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Abstrakt

Multi-target tracking (MTT) hraje kĺıčovou roli v r̊uzných aplikaćıch, od au-
tonomńıch vozidel a robotiky až po dohled a ř́ızeńı letového provozu. Filtry
Joint Probabilistic Data Association (JPDA) se pro MTT široce použ́ıvaj́ı d́ıky
své efektivitě a schopnosti zpracovávat nejistoty při asociaci dat v zašuměném
prostřed́ı. Nicméně filtry JPDA jsou náchylné ke splýváńı stop, kdy se stopy
bĺızkých ćıl̊u maj́ı tendenci slučovat, což vede k nepřesnému odhadu stavu a
potenciálńı ztrátě stopy.

Tato diplomová práce zkoumá problém splýváńı stop ve filtrech JPDA a
navrhuje novou techniku potlačeńı, která kombinuje adaptivńı validačńı ga-
teováńı s prořezáváńım hypotéz. Naše metoda dynamicky upravuje velikost
validačńı oblasti na základě bĺızkosti ćıl̊u a odhadovaných stav̊u, č́ımž efek-
tivně omezuje možnosti asociace a snižuje pravděpodobnost splýváńı stop.
Prostřednictv́ım simulaćı a experiment̊u demonstrujeme efektivitu našeho na-
vrhovaného př́ıstupu při zlepšováńı přesnosti lokalizace a celkového výkonu
sledováńı ve srovnáńı se základńım filtrem JPDA a JPDA* s prořezáváńım.

Ačkoli naše metoda vykazuje významné výhody, vykazuje vyšš́ı mı́ru chybného
detekováńı v extrémńıch scénář́ıch. Diskutujeme potenciálńı vysvětleńı tohoto
omezeńı a navrhujeme směry pro budoućı výzkum, včetně adaptivńıho výběru
parametr̊u gateováńı, alternativńıch strategíı gateováńı a pokročilých technik
správy stop. Řešeńım těchto aspekt̊u se snaž́ıme dále zlepšit robustnost a spo-
lehlivost sledovaćıch systémů založených na JPDA pro zvládáńı komplexńıch
scénář̊u s v́ıce ćıli.

Kĺıčová slova Sledováńı v́ıce ćıl̊u, Joint Probabilistic Data Association
(JPDA), splýváńı stop, adaptivńı validačńı gateováńı, prořezáváńı hypotéz
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Abstract

Multi-target tracking (MTT) plays a crucial role in various applications, from
autonomous vehicles and robotics to surveillance and air traffic control. Joint
Probabilistic Data Association (JPDA) filters have been widely employed for
MTT due to their efficiency and ability to handle data association uncer-
tainties in cluttered environments. However, JPDA filters are susceptible to
track coalescence, where closely spaced target tracks tend to merge, leading
to inaccurate state estimation and potential track loss.

This thesis investigates the problem of track coalescence in JPDA filters and
proposes a novel suppression technique that combines adaptive validation gat-
ing with hypothesis pruning. Our method dynamically adjusts the validation
gate size based on target proximity and estimated states, effectively limiting
association possibilities and reducing the likelihood of track merging. Through
simulations and experiments, we demonstrate the effectiveness of our proposed
approach in improving localization accuracy and overall tracking performance
compared to baseline JPDA and JPDA* with pruning.

While our method shows significant advantages, it exhibits a higher misde-
tection rate in extreme scenarios. We discuss potential explanations for this
limitation and propose directions for future research, including adaptive gating
parameter selection, alternative gating strategies, and advanced track man-
agement techniques. By addressing these aspects, we aim to further enhance
the robustness and reliability of JPDA-based tracking systems for handling
complex multi-target scenarios.

Keywords Multi-target tracking, Joint Probabilistic Data Association
(JPDA), track coalescence, adaptive validation gating, hypothesis pruning
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Introduction

Target tracking is the fundamental process of determining the location and
trajectory of one or more moving objects over time using a series of mea-
surements. It is a complex task that involves the ability to detect potential
targets, separate true targets from false alarms or clutter, associate sequen-
tial measurements to the appropriate targets, and then estimate the target’s
state. Target states typically include kinematic components such as position
and velocity and may encompass other attributes such as size, shape, or clas-
sification.

Target tracking finds widespread and often critical applications in a multitude
of domains:

• Microscopic Applications [1], [2] In microbiology and other scientific
fields, target tracking is used to study the movement and behavior of
cells, bacteria, and other microscopic organisms. This type of tracking
provides crucial information for research on diseases, cell function, and
biological processes. [3] Self-driving vehicles and various robotic systems
depend on target tracking for navigation, obstacle avoidance, and deci-
sion making. The need to perceive and track dynamic elements in the
environment is a core requirement for autonomy.

• Wildlife Monitoring [4] Target tracking is used in ecological studies
and wildlife preservation. Researchers use it to track animal movement
patterns, migration routes, and population densities. These data help
them understand animal behavior, habitat selection, and support con-
servation efforts.

• Aerospace and Defense [5] Essential for air traffic control, missile
guidance systems, early warning systems, and threat assessment within
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Introduction

military operations. Tracking systems are crucial for the safe and effi-
cient navigation of aircrafts and to protect assets from potential danger.

• Surveillance [6] systems rely on target tracking for perimeter security,
crowd monitoring, incident detection, and crime prevention. The ability
to track individuals or vehicles plays an important role in ensuring safety
in both public and private settings.

Filtering algorithms form the foundation of target tracking methodologies.
The word filter in this context originates from its use in signal processing
and electrical engineering. In these fields, a filter is a system or process that
selectively modifies, removes, or enhances specific aspects of a signal. Early
tracking algorithms, particularly the Kalman Filter [7], were built on the
concepts of extracting meaningful information (in this case, the true state
of the target) from noisy and imperfect data. This mirrors the action of an
electrical filter that can separate a desired frequency range from a complex
signal.

Filters are algorithms that dynamically estimate the state of a target in the
presence of uncertainty and noise. These filters work by combining imperfect
sensor measurements with a mathematical model that describes the expected
motion patterns of the target. Here is a brief overview of some of the most
widely used filters in target tracking.

• Kalman Filter (KF) The Kalman Filter [7] is the cornerstone of fil-
tering techniques. It is designed for linear systems and Gaussian noise
distributions. The KF works by recursively updating the target state
estimate and its associated uncertainty.

• Extended Kalman Filter (EKF) Designed for non-linear systems.
The EKF linearizes the non-linear system model around the current
state estimate. This linearization allows us to apply the principles of
the Kalman Filter to the non-linear system.

• Particle Filter (PF) Particle filters [8] excel in handling non-linear and
non-Gaussian scenarios. They approximate the probability distribution
of the target state using a set of weighted samples (particles). PFs are
computationally more intensive, but their flexibility in modeling complex
scenarios makes them invaluable for certain tracking applications.

• Unscented Kalman Filter (UKF) UKF [9] employs deterministic
sampling to handle non-linearities, potentially offering improved accu-
racy over the EKF.
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The choice of a particular filter largely depends on the characteristics of the
system being tracked (for example, its dynamics and noise models) and the
computational resources available for the task.

Target tracking poses numerous challenges that modern algorithms seek to ad-
dress. They must deal with noisy measurements that introduce uncertainty
in the estimation of the state of a target. Errors in sensor readings of a
target’s position, velocity, or other attributes can propagate and degrade the
accuracy of the track. Furthermore, the tracking task is made more difficult by
the presence of clutter in the sensor data. Clutter can originate from back-
ground noise, reflections, natural phenomena, or deliberate countermeasures,
leading to false detections that obfuscate the identification of true targets.
Furthermore, no sensor is perfect, even the most advanced detectors can oc-
casionally miss true targets (resulting in false negatives) or mistake a clutter
source for an actual target (introducing false positives). Such misdetections
can create confusion and disrupt the continuity of a target’s established track.

These challenges underscore the importance of designing robust target track-
ing techniques. Robustness in this context means resilience - the ability of the
tracking system to maintain reliability and generate accurate estimates, even
when faced with the inevitable imperfections of noise, clutter, and potential
misdetections.

While the Kalman Filter and its variants provide a foundation for target
tracking, they can be susceptible to disruption under challenging conditions.
Although they handle noisy measurements and occasional misdetections, clut-
ter represents a significant source of failure. To tackle single-target tracking
in the presence of clutter, algorithms like the following are employed:

• Nearest Neighbor (NN) [10] Chooses the best data association and
prunes all others in a greedy manner to approximate the posterior. This
has the disadvantage of underestimating the posterior uncertainty.

• Probabilistic Data Association (PDA) [11] Instead of selecting only
the most probable association hypothesis, the PDA filter merges all valid
hypotheses into the posterior weighted by their likelihoods. This ap-
proach acknowledges uncertainties better than NN.

• Multiple Hypothesis Tracking (MHT) [12] Maintains multiple po-
tential track hypotheses over time, reducing the risk of track loss due to
misassociations.

For the more complex problem of multi-target tracking, two major families of
robust tracking algorithms exist:

3



Introduction

• Associative Filters These filters rely on establishing associations be-
tween measurements and existing tracks. Notable examples include
MHT, Joint Probabilistic Data Association (JPDA) [13], and
Global Nearest Neighbor (GNN) approaches.

• Random Finite Set (RFS) based filters. A different mathematical
framework that models the set of targets directly. Examples include
Probability Hypothesis Density (PHD) [14].

While the power and sophistication of RFS based filters offer advantages in
complex scenarios, their in-depth discussion falls outside the scope of this
thesis.

A significant challenge unique to multi-target tracking, particularly in the
context of associative filters, is the potential for track coalescence. This phe-
nomenon occurs when multiple targets move in close proximity, causing their
measurements to overlap and become difficult to distinguish. The filter may
converge onto a single track, as shown in Figure 0.1, representing the center of
the group rather than maintaining distinct tracks for each individual target.

Figure 0.1: Coalescence example.

Track coalescence disrupts accurate count and state estimation of targets,
which is crucial for applications that require situational awareness. It be-
comes progressively more pronounced in scenarios with dense clutter and as
the number of closely spaced targets increases.

4



In this thesis, we focus on suppressing the coalescence effect in JPDA filters.
This effect is widely recognized, and numerous diverse techniques have been
developed for its mitigation. The most common are the exact nearest-neighbor
PDA (ENNPDA) [15], its extensions JPDA* and CPDA* [16] based on hy-
pothesis pruning. Some methods make use of the concept of a joint state for
multiple targets. For example, JPDAC [17] or coupled PDA (CPDA) intro-
duced in [16].

In the following chapters, we will dive into the aspects of single-target and
multi-target tracking. In Chapter 3 we discuss the coalescence suppression
approaches specifically for JPDA and present our method. Chapter 4 describes
the experimental validation of the suggested method.
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Chapter 1
Single target tracking

This chapter is dedicated to the topic of single-target tracking (STT). STT
is a critical component in the field of computer vision and radar systems,
focusing on the continuous observation and prediction of a single object’s
position and trajectory over time. This process involves detecting the object
in the initial frame and then estimating its location in subsequent frames,
despite any potential changes in appearance, occlusions, or motion.

Figure 1.1: Tracking scheme.

In target tracking, the goal is to estimate the state of the object based on
previous measurements, as shown in Figure 1.1. The state of an object is
presented by the state vector.

Definition 1 (State vector) Let X be the column vector that contains the
set of parameters describing a system, known as states. We refer to this vector
as the state vector.

For example, the goal is to track an object in freefall along some axis (say x),
as shown in Figure 1.2. The state vector for this case could have the form

7



1. Single target tracking

X = [x, z, vx, vz]⊺, where x and z are the positions of an object and vx, vz
are the corresponding velocities along these axes.

Figure 1.2: Falling
object trajectory.

The state of an object at the time scan t is expressed as
follows.

Xt = FtXt−1 + vt, vt ∼ N (0, Q) (1.1)

where Ft is the state transition matrix (motion model).
The term vt represents process noise, a zero-mean Gaus-
sian term with covariance matrix Q. This noise captures
deviations from the state transition model Ft. These de-
viations can arise not only from external or internal pro-
cess disturbances, but also from real-world complexities
that are often omitted for the simplicity of the model.

Due to practical limitations, the complete state of an
object, denoted by Xt, may not be fully measurable.
Often, only a subset of state variables can be directly
observed through sensors. This observed subset, denoted
by Zt, represents the measurement vector. However, the
measurement process itself is not perfect and introduces

inaccuracies. These inaccuracies arise from sensor limitations, environmental
noise, and other factors. Zt is expressed as

Zt = HtXt + wt, wt ∼ N (0, R) (1.2)

where Ht is a simple matrix (measurement model) that selects the state vari-
ables observed in the measurement and wt represents the uncertainty of the
measurement. Returning to the example with falling object, let us say that we
are only able to observe the coordinates. Then, the matrix H is time invariant
and

H =
[
1 0 0 0
0 1 0 0

]
Zt = HXt + wt

=
[
1 0 0 0
0 1 0 0

]
xt
zt
vxt

vzt

+ wt

=
[
xt
zt

]
+ wt

8



1.1. Motion model

Choosing a matrix Ft is equivalent to choosing a motion model for the process
to model. We will describe it in the next section.

