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Abstract

The swift advancement of miniature devices with GNSS positioning and communication
capabilities has spurred their widespread utilization in biological research. Specifically,
the real-time or near-real-time tracking of wild animals enables a thorough examination
of their behavior within their natural environment and throughout migration patterns.
This study focuses on localizing birds cataloged in the Research Institute for Nature and
Forest (INBO) database BOP RODENT. This localization approach employs the prob-
ability hypothesis density (PHD) filter in its standard configuration and an adapted
version tailored for individual bird tracking. The primary motivations for choosing this
filter include its ability to localize multiple targets simultaneously, resilience to external
noise and false positives, and independence from prior knowledge of target quantity.
The original contributions of this research are twofold: proposing a PHD-based method
for bird tracking and enhancing the basic PHD filter to facilitate track formation.

Keywords bird tracking, real-time animal behavior monitoring, multi-target tracking,
Probability Hypothesis Density filter, Random Finite Set, trajectories

Abstrakt

Rychlý vývoj miniaturńıch zař́ızeńı s polohovaćımi a komunikačńımi schopnostmi GNSS
podńıtil jejich široké využit́ı v biologickém výzkumu. Konkrétně sledováńı volně žij́ıćıch
živočich̊u v reálném čase nebo téměř v reálném čase umožňuje d̊ukladně zkoumat jejich
chováńı v jejich přirozeném prostřed́ı a v pr̊uběhu migrace. Tato studie se zaměřuje
na lokalizaci pták̊u katalogizovaných v databázi BOP RODENT Research Institute for
Nature and Forest (INBO). Tento lokalizačńı př́ıstup využ́ıvá probability hypothesis den-
sity (PHD) filtr ve standardńı konfiguraci a jeho upravenou verzi přizp̊usobenou pro sle-
dováńı jednotlivých pták̊u. Mezi hlavńı d̊uvody pro volbu tohoto filtru patř́ı jeho schop-
nost lokalizovat v́ıce ćıl̊u současně, odolnost v̊uči vněǰśımu šumu a falešně pozitivńım
výsledk̊um a nezávislost na předchoźı znalosti množstv́ı ćıl̊u. Původńı př́ınosy tohoto
výzkumu jsou dvoj́ı: návrh metody založené na PHD pro sledováńı pták̊u a vylepšeńı
základńıho filtru PHD pro usnadněńı tvorby trajektoríı.

Kĺıčová slova sledováńı pták̊u, sledováńı chováńı zv́ı̌rat v reálném čase, sledováńı
v́ıce ćıl̊u, Probability Hypothesis Density filter, náhodná konečná množina, trajektorie
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Introduction

In recent years, the rapid evolution of miniature devices equipped with Global Navigation
Satellite System (GNSS) positioning and communication capabilities has revolutionized
the field of biological research. These advancements have facilitated the widespread
adoption of such technologies, particularly in wildlife tracking and behavioral analysis.
By enabling real-time or near-real-time tracking of wild animals, researchers can gain
unprecedented insights into their behaviors within their natural habitats and elucidate
intricate migration patterns.

This study is centered around the localization of avian species documented in the ex-
tensive database maintained by the Research Institute for Nature and Forest (INBO),
specifically focusing on birds cataloged within the BOP RODENT dataset. Leveraging
the capabilities of GNSS-enabled devices, we aim to track the movements of individ-
ual birds with precision and accuracy. To achieve this goal, we employ a localization
approach based on the probability hypothesis density (PHD) filter in its standard con-
figuration and through a tailored adaptation designed explicitly for avian tracking.

The selection of the PHD filter as our primary localization method is motivated
by several key advantages it offers. Firstly, the PHD filter is adept at localizing multiple
targets simultaneously, making it well-suited for scenarios involving the tracking of nu-
merous individuals within a population of birds. Its inherent resilience to external noise
and false positives also ensures robust performance in real-world environments where
data integrity may be compromised. Furthermore, the PHD filter operates indepen-
dently of prior knowledge regarding the number of targets present, providing flexibility
and adaptability to dynamic tracking scenarios.

This research makes two significant contributions to the field of avian tracking.
Firstly, we propose a novel PHD-based methodology tailored explicitly for the tracking
of birds, leveraging the unique characteristics of avian movement patterns and behaviors.
Secondly, we enhance the fundamental PHD filter framework to facilitate the formation
of coherent bird tracks, thereby improving the accuracy and reliability of localization
results.

1



2 Introduction



Chapter 1

Single Target Tracking

This chapter will contain a short theoretical background to single target tracking. We
will start with the state-space model, the Constant Velocity Model, the Bayes theorem
theory, a description of the Kalman filter, and brief information about clutter. All
the informations in this chaper are based on [1, 2, 3, 4, 5, 6, 7, 8].

1.1 State-space model

A state-space model is a mathematical framework used to describe the behavior of a dy-
namic system over time. It consists of two main components: the state equation and
the observation equation. When only considering the discrete space and discrete time,
the state-space model with latent variable xt and observed output yt can be represented
as follows

xt = f(xt−1, wt), (1.1)
yt = g(xt, vt), (1.2)

where g and f represent known functions and vt and wt are independent zero-centered
noise variables.

We assume that a state evolves in some way over time. We assume this. It evolves ac-
cording to the Markov model, that is, its current state at time t depends only on the pre-
vious state at time t − 1 and potentially some other external variable, which will be
ignored in the sequel. The state cannot be directly observed. The target state use
the hidden process model for their evolution described by Equation (1.1). However, it
can be inferred from the observed measurements, which we denote by yt. These measure-
ments are generated at each time instant t by measurement model described by Equation
1.2. The state evolution is then shown in Figure 1.1.

State in state-space model can be represented as vector. Discrete time instants
equally spaced apart are denoted by t = 1, 2, 3, ... An instance of time can be represented
by a unit, such as one second. In our case, we will use days as the unit of time. (For
more information refer to Chapter 3)

3



4 Single Target Tracking

Figure 1.1 The Evolution of the target state and its role in generating the measurement.

As an example of a state-space model, consider the following linear state-space model

xt = Atxt−1 + wt, (1.3)
yt = Htxt + vt, (1.4)

where the matrices At and Ht are matrices of the appropriate dimension. Furthermore,
vt is iid in time and obeys a Gaussian distribution. Similarly, wt is iid and it is modeled
by a Gaussian distribution.

To simplify our analysis in this thesis, we will assume that our models’ matrices A
and H are not time-varying. This means that these matrices remain constant at each
moment in time. Therefore, we can rewrite our linear model accordingly

xt = Axt−1 + wt, (1.5)
yt = Hxt + vt, (1.6)

1.1.1 Constant Velocity Model
The constant velocity model describes the position of the moving target on a N-dimensional
space. For our case and other applications, we restrict ourselves to 2-dimensional space.
Each object has 2 components x1,t, x2,t that correspond to a position on the 2D sur-
face.For example x1,t corresponds to latitude and x2,t corresponds to longitude. These
two components are modeled from the state at time t−1 and the corresponding velocity
in a given direction rx1,t and rx2,t. We denote the time difference between t and t − 1
by ∆t. In our case, the velocities will correspond to a random walk. AA random walk is
a simple model that allows for the dynamic modeling of many time-varying phenomena
without precise knowledge of the evolution model. Formulas for state evolutions are

x1,t = x1,t−1 + rx1,t∆t + vx1,t, (1.7)
x2,t = x2,t−1 + rx2,t∆t + vx2,t, (1.8)
rx1,t = rx1,t−1 + vrx1 ,t, (1.9)
rx2,t = rx2,t−1 + vrx2 ,t. (1.10)



Gaussian distribution 5

Using the matrix notation
x1,t

x2,t

rx1,t

rx2,t


︸ ︷︷ ︸

xt

=


1 0 ∆t 0
0 1 0 ∆t

0 0 1 0
0 0 0 1


︸ ︷︷ ︸

At


x1,t−1
x2,t−1
rx1,t−1
rx2,t−1


︸ ︷︷ ︸

xt−1

+


vx1,t

vx2,t

vrx1 ,t

vrx2 ,t


︸ ︷︷ ︸

vt

,

where

• xt is the state variable at time t.

• At is the state transition matrix.

• xt−1 is the state variable at time t − 1.

• vt is the process noise covariance matrix.

Assume that there are normaly distributed measurements in the same coordinate space.
Let us denote them y1,t and y2,t. We can model these measurements as follows

y1,t = x1,t + wx1,t, (1.11)
y2,t = x2,t + wx2,t, (1.12)

using the matrix notation[
y1,t

y2,t

]
︸ ︷︷ ︸

yt

=
[
1 0 0 0
0 1 0 0

]
︸ ︷︷ ︸

Ht

[
x1,t

x2,t

]
︸ ︷︷ ︸

xt

+
[
wx1,t

wx2,t

]
︸ ︷︷ ︸

wt

,

where

• yt is the vector representing measurements for longtitude and latitude t.

• Ht is the observation matrix at time t, which maps the state space to the measurement

• xt is the state variable at time t.

• wt is the measurement noise covariance matrix.

1.2 Gaussian distribution

The Gaussian distribution, also known as the normal distribution, is a probability distri-
bution that is symmetric around its mean, forming a bell-shaped curve. It is character-
ized by two parameters: the mean (µ), which represents the center of the distribution,
and the variance (σ2) which determines the spread or dispersion of the distribution. We
define Gaussian distribution of one real variable X is defined as follows

f(x) = 1
σ

√
2π

e− (x−µ)2

2σ2 , µ ∈ R, σ > 0.

Notation:
X ∼ N (µ, σ2).
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1.2.1 Gaussian distribution in multiple dimensions
The joint probability density distribution of a vector X consisting of N random variables
with mean vector µX and covariance matrix Σ is given by a multivariate Gaussian
distribution described as follows

f(x) = 1
(2π)N/2det(Σ)

e(− 1
2 (x−µx)T Σ−1(x−µx)).

