noise could potentially even create
local minima. Finally, it is important to note that evaluation of the loss function is
computationally expensive. It requires us to calculate Ei for each electron detected by
given OM and also to fit the resulting spectrum. The computational complexity also
rises with the number of events in the calibration data, as for more events we need to
make more calculations of Ei. Of course, with more events the noisiness of the loss
function falls and the precision of the calibration rises, so it is desired to use bigger
calibration datasets in spite of higher computational time.

The nature of the loss function narrows our choice of the minimization algorithm.
For example, we cannot really reliably calculate the gradient of the function. There
is no way to analytically express the gradient, and the noisiness of the function would
cause a numerical calculation of the gradient to be very unstable. This rules out a
whole class of gradient descend methods which are commonly used for minimization of
multidimensional functions. In our case, we need a method which only uses functional
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Figure 5.2: An example of the L function. We can see a clear global minimum in the
middle. There is also a noise resulting from failed fits of the Ei spectrum.

values. We also need to make sure that the method is sufficiently robust to the noisiness.

5.1.1.2 Grid search

A very simple method which can be used for the minimization problem is the grid
search. We simply choose a grid of points, evaluate the loss function in each of them,
and find the one with the lowest value. In the next step, we can construct a finer
grid around the lowest point. We repeat this until the value of L reaches the chosen
threshold. In the figure 5.3 we can see grids chosen in two iterations of the algorithm.

The advantage of this algorithm is that if we adjust the shrinking of the grid cor-
rectly, it is very robust to the noise. If the fit in one of the function evaluations fails,
the algorithm can correct itself in the next step. On the other hand, the algorithm re-
quires a lot of function evaluations, making it slow. Especially for the bigger datasets,
which will be used in practice, we would like to have a faster method.

5.1.1.3 Downhill simplex method

The downhill simplex method is a relatively simple minimization method which
does not require calculation of gradients. It is described for example in Ref. [47]. In
general, it is used to find a minimum of an N -dimensional function. In each step, it
evaluates the function in N+1 points. According to functional values in these points, it
choses the points for the next step. In most cases, the point with the highest functional
value is replaced.

In our case, we will evaluate the loss function in three points in every step. Let us
switch to vector notation, where x⃗ = (a, b) and L (x⃗) = L (a, b). In every step, we will
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Figure 5.3: An example of two iterations of the grid search algorithm. In the second
step, we construct a finer grid around the lowest point from the first step.

proceed in the following way:

1. Evaluate the loss function in three points x⃗1, x⃗2 and x⃗3 and let us assume that
L (x⃗1) ≤ L (x⃗2) ≤ L (x⃗3).

2. Calculate x⃗o =
x⃗1+x⃗2

2
.

3. Calculate x⃗r = x⃗o + α (x⃗o − x⃗3). If L (x⃗1) ≤ L (x⃗r) < L (x⃗3) then replace x⃗3 with
x⃗r and go to 1.

4. If L (x⃗r) < L (x⃗1) then calculate x⃗e = x⃗o + γ (x⃗r − x⃗o). If L (x⃗e) < L (x⃗r) then
replace x⃗3 with x⃗e and go to 1, else replace x⃗3 with x⃗r and go to 1.

5a If L (x⃗r) < L (x⃗3) then compute x⃗c = x⃗o + ρ (x⃗r − x⃗o). If L (x⃗c) < L (x⃗r) then
replace x⃗3 with x⃗c and go to 1, else go to 6.

5b If L (x⃗r) ≥ L (x⃗3) then compute x⃗c = x⃗o + ρ (x⃗3 − x⃗o). If L (x⃗c) < L (x⃗3) then
replace x⃗3 with x⃗c and go to 1, else go to 6.

6 Replace x⃗2 with x⃗1 + σ (x⃗2 − x⃗1), x⃗3 with x⃗1 + σ (x⃗3 − x⃗1) and go to 1.

α, γ, ρ and σ are constants where α > 0, γ > 1, 0 < ρ ≤ 0.5 and 0 < σ ≤ 1. We
choose α = 1, γ = 2, ρ = 0.5 and σ = 0.5. The steps 3, 4, 5 and 6 are commonly called
reflection, expansion, contraction and shrink respectively. This refers to the movement
of the simplex. The different steps can be seen in the figure 5.4. For termination of
the algorithm, we again choose a fixed threshold. We know that the minimal value of
the loss function is always 0 so we can choose the threshold as a small positive value.
When any of the values L (x⃗1), L (x⃗2) and L (x⃗3) in the step 1 gets lower than the
threshold, we stop the algorithm.