1.1 Motion model

A motion model is a mathematical representation that describes how a target’s
position and other state variables (such as velocity and acceleration) change
over time. It is used to predict the future state of a target based on pre-
vious states, thereby enabling the tracking system to maintain a continuous
estimation of the target’s trajectory.

The choice of an appropriate motion model is crucial as it directly influences
the filter’s ability to track targets with different motion patterns. We will go
through the most common ones.

Constant velocity model

The constant velocity model (CVM) is a simple linear motion model in which
a tracked object travels at a constant speed. In fact, this model can be used
even in cases where the speed varies over time without drastic changes. In this
way, we are ”hiding” some physical properties of the modeled process behind
the noise term for the sake of simplicity, as we mentioned earlier.

Let us say that we track an object in 2D space with axes x and y. We also
model the velocities of this object along the corresponding axes as a random
walk. That is,

xt = xt−1 + vxt−1∆t + wxt ,

yt = yt−1 + vyt−1∆t + wyt ,

vxt = vxt−1 + wvxt
,

vyt = vyt−1 + wvyt
.

Having the state vector X = [x y vx vy]⊺, we can rewrite our process in matrix
form as follows

Xt = FtXt−1 + vt (1.3)
xt
yt
vxt

vyt

 =


1 0 ∆t 0
0 1 0 ∆t

0 0 1 0
0 0 0 1



xt−1
yt−1
vxt−1

vyt−1

+


wxt

wyt

wvxt

wvyt

 . (1.4)

The simplicity of CVM makes it a valuable starting point for tracking systems.
Although it may oversimplify the motion of real-world objects subject to ac-
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1. Single target tracking

celeration or maneuvers, the CVM remains a widely used and often effective
model, especially in scenarios involving short tracking periods or relatively
stable target motion.

Constant acceleration model

The Constant Acceleration Model (CAM) builds upon the CVM by incorpo-
rating a constant acceleration component. This model is suitable for tracking
objects that experience consistent changes in their velocity, such as a vehicle
accelerating along a straight path or an object in freefall.

In the CAM, we extend the state vector to include acceleration components
along the x and y axes, that is, X = [x y vx vy ax ay]⊺.

The process can then be modeled in matrix form as:

Xt = FtXt−1 + vt (1.5)

xt
yt
vxt

vyt

axt

ayt


=



1 0 ∆t 0 1
2∆2

t 0
0 1 0 ∆t 0 1

2∆2
t

0 0 1 0 ∆t 0
0 0 0 1 0 ∆t

0 0 0 0 1 0
0 0 0 0 0 1





xt−1
yt−1
vxt−1

vyt−1

axt−1

ayt−1


+



wxt

wyt

wvxt

wvyt

waxt

wayt


. (1.6)

The CAM offers increased fidelity in modeling object motion compared to the
CVM by accounting for acceleration. It is better suited for tracking scenarios
where objects undergo more dynamic motion patterns. However, the CAM
does introduce additional complexity due to the increased dimensionality of
the state space. The choice between CVM and CAM depends on the expected
motion patterns of the tracked objects and the desired trade-off between ac-
curacy and computational complexity.

1.2 Challenges in target tracking

The accuracy and robustness of target tracking systems are continually chal-
lenged by a confluence of factors that can severely degrade performance.
Among these are the issues of clutter, missed detections, and ambiguities
in data association.

Clutter

One of the most challenging obstacles in target tracking lies in the presence
of clutter. Clutter encompasses a wide range of misleading measurements or
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1.2. Challenges in target tracking

signals that can significantly compromise the ability to reliably identify and
track true targets.

In essence, clutter arises from any sensor detection that does not correspond
to the actual object being tracked. The origins of clutter are numerous and
diverse. Here are some of the most common sources.

• Natural Environment The natural world is a major contributor to
clutter. Reflections of the ground and sea, weather conditions (rain,
snow, fog), vegetation, and even the movement of wildlife or insects can
generate false returns that interfere with target detection.

• Human-Made Environments Urban areas and other human-modified
landscapes often generate substantial clutter. Buildings, bridges, power
lines, and other structures can reflect or obscure sensor signals. Ad-
ditionally, the presence of other vehicles, machinery, or unintentional
emissions from electronic devices can create confusing measurements.

• Sensor Limitations Imperfections inherent in the sensor systems them-
selves lead to clutter. Random electronic noise, sidelobes in radar an-
tennas, or limitations in resolution can introduce spurious detections.

It can significantly disrupt the processes of data association and state estima-
tion within tracking algorithms.

Say, we are tracking some object in some area with volume V , which we split
into N resolution cells. If we assume that the detection processes in different
resolution cells are i.i.d., then the total number of clutter measurements, which
we denote ϕ, is distributed according to the binomial distribution [18]

µ(ϕ) =
(
N

ϕ

)
P ϕclutter(1− Pclutter)

N−ϕ, (1.7)

where Pclutter is the probability of clutter occurrence. When N is large, the
binomial distribution can be approximated with a Gaussian or Poisson distri-
bution. The Poisson approximation is a standard model for clutter in target
tracking. Leaving Λ = NPclutter, the Poisson clutter model becomes [18]

µ(ϕ) = e−Λ Λϕ
ϕ! . (1.8)

In Figure 1.3 we can see the radar simulations for different values of Λ. The
Poisson distribution (1.8) is related to a more complicated construction, the
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1. Single target tracking

Figure 1.3: Measurements received at time t = 50 for different Λ. Dashed
lines represent the tracked object trajectory in previous steps.

Poisson point process (PPP). From PPP we first sample a random number
of points according to (1.8), and then sample the locations of these points
according to a uniform pdf in the tracked region with volume V [18]. This
gives us the framework for modeling clutter for simulations.

Misdetections

The second main challenge in target tracking is that the target may or may
not be detected. In order to reflect this in modeling process we introduce the
detection model, given by Bernoulli random variable:

P (δ) =
{
PD if δ = 1
1− PD if δ = 0

, (1.9)

where PD is probability of detection. The main complication is to accurately
estimate this probability. Usually it is done via domain knowledge, e.g., 0.5
for sonar tracking applications or 0.95 for airplane radar tracking [18]. If PD
is too high, we increase the probability of reporting a false alarm when the
target is not present. Selecting an appropriate trade-off is a critical aspect of
the modeling process.

Unknown data associations

In target tracking, data association, also known as correspondence problem,
refers to the critical task of determining which new measurements collected by
the sensor originate from the targets currently being tracked as shown in Fig-
ure 1.4. This process becomes particularly complex in multi-target scenarios
where multiple potential measurement-to-track pairings exist. The presence
of clutter significantly complicates this challenge, as the tracking system must
now also discriminate between genuine target detections and spurious mea-
surements.
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1.2. Challenges in target tracking

Figure 1.4: All possible data association for two tracks and 5 received mea-
surements. Line thickness is proportional to likelihood of measurement being
produced by the target.

Clutter introduces a high degree of uncertainty into the data association pro-
cess. False measurements compete with valid detections generated by true
targets. Incorrectly assigning a clutter measurement to an existing track can
lead to track contamination, where erroneous information corrupts the target
state estimate. On the contrary, mistaking a valid target detection for clutter
can result in missed detections and potential track loss.

To address the challenges of data association in cluttered environments, vari-
ous techniques have been developed.

• Validation Gating A preliminary filtering step to exclude measure-
ments that are highly unlikely to have originated from the tracked tar-
gets based on their predicted positions and uncertainties. This reduces
the number of potential associations that need to be considered. The
validation gate is depicted in Figure 1.4 as a blue dashed ellipse.

• Nearest Neighbor (NN) A classic approach that chooses the one
optimal hypothesis according to selected criterion.

• Probabilistic Data Association (PDA) This framework takes a
probabilistic approach by assigning weights (probabilities) to different
measurement-to-track association hypotheses. This allows the filter to
account for uncertainties arising from clutter and the possibility of mis-
detections. We will dive deep into the PDA algorithm in Section 1.5.

13



1. Single target tracking

• Multiple Hypothesis Tracking (MHT) A more computationally in-
tensive approach that maintains multiple hypotheses for data association
over time. This allows for the possibility that initial association deci-
sions might be revised with the arrival of new information. This method
is beyond the scope of this thesis.

The choice of data association technique depends on factors such as the tar-
get density, the expected clutter density, and the available computational re-
sources. Effective data association in the presence of clutter is a crucial compo-
nent of robust target tracking systems, especially within complex multi-target
environments.

The challenges inherent in target tracking, including clutter, misdetections,
and data association uncertainties, highlight the vital need for robust filter-
ing algorithms. Let us dive into the filtering algorithms and start with the
most simple Bayes filter. We will present a theoretical background and basic
principles applied in filtering algorithms.

1.3 Bayesian filtering

In the context of the filtering problem, our goal is to estimate the state of a
stochastic dynamic system based on a sequence of noisy measurements. The
state of the system will be denoted by xt.

For the filtering algorithm we do need motion and measurement models, as
stated earlier. The motion model deals with how the state evolves with time
based on the previous state. Mathematically, it can be expressed as p(xt|xt−1).
The measurement model concerns on how the measurements zt we observe are
related to the non-observable state xt. This model specified as p(zt|xt).

A couple of independence assumptions underlie this way of treating the filter-
ing problem. For the given specification of the measurement model to make
sense, the Markov property must hold [18]

p(xt|x1, . . . ,xt−1, z1, . . . , zt−1) = p(xt|xt−1). (1.10)

This means that the state xt depends solely on xt−1. Similar assumption is
assumed to hold for measurements

p(zt|x1, . . . ,xt−1,xt, z1, . . . , zt−1) = p(zt|xt). (1.11)

The goal of the filtering problem in the Bayesian approach is to find the pos-
terior distribution p(xt|z1:t) [18]. Once the posterior distribution is specified,
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1.4. Kalman filter

we are able to calculate the estimates of xt, for example, the MMSE or MAP
estimation.

Filtering is performed in two steps: prediction and update. Prediction step
is based on the Chapman-Kolmogorov equation which is based on total
probability theorem and is given by

p(xt|z1:t−1) =
∫
p(xt,xt−1|z1:k−1)dxt−1

=
∫
p(xt|xt−1)p(xt−1|z1:k−1)dxt−1. (1.12)

Update step utilizes the Bayes rule, which is defined as

p(xt|z1:t) = p(zt|xt)p(xt|z1:t−1)
p(zt|z1:t−1)

∝ p(zt|xt)p(xt|z1:t−1). (1.13)

Equations (1.12) and (1.13) together referred to as the Bayes filter and serve as
the basis for all filtering algorithms that follow. However, these equations do
not have a general closed-form solution and are not applicable as is. Further-
more, when we multiply two pdfs in Equation (1.13) we are not guaranteed
that the normalized product will result in some known pdf [18].

1.4 Kalman filter

In 1960 Rudolf Emil Kálmán discovered [7] that under certain assumptions
the closed-form solution to equations (1.12) and (1.13) exists. The algorithm
he invented provides an optimal and recursive solution for estimating the state
of a linear dynamic system from a series of noisy measurements, as shown in
Figure 1.5. The algorithm is named after him. The assumptions under which
the closed-form solution exists are the following.

1. Linearity The Kalman filter assumes that the underlying system dy-
namics and the relationship between the state and the measurements
can be described by linear equations.

2. Gaussian Noise Process noise, which represents uncertainty in the
target’s motion model, and measurement noise are assumed to have
Gaussian distributions with known covariance matrices.

The state vector x comprises the quantities of interest for the target, such as
its position, velocity, and potentially acceleration, as in Equation (1.6). The
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1. Single target tracking

Figure 1.5: Kalman filter prediction for one dimensional state xt.

Kalman filter models the evolution of this state vector over time using a linear
state transition Equation (1.1). Measurement model is given by Equation (1.2)

Given our understanding of both motion and measurement models, and our
need for linearity and Gaussian likelihoods, we have

p(xt|xt−1) = N (xt; Fxt−1,Q), (1.14)
p(zt|xt) = N (zt; Hxt,R), (1.15)
p(x0) = N (x0; x̂0,P0), (1.16)

where F and H are transition and measurement matrices of suitable dimen-
sions, Q and R are corresponding positive semi-definite matrices, that govern
the statistical properties of the process and measurement noise, and P0 is
positive semi-definite matrix that expresses the prediction uncertainty. These
equations are often written as

x0 ∼ N (x̂0,P0), (1.17)
xt = Fxt−1 + vt, vt ∼ N (0,Q), (1.18)
zt = Hxt + wt, wt ∼ N (0,R). (1.19)

The prediction step of Kalman filter algorithm
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1.4. Kalman filter

Algorithm 1 KF Predict(xt−1|t−1,Pt−1|t−1)
xt|t−1 ← Fxt−1|t−1 ▷ The predicted state estimate
Pt|t−1 ← FPt−1|t−1F⊺ + Q ▷ The predicted covariance
zt|t−1 ← Hxt|t−1 ▷ The predicted measurement
St ← HPt|t−1H⊺ + R ▷ The measurement predicted covariance

In the prediction step, uncertainty Pt|t−1 always increases since we make an
assumption without new information. If, for some reason, the update step is
skipped for subsequent time scans, the prediction uncertainty would increase
fairly quickly. In the prediction step, we also predict the measurement and its
covariance for further computation.