1.2.2 Example: Multi-dimensional Gaussian distribution
Assume the position on the globe. We only consider two-dimensional positions (e.g.,
longitude, latitude)and height is ignored. For example, the latitude and longitude
of the CTU FIT building is µ = (50.105060, 14.389683). If we use a measurement
covariance matrix

Σ =
[
0.0000001 0

0 0.0000001

]
we get a bivariate Gaussian distribution that describes how our instrumental measure-
ments will be distributed. That is, most of the measurements will lie close to the mean,
while the more distant measurements will be rather improbable. This is the principle
behind the GPS-based localization. The Gaussian distribution is shown in Figure 1.2.

Figure 1.2 Top view of Gaussian distribution centered on CTU FIT

1.3 Bayesian updating

Bayesian updating is a fundamental concept in probability theory that describes how
to update the probability of a hypothesis based on new evidence. It is named after
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Thomas Bayes, an 18th-century British mathematician. This procedure involves com-
bining the original probability of a hypothesis with new evidence to obtain an updated
probability.

1.3.1 Bayes’ theorem
Bayes’ theorem is a key element in the fields of statistics, machine learning, and other
fields where there is a need to quantify uncertainty and make estimates of probabilities
based on available data. The exact wording is as follows

P (A|B) = P (B|A)P (A)
P (B) , P (B) > 0,

where

• P (A|B) is the conditional probability of event A occurring given that B is true,

• P (A) and P (B) are the probabilities of events A and B.

For our purposes, we use Bayes’ theorem for state estimation. The estimator is repre-
sented by a prior distribution p(θ) that is updated by new data obeying a model f(x|θ).
The result is a posterior distribution p(θ|x).The following formulation is preferable.

π(θ|x) = f(x|θ)π(θ)
f(x) , f(x) > 0.

where

• π(θ|x) is the posterior conditional density of θ

• π(θ) is the prior density

• f(x|θ) is the model or likelihood of the data

• f(x) is the marginal density of X also known as the evidence.

In this case, the denominator (marginal density of X) is a normalizing factor independent
of the estimated θ. The denominator is obtained by integrating the numerator

f(x) =
∫

f(x|θ)p(θ)dθ.

For simplicity is written by proportionality

π(θ|x) ∝ f(x|θ)π(θ).

This can be equivalently written using the constant c

π(θ|x) = c · f(x|θ)π(θ).
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1.3.2 Bayesian estimation of state-space models
The Bayesian approach to estimating state space models based on Equation (1.1) and
Equation (1.2) can be rewritten in terms of conditional probabilities using pdfs

xt|xt−1 ∼ π(xt|xt−1) (1.13)
yt|xt ∼ p(yt|xt) (1.14)

Bayesian estimation runs in two steps. Prediction and update. Denoting all previous
values {y1, ..., yt} as Yt, and the prior pdf of xt−1 as π(xt|Yt−1) we can define this steps
as follows

(i) Prediction using the Chapman-Kolmogorov equation:

π(xt|Yt−1) =
∫

π(xt|xt−1)π(xt−1|Yt−1)dxt−1. (1.15)

(ii) Update - using the Bayes’ theorem 1.3.1

π(xt|Yt) = π(xt|Yt−1)p(yt|xt)∫
π(xt|Yt−1)p(yt|xt)dxt

. (1.16)

1.4 Kalman Filter

The Kalman filter is one of the most used algorithms for sequential estimation. Its main
function is to make estimates of hidden variables based on imprecise measurements while
predicting the system’s future state using past estimates. It has become an important
tool in many other areas, including navigation systems, target tracking, control systems,
computer graphics, financial analysis, biomedicine, and more. The Kalman filter is
a linear model. This is perfectly satisfactory since we will only work with the linear
model in this thesis. From Section 1.1 we have the following model

xt = Atxt−1 + wt, wt ∼ N (0, Q), (1.17)
yt = Htxt + vt, vt ∼ N (0, R). (1.18)

Using normality, we can rewrite the equations in this form

xt ∼ N (Axt−1, Q), (1.19)
yt ∼ N (Hxt, R). (1.20)

From now on we mark all variables after the prediction step with a superscript “-” and
variables after the correction (update) step with a superscript “+”. Let us denote

π(xt|y0:t−1) = N (x+
t−1, P +

t−1). (1.21)

The Kalman filter works in two steps. The first step is to predict the state and the second
is to update the predicted state with the incoming measurement. We use the first
equation of the state model for prediction and the second equation of the state model
for update.
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1.4.1 Prediction step
The whole point of the prediction step is to estimate the current state by estimating
the previous state using a state evolution model. That is, we solve for the evolution
of the state xt−1 → xt. We use the estimate from the last posterior, which is now our
prior for the next time step. We apply the state evolution model to this estimate.

π(xt|y0:t−1) =
∫

p(xt|xt−1) π(xt−1|y0:t−1) dxt−1. (1.22)

Since we multiply the two normal distributions and marginalize, we get the normal
distribution again N (x−

t , P −
t ) with hyperparameters

x−
t = Ax+

t−1, (1.23)
P −

t = AP +
t−1A⊺ + Q. (1.24)

1.4.2 Update step
Update step uses the Bayes’ theorem to correct the predicted state with new data yt,

π(xt|y0:t) ∝ (yt|xt)π(xt|y0:t−1). (1.25)

We now rewrite the model in the form of an exponential distribution. The Bayesian
update then corresponds to the sum of the hyperparameters and the sufficient statistic.
The model after the above modifications looks as follows

f(yt|xt) ∝ exp
{

−1
2(yt − Hxt)⊺R−1(yt − Hxt)

}

= exp
{

Tr
(

−1
2

[
−1
xt

] [
−1
xt

]⊺

︸ ︷︷ ︸
η

[
y⊺t
H⊺

]
R−1

[
y⊺t
H⊺

]⊺

︸ ︷︷ ︸
T (yt)

)}

and prior distribution looks as follows

π(xt|y0:t−1) ∝ exp
{

−1
2(xt − x−

t )⊺(P −
t )−1(xt − x−

t )
}

= exp
{

Tr
(

−1
2

[
−1
xt

] [
−1
xt

]⊺

︸ ︷︷ ︸
η

[
(x−

t )⊺
I

]
(P −

t )−1
[
(x−

t )⊺
I

]⊺

︸ ︷︷ ︸
ξt

)}
,

where I is identity matrices of the appropriate dimension. The Bayesian update corre-
sponds to the sum of the hyperparameters and the sufficient statistic.

ξt = ξt−1 + T (yt)

=
[
(x−

t )⊺(P −
t )−1x−

t + y⊺t R−1yt, (x−
t )⊺(P −

t )−1 + y⊺t R−1H
(P −

t )−1(x−
t )⊺ + H⊺R−1yt, (P −

t )−1 + H⊺R−1H

]
.
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The posterior distribution hyperparameters are defined as follows

P +
t = (ξt;[2,2])−1

=
[
(P −

t )−1 + H⊺R−1H
]−1

= (I − KtH)P −
t

x+
t = (ξt;[2,2])−1ξt;[2,1]

= P +
t

[
(P −

t )−1(x−
t )⊺ + H⊺R−1yt

]
= x−

t + P +
t H⊺R−1(yt − Hx−

t )

where

Kt = P −
t H⊺(R + HP −

t H⊺) (1.26)

is a Kalman gain. Increasing the value of the Kalman gain amplifies the impact of a mea-
surement during the update process. Greater Kalman gain makes the filter more sensi-
tive, but it becomes less capable of filtering out noise. For easy understanding we will
expand the Kalman filter equations as follows

ŷ−
t = Hx−

t , prediction of measurement (1.27)
νt = yt − ŷ−

t , innovation,prediction error yt (1.28)
St = HP −

t H⊺ + R, covariance innovation νt (1.29)
Kt = P −

t H⊺S−1
t , Kalman gain (1.30)

x+
t = x̂−

t + Ktνt, posterior state estimation xt (1.31)
P +

t = (I − KtH)P −
t . posterior covariance (1.32)

1.5 The data association problem in target tracking

The Kalman filter works with the assumption that it has just one measurement to up-
date at any given time. In the real world, this may not be the case. We may get no
measurements or, conversely, several measurements, some of which are false. So, we
get a situation where one target has generated multiple measurements. In the context
of this paper, we restrict ourselves to the case where each target could only generate
one measurement, and all other measurements are either from another target or fake
measurements.

1.5.1 Clutter
Clutter are false, spurious measurements. These false measurements can distort the mea-
surement from the actual target. That is why clutter must be filtered out. Examples
of clutter can be storm clouds, signal reflections, animals, the sea, or some other object
we are not tracking.
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1.5.2 Poisson distribution
The Poisson distribution is a useful tool for determining the probability of an event
happening a certain number of times. The Poisson distribution in the target tracking
domain serves as a model for the nonnegative numbers of targets, false alerts (clutter),
or similar phenomena. Formula for Poisson distribution

f(x) = λx

x! e−λ, λ > 0, λ = E(X) = V ar(X) (1.33)

where

• X is the discrete random variable

• x is the number of occurrences

• λ is equal to the expected value of x when that is also equal to its variance.

Notation:
X ∼ Po(λ).

1.5.3 Amount of clutter
We denote the clutter intensity as λ and the Poisson rate as Λ = λ · V , where V stands
for volume of the area. The amount of clutter will be ∼ Po(Λ) = Po(λ ·V ). To estimate
the amount of clutter, we must know the area over which our target moves.

For example we take an area of 1000 × 1000 Its volume will be 1 000 000. In Figure
1.3 we can see results for λ = 0.01 and λ = 0.0001.

