
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of master’s thesis

Decentralized and Open Architecture of a Reservation System

Bc. David Straka

doc. Ing. Tomáš Vitvar, Ph.D.

Informatics

Web Engineering

Department of Software Engineering

until the end of summer semester 2023/2024

Instructions

Despite the increase of centralized solutions on the Internet today, there are many novel

standards and technologies that go back to the original idea of the Internet and the Web

in particular and use decentralized architectures. For example, Blockchain, Fediverse,

and the most recent efforts around blockchain-less Web 3.0 are only a few examples of

novel approaches whose main goal is to promote data privacy and security and enable

users to have more control of their data. The goal of the thesis is to contribute to such

efforts by developing a decentralized architecture for a reservation system. The thesis

will fulfill the following tasks.

- Design an open and decentralized architecture for a general-purpose reservation

system which should include a decentralized client-server communication protocol

based on HTTP, and it should be possible to integrate the system with state-of-the-art

cloud-native architectures.

- Develop a reference implementation of the architecture, including a client and a

backend.

- Develop and implement a use case for a selected type of reservation business and

discuss extensions of the architecture for the selected use case.

- Test and evaluate the reference implementation and the solution for the use case.

Electronically approved by Ing. Jaroslav Kuchař, Ph.D. on 9 February 2023 in Prague.

Master’s thesis

Decentralized and Open Architecture of a
Reservation System

Bc. David Straka

Department of Software Engineering
Supervisor: doc. Ing. Tomáš Vitvar, Ph.D.

February 15, 2024

Acknowledgements

I would like to start by thanking my supervisor, doc. Ing. Tomáš Vit-
var, Ph.D., for his guidance and support throughout my work on this thesis, as
well as for the time he dedicated to the consultations needed especially during
the formative stages of the process. Furthermore, I would like to thank my
family and friends for their support. Last but not least, I want to express my
gratitude to the authors of the many tools and libraries that were used during
my work on the thesis, as well as to the open source community as a whole.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accor-
dance with Article 46 (6) of the Act, I hereby grant a nonexclusive authoriza-
tion (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity.

In Prague on February 15, 2024

Czech Technical University in Prague
Faculty of Information Technology
© 2024 David Straka. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Straka, David. Decentralized and Open Architecture of a Reservation System.
Master’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2024. Also available from: 〈https://davidstraka.dev/master
s-thesis〉.

https://davidstraka.dev/masters-thesis
https://davidstraka.dev/masters-thesis

Abstract

This thesis deals with the design, implementation, and testing of an open and
decentralized architecture of a general-purpose reservation system. The thesis
features an overview of select existing reservation systems, a requirements
analysis, and an overview of state-of-the-art decentralized systems. The thesis
then designs a suitable architecture, booking client application, and its back
end, which is designed to support a common HTTP-based booking protocol.
Lastly, an implementation of the design is presented, along with the results of
its testing and evaluation.

Keywords decentralized architecture, reservation system, decentralization,
reservations, bookings, appointments, Web

vii

Abstrakt

Tato práce se zabývá návrhem, implementací a otestováním otevřené a
decentralizované architektury pro univerzální rezervační systém. V práci je
zahrnut přehled vybraných existujících rezervačních systémů, analýza poža-
davků a přehled moderních decentralizovaných systémů. Tato práce dále na-
vrhuje vhodnou architekturu, klientskou rezervační aplikaci a její back end,
který je navržen tak, aby podporoval společný rezervační protokol založený na
HTTP. Nakonec je představena implementace návrhu spolu s výsledky jeho
testování a evaluace.

Klíčová slova decentralizovaná architektura, rezervační systém, decentrali-
zace, rezervace, schůzky, Web

viii

Contents

Introduction 1

1 Existing Reservation Systems 3
1.1 Acuity Scheduling . 4
1.2 Reservio . 6
1.3 Square Appointments . 8
1.4 Wix . 11
1.5 Summary . 14

2 Analysis 17
2.1 Functional Requirements . 17
2.2 Non-functional Requirements 19

3 State-of-the-Art Decentralized Systems 21

4 Design 23
4.1 Architecture . 23
4.2 Booking Protocol . 32
4.3 Booking Service . 32
4.4 Client Application . 34

5 Implementation 35
5.1 Booking Service . 35

Conclusion 37

Bibliography 39

A List of Acronyms 43

ix

B Contents of the Digital Attachment 45

x

List of Figures

1.1 Acuity Scheduling . 6
1.2 Reservio . 9
1.3 Square Appointments . 11
1.4 Wix Events . 14
1.5 Wix Bookings . 15

4.1 System network diagram . 29
4.2 System conceptual schema . 30
4.3 Architecture diagram . 32
4.4 Detailed architecture diagram . 32
4.5 Conceptual schema of the booking service database 34

5.1 Diagram of the booking service database 36

xi

List of Listings

4.1 Simplified definition of Schedule JSON using a TypeScript in-
terface . 33

xiii

Introduction

The online reservation service Reservio [1] claims that 70% of people prefer
to book online, and providing online bookings leads to a 30% profit increase
for businesses. One of the reviews showcased on their website [1] from the
University Hospital Brno cites that these services save the hospital over 10
hours a week of administrative work.

A 2019 United States healthcare report by KPMG [2], on the other hand,
claims that “most consumers prefer to book appointments by phone,” but it
also states that about 40% are unable to do so on the first try and that 58%
of millennials and 64% of people belonging to the generation X “value online
booking to the extent that they would switch providers in order to do so.”

According to a 2014 study on the adoption, use, and impact of electronic
booking in private medical practices in Canada [3], both patients and physi-
cians showed growing interest in such system, “great majority of patients said
that they appreciated the system mainly because of the benefits they derived
from it, namely, scheduling flexibility, time savings, and automated reminders
that prevented forgotten appointments,” and the study’s findings “suggest
that the system’s automated reminders help significantly reduce the number
of missed appointments.”

Yet, in practice, one can see many businesses still opting not to offer
online bookings, instead relying mainly on phone calls or sometimes emails
for reservations.

When businesses do offer online bookings, they tend to use a wide variety
of different systems, each with its own user interface (UI) and user experience
(UX). This can be confusing for the customers and can lead to a suboptimal
UX due to, for instance, having to learn to use a new UI and familiarizing
oneself with the features available within the system, having to manage many
different user accounts’ login credentials (oftentimes leading to password reuse
and thus also posing a security risk), and keeping track of all the bookings
spread across the different platforms. Smaller booking systems also tend to
struggle with handling surges in traffic. Because of the lack of standardization,

1

Introduction

migrating from one system to another can prove to be a challenge for both
the business and the customers, risking vendor lock-in.

An alternative to having many different booking systems could be one
or a few of them becoming dominant within its market. This does have the
advantages of a unified UX and fewer login credentials; however, there are
many disadvantages and risks associated with such dominant platforms (often
dominant to the point of them becoming monopolies or oligopolies). Such
risks can be seen in many other types of online services, such as social media,
search engines, and e-commerce platforms. Once these dominant platforms
form, they can be very difficult for users to escape, for instance, due to the
network effect where [4] “increased numbers of people improve the value of
a good or service,” and which [4] also says may lead to less innovation.

With the rise of these dominant platforms, there has also been a grow-
ing number of efforts to create decentralized alternatives. Such decentralized
systems often provide many of the advantages of a dominant centralized plat-
form, such as being able to interact with a large network of users from a single
client application with a familiar UI/UX and a single user account, but with-
out many of the risks associated with the system being run by a single legal
entity. An example of such an emerging decentralized system is the Fediverse.
Some great examples of older decentralized online systems that are nowadays
ubiquitous are email, and even the World Wide Web itself.

The goal of this thesis is to explore the possibility of creating a decentral-
ized, general-purpose online reservation system by designing an open architec-
ture of such system, including a common HTTP-based client-server protocol,
and developing a reference implementation including both a client applica-
tion and a back end. The created solution should be easy to integrate with
state-of-the-art cloud-native architectures and should support a use case for
a selected type of reservation business. Possible extensions for the selected use
case should be discussed. The reference implementation should be tested and
evaluated for the selected use case. Additionally, the thesis will explore select
existing online reservation systems and select state-of-the-art decentralized
systems.

2

Chapter 1
Existing Reservation Systems

This chapter serves as an overview of select existing online reservation systems
and can be taken as a form of market research for the booking system to be
created.