The pseudocode for the update step appears as follows.

Algorithm 2 KF Update(xt|t−1,Pt|t−1, zt|t−1,St, zt)
νt ← zt − zt|t−1 ▷ The innovation
Wt ← Pt|t−1H⊺S−1

t ▷ The Kalman gain
xt|t ← xt|t−1 + Wtνt ▷ The updated state estimate
Pt|t ← (I−WtH)Pt|t−1 ▷ The updated covariance
return xt|t, Pt|t,

In the update step, we introduce two new variables: innovations and the
Kalman gain. Innovations are the difference between what we predict to mea-
sure and what we actually measure. We can think of them as the ”new in-
formation” that our most recent measurement provides. If the innovation is
large, it indicates that our prediction was significantly different from reality.
It could mean either our model of the system is inaccurate or that there was
some large, unexpected change in the system’s dynamics.

Let us look closer to the Kalman gain equation.

Wt = Pt|t−1H⊺S−1
t (1.20)

= Pt|t−1H⊺(HPt|t−1H⊺ + R)−1 (1.21)

=
Pt|t−1H⊺

HPt|t−1H⊺ + R (1.22)

The value of Kalman Gain mainly depends on two values, measurement vari-
ance R and prediction uncertainty Pt|t−1. Let us look at how the value of the
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1. Single target tracking

Kalman gain changes.

lim
R→0

Pt|t−1H⊺

HPt|t−1H⊺ + R = H−1 (1.23)

lim
Pt|t−1→0

Pt|t−1H⊺

HPt|t−1H⊺ + R
= 0 (1.24)

If we take the state update formula

xt|t = xt|t−1 + Wt(zt − zt|t−1) (1.25)

we can see that when the magnitude of Pt|t−1 is very low, which means that the
state is predicted accuratly, we mostly discard the new measurements relying
instead on the filter’s prediction. On the other hand, when the measurements
are accurate, and thus the magnitude of R is small, the updated state estimate
relies mostly on the new measurements. So, Kalman gain is basically the
measure of how much we want to change the predicted estimate by given a
measurement.

The elegance of the Kalman filter and its computational efficiency have made
it a fundamental building block for countless tracking applications. In the
context of single-target tracking without clutter, the Kalman filter offers a
principled framework for modeling target motion and refining state estimates
as new sensor observations become available.

However, the Kalman filter is not able to handle clutter measurements. It
cannot determine which of the measurements received are background clutter
and which are the measurements generated by the target. For this purpose,
we introduce the PDA filter.

1.5 Probability data association

PDA filter, similarly to the Kalman filter, operates under a set of assumptions.
These assumptions are

1. Single Target At each time step, there exists at most one target in the
surveillance region.

2. Prior Density The prior density of the target’s state xt−1 is given as
pt−1(xt−1).

3. Markov Model The target’s state evolves according to a Markov model
fx(xt|xt−1). This means that the state of the target at the current time
step depends only on the previous time step’s state, and not on any
earlier states.
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1.5. Probability data association

4. Probability of Detection The target detections occur independently
over time with known probability PD.

5. Likelihood Function If a measurement originates from the target, it
is related to the target’s state xt through a known likelihood function
fz(zt|xt).

6. Clutter Distribution The number of clutter measurements is un-
known, but follows a PPP (1.8). In the context of the PDA filter, it
represents the randomness in the number of clutter measurements re-
ceived at each time step.

7. Independent Clutter A clutter measurement z is distributed accord-
ing to a pdf c(z), independently of all other measurements.

These assumptions allow the PDA filter to track a single target in the presence
of clutter. However, it is important to note that these assumptions may not
always hold true in real-world scenarios. For example, the probability of de-
tection may vary depending on the target’s range or aspect angle, and clutter
measurements may exhibit some degree of spatial correlation.

At each time step, the filter gets the set of measurements Zt = {z(1)
t , . . . , z(mt)

t }
of variable length mt. Note that the size of Zt is unknown and varies over
time. Figure 1.6 shows an example of filter receiving 3 measurements.

Figure 1.6: Example of Zt of length 3.
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1. Single target tracking

Figure 1.7: Mixture reduction for x coordinate of the state.

Assumption 1. is very convenient from a computational perspective, since
instead of deciding which of several subsets of mt is produced by the real
target, we only need to determine which of the measurements received, if any,
comes from the target. For this purpose, we introduce the association variable
θt defined as

θt =
{

0 if target is undetected
i ∈ {1, . . . ,mt} if zi,t is produced by target

(1.26)

According to the total probability theorem, the posterior density of the target
state can be expressed as [18]

pt(xt) =
mt∑
i=0

p(xt|θt = i,Z1:t)Pr{θt = i|Z1:t}. (1.27)

We can clearly see that the posterior has the form of Gaussian mixture func-
tion. In order to obtain the posterior we need to perform the mixture reduction
to a single Gaussian. The visual intuition behind the reduction of the mixture
for one coordinate from the example above is presented in Figure 1.7. To do
this, we need to specify the pdfs p(xt|θt = i,Z1:t), and the event probabilities
Pr{θt = i|Z1:t}.

Let us start with the prediction step. It is based on the Chapman-Kolmogorov
equation (1.12). Predicted pdf holds

pt|t−1(xt) =
∫

fx(xt|xt−1)pt(xt−1)dxt−1. (1.28)
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Before moving to update, recall that in order to get the closed-form solution,
the motion model and the prior must be Gaussian. The motion model must
also be linear. According to [18] the event-conditional posteriors p(xt|θt =
i,Z1:t) are given by

p(xt|θt,Z1:t) ∝
{
pt|t−1(xt) if θt = 0
fz(z(θt)

t |xt)pt|t−1(xt) if θt > 0.
(1.29)

In the event that no measurement is associated with the target, the set Zt
provides no information about xt, so we use the predicted density. On the
contrary, when θt > 0 and we know the value of θt, then the state estimation
boils down to the conventional Bayes rule, similarly as in the Kalman filter.

To find the event probabilities, let us first define the likelihood

l(θt) =
∫

fz(z(θt)
t |xt)pk|k−1(xt)dxt (1.30)

Then, under the assumptions presented above, the posterior association prob-
abilities are given by [18]

Pr{θt|Z1:t} ∝


(1− PD)mt

µ(mt)
µ(mt − 1) if θt = 0

PD

c(z(θt)
t )

l(θt) if θt > 0,
(1.31)

where µ(mt) stands for Poisson clutter density defined in Equation (1.8).

Similarly as in Kalman filter section, let us define the continuous pdfs given
the assumptions.

p(xt−1) = N (xt−1; x̂t−1,Pt−1), (1.32)
fx(xt|xt−1) = N (xt; Fxt−1,Q), (1.33)

fz(zt|xt) = N (zt; Hxt,R), (1.34)

c(zt) = 1
Vt
, (1.35)

where Vt is the volume of the surveillance area, in which measurements are
considered. Given this linear Gaussian pdfs we get the classic Kalman predic-
tion step where the predicted density is defined as

pt|t−1(xt) = N (xt; x̂t|t−1,Pt|t−1), (1.36)

and

x̂t|t−1 = Fxt−1, (1.37)
Pt|t−1 = FPt−1F⊺ + Q. (1.38)
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The expressions for predicted measurements and covariance are identical to
those in the Kalman filter, that is

ẑt|t−1 = Hx̂t|t−1, (1.39)
St = HPt|t−1H⊺ + R. (1.40)

At this point, we obtain the expressions to calculate the posterior density of
the state (1.27). For this, we have to compute both (1.29) and (1.31) for all mt

measurements. Essentially, we assume that we have 1 true measurement and
mt − 1 clutter measurements in the best-case scenario. Therefore, the mt − 1
computational iterations are excessive and do not provide any information
about the target’s true state. In order to reduce computational complexity and
eliminate improbable measurements, we use ellipsoidal gating, by adjusting
the value of the Vt used in (1.35).

The name implies that the surveillance area is constrained by the ellipse, whose
shape is defined by the predicted measurement (1.39) and its covariance (1.40)
as in Figure 1.6. We also introduce the parameter γ, which defines the size of
the validation region. The gating process is defined as follows.

V(Z; γ) = {z ∈ Z|(z− ẑt|t−1)S−1
t (z− ẑt|t−1) < γ}. (1.41)

The parameter γ basically says how many standard deviations are we willing
to consider. To meaningfully determine the value of γ, we introduce the
probability of gating - PG. Having this probability, we can find the parameter
γ using the chi-square distribution with the degree of freedom equal to the
dimensionality of the measurement vector [19]. The common strategy is to
set PG at some large probability, say PG = 0.995 and then use the cumulative
distribution of χ2(nz) to find γ, where z stands for the dimensionality of the
measurement space. However, when we introduce the probability PG we must
then tweak our formulas to consider this probability. Basically, it boils down
to replacing the term PD with PGPD, for example, in (1.31). For simplicity,
consider the probability of gating PG = 1. Note that only measurements from
V(Z; γ) are used in subsequent steps.

Let us now look at the update step. It is very simmilar to the Kalman filter.
Firstly, the resulting posterior density is defined as [18]

pt(xt|θt,Z1:t) = N (xt; x̂(θt)
t ,P(θt)

t ), (1.42)

where x̂θt
t , and Pθt

t are given by the standard Kalman update. Let us see, how
to obtain them.

Again, we calculate the Kalman gain using

Wt = Pt|t−1H⊺S−1. (1.43)
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Following the computation of event-based innovations

ν
(θt)
t = z(θt)

t −Hx̂t|t−1. (1.44)

Then the predicted event-conditioned estimate of x̂(θt)
t is given by

x̂(θt)
t =

{
x̂t|t−1 if θt = 0
x̂t|t−1 + Wtν

(θt)
t if θt > 0,

(1.45)

and its covariance

P(θt)
t =

{
Pt|t−1 if θt = 0
(I−WtH)Pt|t−1 if θt > 0.

(1.46)

Nonetheless, these formulas take into account just a single measurement z(θi,t)
t ,

which gives us the mixture at the end of the filter iteration. In order to fulfill
the above-stated Assumption 2., a reduction of the mixture is required. The
new Gaussian must have the same expectation and covariance as the original
mixture. This known as moment matching [18]. The mixture expectation is
given by

x̂t = β
(0)
t x̂t|t−1 +

∑
θt>0

β
(θt)
t x̂(θt)

t . (1.47)

Let us define combined innovations as

νt =
∑
θt>0

β
(θt)
t ν

(θt)
t . (1.48)

This allows us to rewrite (1.47) as [18]

x̂t = x̂t|t−1 + Wtνt. (1.49)

Now, we need to calculate the corresponding data association probabilities
β(0) and β(θt). β(0) represents the probability that no gated measurements are
produced by the target. The probability β(θt)

i represents the probability that
the tracked object produces the i-th measurement from V(Z; γ). Given the
clutter density Λ we get

β(0) = 1
c

Λ(1− PDPG) PG=1= 1
c

Λ(1− PD) (1.50)

β
(θt)
i = 1

c
PDli,t, (1.51)
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Figure 1.8: Measurement with association likelihoods. Grey lines’ thickness
represent the magnitude of the likelihood.

where c is normalization constant c = β(0) +∑
i β

(θt)
i and

li,t = N (zi,t; ẑt|t−1,St) (1.52)

is the measurement likelihood. Continuing the example in Figure 1.6, we
depict the likelihoods of the measurements received in Figure 1.8.

Matching the second-order moments, meaning covariances, leads to [18]

P̂t = β(0)Pt|t−1 + (1− β(0))(Pt|t−1 −WtStW⊺
t ) + P̃t, (1.53)

where

P̃t = Wt

∑
θt>0

β(θt)ν
(θt)
t (ν(θt)

t )⊺ − νtν⊺t

W⊺
t . (1.54)

Let us look closer at Equation (1.53). It is the sum of the three terms. The first
term reflects the possibility that no measurement is produced by the tracked
target and covariance remains untouched. This happens with probability β(0).
The second term represents the event, when some measurement is assumed
to be produced by the target, which happens with probability ∑θt>0 β

(θt) =
1− β(0). The last term P̃t is the so-called spread of innovations [13].

After the mixture reduction, the PDA filter approximates the posterior as

p(xt|Z1:t) ≈ N (xt, x̂t, P̂t). (1.55)
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Figure 1.9: Updated state.