(a) λ = 0.01 (b) λ = 0.0001

Figure 1.3 Clutter amount based on λ
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1.5.4 Mahalanobis distance
Consider a scenario where a sample vector X ∈ Rm originates from a distribution P
characterized by a mean vector µ and a covariance matrix Σ. It is worth noting that
the vector µ, represented as µ = (µ1, . . . , µm), encapsulates the mean values of the m
variables of P. Subsequently, we denote the jth sample vector as Xj = (xj1, . . . , xjm),
where each xji represents one of the m elements. The multivariate Mahalanobis distance
(dM ) of the sample vector concerning µ is formulated as

dM (Xj , µ) =
√

(Xj − µ)⊺Σ−1(Xj − µ). (1.34)

When dealing with two sample vectors originating from the same distribution P, the mul-
tivariate Mahalanobis distance is a dissimilarity metric for assessing interpoint separa-
tion. Consequently, between X1 and X2, it is calculated as:

dM (X1, X2) =
√

(X1, X2)⊺Σ−1(X1, X2). (1.35)

This distance metric operates by initially projecting the data onto a principal component
space where the axes are independent, then rescaling to unit variance. Consequently,
the Mahalanobis distance becomes analogous to a standard Euclidean distance within
the transformed space [9].

1.5.5 Gating
In target tracking, gating refers to a technique used to associate detections or mea-
surements with existing targets. It involves spatially constraining potential detections
to a region where it is plausible for the target to be located based on its predicted
position and uncertainty. This helps mitigate the risk of associating spurious measure-
ments with targets, leading to track divergence or association errors. In our application,
the validation region is the elliptical region

ν(t, γ) = {y : [(y − ŷt|t−1))⊺S(t)−1(y − ŷt|t−1))] ≤ γ}. (1.36)

Where γ is the gate threshold, S(t) is the covariance of the innovation corresponding
to the true measurement given by Equation (1.29).

1.5.6 Misdetections
Another problem we face is misdetection. This means that the sensor has not detected
the tracked object and thus we shave no measurements to update our model. We assume
that detection and misdetection are independent at each time step and target state. Then
the model for this event is Bernoulli model that reads.

P (δ) =
{

pD if δ = 1,

1 − pD if δ = 0,
(1.37)

where pD is the probability of detection, δ = 1 indicates target detected and δ = 0 target
non-detected.For further use in our work, we will use pD = 0.95, which corresponds
to the probability of aircraft detection.
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Target Measurement
ŷ ∅
ŷ y∗

1
ŷ y∗

2
ŷ y∗

3

Table 1.1 Table showing possible data association for single target

1.5.7 Data association - single target
The problem with single target tracking is encountered when multiple measurements
occur in the validation region (the area where we expect to measure). Among all these
measurements, there is one real one from our target (if there was no misdetection), and
the others are clutter. The situation where we have multiple measurements in a single
validation region is shown in Figure 1.4. The validation region is in the form of an ellipse
centered at the measurement’s prediction ŷ. All measurements in the validation region
(y∗

1, y∗
2, y∗

3) can come from the target. All possible assignments for each measurement
can be seen in Table 1.1.

Figure 1.4 Multiple measurements in validation raegion for predicted ŷ

1.5.8 Data association - multiple targets
For multi-target tracking, data association is a much more complex problem. If multiple
targets are in the near distance and their validation regions intersect, the situation
depicted in Figure 1.5 is that one measurement can be assigned to multiple targets. At
the same time, each target has multiple measurements only in its own validation regions.
In this situation, we do not know whether to associate the measurement y∗

1 to the target
ŷ1 or the target ŷ2. Here, we have many options for assigning measurements to a target.
All possible assignments for each measurement can be seen in Table 1.2.
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Figure 1.5 Two targets ŷ1 and ŷ2 with measurements in their validation regions with
measurement y∗

1 in the intersection of validation regions

Target ŷ1 measurement Target ŷ2 measurement
∅ ∅
∅ y∗

1
∅ y∗

4
∅ y∗

5
y∗

1 ∅
y∗

1 y∗
4

y∗
1 y∗

5
y∗

2 ∅
y∗

2 y∗
1

y∗
2 y∗

4
y∗

2 y∗
5

y∗
3 ∅

y∗
3 y∗

1
y∗

3 y∗
4

y∗
3 y∗

5

Table 1.2 Table showing possible data association for multiple targets



Chapter 2

Multi Target Tracking

So far, we have worked with a single target only. Now, we are moving into a situation
where we have more than one target. In many cases, the real number of targets is not
known a priori from a sensor’s measurements. There can be one or multiple targets.
There may also be a situation where there is no target. If we know that there are no
targets in our observation area and we still get an echo from the sensor, we call these
measurements clutter 1.5.1.

The biggest problem with multi-target tracking is the data association Section 1.5.8.
This problem is compounded by the fact that we do not know the number of targets we
have in the observation area. Therefore, assigning the correct measurement to the proper
target is difficult task.

Another thing to watch out for is knowing where the target might come from. Es-
sentially, it is assumed that the targets may occur either on the edge of the sensor’s
field of view (inbound targets) or they may arise in specific locations within the field
of view. On the other hand, we have to take into account the possibility of the target
disappearing in our area (the target reaches its final destination).

The main content of this chapter will be the introduction of the Probability Hypoth-
esis Density filter, which will be subsequently modified and used for experiments.

All the information in this chapter are based on [10, 11, 12, 13, 14, 15, 16].

2.1 Random Finite set

This section will explain what RFS is to help us better understand the rest of the text.
A RFS is a finite, set with random cardinality of random unique random variables. We
can denote it as x = {x1, ...xn}, where n may be different at each time step.

In RFS, we do not care about the order of elements. Each element can occur in the set
once. We denote the empty RF by ∅. The number of elements in RFS x will be denoted
by |x|. For instance x = {a, b, c} ⇒ |x| = 3.

Let us denote by M(t) the number of targets at time step t and assume that at time
step t−1 the states of the targets were as follows xt−1,1, xt−1,2, ..., xt−1,M(t−1) ∈ X , where
X is the state space. In the next time step, some targets may disappear, some new ones
may appear, and the current targets evolve to their new states. This gives M(t) a new set

15
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of targets xt,1, xt,2, ..., xt,M(t). For these targets, at time t, we receive N(t) measurements
yt,1, yt,2, ..., yt,N(t) ∈ Y from the radar. Without individual identification, it is challenging
to attribute specific measurements to particular targets. It is also not clear whether
the measurements belong to any of the targets at all and are the measurements are false
measurements (Clutter). The goal of multiple-target tracking is to estimate the number
of targets and assign the correct measurements to them. In an ideal scenario where
only true measurements from actual targets are received, without any interference from
clutter or false detections. It may still be difficult or impossible to determine which
measurement corresponds to which specific target. See Section 1.5.8. Since we do not
care about the order, we can represent the states of the targets and measurements at time
t as follows

Xt = {xt,1, xt,2, ..., xt,M(t)} ∈ F(X ), (2.1)
Yt = {yt,1, yt,2, ..., yt,N(t)} ∈ F(Y), (2.2)

where F(X ) and F(Y) are the respective collections of all finite subsets of X and Y.
In the random finite set formulation, the approach considers the target set Xt and

the measurement set Yt as representations of the multiple-target state and multiple-
target observation, respectively. This perspective allows for the multiple-target tracking
issue to be framed as a filtering problem, where the state space (F(X )) and observation
space (F(Y)) both represent multiple targets.

Targets can die, survive, and new targets can be born from time step t − 1 to time
step t. The set of all targets that have survived to time step t merged with the set of all
newly born targets forms the set Xt.

The set of surviving targets is obtained by computing for all xt−1 ∈ Xt−1 their RFS
St|t−1(xt−1) such that it either contains {xt} with probability pS,t if the target survives
or it contains {∅} with probability 1 − pS,t(xt−1) if the target dies. The set of newly
born targets Γt is created by initializing new targets at locations where the target may
be born (e.g., airports or the boundaries of the area we are monitoring). As opposed
to the single target Kalman filter, which creates one target in the first time step and
ignores other potential births. Thus, we write the target Xt as

Xt =
[ ⋃

ζ∈Xt−1

St|t−1(ζ)
]

∪ Γt. (2.3)

The RFS model for the measurement, which accounts for detection uncertainty and
clutter, is described as follows. Each target xt ∈ Xt is either detected with probability
pD,t(xt) or not detected with probability 1 − pD,t(xt). At each time step t, each target
xt ∈ Xt generates an RFS

Θt(xt),
which takes the values {yt} if the target was detected or {∅} if the target was undetected.
In addition to the original measurements from the targets, the sensor may receive a set
of false 0.measurements or clutter Kt. Thus, the set of all measurements obtained by
the sensor can be referred to as the union of the true measurements and the clutter, i.e.,

Yt = Kt ∪
[ ⋃

x∈Xt

Θt(x)
]
. (2.4)
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2.2 Bayes filter for multiple-targets

In earlier chapters, we have already explained the principles of using Bayes’ theorem for
single-target tracking. We will show how Bayes’ theorem can help us in multiple-target
tracking. Let πt(·|Y1,t) denote the multiple-target posterior density for RFS variables.
The optimal multiple-target Bayesian filter propagates the multiple-target posterior den-
sity conditional on all measurements up to time step t. We then obtain the following
recursion

πt|t−1(Xt|Y1:t−1) =
∫

ft|t−1(Xt|X)πt−1(X|Y1:t−1)µs(dX), (2.5)

πt(Xt|Y1:t) =
gt(Yt|Xt)πt|t−1(Xt|Y1:t−1)∫

gt(Yt|X)πt|t−1(X|Y1:t−1)µs(dX) , (2.6)

where µs is an appropriate reference measure on F(X ). The function gt(Yt|Xt) is global
density of the set of measurements Y given by set of target states X. This refers
to the total probability density governing the association between the measurements
in Y and the parameters in X.

2.3 Intensity

Intensity is also known in the literature about tracking as probability hypothesis density.
For an RFS with probability distribution P , its first-order moment is a nonnegative func-
tion υ on X , referred to as the intensity. This intensity function satisfies the condition
for each region S ∈ X , ∫

|X ∩ S|P (dX) =
∫

s
υ(x)dx. (2.7)

After integrating upsilon over any region S, we get the expected number of elements
of X in the region S. The expected total number of elements is given by the total
mass N̂ =

∫
υ(x)dx. To estimate the elements from X, we can use the local maxima

of the υ intensity since these are the points from X with the highest local concentration
of the expected number of elements. The most straightforward approach is to round and
choose the resulting number of highest peaks from the intensity.