The overview is meant to be qualitative rather than quantitative, focusing
on the exploration of features provided by a select few systems and the user
experience while using those systems. The systems chosen for the overview
are Acuity Scheduling1, Reservio2, Square Appointments3, and Wix4.

The criteria used to choose the systems for the overview are the following:

• Popularity — The system must be popular with the public. Without
an extensive quantitative survey, this is a difficult criterion to evaluate.
As a rough estimate, the system’s ranking in the Google search results
for the queries “online reservation system,” “online booking system,”
and “online scheduling system” was used. If the systems appeared on
the first couple of pages of the results, they were considered popular
enough. Some flaws of this approach are, for instance, results personal-
ization based on geographic location, as well as search engine optimiza-
tion (SEO) techniques used by the systems. Similarly, different systems
could have been discovered by using other search queries and search en-
gines. However, despite the flaws of this approach, it still seemed to
yield good enough results.

• Localization — The system must have English localization.

• Price — The system must offer a free version of its service (at least as
a limited-time trial). Additionally, it must not require payment infor-
mation to sign up for the free version.

1Acuity Scheduling (https://www.acuityscheduling.com)
2Reservio (https://www.reservio.com)
3Square Appointments (https://squareup.com/us/en/appointments)
4Wix (https://www.wix.com)

3

https://www.acuityscheduling.com
https://www.reservio.com
https://squareup.com/us/en/appointments
https://www.wix.com

1. Existing Reservation Systems

1.1 Acuity Scheduling

Acuity Scheduling [5] describes itself as “an online appointment-booking tool”
that “is great for any business that needs clients to book appointments for ser-
vices in advance.” It also says that “businesses including yoga studios, massage
therapists, acupuncture, life coaches, photographers, hair and nail salons use
Acuity with great success,” but that it “is not a great fit for businesses that
want to book appointments that last more than a day, like car rentals, vacation
rentals, or hotels.” Acuity Scheduling is a subsidiary of Squarespace – a com-
pany that primarily focuses on providing a website-building service (for some
time after Squarespace acquired Acuity, the scheduling product was rebranded
to Squarespace Scheduling, but that change has since been reverted).

The website offers a free limited-time trial, after which it cannot be used
without paying for one of its tiered plans. After first singing up for a business
account, the user is asked for the name of their business and the name of
an Acuity Scheduling subdomain that the service will create for the booking
website of the business (this is optional, and if not provided, the website will
be available under a shared subdomain and a URL query parameter with
a generated identifier).

The user then creates their first appointment type by filling out the name
of the appointment, its duration, whether it is a one-on-one appointment or
a group appointment, and optionally, its price. If the user has selected the
group appointment type, they must set the number of open slots per class as
well.

Moreover, the user sets up the availability of the created appointment type
by selecting a date and a time, whether or not it is a recurring event, and,
if it is, the frequency of the recurrence (such as every Monday, every other
Tuesday, the first Wednesday of each month, or daily), and the number of
recurrences.

Lastly, the user can optionally connect third-party payment processors
(Stripe, Square, and PayPal) for collecting deposits or full payments for the
appointment bookings. Long-term subscriptions are also supported. The
service claims [5] that it does not take any commission on the payments and
that the only fees are those charged by the payment processor.

After the business user completes the sign-up process, customers can access
a booking website that is created for the business. Upon accessing the website,
customers see the business information (with only the sign-up completed, that
is just the business name), followed by a list of appointments to choose from,
with each appointment featuring its name, time and date, duration, and a sign-
-up button. If the business user selected the group appointment type, there is
also a quantity field above the appointment list and the number of free spots
available under each appointment’s sign-up button. Signing up for a selected
appointment is followed by filling out personal information (a full name, an
email address, and optionally a phone number). If there was no payment

4

1.1. Acuity Scheduling

required, the customer completes the booking and receives an email with the
details of their booking, a link to reschedule or cancel the appointment, and
links to add the appointment to their calendar. The booking page can be
seen in the figure 1.1. The customer can use an account to manage their
booked appointments, but it is purely optional, and they can still manage
their bookings through the email links. There is also no way for the business
to limit their appointments to only signed-in customers (the business can,
however, ban clients by their email address).

The scheduling functionality can be integrated into any website built with
Squarespace (which can then use a custom domain). There are also simple
booking components that can be embedded into another website, in addition
to the option to embed a booking page iframe. The booking website can
be customized by choosing between a couple of predefined layouts and can
also use custom CSS. The platform also features webhooks and an extensive
application programming interface (API), which can be used to integrate it
with other applications.

Business users can see all their appointments in a calendar overview, as
well as all their clients. Under each appointment in the calendar, the user can
see all signed-up customers, reschedule or cancel their bookings (when the
business user does this, the affected customer can be notified by email, but
there is also an option not to send this notification), and add private notes
and tags for each customer. The user can manually add new attendees to
each appointment (which can be useful, for example, when a customer wants
to create a booking over the phone, but the business wants to have everything
tracked in the booking system). There is also an option to send an email to
all attendees of a selected appointment, in addition to SMS reminders. The
business user can be notified of new activity by email as well, and they can
synchronize their calendar with other popular calendar applications.

Appointment types can be further customized by adding a color and a pic-
ture. Users can make appointments private, in which case they are not visible
to the public and can only be accessed through a direct link. There is an option
to require clients to sign up for every recurrence of a recurring appointment
and an option to disallow clients from booking multiple spots. Appointment
types can also have a form added for the customers to fill out before booking
an appointment. The form can consist of questions with answers of several
different types, including a text field, a drop-down list, a checkbox, and even
a file upload. The business information shown on the booking website can
also be customized a bit further by, for instance, adding a logo, filling out rich
content instructions for the customers, and changing to one of a few different
languages.

Other features available include CSV import and export of clients and
appointments, setting limits on how long before an appointment it can be
canceled or rescheduled, and adding Google Analytics to the booking web-

5

1. Existing Reservation Systems

Figure 1.1: Acuity Scheduling [5]

site. A business account may be used by multiple users with separate login
credentials and role-based permissions.

1.2 Reservio

On the front page of its website [1], Reservio describes itself as a “free on-
line scheduling software for gyms, fitness centers, hair studios, barbershops,
nail salons, car repair, medical services, teachers and educational institutions,
group events, and more.”

When a user first signs up for a business account, they are asked to provide
the following information:

• the name of their business;

• the type of their business, which can be either “Single appointments”
(described as “the client books a service or an appointment at a specific

6

1.2. Reservio

time”) or “Group events” (described as “host multiple clients at the
same event, lecture or course”); to change this business type later on,
one must contact customer support;

• opening hours, which “determine the exact range of when your clients
can make bookings” and can also be customized per employee;

• the physical address of their business;

• optionally the contact phone number of their business;

• and optionally other information about their business – a website, a slo-
gan, a description, and additional information about the physical ad-
dress.

Users are also asked to add the services they would like to provide to their
clients. Each service must have a name and a duration, and can optionally
have a description, a price, a color (to visually differentiate it from other
provided services), and an additional question to ask the customers (which
can also serve as an input for a voucher code).

Lastly, users can also add staff members of the business who provide the
previously added services, each with a name, a checklist of the services they
provide, and optionally a short biography.

After the user completes the sign-up process, customers can access a book-
ing website that is created for the business on a Reservio subdomain. When
a customer accesses the booking website, they immediately see all the infor-
mation about the business that was provided during the sign up. They then
select a service for booking, a staff member (or “anyone available”), a date
from a calendar picker, and a free time slot for the selected date. The cus-
tomer can complete their booking either as a guest or by creating a Reservio
account (or logging into an existing account). If the customer chooses to
create an account, they can also see their booking history and cancel their
bookings (in the settings, a business can set how long before the event can
the bookings be canceled). The business user can also restrict in the settings
who can create bookings to for example only existing clients or only clients
with an account. As the last step of the booking process, the customer can
answer the additional question that was added by the business, and they may
also add a note. Afterwards, the customer is sent an email with the details of
their booking.

For group events, the process is very similar, with the business user ad-
ditionally specifying the capacity of an event. The customers can then book
multiple spots for an event, as long as there is sufficient space available. Group
events can also be marked as private by the business user, in which case they
are not visible to the public and can only be accessed through a direct link.