Returning to our example scenario depicted in the figures above, we show the
updated state in Figure 1.9.

This concludes our development of the PDA filter algorithm. Let us present
the pseudocode of the PDA filter. The predict step is similar to the Kalman
filter prediction presented in Algorithm 1. The update step algorithm reads

Algorithm 3 PDA Update(xt|t−1,Pt|t−1, zt|t−1,St,Zt, γ)

V ← {z ∈ Zt|(z− zt|t−1)S−1
t (z− zt|t−1) < γ} ▷ Elipsoidal gating

β
(0)
t ← Λ(1− PD)
βt ← {PDli,t(zi)|∀zi ∈ V} ▷ Association probabilities
c← β

(0)
t +∑

i βi,t ▷ Normalization constant
β

(0)
t ←

β
(0)
t
c ▷ Normalization

βt ← {βi,t

c |∀βi,t ∈ βt} ▷ Normalization
νt ← {zi,t − zt|t−1|∀zi,t ∈ V} ▷ The innovation
νcomb ←

∑
i βi,tνi,t ▷ Combined innovation

Wt ← Pt|t−1H⊺S−1
t ▷ The Kalman gain

xt|t ← xt|t−1 + Wtνcomb ▷ The updated state estimate
PC
t|t ← Pt|t−1 −WtStW⊺

t

P̃t|t ←Wt
[∑

i βi,tνtν
⊺
t − νcombν

⊺
comb

]
W⊺

t ▷ Spread of innovation
Pt|t ← β

(0)
t Pt|t−1 + (1− β(0)

t )PC
t|t + P̃t|t ▷ The updated covariance

return xt|t, Pt|t
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This chapter has laid the groundwork for understanding the complexities and
challenges of single-target tracking (STT) in cluttered environments. We be-
gan by establishing the basic concepts of STT, including state estimation,
motion models, and the impact of measurement noise. We then delved into
the prevalent challenges faced by STT systems, namely clutter, missed detec-
tions, and data association ambiguities.

The chapter proceeded to introduce the theoretical framework of Bayesian
filtering, demonstrating its role as the foundation for various tracking algo-
rithms. We subsequently explored the Kalman filter, renowned for its opti-
mality in linear Gaussian systems, and highlighted its limitations in handling
clutter. To address this crucial aspect, we introduced the Probabilistic Data
Association (PDA) filter, which effectively incorporates data association prob-
abilities to mitigate the adverse effects of clutter and missed detections.

By establishing a comprehensive understanding of these fundamental concepts
and algorithms, we have paved the way for exploring more advanced tracking
techniques in subsequent chapters. The insights gained in this chapter will
serve as a springboard for tackling the complexities of multi-target tracking
and maneuvering target scenarios.
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Chapter 2
Multi-target tracking

While single-target tracking lays the foundation for understanding state es-
timation and filtering, real-world scenarios often involve multiple objects of
interest moving simultaneously within the surveillance region. This introduces
a new layer of complexity, demanding algorithms capable of handling multiple
tracks, maintaining their identities, and accurately associating measurements
with the corresponding targets. This chapter delves into the domain of multi-
target tracking (MTT), focusing on the challenges and solutions associated
with tracking multiple objects.

The necessity of MTT methods arises in scenarios where traditional single-
target tracking filters prove to be insufficient. While single-target filters might
be adequate when targets are well-separated and measurements can be unam-
biguously assigned to a specific track, such filters can be run in parallel for
each target. However, when targets move in close proximity, the potential for
measurement confusion increases dramatically. In these situations, we must
consider the complexities of joint data association hypotheses, where a single
measurement could potentially originate from multiple targets. This necessi-
tates the use of specialized Multi-Target Tracking (MTT) methods to main-
tain accurate tracking and avoid misidentification. It is a common practice to
employ several PDA filters when targets are distinctly separated within the
surveillance area but to transition to JPDA once their validation areas begin
to intersect.

Specifically, we will explore the Joint Probabilistic Data Association (JPDA)
filter, which is a generalization of the PDA filter designed to address data asso-
ciation uncertainties in MTT scenarios. The theoretical underpinnings of the
JPDA filter will be presented, followed by a detailed derivation of the practical
algorithm. A critical phenomenon known as track coalescence, where closely
spaced tracks tend to merge due to data association errors, will be discussed
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in depth. The understanding of track coalescence developed in this chapter
will serve as the basis for exploring mitigation strategies in the subsequent
chapter.

2.1 Joint probabilistic data association filter

There are two main assumptions that are almost always made in MTT [18]

1. Point target assumption Each target produces no more than a single
measurement.

2. Point measurement assumption Every measurement is derived from
no more than one target.

The implication of the point target assumption is that when dealing with a
single target, our focus should be on the likelihood of individual measurements
originating from that specific target, rather than considering the chance of a
combination of measurements stemming from the same target. This signifi-
cantly reduces computational complexity. Furthermore, without this assump-
tion, a tracking method might be inclined to assign all measurements in a sen-
sor scan to one target, based on previous estimates and uncertainties related
to clutter intensity, target range, etc. This occurrence, known as hospitality
to clutter [20], is much less probable when the point target assumption is ap-
plied. Concerning the assumption of point measurement, it also diminishes
the computational complexity of the problem. In the event that a single mea-
surement could be generated by several targets, we could encounter a scenario
in which we need to consider that all the targets being tracked could have
generated this specific measurement. This situation exponentially increases
complexity with increasing number of targets and intensity of clutter. Both of
these assumptions are dubious from a physical perspective [18], however, we
assume that the sensor used has some specific features that force the output
to satisfy these assumptions.

These two assumptions are fundamental for multi-target tracking. However,
there is a so-called standard model of multi-target tracking which contains the
following assumptions

1. Markov assumption for state transition.

2. New targets are born according to a Poisson process with intensity µ(x).

3. Existing targets survive from time step t − 1 to t with probability
Ps(xt−1).
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4. The motion of a surviving target is given by fx(xt|xt−1).

5. A target with state xt generates a measurement zt with probability
PD(xt).

6. Clutter measurements occur according to a Poisson process with inten-
sity λ(z).

7. The measurement of a detected target is related to the state according
to fz(zt|xt).

The implications of Assumptions 2. and 3. are that over time, multiple targets
will be detected in the surveillance area. This also introduces ambiguity about
the exact number of actual targets within the monitored region. Various
strategies exist to manage this ambiguity, such as the IPDA filter [21] or
the well-known M/N rule [17]. However, addressing this particular type of
ambiguity is beyond the scope of this thesis, and we will not consider this
uncertainty in further derivations.

The JPDA is a special case of the standard MTT model, where

8. The count of targets, n, remains steady and is known (i.e., zero birth
intensity and death probability).

9. The single-target motion model and the likelihood are Gaussian and
linear:

fx(xt|xt−1) = N (xt; Fxt−1,Q) (2.1)
fz(zk|xk) = N (zk; Hxt,R) (2.2)

10. The prior densities of the targets are independent and Gaussian.

pit−1(xit−1) = N (xit−1; x̂it−1,Pi
t−1). (2.3)

11. The target i has constant detection probability P iD.

12. The clutter Poisson process has a constant intensity λ.

Assumption 10 reveals the parallelism between JPDA and PDA. The objective
of JPDA is to merge all association hypotheses into a single Gaussian for
each target. However, this is considerably more challenging for JPDA, as
the number of association hypotheses grows exponentially compared to PDA.
Figure 2.1 shows the association hypotheses for a two target case.
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2. Multi-target tracking

Figure 2.1: Association hypotheses for two targets and 5 measurements..

JPDA has the same algorithmic cycle: prediction, data association, and up-
date. Let us go through these stages and outline the main differences.

The prediction step is pretty similar and based on the Chapman-Kolmogorov
equation (1.12) as in (1.28)

pit|t−1(xit) =
∫

fx(xit|xit−1)pt(xit−1)dxit−1. (2.4)

= N (xit; x̂it|t−1,P
i
t|t−1), (2.5)

where x̂it|t−1 and Pi
t|t−1 are defined in Equation (1.37) and Equation (1.38)

respectively. For measurement prediction ẑit|t−1 and its covariance Sit|t−1, we
use Equations (1.39) and (1.40) respectively.

In PDA we had the variable θt defined in (1.26). For the joint case we must
define such variable for each target, so we define the vector Θt = [θ1

t , θ
2
t , . . . , θ

n
t ]

such that

θit =
{
j if measurement j is produced by the target i
0 if no measurement is produced by the target i.

(2.6)

Note that one realization of vector Θt represents one joint hypothesis, where
each target is assigned with either a real or dummy measurement.

Again, similarly as in Equation (1.27), we use the total probability theorem
to express the posterior. Note that the association hypotheses are mutually
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2.1. Joint probabilistic data association filter

exclusive and exhaustive [18] thanks to the point assumptions mentioned at
the beginning of this chapter. This yields

p(x1
t , . . . ,xnt |Z1:t) =

∑
Θt

p(x1
t , . . . ,xnt |Θt,Z1:t)Pr{Θt|Z1:t}. (2.7)

The sum goes over all feasible association hypotheses. Note that the cardi-
nality of Θt grows exponentially with the increase of n and mt. In general,
ellipsoidal gating is always performed in JPDA. The first obvious reason is
computational optimization. Furthermore, computing densities does not make
sense for measurements far from prediction, since the corresponding probabili-
ties Pr{Θt|Z1:t} would quickly approach zero. We would not reflect ellipsoidal
gating in the subsequent derivations for the sake of simplicity.

In order to find the posterior (2.7), we need to find the expression for event-
conditional densities p(x1

t , . . . ,xnt |Θt,Z1:t) and association posterior probabili-
ties Pr{Θt|Z1:t}. For the initial term, the process is relatively straightforward
- if the measurement zθ

i
t
t is assigned to the target i, we employ the conventional

KF formula, otherwise, we use the prediction. The equation is as follows [18]

p(x1
t , . . . ,xnt |Θt,Z1:t) ∝

∏
i:θi

t=0
pit|t−1(xit)

∏
i:θi

t>0
fz(zθ

i
t
t |xit)pit|t−1(xit). (2.8)

In order to define the hypothesis probability Pr{Θt|Z1:t} we need to define
the track-to-measurement likelihood [18]

li,θ
i
t =

∫
fz(zθ

i
t
t |xit)pit|t−1(xit)dxit = N (zθ

i
t
t ; ẑit|t−1,S

i
t|t−1). (2.9)

Then the probabilities for the association hypotheses are given by [18]

Pr{Θt|Z1:t} ∝
∏
i:θi

t=0
λ(1− PD)

∏
i:θi

t>0
PDl

i,θi
t . (2.10)

Returning to the example with two targets from Figure 2.1, we present calcu-
lation of individual association probabilities in Table 2.1.

However, the key principle of both the PDA and the JPDA filters is to merge
different hypotheses for each track. Now, we need to marginalize the associa-
tion probabilities Pr{Θt|Z1:t} as follows

βi,jt = Pr{zjt is assigned to target i|Z1:t} =
∑

Θt:θi
t=j

Pr{Θt|Z1:t}. (2.11)

This means that we sum up the probabilities for all feasible hypotheses in
which the current measurement is assigned to the specific target. In our
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2. Multi-target tracking

Θ Pr{Θt|Z1:t}
[0, 0] λ2(1− PD)2

[0, 1] λ(1− PD) · PDl2,1
[0, 2] λ(1− PD) · PDl2,2
[0, 3] λ(1− PD) · PDl2,3
[0, 4] Out of gate for the second target
[0, 5] Out of gate for the second target
. . . . . .

[2, 3] P 2
D · l1,2 · l2,3

. . . . . .

Table 2.1: Calculation of association posterior probabilities.

example,

β1,1 = Pr{[1, 0]|Z1:t}+ Pr{[1, 1]|Z1:t}+ Pr{[1, 2]|Z1:t}+
+ Pr{[1, 3]|Z1:t}+ Pr{[1, 4]|Z1:t}+
+ Pr{[1, 5]|Z1:t}. (2.12)

Now, the only thing left is to describe the update step of JPDA. In fact, the
JPDA update step is the PDA update performed for all n targets using the
association probabilities calculated above. We define Kalman gain for i-th
track as follows

Wi
t = Pi

t|t−1H⊺(HPi
t|t−1H⊺ + R)−1 = Pi

t|t−1H⊺(Sit)−1. (2.13)

Then we express the posterior event-conditional expectations and covariances
as

x̂i,θ
i
t

t =

x̂it|t−1 if θit = 0
x̂it|t−1 + Wi

t(z
θi

t
t − ẑit|t−1) if θit > 0

(2.14)

Pi,θi
t

t =

Pi
t|t−1 if θit = 0

(I−Wi
tH)Pi

t|t−1 if θit > 0.
(2.15)

Using these expressions, we can rewrite (2.8) as

p(x1
t , . . . ,xnt |Θt,Z1:t) =

n∏
i=1
N (xit; x̂i,θ

i
t

t ,Pi,θi
t

t ). (2.16)

Finally, using the posterior association probabilities calculated from Equation
(2.11), we can find the single Gaussian posterior approximation for each track
according to

pit(xit) =
mt∑
j=0

βi,jt N (xit; x̂i,jt ,P
i,j
t ) ≈ N (xit; x̂it,Pi

t). (2.17)
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2.1. Joint probabilistic data association filter

That is, the posterior of each track is a Gaussian mixture, which is reduced in
exactly the same manner as in the PDA filter. To find the merged expectation
and covariance, we use equations (1.47) and (1.53), respectively.