The downhill simplex method requires significantly lower number of function eval-
uations than the grid search method, making it much faster. The only concern is
its robustness to the noisiness of the loss function. Especially for smaller calibration
datasets, the function can converge to a local minimum created by the noise. When
tested on bigger datasets, however, the method converges well in the vast majority of
cases. A solution for the cases where it fails could be to rerun the minimization using
the grid search.
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Figure 5.4: Four different steps of the downhill simplex method. The figure was adapted
from Ref. [51].

There are algorithms which achieve faster convergence than the downhill simplex
method. The simplex method was mainly chosen for its simplicity, as a first attempt
to solve the problem. If there will be a need for better performance in the future,
more advanced algorithms can be tested. However, the calibration process will not
be performed on a daily basis, so there might not be a need for further optimization.
The processing of 51 h of calibration data using the downhill simplex method took less
than 20 minutes on a single processor. For the grid search method, the processing time
varies based on its configuration, but typically reaches several hours.

5.1.2 Dependence of the calibration parameters on the track-
ing gas pressure

In the section 5.1 we considered the pressure p to be a fixed constant. Now we will
be interested in how its choice influences the calibration parameters. Let us come back
to the formula for calculation of Ei from the chapter 4

Ei (ED, θ; p) =ED (deposited energy)

+ ∆EM (θ, ED) (loss in Mylar)

+ ∆En (θ, ED +∆EM) (loss in nylon)

+ ∆Eg (θ, ED +∆EM +∆En; p) (loss in the gas).

If we neglect the optical correction, we have ED = EF = ajQ+ bj. We can then write
the formula as

Ei (Q, θ; p, aj, bj) =ajQ+ bj (deposited energy)

+ ∆EM (θ, ajQ+ bj) (loss in Mylar)

+ ∆En (θ, ajQ+ bj +∆EM) (loss in nylon)

+ ∆Eg (θ, ajQ+ bj +∆EM +∆En; p) (loss in the gas).

The ajQ term is the most significant one. We can see that both bj and ∆Eg are values
added to the ajQ term. It is also important to note that ∆Eg scales linearly with p.
This gives us an intuition that changing p by a certain value is in some way equivalent
to changing bj for all OMs. This equivalence is not exact because bj is a parameter of
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a specific OM, while ∆Eg is calculated for each detected electron separately. Despite
this, the mentioned relationship between the terms is still important. Thanks to this,
we can expect that the b parameter averaged over all OMs will change approximately
linearly with p. On the other hand, the average of a should be unaffected by p.

Because both bj and the energy loss terms (∆EM , ∆En and ∆Eg) shift Ei, we can
state a hypothesis that all the energy shift can be explained by energy losses. Then
the average bj would be equal to zero. This hypothesis allows us to verify the energy
loss correction on the real data. If the value of p, for which the average bj is zero, is
the same as the real pressure of the tracking gas measured during the measurement,
then we could assume that the energy loss model corresponds to the real data and that
it explains all the shift of Ei.

In the figure 5.5, we can see distributions of bj obtained without any energy cor-
rections (red), with only the optical corrections (green), with only the energy loss
corrections (purple) and with both the optical corrections and the energy loss cor-
rections (blue), using the real value of pressure p = 0.88 bar. The means of these
distributions are 63.6 keV, 35.2 keV, 26 keV and -2.1 keV, respectively. We can see
that the energy corrections move the distribution much closer to zero. This leads us
to the conclusion, that the b parameter can be explained by energy losses of electrons
for the most part. It is also important to note, that one of the corrections on its own
does not shift the distribution of b to zero. It is only their combination which results
in a very low absolute value of average b.

In the figure 5.6a we can see how the distribution of b changes for p different from
the real value of 0.88 bar. Average b equal to zero is reached for p = 0.82 bar. As in the
case of simulation, this value is slightly different from the expected value of 0.88 bar.
Again, there seems to be slight systematic error. In the figure 5.6b we can see how
distribution of the a parameter depends on value of p. In this case, the distribution
does not change with p. This means that when combined, the energy corrections move
both peaks in the spectrum by the same value.

By showing that the average b parameter moves very close to zero after applica-
tion of the energy corrections, we have now validated the energy correction on both
simulated and real data. We have also developed an algorithm, which allows use to in-
clude the corrections into the process of calibration. At this point, we have a complete
framework including efficient data cuts, energy corrections and a method of calibration
parameter extraction. Author’s notes and some code created during the development
process can be found on GitHub [52]. In the future, it will also be updated with new
results. In the last chapter, we will use the created framework to calculate energy
resolutions of individual OMs.
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Figure 5.5: A comparison of distributions of the bj parameter. The red values were
obtained without application of any energy corrections, the green values were obtained
with application of the optical corrections only, the purple values were obtained with
application of energy loss corrections only and the blue values were obtained with
application of both the optical corrections and the energy loss corrections. We can
see that the energy corrections move the distribution much closer to zero. The means
of the red, green, purple and blue distributions are 63.6 keV, 35.2 keV, 26 keV and
-2.1 keV, respectively. We can see that in the first three cases the values are far from
zero, but the combination of both corrections shifts the distribution very close to zero.