The booking page iframe or simple booking components can also be em-
bedded into another website. The booking website can be set as indexable

7

1. Existing Reservation Systems

by search engines and can use a custom domain instead of the Reservio sub-
domain (for premium accounts only). The layout and theme of the booking
website can be somewhat customized as well, though most of the customiza-
tions are limited to premium accounts. There is an extensive API which can
be used to integrate Reservio with other applications.

Business users can see their existing bookings in a calendar (also available
as per staff member and per service views) which can be seen in the figure 1.2,
as well as an overview of their clients. Premium users can have their calendar
be synchronized with other popular calendar applications. Users can edit
and cancel the existing bookings, as well as manually add new bookings and
clients. Unreliable clients can be blocked and there is a CSV file import of
clients as well. The amount of bookings a business can have is limited by
different premium subscription plans.

Other available features include the ability to receive email and SMS notifi-
cations about new and canceled bookings (though SMS is limited to premium
accounts), client reminders a set number of days or hours before a booked
event, the option to limit the time of user data retention, and adding analyt-
ics to the booking website (such as Google Analytics and Meta Pixel; limited
to premium accounts). Businesses can opt in to have their profile listed in
a service marketplace (which customers can access through a separate ap-
plication). One business account may be used by more staff members with
separate login credentials and role-based permissions.

The platform also features online payments (which can be set as manda-
tory or optional), for which it takes a commission: This feature includes the
handling of refunds when a customer cancels their booking and the possibility
of long term memberships. However, according to Reservio [1], this feature is
currently only available in the Czech Republic where the company originates
and for security reasons it does not work when a custom domain is set up for
the booking website.

1.3 Square Appointments

Square Appointments [6] is a product by the company Square (not to be
confused with Squarespace, which is a different company), which primarily
focuses on providing financial services to businesses (some other reservation
systems mentioned in this overview even offer Square as a payment processor).
Square Appointments [6] describes itself as “the all-in-one point of sale for
booking, payments, and more.”

After first signing up for a business account, the service asks the user to
provide some basic information: their personal name, business name, business
phone number, time zone, and the type of the business. This information is
later shown to the customers on an online booking site, if the business chooses
to have one.

8

1.3. Square Appointments

Figure 1.2: Reservio [1]

Square also asks for the number of staff members, business locations, and
optionally services offered. The user also must fill out their estimated monthly
revenue and optionally can input the average price per client. Then the user
selects which features they are interested in, which can be any of the follow-
ing: customizable online booking site, selling products, accepting payments,
prepayment and no-show protection, and automated reminders and confirma-
tions. For the purposes of this overview, the customizable online booking site,
as well as the automated reminders/confirmations were chosen.

Square Appointments offers a feature-limited free plan (which is also lim-
ited to a single business location), as well as a limited-time trial of their lowest
tier paid plan. The trial was used for this evaluation.

In the administrative dashboard, the user can edit their business location
details, including its physical address, contact information, and social media
links. They can add a short description of their business, a logo, and business
hours.

The user then creates services that they offer, by filling out the service
name, description, price, and duration. The service can have an image at-
tached to it and its business location specified (when the business has multi-
ple locations). A cancellation fee can be set up, and there can be extra time
added to be blocked off after the service is done (for example for cleaning).
The service can be categorized and team members can be assigned to it.

Finally, the user enables online bookings and can set up a customizable
Square Online website with booking functionality built in. This website is

9

1. Existing Reservation Systems

published to a Square provided subdomain, and a custom domain can be set
up as well (with a premium account). The booking functionality can also be
embedded into an existing website using a button component or an iframe.

When a customer visits the booking website, they can see basic information
about the business (such as its name and phone number), the services they
provide, their staff, and locations including the opening hours. To create
a booking, the customer selects the services they want to book, the date from
a calendar picker, one of the available time slots from a list, then they fill
out their personal information (phone number, email address, and full name)
and optionally any note for the business. If the business sets up multiple staff
members for a service, the customer may select a preferred staff member as
well.

Upon booking, Square automatically creates an account for the customer,
which they can sign in using the provided phone number (this cannot be
skipped). The booking can be added to their personal calendar by one of
several popular calendar services. The customer can reschedule or cancel
their booking. The customer also receives an email with the booking details.

The business user can view their calendar, which includes the customers’
bookings. They can view each booking’s details, edit and cancel the booking.
Bookings can be added manually as well. The business calendar can be syn-
chronized with Google Calendar. The business calendar can be seen in the
figure 1.3.

In the settings, the business user can also choose to require manually
accepting all bookings. Time limits for scheduling can be set as well. The
list of staff can be removed from the booking website. An interesting feature
is the so-called “Fake-it Filter” which lets the business “remove some of their
availability to give the appearance that their business is busier.” Email and
SMS reminders can be set up to be sent to the customers a given time before
their appointment. There is no option to add a form to the booking process,
but there is an option to create a form to send clients afterwards.

Other features include multiple team members using the business account
with different permissions, a waitlist that automatically notifies clients of new
availability, and an API. For some types of businesses, there is also a mar-
ketplace application from Square, where businesses can set up a profile for
clients to discover. As square as a platform is primarily focused on offering
financial services, there is a lot of detailed features related to this, including
subscriptions management, thorough receipt customization, or various options
regarding taxes, fees, and money transfers. Square also offers hardware for on
location payments.

10

1.4. Wix

Figure 1.3: Square Appointments [6]

1.4 Wix

Wix [7], similarly to Squarespace (mentioned in a prior section of this overview),
mainly offers a website building service which enables users to create their own
websites using the Wix Website Builder UI. When building a website, users
can make use of the so-called Wix Apps found in the Wix App Market. These
can be thought of as plugins/extensions that the user can use to add func-
tionality to their website or to the administrative dashboard. Wix Apps can
be either official ones developed by Wix, or third-party ones (Wix provides an
extensive API and even options to monetize the Apps published in the Wix
App Market).

Wix offers three official Wix Apps which can in various ways be used to
add reservation functionality to a Wix website: Wix Bookings, Wix Events,
and Wix Restaurants. Wix Bookings seems to be meant for businesses offering
frequently occurring appointments or classes. Wix Events appears more suited
for those who organize events that only happen a few times or infrequently
(Wix [7] lists “planning a wedding, hosting a convention, or selling tickets to
a show” as examples). Wix Restaurants, as the name suggests, focuses purely
on restaurant businesses, enabling them to for example showcase their menu,
receive orders, but also to set up online reservations.

11

1. Existing Reservation Systems

This overview focuses on Wix Events, which are available as part of Wix’s
free plan (with some limitations), and briefly on Wix Bookings, which do not
work with the website as part of the free plan, but do at least let users set up
the administrative section.

After first signing up for an account, Wix asks the user a few questions
about the purpose of their website to be built. Based on these answers it
customizes the UI a bit, including adding suitable Wix Apps. When choosing
the “Book Event” option as the primary focus of the website, the user is
directed into the setup of the already installed Wix Events. They create their
first event by entering the following:

• the name of the event,

• the type of the event – either a “Ticketed event” with options for pricing
and availability or a “Registration only” event meant to collect confir-
mations of an invitation (RSVPs),

• the starting time and date of the event,

• optionally the ending time and date of the event,

• whether it is a recurring event (this lets the user add multiple dates/times
for the event, but there does not appear to be an option to do this au-
tomatically),

• and optionally the location of the event (which can be a physical address
or online).

The user can then add various tools to their website. These tools include
for example a seating map which can “let guests choose their seats” or email
marketing which can send invitations.

Lastly, the user can set up a custom domain to use for their website (though
this is only available with a paid plan; otherwise the service provides a free
Wix subdomain), design their website, and optionally optimize the website’s
SEO. If the user selected the Ticketed event type, they also need to create
ticket types for the created event to be bookable.

For designing the website, there are ready-made layouts which can be
customized to a great extent, since that is Wix’s primary focus. The user
can also let the service use artificial intelligence (AI) to generate the website
layout for them. Since this overview’s goal is not to evaluate website builders,
the AI option was chosen to save time. The resulting layout appeared fairly
usable, though it seemed to have issues adjusting to different window sizes.

In the event details, the user can additionally provide a description and an
image for the event. Events can be grouped into categories. Creating a ticket
asks for the name of the ticket, optionally its description, the number of tickets

12

1.4. Wix

available, a pricing method, and a window of time when the ticket is available
for purchase. Tickets can be limited to a maximum amount per single order.