Essentially, the main difference between PDA and JPDA is the calculation of
event-conditional densities and association probabilities. Let us also present
the practical implementation of this calculation. This approach was used
for JPDA implementation for experiments described in Chapter 4. We will
only describe the computation of association probabilities βi,jt from Equation
(2.11).

First, we need to construct the cost matrix C ∈ Rn,mt+n. This matrix is
separated into two blocks column-wise. The first block comprises of track-to-
measurement likelihoods PDli,j . The second block is a diagonal matrix with
the expression λ(1−PD) representing track misdetections. Hence, matrix has
the following form

Ct =

PDl
1,1 . . . PDl

1,mt λ(1− PD) . . . 0
... . . . ...

... . . . ...
PDl

n,1 . . . PDl
n,mt 0 . . . λ(1− PD)

 (2.18)

Then, for each feasible hypothesis Θi,t, we construct the assignment matrix
AΘi,t

t ∈ {0, 1}n,mt+n. This matrix has exactly one 1 in each row. 1 indicates
a target assignment. If the measurement j was assigned to the target k, then
AΘi,t

t [k, j] = 1. In case of misdetection AΘi,t

t [k, n + k] = 1. Every other
number in this matrix is 0. Then we can calculate the association probability
from equation (2.10) by

Pr{Θi,t|Zt} = P((AΘi,t

t )⊺Ct) (2.19)

Where P(·) stands for product operator and means the product of positive
elements on the main diagonal, that is P(A) = ∑n

i:aii>0 aii. To obtain the
marginal probabilities βi,jt , we sum the probabilities of all hypotheses where
the measurement j is assigned to the target i according to Equation (2.11).
For our example, the calculation of Pr{[1, 5]|Z1:t} proceeds as follows
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2. Multi-target tracking

Ct =
[
PDl

1,1 . . . PDl
1,5 λ(1− PD) 0

PDl
2,1 . . . PDl

2,5 0 λ(1− PD)

]
, (2.20)

A[1,5]
t =

[
1 0 0 0 0 0 0
0 0 0 0 1 0 0

]
, (2.21)

Pr{[1, 5]|Z1:t} = P((A[1,5]
t )⊺Ct)

= P





PDl
1,1 . . . PDl

1,5 λ(1− PD) 0
0 . . . 0 0 0
0 . . . 0 0 0
0 . . . 0 0 0

PDl
2,1 . . . PDl

2,5 0 λ(1− PD)
0 . . . 0 0 0
0 . . . 0 0 0





= PDl
1,1 · PDl2,5. (2.22)

The JPDA algorithm provides an advanced solution for managing uncertain-
ties in data association in scenarios involving the tracking of multiple targets.
Nevertheless, a specific difficulty emerges when targets are in close proximity
– the coalescence issue. As the tracks get spatially closer, conventional JPDA
may find it difficult to preserve their unique identities, resulting in possible
track fusion or misassociations.

2.2 Coalescence problem

Track coalescence occurs when multiple targets move in close proximity with
overlapping validation gates. In such scenarios, the probabilistic averaging
approach of JPDA assigns similar association probabilities to multiple track-
measurement pairings. Consequently, the filter updates the state estimates for
both (or more) targets towards a point between their actual positions. This
merging of tracks can lead to inaccurate state estimation and potential track
loss, particularly when the targets diverge after a period of close proximity.

This effect is a direct consequence of the manner in which the JPDA filter
performs soft data association [22]. Mathematically, when the targets are
close to each other, the predicted marginal posterior distributions pit(xit) for
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2.2. Coalescence problem

each target i become similar. This similarity arises because the targets’ states,
represented by their positions and possibly other motion-related parameters,
are nearly identical in the state space, leading to similar posterior distributions
based on the prior information.

The JPDA filter calculates the approximate marginal posterior distribution
by summing over all possible associations Θ(i)

t for each target i, as shown in
the equation (2.7). When the predicted marginal posteriors are similar, the
summation in the above equation results in approximate marginal posteriors
that are also similar for closely spaced targets. Consequently, the Minimum
Mean Square Error (MMSE) state estimates derived from these approximate
marginal posteriors tend to be similar for all targets, leading to the coalescence
of the estimated tracks. This effect is particularly pronounced when the states
of the targets are so close that the uncertainty of measurement origin causes
the association probabilities to be nearly uniform across the targets, further
exacerbating the coalescence effect [22].

Several factors exacerbate the track coalescence problem

• High Clutter Density λ The presence of clutter increases the un-
certainty in data association, further contributing to erroneous track
updates and a higher likelihood of coalescence.

• Low Detection Probability PD Misdetections lead to larger valida-
tion gates, increasing the chances of overlapping gates and subsequent
coalescence.

• Similar Target Motion Targets moving with similar velocities and
trajectories are more prone to track coalescence because of the difficulty
of distinguishing their individual contributions to the measurements.

The consequences of track coalescence can be detrimental to tracking perfor-
mance.

• Loss of Track Identity The merging of tracks can lead to the loss of
individual target identities, making it difficult to distinguish and track
targets after they separate.

• Degraded State Estimation The averaged state estimates resulting
from track coalescence deviate from the true target positions, affecting
the accuracy of subsequent predictions and filtering updates.
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2. Multi-target tracking

• Increased Track Loss Probability As the state estimates become
less accurate, the likelihood of track loss increases, especially when the
targets maneuver or change direction after coalescence.

Although the theoretical consequences of track coalescence are clear, exam-
ining real-world scenarios provides a deeper understanding of its impact on
tracking performance and the situations where it poses a critical challenge
versus instances where it might be less consequential.

In air traffic control (ATC) systems, maintaining accurate tracks and unique
identities for each aircraft is crucial to ensure safe separation and preventing
collisions. Track coalescence, even for a brief period, can have catastrophic
consequences, such as

• Loss of Separation Merged tracks can mask the true positions and
trajectories of aircraft, potentially leading to a loss of required separation
and an increased risk of mid-air collisions.

• Misidentification Inaccurate state estimates resulting
from coalescence can cause misidentification of aircraft, leading to in-
correct instructions and endangering flight safety.

• Confusion and Delays Resolving coalesced tracks requires additional
time and effort, causing confusion for air traffic controllers and poten-
tially leading to delays and disruptions in flight operations.

Therefore, in ATC systems, minimizing track coalescence is paramount for
maintaining the safety and efficiency of air traffic operations.

In contrast, consider wildlife monitoring applications where tracking a popula-
tion of animals is the primary goal. While maintaining distinct tracks for each
individual might be ideal, temporary track coalescence might not be a signif-
icant issue. In many wildlife studies, understanding the overall population
dynamics and movement patterns is more important than tracking individual
animals. Coalescence may not significantly impact this analysis, especially if
the animals eventually separate and their tracks are re-established.

Furthermore, even with coalesced tracks, researchers can often rely on addi-
tional information, such as size, color, or movement patterns, to differentiate
species and maintain relevant ecological insights. And finally, wildlife moni-
toring often involves limited resources and observation capabilities. Accepting
some degree of track coalescence might be necessary to balance tracking ac-
curacy with feasibility and cost-effectiveness.
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2.2. Coalescence problem

Therefore, while track coalescence remains undesirable, it might not pose a
critical challenge in applications where the focus is on broader population-level
understanding rather than individual identification and precise tracking.

These real-world examples highlight the varying impact of track coalescence
depending on the specific application and its requirements. The next chap-
ter will explore strategies to address this challenge and introduce our novel
method to achieve robust and efficient track maintenance in the presence of
coalescence.
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Chapter 3
Coalescence suppression

As established in previous chapters, track coalescence presents a significant
challenge for multi-target tracking systems, particularly those utilizing JPDA
filters. This chapter delves into the various techniques developed to com-
bat this phenomenon, reviewing their strengths and limitations. We will then
present a novel approach that combines adaptive validation gating with strate-
gic hypothesis pruning, offering a robust and computationally efficient solution
for maintaining track integrity in the presence of closely spaced targets.

3.1 Exact nearest neighbor

One of the two main paradigms in tackling the coalescence problem is hy-
pothesis pruning. The exact nearest-neighbor PDA (ENNPDA) presented in
[15] is a very simple yet powerful approach. Originally, it was designed to
run in real time on a microprocessor, so the original PDA was optimized, and

Figure 3.1: Track coalescence example.
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3. Coalescence suppression

pruning was introduced both to address the coalescence problem and to lower
the computational cost.

Basically, once the probabilities βi,jt from Equation (2.11) are calculated, EN-
NPDA employs a nearest neighbor approach. This means that each measure-
ment is assigned to the track with the highest association probability, creating
a one-to-one correspondence. Unlike standard nearest-neighbor methods that
solely rely on the distance between a track’s predicted position and a mea-
surement, ENNPDA factors in the association probability. This leads to more
accurate associations, especially in situations where tracks and measurements
are close to each other.

Let us take a closer look at the set of hypotheses Θt. We will use the notation
of [16]. We first define a target detection vector ϕt ∈ {0, 1}n as follows

ϕj,t(Θi
t) =

{
1 if the jth target was detected in hypothesis Θi

t,

0 otherwise.
(3.1)

Next, we define the measurement association vector ψt ∈ {0, 1}mt as

ψj,t(Θi
t) =

{
1 if the j-th measurement belongs to detected target
0 otherwise.

(3.2)

We also define the operator D(x) = ∑
i xi. Then D(ϕt(Θi

t)) stands for the
number of detected targets, and D(ψt(Θi

t)) stands for the number of measure-
ments associated with the detected tracks.

Then we define the sequence of permutation matrices {χt}, which randomly
permutes the measurements to match them with the detected targets. We will
not delve into the mathematical details of this permutation.

Using this notation in [16] we split the series of association hypotheses {Θt}
into two subsets: (ϕ, ψ)-hypotheses and (ϕ, χ)-hypotheses. (ϕ, ψ)-hypothesis
is about the classification of measurements as target-originated or clutter,
while the (ϕ, χ)-hypothesis is about the ordering of measurements to targets.

In ENNPDA, we take all feasible association hypotheses {Θt} that satisfy
D(ψt(Θi

t)) = D(ϕt(Θi
t)) ≤ min{n,mt} and select one that

Θ̂t = arg max
Θt

= Pr{Θt|Z1:t}. (3.3)

That is, we prune all (ϕ, χ)-hypotheses except for one Θ̂t with the highest
likelihood and use it for update. The resulting ENNPDA appeared to be re-
markably insensitive to track coalescence in case there is no clutter and no
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missed detections. However, the dramatic pruning used for ENNPDA leads to
an undesirable sensitivity to clutter and missed detections [23]. As a result,
by using the ENNPDA coalescence suppression method, we lose the robust
tracking performance of JPDA, which is undesirable. Nevertheless, the EN-
NPDA approach pioneered the pruning strategy to mitigate coalescence and
laid the foundation for the development of more advanced pruning techniques.

3.2 JPDA*

In order to benefit from pruning while maintaining the insensitivity of JPDA
to clutter and missed detections, the JPDA* approach was introduced [16]. It
was found that track coalescence could be avoided by pruning χ-hypotheses.
In particular, we prune the permutations of the hypothesis with the highest
likelihood in order to reduce the uncertainty for resulting posterior.

In order to keep the filter robust to clutter and misdetections, we must not
prune any ϕ or ψ hypotheses [16]. The combination of these two findings
applied to JPDA is called JPDA*.

In JPDA*, we first evaluate all feasible (ϕt, ψt)-hypotheses, then per (ϕt, ψt)-
hypothesis we prune all less likely χ-hypotheses, that is, permutations of the
hypothesis with the highest likelihood. Mathematically, for every ϕt and ψt,
satisfying D(ϕt) = D(ψt) ≤ min{n,mt} we look for

χ̂t = arg max
χ

Pr{Θ(ϕt,ψt)
t |Z1:t}. (3.4)

Then we prune all χ-hypotheses for given ϕt and ψt except for the
χ̂t-hypothesis. Obviously, the resulting probabilities must be normalized after
pruning.

Simulations performed in [16] show that JPDA* outperforms PDA, JPDA, and
ENNPDA in suppressing coalescence, while remaining robust to misdetections
and clutter. To demonstrate the difference between these methods, Table
3.1 displays the manner in which each approach prunes the hypotheses in a
particular scenario.