2.4 The Probability Hypothesis Density filter

Because the Bayes filter for multiple targets demands significant computational re-
sources, the PHD filter was devised to mitigate this challenge. In contrast to the Bayes
filter, which evolves the posterior density of multiple targets, the PHD filter advances
the posterior intensity, representing the first-order statistical moment of the posterior
density. An analogy can be drawn to a constant-gain Kalman filter, which advances
the mean values of the single-target state. Before we go any further, let’s introduce
the three assumptions we have for our PHD filter.
▶ Assumption 1. Each target evolves and generates observations independently of one
another.
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▶ Assumption 2. Clutter is Poisson and independent of target-originated measurements.
▶ Assumption 3. The predicted multiple-target RFS is Poisson.
Next, let us define some variables to work with.

• γt(·) intensity of the birth RFS at time t;

• pS,t(ζ) probability that a target still exists at time t given that its previous state is ζ;

• pD,t(x)probability of detection given a state x at time t;

• κt(·) intensity of clutter RFS Kt at time t;

Under the assumptions defined above, we can show that the posterior intensity can be
propagated in time using PHD recursion as follows:

υt|t−1(x) =
∫

pS,t(ζ)ft|t−1(x|ζ)υt−1(ζ)dζ, (2.8)

υt(x) = [1 − pD,t(x)]υt|t−1(x) +
∑
y∈Yt

pD,t(x)gt(y|x)υt|t−1(x)
κt(y) +

∫
pD,t(ξ)gt(y|ξ)υt|t−1(ξ) . (2.9)

Since the posterior intensity is a function on the single-target state space X , the PHD fil-
ter completely avoids combinatorial computations from the unknown assignment of mea-
surements to their respective targets, as can be seen in Equation (2.8) and Equation (2.9)
For this reason, the PHD filter requires much less computational power than the com-
putation in Equation (2.5) and Equation (2.6), which works over F(X ).

2.5 Linear Gaussian multiple-target model

The linear Gaussian filter requires three additional assumptions to those already stated
in Section 2.4.
▶ Assumption 4. Each target adheres to a linear Gaussian dynamical model, while
the sensor operates under a linear Gaussian measurement model, implying that

ft|t−1(x|ζ) = N (x; Ft−1ζ, Qt−1), (2.10)
gt(y|x) = N (y; Htx, Rt). (2.11)

Here, N (·; m, P ) denotes a Gaussian density with mean m and covariance P . Ft−1
represents the state transition matrix, Qt−1 signifies the process noise covariance, Ht

stands for the observation matrix, and Rt denotes the observation noise covariance.
▶ Assumption 5. The survival and detection probabilities are independent of the state,
meaning that

pS,t(x) = pS,t, (2.12)
pD,t(x) = pD,t. (2.13)

▶ Assumption 6. The intensities of the birth RFSs are represented as Gaussian mixtures
in the following manner

γt(x) =
Jγ,t∑
i=1

w
(i)
γ,tN (x; m

(i)
γ,t, P

(i)
γ,t), (2.14)
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where Jγ,t, w
(i)
γ,t, m

(i)
γ,t, P

(i)
γ,t , i = 1, ..., Jγ,t, represent the given model parameters defining

the shape of the birth intensity.

▶ Remark 2.1. In Assumption 6, m
(i)
γ,t, i = 1, ..., Jγ,t denote the peaks of the spontaneous

birth intensity in Equation (2.14). These locations represent areas with the highest local
concentrations of expected spontaneous births. For instance, in general target tracking
applications, these are the air bases, airports, boundaries of the sensor’s field of view
etc. In our application, we consider bird nesting sites to be the following locations.
The covariance matrix P

(i)
γ,t determines the spread of the birth intensity around each

peak m
(i)
γ,t. The weight w

(i)
γ,t signifies the expected number of new targets originating

from m
(i)
γ,t.

Now, with all the necessary components at hand, we can proceed to derive the recursion
for the linear Gaussian PHD model.

2.6 The Gaussian mixture PHD recursion

Similarly to the Kalman filter derived in Section 1.4, the Gaussian mixture PHD filter
operates in two subsequent steps. First, the previous posterior information is predicted
for the current time step. Then, the prediction is updated by new observations.

2.6.1 Predict step

Suppose that at time t−1, the posterior intensity υt−1(x) is a Gaussian mixture expressed
as

υt−1(x) =
Jt−1∑
i=1

w
(i)
t−1N (x; m

(i)
t−1, P

(i)
t−1). (2.15)

Then, the predicted intensity for time t is also a Gaussian mixture and is provided by

υt|t−1(x) = υS,t|t−1(x) + γt(x), (2.16)

where γt(x) is given by Equation (2.14). In particular,

υS,t|t−1(x) = pS,t(x)
Jt−1∑
j=1

w
(j)
t−1N (x; m

(j)
S,t|t−1, p

(j)
S,t|t−1), (2.17)

m
(j)
S,t|t−1 = Ft−1m

(j)
t−1, (2.18)

p
(j)
S,t|t−1 = Qt−1 + Ft−1P

(j)
t−1F ⊺

t−1. (2.19)

The prediction step of the Gaussian mixture PHD filter described in this section is
depicted in Algorithm 1.
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Algorithm 1: Pseudocode for the Gaussian mixture PHD filter - Predict step
given : {w

(i)
t−1, m

(i)
t−1, P

(i)
t−1}Jt−1

i=1
step 1.(prediction for birth targets)

1 i = 0
2 for j = 1, ..., Jγ,t do
3 i := i + 1
4 w

(i)
t|t−1 = w

(j)
t−1

5 m
(i)
t|t−1 = m

(j)
γ,t

6 P
(i)
t|t−1 = P

(j)
γ,t

step 2.(prediction for existing targets)
7 for j = 1, ..., Jt−1 do
8 i := i + 1
9 w

(i)
t|t−1 = pS,tw

(j)
t−1

10 m
(i)
t|t−1 = Ft−1m

(j)
t−1

11 P
(i)
t|t−1 = Qt−1 + Ft−1P

(j)
t−1F ⊺

t−1

12 Jt|t−1 = i

output: {w
(i)
t|t−1, m

(i)
t|t−1, P

(i)
t|t−1}Jt|t−1

i=1

2.6.2 Update step
Predicted insensity υt|t−1(x) in time t is Gaussian mixture of the form

υt|t−1(x) =
Jt−1∑
i=1

w
(i)
t−1N (x; m

(i)
t−1, P

(i)
t−1). (2.20)

The resulting intensity at time t consists of two parts. The intensity from the prediction
step υt|t−1(x), which must be multiplied by the probability that the target was not
detected (1 − pD,t) and the sum of the intensities υD,t(x, y) over all measurements.
Intensity υD,t(x, y) for one measurement y ∈ Yt is calculated as follows

υD,t(x, y) =
Jt|t−1∑
i=1

w
(i)
t (y)N (x; m

(i)
t|t (y), P

(i)
t|t ). (2.21)

If we break down all the components we get

w
(i)
t (y) =

pD,tw
(i)
t|t−1q

(i)
t (y)

κt(y) + pD,t + ∑Jt|t−1
j=1 w

(i)
t|t−1q

(i)
t

, (2.22)

m
(i)
t|t (y) = m

(i)
t|t−1 + K

(i)
t (y − Htm

(i)
t|t−1), (2.23)

P
(i)
t|t =

[
I − K

(i)
t Ht

]
P

(i)
t|t−1, (2.24)

K
(i)
t = P

(i)
t|t−1H⊺

t (HtP
(i)
t|t−1H⊺

t + Rt)−1. (2.25)
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The equation to obtain the resulting intensity will therefore be written in the form

υt(x) = (1 − pD,t)υt|t−1(x) +
∑
y∈Y

υD,t(x, y). (2.26)

The entire Update step is shown in Algorithm 2.

Algorithm 2: Pseudocode for the Gaussian mixture PHD filter - Update step

given : {w
(i)
t|t−1, m

(i)
t|t−1, P

(i)
t|t−1}Jt|t−1

i=1 , and the measurement set Yt

step 1.(construction of PHD components)
1 for j = 1, ..., Jt|t−1 do
2 η

(j)
t|t−1 = Htm

(j)
t|t−1

3 S
(j)
t = Rt + HtP

(j)
t|t−1H⊺

t

4 K
(j)
t = P

(j)
t|t−1H⊺

t [S(j)
t ]−1

5 P
(j)
t|t = [I − K

(j)
t Ht]P (j)

t|t−1

step 2.(update)
6 for j = 1, ..., Jt|t−1 do
7 w

(j)
t = (1 − pD,t)w(j)

t|t−1

8 m
(j)
t = m

(j)
t|t−1

9 P
(j)
t = P

(j)
t|t−1

10 l := 0
11 foreach y ∈ Y do
12 l := l + 1
13 for j = 1, ..., Jt|t−1 do
14 w

(lJt|t−1+j)
t = pD,tw

(j)
t|t−1N (y; η

(j)
t|t−1S

(j)
t )

15 m
(lJt|t−1+j)
t = m

(j)
t|t−1 + K

(j)
t (y − η

(j)
t|t−1)

16 P
(lJt|t−1+j)
t = P

(j)
t|t

17 for j = 1, ..., Jt|t−1 do

18 w
(lJt|t−1+j)
t := w

(lJt|t−1+j)
t

κt(y)+
∑Jt|t−1

i=1

w
(lJt|t−1+j)
t

19 Jt = lJt|t−1 + Jt|t−1

output: {w
(i)
t , m

(i)
t , P

(i)
t }Jt

i=1.

2.6.3 Merge
The Gaussian mixture PHD filter faces computational challenges due to the escalating
number of Gaussian components over time. Specifically, at time t, the filter necessitates

(Jt−1 + Jγ,t)(1 + |Zt|) = O(Kt−1|Zt|) (2.27)
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Gaussian components to represent υt, where Jt−1 denotes the number of components
of υt−1. Consequently, the number of components in the posterior intensities grows
indefinitely.