The pricing method can be fixed to a certain amount, split into different
categories (e.g. child, adult), “pay what you want,” and free. Wix lets users
connect third-party payment processors to collect these payments (such as
PayPal and Stripe, but the availability of the payment processors depends on
the user’s country), and it charges a service fee (which is added on top of the
payment processor’s fee).

Events can have forms attached, which can include fields of multiple dif-
ferent data types. With the seating map tool, the user can create a detailed
map of the seats and areas available at the event venue. They can then as-
sign the available tickets to specific seats or areas. This seating map from the
customer’s perspective can be seen in the figure 1.4.

When all of this is set up, the user can publish the event on their website.
Customers who access the website then navigate the event, see its details (such
as the name, the time and date, and the location) and available tickets. If the
window, during which tickets are up for sale, is open, they choose the ticket
to buy by selecting the seat or admission area from the map (or, if no seating
map was added, just choose which type of ticket to buy and its quantity), fill
out any form the business user attached to the event, and check out. The
customer can then download their tickets as a PDF document and add the
event to their personal calendar. They also receive an email with the details
of their booking.

The tickets that a customer receives include a QR code in them, which can
then be scanned on location by the event organizer using a special-purpose
mobile app from Wix. It does not appear that a customer can reschedule or
cancel their booking, though the business user can do this for them (as well as
cancel the event completely) through an overview of their orders and guests,
though according to Wix [7], they will need to handle any refunds themselves.
The business user can also add guests manually and later on manually check
in any guest.

The Wix Bookings App adds a section with a booking calendar to the
administrative dashboard. The user can add a service they would like to
provide to their customers, which can be either an appointment (described
as “a private session that can be booked according to availability”), a class
(described as “a group session that can recur” where “clients book any session
they want to join”), or a course (described as “a set of group sessions” where
“clients book them all up front”).

In addition to providing some basic details about the service, the user
can add pricing or a long-term membership plan, as well as staff members
who provide the service. A booking form can also be attached. Unlike with
Wix Events, the booking can be canceled or rescheduled by the customers,
since there are options to disable this and limit the period of time before the

13

1. Existing Reservation Systems

Figure 1.4: Wix Events [7]

booking when such changes can be made. Additionally, there is an option to
require manually accepting all bookings.

The business user also sets up their opening hours, so that the service
can offer recurring classes during these times (unlike with Wix Events, where
recurring events had to have their times and dates added manually). A useful
feature is also the option to schedule the appointment time slots either based
on the service duration or every fixed amount of time. Booking reminders
through email and SMS, calendar synchronization, and waitlists are available
as well. An example of a Wix website with the Wix Bookings functionality
can be seen in the figure 1.5.

Other features of the platform include built-in website analytics, multiple
staff members managing a single account with role-based permissions, business
website localization, CSV export of orders, and a full-featured API.

1.5 Summary

To summarize this overview, among the four online reservation systems in-
cluded in the overview – Acuity Scheduling, Reservio, Square Appointments,
and Wix – there were many similarities and common features.

14

1.5. Summary

Figure 1.5: Wix Bookings [7]

One of the similarities was the overall process of setting up a business
account, filling out basic information about the business and setting up certain
services, classes, or events for the clients to book. After this, the system would
let the users create a booking website under the subdomain of the service or
under a custom domain (which was always a premium feature). Customers
could then access the website, view the information about the business, the
services or events provided, and create a booking.

All systems also featured some options to accept payments, in addition
to sending out emails with booking details and reminders. There was always
some possibility to embed components or iframes with booking functionality
to other websites, and an API for developers to integrate the system with
other software (the API was always platform specific though). Calendar syn-

15

1. Existing Reservation Systems

chronization and multi-user accounts (with adjustable permissions) were also
common features.

The main differences (excluding pricing strategies and the UI) seemed to
be the ability to add forms for users to fill out during booking (present in
Acuity Scheduling and in Wix’s solutions), the ability to create a custom
venue map with seating and areas sold under different ticket types (present in
Wix Events).

Those platforms that focus on building websites (Wix and – the owner
of Acuity Scheduling – Squarespace) offer more features for extensive book-
ing website customization. On the other hand, Square Appointments from
Square who focuses on financial services, offers the most features for payment
processing, customer subscriptions, and financial reporting. Finally, Reservio
seemed to offer subjectively the simplest business account setup and UI.

16

Chapter 2
Analysis

This chapter includes the analysis of functional and non-functional require-
ments for the system to be designed and implemented.

The requirements are based on both the assignment of the thesis, the
overview of select existing reservation systems in the previous chapter 1, and
on original ideas for the new system.

2.1 Functional Requirements
The functional requirements for the system are the following:

F1 User account — A user without an account must sign up for one to
use the system. A user with a user account must be uniquely identified
in the system. A user can log into their account and log out of their
account.

F2 Inventory — A user can create an inventory of items for users to book.
An inventory can have some basic information attached (such as a name,
a description, and contact information). Items can also have information
attached, and can be booked by multiple users up to a given maximum
capacity.

F3 Booking — A user can view an inventory including its items of a user
with a created inventory. A user can book an item from an inventory.
A user can view their existing bookings.

F4 Forms — A user with an inventory can attach a form to the inventory.
A user who wants to book an item from an inventory with a form must
fill out the form.

F5 Booking cancellation — A user can cancel their existing booking.
A user with an inventory can cancel an existing booking of item from
their inventory as well.

17

2. Analysis

F6 Booking edits — A user can edit their existing bookings’ form data.

F7 Deadlines — A user with an inventory can limit until when an existing
booking of an inventory item can be booked or modified (which includes
both changes to a booking and booking cancellations).

F8 Permissions — A user with an inventory can limit who can book items
from their inventory by creating either an allowlist or a denylist of users.

F9* Booking ownership verification — A user can easily verify in person
that another user is the owner of a booking (for instance by scanning
a QR code).

F10* Real-time item availability updates — A user can see real-time
availability updates of a user with an inventory of items.

F11* Inventory filtering — A user can request a user’s inventory of items
filtered by item attributes.

F12* Custom domain — A user can use a custom domain for their identi-
fication in the system without setting up their own server.

F13* Data export and import — A user can export and import their data
in an open, standardized, machine-readable data format.

F14* Inventory directory — A user with an inventory set up can opt in
to have their inventory listed in a publicly accessible directory of user
inventories. A user can access the directory of user inventories and
filter/sort it by inventory attributes, or search it using natural language
queries.

F15* Calendar synchronization — A user can have their bookings with
date and time attributes synchronized with their personal calendar.
A user with an inventory set up can have their inventory items with
date and time attributes synchronized with their business calendar.

F16* Notifications — A user can receive email (and possibly other types,
such as SMS) notifications about their bookings and inventory items.

F17* Waitlist — A user can enter a waitlist for an item that is fully booked.
When a booking of that item is cancelled, or the user who the item’s
inventory belongs to increases the capacity, the first user on the waitlist
is automatically booked the item.

F18* Payments — A user with an inventory can require payments before or
after a booking is made. A user can make a payment for a booking they
made that requires it.

18

2.2. Non-functional Requirements

F19* Multi-user account — A user account can be used by multiple users.
The user that first creates a user account can manage who else can use
the account, and can limit their permissions.

F20* Internationalization — A user can choose the locale (language, cur-
rencies, date and time formats, etc.) they want to use of the system
under. A user with an inventory can set up their inventory with multi-
ple different locales.

F21* Contacts — A user can add users with inventories to their contacts
list. A user can view their contacts list and use it to quickly access the
inventories of their contacts, as well as view the bookings made for the
items of each individual contact.

F22* Autofill — A user can have their personal information automatically
filled into forms during booking. This personal information can be man-
ually entered by the user into a settings section, or automatically saved
from previously filled-in forms.

F23* Automatic reservations — A user can instruct the system to auto-
matically book selected items from selected inventories for them. Such
instructions can for example be to book any appointment-type item at
the beginning of every month from a given inventory, and that the event
item must occur within a given time range.

This list also includes some requirements that are out of scope for the
initial version of the system, but are included for the sake of completeness.
These requirements will not be further designed or implemented, but may
have some impact for instance on the design of the system, the choice of
technologies used, or certain implementation details. Such requirements are
marked with an asterisk (*).

