
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of master’s thesis

System for Management of Personal Music Libraries using

Knowledge Graphs Technology

Bc. Ondřej Viskup

Ing. Milan Dojčinovski, Ph.D.

Informatics

Web Engineering

Department of Software Engineering

until the end of summer semester 2024/2025

Instructions

With the growing popularity of music streaming platforms several problems are starting

to arise. Portability of information across streaming services is limited. Synchronization

of information among different services is almost impossible. Last but not least, local

music user libraries are not well integrated with the online music platforms. The ultimate

goal of the thesis is to create a centralized system for music library management using

the concept of Knowledge Graphs. The system will enable users to integrate and

synchronize music libraries across different music platforms.

Objectives:

- Identify relevant data sources from the music domain (e.g. Spotify, local music libraries,

YouTube).

- Create an RDF model for the music domain and create a user-centric, music-oriented

knowledge graph by integrating various data sources.

- Enhance the knowledge with information from related knowledge graphs, such as

DBpedia or Wikidata.

- Design and implement a system for management of music knowledge graphs.

- Implement a lightweight user interface for the system.

- Test and document the developed solution.

Electronically approved by Ing. Jaroslav Kuchař, Ph.D. on 15 December 2023 in Prague.

Master’s thesis

SYSTEM FOR
MANAGEMENT OF
PERSONAL MUSIC
LIBRARIES USING
KNOWLEDGE GRAPHS
TECHNOLOGY

Bc. Ondřej Viskup

Faculty of Information Technology
Department of Software Engineering
Supervisor: Ing. Milan Dojčinovski, Ph.D.
May 9, 2024

Czech Technical University in Prague
Faculty of Information Technology
© 2024 Bc. Ondřej Viskup. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It
has been submitted at Czech Technical University in Prague, Faculty of Information
Technology. The thesis is protected by the Copyright Act and its usage without author’s
permission is prohibited (with exceptions defined by the Copyright Act).

Citation of this thesis: Viskup Ondřej. System for Management of Personal Mu-
sic Libraries using Knowledge Graphs Technology. Master’s thesis. Czech Technical
University in Prague, Faculty of Information Technology, 2024.

Contents

Acknowledgments vii

Declaration viii

Abstract ix

List of abbreviations xi

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis Objectives . 1
1.3 Thesis Structure Overview . 2

2 Background and Related Work 3
2.1 Music . 3
2.2 Knowledge Graphs . 3

2.2.1 Open Data Sources . 4
2.2.2 Music Services . 5

2.3 Recommendation Systems . 6
2.4 Existing Solutions . 7
2.5 Relevant Technology . 10

2.5.1 Semantic Web . 10
2.5.2 Resource Description Framework 10
2.5.3 SPARQL Protocol and RDF Query Language 13
2.5.4 Ontologies . 15

2.5.4.1 Music Ontologies 16
2.5.5 Linked Data and Data Mappings 20
2.5.6 RDF Triple Stores . 20
2.5.7 RDF Validation . 21
2.5.8 MP3 Metadata . 23

3 Analysis and Design 24
3.1 Requirements Analysis . 24

3.1.1 Target Group . 24
3.1.2 Use Case Scenarios . 25

3.1.2.1 User and User Profiles Use Case Scenarios . . 25
3.1.2.2 Media Files Use Case Scenarios 26

ii

Contents iii

3.1.2.3 Music Library Management Use Case Scenarios 28
3.1.2.4 Spotify Integration Use Case Scenarios 29

3.1.3 Functional Requirements 31
3.1.4 Non-functional Requirements 33

3.2 System Design . 34
3.2.1 System Architecture . 34
3.2.2 Back-end Server . 34
3.2.3 RDF Store . 37
3.2.4 User Credentials Database 41
3.2.5 Front-end Client . 42

4 Implementation 45
4.1 Code Organization and Structure 45
4.2 Back-end Server . 46

4.2.1 Code-base Structure . 46
4.2.2 Authentication Module 47
4.2.3 SPARQL Communicator Module 48
4.2.4 Spotify Adapter Module 61
4.2.5 Error Handling . 62

4.3 Front-end Client . 62
4.3.1 Code-base Structure . 62
4.3.2 Authentication Module 63
4.3.3 Browse Module . 65
4.3.4 Spotify Adapter Module 67
4.3.5 Upload File Module . 72
4.3.6 Error Handling . 74

4.4 Data Type Libraries . 74
4.5 RDF Store . 74

4.5.1 SHACL Shapes . 77
4.6 Wikidata Dump . 81
4.7 User Credentials Database . 83

5 Validation and Evaluation 84
5.1 Software Evaluation . 84
5.2 SHACL Evaluation . 85
5.3 Discussion and Future Work . 86

6 Conclusion 88

A Manual 90
A.1 Running a project . 90

A.1.1 RDF store . 91
A.1.2 Testing . 91

A.2 Wikidata dump . 92

Contents iv

Contents of the Attachment 97

List of Figures

2.1 Example of a RDF graph [19] 11
2.2 The 5-star data [34] . 21

3.1 General overview of the Music KG system. Source: Linked
Open Data cloud image . 25

3.2 The Music KG system architecture 34
3.3 The architecture of the Back-end Server 35
3.4 The architecture of the RDF Store 38
3.5 Music KG ontology. All types and predicates are from schema.org. 39
3.6 The architecture of the Front-end Client 42

4.1 Relationships between applications and libraries in the Music
KG Nx monorepo . 46

4.2 The overview of the SPARQL Communicator module in the
back-end server . 49

4.3 The Register User page in the front-end client 64
4.4 The User Profile page in the front-end client 64
4.5 The Albums page in the front-end client 66
4.6 The Artist Detail page in the front-end client 66
4.7 The Track Detail page in the front-end client 67
4.8 The Spotify authorization page 68
4.9 The Spotify Adapter main page in the front-end client 69
4.10 The Spotify Track Detail in the Latest tracks sub-module . 69
4.11 The RDF graph visualization after inserting one track from Spotify 70
4.12 The Spotify Playlist Detail component in the Playlists sub-

module . 71
4.13 The Spotify Playlist Detail component showing a recently added

playlist . 71
4.14 The Upload File page in the front-end client 72
4.15 The Search component on the Upload File page 73

v

https://lod-cloud.net/versions/2023-09-03/lod-cloud.svg
https://lod-cloud.net/versions/2023-09-03/lod-cloud.svg
https://schema.org/

List of Tables vi

List of Tables

2.1 Example of MP3 metadata of a single track in ID3 format . . 23

4.1 Mapping properties to RDF predicates 58

5.1 User evaluation results . 85

I would like to thank my supervisor for his valuable
advice and insights during the preparation of my thesis
assignment. I would also like to thank my girlfriend,
family and friends for their support during my studies.

vii

Declaration

I hereby declare that the presented thesis is my own work and that I have cited
all sources of information in accordance with the Guideline for adhering to
ethical principles when elaborating an academic final thesis.
I acknowledge that my thesis is subject to the rights and obligations stipulated
by the Act No. 121/2000 Coll., the Copyright Act, as amended, in particular
the fact that the Czech Technical University in Prague has the right to conclude
a license agreement on the utilization of this thesis as a school work pursuant
of Section 60 (1) of the Act.

In Prague on May 9, 2024

viii

Abstract

With the rising popularity of multimedia streaming services, the challenge of
user data storage becomes more prominent. The main objective of this thesis is
to design and develop a system that allows users to manage music libraries and
playlists outside streaming services and integrate them with various services
that provide additional information through Knowledge Graphs technology
and Linked Data. The system consists of a back-end server, front-end client,
RDF store, and database for user credentials. Furthermore, it outlines the
design of the system, which includes the system architecture, components of
the back-end server and front-end client, and RDF store. It also reviews current
solutions and relevant technologies, including the Semantic Web, the RDF,
the SPARQL, and several music ontologies. Finally, software validation was
performed and evaluated against the set requirements, and future directions
were suggested.

Keywords Semantic Web, RDF, SPARQL, ontology, knowledge graph, knowl-
edge base, Wikidata, web application

Abstrakt

S rostoućı popularitou multimediálńıch streamovaćıch služeb se do popřed́ı
dostává problém ukládáńı uživatelských dat. Hlavńım ćılem této práce je
navrhnout a vyvinout systém, který uživatel̊um umožńı spravovat hudebńı kni-
hovny a playlisty mimo streamovaćı služby a integrovat je s r̊uznými službami,
které poskytuj́ı daľśı informace prostřednictv́ım technologie znalostńıch graf̊u a
Linked Data. Systém se skládá z backendového serveru, frontendového klienta,
úložǐstě dat ve formátu RDF a databáze pro přihlašovaćı údaje uživatel̊u. Dále
je zde nast́ıněn návrh systému, který zahrnuje architekturu systému, součásti
backendového serveru, frontendového klienta a úložǐstě dat ve formátu RDF.
Rovněž nab́ıźı přehled současných řešeńı a př́ıslušných technologíı, včetně
sémantického webu, RDF, SPARQL a několika hudebńıch ontologíı. Nakonec

ix

x

byla provedena validace systému, který byl vyhodnocen na základě stanovených
požadavk̊u a byly navrženy podněty pro budoućı práci.

Kĺıčová slova sémantický web, RDF, SPARQL, ontologie, znalostńı graf,
znalostńı báze, Wikidata, webová aplikace

List of abbreviations

API Application Programming Interface
ASCII American Standard Code for Information Interchange
CORS Cross-Origin Resource Sharing

CSV Comma-separated values
FOAF Friend-of-a-Friend

GUI Graphical user interface
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol

IRI International Resource Identifier
ISO International Organization for Standardization

ISRC International Standard Recording Code
JSON JavaScript Object Notation
OWL Web Ontology Language
RDF Resource Description Framework

RDFS Resource Description Framework Schema
SPARQL SPARQL Protocol and RDF Query Language

TSV Tab-separated values
UI User interface

UML Unified Modeling Language
URI Uniform Resource Identifier

UUID Universally Unique Identifier
XML Extensible Markup Language

XPath XML Path Language
XSLT eXtensible Stylesheet Language Transformations
W3C World Wide Web Consortium

xi

Chapter 1

Introduction

1.1 Motivation

In recent years, the use of multimedia streaming services has increased and
the number of active users continues to increase. Service providers such as
Spotify, Apple Music, Youtube Music, etc. are competing to attract
even more users to use their services.

As online streaming becomes increasingly popular, there is the dilemma of
storing user data. Users who do not have complete control over their data may
encounter some problems. Although the services that users are actively using
are currently working perfectly, there is no guarantee that they will continue
to work this way for years to come. If the service provider suddenly stops
the platform, the user’s music library and the playlists can be lost forever if
they are not properly stored. Backup of user data is an issue, and service
providers rarely provide backup options. Another problem is integration. If
the user uses multiple platforms, the music library may have duplicates, in-
correct data, or can be, in general, unorganized. If music comes from different
sources (streaming platforms, audio files from user devices, or digital albums
purchased online), it is almost impossible to synchronize the user’s music li-
brary on multiple platforms.

In addition, initiatives or community projects such as Wikidata, DBpe-
dia, or MusicBrainz provide extensive information about artists, albums,
recordings, and music in general. Integrating these services into the user’s mu-
sic library can provide valuable and interesting information about the user’s
music preferences and listening patterns.

1.2 Thesis Objectives

The main objective of this thesis is to create a system that allows users to
manage music libraries and playlists outside streaming services and integrate

1

https://open.spotify.com
https://www.apple.com/apple-music/
https://music.youtube.com/
https://www.wikidata.org/wiki/Wikidata:Main_Page
https://www.dbpedia.org/
https://www.dbpedia.org/
https://musicbrainz.org/

Thesis Structure Overview 2

them with various services that provide additional information through the
Knowledge Graphs technology. By doing so, users can fully control their music
collection data, regardless of the service they use. Moreover, users will be able
to integrate their music library with existing knowledge graphs to access more
information about their favorite albums, artists, and tracks.

1.3 Thesis Structure Overview

In the second chapter, the essential knowledge required to grasp the thesis
topic will be explained. This section delves into the areas of music and knowl-
edge graphs, illustrated with examples. It also reviews current solutions and
relevant technologies including the Semantic Web, RDF, SPARQL, and several
music ontologies.

Subsequently, the third chapter discusses the analysis of requirements,
which involves identifying the intended audience and different use case scenar-
ios. This section specifies both the functional and non-functional requirements
that are crucial for the development of the system. In addition, it outlines the
design of the system, which includes the system architecture, components of
the back-end server, RDF store, database for user credentials, and front-end
client.

The fourth chapter details the implementation process. The chapter dis-
cusses the organization, structure, and the development of the code for the
back-end server and the front-end client. In addition, it covers aspects such as
error handling, data type libraries, RDF store configuration, and integration
of external data sources such as Wikidata.

The fifth chapter evaluates and discusses the developed software, pointing
out the strengths and limitations of the system. Furthermore, it explores
potential areas for future enhancement and expansion of the system.

The thesis is ended by the Conclusion chapter which summarizes the key
contributions and the findings of the thesis.

Chapter 2

Background and Related
Work

2.1 Music

Music as a concept can be described as the art of arranging sounds over time to
produce continuous, coherent, and stimulating compositions such as melody,
harmony, and rhythm. It can also be any aesthetically pleasing or harmonious
sound or a combination of the above-mentioned sounds. [1]

The origin of the word music can be traced back to the ancient Greek
word mousike, which comes from the word Moûsa, an ancient Greek deity of
the arts. [2]

2.2 Knowledge Graphs

Although the term knowledge graph is one of the fundamental concepts of the
Semantic Web, there is no single definition of it.

According to IBM, knowledge graphs, also known as semantic networks,
represent the network of entities in the real world, such as objects, events,
situations and concepts, and explain the relationship between them. This
information is usually stored in a graph database and is referred to as a graph
structure. Knowledge graphs are composed of three main components: nodes,
edges, and labels. Any object, place, or person can be a node. The edge defines
the relationship between the nodes. [3]

Furthermore, knowledge graphs combine several powerful data manage-
ment technologies such as databases (because data can be retrieved through
complex queries), graphs (because data can be analyzed using graph algo-
rithms), and knowledge bases (because data can be interpreted as their
semantics are embedded in them). In addition, knowledge graphs comply with
the standards set by the World Wide Web Consortium (W3C) in the Resource

3

Knowledge Graphs 4

Description Framework (RDF), which allows extensive data representation us-
ing RDF schemas, taxonomies, and vocabularies. Finally, knowledge graphs
are optimized for querying through very large datasets that contain billions of
facts or properties. All of this makes them one of the most suitable frameworks
for data integration, unification, linking, and reuse. [4]

In practice, knowledge graphs are used to analyze financial markets, to cre-
ate contextually aware recommendation systems, for semantic search engines,
business data analysis or to build and enhance conversational AI chatbots used
in various fields such as tourism, energy, financial technology, education, etc.
[4][5]

Some examples of frequently mentioned knowledge graphs are: DBpedia
(2007), Wikidata (2012), Google’s Knowledge Graph (2012), Facebook’s
Entity Graph (2013), or Microsoft’s Satori (2016). [6]

Long-standing efforts are also being made to create a knowledge base that
captures general information about artists, songs, albums, and music-related
data in general, including the relationships between them. In the following
section, some of the selected projects that evolve around the creation of a
music knowledge base will be briefly introduced.

Knowledge bases can be divided into two different groups depending on the
organization behind the knowledge base and the ease of access to data. The
first group is open data sources, characterized by the fact that there is often a
community or non-profit organization behind them, which often provides data
without restrictions for any purpose. The open data sources are then divided
into two subgroups: general knowledge bases and music-oriented knowledge
bases. The second group is industry API1s, which are often maintained
by private companies and often do not allow access to the entire knowledge
base at once, but only on demand. This can be done either by registering
the application that consumes the API or by using an API key to both of
which various constraints can be applied (data categories, number of queries
per second, etc.).

2.2.1 Open Data Sources
Wikidata

Wikidata, a member of open data sources, was created in October 2012. It
is a collaborative, multilingual, community-driven project whose objective is
to collect structured data to provide a knowledge base to anyone in the world.
Wikidata data are free and published under the Creative Commons license,
which allows copying, modifying, and distributing without asking permission.
The data are curated by the editors, but anyone can contribute. Wikidata
claims to be a secondary knowledge base, meaning that any statement in it is

1Application Programming Interface (API) is an application interface that provides
data and functionality to other applications. IBM: What is an API? [access. 2024-04-17]

https://www.dbpedia.org
https://www.wikidata.org/wiki/Wikidata:Main_Page
https://blog.google/products/search/introducing-knowledge-graph-things-not/
https://developers.facebook.com/docs/graph-api
https://www.microsoft.com/en-us/research/project/knowledge-mining-api
https://www.ibm.com/cloud/learn/api

Knowledge Graphs 5

supported by its source and connection to different databases. The main use
case of Wikidata’s knowledge base is to support other applications from the
Wikimedia movement such as Wikipedia, Wikimedia Commons, and the other
wikis. Other than that, it can serve as a basis for creating a custom knowledge
base, using a subset of Wikidata’s knowledge base. [7]

As of April 2024, there are more than 1.55 billion item statements in
Wikidata’s knowledge base2, making it one of the largest knowledge bases in
existence.