3.3 Coupling

One of the approaches to tackle the colaescence is to make use of the concept of
a joint state for multiple targets. For example, JPDAC [17]. The effectiveness
of the JPDAC approach in combination with two other Bayesian approaches
(imaging sensor filter and interactive multiple model - IMM, respectively) has
been demonstrated for closely spaced target situations in [24], [25].
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Θ Pr{Θ|Z1:t} ENNPDA JPDA*
[0, 0] 0.00011 ×
[0, 1] 0.05758 × × in favor of [1, 0]
[0, 2] 0.31308
[1, 0] 0.11829 ×
[1, 2] 0.17577 × × in favor of [2, 1]
[2, 0] 0.13885 × × in favor of [0, 2]
[2, 1] 0.19632 ×

Table 3.1: Comparison of pruning of ENNPDA and JPDA* for two targets
and two received measurements. Symbol × represent that the corresponding
hypothesis was pruned by the algorithm.

Another method that uses the idea of joint state is coupled PDA (CPDA)
introduced in [16]. Furthermore, the authors combined this approach with
hypotheses pruning resulting in CPDA* [16]. From their results, it is evident
that hypothesis pruning appears to be the most efficient method to suppress
the coalescence effect (CPDA* outperforms CPDA, CPDA* and JPDA* show
similar performance).

Evidence has been presented that ENNPDA, JPDA*, and CPDA* avoid track
coalescence by positioning a Gaussian density around a local optimum (not
necessarily the global optimum). This method seems so efficient that the
requirement to recall the coupling between tracks practically disappears [16].

3.4 Bias removal

Another approach to coalescence suppression is based on the removal of bias
from the posterior state estimate. The state estimate becomes biased when
the targets approach each other and their validation regions intersect, since
any track attempting to follow a particular target will be attracted, to some
extent, towards a neighboring target with whose returns it correlates [26].
Furthermore, the magnitude of the tracking bias is quantitatively analyzed in
[26]. The paper establishes that the bias increases as the distance between the
targets decreases, reaching a maximum when the targets are very close to each
other. Using a two-target scenario, the authors show that target separations
smaller than a certain critical value tend to cause a total coalescence of the
tracks.

In the latter works, this paradigm was used for Bias Removal JPDA (BR-
JPDA) [27]. The authors analyze the causes of state bias in JPDA and provide
a direct computation equation for the bias in an ideal two-target case. They
then extend the bias estimation to more general and practical cases by defin-
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ing target detection hypotheses and target-to-target association hypotheses.
The estimated bias is subsequently removed from the state updated by JPDA
to produce an unbiased state.

However, as discovered by [26], the root of bias lies in the measurements
generated by adjacent tracks, which are used to update the current track.
Therefore, to estimate the bias, it is essential to identify the sources of the
given measurements and exclude those originating from neighboring tracks
from our considerations, which is the main problem. If not, the bias estimation
relies on an approximation that inherently holds uncertainty. However, the
authors show that BRJPDA [27] can effectively handle track coalescence and
offers performance similar to that of JPDA* and outperforms that of ”vanilla”
JPDA.

We examined prevalent methods for coalescence prevention in JPDA filters.
Among these, hypotheses pruning, particularly JPDA*, appears to be the
most straightforward and effective for this purpose. It surpasses strategies
that rely on coupling, including the CPDA* that employs both coupling and
hypothesis pruning. Essentially, hypothesis pruning forces the JPDA to make
a decision [18]. We chose to expand on this concept by incorporating adaptive
validation gating.

3.5 Adaptive validation gating

In this section we present our contribution to the field of track coalescence
suppression. The approach leverages the concept of pruning introduced in
JPDA* and dynamically adjusts the size of the validation gate to mitigate the
risk of track coalescence.

The proposed method introduces an adaptive validation gating technique that
scales the gating probability, PG, based on the spatial proximity of the track
validation ellipses. We introduced the gating probability in Section 1.5. The
default value of PG (which is typically equal to one or nearly so) is dynami-
cally reduced toward some value denoted Psqueeze when the validation ellipses
of multiple tracks intersect, effectively shrinking the validation gate. This re-
duction in gate size aims to limit the association possibilities between closely
spaced tracks, thus reducing the likelihood of coalescence. It is important to
note that we only apply gate squeezing to pairs of gates that intersect in the
current time scan t.
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Figure 3.2: χ2 with two degrees of freedom percentile function.

So, the gating process from (1.41) is modified as follows

V(Z; γ(PG,t)) = {z ∈ Z|(z− ẑt|t−1)S−1
t (z− ẑt|t−1) < γ(PG,t)}. (3.5)

γ(PG,t) =


F−1
χ2

df=l
(PG) if no intersection is detected

F−1
χ2

df=l
(Psqueeze) for intersected gates,

(3.6)

where F−1
χ2

df=l
(·) stands for inverse CDF function, or percentile function of χ2

distribution with l degrees of freedom, where l is the length of the measurement
vector. In Figure 3.2, the percentile function of the χ2 distribution with two
degrees of freedom is depicted. It is evident that even a minor adjustment in
the desired probability significantly reduces the output of the function.

Reducing the probability of gating has consequences. To prevent excessive
gate shrinkage and the subsequent risk of missed detections, a control mech-
anism is implemented. Two key parameters govern this mechanism.

• squeeze_threshold This parameter defines the maximum number of
consecutive time steps during which gate squeezing can be applied. Once
this threshold is reached, the gate size is no longer reduced.

• squeeze_cooldown This parameter specifies the number of time steps
during which gate squeezing is prohibited after reaching the
squeeze_threshold. This cooldown period allows tracks to diverge and
reduces the risk of track loss due to overly restrictive gating.

The algorithm operates as follows.
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1. Intersection Detection At each time step, the algorithm checks for
intersections between the validation ellipses of all active tracks.

2. Gate Size Adaptation If intersections are detected, the value of PGt

for the corresponding tracks is reduced, affecting γ(PG,t), effectively
shrinking the validation gates.

3. Threshold and Cooldown Management The algorithm tracks the
number of consecutive squeezing instances. If the squeeze_threshold
is reached, gate squeezing is halted for the duration specified by the
squeeze_cooldown parameter.

4. Hypothesis pruning Further reduction of hypotheses by implementing
the JPDA* pruning presented in Section 3.2.

Pseudocode is presented in Algorithm 4.

This adaptive validation gating method offers several potential benefits for
JPDA filtering

• Reduced Track Coalescence By dynamically adjusting the validation
gate size, the proposed method aims to minimize the likelihood of track
coalescence, particularly in scenarios with closely spaced objects.

• Improved Tracking Accuracy By mitigating track coalescence, the
method is expected to enhance the overall tracking accuracy and main-
tain the individual identities of closely spaced objects.

• Adaptive and Responsive Behavior The use of thresholds and
cooldown periods ensures that the gate size adaptation is responsive to
the dynamic nature of the tracking environment, preventing excessively
restrictive gating and potential track loss.

This section presented a novel approach to track coalescence suppression in
JPDA filters. The subsequent sections of the thesis will delve into a detailed
analysis of the method’s performance through simulations and experiments.
These analyses will evaluate the effectiveness of the proposed approach in
comparison to existing techniques and explore the impact of various parameter
choices on tracking performance. Furthermore, the limitations of the method
and potential avenues for future research will be discussed.
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Algorithm 4 Adaptive Validation Gating with Hypothesis Pruning
Require: Tracks T , measurements Z, gating probability PG, reduced gating

probability Psqueeze, squeeze_threshold ST , squeeze_cooldown SC
Ensure: Updated tracks with reduced coalescence

1: Initialize squeeze count← 0 for each track
2: for each time step t do
3: for each track Ti do
4: Generate validation gate based on PG
5: for each pair of tracks Ti, Tj with intersecting gates do
6: if squeeze count[Ti] < ST and squeeze count[Tj ] < ST then
7: PG[Ti]← Psqueeze
8: PG[Tj ]← Psqueeze
9: squeeze count[Ti]← squeeze count[Ti] + 1

10: squeeze count[Tj ]← squeeze count[Tj ] + 1
11: end if
12: end for
13: Associate measurements within the gate to Ti
14: Calculate association probabilities using JPDA
15: end for
16: Perform JPDA* hypothesis pruning
17: Update tracks using JPDA
18: for each track Ti with squeeze count[Ti] ≥ ST do
19: if cooldown timer[Ti] = 0 then
20: squeeze count[Ti]← 0
21: cooldown timer[Ti]← SC
22: else
23: cooldown timer[Ti]← cooldown timer[Ti]− 1
24: end if
25: end for
26: end for
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Chapter 4
Experiment validation

This chapter focuses on the evaluation and comparison of three JPDA-based
algorithms: the standard JPDA from Section 2.1, JPDA* from Section 3.2,
and a novel variant we propose, JPDA* with adaptive gating from Section 3.5.
Our proposed method enhances the JPDA* filter by dynamically adjusting
the validation gate size based on the proximity and estimated states of nearby
targets. This adaptive gating mechanism aims to further reduce the likelihood
of track coalescence while maintaining tracking accuracy.

The goal of this chapter is twofold. Firstly, our objective is to identify the op-
timal parameters for our method using Monte Carlo simulations. Secondly, we
will conduct a comprehensive comparison of the three algorithms across differ-
ent tracking scenarios to assess their performance and coalescence mitigation
capabilities. Through this analysis, we aim to demonstrate the effectiveness
of our proposed method and its potential for improved multi-target tracking
in challenging environments. Subsequently, we will evaluate these algorithms
across three distinct scenarios, each of which presents varying levels of com-
plexity.

4.1 Methodology

Three algorithms were implemented in Python, using the NumPy and SciPy
libraries. All filters use the constant velocity model presented in Section 1.1
with a 4 dimensional state x = [x, vx, y, vy]⊺. The measurement model
matrix H is compatible with this state. For the process noise covariance we
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4. Experiment validation

Figure 4.1: Synthetic trajectories for simulations.

use

Q =


0.1 0 0 0
0 1 0 0
0 0 0.1 0
0 0 0 1

 , (4.1)

anticipating greater variability in velocities compared to positions. The imple-
mentations are available on the attached media. All simulations were executed
on MacBook Pro 2020 with M1 chip with

• 8 CPU cores,

• 3.2 GHz maximum CPU clock rate,

• 8 GB RAM.

Dataset

We created four synthetic trajectories for the simulations shown in Figure
4.1. All targets move with constant velocity. The base trajectory for one
target is created using blender software and then mirrored according to the
parameter mirror_offset that defines the distance between measurements
at the closest point for two tracks as shown in Figure 4.2. All trajectories are
centered around x = 100.

A Radar class has been developed to emulate the data flow. In addition to
setting the trajectory type and mirror_offset, it allows configuration of the
clutter rate λ, the dimensions of the surveillance area, and the measurement
covariance matrix R (see Figures 4.3 and 4.4).

Metrics

To evaluate and compare the performance of the JPDA, JPDA*, and our
method with adaptive gating algorithms, we employ two primary metrics:
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Figure 4.2: Impact of mirror offset on trajectory.

Figure 4.3: Data from simulator trough all time scans for different parameter
λ.

Figure 4.4: Trajectories for different R.
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4. Experiment validation

Root Mean Square Error (RMSE) and Generalized Optimal Sub-Pattern As-
signment (GOSPA) metric [28].

RMSE is a commonly used metric for evaluating the precision of state esti-
mation. It measures the average Euclidean distance between the estimated
target positions and their true positions. For a set of N targets and T time
steps, the RMSE is calculated as:

RMSE =

√√√√ 1
NT

N∑
n=1

T∑
t=1
||x̂tn − xtn||2, (4.2)

where x̂tn and xtn represent the estimated and true positions of target n at
time step t, respectively.

Although RMSE provides a simple measure of estimation accuracy, it does not
account for errors in the number of tracks or data association mistakes. This
limitation makes it insufficient for comprehensive evaluation of multi-target
tracking algorithms, especially in scenarios prone to track coalescence.

The generalized optimal sub-pattern assignment or GOSPA metric [28] over-
comes the limitations of RMSE by considering both localization errors and
cardinality errors (missed and false tracks) in a unified framework. This is
achieved by finding the optimal assignment between the set of true target
states and the set of estimated tracks, considering penalties for missed tar-
gets, false tracks, and localization errors. The GOSPA metric is defined as
follows:

GOSPA(X,Y ) =
(

min
π∈Πp

m∑
i=1

d(c)
c (xi, yπ(i))p + cp

p
(n−m)

)1/p

, (4.3)

where:

• X = x1, ..., xm is the set of true target states.

• Y = y1, ..., yn is the set of estimated tracks.

• m and n are the number of true targets and estimated tracks, respec-
tively.

• Πp is the set of all possible assignments between X and a subset of Y
with at most p elements.