(a) (b)

Figure 5.6: a) A relationship between distribution of the b parameter and the pressure
p. We can see that with increasing p b linearly declines. An average b of 0 is reached
for p = 0.82 bar. b) A relationship between distribution of the a parameter and the
pressure p. We can see that the distribution of a does not depend on p.
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Chapter 6

Estimation of SuperNEMO energy
resolution

The main property of OMs is their energy resolution, as it influences sensitivity of
the whole detector. Let us assume that we detect monoenergetic electrons with energy
E. If we had a perfect detector, we would measure a spectrum composed of a single
delta peak at E. A real detector, however, always measures with some uncertainty
caused by different effects such as noise in electronics. This uncertainty smears the
delta peak, and we observe a spectrum in a shape of Normal distribution instead. We
define energy resolution of the detector as

R (E) =
FWHME

E
= 2.355 · σ

E
, (6.1)

where FWHME is full width at half maximum of the Normal distribution and σ is the
standard deviation of the Normal distribution. FWHME grows with

√
E. From that

we get R ∼ 1√
E
, so the resolution is better for higher energies. To compare resolutions,

we need to choose an energy, for which it is calculated. In our case, we will rescale
resolutions to 1 MeV regardless from which peak they were extracted. We can calculate
it by rescaling R (E)

R1MeV (E) =

√
E

1 MeV
R (E) , (6.2)

where R (E) is the resolution at arbitrary energy E. Combining (6.1) and (6.2) we get

R1MeV (E) = 2.355 ·
√

E

1 MeV

σ

E
. (6.3)

We will calculate the energy resolution from the Gaussian fit of the Ei spectrum. For
each module, we first extract calibration parameters aj and bj using the algorithm
described in the previous chapter. With this pair of parameters, we then calculate the
Ei spectrum for a given module using formula (5.2). Finally, we fit the two peaks in the
spectrum with the fitting function described in the chapter 4. From the fit, we obtain
means and standard deviations µ1, µ2, σ1 and σ2. Using formula (6.3) we calculate
resolution at 1 MeV for each peak separately as

R1MeV (µ1) = 2.355 ·
√

µ1

1 MeV

σ

µ1

, R1MeV (µ2) = 2.355 ·
√

µ2

1 MeV

σ

µ2

. (6.4)
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Because we fit the spectrum of Ei, the resolution we get tells us how precisely we are
able to reconstruct the initial energy of electrons. In contrast to that, we could also
fit the spectrum of Ef and extract resolution for the final energy of electrons. The
strength of energy corrections is, however, in reconstruction of the initial energy which
is why we focus on the former. We restrict ourselves to calculating resolutions of the
main wall OMs (excluding the topmost and the bottommost row), as these receive
most exposure and are the most important for the sensitivity of the detector. Because
both R1MeV (µ1) and R1MeV (µ2) are rescaled to 1 MeV, we expect these values to be
approximately equal.

6.1 Simulation

To obtain values with which we could compare energy resolutions extracted from
the real data, we first extracted resolutions from the simulated 207Bi data. In the
simulation, the effect of energy resolution is applied artificially. The electron’s initial
energy Ei is first influenced by the effect of energy losses, as well by the non-uniformity
and non-linearity of the OM. The resulting energy is then smeared by a Gaussian dis-
tribution. The standard deviation of the distribution is chosen as 8% of the energy,
for all main wall OMs. This value is based on OM measurements which were per-
formed before assembly of the SuperNEMO detector. In the figure 6.1 we can see a
comparison of energy resolutions extracted with the use of energy corrections (blue)
and without (red). In the figure 6.2 we can see the same comparison but for the resolu-
tions extracted from the second peak. In these plots, we can notice two things. First,
the resolutions calculated with the use of energy corrections are better than the ones
calculated without them. This tells us that the corrections could improve the precision
of energy reconstruction. We can also notice that the resolutions extracted from the
first peak are less sensitive to the energy corrections, than the ones extracted from the
second. In case of the second peak the improvement due to corrections is 1.1% while
for the first peak it is only 0.5%. Second, the resolutions extracted from the first peak
are better than the ones extracted from the second one. This discrepancy is strange,
as we normalize both resolutions to 1 MeV, so we would expect to arrive to the same
values. The reason behind this has not yet been resolved. A possible explanation could
lie in inclusion of the additive parameter in the fitting function used for the first peak
(see equation (4.18)). The influence of the parameter on the calculated resolutions
should be further studied. Because of this issue, we will focus our attention more on
the energy resolutions extracted from the second peak, as those are more reliable.