DBpedia

Another member of the open data source group is DBpedia. It was created
in 2007 as an academic project by Sören Auer, Jens Lehmann, and Christian
Bizer, together with the support of the company OpenLink. Since then, DBpe-
dia has offered structured information to anyone who can access the Internet.
It is a crowd-sourced community effort aimed at extracting structured content
and information created in various Wikimedia projects. In addition, DBpe-
dia serves the information as Linked Data, enabling information to be easily
collected, organized, searched, and utilized. [8]

The largest DBpedia knowledge graph, called DBpedia Largest Diamond,
contains 1.45 billion triples from DBpedia and other sources. [9]

MusicBrainz

The last open source to be presented in this chapter is MusicBrainz. While
the other two above-mentioned knowledge bases are general knowledge bases,
MusicBrainz is a knowledge base focused on the music domain. It is an open-
source music information encyclopedia produced and maintained by the inter-
national community of music fans who appreciate both music and music meta-
data. Its database stores all kinds of information about music, from artists
and their releases to works and composers, and much more. Most of the data
are licensed under the CC0 license, which does not impose any restrictions on
who and for what purpose is accessing and using the data. [10]

2.2.2 Music Services
There are several services which offer some information and metadata about
music along with their core services, such as music streaming, selling music,
connecting music enthusiasts, etc.

Last.fm

One of the most used service providers when it comes to accessing music
domain-specific knowledge bases is Last.fm. Last.fm offers its users the ability

2from Grafana [access. 2024-04-17]

https://grafana.wikimedia.org/d/000000175/wikidata-datamodel-statements?orgId=1&refresh=30m

Recommendation Systems 6

to track the music they listen to. Users can run the service in the background
and collect information about the songs they listen to. Users can then view var-
ious statistics about their listening sessions, including their top tracks, artists,
and albums. Last.fm also uses the data it collects to make music recommen-
dations that users might like. [11]

To be able to access the Last.fm’s API, one must create an API account.
The Last.fm’s API provides endpoints to access information about albums,
artists, tracks, most popular artists, and tracks (globally and by country) and
its main focus — the information about what music its users are listening to
including their favorite albums, artists, and tracks. [12]

Spotify

Another company offering access to its music knowledge base is Spotify. Spo-
tify is an audio streaming platform with more than 100 million tracks and
more than 600 million users. Users can create and manage playlists and
discover new tracks. [13]

There are multiple APIs that developers could access. To access its music
knowledge base, Spotify provides Web API through which information about
albums, artists, genres, playlists, and tracks can be accessed. In addition,
users are able to manipulate their playlists using the API, including creating
playlists, adding or removing a track to or from it, or deleting it. Another func-
tionality which could user control through the API is music player, including
obtaining recently played tracks. [14]

Other notable streaming services include Youtube Music, Apple Music,
Deezer, and Tidal. Each provides an API for accessing music metadata.

Bandcamp

Another group of services are services for selling music. Bandcamp is a
digital music platform and community where music fans can explore, engage
with, and directly support their favorite artists. The website states that on
average more than 80% of the money spent on music goes directly to the artists
or their label. Bandcamp has an API, but as of April 2024, it currently does
not support access to music metadata. [15]

Another prominent platform for music sales is Discogs. This service op-
erates as a marketplace for physical album formats such as CDs, DVDs, vinyl,
and cassettes, and as a community forum. Additionally, Discogs provides a
public API for accessing music metadata.

2.3 Recommendation Systems

Recently, there have been many articles and papers on the idea of using music
knowledge graphs in the field of content recommendation systems. This thesis

https://music.youtube.com
https://www.apple.com/apple-music/
https://www.deezer.com/us/offers
https://tidal.com
https://www.discogs.com

Existing Solutions 7

will not focus on aspects of recommendation systems, but only on datasets that
researchers used for their experiments. Most of the works mentioned using the
Last.fm data set as one of the main sources for their knowledge graphs. Other
sources used were MusicBrainz or the Freesound dataset. However, since the
main aim of the recommendation system is to recommend the user the content
that is the most similar to the content they enjoy, researchers prioritized the
creation of the datasets which reflect the relationship between the item (in
this case, music recordings, albums, artists, etc.) instead of focusing on the
creation of the more general music-oriented dataset. [16][17]

2.4 Existing Solutions

In this section, current technologies in the music domain that manage music
libraries will be examined. Depending on the main capabilities, the technolo-
gies can be divided into five different categories: multimedia players, MP3 tag
managers, playlist transfer services, cloud-based music services, and discovery
and recommendation platforms.

Multimedia Players

Multimedia players are essential for managing and organizing music li-
braries, often serving as the main interface for users to engage with their music
collections. Numerous multimedia players provide extensive library manage-
ment tools that enable users to arrange their music directly in the application.
Features may include the ability to create playlists, organize tracks by differ-
ent criteria (e.g. artist, album, genre) and handle metadata (e.g. modify tags,
album art). Typically, multimedia players show metadata tags for each track,
detailing the artist, album, track title, genre, and album art. This metadata
can often be edited by users within the player, facilitating the correction of
errors or the addition of new details to enhance organization.

Some examples of multimedia players include:

Foobar2000 — Provides comprehensive library management options, fea-
turing support for multiple metadata formats, a customizable interface,
and sophisticated playlist management tools like dynamic playlists and
playback statistics tracking. In addition, it supports numerous audio for-
mats and benefits from a robust community of users who create plugins to
enhance its features. It is compatible with Windows, MacOS, and mobile
platforms (Android, iOS).

Clementine — Provides an easy-to-use interface coupled with library
management capabilities. This includes compatibility with online music
platforms like Spotify and internet radio stations, along with tools for gen-
erating dynamic playlists, modifying metadata, and acquiring album art-

https://www.foobar2000.org
https://www.clementine-player.org/about

Existing Solutions 8

work. It supports various operating systems, including Windows, MacOS,
and several Linux distributions such as Ubuntu, Fedora, and Debian.

iTunes — Apple’s multimedia platform and digital storefront. It provides
music library management tools, such as playlist creation, track organiza-
tion by artist, album, and genre, and synchronization with iOS devices.
In addition, it includes support for buying and downloading music from
the iTunes Store, and for using the Apple Music streaming service to listen
offline.

VLC Media Player — Flexible multimedia player compatible with nu-
merous audio formats. Although primarily designed for video playback,
it also provides music library management tools, including playlist cre-
ation, metadata-based track organization, and album art visualization.
This player is lightweight, supports multiple platforms (Windows, MacOS,
Linux, Android, and iOS), and is free to use.

MP3 Tag Managers

MP3 tag managers are specialized software designed to efficiently organize
and modify the metadata of audio files. Details on MP3 metadata are fur-
ther discussed in Section 2.5.8. These tools allow for manual adjustments
of metadata including song title, artist, album, and genre, promoting pre-
cision and personalization in music collections. They support batch editing,
enabling modifications across multiple files at once, which simplifies manag-
ing extensive music libraries. These applications typically feature automated
tagging options, using online databases like MusicBrainz or Discogs to auto-
matically fetch and update metadata, thereby improving both efficiency and
uniformity. Moreover, their integration with online databases provides access
to the latest metadata, and capabilities to export/import metadata in formats
like CSV /TSV 3 or XML4 enhance the ease of transferring and backing up
metadata across various libraries or platforms.

Some examples of MP3 tag managers include:

Mp3tag — Efficient and easy-to-use MP3 tag editor compatible with Win-
dows and MacOS. It enables batch editing of metadata and retrieval of
metadata from online sources like MusicBrainz and Discogs, promoting
both precision and completeness. In addition, it provides capabilities such

3Comma-separated values (CSV) or Tab-separated values (TSV) are text files
formats that uses commas or tabs to separate values, and newlines to separate records. CSV
or TSV [access. 2024-04-18]

4Extensible Markup Language (XML) is a markup language that allows developers
to define arbitrary tags - tags that can be used to build a tree structure. It is a popular
format for searching, sharing, and backing up data. XML introduction — Mozilla [access.
2024-04-18]

https://www.apple.com/itunes/
https://www.videolan.org/vlc/
https://www.mp3tag.de/en/
https://learncsv.com/csv-vs-tsv
https://learncsv.com/csv-vs-tsv
https://developer.mozilla.org/en-US/docs/Web/XML/XML_introduction

Existing Solutions 9

as personalized scripting for automated tasks and broad file format com-
patibility for different audio types.

MusicBrainz Picard — Cross-platform, open-source tool for MP3 tag-
ging that employs acoustic fingerprinting technology AcoustID to accu-
rately identify and tag audio files. This tool is capable of automatically
aligning audio files with the MusicBrainz database to fetch metadata such
as artist, album, and track title. Additionally, Picard facilitates batch pro-
cessing and scripting to customize tagging processes, and it offers plugins
to enhance its features.

TagScanner — Application designed for the management and organiza-
tion of music collections on Windows. It includes numerous functionalities
for batch metadata editing, such as formatting tags, renaming files using
tag data, and acquiring album artwork from the Internet. TagScanner ac-
commodates multiple audio file formats and offers features to normalize
and refine metadata in music collections.

Kid3 — An open-source MP3 tagging tool that works with Linux, Win-
dows, and macOS. This tool offers a user-friendly and clear interface for
editing metadata, with features for mass editing and synchronizing tags.
Kid3 accommodates multiple audio formats and allows for customization
of tag fields and templates according to user requirements.

Playlist Transfer Services

Playlist transfer services provide a range of functionalities that simplify
the movement of music collections between various streaming services. Bulk
playlist transfers are also possible, with features such as duplicate removal and
playlist consolidation. These services support major platforms like Spotify, Ap-
ple Music, Deezer, and Tidal. Customization features are abundant, offering
users the ability to adjust the transfer to fit their needs, including maintaining
the order of tracks or omitting certain tracks. Automatic synchronization fea-
tures are also available to maintain updated playlists across different services.
The interfaces of these services are user-friendly, making the transfer process
straightforward. While the free versions offer basic features, the premium plans
provide advanced features like limitless transfers and more sophisticated cus-
tomization options. Some of the prominent playlist transfer services include
TuneMyMusic, FreeYourMusic, SongShift, and Soundiiz.

Other Services

Some music services such as cloud-based music services and discovery and
recommendation platforms such as Spotify, Apple Music, YouTube Music, and
Last.fm were already mentioned previously.

https://picard.musicbrainz.org
https://acoustid.org
https://www.xdlab.ru/en/
https://kid3.kde.org
https://www.tunemymusic.com
https://freeyourmusic.com
https://www.songshift.com
https://soundiiz.com

Relevant Technology 10

2.5 Relevant Technology

In this section, several relevant technologies for the project will be described.

2.5.1 Semantic Web
One of the technologies that the thesis and the implementation of the system
depend on is the Semantic Web. The concept of Semantic Web was created
by Tim Berners-Lee in the late 1990s as an extension of the World Wide
Web. The main problem that it solves is that machines cannot read, access,
and interpret the content and information on the Internet. It is achieved by
adding structure and semantic information to general unstructured content.
Additional information enable machines to interpret and process content on
the Internet more intelligently and efficiently, allowing the creation of programs
that could automate tasks such as knowledge discovery or data integration. [18]

2.5.2 Resource Description Framework
Another technology, which the system is using is the Resource Description
Framework (RDF). RDF is a framework for expressing information about
resources that allows a representation of information in machine-processable
form. Resources can be any type of document, person, physical object, or
abstract concept. The main idea behind RDF is that any statement can be
represented as a triple in the following format:

<subject> <predicate> <object> .

The subject and object represent the two resources in a relationship, while the
predicate signifies the character of their relationship. Any set of triples, called
RDF graph, can be represented as a connected directed graph, where nodes
are subjects and objects, and arcs are predicates. [19]

There are three types of data defined in RDF [19]:

International Resource Identifiers (IRIs): IRIs are the generalization
of Uniform Resource Identifier (URI). URI is a sequence of ASCII 5 char-
acters used to identify, locate, and access a resource on the Internet. IRIs
support the usage of non-ASCII characters, making it easier for users of
non-Latin scripts to represent resource identifiers. IRIs can be used as
subjects, predicates, and objects. Some examples of IRIs are: [20]

https://www.example.com/page?query=example
5American Standard Code for Information Interchange (ASCII) is a 7-bit char-

acter code where each individual bit represents a unique character. ASCII encodes letters
of the English alphabet, digits, and symbols such as punctuation marks, etc. ASCII table
[access. 2024-04-18]

https://www.example.com/page?query=example
https://www.ascii-code.com

Relevant Technology 11

Figure 2.1 Example of a RDF graph [19]

https://ja.wikipedia.org/wiki/%E6%97%A5%E6%9C%AC%E8%AA%9E

literals: Literals are basic values that are not URIs (strings, dates, num-
bers, etc.). They are usually paired with data types6. String literals can
optionally be associated with a language tag, which specifies the language
of the provided string. Literals can only be used as objects in a RDF triple.
Some examples of literals are as follows.

”Hello, world!” (string literal)
42 (integer literal)
2024-04-18 (date literal)
”Bonjour tout le monde!”@fr (string literal with a language tag)

and blank nodes: A blank node is a special kind of an identifier. It can
be used when there is no need to define a global identifier (e.g. an IRI) for
a resource. In a RDF triple, it can be used as subject or as object.

As stated previously, RDF triples can be structured into RDF graphs. These
RDF graphs can be identified by an IRI. Subsequently, numerous RDF graphs
can be structured into RDF datasets. An RDF dataset can contain several

6RDF supports the usage of XML Schema data types, such as string, boolean, date-
Time, integer, etc.

https://ja.wikipedia.org/wiki/%E6%97%A5%E6%9C%AC%E8%AA%9E
https://www.w3.org/TR/xmlschema11-2

Relevant Technology 12

named graphs and a maximum of one unnamed graph, sometimes referred to
as default graph. [19]

Various serialization formats are available to record RDF triples. Regard-
less of the serialization format used to represent a RDF graph, all result in
identical triples, making them logically indistinguishable. Some of the most
popular serialization formats are the following: [19]

N-Triples and Turtle and their extensions N-Quads and TriG from the
Turtle family of RDF languages:

N-Triples is the most basic format for expressing RDF triples. In an N-
Triples document, each line represents one triple. It follows the following
schema; each part of the triple is separated by white space, and the triple
ends with full stop:

<subject> <predicate> <object> .

The full IRIs are contained within angle brackets <>. The data types of
literals can be specified by employing the delimiter ˆˆ as a suffix.
Some examples of using N-Triples are: [19]
<http :// example .org/bob#me > <http :// www.w3.org

/1999/02/22 - rdf -syntax -ns#type > <http :// xmlns.com/
foaf /0.1/ Person > .

<http :// example .org/bob#me > <http :// schema .org/
birthDate > "1990 -07 -04"ˆˆ < http :// www.w3.org /2001/
XMLSchema #date > .

Turtle is an extension of N-triples. It adds syntactic sugar, such as
support for name-space prefixes, lists, and short-hands for data-typed
literals, which makes it more readable for humans. Although the text is
more readable and easier to write, syntactic shortcuts make the format
harder to parse.
Some examples of using Turtle are: [19]
BASE <http :// example .org/>
PREFIX foaf: <http :// xmlns.com/foaf /0.1/ >
PREFIX schema : <http :// schema .org/>
PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema #>

<bob#me >
a foaf: Person ;
schema : birthDate "1990 -07 -04"ˆˆ xsd:date .

In addition, the TriG and N-Quad extensions enable the definition of
named graphs in a RDF document.

Relevant Technology 13

JSON-LD is a format that offers a JSON 7 syntax for RDF graphs and
datasets. JSON-LD has the ability to convert JSON documents into RDF
with only slight modifications.

RDFa is a type of RDF syntax that allows the integration of RDF data
into HTML8 and XML documents. For example, this allows search engines
to collect these data during web crawling and use them to improve search
results.

RDF/XML provides an XML-based structure for RDF graphs. When
RDF was first developed in the late 1990s, this was the only syntax that
was used. Subsequently, the additional formats mentioned above were em-
braced and standardized.

2.5.3 SPARQL Protocol and RDF Query Language
To be able to create, read, and manage the added data efficiently, the sys-
tem uses the SPARQL Protocol and RDF Query Language (SPARQL).
SPARQL is a set of specifications that provides languages and protocols for
querying and manipulating RDF graph content on the Web or in an RDF
store. The standard includes SPARQL Query Language and Query Results,
SPARQL Update, SPARQL Protocol, SPARQL Graph Store HTTP Protocol,
and various other specifications. [21]

SPARQL Query Language is a query language for querying RDF data.
It defines four basic query forms:

1. SELECT query form, which yields variables associated with a matching
query pattern. A SELECT query form is made up of a SELECT clause
(identifying variables to be returned), a FROM clause (specifying the data
source being queried), and a WHERE clause (determining the triple pattern
to be matched).

2. CONSTRUCT query form, which generates a single RDF graph defined
by a graph template, replacing the variables within the specified graph
template.