To address this issue, a straightforward pruning procedure can be employed to reduce
the number of Gaussian components propagated to the next time step. This involves
obtaining a good approximation to the Gaussian mixture posterior intensity

υt(x) =
Jt∑

i=1
w

(i)
t N (x; m

(i)
t , P

(i)
t ) (2.28)

by truncating components with weak weights w
(i)
t . This pruning can be achieved by

discarding components with weights below a preset threshold or retaining only certain
components with the strongest weights. Additionally, some Gaussian components may
be sufficiently close to each other that a single Gaussian can accurately approximate
them. Consequently, these components can be merged into one. These concepts form
the basis of the simple heuristic pruning algorithm depicted in Algorithm 3.

Algorithm 3: Pseudocode for the Gaussian mixture PHD filter - Prunning and
Merging

given : {w
(i)
t , m

(i)
t , P

(i)
t }Jt

i=1, a truncation threshold T , a merging threshold U ,
and a maximum allowable number of Gaussians terms Jmax.
Set ℓ = 0, and I = {i = 1, ..., Jt|w(i)

t > T}.
1 repeat
2 ℓ := ℓ + 1
3 j := argmax

i∈I
(w(i)

t )

4 L :=
{

i ∈ I

∣∣∣∣∣(m(i)
t − m

(j)
t )⊺(P (i)

t )−1(m(i)
t − m

(j)
t ) ≤ U

}
5 w̃t

(ℓ) = ∑
i∈L

wt
(i)

6 m̃t
(ℓ) = 1

w̃t
(ℓ)

∑
i∈L

wt
(i)xt

(i)

7 P̃t
(ℓ) = 1

w̃t
(ℓ)

∑
i∈L

wt
(i)(P (i)

t + (m(ℓ)
t − m

(i)
t )(m(ℓ)

t − m
(i)
t )⊺)

8 I := I \ L

9 until I = ∅;
10 if ℓ > Jmax then
11 replace {w̃t

(i), m̃t
(i), P̃t

(i)}ℓ
i=1 by those of the Jmax Gaussians with largests

weights.
output: {w̃t

(i), m̃t
(i), P̃t

(i)}ℓ
i=1 as pruned Gaussian components.

2.6.4 State extraction
In the Gaussian mixture representation of the posterior intensity υt, extraction of multiple-
target state estimates becomes straightforward as the means of the constituent Gaussian



Problem of trajectories 23

components serve as local maxima of υt, provided they are reasonably well separated. It
is important to note that after prunning Algorithm 3, closely spaced Gaussian compo-
nents have been merged. Since the height of each peak is influenced by both weight and
covariance, selecting the N̂t highest peaks of might yield state estimates corresponding
to Gaussians with weak weights. This outcome is undesirable as it implies a small ex-
pected number of targets associated with these peaks, despite their large magnitudes.
A preferable approach is to choose the means of Gaussians with weights exceeding a cer-
tain threshold T plot. This state estimation method for the Gaussian mixture PHD
filter is summarized in Algorithm 4.

Algorithm 4: Pseudocode for the Gaussian mixture PHD filter - State extrac-
tion

given : {w
(i)
t , m

(i)
t , P

(i)
t }Jt

i=1, and T plot a selecting threshold
Set X̂t = ∅.

1 for i = 1, ..., Jt do
2 if w

(i)
t > T plot then

3 for j = 1, ..., round(w(i)
t ) do

4 update X̂t := [X̂t, m
(i)
t ]

output: X̂t as the multi-target state estimate.

2.7 Problem of trajectories

The PHD filter is integral to the assumed density filtering framework, propagating a spe-
cific type of multitarget density across prediction and update steps. The PHD filter
operates on a Poisson multitarget density, where the set’s cardinality follows a Pois-
son distribution, and its elements, for each cardinality, are independent and identically
distributed (iid).

One of the main advantages of the PHD filter is its low computational burden,
as it circumvents the measurement-to-target association problem. However, they exhibit
relatively lower performance in certain scenarios and do not generate tracks, representing
sequences of target states belonging to the same target.

Attempts to address track building for PHD filter were made by introducing labels
to the target states. Nevertheless, resulting labeled Poisson and labeled iid cluster
densities encounter complete confusion in the label-to-target association, rendering them
ineffective for track formation.

This method led to problems when merging the individual components into one.
A measurement history was introduced to tackle this challenge, allowing two targets
with different labels to be merged. More detailed information about the solution will
be described in the next section. Another method is to use the trajectory PHD filter,
which is described in [17].
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Chapter 3

Real life data

In this chapter, we will discuss the data used for testing my algorithm described in Sec-
tion 4. The algorithm’s performance is often evaluated on artificially generated data,
which can show how well it estimates the state variables. Nevertheless, the theoretical
properties of the PHD filter are well known. In this thesis, we limit ourselves to real-
world data describing The movement of birds, whether its speed, direction, position
in latitude and longitude, identification of the individual, and information regarding
the measuring equipment [18].

3.1 Introduction to the dataset

For this thesis, the dataset BOP RODENT was chosen. This dataset focuses on rodent-
specialized birds of prey (Circus, Asio, Buteo) in Flanders (Belgium). This dataset
is a collection of animal tracking data published by the Research Institute for Nature
and Forest (INBO). Animal tracking data were collected by LifeWatch GPS tracking
network for large birds [19]. The tracking devices used are developed by Ornitela [20].
One of these tracking devices can be seen in Figure 3.1, which is attached to the back
of a herring gull.

This dataset was chosen for this thesis precisely because it contains the complete
trajectories of individuals, which is exactly what we will need for the experiments.

3.2 Data collection

GPS trackers equipped with tri-axial accelerometers have revolutionized bird behavior
and migration pattern monitoring since 2013. The UvA-BiTS GPS trackers, employed
on over 240 birds, transmit data to ground stations, which then relay the informa-
tion to the UvA-BiTS data platform developed by LifeWatch NL. Ground stations are
strategically positioned near breeding colonies or based on sightings of tagged birds,
such as birds of prey that do not breed in colonies. However, migration data retrieval is
contingent upon the birds’ return, limiting the accessibility of such data.

In recent years, the advent of 3G GSM transmitters has offered a more advanced so-
lution, especially for medium-sized bird species. These transmitters, exemplified by Or-
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Figure 3.1 The UvA-BiTS GPS tracker attached on the herring gull. (Source: [21])

nitela’s OrniTrack transmitters since 2019, obviate the need for ground stations by di-
rectly uploading data to a central server via the telecom network. Real-time data trans-
mission capabilities are particularly advantageous during migration or when birds do
not revisit their capture site.

Data collected by the trackers include the bird’s position, altitude, air temperature,
and activity level measured through accelerometers. UvA-BiTS trackers store data lo-
cally until the transmission is possible, especially during migration periods. Researchers
can remotely configure measurement settings for each tracker using ground station soft-
ware, with the data eventually uploaded to a central database at IBED. Ornitela trackers,
on the other hand, transmit data directly to Ornitela’s central database, accessible via
the OrniTrack Control panel for registered users.

3.3 Dataset description

The study has been operational since 2020. The dataset contains records of 35 individ-
uals of 5 bird species. This dataset was collected to observe bird habits and behavior
during migration. The dataset contains a total of 2316561 records. The bird individual
that has the fewest records has only 4217 records. On the other hand, the individ-
ual with the most records has 248190 records. A large number of records may not be
an advantage in our application. Because birds were also observed outside their migra-
tion, a bird stays in its place of occurrence for most of the observation time. The dataset
contains 30 columns containing information about the position, speed, direction of move-
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ment, altitude, sensor battery, unique individual identifiers, and more. All columns and
their data type can be seen in Figure 3.2.3.2. For the purpose of this thesis, we re-

Figure 3.2 All the dataset columns.

strict ourselves to the columns timestamp, location-long, location-lat, individual-taxon-
canonical-name, and tag-local-identifier. The timestamp column contains information
about the time at which the individual’s measurement was recorded. The format of this
column is YYYY-MM-DD HH:MM:SS. Location-long and location-lat contain location
measurements of the individual. The individual-taxon-canonical-name column contains
the taxon canonical name of the bird. In this dataset, we have only 5 species of birds,
namely Circus pygargus, Circus aeruginosus, Asio flammeus, Circus cyaneus, and Buteo
buteo. Photos of individual birds can be seen in Figure 3.3. The last column contains
a unique identifier for each individual, allowing us to distinguish them.

For each individual, the measurements come at different intervals. One individual
has measurements every seven minutes, and another individual every hour. Due to this
fact, it was necessary to preprocess the data.

3.4 Data preprocessing

During the data preprocessing, several tasks had to be performed to make the dataset
more straightforward and usable for our purposes. The first step during preprocessing
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(a) (b) (c)

(d) (e)

Figure 3.3 Photos of all birds listed in the dataset. (a) Circus pygargus. (Source: [22]) (b)
Circus aeruginosus. (Source: [23]) (c) Asio flammeus. (Source: [24]) (d) Circus cyaneus.

(Source: [25]) (e) Buteo buteo. (Source: [26])

was to remove redundant columns, thus reducing the total amount of data to be stored.
Further preprocessing is more challenging, so we will discuss it in separate sections.

3.4.1 tag-local-identifier column
This column contains a unique six-digit number that represents the individual. To make
these numbers more straightforward to navigate, a new artificial column bird names
was created, where each individual was assigned a name. The assignment of each name
to each identifier can be seen in Table 3.1.