• d
(c)
c (x, y) = min(c, d(x, y)) is the cut-off distance function, where d(x, y)

is the distance between states x and y, and c is a cut-off parameter.
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4.2. Parameter Optimization via Monte Carlo Simulations

• p determines the penalty for cardinality errors relative to localization
errors.

It is necessary to define the parameters c and p. The GOSPA metric provides a
more comprehensive evaluation of tracking performance compared to RMSE,
making it suitable for analyzing the behavior of JPDA-based algorithms and
their ability to handle track coalescence.

The final metric to be monitored is the number of misdetections reported by
the algorithm. This could occur when the validation gate for a particular
target is empty, causing the algorithm to omit the update step and declare
a misdetection. Given that GOSPA conducts its own track-to-measurement
assignment, the reported misdetections by the algorithm may vary from the
cardinality errors identified by GOSPA.

4.2 Parameter Optimization via Monte Carlo
Simulations

To optimize the performance of our method, we employ Monte Carlo simula-
tions coupled with a grid search approach. This process involves evaluating
the algorithm’s performance across a range of parameter combinations and
selecting the set that yields the best results. We optimize the following pa-
rameters.

• P_squeeze: The shrunken probability for the validation gate applied
during potential track intersection scenarios.

• squeeze_max_steps: The maximum number of consecutive time steps
for which the squeezed validation gate is applied.

• cooldown_steps: The number of time steps during which the standard
validation gate is used after reaching the squeeze_max_steps limit.

For each combination of parameter values within the defined grid, we run the
algorithm 100 times on the chosen trajectory. This allows us to account for the
stochastic nature of the tracking process and obtain statistically meaningful
results.

Before running simulations, it is essential to establish the simulation param-
eters, specifically, clutter rate λ, measurement uncertainty R, detection and
gating probability PD and PG, the type of trajectory, and the critical distance
between tracks denoted by mirror_offset. The conditions should neither be
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overly challenging for the filter nor too simplistic. Through empirical meth-
ods, we have identified the parameters under which the filter encounters some
challenges but does not immediately lose track. These parameters are as fol-
lows.

• λ = 0.0015,

• R = 5I,

• Trajectory type – trapezoid,

• mirror_offset = 2,

• PD = 1,

• PG = 0.99

The last thing to determine for this scenario are the GOSPA parameters: cut-
off distance c and penalization term p. Cut-off distance represents the maxi-
mum distance beyond which two points are considered completely dissimilar
or as a misdetection. Normally, it would depend on the physical properties of
the given radar system and its resolution. Furthermore, if targets are known
to be well-separated, a smaller c can be used to emphasize localization accu-
racy. Nonetheless, a smaller c could result in a uniform metric result, since
the minimum is taken between the distance and c. The penalization term
p controls the sensitivity of the metric to outliers and the relative weighting
of cardinality and localization errors. Since all of the simulated tracks are
moving with constant velocity and have predictable trajectory, we expect the
predictions to be quite accurate, co there is no need to set c some high value.

In contrast, as discussed in Section 3.5, adaptive gating in our approach could
lead to a higher incidence of misdetections as a consequence of decreasing PG.
This leads to the increased value of the penalization term in order to reduce
the misdetection rate. We set

• c = 20,

• p = 2.

It is important to note that the optimal parameters may vary depending on
the specific characteristics of the tracking scenario, including target dynamics,
clutter density, and sensor capabilities. As such, the parameter optimization
process should be tailored to the specific application context.
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4.2. Parameter Optimization via Monte Carlo Simulations

Results

The plots presented in Figure 4.5 illustrate the relationship between the adap-
tive gating parameters (P_squeeze, squeeze_max_steps, cooldown) and the
performance metrics RMSE and GOSPA. First, let us look at P_squeeze. As
P_squeeze increases (larger validation gate), both RMSE and GOSPA exhibit
a general upward trend. This suggests that a more permissive gating approach
leads to increased localization errors (RMSE) and potentially more cardinality
errors (missed detections and false tracks reflected in GOSPA). This is likely
due to the inclusion of more clutter and potentially incorrect data associa-
tions within the larger gate. The trade-off between localization accuracy and
cardinality errors remains a key consideration.

With increasing squeeze_max_steps (longer duration of the shrunken gate),
RMSE shows a sharp decrease, indicating improved localization accuracy
due to a more focused validation region during potential track interactions.
GOSPA demonstrates a similar behavior.

Both RMSE and GOSPA show relatively stable trends with increasing
cooldown periods. This suggests that the cooldown duration has a less sig-
nificant impact on overall tracking performance compared to P_squeeze and
squeeze_max_steps.

Figure 4.6 displays the average number of misdetections. The number of

Figure 4.5: RMSE and GOSPA for different parameters.
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Figure 4.6: Misdetections for different parameters.

misdetections decreases significantly with increasing P_squeeze. Surprisingly,
this does not correlate with the expected GOSPA trends. It is important to
recognize that while GOSPA considers cardinality errors (including missed
detections), it may not directly reflect the exact number of misdetections
reported by the algorithm. This is due to several key factors:

• Independent Association GOSPA performs its own optimal associa-
tion between true targets and estimated tracks, which may differ from
the associations made by the tracking algorithm itself. As a result,
GOSPA might identify potential associations between tracks and mea-
surements that the algorithm classified as misdetections, leading to a
discrepancy in the reported misdetection counts.

• Constant Validation Gate GOSPA operates with a fixed cut-off dis-
tance c for determining association possibilities, whereas the adaptive
gating mechanism dynamically adjusts the size of the validation gate.
This difference in gating strategies can further contribute to discrepan-
cies between GOSPA’s assessment of cardinality errors and the actual
misdetections encountered by the algorithm.

However, Figure 4.7 clearly illustrates that both RMSE and GOSPA exhibit
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4.2. Parameter Optimization via Monte Carlo Simulations

Figure 4.7: Correlation heatmap.

a strong negative correlation with the number of misdetections, although the
correlation strength is lower for GOSPA (−0.688 compared to −0.834 for
RMSE). This indicates that while GOSPA does account for cardinality er-
rors to some extent, their influence on the overall metric is minor relative to
localization errors.

Misdetections show a clear upward trend with increasing squeeze_max_steps,
confirming that longer durations of the shrunken gate lead to a higher likeli-
hood of missed detections. This is likely due to the exclusion of valid measure-
ments when the gate is too restrictive for extended periods. The cooldown
parameter appears to have minimal impact on the frequency of misdetections.

A correlation heatmap depicted in Figure 4.7 reinforces the observed trends.
Both RMSE and GOSPA are strongly positively correlated with P_squeeze
and negatively correlated with squeeze_max_steps. The parameter cooldown
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has a negligible negative correlation with the metrics. The relationship be-
tween misdetections and algorithm parameters is consistent with previous find-
ings, emphasizing that a higher P_squeeze leads to fewer misdetections, and to
a lesser degree, reducing squeeze_max_steps also contributes to fewer missed
targets.

Based on these observations, selecting the optimal parameter combination in-
volves finding a balance between minimizing localization errors (RMSE) and
cardinality errors (GOSPA + misdetections). The specific choice will de-
pend on the application priorities and the relative importance of accurate
state estimation versus correct track maintenance. For example, if mini-
mizing localization errors is crucial, a lower P_squeeze value and a higher
squeeze_max_steps might be preferred. Conversely, if ensuring correct track
cardinality is of greater importance, a higher P_squeeze and a shorter
squeeze_max_steps might be more suitable, accepting a slight increase in lo-
calization errors. The cooldown parameter appears to have a less significant
impact on performance and could be chosen based on other application-specific
considerations.

For further simulations, we set

• P_squeeze = 0.975.

• squeeze_max_steps = 3.

• cooldown = 2

4.3 Algorithm Comparison: Controlled
Experiment with Fixed Seeds

Once we have defined the optimal parameters of our method for a given sce-
nario, we can compare it with other methods. To provide a controlled compar-
ison of the JPDA, JPDA*, and our method, we conduct an experiment where
we eliminate the stochastic factor by fixing the random seed during simula-
tion. This allows us to isolate the impact of algorithm design and parameter
choices on tracking performance.

This experiment is also based on grid search. The parameters for this grid
search are

• trajectory_type ← {angle, curve, line, trapezoid} (see Figure 4.1).

• mirror_offset ← {1, 2, 5, 10, 20}.
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Figure 4.8: Correlation heatmap.

• λ← {0.0001, 0.0005, 0.001, 0.003}.

• R ← {0.5, 1, 5, 10}.

This gives us 240 combinations in total for each algorithm.

Results

Figure 4.8 displays a correlation heatmap that features the experiment param-
eters. The heatmap reveals intriguing relationships between algorithm perfor-
mance (RMSE and GOSPA) and the different scenario parameters. RMSE
shows a moderate positive correlation with λ (clutter rate) and R (measure-
ment uncertainty). This is expected, as higher clutter density and measure-
ment noise generally lead to increased localization errors for all algorithms.
The correlation is stronger with λ. GOSPA exhibits a stronger positive cor-
relation with R than RMSE. Otherwise, we see a similar dependence. Sur-
prisingly, RMSE shows a stronger positive correlation with the amount of
misdetections, which is more expected from GOSPA.
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Interestingly, both RMSE and GOSPA show weak negative correlations with
the mirror_offset parameter. This suggests that as the distance between
tracks increases, the performance of all algorithms tends to improve slightly.
In particular, this performance enhancement is noticeable for trajectories line
and trapezoid, where targets move along a straight line in close proximity.
Under such conditions with an increased clutter rate λ and R tracking becomes
particularly impossible (refer to Figure 4.4 where R = 10).

However, in Figure 4.8, we can clearly see that the angle trajectory has the
strongest positive correlation with RMSE and GOSPA among other trajecto-
ries. It could be caused by a sharp turn in the trajectory at a critical point.
The implemented algorithms use CVM as a motion model, which is not well
suited for such rapid changes in motion. The most complicated trajectory
in terms of misdetections is curve, which is expected. Again, the reason is
the constant velocity motion model and the highly maneuvering nature of the
trajectory.

The heatmap also provides subtle hints about the relative performance of the
algorithms. The correlation patterns for baseline JPDA, JPDA*, and our
proposed method appear quite similar. This indicates that overall perfor-
mance trends with respect to the scenario parameters are consistent across all
three algorithms. However, slight differences in the magnitude of the correla-
tions can be observed. For example, the negative correlation for GOSPA and
RMSE seems slightly stronger for our proposed method compared to JPDA
and JPDA* with pruning, both of which have a low positive correlation. This
could imply that our approach potentially exhibits improved performance in
various tracking scenarios.

Figure 4.9 displays three boxplots representing the metrics for three different
algorithms. We see that JPDA* shows an increase in mean RMSE compared
to baseline JPDA. However, we can see that the median RMSE for JPDA*
is 32.7% lower than for the baseline JPDA, which means that the error of
JPDA* might be higher in extreme cases, but remains pretty low in normal
conditions. Our method achieves the lowest mean and median RMSE values,
indicating the best localization performance among the three algorithms. This
implies that the adaptive gating mechanism further reduces the impact of track
coalescence on state estimation, resulting in more accurate target tracking.

The baseline JPDA shows the highest median and mean GOSPA values. This
suggests that the baseline JPDA suffers from a combination of localization
errors and cardinality errors (missed detections and false tracks), leading to
suboptimal overall tracking performance. JPDA* exhibits a slight improve-
ment in GOSPA compared to baseline JPDA, with lower mean and median
values. This indicates that pruning helps reduce cardinality errors to some
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Figure 4.9: Metrics for JPDA, JPDA* and our method.
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extent, but the improvement is not as significant as the reduction in RMSE.
The proposed method demonstrates the lowest median and mean GOSPA val-
ues, which represents the best overall tracking performance among the three
algorithms. This implies that the adaptive gating approach effectively bal-
ances localization accuracy and cardinality errors, leading to more reliable
and accurate multi-target tracking.

However, we can see an increase in the number of misdetections for our ap-
proach, compared to JPDA and JPDA*. Both show similar performance in
terms of misdetections. In Table 4.1 we can see that baseline JPDA and

JPDA JPDA* Ours
Mean 0.52 0.53 4.81

Median 0 0 0
75th percentile 0 0 1
90th percentile 1 1 4

Table 4.1: Mean Misdetections for Three Algorithms

JPDA* exhibit very low misdetection rates across all percentiles. The median
and 75th percentile values of 0 indicate that in most scenarios, these algo-
rithms experience no misdetections. Even at the 90th percentile, the number
of misdetections remains low, 1 for both algorithms. This confirms their ef-
fectiveness in maintaining track continuity and avoiding track loss. Our pro-
posed method with adaptive gating, while still having a median misdetection
value of 0, shows a significantly higher number of misdetections at higher
percentiles. The 75th percentile value of 1 suggests that in a quarter of the
scenarios, our method experiences at least one misdetection. This increases
to 4 misdetections at the 90th percentile, indicating a higher susceptibility
to missed detections in certain challenging situations. The data suggest that
the increased misdetection rate in our proposed method is not a uniform issue
across all scenarios but rather concentrated in a subset of challenging situa-
tions. While most scenarios still result in no misdetections, specific conditions
lead to a higher number of missed tracks.