3. ASK query form that checks if a solution exists for the given query
pattern.

4. DESCRIBE query form that returns a single RDF graph describing
resource matched by the provided pattern.

7JavaScript Object Notation (JSON) is a lightweight data-interchange format.
JSON [access. 2024-04-18]

8Hypertext Markup Language (HTML) is a standard markup language used to
create and design web pages. It uses tags to structure content, defining elements such as
headings, paragraphs, links, and images. HTML — Mozilla [access. 2024-04-18]

https://www.json.org/json-en.html
https://developer.mozilla.org/en-US/docs/Web/HTML

Relevant Technology 14

In addition, SPARQL Query Language offers aggregates such as GROUP
BY (used to group solutions by a given condition) or HAVING (used to filter
grouped solution sets), solution sequence modifiers such as ORDER BY
(used to order solutions by a specified rule), DISTINCT (used to filter dupli-
cates), OFFSET (used to return matched data offset by a specified number
of solutions) or LIMIT (used to limit the number of returned solutions) and
expressions such as filters, functions or logical expressions. Moreover, the
standard defines the formats in which results can be returned: XML, JSON
or CSV /TSV. [22]

SPARQL Update serves as a modification language for RDF graphs. It
employs a syntax based on the SPARQL Query Language for RDF. Its pri-
mary function is to handle triples in an RDF graph (such as insert, delete) or
to manage RDF graphs (such as create, drop, load, clear, and so on). Graph
Update operations (for managing triples inside an RDF graph) include:

1. INSERT DATA operation adds the given triples to the given graph. In
addition, it should create the destination graph if it does not exist.

2. DELETE DATA operation removes the given triples if they are present
in the given graph.

3. DELETE/INSERT operation removes and inserts the given triples
matched by the provided pattern.

4. LOAD operation adds triples from a given RDF document to the given
graph.

5. CLEAR operation removes all triples from the given graph.

Graph Management operations (for managing RDF graphs) include the
CREATE operation (which creates a new RDF graph), DROP operation (which
removes an RDF graph together with all its contents), COPY operation (which
copies contents of one RDF graph to another RDF graph and overwrites its
contents), MOVE operation (which moves all contents from one RDF graph
to another RDF graph), and ADD operation (which copies contents of one
RDF graph to another RDF graph without overwriting the destination graph’s
contents). [23]

Lastly, the SPARQL Protocol and the SPARQL Graph Store HTTP
Protocol enable communication with SPARQL endpoints over HTTP9, using

9Hypertext Transfer Protocol (HTTP) is a stateless protocol at the application layer
that facilitates the transmission of hypermedia documents like HTML. It is used predom-
inantly for interactions between web browsers and web applications. HTTP — Mozilla
[access. 2024-04-18]

https://developer.mozilla.org/en-US/docs/Web/HTTP

Relevant Technology 15

native HTTP methods (such as POST, GET, PUT, and DELETE), making it
easier to integrate SPARQL services with web applications and various other
applications. [24, 25]

2.5.4 Ontologies
To be able to express the structure of the data in the knowledge graph, the
system would need to design and implement an ontology. Originally, in philos-
ophy, ontology explores the nature of existence, asking what types of entities
exist. In computer science, however, it provides a structured vocabulary for
defining the meaning of entities in specific domains. In computational terms,
an ontology is a formal and explicit specification of shared conceptualization
within a domain encoded in a machine-readable format. Key attributes include
formality, explicitness, consensus, conceptuality, and domain specificity, ensur-
ing that the ontology is understandable to humans and usable by machines. In
general, an ontology in an information system serves as a conceptual model of
an application domain, facilitating decision-making through reasoning about
domain knowledge.

Ontologies, which are crucial in information systems, differentiate them-
selves from other conceptual models because of their capacity to access im-
plicit knowledge, acting as storehouses of domain knowledge that are accessed
by smart computer systems. In contrast to other models such as UML class
diagrams10 or entity-relationship diagrams11, which dictate technical systems
during the design phase, ontologies depict the knowledge observed in the do-
main. The interaction with ontologies also involves reasoning tasks of verifi-
cation and deduction.

Verification guarantees the logical coherence and nonexistence of conflict-
ing data, while deduction allows drawing conclusions from ontology specifica-
tions, accessing implicit knowledge. For instance, deduction can infer supple-
mentary information such as an entity’s categorization or attributes beyond
what is explicitly stated, thereby enhancing the system’s comprehension be-
yond surface-level information.

In the Semantic Web, ontology languages play an important role in pro-
viding a standardized framework for representing knowledge, facilitating inter-
operability between heterogeneous data sources, and enabling intelligent infor-
mation extraction, automated reasoning, and seamless integration of web re-
sources. Two of the most used ontology languages are RDF Schema (RDFS)
and Web Ontology Language (OWL). [26]

10Unified Modeling Language (UML) class diagram illustrates the static structure of
a system by depicting classes and their relationships, serving as blueprints for object-oriented
design. UML — Miro [access. 2024-04-21]

11Entity-relationship diagrams visually represent entity interactions, aiding develop-
ers and designers in understanding software relationships and system structures; they are
commonly used in database design. ER Diagram — Miro [access. 2024-04-21]

https://miro.com/diagramming/what-is-a-uml-class-diagram/
https://miro.com/diagramming/what-is-an-er-diagram/

Relevant Technology 16

RDFS, an extension of RDF, serves as a framework for describing resources
and providing basic ontological features. RDFS allows the creation of hier-
archies of resource classes and properties, enabling essential features such as
interrelation and instantiation. However, RDFS is noted for its limitations,
lacking support for expressing exclusion or negation, which makes it semanti-
cally light. [26]

On the other hand, OWL serves as the primary language for the represen-
tation of ontologies on the Internet. OWL extends RDFS by offering more
expressive features, including the ability to construct complex classes from
simpler ones using logical expressions, support for rich axiomatization, such as
class exclusion, etc. [26]

2.5.4.1 Music Ontologies

In this subsection several existing music ontologies will be presented.

The Music Ontology

The Music Ontology is a domain-specific ontology used to describe data
and relationships in the music domain. It was created in the 2000s and the
last revision was made in 2012. The vocabulary contains more than 50 classes
and more than 150 different properties.

The Music Ontology enables the representation of information about artists,
albums, tracks, genres, events, instruments, performances, musical works, la-
bels, distributors, audio features, and relationships between entities. It enables
a detailed description of musicians (class MusicArtist), bands (class Music-
Group), composers, singles, albums (class MusicAlbum), and tracks (class
Track), along with classifications into various genres (class MusicGenre)
and styles. Moreover, it captures metadata about live performances (class
Performance), concerts, festivals (class Festival), venues (class Show), and
participants, as well as compositions (class Composition), songs, and pieces
of music, including their titles, composers, and associated information. Addi-
tionally, it encompasses details about record labels (class Label), music dis-
tributors, and characteristics of music such as tempo, key, and mood. [27]

MusicBrainz Schema

MusicBrainz, previously introduced, offers a comprehensive database and a
schema for describing music-related entities. The MusicBrainz Schema encom-
passes a variety of data types essential for the organization and comprehension
of musical data. At its core, it includes key entities such as artists, releases,
tracks, and labels, each characterized by specific attributes like release date,

http://musicontology.com/specification/#term-MusicArtist
http://musicontology.com/specification/#term-MusicGroup
http://musicontology.com/specification/#term-MusicGroup
http://musicontology.com/specification/#term-MusicAlbum
http://musicontology.com/specification/#term-Track
http://musicontology.com/specification/#term-MusicGenre
http://musicontology.com/specification/#term-Performance
http://musicontology.com/specification/#term-Festival
http://musicontology.com/specification/#term-Show
http://musicontology.com/specification/#term-Composition
http://musicontology.com/specification/#term-Label

Relevant Technology 17

catalog number, and genre. Furthermore, MusicBrainz establishes relation-
ships among these entities, including aliases and annotations, which provide
context and links within its database. Additional fundamental terms cover
elements like cover art and recordings, ensuring a thorough depiction of music
metadata. Additionally, the MusicBrainz Schema incorporates terms for com-
pilations, DJ mixes, remixes, remasters, etc., addressing terminology related
to music mixes. [28]

The LinkedBrainz initiative was launched to make MusicBrainz data
available as Linked Data. Typically, Linked Data does not directly utilize
the unique identifiers from MusicBrainz; instead, it either generates new IDs
derived from these identifiers or references them. LinkedBrainz functioned as
a direct supplier of these data, with the aim of reducing redundancy within
Linked Data. Unfortunately, the LinkedBrainz project was terminated in 2021,
and there has been no subsequent progress. This implies that, at present, the
latest MusicBrainz data is not available in a RDF format. [29]

Schema.org Vocabulary

Schema.org is a collaborative effort aiming to create and maintain structured
data schemas for the Internet. Its flexible vocabulary accommodates multiple
encoding formats (such as JSON-LD, RDFa, etc.) and encompasses entities,
relationships, and actions, featuring a scalable model. Schema.org is used by
more than 10 million websites, enabling a variety of applications that enhance
user experiences. Initiated by Google, Microsoft, Yahoo, and Yandex, its evolu-
tion is driven by an open community process through mailing lists and GitHub.
[30]

As of April 2024, the Schema.org’s vocabulary consisted of over 800 dif-
ferent types, over 1400 properties, and 90 enumerations12, which makes it a
relatively large vocabulary. It also provides multiple types to describe entities
from various domains: creative works (such as art, music, movies, TV series,
etc.), health, education, people and organizations, geography, etc. The most
basic type in the Schema.org’s vocabulary is Thing which can describe any
entity. It has basic properties such as name, url, description, etc. Every type
in the Schema.org’s vocabulary is derived from the Thing type.

To characterize the music domain, various types and their attributes have been
established. The Schema.org’s vocabulary is partially inspired by the previ-
ously mentioned ontologies — The Music Ontology and MusicBrainz Schema.

CreativeWork encompasses a broad range of creative works, such as
books, movies, photographs, and software programs. It features attributes
like author, description of the content, dates of creation, modification, publica-
tion, genre, and language of the work. Subsequent types are derivatives of the
CreativeWork type:

12from Organization of Schemas — Schema.org [access. 2024-04-27]

https://schema.org/Thing
https://schema.org/CreativeWork
https://schema.org/docs/schemas.html

Relevant Technology 18

MusicRecording characterizes individual music recordings, typically sin-
gle tracks. It extends the CreativeWork type by including details on the
artists involved, the album association of the recording, duration, and more.

MusicComposition characterizes a musical work. It contains attributes
such as composer, lyricist, lyrics of the piece, and recordings derived from
the musical piece, among others.

MusicPlaylist characterizes a playlist comprising various music tracks.
This type details the total count of the tracks and the tracks themselves.

MusicAlbum builds upon the MusicPlaylist type, incorporating the al-
bum’s artists, distinct album releases, and two enumerative categories de-
tailing the album production and album release types:

MusicAlbumProductionType enumeration categorizes albums ac-
cording to their content, including types like studio album, compilation,
live album, among others.
MusicAlbumReleaseType enumeration classifies the types of album
releases, including categories like single, EP, and album.

MusicRelease type characterizes an individual music album release. It
encompasses details such as the recording label, the length of the album,
and the format of release (such as CD, vinyl, or digital), among others.

When modeling entities for artists, two types could be used — either more
general Person type or MusicGroup type. MusicGroup describes groups of
musicians such as bands, orchestras, or choirs, and can also be applied to solo
artists. It encompasses details such as the albums of the artists, their musical
genre, and their individual tracks.

Wikidata: WikiProject Music

An initiative mentioned previously is Wikidata, which uses its own ontology
to categorize its entities.

Wikidata supports numerous WikiProjects, where groups of contribu-
tors work towards enhancing Wikipedia. These groups typically concentrate
on a particular subject area (such as WikiProject Mathematics or WikiProject
India), a certain section of the encyclopedia (such as WikiProject Disambigua-
tion), or a distinct type of activity (such as monitoring newly created pages).
[31]

WikiProject Music is a music domain-oriented WikiProject. The subset
of Wikidata’s ontology contains some classes and properties to describe entities
from the music domain. It provides classes to describe:

https://schema.org/MusicRecording
https://schema.org/MusicComposition
https://schema.org/MusicPlaylist
https://schema.org/MusicAlbum
https://schema.org/MusicAlbumProductionType
https://schema.org/MusicAlbumReleaseType
https://schema.org/MusicRelease
https://schema.org/Person
https://schema.org/MusicGroup

Relevant Technology 19

Artists, which include humans, fictional characters, and musical en-
sembles (musical groups).

Compositions are abstract musical works that underpin performances
and audio recordings/tracks.

Tracks are individual audio and video units, such as CD tracks and music
videos.

Releases are publications of recorded audio or video, including studio
albums, compilation albums, EPs, mixtapes, and singles. These can include
different versions or editions.

Labels are the brands and companies associated with the releases.

Each class has multiple properties which can be associated with them. In
addition, each class can have multiple external IDs (such as IDs in different
national libraries, music services, digital catalogs, etc.) associated with them.
External IDs play an important role in the linking of data between different
knowledge bases. [32]

DBpedia Ontology

The DBpedia Ontology is another crucial ontology to consider. Alongside
Schema.org vocabulary and Wikidata Ontology, the DBpedia Ontology serves
as a framework for representing data across a broad spectrum of domains. For
depicting entities and relationships in music, one can utilize classes like Mu-
sicalWork, Album, Song, MusicalArtist, MusicGenre and others. Many of the
DBpedia music domain classes correspond to types from Schema.org vocabulary
or classes from Wikidata Ontology. [33]

Other Music Ontologies

DOREMUS Ontology, which includes classes such as Performed Expres-
sion, which is a particular realization or embodiment of a musical piece,
Performed Work indicating a specific instance of a musical piece being exe-
cuted, Genre for classifying music according to stylistic or cultural charac-
teristics, Medium of Performance indicating the instruments or voices used,
Tempo determining the rate or speed, Catalogue Number and Opus Num-
ber serving as unique identifiers, and Performer denoting the individuals
participating in the performance.

Audio Features Ontology, which offers classes and properties to rep-
resent various aspects of audio signals. It can describe things such as
Amplitude, Beat, Pitch, Tempo, etc.

https://www.wikidata.org/wiki/Q5
https://www.wikidata.org/wiki/Q95074
https://www.wikidata.org/wiki/Q2088357
https://www.wikidata.org/wiki/Q2088357
https://www.wikidata.org/wiki/Q207628
https://www.wikidata.org/wiki/Q7302866
https://www.wikidata.org/wiki/Q2031291
https://www.wikidata.org/wiki/Q3331189
https://www.wikidata.org/wiki/Q18127
https://data.doremus.org/ontology/
https://motools.sourceforge.net/doc/audio_features.html

Relevant Technology 20

Playlist Ontology, which is a small ontology providing class Playlist
along with attributes such as playlist name and track list for expressing
relationship between tracks and playlists.

2.5.5 Linked Data and Data Mappings
As Tim Berners-Lee stated in his article about Linked Data, the Semantic Web
is not only about putting the data on the Internet, but also about making links
between the data, so a person or a machine can explore the web of data. In
this way, one can find other related data. As stated at the beginning of this
section, the Semantic Web uses RDF to describe entities and their metadata
on the Internet. [34]

Tim Berners-Lee stated four rules for the Linked Data:

1. Things should be identified by an universal IRI

2. HTTP URIs should be used, so the things can be looked up

3. Upon looking up the resource identified by an IRI, some useful information
should be provided (using standards such as RDF or SPARQL)

4. Links to other URIs should be included, so more things could be discovered

Linking could be done using multiple methods, such as using other URIs,
which point to different resources, or using semantic predicates (for instance,
rdfs:seeAlso or predicates from FOAF13 ontology). [34]

Mapping refers to the creation of a link between two resources that se-
mantically represent the same entity. To create a mapping, the predicate
owl:sameAs or its equivalent schema:sameAs can be used.