3.4.2 timestamp column
As mentioned in the previous text, we receive measurements from each individual at
different intervals. The individual with the most significant time spacing has a few days
between measurements. Therefore, all records in the dataset are grouped by one day. If
an individual received any number of measurements during a day, we only use the last
one closest to the next day. This change will not affect the results because the algorithm
will work with the fact that every two steps are separated by one day apart. By day,
we mean 24 hours. ¡ For this modification, a new column time step was created that
contains the time index when the measurement will be used for the algorithm. As shown
in Figure 3.4, at time step t = 1080, the algorithm gets seven measurements from seven
individuals. We can also see that all data come from an interval of one day.
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tag-local-identifier bird names tag-local-identifier bird names
193185 Charlie 210205 Greta
193683 Baby 210206 Ava
193949 Coco 210207 Jenny
193980 Clive 210208 Pikachu
200085 Max 211048 Opal
200570 Kiwi 211049 Sunny
202039 Jasper 211050 Bella
202040 Mango 211051 Ozzy
202041 Buddy 211052 Teal
202042 Daisy 212925 Penny
202056 Pepper 212928 Paloma
203242 Tweety 213911 Susan
210196 Skittles 213913 Chloe
210198 Phoenix 224079 Tori
210200 Aja 224080 Wyatt
210202 Cher 224081 Yara
210204 Ted 224082 Noah
230618 Barry

Table 3.1 mapping of tag-local-identifier to bird names

3.4.3 Removal of immobile birds
As part of the data preprocessing, for our purposes, we decided to remove eight individ-
uals who had not moved a significant distance over the entire time period. This distance
was set to 50 km to suppress unnecessary creation of new targets for a bird that isn’t
going anywhere anyway. For example, Daisy and Pepper were removed. Their movement
was not large enough, as shown in Figure 3.5.

Finally, the entire dataset was sorted by the time step column to get the order
in which we want our algorithm’s measurements to come in. After all previous modifi-
cations, the resulting dataset is shown in Figure 3.6.

3.5 Trajectories of birds

As already mentioned, each individual has the path that they took during migration.
Some have a longer one, and some have a shorter one. In Figure 3.7, we show all
the birds’ trajectories for the preprocessing dataset. This gives us an idea of the scale
at which we are moving.
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Figure 3.4 All records at time step t = 1080.

(a) (b)

Figure 3.5 Data for two of eight removed individuals. The area depicted is 46 × 46 km
in size. (a) Daisy, (b) Pepper
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Figure 3.6 Final dataset after all the data preprocesing.

Figure 3.7 Trajectories for all individuals after data processing.
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Chapter 4

Implementation

In this chapter, we will examine the actual implementation of the PHD filter. First,
we explain the Gaussian class that represents a single potential target. Next, we de-
scribe the entire run of the PHD filter. In the last section, we will look at the actual
implementation of the PHD filter and all of its methods needed for proper functionality.

4.1 Gaussian class

The Gaussian class represents a potential target. To represent only the Gaussian distri-
bution, we would only need two parameters. The parameter m is the mean of the Gaus-
sian (in our case, the vector [longitude, latitude, longitude velocity, latitude velocity])
and the matrix P (in our case, with size 4x4). For use in the PHD filter, we will add
additional variables to make it easier to work with the filter itself later.

4.2 PHD class

This whole class represents the algorithm described in Section 2.6. Now, let us look
at the individual parameters. The parameter targets is a list containing the individual
instance of the Gaussian class, i.e., it represents a Gaussian mixture. The parameter
sources contains a list of all the places where the target can be born. In our case, these
will be the nesting sites. The parameters A, H, R, and Q are matrices from the Kalman
filter presented in Section 1.4.Ps and Pd represent survival and detection probability,
respectively. The default value for the survival probability is 0.99, and the detection
probability is 0.98. The parameter lam is for the clutter intensity, and T is the prun-
ing threshold. U is the merging threshold. The T plot is the threshold for visualizing
a given target (any target with a weight of at least T plot will be shown in the visualiza-
tion). The label counter parameter numbers the target with a unique value, allowing us
to track its trajectory. The gamma parameter determines the maximum Mahalanobis
distance from the measurement to the target to pass the gate of the filter. measurements
are all measurements that have passed through the Gate. The w th denotes the min-
imum required weight of the target to create a new trajectory or to add its position
to an existing trajectory created from that target. The trajectories contains all tra-
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class Gaussian():
def __init__(self, w=0, m=[], P=[], label=0, z_history=[], z_history_len=0):

self.w = w # Weight of˜Gaussian
self.m = m # Mean of˜Gaussian
self.P = P # Covariant matrix
self.Eta = None
self.S = None
self.K = None
self.P_new = None
self.w_old = None
self.label = label
self.z_history = z_history
self.z_history_len = z_history_len

Code listing 4.1 Gaussian class

jectories that the filter has created. It is represented by a dictionary, where the key is
the label of the target, and the value is the list of target positions with the given label.
The last parameter is trajectory prune. This parameter tells how many records a given
trajectory must have to be considered valid.

This class represents the entire model for the PHD filter. If we want to work with
it, we must first initialize it. We must specify the matrix F, Q, H, R, and the clutter
intensity lam. We may or may not need to initialize the others because the default
values are sufficient for our many cases.

After initialization, we are ready to start using the filter. The standard filter, as men-
tioned earlier, runs in two steps. Predict and Update. We have modified PHD filter, and
so we have four steps. Predict, Gate, Update, MergeLabels. We will show each of them
separately. The overall run of the algorithm looks like this.

4.2.1 Predict
The first step of the algorithm is the prediction step. This step consists of two parts. One
produces a prediction for any previous target. This part is described by Equations (2.17),
(2.18), (2.19). In the second part, the algorithm initializes new instances of the Gaussian
class. In other words, at each location where we expect a new target to be created, we
initialize one target with a low weight, a reasonable covariance matrix, and a new label.

4.2.2 Gate
Right after the prediction function is the Gating function. This function takes as a pa-
rameter a list of all measurements for a given time step from the sensor, regardless
of where it is located. Then, the function iterates over all the targets and finds all
measurements with a Mahalanobis distance shorter than the gamma parameter. This
measurements are then used in the Update step.
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class PHD():
def __init__(self, targets=[], sources=[], A=[], Q=[], H=[], R=[],

Ps=0.99, Pd=0.98, lam=0, U=4, T=1.e-6, T_plot=0.5,
gamma=9.2, w_th=0.5, trajectory_prune=10):

self.targets = targets
self.sources = sources
self.A = A
self.H = H
self.R = R
self.Q = Q
self.Ps = Ps
self.Pd = Pd
self.lam = lam
self.T = T
self.U = math.sqrt(U)
self.T_plot = T_plot
self.label_counter = 1
self.gamma = gamma
self.measurements = set()
self.w_th = w_th
self.trajectories = defaultdict(list)
self.trajectory_prune = trajectory_prune

Code listing 4.2 PHD class

PHDFilter = PHD(sources=sources, F=F, Q=Q, H=H, R=R, lam=lam)

Code listing 4.3 Initialization of PHD filter.

PHDFilter.predict(cov=cov)
PHDFilter.gate(measurements=measurements)
PHDFilter.update()
PHDFilter.mergeLabels()

Code listing 4.4 One run of PHD filter at time t.
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def predict(self, cov):
# part one
for target in self.targets:

target.w = self.Ps * target.w
target.m = self.A @ target.m
target.P = self.Q

+ self.A @ target.P @ self.A.T
# part two
for source_spot in self.sources:

self.targets.append(
Gaussian(w=0.2,

m=deepcopy(source_spot),
P=cov,
label=self.label_counter))

self.label_counter += 1

Code listing 4.5 Prediction function

def gate(self, measurements):
self.measurements.clear()
for target in self.targets:

for z in measurements:
d = mahalanobis(z, self.H @ target.m,

np.linalg.inv(self.H @ target.P @ self.H.T + self.R))
if d <= self.gamma:

self.measurements.add(z)

Code listing 4.6 Gating function
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4.2.3 Update
This is the most important function of the whole algorithm. This part consists of three
parts. In the first part, we precompute all the auxiliary matrices. The details of these
matrices are described by Formulas (1.27), (1.29), (1.30), (1.32). The second part is
an update of all current targets in case of a misdetection. This is the case where all mea-
surements are clutter. The third part is the actual updating of the individual components
by measurement. It is important to note that each measurement updates all components
of the prediction step. This increases the number of components exponentially.

For this reason, the Merge function will be followed, which merges components
with too much weight and prunes components with low weight.Maintaining each com-
ponent’s current measurement history is essential to this implementation. We will need
this history in the mergeLabels function. With this history, we can decide if two dif-
ferent components with different labels can come from the same target. It is essential
to set the length of the measurement history correctly. If the history is too long, many
components with different labels will be in the same position. This will increase our
computational complexity considerably. If the history is too short, trajectory informa-
tion may be lost. This implementation uses a history of 2 measurements because it is
the ideal compromise between computational power and results.

4.2.4 Merge
This function in the classical PHD filter merges all components within a certain distance
from each other and thus can very likely come from the same target. In our modified
PHD filter, this function is made more difficult because we use labels for individual com-
ponents. This assumes that each component with a different label comes from a different
target. Therefore, we can only target components close enough to each other and have
the same label. Thus, we only target components that can come from the same target.