2.2 Non-functional Requirements

The non-functional requirements for the system are the following:

N1 Decentralized architecture — Users of the system can book from
users regardless of the exact server or client application they use. Users
can also set up their own server and client application to use the system.

N2 Cloud-native — The designed and implemented solution is container-
ized for easy deployment to a cloud platform and can be scaled well.
The part of the solution that is responsible for the booking logic can be
easily integrated into another solution.

19

2. Analysis

N3 General-purpose — The designed and implemented solution should
try to be as general-purpose as possible, not rigidly built around a very
specific use case.

N4 Extensibility — The designed and implemented solution can be ex-
tended both in terms of adding completely new functionality and ex-
tending existing functionality to better fit other use cases.

N5 Backward compatibility — Users of the system can book from users
using servers that implement older or newer designs of the system (with
the functionality limited to what both parties support).

N6 Fast response times — As reservations in general can oftentimes be
very time-sensitive, the system should be designed in such a way that
does not introduce unnecessary delays to the booking process.

N7 Platform-agnostic — While testing the designed and implemented so-
lution on a single platform should be sufficient for the purposes of this
thesis (especially considering it is supposed to be a prototype and not
a production-ready product), the solution should not be limited by its
design or implementation to certain processor architecture, operating
system, or a web browser (within reason, taking into account the com-
monplace platforms). An exception can be made for new standardized
web technologies that are not supported by all platforms yet, as long as
those technologies only add additional features.

N8 Open source —The designed and implemented solution is open-source,
enabling anyone to freely use and repurpose it for their own needs.

20

Chapter 3
State-of-the-Art Decentralized

Systems

This chapter describes select state-of-the-art online decentralized systems,
which could either be directly used for creating the new system, or could
serve as an inspiration in some way.

21

Chapter 4
Design

This chapter describes the design of the proposed and implemented system.
First it details the architecture, including the architecture of the decentralized
booking system overall, the format of the booking addresses which are used to
uniquely identify users within the system and the Uniform Resource Identifier
(URI) scheme which is to be used for distinguishing the booking addresses
from other similar identifiers, and the architecture of the implementation in
this thesis. Then the chapter describes the HTTP-based booking protocol
which is used to communicate between different booking services. Lastly, the
chapter describes the design of the individual back-end services and client
application.

4.1 Architecture
This section first describes the architecture of the entire decentralized booking
system, then later defines the format of booking addresses and their URI
scheme, and lastly it focuses more on the architecture of the solution that is
implemented in this thesis.

4.1.1 System architecture

Like some other decentralized systems, such as email or the Fediverse, de-
scribed in chapter 3, the decentralized booking system shall use a federated
architecture, which comprises of a network of several booking services op-
erated by different booking service providers. These booking services shall
communicate with each other using a common booking protocol, and inter-
face with the end users through booking client applications provided by the
booking service provider operating the booking service. Within the system,
end users shall be uniquely identified by a booking address provided by their
booking service provider. An end user can not only be a human, but also
a bot, used to perform for instance automatic bookings, though some booking

23

4. Design

service providers and their users may opt to take measures to prevent bot
traffic.

The common booking protocol shall be an application layer (as defined
by [8]) protocol built on top of the HTTP protocol (as per the thesis assign-
ment). It shall be designed to be backwards-compatible, so that new features
can be added without breaking compatibility with older versions of the pro-
tocol, and to be extensible, so that features useful to only some booking use
cases can be added without affecting the rest of the protocol. The protocol’s
design is described in more detail in the section 4.3.

While the main intention is to design a system that is as interoperable
as possible, some booking service providers may choose to ban traffic from
other booking service providers if they act in malicious ways, and bookable
users may choose to ban (or only allow) certain users as well. Booking service
providers may even choose to completely isolate themselves from the rest of
the system on the internet, and instead provide booking services on a private
network only (this may be desirable for instance in some corporate environ-
ments).

A broad system network overview is shown in the figure 4.1. The figure 4.2
then shows a detailed conceptual schema modelling the entities of the system
and their relations.

The conceptual schema contains the following entities:

• BookingProtocol — This entity represents the booking protocol used
for communication between booking services in the system. It has the
attribute version, which is used to version the protocol in accordance
with the principles of semantic versioning, described by [9]. Such version
shall, as [9] says, be in the format MAJOR.MINOR.PATCH, where a MA-
JOR version shall be incremented “when you make incompatible API
changes,” a MINOR version shall be incremented “when you add func-
tionality in a backward compatible manner,” and a PATCH version shall
be incremented “when you make backwards compatible bug fixes.”

• BookingProtocolExtension — This entity represents any extension
created for the booking protocol. It has the attributes id and version.
The identifier id, the entity’s primary key, is used to uniquely identify the
extension, and it shall be an Internationalized Resource Identifier (IRI),
as defined by [10]. The version is used to version the protocol extension,
again in accordance with the principles of semantic versioning.

• BookingService — This entity represents a booking service, that is
a server used to facilitate booking activities with other booking services
in the system, using the booking protocol.

24

4.1. Architecture

• BookingServiceProvider —This entity represents a provider of a book-
ing service. Such provider is any individual or a company, that operates
a booking service and issues booking addresses to its users.

• BookingClientApp — This entity represents a booking client applica-
tion, that the end users use to interact with the booking service. Such
application can be for instance a web application, a mobile application,
or a desktop application with a graphical user interface (GUI), or even
just a simple command-line interface (CLI).

• User — This entity represents an end user of the system. That can be
both a human or a bot (or even a legal entity). One single person can
also be represented as multiple users in the system, for instance if they
use services of multiple booking service providers. This entity has the
attribute bookingAddress which is used to assign the user their system-
-wide unique booking address, and also serves as the entity’s primary
key. The format of the booking address is defined later on in this section.

• BookableUser — This entity extends the User entity and it represents
a user who has an inventory of items, that other users of the system can
book.

• Inventory — This entity represents the inventory of a bookable user –
that is, again, a user who wants other users to be able to book items from
them. The entity may have the attributes permissionMode, metadata,
form, itemType, and itemMetadataSchema.

The attribute permissionMode is used when the inventory features either
a list of banned users who may not book items of the inventory or a list of
allowed users who are the only ones permitted to book the inventory’s
items (which one of these options is used is determined based on the
value of the attribute).

The attribute metadata is used to store arbitrary metadata about the
inventory, such as contact information, opening hours, or announcements
and notes for customers. To provide machine-readable semantic meaning
to the metadata as well as the ability to link the data to other datasets,
the JSON-LD format shall be used, as defined by [11, 12].

The attribute form is used to store a JSON Schema (as specified by [13])
which defines the structure of the data that the bookable user wants
users to fill out when booking an item from the inventory. According
to [14], the defined JSON Schema can then be used to both validate the
data that the user fills out and to generate UI of a form for the user to
fill out. JSON Schema is used by many widespread production-ready
systems and utilities, including for example OpenAPI ([15] says that

25

4. Design

“OpenAPI 3.0 uses an extended subset of JSON Schema (. . .) to de-
scribe the data formats”) and in turn also Kubernetes (which according
to [16] for instance uses OpenAPI 3.0 to allow the definition of custom
resources).
The attribute itemType is used to define the type of the items in the
inventory. This is done using an IRI, that will also be used as the @vocab
directive for the JSON-LD context of the inventory’s metadata (thus
reducing verbosity of the data). This information could then be also
used by booking client applications to provide a better user experience,
for instance by providing a more specific UI for booking items of a certain
type.
Lastly, the attribute itemMetadataSchema is used to store the JSON
Schema of the metadata of the individual items in the inventory. Since
this is defined on the inventory level, booking services and booking client
applications can know which metadata to expect from all items even
when using pagination for large collections of items.

• Item — This entity represents an item in the inventory of a bookable
user. Such item can for example be a one-time doctor appointment,
a concert, a recurring language class, or even a physical item to be re-
served in a store. The entity has the attributes uuid, createdAt, capacity,
bookDeadline, modifyDeadline, and metadata.
The attribute uuid is a random version 4 universally unique identifier
(UUID) as defined by [17]. It is used to uniquely identify the item in
the system, and it is also the entity’s primary key.
The attribute createdAt is a timestamp of the date and time when the
item was created, including the time zone, in the standardized ISO 8601
format, as defined by [18].
The attribute capacity is an integer optionally used to store the maxi-
mum number of bookings that can be made for the item. It is used to
prevent overbooking. If the attribute is not set, the capacity is consid-
ered to be unlimited.
The attribute bookDeadline is a timestamp of the date and time starting
from when the item can no longer be booked, including the time zone, in
the standardized ISO 8601 format. If the attribute is not set, the item
can be booked indefinitely.
The attribute modifyDeadline is a timestamp of the date and time start-
ing from when the item can no longer be modified (that is, edited or can-
celed), including the time zone, in the standardized ISO 8601 format. If
the attribute is not set, the item can be modified indefinitely.
Lastly, the attribute metadata is used to store arbitrary metadata about
the item, such as a description, a price, a date and a time, or a location.