In addition, Berners-Lee invents the concept of Linked Open Data, which
refers to Linked Data which is released under an open license (such as Creative
Commons CC-BY). Furthermore, a star-rating system exists to evaluate the
data; 1-3 stars refer to Open Data, 4-5 stars refer to Linked Open Data (see
Figure 2.2). [34]

2.5.6 RDF Triple Stores
For the storage of the user’s knowledge graph, the system will use and RDF
triple store. An RDF triple store is a specialized system designed to handle

13Friend-of-a-Friend (FOAF) is a project which aims to link people and information
using the Interent. It defines RDF predicates such as foaf:knows (indicating that an individual
knows another individual) or foaf:mbox (specifies the email address of an individual). FOAF
Vocabulary Specification [access. 2024-04-21]

http://linkeddata.finki.ukim.mk/lod/ontology/po
https://www.w3.org/TR/rdf-schema/#ch_seealso
https://www.w3.org/TR/owl-ref/#sameAs-def
https://schema.org/sameAs
http://xmlns.com/foaf/spec
http://xmlns.com/foaf/spec

Relevant Technology 21

Figure 2.2 The 5-star data [34]

data in RDF format. Like other types of databases, it employs a suitable in-
ternal storage structure (such as native RDF, relational, or graph) to facilitate
effective data querying. Although there are various query languages for RDF
data, SPARQL has emerged as the standard widely adopted by RDF triple
stores. Additionally, some RDF triple stores feature inferencing capabilities,
which allows the logical derivation of information not explicitly present in the
data, using RDFS and OWL ontologies. Most RDF triple stores are available
in an open-source version, including Blazegraph DB, Apache Jena Fuseki,
and OpenLink Virtuoso. [35]

2.5.7 RDF Validation
Given that RDF operates without a fixed schema, it allows any property to
hold values of various types, ranging from simple string literals to more elabo-
rate structures. A validation tool must satisfy various requirements, including
value constraints, cardinality constraints, and predicate constraints such as de-
fined property ranges, logical operators, and negation. Several methods can be
implemented to maintain the consistency and quality of the data within the
knowledge graph. Approaches that meet all the criteria for validation methods
employ what are known as shapes. A shape specifies the constraints that a
particular node (a RDF triple) must meet to be considered valid. These shapes
can impose constraints on the entire node or just a specific property. [36, 37]

Shapes Constraint Language (SHACL) is one of the approaches that
can be used for the RDF validation. NodeShapes act as a templates for a
node within a data graph, outlining the necessary conditions and constraints
the node needs to meet. PropertyShapes outline specific constraints re-
lated to a node’s property, specifying rules about the property’s values, car-
dinality, and other aspects. A Focus Node is a particular node in the data
graph that is assessed against the constraints set forth in the NodeShape and
its related PropertyShapes, verifying if the data graph adheres to the defined
shapes and constraints. Each NodeShape can have defined targets: classes
(sh:targetClass), specific nodes (sh:targetNode), subjects or objects of the spe-

https://blazegraph.com
https://jena.apache.org/
https://virtuoso.openlinksw.com/

Relevant Technology 22

cific predicate (sh:targetSubjectOf, sh:targetObjectsOf). PropertyShapes use
property paths to target specific properties. In SHACL there are several
constraint component types defined: [38]

Value Type Constraint Components — restrictions based on the
value’s type (sh:class limits the value’s class, sh:datatype specifies the value’s
datatype, sh:nodeKind defines the node type (IRI, blank node, literal, or
their combination))

Cardinality Constraint Components — limitations on the quantity of
values (sh:minCount determines the minimum number and sh:maxCount
determines the maximum number of values)

Value Range Constraint Components — limitations on the value’s
range (sh:minExclusive indicates <, sh:minInclusive indicates ≤,
sh:maxExclusive indicates >, and sh:maxInclusive indicates ≥)

String-based Constraint Components — constraints on string val-
ues, including length constraints (sh:minLength, sh:maxLength), pattern
constraints (sh:pattern for matching specific patterns), and language con-
straints (sh:languageIn for specifying permissible language tags for strings
and sh:uniqueLang ensuring a unique string for each language tag)

Property Pair Constraint Components — constraints concerning re-
lationships between properties, (sh:equals indicates that linked properties
must share identical values, sh:disjoint indicates that linked properties
must possess distinct values, sh:lessThan and sh:lessThanOrEquals indi-
cate that one of the linked values should be lesser (or equal to) than the
other value)

Logical Constraint Components — constraints applying logic to prop-
erties, sh:not serves to negate an expression or acts as a logical ¬ operator,
sh:and enables conjunction or a logical ∧ operator, sh:or enables disjunc-
tion or a logical ∨ operator, and sh:xone dictates that each value node must
match precisely one of the specified shapes

Shape-based Constraint Components — components that define con-
straints allowing for the specification of intricate conditions through the
validation of value nodes against designated shapes

Other Constraint Components — constraint components which cannot
be assigned to any specific group, sh:closed and sh:ignoredProperties enable
the specification of properties exempt from validation, while
sh:hasValue and sh:in assess if the examined value matches a specific
value or belongs to a predefined list of values

Relevant Technology 23

SPARQL-based Constraint Components — additionally, SHACL sup-
ports validation through advanced SPARQL queries based on SELECT or
ASK queries

Other shape-based approaches include Shape Expressions (ShEx) and Re-
source Shapes (ReSh). [36]

2.5.8 MP3 Metadata
Even before music metadata services existed, it was possible to embed meta-
data in MP3 files using the so-called MP3 tags. MP3 tags are vital for storing
metadata such as title, artist, album, and track number. Despite the com-
prehensive nature of MP3 standards, they lack explicit guidelines for tag for-
mats or a uniform metadata container. Over time, tag formats such as ID3v1
(which later became ID3v2) and APEv2 have naturally become the industry’s
de facto accepted standards. These tags, usually found at the start or end of
MP3 files, are clearly separate from the actual audio data with which they are
associated. MP3 decoders have the ability to extract information from these
tags or disregard them as non-MP3 data. [39, 40]

Label ID3 Tag Value
Track title TIT2 Back To The Radio
Track number TRCK 2 / 13
Disk or media number TPOS 1 / 1
Artist TPE1 Porridge Radio
Artists TPE2 Porridge Radio
Album artist Porridge Radio
Release year 2022
Album TALB Waterslide, Diving Board, Ladder To The Sky
Release date TDRC 2022-05-20
ISRC TSRC US38W2145002
Copyright TCOP 2022 Secretly Canadian

Table 2.1 Example of MP3 metadata of a single track in ID3 format

https://shex.io
https://oslc-op.github.io/oslc-specs/specs/core/resource-shape.html
https://oslc-op.github.io/oslc-specs/specs/core/resource-shape.html

Chapter 3

Analysis and Design

To allow users to create their own music knowledge graphs, the creation of the
Music KG system is proposed. The Music KG system will accommodate
the following tasks:

upload media files from users’ devices and parse and edit metadata,

connect to music services to obtain metadata which they are offering,

add local tracks to the user’s knowledge graph,

add tracks and playlists from the connected streaming services,

browse user’s knowledge graph using SPARQL endpoint or using GUI,1

link users’ music metadata with existing music knowledge bases

This chapter will present the analysis of requirements, including outputs such
as use-case scenarios, functional, and non-functional requirements. Following
this, the system’s design will be showcased, detailing the individual compo-
nents and elements and their integration within the system.

3.1 Requirements Analysis

3.1.1 Target Group
To accurately outline the needs of a software application, it is crucial to con-
sider its usual user base. The typical user of the Music KG system is

1User interface (UI) serves as the medium for interaction and communication between
humans and computers within a device. It encompasses elements such as display screens,
keyboards, a mouse, and the overall desktop interface. In addition, it represents the method
by which users interact with applications or websites. Graphical user interface (GUI) is
a visual type of a UI. User Interface — TechTarget [access. 2024-04-28]

24

https://www.techtarget.com/searchapparchitecture/definition/user-interface-UI

Requirements Analysis 25

Figure 3.1 General overview of the Music KG system. Source: Linked Open
Data cloud image

someone who has a deep love for music, enjoys categorizing their preferred
music according to various classifications, and has a desire to expand their un-
derstanding of their musical preferences. With that in mind, the identification
and formulation of use case scenarios and user requirements for the system
was realized. Documenting both use case scenarios as well as user require-
ments helps keep track of what the desired functionality should be, as well
as creating testing scenarios. There are, in total, 21 use case scenarios, 32
functional requirements and 3 non-functional requirements.

3.1.2 Use Case Scenarios
3.1.2.1 User and User Profiles Use Case Scenarios

UC–1 — Register user: Allows an unregistered user to create a new
account.

1. The system will open the registration form.

https://lod-cloud.net/versions/2023-09-03/lod-cloud.svg
https://lod-cloud.net/versions/2023-09-03/lod-cloud.svg

Requirements Analysis 26

2. The user fills in the form and submits it.
3. If the received email address is already assigned to another user, the

scenario fails; otherwise, the system creates a new user and shows the
user the success message.

UC–2 — Login registered user: Allows a registered user to log into
the system.
Preconditions: The user is registered.

1. The system will open the log-in form.
2. The user fills in the form and submits it.
3. If the received email address does not exist in the system or the com-

bination of received email address and password does not match the
combination stored in the system’s database, the scenario fails; other-
wise, the system logs in the user and shows them the success message.

UC–3 — Create user profile: Allows a logged-in user to create a user
profile.
Preconditions: The user is logged-in.

1. The system will check if the user has not created their user profile yet,
if not, the scenario ends; otherwise, it will open the Create Profile form.

2. The user fills in the form and submits it.
3. The system creates a new profile for the user and shows the user the

success message.

UC–4 — Display user profile: Allows a logged-in user to display their
user profile.
Preconditions: The user is logged-in.

1. The system will check if the user has created their user profile; if not,
the system lets the user create a new user profile instead (see UC-3);
otherwise, it will show the logged-in user’s profile.

3.1.2.2 Media Files Use Case Scenarios

UC–5 — Upload media file: Allows the user to upload media files in
order to add new music tracks to their music library.
Preconditions: The user is logged in.

1. The system will open the dialog for uploading the file.
2. The user chooses the file or multiple files to upload.

Requirements Analysis 27

3. The system will parse the MP3 metadata from the uploaded files and
fill in the form with the obtained values.

UC–6 — Edit uploaded media file: Allows the user to edit the up-
loaded file metadata.
Preconditions: The user is logged in. At least one uploaded file.

1. The user selects the file they wish to edit from the list of uploaded files
2. The system will open the form for editing parsed metadata
3. The user clicks on the button to unlock the form for editing
4. The system unlocks the form for editing
5. The user edits the values and clicks on the button to saves the changes
6. The system saves the changes and locks the form for editing

UC–7 — Assign Spotify IDs to uploaded media file: Allows the
user to search and assign Spotify IDs to uploaded file metadata.
Preconditions: The user is logged in. At least one uploaded file; selected
file and unlocked for editing, selected field to assign Spotify ID to.

1. The user clicks on the button to assign the Spotify ID to the selected
field

2. The system opens dialog with theSpotify search
3. The user selects search criteria and submits
4. The system searches Spotify based on the provided criteria and shows

the user retrieved results
5. The user selects retrieved ID to assign to the field in the form
6. The system assigns the selected Spotify ID to the selected form field

UC–8 — Add new music tracks from uploaded media files: Allows
the user to add new music tracks from uploaded media files to their music
library.
Preconditions: The user is logged in. At least one uploaded file.

1. The user clicks on the button to add new tracks to their music library
2. The system checks if the filled data are valid, if they are invalid, the

scenario ends and system will show the failure message; otherwise the
system creates a new music track in the system for each uploaded file
and shows the success message

Requirements Analysis 28

3.1.2.3 Music Library Management Use Case Scenarios

UC–9 — Browse added albums: Allows the user to browse albums in
their music library.
Preconditions: The user is logged in.

1. The user clicks on the button to show albums
2. The system retrieve albums from the user’s music library and displays

them

UC–10 — Show album detail: Allows the user to access the selected
album’s detail.
Preconditions: The user is logged in. At least one album is in the music
library.

1. The user clicks on the selected album ID
2. The system retrieve information about the selected album and shows it

to the user

UC–11 — Browse added artists: Allows the user to browse artists in
their music library.
Preconditions: The user is logged in.

1. The user clicks on the button to show artists
2. The system retrieve artists from the user’s music library and displays

them

UC–12 — Show artist detail: Allows the user to access the selected
artist’s detail.
Preconditions: The user is logged in. At least one artist is in the music
library.

1. The user clicks on the selected artist ID
2. The system retrieve information about the selected artist and shows it

to the user

UC–13 — Browse added playlists: Allows the user to browse playlists
in their music library.
Preconditions: The user is logged in.

1. The user clicks on the button to show playlists
2. The system retrieve playlists from the user’s music library and displays

them

Requirements Analysis 29

UC–14 — Show playlist detail: Allows the user to access the selected
playlist’s detail.
Preconditions: The user is logged in. At least one playlist is in the music
library.

1. The user clicks on the selected playlist ID
2. The system retrieve information about the selected playlist and shows

it to the user

UC–15 — Browse added tracks: Allows the user to browse tracks in
their music library.
Preconditions: The user is logged in.

1. The user clicks on the button to show tracks
2. The system retrieve tracks from the user’s music library and displays

them

UC–16 — Show track detail: Allows the user to access the selected
track’s detail.
Preconditions: The user is logged in. At least one track is in the music
library.

1. The user clicks on the selected track ID
2. The system retrieve information about the selected track and shows it

to the user

3.1.2.4 Spotify Integration Use Case Scenarios

UC–17 — Authorize Spotify account: Allows the user to authorize
their Spotify account to enable information retrieval such as obtaining re-
cently played tracks and accessing user’s playlists.
Preconditions: The user is logged in and has a Spotify account.

1. The user clicks on the button to authorize the system to use their Spotify
account

2. The system redirects user to Spotify authorization
3. The user authorize the system to use their Spotify account
4. Upon successful authorization, the system shows the user the menu with

further Spotify actions

Requirements Analysis 30

UC–18 — Obtain recently played tracks on Spotify: Allows an
authorized user to access their Spotify library and get their recently played
tracks.
Preconditions: The user is logged in and has authorized the application to
use their Spotify account.

1. The user clicks on the button to get the recently played tracks on Spotify
2. The system obtains the recently played tracks from Spotify and shows

them to user

UC–19 — Obtain user’s Spotify playlists: Allows an authorized user
to access their Spotify library and get their saved playlists.
Preconditions: The user is logged in and has authorized the application to
use their Spotify account.

1. The user clicks on the button to get their playlists on Spotify
2. The system obtains the user’s playlists from Spotify and shows them to

user

UC–20 — Add music track from Spotify to user’s music library:
Allows an authorized user to add a music track from Spotify into the music
library.
Preconditions: The user is logged in and has authorized the application to
use their Spotify account.

1. The user opens Spotify track detail and clicks the button to add the
track into their music library

2. The system creates a new track in user’s library; if the request is suc-
cessful, it will show the user the success message, otherwise, it will show
the user the failure message

UC–21 — Add Spotify playlist to user’s music library: Allows an
authorized user to add a music playlist from Spotify into the music library.
Preconditions: The user is logged in and has authorized the application to
use their Spotify account.

1. The user opens Spotify playlist detail and clicks the button to add the
playlist into their music library

2. The system creates a new playlist (including creating tracks contained
in the playlist) in user’s library; if the request is successful, it will show
the user the success message, otherwise, it will show the user the failure
message

Requirements Analysis 31

3.1.3 Functional Requirements
FR–1 — Registration Form: The system shall provide a form accessible
to unregistered users for registration. The form shall include fields for the
user to input email address and password. The system shall verify that
all required fields are filled out before allowing submission. Additionally,
during registration, the system shall check the uniqueness of the email
address provided by the user.

FR–2 — User Account Creation: Upon successful validation of the
registration form and the uniqueness of the email address, the system shall
create a new user account during registration. The system shall store the
user’s registration information securely in the database.

FR–3 — Registration Success/Error Message: After successfully
creating the user account during registration, the system shall display a
success message to the user confirming their registration. In case of any er-
rors during the registration process, the system shall display an appropriate
error message.

FR–4 — Login Form: The system shall provide a form accessible to
registered users for logging in. The form shall include fields for the user to
input their email address and password. Upon submission of the login form,
the system shall authenticate the user’s credentials against the information
stored in the system’s database. If the email address provided by the user
does not exist in the system or if the combination of the email address and
password does not match the stored credentials, the system shall prevent
the login and display an appropriate error message.

FR–5 — Successful Login: If the credentials provided are valid, the
system shall log in the user and grant access to their account. The system
shall display a success message confirming the user’s login.

FR–6 — Profile Creation Check: Upon logging in, the system shall
check if the user has already created their user profile. If the user has
not yet created their profile, the system shall allow them to proceed with
profile creation.

FR–7 — Profile Creation Form: The system shall provide a form for
creating a user profile accessible to logged-in users who have not yet created
their profile. The form shall include a field for inputting the logged-in user’s
name.

FR–8 — User Profile Creation: Upon submission of the profile creation
form, the system shall create a new profile for the user. The system shall
store the profile information securely in the database.

Requirements Analysis 32

FR–9 — Profile Creation Success Message: After successfully cre-
ating the user profile, the system shall display a success message to the
user.

FR–10 — Display User Profile: If the user has created their profile, the
system shall display the user profile information. The system shall provide
options for the user to edit their profile or perform other profile-related
actions.

FR–11 — Upload Dialog and File Selection: The system shall pro-
vide a dialog for uploading media files accessible to logged-in users, allowing
them to choose one or multiple files to upload.

FR–12 — MP3 Metadata Parsing: When uploading the file, the sys-
tem shall parse the MP3 metadata of the uploaded files and fill in the form
with the values obtained.

FR–13 — File Selection for Editing: The user shall be able to select
the file they wish to edit from the list of uploaded files.

FR–14 — Edit Form: The system shall provide a form for editing parsed
metadata accessible to logged-in users with at least one uploaded file.

FR–15 — Form Editing and Locking: The user shall be able to edit
the values in the form and save the changes. Upon saving changes, the
system shall lock the form for editing.

FR–16 — Spotify Search Dialog: The system shall provide a dialog
with Spotify search functionality. The user shall be able to select search
criteria and submit them to the system. The system shall search Spotify
based on the provided criteria and display the retrieved results.

FR–17 — Spotify ID Selection and Assignment: The user shall be
able to select a retrieved Spotify ID from the search results and assign it
to the selected field in the form.

FR–18 — New Track Creation: The user shall be able to add new
tracks to their music library. The system shall verify that the filled data
are valid. If the data are invalid, the system shall show a failure message.
If the data filled are valid, the system shall create a new music track in the
system for each uploaded file and show a success message.

FR–19 — Browse Albums from Music Library: The system shall
retrieve albums from the user’s music library and display them upon brows-
ing.

FR–20 — Display Album from Music Library: The system shall
retrieve and display information about the selected album.

Requirements Analysis 33

FR–21 — Browse Artists from Music Library: The system shall
retrieve artists from the user’s music library and display them upon brows-
ing.

FR–22 — Display Artist from Music Library: The system shall
retrieve and display information upon selecting the artist.

FR–23 — Browse Playlists from Music Library: The system shall re-
trieve playlists from the user’s music library and display them upon brows-
ing.

FR–24 — Display Playlist from Music Library: The system shall
retrieve and display information upon selecting the playlist.