4.2.5 Merge Labels
As described above, the Merge function only merges components with the same label.
This could lead to an exponential increase in the number of components, which needs
to be avoided. That is why the Merge labels function was created. This function merges
all components that are close enough to each other and have the same history of assigned
measurements. We look at the last two measurements that led to the current state of this
component. Then, all targets need to be assigned a unique label. Two components could
have had the same label after the Update step but were not close enough to be matched
together. After all these, a component will contribute to the trajectories if it has a specific
weight given by the w th parameter.
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def update(self):
# part one
for target in self.targets:

target.Eta = deepcopy(self.H @ target.m)
target.S = deepcopy(self.R + self.H @ target.P @ self.H.T)
target.K = deepcopy(target.P @ self.H.T @ np.linalg.inv(target.S))
target.P_new = deepcopy((np.eye(target.K.shape[0]) - target.K @ self.H)

@ target.P)

# part two
for target in self.targets:

target.w_old = target.w
target.w = (1 - self.Pd) * target.w

# part three
targets_copy = deepcopy(self.targets)
for z in self.measurements:

new_targets = []
sum_weight = 0
z = np.array(z)
for target in targets_copy:

new_target_w = self.Pd * target.w_old *
mvn.pdf(z, target.Eta.flatten(), target.S)

new_target_m = deepcopy(target.m + target.K @ (z - target.Eta))
new_targets.append(

Gaussian(w=new_target_w,
m=new_target_m,
P=target.P_new,
label=target.label,
z_history=deepcopy(target.z_history),
z_history_len=target.z_history_len))

sum_weight += new_target_w

for new_target in new_targets:
new_target.w = new_target.w / (self.lam + sum_weight)
if new_target.z_history_len == 2:

new_target.z_history.pop(0)
new_target.z_history_len -= 1

new_target.z_history.append(z)
new_target.z_history_len += 1

self.targets.extend(deepcopy(new_targets))

Code listing 4.7 Update function
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I = deepcopy(self.targets)
I[:] = [x for x in I if x.w > self.T]
self.targets.clear()
while(I != []):

j = max(enumerate(I), key=lambda x: x[1].w)[0]
L = []
for i in range(len(I)):

if (I[i].label == I[j].label)
and
(mahalanobis(I[i].m, I[j].m, np.linalg.inv(I[i].P)) < self.U):
L.append(I[i])

w_L = sum([l.w for l in L])
m_L = deepcopy((1 / w_L) * sum([l.w * l.m for l in L]))
P_L = deepcopy((1 / w_L) * sum([l.w *

(l.P + np.outer((m_L - l.m), (m_L - l.m)).T)
for l in L]))

self.targets.append(
Gaussian(w=w_L,

m=m_L,
P=P_L,
label=I[j].label,
z_history=deepcopy(I[j].z_history),
z_history_len=I[j].z_history_len))

for element in L:
if element in I:

I.remove(element)

Code listing 4.8 Merge function
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def mergeLabels(self):
I = deepcopy(self.targets)
I[:] = [x for x in I if x.w > self.T]
self.targets.clear()
while(I != []):

j = max(enumerate(I), key=lambda x: x[1].w)[0]
L = []
labels = []
for i in range(len(I)):

if all([
np.allclose(x, y) for x, y in zip(I[i].z_history, I[j].z_history)
])
and (mahalanobis(I[i].m, I[j].m, np.linalg.inv(I[i].P)) < self.U):

L.append(I[i])
labels.append(I[i].label)

w_L = sum([l.w for l in L])
m_L = deepcopy((1 / w_L) * sum([l.w * l.m for l in L]))
P_L = deepcopy((1 / w_L) * sum([l.w *

(l.P + np.outer((m_L - l.m), (m_L - l.m)).T)
for l in L]))

labels.sort()
self.targets.append(

Gaussian(w=w_L,
m=m_L,
P=P_L,
label=labels[0],
z_history=deepcopy(I[j].z_history),
z_history_len= I[j].z_history_len))

for element in L:
if element in I:

I.remove(element)

self.targets.sort(key=operator.attrgetter('w'), reverse=True)
unique_labels = []
for target in self.targets:

if target.label not in unique_labels:
unique_labels.append(target.label)

elif target.z_history_len == 2:
target.label = self.label_counter
self.label_counter += 1

for target in self.targets:
if target.w > self.w_th:

self.trajectories[target.label].append(target)

Code listing 4.9 mergelabels function
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Experiments

In this chapter, we will track birds using the algorithm described above. First, we try
tracking only one individual in a clutter-free environment; then, we add clutter. Next, we
try to remove measurements to simulate data loss. Further tests will be conducted over
multiple targets. We will compare the observed trajectory with the actual trajectory.
In a multi-target comparison, we will also test for a clean environment and cluttered
environment.

5.0.1 Generalized optimal sub-pattern assignment metric
Before we get into the actual tests, we need to define the metrics that will be used
to compare the algorithm’s performance.

▶ Definiton 5.1. Let c > 0, 0 < α ≤ 2 and 1 < p < ∞. Let d(x, y) denote a metric for
any x, y ∈ RN and let d(c)(x, y) = min(d(x, y), c) be its cut-off metric. Let Πn be the set
of all permutations of {1, . . . , n} for any n ∈ N and any element π ∈ Πn be a sequence
(π(1), . . . , π(n)). Let X = {x1, . . . , x|X|} and Y = {y1, . . . , y|Y |} be finite subsets of RN .
For |X| ≤ |Y |, the GOSPA metric is defined as

d(c,α)
p (X, Y ) (5.1)

≜

 min
π∈Π|Y |

|X|∑
i=1

d(c)(xi, yπ(i))p + cp

α
(|Y | − |X|)

 1
p

. (5.2)

If |X| > |Y |, d(c,α)
p (X, Y ) ≜ d(c,α)

p (Y, X) (5.3)

The definition is taken from [27].

5.0.2 Parameters for experiments
All experiments are based on the CVM model. We will observe birds on a 2D surface.
The measurements have a period of 24 hours. The state-space model is characterized
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as follows: The matrices A and Q have the following form

A =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

 , Q = q2


∆t 0 ∆t

2 0
0 ∆t 0 ∆t

2
∆t
2 0 ∆t 0
0 ∆t

2 0 ∆t

 ,

where ∆t is the time step. In this case the time step is 24 hours. Parameter q is
a parameter for noise matrix Q. We consider that q = 0.2.

The measurement matrix H and the measurement noise matrix R are in the following
form

H =
[
1 0 0 0
0 1 0 0

]
, R = r2

[
1 0
0 1

]
,

where r is a parameter for measurement noise matrix R, we consider that r = 0.4.
Five main nesting sites were extracted from the data. We will consider these nesting

sites as birthplaces of new targets. These nesting sites are at the following longitudes and
latitudes [1.9068316, 50.1637650]⊺, [2.7221153, 50.9518077]⊺, [3.5380737, 51.2485191]⊺,
[4.4330171, 51.1495518]⊺, and [5.0285015, 50.7659454]⊺. New targets are born at these
positions with a weight w and scatter matrix P . In addition, we describe everything
using the following equations

P =


0.001 0 0 0

0 0.001 0 0
0 0 0.001 0
0 0 0 0.001

 , w = 0.1 (5.4)

m1 =


1.9068316
50.1637650

0
0

 , m2 =


2.7221153
50.9518077

0
0

 , m3 =


3.5380737
51.2485191

0
0

 , (5.5)

m4 =


4.4330171
51.1495518

0
0

 , m5 =


5.0285015
50.7659454

0
0

 . (5.6)

These parameters are used to create new components in the PHD filter.
The parameters for the Merge and MergeLabels functions are as follows: parameter

U specifies the maximum distance between two components that can still be merged into
one. The parameter T is a threshold, and once the weight of the component w falls below
this threshold, the component is removed. The values are the following:

U = 9.2, T = 0.00001. (5.7)

The gating parameter gamma specifies the distance of the gating area. Parameters w th
and trajectory prune are used to set the minimum weight of a component to create
a trajectory and the minimum number of entries in the trajectory to consider it valid.
Their values are the following:

gamma = 9.2, w th = 0.5, trajectory prune = 50. (5.8)
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For the last two parameters, we need to set our survival probability pS and detection
probability pD; their values are following:

pS = 0.99, pD = 0.98. (5.9)

The main performance indicator of our algorithm will be location error, which we
get using GOSPA. To use GOSPA, we need to set three parameters c, p, and alpha. For
our experiments, we choose the parameters as follows

c = 0.5, alpha = 2, p = 2. (5.10)

5.1 Single target

To experiment with one target, we select two individuals on which to run our algorithm.
Namely, Charlie and Ava. Both individuals will make one migration route during their
flight. They will fly to their new nesting site and then back. Charlie’s trajectory length
is 265 steps, and Ava’s trajectory length is 267 steps.

The full trajectory for Ava can be seen in Figure 5.1, and the full trajectory for
Charlie can be seen in Figure 5.2.

Figure 5.1 True trajectory of a bird named Ava.
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Figure 5.2 True trajectory of a bird named Charlie.

5.1.1 STT - clear environment

We perform the first experiment in a clear environment. This means our filter will
only see the true measurements, not the false measurements. The filter will only get
one measurement at a time. This experiment has no random variable; therefore, it
will be evaluated on a single algorithm run. The entire trajectory of the algorithm for
the individual Charlie is shown in Figure 5.3, and the whole trajectory of the algorithm
for Ava is shown in Figure 5.4. A comparison of each location error from GOSPA
is shown in Figure 5.5.

Figure 5.3 Comparison of true and PHD trajectory of Charlie in clear enviroment.
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Figure 5.4 Comparison of true and PHD trajectory of Ava in clear enviroment.

Figure 5.5 location error of Ava and Charlie in clear enviroment.
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5.1.2 STT - cluttered environment
Since we have a dataset containing no false measurements, we must add them artificially.
Clutter will always be generated around the true measurement. In our implementation,
it makes no sense for clutter to exist all over the Earth. The intensity has been set
to Po(6.25). This means that we expect 6.25 clutter points at each point in time. For this
experiment, we perform ten runs on each individual. We do this because the number and
position of clutter are random so that each run may have a different result. Measurements
that the filter receives (true + clutter) are shown in Figure 5.6. True measurements are
red; clutter is grey.

Figure 5.6 Display all measurements received by the the filter at one time step.

Out of ten runs, both individuals had one run with two trajectories instead of one.
The depicted runs for each individual can be seen in Figure 5.7 for Charlie and in Figure
5.8 for Ava.

Figure 5.7 Two trajectories created by the PHD filter for the individual Charlie in cluttered
enviroment.
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In Charlie’s case, the second trajectory occurred after migration. In a place where
the bird had been for a long time, most of the true and false measurements were within
a short distance of each other. Thus, another Gaussian component may have formed
that was not merged with the other component and thus formed another trajectory.
This trajectory could be removed if we increased the trajectory prune parameter.