6.2 Real data

Energy resolutions extracted from the real data can be seen in the figure 6.3 for the
first peak and in the figure 6.4 for the second peak. In the figure 6.5, we can also see
a map depicting distribution of energy resolutions across both main walls. Again, the
blue energy resolutions were calculated with energy corrections and the red ones were
calculated without them. As in the simulated data, there is the discrepancy between
the first and the second peak. The application of energy corrections again leads to
better energy resolutions, but the improvement is not as significant as in the simulated
data. In the map of energy resolutions (figure 6.5), we can see that we get better
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Figure 6.1: Energy resolutions extracted from the first peak from simulated data.
The blue resolutions were extracted with the use of energy corrections, while the red
resolutions were extracted without them. The mean resolution is 7.6% with corrections
and 8.1% without.

Figure 6.2: Energy resolutions extracted from the second peak from simulated data.
The blue resolutions were extracted with the use of energy corrections, while the red
resolutions were extracted without them. The mean resolution is 8.5% with corrections
and 9.6% without.
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energy resolutions for the Italian side than for the French side. This difference can
be explained by the fact, that several scintillator compositions have been used for the
main wall OMs. In the figure 6.6 we can see a map of different OM compositions.
The purple modules use a scintillator with enhanced composition, which resulted in
better energy resolution during testing. The Italian side contains far more of these
OMs giving us better overall energy resolution.

Probably the most important is the comparison between energy resolutions ex-
tracted from the simulated and from the real data. We would expect the real resolu-
tions to be close to the simulated ones, as the energy smearing applied in the simulation
is based on initial testing of OMs. Based on distributions from figures 6.2 and 6.4, we
get average energy resolution of 8.5 % for the simulated data and 12 % for the real data
(second peak, with corrections). This degradation of energy resolution has not yet been
resolved. One possibility is that OMs deteriorate with time. They were assembled and
tested between 2014 and 2016, so it is possible that their properties have changed since
then due to ageing effect. This hypothesis could potentially be tested by comparing
calibration data from different timeframes, as the first calibration measurements have
already been performed in 2021. Some work on this part has already been done. In
the figure 6.7, we can see evolution of the energy resolution in a span of one and a half
year. There seems to be increasing tendency, although, this result has been achieved
using a less precise method and the problem should be studied in more detail.

There also certainly are possible improvements to the presented analysis. An ex-
ample could be a better extraction of measured charge. Currently, charge measured
by OMs is calculated by a firmware embedded in the electronics. The signal measured
by OMs is sampled in discrete timestamps with a fixed frequency. The firmware then
simply calculates the charge by summing amplitudes measured in timestamps across
the whole signal waveform. This calculation might be negatively affected by the noise
of electronics. It could be replaced by a more precise method, such as waveform fitting.
We would fit the waveform measured by an OM using a suitable function and then cal-
culate the charge based on the integral of this function. Another point of analysis will
be the discrepancy between the energy resolutions extracted from the first and from
the second peak. The influence of the additional C parameter on the first peak fit will
be studied.

In conclusion, we have conducted the first energy resolution analysis which takes
into account both the non-uniformity and non-linearity of OMs as well as the energy
losses of electrons. We have shown that the application of energy corrections can
improve the resolution. The resolutions extracted from the real data were compared
to the ones from simulation. The difference between the average energy resolution
extracted from the simulated and from the real data is 3.5%. This result can be caused
by several factors and will be further studied in the future.
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Figure 6.3: Energy resolutions extracted from the first peak from real data. The blue
resolutions were extracted with the use of energy corrections, while the red resolutions
were extracted without them. The mean resolution is 11% with corrections and 11.2%
without.

Figure 6.4: Energy resolutions extracted from the second peak from real data. The blue
resolutions were extracted with the use of energy corrections, while the red resolutions
were extracted without them. The mean resolution is 12% with corrections and 12.5%
without.
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Figure 6.5: A map of energy resolutions extracted from the second peak for both main
walls. The blank modules are either non-functional or were removed from the data due
to a failed spectrum fit.
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Figure 6.6: A map of OM compositions. Each colour represents different scintillator
composition. During testing, the purple, and green OMs generally had better energy
resolution than the red and blue ones. This explains the fact, that in the calibration
data we observe better energy resolution on the Italian side.