FR–25 — Track Retrieval and Display: The system shall retrieve
tracks from the user’s music library and display them upon browsing.

FR–26 — Track Information Retrieval and Display: The system
shall retrieve and display information upon selecting the track.

FR–27 — Spotify Account Authorization: The system shall allow
the user to authorize the application to use their Spotify account.

FR–28 — Menu Display Upon Authorization: Upon successful au-
thorization, the system shall display a menu with further Spotify actions
— recently played tracks and user’s playlists.

FR–29 — Retrieve Recently Played Tracks: The system shall obtain
the user’s recently played tracks from Spotify and display them.

FR-30 — Retrieve User’s Playlists: The system shall obtain the user’s
playlists from Spotify and display them.

FR–31 — Add Music Track from Spotify to User’s Library: Upon
selecting a track, the system shall create a new track in the user’s library.
If successful, it shall display a success message; otherwise, it shall display
a failure message.

FR–32 — Add Spotify Playlist to User’s Library: Upon selecting
a playlist, the system shall create a new playlist (including creating tracks
contained in the playlist) in the user’s library. If successful, it shall display
a success message; otherwise, it shall display a failure message.

3.1.4 Non-functional Requirements
NFR–1 — Responsive User Interaction: The system shall respond
to user interactions, such as browsing albums or retrieving tracks, within
2 seconds under normal operating conditions.

System Design 34

NFR–2 — Intuitive User Interface: The user interface shall adhere
to established design principles and provide intuitive navigation and inter-
action patterns to minimize the usage learning curve.

NFR–3 — Error Handling: Error handling mechanisms shall be imple-
mented to gracefully handle unexpected failures and provide informative
error messages to users.

3.2 System Design

The following section highlights the process and conclusions from designing
the system considering use case scenarios and functional and non-functional
requirements.

3.2.1 System Architecture
The Music KG system consists of four integral parts: the back-end server,
the RDF store, the database for user credentials and the front-end client. Fig-
ure 3.2 shows parts of the system and the relations between them.

Figure 3.2 The Music KG system architecture

3.2.2 Back-end Server
The backbone of the Music KG system is its back-end server. It provides
support for any operation required from the system, whether it is user authen-

System Design 35

tication, music library management, retrieving information from Spotify, etc.
The detailed architecture can be seen in Figure 3.3.

Figure 3.3 The architecture of the Back-end Server

For that purpose, three main modules are created:

1. Authentication module that mainly focuses on registering new users,
providing an access token for the user which logs in, and authenticating
incoming requests to the API.

2. SPARQL Communicator module that mainly focuses on communica-
tion with the RDF store, manipulating the data inside the RDF store, in-
cluding providing methods to translate CRUD-L2 operations into SPARQL
queries and retrieving information about the entities inside of the RDF
store.

3. Spotify Adapter module that mainly focuses on obtaining various meta-
data from Spotify API such as information about albums, artists, playlists
and tracks, including user’s saved playlists or their recently played tracks.
To facilitate this, the module also provides an authorization method that
enables the user to grant permission to the API to retrieve and access their
personal data from Spotify.

2Create, Read, Update, Delete (CRUD) encapsulates the fundamental operations
of data management which are crucial for interacting with preserved data in databases or
software applications. CRUD-L refers to the four operations mentioned above with the List
(L) operation added, which returns all entities from some given collection. CRUD —
Mozilla [access. 2024-04-22]

https://developer.mozilla.org/en-US/docs/Glossary/CRUD
https://developer.mozilla.org/en-US/docs/Glossary/CRUD

System Design 36

Technology Stack

The back-end server uses the Node.js Express framework and is written in
TypeScript.

Node.js is a flexible open source JavaScript runtime that works on various
platforms, utilizing the V8 JavaScript engine from Google Chrome. Its archi-
tecture, based on a single process and asynchronous I/O operations, achieves
high performance by eliminating the need to create new threads for each re-
quest and avoiding code execution blockage. Consequently, Node.js can effi-
ciently manage many simultaneous connections without the difficulties asso-
ciated with thread management. In addition, it provides an easy transition
for front-end developers, allowing them to program in JavaScript for both the
client and the server sides. [41]

Node.js Express is a minimal and flexible Node.js web application frame-
work offering a comprehensive suite of functionalities for both web and mobile
platforms. Express delivers a streamlined layer of essential web application
capabilities, encompassing middleware and HTTP utility methods. [42]

The back-end server also uses one custom middleware: cors middleware,
which provides configuration and setup for CORS3.

Both frameworks also support development in TypeScript, enhancing the
developer experience with its extended syntax and features. One of its main
objectives is to identify errors in an early stage of development, simplifying
the process of immediate error correction. As TypeScript is compiled into
JavaScript during the build process, it does not impose restrictions on its use
in application development. [43]

For requests to external services such as music services’ APIs or the RDF
store, the back-end server uses axios, a promise-driven HTTP client compat-
ible with both Node.js servers and browsers. A key feature is its ability to
operate on both platforms using the same code-base. It provides an API for
making HTTP requests, intercepting outgoing requests and incoming responses,
handling errors, etc. [44]

Authentication and Authorization

Users will be able to register and log in to access the resources in the RDF
store and access the data retrieved from Spotify. The back-end server will be
able to process requests for registering a new account, logging in to an existing

3Cross-Origin Resource Sharing (CORS) is a protocol using HTTP headers that
allows servers to define which foreign origins may access their content. This includes a pre-
flight check by the browser to verify if the server allows the specific request, including the
methods and headers of HTTP. CORS — Mozilla [access. 2024-04-28]

https://www.npmjs.com/package/cors
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

System Design 37

account, providing a time-bounded access token, and will be able to verify the
legitimacy of the provided access token. Verified users will be able to access
the resources and manage the data in the RDF store.

External Integration

The back-end server will expose endpoints through a RESTful4 API that
client applications could use to communicate with the server.

The back-end server will communicate with Spotify API using methods de-
fined in the Spotify Web API SDK, which provides interfaces, types, and
methods to connect to Spotify API. SDK also offers different methods for au-
thorization based on the context in which the API is accessed. Given that the
server also requires interaction with user data, it must secure authorization to
access this information on the Spotify platform.

Moreover, the back-end server will communicate with the RDF store using
SPARQL Protocol. SPARQL Protocol enables communication using HTTP
making it easier for servers to communicate with the RDF store directly. Us-
ing SPARQL Protocol enables the execution of SPARQL queries via the POST
method by embedding a SPARQL request as a query parameter ?query in the
request. The results can be obtained in the formats JSON, XML, or CSV.

To be able to create SPARQL queries from JSON objects (from incoming
requests), the back-end server uses the SPARQL.js library, which offers a
SPARQL generator and a SPARQL parser for transforming JSON objects into
SPARQL queries and vice versa. Since manipulating a JSON object is much
easier than manipulating strings in TypeScript applications, the SPARQL.js
library enables a simple, straightforward and effective way to create SPARQL
queries.

3.2.3 RDF Store
A crucial aspect of developing a knowledge base is the database that stores
the data. Given that the data are in the RDF format, it is advisable to opt for
a specialized database, specifically an RDF store. Details about RDF stores
have been previously discussed in Section 2.5.6.

4Representational State Transfer (REST) is an architectural style used in API
implementation. A RESTful API is an interface that supports stateless interactions, allows
data caching between requests, maintains a consistent interface, and enables resources to
be transmitted in a standardized format, among other features. What is a REST API?
[access. 2024-04-29]

https://github.com/spotify/spotify-web-api-ts-sdk
https://github.com/RubenVerborgh/SPARQL.js
https://www.redhat.com/en/topics/api/what-is-a-rest-api

System Design 38

Figure 3.4 The architecture of the RDF Store

Technology Stack

Apache Jena Fuseki was selected for this task due to its ease of setup and
its prior use in the Semantic Web course, making it a clear choice. Apache
Jena Fuseki is an RDF store and SPARQL server within the Apache Jena
framework. Apache Jena is a free and open source Java framework for
building Semantic Web and Linked Data applications. Fuseki includes a user
interface and offers extensive configurabilty, providing numerous services for
integration and utilization within the RDF store. Four services will be used in
the Music KG RDF Store:

SPARQL Query service, which provides SPARQL endpoint and support
for SPARQL queries (refer to Section 2.5.3)

Graph Store Protocol service, which provides support for graph ma-
nipulation such as creating graphs, editing graphs, etc. (refer to Section
2.5.3)

SPARQL Update service, which provides support for data manipula-
tion using HTTP POST method by sending SPARQL query as a query
paramter (refer to Section 2.5.3)

SHACL Validation service, which verifies the compliance of graph data
with specific rules outlined by SHACL Shapes (refer to Section 2.5.7)

System Design 39

Figure 3.5 Music KG ontology. All types and predicates are from schema.org.

Music Ontology

For the RDF store, the following music domain-oriented ontology will be
considered; it is based on Schema.org vocabulary (see Section 2.5.4).

MusicRecording class describes a single recording, a track or a song. It
includes the following properties:

byArtist — an artist or artists that performed the recording
datePublished — the initial release date of the recording, typically align-
ing with the album’s release date
duration — the duration of the recording in ISO 8601 format.5 Example
of a duration written in ISO 8601 format is e.g: P3Y6M4DT12H30M5S

5Maintained by the International Organization for Standardization (ISO), ISO 8601 is
an international standard covering the worldwide exchange and communication of date and
time-related data. ISO 8601 — Wikipedia [access. 2024-04-29]

https://schema.org/
https://en.wikipedia.org/wiki/ISO_8601

System Design 40

which corresponds to: 3 years, 6 months, 4 days, 12 hours, 30 minutes
and 5 seconds
inAlbum — the album to which the recording belongs
inPlaylist — a playlist or playlists to which the recording belongs
isrcCode — the ISRC code6 for the recording
name — the name of the recording
sameAs — the link to a different resource which identifies the same
recording
url — the external URL bound with the recording

MusicPlaylist class describes a playlist which consist of several music
tracks. It includes the following properties:

creator — a person or people which created the playlist
dateCreated — the date and time of the creation of the playlist in the
RDF store
dateModified — the date and time of the latest modification of the
playlist in the RDF store
image — the image bound with the playlist
name — the name of the playlist
numTracks - the number of the tracks in the playlist
sameAs — the link to a different resource which identifies the same
playlist
track — a track or a list of tracks which belong to the playlist
url — the external URL bound with the playlist

MusicAlbum class describes an album or a collection of music tracks. It
contains the following properties:

albumProductionType — a type of production of the album, it can be
one of the following types: CompilationAlbum, DJMixAlbum, DemoAl-
bum, LiveAlbum, MixtapeAlbum, RemixAlbum, SoundtrackAlbum, Spo-
kenWordAlbum, StudioAlbum
albumReleaseType — a type of release of the album, it can be one of
the following values: AlbumRelease, BroadcastRelease, EPRelease, Sin-
gleRelease
byArtist — an artist or artists that performed the album

6International Standard Recording Code (ISRC) is a unique and permanent iden-
tifier for sound recordings and music videos. It helps distinguish between different recordings
and with the management of content rights when the recording is used on different platforms.
Home — International Standard Recording Code [access. 2024-04-29]

https://isrc.ifpi.org/en/

System Design 41

datePublished — the initial release date of the album
image — the image bound with the album
name — the name of the album
numTracks — the number of the tracks in the album
sameAs — the link to a different resource which identifies the same
album
track — a track or a list of tracks which belong to the album
url — the external URL bound with the album

MusicGroup class describes a music artist, whether it is a band or a solo
musician. It contains the following properties:

album — an album or albums that were recorded by the artist
genre — a genre or genres associated with the artist
image — the image bound with the artist
name — the name of the artist
sameAs — the link to a different resource which identifies the same artist
track - a track or a list of tracks which were recorded by the artist
url — the external URL bound with the artist

Person class describes either an user of the Music KG system or a
creator of a playlist (e.g. Spotify user). It includes the following properties:

email — the email address of the person
name — the name of the person
sameAs — the link to a different resource which identifies the same
person
url — the external URL bound with the person

3.2.4 User Credentials Database
The User Credentials Database holds information such as user emails and
hashed passwords. Given the straightforward nature of the storage model, a
simpler database suffices. MongoDB was selected for this task. MongoDB,
a widely-used, open-source, NoSQL database, manages data in a flexible JSON-
like structure called BSON. Renowned for its high performance, scalability, and
adaptability, it is ideal for any application from small projects to extensive en-
terprise applications. The document-oriented design of MongoDB simplifies
data modeling, reflecting the object structure in the application code. With
its dynamic schema system, developers can rapidly evolve and respond to new
requirements without losing efficiency. Moreover, MongoDB boasts powerful

System Design 42

search features, including comprehensive indexing and an advanced aggrega-
tion framework, which improve data access and analysis. An additional robust
capability is its cloud-based database Atlas, utilized for this project. Setting
up and establishing a connection through a connection string or any of the
various available client libraries is straightforward. [45]

3.2.5 Front-end Client

Figure 3.6 The architecture of the Front-end Client

The point of the main user interaction with the Music KG system is its
front-end client. It provides a user interface for performing various tasks
in the Music KG system. It enables users to register and log in, authorize
their Spotify account, retrieve data from their Spotify account, or browse their
knowledge graph. The detailed architecture can be seen in Figure 3.6. For
that purpose, four main modules are created:

1. Authentication module containing two sub-modules for user registration
and user logging in. Both of the sub-modules feature a form in which the
user can fill in their email and password and register or log in and receive
the access token, respectively.

2. Browse module, comprising four distinct sub-modules for data access
within the knowledge graph. This module can fetch and exhibit four unique
entities: MusicAlbum (Albums sub-module), MusicGroup (Artists sub-
module), MusicPlaylist (Playlists sub-module), and MusicRecording (Tracks

System Design 43

sub-module). Each displayed resource includes all its attributes in an easily
readable format and includes links to additional resources in the knowledge
graph and to external platforms such as Spotify or Wikidata.

3. Upload File module allows users to upload media files from their devices.
The system then processes the embedded metadata to extract details such
as artists, album, track duration, release date, among others. It also includes
a form for modifying the extracted metadata, enabling users to verify and
edit the information before adding it to their knowledge graph.

4. Spotify Adapter module allows users to authenticate their Spotify ac-
count and acquire a Spotify access token. This token is used by the back-
end server to fetch user data from the Spotify API. The client manages
two types of data from the Spotify API : user’s playlists and recently played
tracks. To manage these, two sub-modules are implemented: the Playlists
sub-module and the Recent Tracks sub-module. The Playlists sub-
module is responsible for fetching playlists and presenting them in a list
format. It allows for an in-depth view of each playlist, including specifics
about every track. The Recent Tracks sub-module gathers information
on the user’s latest played tracks along with their details. Both sub-
modules enable the addition of tracks into the user’s knowledge graph.
When a new track is added to the knowledge graph, the system also obtains
and incorporates related artist and album information into the knowledge
graph.

Technology Stack

The front-end client uses the React UI library and is written in TypeScript.
The application is build using Vite and for CSS7 styling uses Tailwind library.

React is a framework consisting of user interface components that simplify the
creation of interactive user interfaces. React employs components to construct
web pages that produce a DOM 8 reflecting the component’s current state.
These components adapt to changes in data and update the relevant sections
of the tree structure within the DOM. It employs JSX, a syntax extension for
JavaScript, enabling the incorporation of HTML-like elements into JavaScript
files. The preferred method for creating components is using JSX. In addition
to React, various libraries associated with React are utilized. These include
React Router DOM for managing dynamic routing across components, Re-

7Cascading Style Sheets (CSS) allow a developer to define styling rules that are used
when when building a web application to be applied to individual HTML template elements.
What is CSS? — Mozilla [access. 2024-04-30]

8Document Object Model (DOM) represents a web page as a tree structure and allows
manipulation of its structure, content and styles using scripts and programming languages.
Document Object Model — Introduction — Mozilla [access. 2024-04-30]

https://reactrouter.com/en/main
https://react-hook-form.com
https://react-hook-form.com
https://react-hook-form.com
https://react-hook-form.com
https://developer.mozilla.org/en-US/docs/Learn/CSS/First_steps/What_is_CSS
https://react-hook-form.com
https://react-hook-form.com
https://react-hook-form.com
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://react-hook-form.com
https://react-hook-form.com

System Design 44

act Hook Form to simplify form handling and validation, and React Icons
for incorporating icons. [46]

Vite serves as a bundler for front-end applications. Its name (vite, trans-
lating to ’fast’ in French) reflects its goal to enhance the development process
for contemporary web projects by making it quicker and more efficient. This
is achieved through the implementation of advanced features like Hot Mod-
ule Replacements, which allow for immediate and accurate updates without
the need to refresh the page or disrupt the application’s state. Additionally,
it offers extensive configurability and includes support for testing integration.
[47]

Tailwind CSS is a utility-first CSS framework designed to simplify web devel-
opment through a robust collection of ready-to-use, atomic utility classes. Dif-
fering from conventional CSS frameworks, Tailwind avoids using pre-designed
components and instead provides basic utility classes that apply styling directly
to HTML elements. This method allows developers to quickly develop unique
designs without the need for custom CSS, enhancing uniformity and scala-
bility within projects. Tailwind enables developers to effectively construct
responsive designs, craft complex interfaces, and uphold a tidy, manageable
code-base, thus becoming a favored option in contemporary web development.
[48]

The Music Metadata Browser library is utilized to parse uploaded me-
dia files. This library provides a metadata parser compatible with most of the
audio formats and tag headers. Parsing is executed directly in the browser,
eliminating the need to transmit the media files to a back-end API. [49]

External Integration

The front-end client will communicate with the back-end API using HTTP(S)
and would require the use of the access token provided by API.

https://react-hook-form.com
https://react-hook-form.com
https://react-hook-form.com
https://react-hook-form.com
https://react-icons.github.io/react-icons/

Chapter 4

Implementation

Before initiating the implementation phase, it was necessary to consider the
structure of the code-base. Initially, the two applications were developed in
distinct repositories, which subsequently led to issues since both required the
same interfaces and data types, resulting in code redundancies. During the
initial development phase, the applications were consolidated into one single
monorepo, significantly enhancing the efficiency of the development process.
Early on, various integration experiments were conducted, including Spotify
authorization (referencing tutorials in Spotify SDK’s GitHub repository),
setting up the RDF store with Apache Jena Fuseki, executing HTTP requests
for SPARQL queries and uploading files to the browser client.