26

4.1. Architecture

To provide machine-readable semantic meaning to the metadata as well
as the ability to link the data to other datasets, the JSON-LD format
shall be used.
The item’s metadata must adhere to the JSON Schema defined in the
itemMetadataSchema attribute of the item’s inventory. The JSON-LD
context of the item’s metadata has implicitly included the @vocab di-
rective included in the inventory’s itemType. Aside from the informa-
tional value of such item metadata for end users, it could also be used
by booking client applications to filter and sort items.

• Booking — This entity represents a successful booking of an item held
by a user. It has the attributes uuid, createdAt, and formData. The at-
tribute uuid is a random version 4 universally unique identifier (UUID),
used to uniquely identify the booking in the system, and it is also the
entity’s primary key. The createdAt is a timestamp of the date and time
when the booking was created, including the time zone, in the standard-
ized ISO 8601 format. The formData is used to store the data that the
user filled out when booking the item, and it must adhere to the JSON
Schema in the inventory’s form attribute. If the attribute is not set,
there was no form to fill out.

As for the relations between the entities, there are the following:

• A BookingProtocol entity can be implemented by any number of Book-
ingService entities and a BookingService can implement one or more
BookingProtocol entities, due to the possibility of supporting multiple
protocol versions at once.

• A BookingProtocol entity can be extended by any number of Booking-
ProtocolExtension entities and a BookingProtocolExtension can extend
one or more BookingProtocol entities, again, due to possibly extending
multiple protocol versions.

• A BookingService entity can support any number of BookingProtocolEx-
tension entities and a BookingProtocolExtension can also be supported
by any number of BookingService entities.

• A BookingServiceProvider entity provides one or more BookingService
entities for their users and a BookingService is provided by one Book-
ingServiceProvider.

• The relation between the BookingServiceProvider and BookingClientApp
is analogous to the one before.

• A BookingClientApp serves as a UI to one BookingService and one Book-
ingService can be served by any number of BookingClientApp entities.

27

4. Design

A typical example of a situation with multiple booking client applica-
tions per booking service is when a booking service provider provides,
for instance, both a web application and native mobile applications for
different platforms.

• Similarly, a User entity can use one or more BookingClientApp entities
and a BookingClientApp can be used by any number of User entities.

• A User entity is registered with one BookingServiceProvider who gives
them their booking address and one BookingServiceProvider can have
any number of User entities registered with them. This includes such
cases like a new provider who may not have any users yet, and a user with
their own deployed booking infrastructure and a domain name being
their own provider without providing services to anyone else. Note again
that a User entity only represents a person, a bot, a legal entity, or
a group under one account, so this does not mean that a person cannot
have accounts with multiple providers.

• A BookableUser entity creates one Inventory entity and the Inventory
is only created by that one BookableUser.

• An Inventory entity can ban/allow any number of User entities from/for
booking its items and a User entity can be allowed or banned by any
number of Inventory entities.

• An Inventory entity can contain any number of Item entities and an
Item entity is contained only by that inventory.

• An Item can be in an exclusive (XOR) relation with any number of
other Item entities and vice-versa. When two items Item entities have
the XOR relation between them, it means that booking one of the items
also counts towards the capacity of the other item. This can be useful,
for instance, when a business is offering multiple different services at
a time and has only one staff member carry out the services.

• An Item entity can be booked by any number of Booking entities (up to
its capacity) and a Booking entity books one Item entity.

• Lastly, a User can hold any number of Booking entities and a Booking
entity is held by a single User entity.

4.1.2 Booking address format

To uniquely identify users in the system, a booking address shall be used.
The booking address is a string that is unique within the system, and it is
registered with the user’s booking service provider (that being anyone who is

28

4.1. Architecture

User User User

Booking Service Provider

Bot

User User User

Booking Service Provider

Booking Service Provider

Bot Bot

Internet

User User User

Booking Service Provider

User User User

Booking Service Provider

Private Network

Figure 4.1: System network diagram

an owner of a domain name and runs infrastructure implementing the booking
protocol). This is a very familiar idea to that of email addresses and the format
will look very similar.

The booking address shall comprise of a username and either a domain
name or an Internet Protocol (IP) address, separated by the at sign. At the
end of the string, a port may also be specified, separated by a colon. The
default port for the booking protocol shall be 3080, and it is not necessary to
specify it in the booking address if it is the default.

The port 3080 is, according to [19], not restricted in browsers and, accord-
ing to [20] is in the range of “User Ports” which range from 1024 to 49151, as
opposed to “System Ports” which are below this range, and “Dynamic Ports”
which are above the range and are never assigned by the Internet Assigned
Numbers Authority (IANA). Searching for the port usage using search en-
gines and using IANA’s Service Name and Transport Protocol Port Number
Registry [21] has not shown too widespread use of the port number.

The booking address shall be case-insensitive, to prevent user er-
rors. The username portion can contain the 26 letters of the En-
glish alphabet, numbers, and the following characters: the period (.),
the minus sign (-), and an underscore (_). The username can be ex-

29

4. Design

BookingClientApp

BookingProtocolExtension

* id
 * version

BookingProtocol

* version

BookingServiceProvider

BookingService

BookableUser

Inventory

 permissionMode
 metadata
 form
 itemType
 itemMetadataSchema

Booking

* uuid
 * createdAt
 formData

Item

* uuid
 * createdAt
 capacity
 bookDeadline
 modifyDeadline
 metadata

User

* bookingAddress

◄ is registered with
1

0..n

◄ extends
0..n1..n

supports ►

0..n

0..n◄ implements

0..n

1..n

provides ►
1 1..n

provides ►
1 1..n

◄ serves as a UI to
1..n1

uses ▲

0..n

1..n

 contains ▼

1

0..n

 is held by ▲

0..n

1

◄ books
1 0..n

 creates ▼

1

1

allows
 or bans ▲0..n

0..n

in XOR relationship with ►0..n

0..n

Figure 4.2: System conceptual schema

30

4.1. Architecture

pressed by the regular expression [a-zA-Z0-9._-]+. The entire book-
ing address can then be expressed as <username>@<ip_address>[:port]
and <username>@<domain_name>[:port]. Example booking addresses are
alice@127.0.0.1, bob@localhost:3080, and john.doe98@example.com.

4.1.3 Custom URI scheme

According to [22]: “A Uniform Resource Identifier (URI) is a compact sequence
of characters that identifies an abstract or physical resource. Each URI begins
with a scheme name that refers to a specification for assigning identifiers within
that scheme. As such, the URI syntax is a federated and extensible naming
system wherein each scheme’s specification may further restrict the syntax
and semantics of identifiers using that scheme. Schemes are also known as
protocols.” Not to be confused with the actual communication protocol.

In order to differentiate booking addresses from other identifiers when
shared around the Web and enable users to assign their booking client appli-
cation of choice to handle clicked links to a booking address, a custom URI
scheme is also designed. [22] states that in order for a progressive web applica-
tion (PWA) to register their ability to open or handle particular URI schemes,
the scheme must either be one of a few safelisted schemes or be prefixed with
web+. Of course, this does not restrict non-PWA applications from handling
the scheme.

In order to feature-proof the system and allow the increasingly popu-
lar PWAs to handle the scheme, the booking system shall use the scheme
web+booking. Searches made using search engines for the exact phrase have
not revealed any existing use of the scheme. The scheme shall be followed by
a booking address and, optionally, a path separated from the booking address
by a forward slash (/), and possibly also query parameters separated from the
booking address or path by a question mark (?), separated from each other
by an ampersand (&), and separated from their values by an equals sign (=),
as it is with the HTTP URLs.