Figure 6.7: Evolution of OM energy resolution with time. The value on the y-axis
represents the ratio between energy resolution measured in 2023 and energy resolution
measured in ideal condition before assembly of the SuperNEMO detector. The energy
resolutions used in this plot were extracted using a simpler method than the one de-
scribed in this work. Courtesy of the SuperNEMO collaboration.
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Conclusions

The goal of this work was to provide a complete algorithm for calibration of indi-
vidual optical modules of the SuperNEMO detector. The first two chapters contain
brief introduction into neutrino physics and summary of different experiments focusing
on the 0νββ-decay followed by description of the SuperNEMO detector, its individ-
ual components and the calibration system. The following chapters focus on different
parts of the calibration process including data cuts, energy corrections, algorithm for
calibration parameter extraction and calculation of energy resolution.

The third chapter deals with calibration data. It first describes different data
formats used within the SuperNEMO experiment, and then proposes a set of data cuts
to select 207Bi electron events from the calibration data. The data cuts mainly take
advantage of the track reconstruction, which allows to precisely verify if the observed
trajectory comes from a calibration source or not. It was shown that the set of data
cuts very efficiently suppresses background, keeping only 0.56 background events at
901 signal events per OM per hour. The end of the chapter describes the problem
of significant gain variation which can be observed in few OMs and shows a simple
correction, which can be used to reduce the effect of the gain variation on the measured
spectrum.

The fourth chapter focuses on different effects affecting the measured energy spec-
trum of 207Bi electrons. First, it briefly describes the effects causing non-linearity and
geometrical non-uniformity of OM response. It describes a group of so-called optical
corrections, which are designed to model and correct these effects. Most of the chapter
is dedicated to the model of 207Bi electron energy losses in the detector. A phenomeno-
logical energy loss model, which was developed during previous work, is introduced.
It is shown that this model has several flaws such as high number of fitting param-
eters as well their lack of physical interpretation. These flaws lead to a need for a
physics-based model. A new model based on the Bethe-Bloch formula for electrons is
proposed. The model uses only one free parameter: pressure of the gas in the tracker.
This is a significant improvement when compared to the five parameters of the phe-
nomenological model. The validity of the new model can also be easily verified, as the
tracking gas pressure is a measured observable. At the end of the chapter, the new
model is applied to the measured energy spectrum from simulation with the assump-
tion that if the model is valid then the peaks in the corrected energy spectrum should
be at the theoretical energies of 482, 976 and 1682 keV. This is achieved for the choice
of p = (0.921± 0.006) bar. For comparison, the pressure used in the simulation is
0.89 bar. The small error of 0.03 bar shows that the model provides good description
of the energy losses.

The fifth chapter combines the data cuts and energy corrections from the previous
chapters into a complete algorithm for calibration parameter extraction. It is described
that the energy corrections are applied to each electron individually, which complicates
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the calibration process. These complications lead to a problem of numerical optimiza-
tion, which is then solved using the Downhill simplex method. The calibration algo-
rithm is then used to study the dependence of extracted calibration parameters on the
choice of pressure for the energy loss correction. It is shown that the shift parameter
b gets very close to zero, when both of the energy corrections are applied. This again
proved the validity of the energy corrections.

The last chapter discusses energy resolution of the SuperNEMO detector. The
OMs are calibrated using the developed algorithm and based on the calibrated energy
spectra, the energy resolution of each OM is calculated. This calculation is done both
with and without energy corrections and for both real and simulated data. It is shown
that the application of energy corrections results in better energy resolution. The
average energy resolution obtained with energy corrections is 8.5% at 1 MeV for the
simulated data and 12% at 1 MeV for the real data. A possible reason for this difference
could be ageing of the OMs. The causes of the worse energy resolution observed in the
real data will be studied in more detail in the future work.

Author’s notes and some code created during this work can be found on GitHub
[52]. In the future, it will also be updated with newer results. The results of this work
were presented at multiple meetings of the SuperNEMO collaboration, as well as at
the poster session of TAUP 2023 conference.
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42. KŘIŽÁK, T. Development of an algorithm for linear particle track reconstruction
in SuperNEMO detector. 2023. Available also from: http://hdl.handle.net/
10467/111453. Theses. FNSPE CTU in Prague.

43. OLEKSANDROVYCHYANKOVSKYI, V. Refinement of the SuperNEMO demon-
strator geometry based on 207Bi decay measurements. 2023. Theses. Taras Shevchenko
National University of Kyiv, Faculty of Physics.

44. PIN, A. Recherche de la nature du neutrino via la décroissance double bêta sans
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