In this chapter, the implementation strategy and the definitive choices made
during the implementation of the Music KG system will be discussed.

4.1 Code Organization and Structure

The entire code-base is structured within a centralized monorepo. A monorepo
refers to a single repository that houses several distinct projects linked by clear
relationships. The advantages include maintaining consistent library package
versions throughout the monorepo to aid integration, typically offering tools to
develop new applications or libraries with minimal extra work, ensuring atomic
commits throughout the repository — which reduces the likelihood of errors,
and promoting uniformity within the code of a monorepo. [50]

For monorepo management, Nx is used. Nx is a build tool that helps to create
applications and libraries using a wide range of commands called recipes. It
offers recipes to create Node.js servers, React applications, data type libraries,
etc. [51]

45

https://github.com/spotify/spotify-web-api-ts-sdk?tab=readme-ov-file#mixed-server-and-client-side-authentication

Back-end Server 46

Typically, an Nx monorepo includes several applications and libraries. Li-
braries may consist of shared components or shared data types, essentially
any code that can be reused across different applications. In the Music KG
system there exist two applications: api (the back-end server) and dash-
board (the front-end client); and two libraries: data (for sharing data types
between the back-end server and the front-end client) and sparql-data (in-
cluding data types and models to express SPARQL and RDF related data).
The relationships between applications and libraries can be seen in Figure 4.1.

Figure 4.1 Relationships between applications and libraries in the Music KG
Nx monorepo

Because both applications utilize frameworks or libraries (Node.js Express and
React) that are unopinionated, implying that there is no prescribed folder or
organizational structure for the projects to adhere to, developers are free to
create and employ the structure they find most suitable. For each application,
an inspired code-base structure was created. They will be described in detail
later in the relevant sections of this chapter (see Section 4.2 and Section 4.3).

4.2 Back-end Server

4.2.1 Code-base Structure
The code-base structure of the back-end server is heavily inspired by A future-
proof Node.js express file/folder structure by Codemzy.

api — root folder for the API routes

auth — folder for the Authentication module

https://www.codemzy.com/blog/nodejs-file-folder-structure
https://www.codemzy.com/blog/nodejs-file-folder-structure

Back-end Server 47

sparql — folder for the SPARQL Communicator module
spotify — folder for the Spotify Adapter module

database — folder for the User Credentials database integration

utils — folder for shared utility functions

main.ts — the mounting point of the application; handling configuration
of the server’s port, CORS, connection to the database and routing

routes.ts — the routing configuration for the top-level routing

The sub-folders of the api folder correspond to their related routes (e.g. api/auth
becomes <BASE_URL>/api/auth). Each sub-folder contains the same structure
for handling the incoming requests:

constants — stores constants relevant to the module

features — includes functions invoked by handlers, such as those encap-
sulating business logic

handlers — includes functions triggered upon matching specific routes

helpers — includes auxiliary functions that assist a handler’s feature

middleware — includes middleware that can be integrated into a process-
ing pipeline for specific routes

models — stores models like datatypes or interfaces relevant to the module

routes — the configuration for routing within the module

utils — includes utility functions relevant to the module

Each category could be either a single file or a folder that holds multiple files.
Starting as a single file, reaching more than one hundred lines, it could be split
into multiple files to improve readability.

4.2.2 Authentication Module
The Authentication module implements UC–1 — Register user, UC–2 —
Login registered user and implements support functions for UC–3 — Create
user profile and UC–4 — Display user profile by providing information about
the current logged-in user based on the received access token.

The Authentication module features three endpoints:

GET /api/auth/current — retrieves the information about the current
logged-in user from the received access token

Back-end Server 48

POST /api/auth/login — provides an access token upon successful log in
(received user credentials match the ones stored in the database)

POST /api/auth/register — receives email and password and if the email
does not already exist in the database, creates a new user in the system

Registering a new user

The system queries the user credentials database if there is already some user
with the provided email. If not, a new user is created. To ensure safe storage
of passwords provided, the received password is encrypted using the scrypt
function of the Node’s crypto library. The scrypt function receives three pa-
rameters: password, salt (a random string), and length of the key (the system
uses 64). For every user, the system generates a different salt, which is stored
alongside the hashed password in the database. The entry in the database is
e.g:
{

email: abc@example .com ,
hash: <salt >:< hashed_password >

}

where hashed_password is password hashed using the scrypt function.

Logging in the register user

The system queries the user credentials database to find out if the user exists
in the database and then checks if the provided password matches the hashed
password stored in the database. If the user is successfully logged in, the server
creates an access token with which the client can authorize any subsequent
request. For authorization tokens, the system employs JSON Web Tokens
(JWT), a widely recognized standard for securely transmitting claims between
two parties.

Get Current User

The system decodes and parses the received access token and returns the cur-
rent user’s email address and their ID in the user credentials database.

4.2.3 SPARQL Communicator Module
The SPARQL Communicator module implements support functions for
the following use case scenarios: UC–3 — Create user profile, UC–4 — Display
user profile, UC–8 — Add new music tracks from uploaded media files, UC–
9 — Browse added albums, UC–10 — Show album detail, UC–11 — Browse
added artists, UC–12 — Show artist detail, UC–13 — Browse added playlists,
UC–14 - Show playlist detail, UC–15 — Browse added tracks, UC–16 — Show

https://nodejs.org/api/crypto.html#cryptoscryptsyncpassword-salt-keylen-options
https://jwt.io
https://jwt.io

Back-end Server 49

track detail, UC–20 — Add music track from Spotify to user’s music library
and UC–21 — Add Spotify playlist to user’s music library.

Figure 4.2 The overview of the SPARQL Communicator module in the back-
end server

The most complex module in the entire Music KG system is the SPARQL
Communicator module. As shown in Figure 4.2, it contains five sub-
modules (Albums, Artists, Playlists, Tracks and Users), one top-level endpoint
providing sameAs links from the Links graph, the SPARQL Adapter (contain-
ing functions, models and interfaces for creating various SPARQL queries and
parsing the results received from the RDF store) and the unique ID generator.

The most important component of the module is the SPARQL Adapter,
located in the helpers directory, which acts as a bridge between the back-end
server and the RDF store. The capabilities of the SPARQL Adapter are cat-
egorized into four main groups based on their functionality:
1. SPARQL Query formulation

2. SPARQL Results interpretation

3. functions dealing with triples

4. miscellaneous functions (like prefix replacement, etc.)

For bounding the variables to be used in SPARQL results interpretation, the
variable names: ?subject (for subjects), ?predicate (for predicates) and
?object (for objects) are used.

Back-end Server 50

SPARQL Query Formulation

The first group of SPARQL Adapter functions is SPARQL Query Formulation
functions. The system offers 11 different SPARQL queries. The following
section will briefly present all of them.

SELECT queries

SELECT queries return data bound by given variables in the query pattern.
SPARQL Adapter can create 5 different SELECT queries:

createGetQuery function creates a SELECT query to find all triples for
one given subject (resource) from the given graph (graph). The created
query is as follows:
SELECT ? predicate ? object
FROM <graph > WHERE {

<resource > ? predicate ? object .
}

createGetByExternalUrlQuery function creates a SELECT query to
find all triples for a subject with the given external URL (external_url)
from the given graph (graph). The created query is as follows:
PREFIX schema : <https :// schema .org/>
SELECT ? subject ? predicate ? object
FROM <graph > WHERE {

? subject schema :url <external_url >;
? predicate ? object .

}

createGetAllQuery function creates a SELECT query to find all enti-
ties of the given class (class) from the given graph (graph). The created
query is as follows:
PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns

#>
SELECT ? subject
FROM <graph > WHERE {

? subject rdf:type <class >.
}

createGetFromWikidataQuery function creates a SELECT query to
find all triples for the given subject by the Spotify ID (spotify_entity_id)
which is further specified by the Wikidata predicate (wikidata_prop — it
can be one of those values: P1902 : Spotify artist ID, P2205 : Spotify album
ID or P2207 : Spotify track ID) from the Wikidata graph (wikidata_graph).
The created query is as follows:

Back-end Server 51

PREFIX wdt: <http :// www. wikidata .org/prop/ direct />
SELECT ? subject ? predicate ? object
FROM <wikidata_graph > WHERE {

? subject wdt:< wikidata_prop > <spotify_entity_id >;
? predicate ? object .

}

createGetLinksQuery function creates a SELECT query to find all
linked entities of the given subject (resource) from the links graph
(links_graph). The created query is as follows:
PREFIX schema : <https :// schema .org/>
SELECT ? subject
FROM <links_graph > WHERE {

{
<resource > schema : sameAs ? subject .

}
UNION
{

? subject schema : sameAs <resource >.
}

}

ASK queries

ASK queries return true if the given pattern is matched or false, if it is not
matched. SPARQL Adapter can create 2 different ASK queries:

createExistsByEntityIdQuery function creates an ASK query to find
out whether there is an entity with the given ID present in the RDF store,
it is used when the unique ID generator checks for the non-existence of
the newly generated ID in the given graph. The created ASK query is as
follows (graph is the given graph and id is the given id):
ASK WHERE {

GRAPH <graph > {
<graph >/<id > ? predicate ? object .

}
}

createExistsByExternalIdQuery function creates an ASK query to
find out whether an entity with some external URL (external_url) is
present in the given graph (graph) in the RDF store. The created ASK
query is as follows:

Back-end Server 52

PREFIX schema : <https :// schema .org/>
ASK WHERE {

GRAPH <graph > {
? subject schema :url <external_url > .

}
}

SPARQL Update queries

SPARQL Update queries are used for inserting or deleting the data from the
given graph. SPARQL Adapter can create 3 different SPARQL Update queries:

createDeleteQuery function creates a DELETE query to remove all
triples associated with the given subject (resource) from the given graph
(graph) in the RDF store. The created DELETE query is as follows:
DELETE WHERE {

GRAPH <graph > {
<resource > ? predicate ? object .

}
}

createInsertQuery function creates an INSERT DATA query to add a
new resource with some properties to the given graph. Since each of the
classes would have different properties added upon inserting, examples will
be provided later when describing the five entity sub-modules (see section
Music KG Entities Sub-modules).

createUpdateQuery function creates a DELETE/INSERT query to
firstly remove the matched triples (based on the given predicates to update)
from the graph and after adding the updated triples. Since each of the
classes would have different properties updated, examples will be provided
later when describing the five entity sub-modules (see section Music KG
Entities Sub-modules).

SPARQL Results Interpretation

Another group of useful functions is SPARQL Results Interpretation. These
functions parse the received response from the RDF store’s SPARQL endpoint
and create JSON objects which can be later utilized on the back-end server.
The SPARQL Communicator module contains 3 functions that transform re-
sponses from the SPARQL endpoint to JSON objects. The response has the
following structure:

Back-end Server 53

{
"head ": {

"vars ": [...] // an array of bound variables
},
" results ": {

" bindings ": [...] // an array of bindings - the
values bound to specific variables

}
}

Since there are only 3 defined variables that can be bound in Music KG system
(?subject, ?predicate and ?object), the property head is unnecessary and
can be omitted. The resulting object adheres to the following interfaces:
type SparqlResults = {

bindings : SparqlBinding [];
};

type SparqlBinding = {
subject ?: SparqlSubject ;
predicate ?: SparqlPredicate ;
object ?: SparqlObject ;

};

type SparqlSubject = {
type: ’uri ’;
value: string ;

};

type SparqlPredicate = {
type: ’uri ’;
value: string ;

};

type SparqlObject = {
type: ’uri ’ | ’literal ’;
datatype ?: string ;
value: string ;

};

From the listing provided, it is evident that only URIs can serve as subjects
and predicates, while objects can be URIs or literals, which complies with the
RDF specification. Parsing is done by one of the following functions, based on
the context in which the data are required.

getPropertiesFromBindings function is used for extracting proper-
ties from the SPARQL Query Results and creating objects according to a

Back-end Server 54

clearly defined interface within the Music KG system. It can extract
the properties from the given bindings for the given set of RDF predicates.
It is done by parsing and aggregating the extracted values into one single
JSON object representing some entity from the Music KG system. If
there are multiple bindings for a single predicate, function instead of single
value creates an array of values.

getEntityIdsFromBindings function is used when retrieving informa-
tion about all entities of some given type (album, artist, playlist, track or
user). Function parses the bindings and returns only IDs in the context of
the given graph.

getLinksFromBindings function is used when retrieving sameAs links
from the Links graph for the given entity. Function parses the bindings
and returns URIs which represent the given entity in different contexts.

Triples Helper Functions

There are also two functions which create the so-called Triple objects which
are used in either the createInsertQuery function or the createUpdateQuery
function. A Triple object is a JSON object used by SPARQL.js library when
generating SPARQL queries from JSON objects. It contains three properties:
subject, predicate, and object, which correspond to triples of the RDF
specification. In this context, it remains the case that only URIs are allowed
as subjects and predicates, whereas objects may be URIs or literals.

getTriplesForComplexPredicate function handles the creation of triples,
where the predicate requires non-literal object (such as schema:album,
schema:byArtist, schema:sameAs, schema:url, etc.).

getSecondaryEntityTriples function is a complex function which han-
dles the creation of the so-called secondary entities and their linking
to the primary entity, i.e. the one which is currently being created. A
secondary entity refers to any entity that must be recognized by a URI. If
such a secondary entity is not already present in the given graph, it will
be created based on the information provided at the time of creation, with
the schema:name property being mandatory for all entities. The process of
entity creation is detailed later in the section titled Creating an Entity.

Unique ID Generator

To ensure data consistency and to prevent data overwriting, a unique ID
generator was implemented for the resources in the RDF store. It is used
by all five above-mentioned sub-modules. The system employs UUIDs1 for

1Universally Unique Identifier (UUID) is a tag that uniquely distinguishes a resource
from others of the same type. UUIDs are 128-bit numbers typically shown as a 36-character

Back-end Server 55

identification. Each time, a fresh UUID is generated and the system, through
an ASK query checks if this UUID has already been allocated to any entity
within the specified graph. If not assigned, this identifier is then applied to the
new entity. In contrast, if the UUID is already in use, the system will produce
a new UUID and continue this verification cycle until an unassigned UUID is
found. Some examples of the generated IDs/URIs are:
<http :// localhost :3030/ music -kg/local /4 bf56e7e -0226 -417f-

a462 - aec4f5bb03a7 >
<http :// localhost :3030/ music -kg/local /39 bfa22a -1b98 -4607 -

ba9e -80 a4d345223f >
<http :// localhost :3030/ music -kg/ spotify /f2d20fbb -1271 -4

dce -b147 -68106 d5640ac >
<http :// localhost :3030/ music -kg/ spotify /363 a6ef5 -8b2c

-4603 -83f4 - fd5aedc67f28 >

Music KG Entities Sub-modules

Five entity sub-modules (Albums, Artists, Playlists, Tracks, and Users)
provide CRUD-L methods to manage entities in the RDF store. Each sub-
module offers six distinct endpoints, except for the Users sub-module, which
does not offer an endpoint for finding a user based on their external URL.
Each endpoint is only available to authorized users (with a valid access token)
and has a required query parameter origin, which can be local or spotify,
based on the origin of the music metadata. The Users sub-module does not
use the origin parameter, because it uses its own Users graph. Endpoints
which accept POST or PUT methods also check for a non-empty request body.
In each endpoint presented below, entityModule stands for one of these val-
ues: albums, artists, playlists, tracks or users. The path parameter
entityId is replaced by a specific ID.

GET /api/{entityModule} — Retrieves a list of all entities of the given
entity class. The returned list contains IDs of the entities present in the
origin graph. For retrieval, a SELECT query produced by the createGe-
tAllQuery function is used.

POST /api/{entityModule} — Creates a new entity of the given entity
class in the RDF store. Will be explained later in this subsection.

GET /api/{entityModule}/find — Accepts an additional query parame-
ter spotifyUrl. If the system finds any entity in the origin graph, which
is associated with the provided URL, it retrieves all properties associated
with this entity. The search is performed using a SELECT query obtained
from the createExistsByExternalIdQuery function.

string, formatted as five hexadecimal strings divided by hyphens. UUID — Mozilla [access.
2024-05-01]

https://developer.mozilla.org/en-US/docs/Glossary/UUID

Back-end Server 56

DELETE /api/{entityModule}/{entityId} — Removes all properties as-
sociated with the given entity from the origin graph using a DELETE
query obtained from the createDeleteQuery function.