The paths and query parameters will not be used in the initial version of
the booking protocol, but extensions of the protocol as well as newer versions
may utilize the path to direct the client application to a certain section and
the parameters to provide additional functionality, such as form filling or item
filtering and sorting.

The URI scheme can then be expressed as
web+booking://<booking_address>[/path][?param=1][¶m=2][&...].
Example URIs are web+booking://alice@127.0.0.1,
web+booking://bob@localhost:3080/a, and
web+booking://john.doe98@example.com/a?b=1&c=2&d=3.

31

4. Design

Client
Application

Authentication
Service

Booking
Service

API
Gateway

Figure 4.3: Architecture diagram

Database
(PostgreSQL)

Database
(PostgreSQL)

SuperTokens
Core

Client PWA
(Next.js)

Booking
Service

(NestJS)

API
Gateway
(NestJS)

Figure 4.4: Detailed architecture diagram

4.1.4 Implementation architecture

The implementation will use the microservice architecture API gateway pat-
tern, with each service being containerized. A diagram illustrating the archi-
tecture is shown in the figure 4.3. The figure 4.4 then shows a more detailed
diagram of the architecture featuring the technologies chosen for each service.

4.2 Booking Protocol

4.3 Booking Service

4.3.1 Database

This section describes the design decisions behind the structure of the database
and the choice of the database engine.

32

4.3. Booking Service

interface Inventory {
version: string; // Resource SemVer version
extensions?: {

[key: string]: string; // Pairs of extension ID
// and its SemVer version

};
meta?: object; // JSON-LD
form?: object; // JSON Schema
itemType?: string; // JSON-LD context
itemMetaSchema?: object; // JSON Schema
items?: Array<{

id: string;
xor?: string[]; // IDs of mutually exclusive items
availability?: number;
capacity?: number;
bookDeadline?: string; // ISO 8601
modifyDeadline?: string; // ISO 8601
meta?: object; // JSON-LD

}>;
}

Listing 4.1: Simplified definition of Schedule JSON using a TypeScript inter-
face

4.3.1.1 Conceptual Schema

4.3.1.2 OLAP vs. OLTP

When determining which database engine to use and how to structure the
database, one aspect to examine is whether the system will be used for online
analytical processing (OLAP) or online transaction processing (OLTP).

4.3.1.3 ACID vs. BASE

According to [23, 24], consistency, availability, and partition tolerance are the
three properties that are impossible to achieve simultaneously in a distributed
system. This is known as the CAP theorem. In the context of databases, the
CAP theorem is often discussed in terms of ACID (Atomicity, Consistency,
Isolation, Durability) and BASE (Basically Available, Soft state, Eventually
consistent) properties.

In the domain of booking, strong consistency is absolutely essential. For
example, an item available for booking must never be booked by more users
than its capacity. Availability is also very important. For those reasons, the
system must be designed with ACID properties in mind.

33

4. Design

Inventory

* id
 permissionMode
 metadata
 form
 itemType
 itemMetadataSchema

BookingAddress

* address

Booking

* id
 * createdAt
 formData

Item

* id
 * createdAt
 capacity
 bookDeadline
 modifyDeadline
 metadata

User

* id

 contains ▼
1

0..n

 is held by ▲

0..n

1

◄ books
1 0..n

creates ▼

1

0..1

 allows
 or bans ▲0..n

0..n

is universally identified by ►
0..1 1

in XOR relationship with ►0..n

0..n

Figure 4.5: Conceptual schema of the booking service database

4.4 Client Application
A low fidelity prototype of the UI for the client application was created using
Figma. The client application will be a single page progressive web applica-
tion.

34

Chapter 5
Implementation

5.1 Booking Service
The diagram of the PostgreSQL database can be seen in the figure 5.1.

The booking service was implemented using the framework NestJS.

35

5. Implementation

inventory_permission_list

PK FK inventory_id: UUID
PK FK booking_address_address: CITEXT

item_xor

PK FK item_1_id: UUID
PK FK item_2_id: UUID

inventory

PK id: UUID

 permission_mode: ENUM [0..1]
 metadata: JSONB [0..1]
 form: JSONB [0..1]
 item_type: TEXT [0..1]
 item_metadata_schema: JSONB [0..1]

booking_address

PK address: CITEXT

FK user_id: UUID [0..1]
FK inventory_id: UUID [0..1]

booking

PK id: UUID

 created_at: TIMESTAMPTZ
 form_data: JSONB [0..1]

FK booking_address_address: CITEXT
FK item_id: UUID

item

PK id: UUID

 created_at: TIMESTAMPTZ
 capacity: INT4 [0..1]
 book_deadline: TIMESTAMPTZ [0..1]
 modify_deadline: TIMESTAMPTZ [0..1]
 metadata: JSONB [0..1]

FK inventory_id: UUID

is exclusive with ▼
1

0..n
is exclusive with ▼
0..n

1

◄ is listed on
0..n 1

allows or bans addresses ▲

1

0..n

◄ creates

1

0..1

contains ▼
1

0..n

 is held by ▲

0..n

1

◄ books
1 0..n

Figure 5.1: Diagram of the booking service database

36

Conclusion

The goal of this thesis was to design an open and decentralized, general-pur-
pose online reservation system architecture, including a common HTTP-based
client-server protocol, and developing a reference implementation including
both a client application and a back end. The created solution was to be easy
to integrate with state-of-the-art cloud-native architectures, and was to sup-
port a use case for a selected type of reservation business. Possible extensions
for the selected use case were to be discussed. The reference implementation
was to be tested and evaluated for the selected use case.

First, a research/overview of select existing online reservation systems was
conducted in chapter 1. Based on the results of the research, the assignment
of the thesis, as well as original ideas, a requirements analysis was made in
chapter 2, including both functional and non-functional requirements for the
system to be designed and implemented. Then, select state-of-the-art decen-
tralized systems were briefly explored in chapter 3 to find out whether one of
them could perhaps be used as part of the solution and to learn from their
design. Chapter 4 describes the design of the newly created system, including
its architecture, the common protocol, the back-end services, and the client
application. Finally, chapter 5 describes the implementation of the system
based on the created design, as well as its testing and evaluation.

The research on the existing online reservation systems could additionally
be useful to those who are in the near future looking for a reservation sys-
tem. Furthermore, together with the requirements analysis, this information
could be useful to those who are looking into developing a reservation system
of their own. The overview of select state-of-the-art decentralized systems
can introduce those systems to new people and help popularize the idea of
decentralized systems as a whole. The approaches in the design and imple-
mentation chapters can, in part, be used as a reference for those who are
looking into developing other applications with some of the technologies or
techniques used here. The designed architecture and protocol can be used by
others to create new interoperable implementations. And, lastly, the imple-

37

Conclusion

mented prototype can be further developed into a production-ready system,
or integrated into existing infrastructures, as it is released under a permissive
open-source license.

One can dream of a future where, if the ideas proposed in this thesis ever
became a commonplace reality, after searching for a hairdresser nearby using
a search engine, users would be presented with a list of results including not
only the basic information about hair salons within close proximity, but also
with real-time information about the hairdressers’ availability (based on which
the results could also be sorted), and a direct link to book an appointment,
which would open a user’s booking client application of choice, that would in
turn automatically fill out the user’s personal data if required by the busi-
ness offering the appointment, and let the user just confirm the booking. Or
a future where users could have their booking service automatically book an
appointment with their dentist for regular check-ups twice a year, with the
exact time and date chosen based on the availability of both parties and an
optional notification about the newly created booking.

38

Bibliography

1. Reservio [online]. Reservio, s.r.o., 2024 [visited on 2024-01-05]. Available
from: https://www.reservio.com.

2. BEATY, Mike; KOCOT, Larry; SHEIDY, Dion; COAKLEY, Monica;
ROBBINS, Lori; WALSH, Liam; GINIAT, Ed. Healthcare 2030. KPMG
LLP, 2019. Available also from: https://kpmg.com/kpmg-us/content
/dam/kpmg/pdf/2023/kpmg-healthcare-2030.pdf.

3. PARÉ, Guy; TRUDEL, Marie-Claude; FORGET, Pascal. Adoption, use,
and impact of e-booking in private medical practices: Mixed-methods
evaluation of a two-year showcase project in Canada. JMIR Medical In-
formatics. 2014, vol. 2, no. 2. Available from doi: 10.2196/medinform
.3669.