4.4 Direct Algorithm Comparison in Specific
Scenarios

To further evaluate the performance of the JPDA, JPDA*, and our proposed
method with adaptive gating, we conduct a direct comparison in three concrete
tracking scenarios with varying levels of difficulty. This allows us to assess how
each algorithm handles specific challenges and observe their behavior under
controlled conditions.
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We define three scenarios with different parameter settings to represent easy,
medium, and hard tracking conditions. These scenarios are designed to vary
the levels of measurement uncertainty, clutter density, and target proximity,
which are key factors that influence track coalescence and overall tracking per-
formance. The values of the specific parameters for each scenario are presented
in Table 4.2.

Parameter Easy Medium Hard
R 1.0 1.5 2.0
PD 1.0 1.0 1.0
PG 0.999 0.999 0.999

Trajectory Trapezoid Trapezoid Trapezoid
Offset 5 3 3
λ 0.001 0.0015 0.003

Psqueeze 0.975 0.975 0.975
Steps/Cooldown 3/2 3/2 3/2

Table 4.2: Parameter settings for the easy, medium, and hard tracking sce-
narios.

As shown in the table, the scenarios primarily differ in the following aspects:

• Measurement Uncertainty (R): The measurement noise covariance
R increases from easy to hard scenarios, representing an increase in
uncertainty in sensor measurements.

• Clutter Density (λ): The clutter rate λ also increases from easy to
hard scenarios, indicating a higher density of false alarms and back-
ground noise.

• Target Proximity (Offset): The distance between targets at their clos-
est point (offset) is smaller in the medium and hard scenarios compared
to the easy scenario, creating a higher risk of track coalescence due to
closer target interactions.

By comparing the algorithms across these scenarios, we can gain insights into
their robustness and ability to handle different levels of difficulty and specific
tracking challenges.

The graphs showing RMSE and GOSPA over time for each scenario (Fig-
ures 4.10, 4.11, and 4.12) provide valuable information on the comparative
performance and behavior of JPDA, JPDA*, and our proposed method with
adaptive gating under varying levels of difficulty. Furthermore, Figure 4.13
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Figure 4.10: Metrics for easy scenario.

Figure 4.11: Metrics for medium scenario.
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Figure 4.12: Metrics for hard scenario.

(a) Easy scenario. (b) Medium scenario. (c) Hard scenario.

Figure 4.13: Trajectories for different scenarios at time t = 153.
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shows the trajectories generated by each algorithm in all three scenarios. Let
us analyze the observations for each scenario.

All three algorithms exhibit similar performance in terms of both RMSE and
GOSPA for the easy scenario (see Figure 4.10). The metrics remain relatively
stable and low throughout the scenario, indicating successful tracking of both
targets with minimal localization and cardinality errors. This suggests that
under certain tracking conditions with low measurement noise, clutter density,
and sufficient target separation, all algorithms can effectively maintain track
accuracy and avoid track coalescence.

Concerning the medium scenario, we observe the following.

• JPDA and JPDA* with pruning show a significant increase in RMSE
compared to the easy scenario, particularly after the point where the
target trajectories approach each other. This indicates that both algo-
rithms struggle with increased measurement uncertainty, clutter, and
reduced target separation, leading to track loss.

• Our proposed method with adaptive gating demonstrates significantly
lower RMSE and GOSPA throughout the scenario, including during the
critical track interaction phase. This highlights the effectiveness of adap-
tive gating in mitigating track coalescence and maintaining accurate
state estimation even under more challenging conditions.

• GOSPA trends for all algorithms follow a similar pattern to the RMSE
observations, further confirming the superior performance of our pro-
posed method in terms of overall tracking accuracy and cardinality er-
ror management. Furthermore, Figure 4.11 illustrates the difference in
GOSPA between baseline JPDA and JPDA* during the last scans, while
RMSE shows similar behavior. It indicates fewer cardinality errors for
JPDA*.

For the hard scenario, we see that all three algorithms experience a rapid
increase in both RMSE and GOSPA shortly after the start of the scenario,
indicating a loss of track accuracy and increased cardinality errors. The high
level of measurement noise, clutter density, and close target proximity pose
significant challenges for all algorithms, leading to track coalescence and ulti-
mately track loss. The observed decrease in RMSE during the period of closest
target proximity is likely an artifact of the evaluation metric, rather than an
indication of improved tracking performance. In Figure 4.13, we can see that
when the filter loses track, its predictions are concentrated in the center of the
surveillance area. As the true target states approach each other in the center,
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even erroneous state estimates would result in lower RMSE values due to the
reduced distance between the estimated and true positions. The subsequent
increase in RMSE and GOSPA as the targets move apart further confirms the
loss of track accuracy and the presence of significant cardinality errors.

The results across the three scenarios clearly demonstrate the advantages of
our proposed JPDA* variant with adaptive gating in handling challenging
tracking conditions. Although all algorithms perform well in the easy sce-
nario, our method exhibits superior robustness and accuracy in the medium
scenario, successfully mitigating track coalescence and maintaining reliable
tracking performance. For a hard scenario, our algorithm fails, as well as
other ones. Concerning misdetections, no algorithm reported any misdetec-
tions in these scenarios.

These findings highlight the effectiveness of adaptive gating as a valuable
technique to enhance JPDA-based tracking algorithms, particularly in sce-
narios with increased, but still manageable, measurement uncertainty, clutter
density, and close target interactions. The ability to dynamically adjust the
validation gate based on target proximity and estimated states enables our
method to effectively balance the trade-off between localization accuracy and
cardinality errors, leading to more robust and reliable multi-target tracking
performance in complex and challenging environments. In extreme situations,
however, our algorithm shows a higher degree of misdetections than others,
which could be a foundation for future work.

65





Conclusion and Future Work

This thesis has explored the challenges and solutions associated with track co-
alescence in Joint Probabilistic Data Association (JPDA) filters, a widely used
class of multi-target tracking algorithms. We began by establishing a com-
prehensive understanding of single-target tracking (STT) principles, including
state estimation, motion models, and the impact of measurement noise and
clutter. The limitations of traditional Kalman filters in handling clutter led
to the introduction of the Probabilistic Data Association (PDA) filter, which
effectively incorporates data association probabilities to mitigate the adverse
effects of clutter and missed detections.

Moving into the realm of multi-target tracking (MTT), we delved into the
complexities of tracking multiple objects simultaneously and the critical issue
of track coalescence. JPDA filters, as an extension of PDA for MTT scenarios,
were analyzed in detail, highlighting their vulnerability to track coalescence
when targets move in close proximity. The factors contributing to track coa-
lescence, including high clutter density, low detection probability, and similar
target motion, were discussed, along with the detrimental consequences of
track loss, degraded state estimation, and inaccurate target identification.

To address the challenge of track coalescence, we investigated various existing
suppression techniques, including:

• Exact Nearest Neighbor (ENNPDA) A simple yet effective ap-
proach that prunes all but the most likely association hypothesis, leading
to reduced coalescence but increased sensitivity to clutter and misdetec-
tions.

• JPDA* A more robust approach that retains the clutter and misdetec-
tion resilience of JPDA while strategically pruning less likely hypotheses
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to mitigate coalescence.

• Coupling Methods (e.g., CPDA, CPDA*) Techniques that utilize
a joint state representation for multiple targets, offering some improve-
ment in handling coalescence, but often with increased complexity.

• Bias Removal Methods (e.g., BRJPDA) Approaches that estimate
and remove bias from the state estimates to counteract the tendency of
tracks to merge during close interactions.

Building upon the concept of hypothesis pruning in JPDA*, we introduced a
novel method that incorporates adaptive validation gating to further enhance
coalescence suppression. Our proposed algorithm dynamically adjusts the
validation gate size based on the proximity and estimated states of nearby
targets. By shrinking the gate during potential track interactions, we aim
to limit association possibilities and reduce the likelihood of tracks merging
erroneously.

To evaluate the performance of our proposed method, we conducted simula-
tions and experiments.

• Monte Carlo Simulations A grid search approach was employed to
identify the optimal parameter settings for our adaptive gating mecha-
nism, considering the trade-offs between localization accuracy, cardinal-
ity errors, and misdetections.

• Controlled Experiment with Fixed Seeds A comprehensive com-
parison of JPDA, JPDA*, and our proposed method was conducted
across a wide range of scenarios with varying clutter densities, measure-
ment uncertainties, target proximities, and trajectory types. The results
provided insights into the relative performance and robustness of each
algorithm under different conditions.

• Direct Comparison in Specific Scenarios We directly compared the
algorithms in three concrete scenarios that represent easy, medium and
hard tracking conditions. This allowed us to assess their behavior and
effectiveness in handling specific challenges.

The experimental results demonstrate that our proposed JPDA* variant with
adaptive gating generally outperforms both the baseline JPDA and JPDA*
with pruning. Our method consistently achieves:
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• Improved Localization Accuracy The adaptive gating mechanism
effectively mitigates track coalescence, leading to more accurate state
estimation and reduced localization errors (RMSE) compared to the
other algorithms, especially in scenarios with moderate difficulty.

• Enhanced Overall Tracking Performance By balancing the trade-
off between localization and cardinality errors, our method achieves
the best overall tracking performance (GOSPA) among the algorithms
tested.

However, our approach exhibits a drawback in terms of a higher misdetec-
tion rate in extreme or challenging scenarios. While the median number of
misdetections remains low, indicating reliable track maintenance in most sit-
uations, specific conditions can lead to increased missed detections due to the
potentially aggressive nature of adaptive gating.

This limitation paves the way for future research and improvements.

• Adaptive P_squeeze: Our current implementation uses a predefined
value for P_squeeze, the probability used to shrink the validation gate.
To further enhance the adaptability of the algorithm, P_squeeze could
be dynamically adjusted based on factors such as:

– Target Proximity A more nuanced approach could scale
P_squeeze based on the distance between intersecting gates or the
estimated distance between targets, allowing for a more sophisti-
cated control of the gate size.

– Track Quality Metrics P_squeeze could be adapted based on
estimated track quality or confidence level, providing a more in-
formed gating decision that considers the reliability of the tracks
involved.

– Clutter Density and Measurement Noise The gating proba-
bility could be dynamically adjusted to account for varying levels
of clutter and measurement noise, ensuring a more robust response
to changing environmental conditions.

• Alternative Gating Strategies Exploring alternative gating shapes,
such as elliptical or rectangular gates with dynamically adjusted dimen-
sions, could offer additional flexibility and potentially improve perfor-
mance in specific scenarios.

• Advanced Track Management Integrating more sophisticated track
management strategies that consider track quality, age, and the like-

69



Conclusion and Future Work

lihood of misdetections could further enhance track maintenance and
reduce the impact of missed detections on overall tracking performance.

• Integration with Machine Learning: Incorporating machine learn-
ing techniques to learn optimal gating parameters or predict track co-
alescence events could lead to more intelligent and adaptive tracking
systems.

By addressing the limitations of our proposed method and exploring these
avenues for future research, we can strive towards even more robust, accurate,
and adaptable multi-target tracking solutions capable of effectively handling
complex and challenging scenarios with closely spaced targets.
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Appendix A
Acronyms

MTT Multi-target tracking

JPDA Joint Probabilistic Data Association

JIPDA Joint Integrated Probabilistic Data Association

RFS Random Finite Set

PHD Probability Hypothesis Density

PMBM Poisson multi-Bernoulli mixture

PDA Probability Data Association

MHT Multiple Hypothesis Tracking

GNN Global Nearest Neighbor

KF Kalman Filter

EKF Extended Kalman Filter

PF Particle Filter

UKF Unscented Kalman Filter

NN Nearest Neighbor

ENNPDA Exact Nearest Neighbor Probabilistic Data Association

CPDA Coupled Probabilistic Data Association

JPDAC Joint Probabilistic Data Association with Coupling

BRJPDA Bias Removal Joint Probabilistic Data Association
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A. Acronyms

RMSE Root Mean Square Error

GOSPA Generalized Optimal Sub-Pattern Assignment

CDF Cumulative Distribution Function

i.i.d. independent and identically distributed

pdf probability density function

PPP Poisson Point Process

MMSE Minimum Mean Square Error

MAP Maximum A Posteriori

CVM Constant Velocity Model

CAM Constant Acceleration Model
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Appendix B
Contents of enclosed media

env..............................the directory with environment configs
environment.yml ......................anaconda required packages
gospapy ...........................................gospapy library

source ................................... the directory of source codes
thesis ............................................ the thesis directory

tex src.............the directory of LATEX source codes of the thesis
thesis.pdf...........................the thesis text in PDF format

README.txt......................the file with repo contents description
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