GET /api/{entityModule}/{entityId} — Retrieve all properties associ-
ated with the given entity from the origin graph using a SELECT query
obtained from the createGetQuery function.

PUT /api/{entityModule}/{entityId} — Updates an existing entity of
the given entity class in the RDF store. Two modes of updating are avail-
able: append and replace. In the append mode, the system fetches the
properties of the specified existing entity that need updating and attempts
to merge them with the properties provided in the update request. In
the replace mode, the properties chosen for the update are removed and
substituted with the new properties from the update request. Will be
explained later in this subsection.

Creating an Entity

Creating an entity in the system is specified through multiple interfaces. Al-
though each entity class possesses unique attributes, there are common prop-
erties among them. Each instance of any entity class has name and a single or
multiple externalUrls. On top of that, each entity class has its specific prop-
erties, which can be either required or optional during their creation. For every
instance of any entity class, the parameter name is required. Entities of the
entity class MusicRecording have also required parameters album and artists
upon creation. The following listing shows interfaces used in the system:
type CreateAlbumRequest = {

name: string ;
albumProductionType ?: MusicAlbumProductionType ;
albumReleaseType ?: MusicAlbumReleaseType ;
artists ?: EntityData | EntityData [];
datePublished ?: string ;
externalUrls ?: ExternalUrls ;
imageUrl ?: string ;
numTracks ?: number ;
tracks ?: EntityData | EntityData [];

};

type CreateArtistRequest = {
name: string ;
albums ?: EntityData | EntityData [];
externalUrls ?: ExternalUrls ;
genres ?: string | string [];
imageUrl ?: string ;
tracks ?: EntityData | EntityData [];

Back-end Server 57

};

type CreatePlaylistRequest = {
name: string ;
creators ?: EntityData | EntityData [];
description ?: string ;
externalUrls ?: ExternalUrls ;
imageUrl ?: string ;
numTracks ?: number ;
tracks ?: EntityData | EntityData [];

};

type CreateRecordingRequest = {
album: EntityData ;
artists : EntityData | EntityData [];
name: string ;
externalUrls ?: ExternalUrls ;
datePublished ?: string ;
duration ?: number ;
isrc ?: string ;

};

For some of the properties, for example, artists, tracks, genres, etc. multi-
ple values can be used when creating an instance of the given entity class. The
system can receive a single value or an array of values.

The EntityData type is used to handle properties where for the object of
the corresponding triple, there should be an URI — i.e. a secondary entity.
The EntityData type contains: type — a type of the secondary entity (one
of these values: album, artist, playlist, track or user), name — a name of
the secondary entity, externalUrls - a single or multiple External URLs for
the secondary entity and id — the ID of the secondary entity already present
in the origin graph.
type EntityData = {

type: EntityType ;
externalUrls ?: ExternalUrls ;
id?: EntityId ;
name ?: string ;

};

The EntityData type is crucial for the getSecondaryEntityTriples function,
which handles the creation and association of secondary entities with the pri-
mary entity (the one being created) (for more information, see sub-section
Triples Helper Functions). If the parameter id is present, the system con-
verts it into URI and assigns it to the primary entity. If the id is not available,

Back-end Server 58

but EntityData contains any externalUrl, the system tries to find an entity
associated with the given external URL, and if it is found, it is assigned to
the primary entity. If not and there is a name parameter available for the sec-
ondary entity, the system will create a new entity for the given external URL
and the name and assign it to the primary entity. If only the parameter name
is available, the system will create a new entity with the provided name and
assign it to the primary entity.

Property RDF predicate Entities
album schema:inAlbum tracks

albumProductionType schema:albumProductionType albums
albumReleaseType schema:albumReleaseType albums

albums schema:album artists
artists schema:byArtist albums, tracks

creators schema:creator playlists
dateCreated schema:dateCreated playlists
dateModified schema:dateModified playlists
datePublished schema:datePublished albums, tracks

description schema:description playlists
duration schema:duration tracks

externalUrls schema:url albums, artists, playlists, tracks, users
email schema:email users
genres schema:genre artists

imageUrl schema:image albums, artists, playlists
isrc schema:isrcCode tracks

name schema:name albums, artists, playlists, tracks, users
numTracks schema:numTracks albums, playlists

tracks schema:track albums, artists, playlists
Table 4.1 Mapping properties to RDF predicates

For each property of the interfaces presented, there exists a bidirectional map-
ping between the property and its RDF predicate shown in Table 4.1. Follow-
ing the association of each property of the request body with its corresponding
RDF predicate and the generation of RDF triples, the system, through the cre-
ateInsertQuery function, creates an INSERT DATA query. For example, the
following request body for creating a new MusicRecording:
{

"album ": {
"name ": " Breakfast for Pathetics ",
" externalUrls ": { " spotify ": "https :// open. spotify .

com/album /4 cr6QE3fflOcnK8W1AWZYo " },
"type ": "album"

},
" artists ": {

"name ": "Tired Lion",
" externalUrls ": { " spotify ": "https :// open. spotify .

com/ artist /5 Vf0Z6jyMOGr07Gf8irDMt " },
"type ": " artist "

},

Back-end Server 59

" datePublished ": "2020 -11 -20" ,
" duration ": 170817 ,
"isrc ": " AUUM72000417 ",
"name ": "Diet Sick",
" externalUrls ": { " spotify ": "https :// open. spotify .com/

track /0 YWvsVz551MpqvqsbfDRJc " }
}

results in this INSERT DATA query, where graph is the URI of the origin
graph, resource_uri is the URI of the primary entity, album_uri is the URI
of the secondary entity album and artist_uri is the URI of the secondary
entity artist:
PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
PREFIX schema : <https :// schema .org/>
PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema #>
INSERT DATA {

GRAPH <graph > {
<resource_uri > rdf:type schema : MusicRecording .
<resource_uri > schema :name "Diet Sick ".
<resource_uri > schema : inAlbum <album_uri >.
<resource_uri > schema : byArtist <artist_uri >.
<resource_uri > schema : datePublished "2020 -11 -20"ˆˆ xsd

:date.
<resource_uri > schema : duration " PT2M50S "ˆˆ xsd:

duration .
<resource_uri > schema : isrcCode " AUUM72000417 ".
<resource_uri > schema :url <https :// open. spotify .com/

track /0 YWvsVz551MpqvqsbfDRJc >.
}

}

After the successful creation of the entity, the system attempts to form links
between the same resources in the other graphs in the RDF store. For exam-
ple, when creating an entity in the local graph, the system will also check the
existence of the same entity in the spotify and Wikidata dump graphs. Using
an external URL such as Spotify URL, the system is able to find the entities
in the other graphs and then create sameAs links in the Links graph.

Updating an Entity

The process of updating an entity is very similar to the process of creating
one. The interfaces which are used for the updating are almost the same, the
only difference being that all of the properties are optional. First, the system
checks if the updated entity exists in the system. There are two update modes
available: append and replace. In the append mode, for properties where
multiple values are allowed and are present in the request body, the system

Back-end Server 60

retrieves them from the origin graph and merges them with the properties
from the request body. In the replace mode, the system ignores the properties
present in the origin graph and considers only the properties from the request
body. After that, the updated properties are mapped to their RDF predicate
counterparts and the triples are created. Finally, the system, using the cre-
ateUpdateQuery function, creates a DELETE/INSERT query to update the
entity. Working with the example MusicRecording from before, the following
update request body:
{

"name ": "Diet Sick .",
" datePublished ": "2022 -12 -05"

}

results in the following DELETE/INSERT query, where graph is the URI
of the origin graph, and resource_uri is the URI of the updated entity:
PREFIX schema : <https :// schema .org/>
PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema #>
WITH <graph >
DELETE { <resource_uri > ? predicate ? object . }
INSERT {

<resource_uri > schema : datePublished "2022 -12 -05"ˆˆ xsd
:date;
schema :name "Diet Sick .".

}
WHERE {

OPTIONAL {
<resource_uri > ? predicate ? object .
FILTER (! BOUND (? predicate) || !BOUND (? object) || (?

predicate = schema : datePublished) || (? predicate =
schema :name))

}
}

The FILTER clause in the DELETE/INSERT query ensures that only the triples
with the given predicates are updated.

Similarly as in the previous case with the entity creation, after updating the
entity, the system checks if any sameAs links can be created between the up-
dated entity and some entity in the other graphs. For more information, see
section Creating an Entity.

Get Links Endpoint

The endpoint GET /api/sparql/links returns an array of sameAs links for
the Links graph associated with the given entity (specified by a query param-
eter id) from the given graph (specified by a query parameter origin).

Back-end Server 61

4.2.4 Spotify Adapter Module
The Spotify Adapter module is used for obtaining user data and music
metadata from Spotify, using the Spotify Web API. The Spotify Adapter
module implements UC–7 — Assign Spotify IDs to uploaded media file, UC–
17 — Authorize Spotify account, UC–18 — Obtain recently played tracks on
Spotify and UC–19 — Obtain user’s Spotify playlists.

To use the Spotify Web API, it is necessary to first set up a Spotify account and
creating an application on the Spotify Developer dashboard. Upon creating
the application, it will be assigned a Client ID and Client Secret, which serve
as identifiers for the Spotify application. There are four different methods,
which can be used to authorize the application to use the Spotify Web API : Au-
thorization code, Authorization code with PKCE extension, Client credentials,
or Implicit grant. The Spotify Web API documentation provides a detailed
examination of the advantages and disadvantages of each method.

Since the system must work with both user data and music metadata pro-
vided by Spotify, multiple authorization strategies must be used. To fetch mu-
sic metadata, including details on albums, artists, tracks, or public playlists,
the Client credentials authorization method is sufficient. This method employs
Client ID and Client Secret, and can be implemented on the server-side. In
contrast, accessing user data (such as recently played tracks or user’s playlists)
requires a unique access token, which can only be acquired through a web
browser application or a mobile application using the Authorization code with
PKCE extension method. The acquired access token can be supplied to the
back-end server, allowing it to manage the user data on behalf of the user. To
be able to provide the access token to the back-end server, a custom HTTP
header music-kg-spotify-authorization was created. Applications com-
municating with the Music KG back-end server’s API are required to
attach this header to every request targeting endpoints that handle user data
from Spotify.

The Spotify Adapter module serves seven endpoints:

GET /api/spotify/albums/{albumId} — retrieves metadata for the spec-
ified Spotify album, covering the album’s artists, title, track count as well
as tracks, artwork, release date, Spotify link, the recording label, and the
release type of the album

GET /api/spotify/artists/{artistId} — retrieves metadata for the
specified Spotify artist, covering the artist’s albums, genres, name, artwork,
and Spotify link

GET /api/spotify/playlists — retrieves the current authorized user’s
playlists (using the custom HTTP header)

https://developer.spotify.com/documentation/web-api
https://developer.spotify.com/documentation/web-api/concepts/apps
https://developer.spotify.com/documentation/web-api/concepts/authorization

Front-end Client 62

GET /api/spotify/playlists/{playlistId} — retrieves metadata for
the specified Spotify playlist, covering its creator, name, title, description,
overall track count, artwork, Spotify link, and tracks (including just IDs or
full track details)

GET /api/spotify/recently-played — retrieves last 50 recently played
tracks for the current authorized user (using the custom HTTP header)

GET /api/spotify/search — leverages Spotify Search, it is mainly used
for retrieving Spotify IDs for assigning to the metadata obtained through
uploading a file

GET /api/spotify/tracks/{trackId} — retrieves metadata for the spec-
ified Spotify track, covering the track’s name, ISRC code, artists, album,
duration in milliseconds, and Spotify link

4.2.5 Error Handling
If any request fails, an error handling mechanism using the try..catch clause
is implemented. Upon catching an exception or an error, the server returns
the error message as well as the related status code: 400 for any client’s bad
request, 401 if there is no access token present in the request, 403 if the access
token was altered in any way or it cannot be decoded and parsed, 404 if the
requested resource is not found, and 500 for any failure caused at the back-end
server.

4.3 Front-end Client

4.3.1 Code-base Structure
The code-base structure is inspired by How I structure my React projects
by Lars Wächter.

components — includes reusable UI components utilized across the ap-
plication

alert — includes reusable Alert components - like Error Alert, Form
Error Alert, Info Alert, Success Alert, and Warning Alert
icons — holds icons and icon wrappers
layout — holds layout components such as Navbar and Navigation
Menus

contexts — contexts facilitate data transmission across the component
hierarchy, eliminating the need for manual prop propagation at each layer.
In the client application, a context is utilized to store the current user’s
information.

https://larswaechter.dev/blog/react-project-structure/

Front-end Client 63

hooks — hooks enable the extraction of reusable logic from components,
like handling an access token

models — includes datatypes that specify the configuration of data objects
in the application, like enums for routing, API URLs, and more.

pages — represent screens accessible to users. Each page is linked to a
distinct route within the application and includes several components.

auth — folder for the Authentication module
browse — folder for the Browse module
spotify — folder for the Spotify Adapter module
upload-file — folder for the Upload File module
user — page for managing user profiles, including creation and display
home.tsx — home page

services — includes utilities for communication with the back-end server’s
API such as an axios HTTP client, tools for inputting music metadata,
and more.

utils — includes helper functions to convert ISO 8601 durations into mil-
liseconds and to format durations from milliseconds into hours, minutes,
and seconds

main.tsx — the main entry point of the front-end client which renders
the root component and sets up the application routing

routes.tsx — specifies the routing setup for the application. It includes a
collection of routes linked to their respective pages.

styles.css — encompasses all the CSS rules applicable across the entire
application. Given that the front-end client employs the Tailwind CSS
library, this global style-sheet holds all the styles.

4.3.2 Authentication Module
The Authentication module implements UC–1 — Register user and UC–2
— Login registered user by providing the registration and log-in forms; and
UC–3 — Create user profile and UC–4 — Display user profile. The module
contains three pages — Register User page, Login User page and User
Profile page.

Both pages have an identical structure — a simple form containing two fields:
email and password. The email form field utilizes a standard HTML email
text input, automatically verifying the correct email format. The password

Front-end Client 64

Figure 4.3 The Register User page in the front-end client

Figure 4.4 The User Profile page in the front-end client

form field uses a standard HTML password text input, concealing the text as
it is entered.

Front-end Client 65

After submitting a valid email address with a password to the system, it is
sent to the Music KG API. If the front-end client receives a successful re-
sponse, it shows a success alert with text. Upon receiving the error response,
it displays an error alert with the error message. After successful log-in, the
user is redirected to the User Profile page.

On the User Profile page system checks whether the user already exists
in the Music KG system (i.e., that the user is present in the Users graph in
the RDF store). If the user already exists, the system will show their profile,
which currently contains their email address and name (see Figure 4.4).

If the user does not yet exist, the system asks them to create a profile in
the Music KG system. After the user submits their name to the API, the
system creates the user profile in the RDF store. The example of the user in
the RDF store may look like this:
PREFIX schema : <https :// schema .org/>

<http :// localhost :3030/ music -kg/users /65
e86c494668ff47d678eb94 >

a schema : Person ;
schema :email " abc@example .com" ;
schema :name " Abigail Beatrice Cloves " .

4.3.3 Browse Module
The Browse module implements the following use case scenarios: UC–9 —
Browse added albums, UC–10 — Show album detail, UC–11 — Browse added
artists, UC–12 — Show artist detail, UC–13 — Browse added playlists, UC–14
- Show playlist detail, UC–15 — Browse added tracks, and UC–16 — Show
track detail.

Once authenticated, the user has the ability to browse the music metadata
added to the RDF store through the browsing feature. Currently, users can
browse in two modes: list and detail, across four different types of entities.

In the list mode, the system fetches the IDs of the chosen entity type (such
as the album in Figure 4.5) from the RDF store through an API. The system
identifies the source of the entity (whether it is local or from Spotify, which is
shown by the Spotify icon adjacent to the entity ID). All entity ID are clickable
links which will open the details of the selected entity.

In the detail mode, the system will retrieve all properties associated with
the selected entity. Each entity detail has different properties that they are
showing (if they are available):

Front-end Client 66

Figure 4.5 The Albums page in the front-end client

Figure 4.6 The Artist Detail page in the front-end client

Album detail — album production type, album release type, artist (only
ID, which is clickable link), date of publishing, number of tracks, and list
of tracks (only IDs, which are clickable links)

Front-end Client 67

Figure 4.7 The Track Detail page in the front-end client

Artist detail (seen in Figure 4.6) — list of albums (only IDs, which
are clickable links), list of genres, and list of tracks (only IDs, which are
clickable links)

Playlist detail — date of creation, date of modification, number of tracks,
and list of tracks (only IDs, which are clickable links)

Track detail (seen in Figure 4.7) — album and artist(s) (only IDs, which
are clickable links), date of publishing, duration, and ISRC

On top of that, each entity detail contain its ID within the Music KG sys-
tem, external URLs, which lead to external services (such as Spotify), and
sameAs links from the Links graph, either from the Music KG system or
from the external knowledge bases (such as Wikidata).

4.3.4 Spotify Adapter Module
The Spotify Adapter module implements the following use case scenarios:
UC–17 — Authorize Spotify account, UC–18 — Obtain recently played tracks
on Spotify, UC–19 — Obtain user’s Spotify playlists, UC–20 — Add music
track from Spotify to user’s music library and UC–21 — Add Spotify playlist
to user’s music library. The Spotify Adapter includes the Spotify account
authorization feature, enabling users to authenticate their accounts, thus per-
mitting the Music KG system to access their Spotify data. Once the account

Front-end Client 68

is authenticated, users have two options to incorporate data from the Spotify
API into their knowledge graph: selecting from their recently played tracks or
their saved playlists.