4. BANTON, Caroline. Network Effect: What It Is, How It Works, Pros
and Cons. Investopedia, 2023. Available also from: https://www.inves
topedia.com/terms/n/network-effect.asp.

5. Acuity Scheduling [online]. Acuity Scheduling, 2024 [visited on
2024-01-07]. Available from: https://www.acuityscheduling.com.

6. Square [online]. Block, Inc., 2024 [visited on 2024-01-27]. Available from:
https://squareup.com.

7. Wix [online]. Wix.com, Inc, 2024 [visited on 2024-02-02]. Available from:
https://www.wix.com.

8. ISO CENTRAL SECRETARY. Information technology – Open Systems
Interconnection – Basic Reference Model: The Basic Model – Part 1.
Geneva, CH, 1994. Standard, ISO/IEC 7498-1:1994. International Orga-
nization for Standardization. Available also from: https://www.iso.or
g/standard/20269.html.

9. PRESTON-WERNER, Tom. Semantic Versioning 2.0.0 [online]. 2023.
[visited on 2024-02-06]. Available from: https://semver.org.

39

https://www.reservio.com
https://kpmg.com/kpmg-us/content/dam/kpmg/pdf/2023/kpmg-healthcare-2030.pdf
https://kpmg.com/kpmg-us/content/dam/kpmg/pdf/2023/kpmg-healthcare-2030.pdf
https://doi.org/10.2196/medinform.3669
https://doi.org/10.2196/medinform.3669
https://www.investopedia.com/terms/n/network-effect.asp
https://www.investopedia.com/terms/n/network-effect.asp
https://www.acuityscheduling.com
https://squareup.com
https://www.wix.com
https://www.iso.org/standard/20269.html
https://www.iso.org/standard/20269.html
https://semver.org

Bibliography

10. DÜRST, Martin J.; SUIGNARD, Michel. Internationalized Resource
Identifiers (IRIs) [RFC 3987]. RFC Editor, 2005. Request for Comments,
no. 3987. Available from doi: 10.17487/RFC3987.

11. SPORNY, Manu; LONGLEY, Dave; KELLOGG, Gregg; LAN-
THALER, Markus; LINDSTRÖM, Niklas. JSON-LD 1.0. 2014-01. W3C
Recommendation. W3C. https://www.w3.org/TR/2014/REC-json-ld-
-20140116/.

12. SPORNY, Manu; LONGLEY, Dave; KELLOGG, Gregg;
LANTHALER, Markus; CHAMPIN, Pierre-Antoine; LIND-
STRÖM, Niklas. JSON-LD 1.1. 2020-07. W3C Recommendation.
W3C. https://www.w3.org/TR/json-ld11/.

13. WRIGHT, Austin; ANDREWS, Henry; HUTTON, Ben; DENNIS, Greg.
JSON Schema: A Media Type for Describing JSON Documents [online].
Internet Engineering Task Force, 2022 [visited on 2024-02-08]. Available
from: https://json-schema.org/draft/2020-12/json-schema-core.

14. WRIGHT, Austin; ANDREWS, Henry; HUTTON, Ben; DENNIS, Greg.
JSON Schema [online]. 2024. [visited on 2024-02-08]. Available from: ht
tps://json-schema.org.

15. OpenAPI Guide [online]. SmartBear Software, 2024 [visited on
2024-02-08]. Available from: https://swagger.io/docs/specificat
ion/about/.

16. Kubernetes Documentation [online]. The Kubernetes Authors & The
Linux Foundation, 2023 [visited on 2024-02-08]. Available from: https
://kubernetes.io/docs/home/.

17. LEACH, Paul J.; SALZ, Rich; MEALLING, Michael H. A Universally
Unique IDentifier (UUID) URN Namespace [RFC 4122]. RFC Editor,
2005. Request for Comments, no. 4122. Available from doi: 10.17487
/RFC4122.

18. ISO CENTRAL SECRETARY. Date and time — Representations for
information interchange — Part 1: Basic rules. Geneva, CH, 2019. Stan-
dard, ISO/IEC 8601-1:2019. International Organization for Standardiza-
tion. Available also from: https://www.iso.org/standard/70907.htm
l.

19. List of restricted ports in browsers – Knowledge Base [online]. Neo4j,
Inc., 2020 [visited on 2024-02-14]. Available from: https://neo4j.com
/developer/kb/list-of-restricted-ports-in-browsers/.

40

https://doi.org/10.17487/RFC3987
https://json-schema.org/draft/2020-12/json-schema-core
https://json-schema.org
https://json-schema.org
https://swagger.io/docs/specification/about/
https://swagger.io/docs/specification/about/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://doi.org/10.17487/RFC4122
https://doi.org/10.17487/RFC4122
https://www.iso.org/standard/70907.html
https://www.iso.org/standard/70907.html
https://neo4j.com/developer/kb/list-of-restricted-ports-in-browsers/
https://neo4j.com/developer/kb/list-of-restricted-ports-in-browsers/

Bibliography

20. COTTON, Michelle; EGGERT, Lars; TOUCH, Dr. Joseph D.; WEST-
ERLUND, Magnus; CHESHIRE, Stuart. Internet Assigned Numbers Au-
thority (IANA) Procedures for the Management of the Service Name and
Transport Protocol Port Number Registry [RFC 6335]. RFC Editor, 2011.
Request for Comments, no. 6335. Available from doi: 10.17487/RFC633
5.

21. Service Name and Transport Protocol Port Number Registry [online].
IANA, 2024 [visited on 2024-02-14]. Available from: https://www.iana
.org/assignments/service-names-port-numbers/service-names-p
ort-numbers.xhtml.

22. STEINER, Thomas. URL protocol handler registration for PWAs |
Chrome for Developers [online]. Google, 2021 [visited on 2024-02-15].
Available from: https://developer.chrome.com/docs/web-platform
/best-practices/url-protocol-handler.

23. BREWER, Eric. Towards Robust Distributed Systems. 2000. Available
also from: https://people.eecs.berkeley.edu/~brewer/cs262b-200
4/PODC-keynote.pdf.

24. What is the CAP theorem? [online]. IBM, 2024 [visited on 2024-01-27].
Available from: https://www.ibm.com/topics/cap-theorem.

41

https://doi.org/10.17487/RFC6335
https://doi.org/10.17487/RFC6335
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://developer.chrome.com/docs/web-platform/best-practices/url-protocol-handler
https://developer.chrome.com/docs/web-platform/best-practices/url-protocol-handler
https://people.eecs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf
https://people.eecs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf
https://www.ibm.com/topics/cap-theorem

Appendix A
List of Acronyms

ACID Atomicity, consistency, isolation, durability

AI Artificial intelligence

API Application programming interface

BASE Basically available, soft state, eventually consistent

CAP Consistency, availability, partition tolerance

CLI Command-line interface

CSS Cascading Style Sheets

CSV Comma-separated values

GUI Graphical user interface

HTTP Hypertext Transfer Protocol

IP Internet Protocol

IANA Internet Assigned Numbers Authority

IRI Internationalized Resource Identifier

JSON JavaScript Object Notation

JSON-LD JavaScript Object Notation for Linked Data

OLAP Online analytical processing

OLTP Online transaction processing

ORM Object relational mapping

43

A. List of Acronyms

PWA Progressive web application

SEO Search engine optimization

UI User interface

URI Uniform Resource Identifier

URL Uniform Resource Locator

UUID Universal Unique Identifier

UX User experience

44

Appendix B
Contents of the Digital

Attachment

design
figma.fig..........Figma design file with a lo-fi client app prototype

implementation..................the source code of the implementation
booking-api-gateway..........................booking API gateway
booking-client-app booking client application
booking-service.....................................booking service
booking-service.....................................booking service
compose.prod.yaml.................a production-mode Compose file
README.md........Markdown instructions to the implementation code

thesis
MT_Straka_David_2024.pdf......................... thesis text PDF
MT_Straka_David_2024................LATEX source of the thesis text

45

	Introduction
	Existing Reservation Systems
	Acuity Scheduling
	Reservio
	Square Appointments
	Wix
	Summary

	Analysis
	Functional Requirements
	Non-functional Requirements

	State-of-the-Art Decentralized Systems
	Design
	Architecture
	Booking Protocol
	Booking Service
	Client Application

	Implementation
	Booking Service

	Conclusion
	Bibliography
	List of Acronyms
	Contents of the Digital Attachment