Figure 5.8 Two trajectories created by the PHD filter for the individual Ava in cluttered
enviroment and detailed view of trajectory.

Ava’s trajectories are both from nesting site to migration destination site. In Figure
5.8, both trajectories are shown. In the first picture, they appear identical. They are
not. In the adjacent image, which shows more detail, it can be seen that the trajectories
are slightly different.

This is due to the clutter. When each component goes for a different measurement,
because this component follows the clutter, it disappears at the point of migration be-
cause it follows the false measurement.

Since there were ten runs of the algorithm, the resulting location error from GOSPA
shown in Figure 5.9 is the average GOSPA over all runs.
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Figure 5.9 location error of Ava and Charlie in a cluttered environment.

5.1.3 STT - missing data

This experiment aims to show how the algorithm copes with missing data. We will
perform this experiment only on the individual Ava. The experiment will be conducted
in both cluttered and clean environments. For this experiment, the T plot parameter
was set to T plot = 0 to see what happens in the background when the filter has no data
to update.

In the resulting trajectory shown in Figure 5.10, you can see precisely where the fil-
ter did not have a measurement, so the trajectory is straight up to the point where
it got a measurement and the Gaussian component had sufficient weight to produce
a trajectory.
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Figure 5.10 Ava’s trajectory with missing measurements in clear enviroment.

At times t = 19 and t = 20, we do not give any measurements to the filter. The evo-
lution of the PHD filter is shown in Figure 5.11. The figure shows the measurements
even when we do not use them to update the PHD filter, and this is just for reference
to see how the actual trajectory goes. The figure shows precisely how, at steps t = 17
and t = 18, when the PHD filter has measurements to update, the target is more or less
at the exact position. When the data is lost, the target stops moving, and its covariance
matrix grows. After the covariance matrix grows so much that the subsequent measure-
ment falls into the validation region, a new target is created at time t = 23. This target
takes over the label from its parent. Subsequently, the targets are relabeled to avoid
having two targets with the same label. This is described in Section 4.2.5. At time
t = 24, the uncertainty of the original target has increased so much that it would also
catch the measurement. Both Gaussian components follow the same target, so they will
be merged into one in the following steps.
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Figure 5.11 Display of the PHD filter run at times t = 17 to t = 24, with missing
measurements in steps between t = 19 and t = 20.

Now, let’s add clutter. After adding clutter, the trajectory evolution does not change.
The same situation is repeated, where the covariance matrix increases. And after receiv-
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ing the measurements, new targets are created. Only here are additional components
with different labels created due to clutter, which are then conjugated together. This
is shown in Figure 5.13. After step t = 24, two components continue. A component with
label 1 and a component with label 19. These two components are later merged, and
only the component with the label 1 remains. This can be seen in Figure 5.14, where
we show a time step t = 25 and a time step t = 72. The resulting trajectory is shown
in Figure 5.12. It is very similar to Figure 5.10. It differs only in minor differences where
the components were affected by clutter.

Figure 5.12 Ava’s trajectory with missing measurements in cluttered enviroment.
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Figure 5.13 Display of the PHD filter run at times t = 17 to t = 24, with missing
measurements in steps between t = 19 and t = 20 in cluttered enviroment.
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Figure 5.14 Display of the PHD filter run at times t = 25 and t = 72.

At the end of the single target tracking section, we compare location error across all
experiments performed in Figure 5.1. The yellow-shaded part is the time interval when
the data was lost.

Figure 5.15 location error of all experiments in the STT section.
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5.2 Multiple-targets

We have now shown that the PHD filter can track a single target. However, many other
algorithms, which are much more straightforward, can do this. Therefore, we will move
on to the Multi-Target Tracking section, in which is the power of the PHD filter.

For all experiments in the MTT section, we will track 6 targets. Namely: Baby,
Skittles, Penny, Charlie, Ava, and Greta. With up to 4 targets at a single time step.
Figure 5.16 depicts all the actual trajectories in a single image.

Figure 5.16 True trajectories of six individuals.

5.2.1 MTT - clear environment

The first experiment is to run the PHD filter in a clean environment. This means the filter
will only receive true measurements and no clutter. Since there is no clutter and thus
all randomness is eliminated, it will be sufficient to perform this experiment only once.
Figure 5.17 shows the result of the experiment. That is, the resulting trajectories of all
six individuals.

First, we map which trajectory comes from which individual. This mapping can be
seen in Table 5.1.
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bird name PHD label
Charlie 1
Baby 36

Skittles 132 + 333
Penny 320
Ava 683

Greta 800

Table 5.1 Mapping of bird names to PHD filter labels.

As shown in Figure 5.17, the PHD filter evaluated seven trajectories instead of six.
The trajectory with label 132 should not have been separate but part of the trajectory
with label 333. The rapid change in bird movement and subsequent stopping caused
this splitting of trajectories. This caused a new component to be created at the point
where the bird stopped, while the previous component continued to move as if the bird
had not stopped.

We can also see that part of Baby’s trajectory is missing. A rapid change in direction
and speed caused this missing part. We would have lost track of him if Baby had
continued to fly. A detailed breakdown of each step can be seen in 5.18.

Figure 5.17 Ressulting trajectories of PHD filter.
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Figure 5.18 A detailed view of the trajectory evolution for the individual Baby when
the trajectory was lost.

The final observation is that Charlie does not have a complete trajectory. This is
due to missing measurements at that point in time. At time t = 107, the data transfer is
interrupted. This interrupt takes a total of 14 time steps. The data transfer is resumed
at time instant t = 121. That is too long for the target to stay alive. This is shown
in more detail in Figure 5.19. The resulting graph of the evolution of localization error
for the six targets is shown in Figure 5.20.
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Figure 5.19 A detailed view of the trajectory evolution for the individual Charlie when
the data was lost.
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Figure 5.20 localization error for six targets in clear enviroment.

5.2.2 MTT - cluttered environment
The following experiment will track the same six targets as the previous experiment,
except that false measurements will be added to the true measurements. Again, we let
the algorithm run ten times because of the randomness of the clutter.

The algorithm always found seven trajectories out of the ten runs, just like in the pre-
vious experiment. This means that for the individual Charlie, the algorithm always pro-
duces two trajectories for us. But in three runs, the PHD filter found nine trajectories.
Let’s look at them separately.

5.2.2.1 First run with nine trajectories

In this experiment, a trajectory split occurred. The trajectory of an individual named
Ava was split into two trajectories. This is shown in Figure 5.21. One trajectory
leads to the migration site (green trajectory), and the other is from the migration site
to the breeding site (blue trajectory). Here, the clutter caused the creation of other
components with different labels. While the component with the original label lost
measurements, the new component with the new label continued.

At the same time, we can see that clutter, on the contrary, helps us track the individ-
ual named Baby (red trajectory). Because of the clutter here, the target was in a slightly
different position, so the subsequent true measurement fell in the validation region.
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Figure 5.21 A representation of all 9 trajectories, containing the trajectory split.

5.2.2.2 Second run with nine trajectories

Here, compared to the previous experiment, there was no trajectory splitting. Figure 5.21
shows that the PHD filter created grey and brown false trajectories. These trajectories
are long enough to satisfy the condition that they must be longer than trajectory prune.
However, here, the trajectories are more than 50 steps long but have not moved any-
where. Thus, new trajectories were created at the locations where the birds stayed
during migration. But once the birds flew back towards its breeding site, these trajecto-
ries did not continue. It could be removed by increasing the trajectory prune parameter
or by some heuristic that removes trajectories shorter than a certain distance. These
false trajectories can be seen marked in red in Figure 5.23.
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Figure 5.22 A representation of all 9 trajectories, containing the false trajectories.

Figure 5.23 Two false trajectories from PHD filter in cluttered enviroment.
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5.2.2.3 Third run with nine trajectories

Except for trim details, this experiment was precisely the same as in Section 5.2.2.2.
Apart from the resulting trajectories being slightly different due to clutter, there was
nothing new. Only the trajectory of the individual named Baby was one measurement
longer. Anyway, it disappeared again after that.

In Figure 5.24 we compare location error for six targets between the clear enviroment
and the cluttered environment. The average location error over all ten runs is taken for
the cluttered environment.

Figure 5.24 Comparison of location error for clear environment and cluttered environment.

5.2.3 MTT- all the birds

In this last experiment, we run our algorithm over the entire dataset. This means there
will be 26 targets in total. The most targets in one time step will be 16. As can be
seen in Figure 5.25, the filter managed to load 30 trajectories. This means that some
of the trajectories were definitely split or were created only at the breeding or migration
site. Compared to Figure 3.7, which contains all the true trajectories, we see that some
trajectories are completely missing. On the other hand, a large number of trajectories
correspond to reality. In Figure 5.26 we can see the final location error of PHD filter
running over targets.
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Figure 5.25 30 trajectories created by the PHD filter.

Figure 5.26 localization error for all targets in clear enviroment.



Conclusion

This final chapter summarizes the work that has been done and suggests possible im-
provements.

Summary of thesis

The objectives of this work were as follows:

1. Shortly describe the studied biological problem.

2. Describe the algorithm used for target tracking. If possible, propose its modifications
for the problem at hand.

3. Develop a working implementation, discuss its performance and qualities.

In Chapter 3, we explained the origin of the problem and its associated data. This
accomplished the first goal. Chapter 1 covered all the theoretical background related
to single target tracking. We have shown the best single-target tracking algorithm -
the Kalman filter. In Chapter 2, we explained the basics and problems with multi-target
tracking. We explained what RFS means and derived the PHD filter, which was used
just for the experiments. We modified the PHD filter itself in Chapter 4. With these
three chapters, we met the second goal of our work. With the last chapter, Chapter 5,
we have also fulfilled the last objective of this thesis by performing experiments for our
modified PHD filter under different conditions.

Future work

As seen in some experiments, modeling bird movement with the CVM model is not
the best. Birds often change their velocity a lot because they stop for a while to rest or
change their direction abruptly. In future work, the PHD filter could be modified not
internally to respect the CVM model but to some other model.
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