Figure 4.8 The Spotify authorization page

Access to the Spotify Adapter module requires user authentication. Once
authenticated, the module can be reached through the navigation bar links.
The Authentication page features only the Authorize button that initializes
the Spotify authorization (see Figure 4.8). After the user allows the applica-
tion to access their data and is redirected back to the front-end client, they
need to confirm the authorization by clicking the Finish Authorization but-
ton. This process saves the access token needed for interactions with the
Spotify API, applying predefined user scopes. For simplicity, all user scopes
are used in the configuration. The Spotify access token is sent to the Mu-
sic KG API with every request to access Spotify user data using a custom
music-kg-spotify-authorization HTTP header.

After the authorization is completed, the user can choose between either
Latest tracks or Playlists to retrieve the data. The Latest tracks sub-module
features a component to retrieve up to 50 latest tracks which user have lis-
tened to on Spotify. Users can then choose tracks from the list to open more
information about them. Additional information include duration, track num-
ber in the track’s album, ISRC, and URI within the Spotify service, as well
as information about the track’s album such as: album name, album’s artists,
album type, total number of tracks, and album’s release date. The Spotify

https://developer.spotify.com/documentation/web-api/concepts/scopes

Front-end Client 69

Figure 4.9 The Spotify Adapter main page in the front-end client

Figure 4.10 The Spotify Track Detail in the Latest tracks sub-module

Track Detail component (shown in Figure 4.10) also shows the artwork
of album and, if available, the 30-second preview audio. To add the chosen
track to the user’s music knowledge graph, the Synchronize button is utilized.

Front-end Client 70

This action initiates a service that generates a new track using the data from
Spotify for inclusion in the RDF store. Additionally, the system connects the
track to the relevant artist(s) and album, creating or updating records for the
artist or album as necessary. This process allows for the storage of all available
information with a single click.

Figure 4.11 The RDF graph visualization after inserting one track from Spotify

For example, when adding a track to the user’s knowledge graph, multiple
HTTP requests are done. The resulting RDF graph can be seen in Figure
4.11. The system:

1. creates a new track and, if they are not already present (verified by search-
ing for the entities using the given Spotify URL), it also creates new entries
for the album and artists (only including their Spotify URL and name)

2. searches for an already existing or newly created album within the user’s
knowledge graph and updates it with the gathered information, and also
associating the album with the newly created track

3. searches for an artist, whether newly created or already existing in the
user’s knowledge graph, gathers additional details like the artist’s genres
and artwork, and updates the existing record. This includes associating
the artist with both the newly created track and the album.

The Playlists sub-module gathers and shows the user’s playlists, includ-
ing the count of tracks in each. When a user selects a playlist, the Spotify
Playlist Detail component (referenced in Figure 4.12) appears. This com-
ponent resembles the Spotify Track Detail component but offers unique
details like the playlist’s owner, the track count, and the total duration of the
playlist. The interface also lists the tracks in the playlist. Choosing a track
will launch the Spotify Track Detail component for that specific track,
which is also part of this sub-module.

The process of adding a playlist to the user’s knowledge graph mirrors the
method used for a single track, with the initial step of inserting the playlist
followed by applying the previously described steps to each individual track

Front-end Client 71

Figure 4.12 The Spotify Playlist Detail component in the Playlists sub-module

Figure 4.13 The Spotify Playlist Detail component showing a recently added
playlist

within that playlist. Once the playlist is incorporated into the knowledge
graph, the Alert component adjacent to the Synchronize button updates to

Front-end Client 72

reflect that the playlist has been added (see Figure 4.13).

4.3.5 Upload File Module
The last module featured in the front-end client is the Upload File module.
The Upload File module implements the following use case scenarios: UC–5 —
Upload media file, UC–6 — Edit uploaded media file, UC–7 — Assign Spotify
IDs to uploaded media file, and UC–8 — Add new music tracks from uploaded
media files.

Figure 4.14 The Upload File page in the front-end client

Like the modules mentioned above, the Upload File module also requires
user authentication. This module consists of a single page, the Upload File
page (shown in Figure 4.14). On this page, users have the capability to up-
load one or several media files, which the system will then process. Following
this, users can modify the processed metadata and incorporate these tracks
into their knowledge graph.

By clicking the Upload files button, users can select a single file or mul-
tiple files using the native HTML file input. Once the files are uploaded
and processed, they are included in the list of processed files. The available
MP3 metadata tags are shown in Table 2.1 or are available on the music-
metadata-browser GitHub repository website. Users have the option to
select metadata for a file to edit. When a processed file is selected, an editing
form appears in a locked state. To modify the form, users must first unlock

https://github.com/Borewit/music-metadata-browser
https://github.com/Borewit/music-metadata-browser

Front-end Client 73

it by pressing the Edit button. This feature prevents accidental modifications
of the metadata. The editing form includes mandatory fields like track title,
artist name, and album name, as well as optional fields such as ISRC, date of
publishing, and duration. Should the system successfully extract values during
file upload, these are automatically populated in the form.

Figure 4.15 The Search component on the Upload File page

To establish connections between different entities in the Music KG sys-
tem, it is essential to use a specific ID for linking. Given that associated
graphs such as the Spotify graph and the Wikidata dump graph utilize Spotify
IDs, the Upload File page includes a feature to access the Spotify API and
align the extracted metadata with the information from Spotify. During this
process, users must select the appropriate Spotify ID to ensure accurate linking
and prevent data errors. To facilitate this, the Search component is avail-
able (shown in Figure 4.15). It enables searching the Spotify API through the
Music KG API. It offers various search parameters for each type of entity
(referencing the Spotify API search parameters): artist name (applicable
to artists, albums, and tracks), album name (for albums and tracks), track
name, and ISRC (exclusively for tracks). After the user controls the parsed
metadata, they can add the tracks to their knowledge graph. The procedure
is explained in the Spotify Adapter module.

https://developer.spotify.com/documentation/web-api/reference/search

Data Type Libraries 74

4.3.6 Error Handling
Similarly to the back-end server, the front-end client utilizes an error handling
strategy with the try..catch clause. When an exception or error is captured,
the application displays an error alert along with the message. This approach
guarantees that users are kept aware of the application’s status and understand
the reasons behind the request’s failure.

4.4 Data Type Libraries

There are two supporting data type libraries in the Music KG system, which
define data types and utility functions utilized by both the back-end server and
the front-end client.

1. data library — includes data types for back-end server endpoints (types
for request bodies and response bodies), primarily to avoid redundant def-
initions required by both applications

2. sparql-data library — includes data types for parsing SPARQL Query
Results (e.g., extracting properties from bindings), and provides wrappers
for SPARQL.js datatypes like IriTerm, LiteralTerm, VariableTerm, and
BlankTerm. It also offers ontology and vocabulary wrappers for RDFS,
Schema.org, XML Schema datatypes, and Wikidata in TypeScript to im-
prove the developer experience.

4.5 RDF Store

The user knowledge graphs are preserved within the RDF store, utilizing
Apache Jena Fuseki. This software is provided as an Out-of-the-Box so-
lution, which inherently includes extensive pre-configurations. Apache Jena
Fuseki is equipped with a SPARQL endpoint for handling SPARQL queries,
a SPARQL Update service that manages data manipulation queries such as
INSERT DATA, DELETE, and DELETE/INSERT using the SPARQL Update
protocol, and a Graph Store Protocol service that facilitates the creation,
modification, and removal of named graphs.

In the Music KG system, four distinct named graphs are present. These in-
clude the Local graph and the Spotify graph, which contains user-provided
data; the Wikidata dump graph (refer to Section 4.6), which stores music-
related information from Wikidata knowledge base; and the Links graph,
which contains sameAs links connecting entities across the aforementioned
graphs. The unnamed (default) graph remains unused.

The interaction with the RDF store occurs by sending HTTP(S) POST
or GET request to the primary endpoint <BASE_URL>/music-kg. The request

RDF Store 75

includes a SPARQL query to run in the RDF store. Detailed explanations
of the SPARQL queries available in the Music KG system can be found
in Section 4.2. Alternatively, direct interaction with the RDF store can be
achieved through the SPARQL endpoint.

Some examples of the RDF data from the user’s knowledge graph stored in
the RDF store:
From the Spotify graph:
PREFIX mkgs: <http :// localhost :3030/ music -kg/ spotify />
PREFIX schema : <https :// schema .org/>
PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema #>

mkgs:aad4573d -44b9 -46bc -90b4 -1848892639 d6
a schema : MusicAlbum ;
schema : albumProductionType schema : StudioAlbum ;
schema : albumReleaseType schema : AlbumRelease ;
schema : byArtist mkgs:f2d20fbb -1271 -4 dce -

b147 -68106 d5640ac ;
schema : datePublished "2003 -09 -16"ˆˆ xsd:date;
schema :image <https ://i.scdn.co/image/

ab67616d0000b2735f1f51d14e8bea89484ecd1b >;
schema :name " Meteora ";
schema : numTracks 13;
schema :track mkgs :5178 e8ff -1da6 -4f82

-88b7 - c21135ce125d ;
schema :url <https :// open. spotify .com

/album /4 Gfnly5CzMJQqkUFfoHaP3 > .

mkgs:f2d20fbb -1271 -4 dce -b147 -68106 d5640ac
a schema : MusicGroup ;
schema :album mkgs:aad4573d -44b9 -46bc -90b4

-1848892639 d6 , mkgs :1 b461d6b -33aa -4ed8 -af7c -2
f6a0896110c ;

schema :genre "rock" , " alternative metal" , "nu
metal" , "post - grunge " , "rap metal ";

schema :image <https ://i.scdn.co/image/
ab6761610000e5eb84a0dd74f21e8acce6a9fd49 >;

schema :name " Linkin Park ";
schema :track mkgs :5178 e8ff -1da6 -4f82 -88b7 -

c21135ce125d , mkgs :9 ef67f58 -b03a -43b2 -895c-
f690ce50acf0 , mkgs:d3ff90a5 -9d91 -4bef -90b9 -15
cc63922dde ;

schema :url <https :// open. spotify .com/ artist /6
XyY86QOPPrYVGvF9ch6wz > .

mkgs :5178 e8ff -1da6 -4f82 -88b7 - c21135ce125d
a schema : MusicRecording ;
schema : byArtist mkgs:f2d20fbb -1271 -4 dce -b147

RDF Store 76

-68106 d5640ac ;
schema : datePublished "2003 -09 -16"ˆˆ xsd:date;
schema : duration " PT3M7S "ˆˆ xsd: duration ;
schema : inAlbum mkgs:aad4573d -44b9 -46bc -90b4

-1848892639 d6;
schema : isrcCode " USWB10300474 ";
schema :name "Numb ";
schema :url <https :// open. spotify .com/track

/2 nLtzopw4rPReszdYBJU6h > .

From the Local graph:
PREFIX mkgl: <http :// localhost :3030/ music -kg/local/>
PREFIX schema : <https :// schema .org/>
PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema #>

mkgl :39 bfa22a -1b98 -4607 - ba9e -80 a4d345223f
a schema : MusicAlbum ;
schema :name "Waterslide , Diving Board , Ladder To The

Sky ";
schema :url <https :// open. spotify .com/album /6

wdThJ2V58nkaWfv1jA4B5 > .

mkgl :16 fe8760 -cecc -4350 - bb37 -25 cdf1702939
a schema : MusicGroup ;
schema :name " Porridge Radio ";
schema :url <https :// open. spotify .com/ artist /4

vAQ4M7vgItwBtmBTgRu48 > .

mkgl :4 bf56e7e -0226 -417f-a462 - aec4f5bb03a7
a schema : MusicRecording ;
schema : byArtist mkgl :16 fe8760 -cecc -4350 - bb37 -25

cdf1702939 ;
schema : datePublished "2022 -05 -20"ˆˆ xsd:date;
schema : duration " PT3M7S "ˆˆ xsd: duration ;
schema : inAlbum mkgl :39 bfa22a -1b98 -4607 - ba9e -80

a4d345223f ;
schema : isrcCode " US38W2145002 ";
schema :name "Back To The Radio ";
schema :url <https :// open. spotify .com/track

/0 hHOIVyywNzkoh1v6RWFb3 > .

From the Links graph:
PREFIX mkgl: <http :// localhost :3030/ music -kg/local/>
PREFIX mkgs: <http :// localhost :3030/ music -kg/ spotify />
PREFIX schema : <https :// schema .org/>
PREFIX wd: <http :// www. wikidata .org/ entity />
PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema #>

mkgs:aad4573d -44b9 -46bc -90b4 -1848892639 d6

RDF Store 77

schema : sameAs mkgl :4 d90433e -b205 -4aec -aecf -547260
d83dda .

mkgs:f2d20fbb -1271 -4 dce -b147 -68106 d5640ac
schema : sameAs wd:Q261 , mkgl:d79c5e4c -8fe7 -4004 -91d9

-87 dbd9d7f455 .

mkgs :5178 e8ff -1da6 -4f82 -88b7 - c21135ce125d
schema : sameAs wd: Q19973 , mkgl:b22869ad -8037 -4 a39

-835c-8 c5ae27d7ba5 .

mkgs :363 a6ef5 -8b2c -4603 -83f4 - fd5aedc67f28
schema : sameAs mkgl :74710489 -2 e7f -48f4 -b6b3 -7544

f8e1dd97 .

mkgs :009 b870d -82e0 -405c-a100 - dcf01045cde8
schema : sameAs wd: Q104667947 .

4.5.1 SHACL Shapes
To ensure that the RDF data in the RDF store align with a specified schema, a
set of SHACL shapes were developed. These shapes adhere to the ontology
outlined in Section 3.2.3. In total, 28 property shapes (including 12 value type
constraint components, 10 cardinality constraint components, 1 value range
constraint component, 2 string-based constraint components, 1 property pair
constraint component and 2 other constraint components (using sh:in)) and
6 node shapes were developed. For each presented example, the following
prefixes are considered:
@prefix mkgsh: <http :// localhost :3030/ music -kg/shacl/> .
@prefix schema : <https :// schema .org/> .
@prefix sh: <http :// www.w3.org/ns/shacl#> .
@prefix xsd: <http :// www.w3.org /2001/ XMLSchema #> .

Value Type Constraint Components

The developed value type constraint component shapes validate the cor-
rect class usage for objects or the correct datatype usage for properties. For
example, the first shape checks that every resource which is found in the triples
where the predicate equals schema:album as an object is an IRI and that it
has the schema:MusicAlbum class. The second shape checks that dates of
publishing have the xsd:date datatype:
mkgsh: AlbumClassPropertyShape a sh: PropertyShape ;

sh:path schema :album ;
sh: class schema : MusicAlbum ;
sh: nodeKind sh:IRI ;

RDF Store 78

sh:name "album class"@en ;
sh: message "album must be an instance of the

MusicAlbum class ." @en ;
sh: severity sh: Violation .

mkgsh: DatePublishedDatatypePropertyShape a sh:
PropertyShape ;
sh:path schema : datePublished ;
sh: datatype xsd:date ;
sh:name " datePublished datatype "@en ;
sh: message " datePublished should use datatype xsd:

date ." @en ;
sh: severity sh: Warning .

Cardinality Constraint Components

The developed cardinality constraint component shapes verify the ap-
propriate count of specified predicates (for example, each entity must have
precisely one name, each track should belong to only one album, each playlist
should have just one description, each album must feature only one production
type and a single release type, and every track and album should have a unique
date of publishing). The following example shows the first mentioned shape:
mkgsh: NameQuantityPropertyShape a sh: PropertyShape ;

sh:path schema :name ;
sh: datatype xsd: string ;
sh: minCount 1 ;
sh: maxCount 1 ;
sh:name "name quantity "@en ;
sh: message " Entity must have exactly one name ." @en ;
sh: severity sh: Violation .

Value Range Constraint Components

The only value range constraint component shape that was developed
verifies that the number of tracks in any album or playlist is a positive integer.
mkgsh: NumTracksPropertyShape a sh: PropertyShape ;

sh:path schema : numTracks ;
sh: minExclusive 0 ;
sh: datatype xsd: integer ;
sh:name " numTracks validation "@en ;
sh: message " numTracks must be positive integer ." @en ;
sh: severity sh: Violation .

RDF Store 79

String-based Constraint Components

The developed string-based constraint component shapes offer pattern
validations for emails and ISRC codes.
mkgsh: EmailPatternPropertyShape a sh: PropertyShape ;

sh:path schema :email ;
sh: datatype xsd: string ;
sh: pattern "ˆ[A-Za -z0 -9._%+ -]+@[A-Za -z0 -9. -]+\\.[A-Za

-z]{2 ,}$" ;
sh:name "email pattern "@en ;
sh: message " Invalid email format ." @en ;
sh: severity sh: Violation .

mkgsh: ISRCCodePatternPropertyShape a sh: PropertyShape ;
sh:path schema : isrcCode ;
sh: datatype xsd: string ;
sh: pattern "ˆ[A-Z]{2}[A-Z0 -9]{3}\\ d{7}$" ;
sh:name " isrcCode pattern "@en ;
sh: message " Invalid ISRC code format ." @en ;
sh: severity sh: Violation .

Property Pair Constraint Components

The only property pair constraint component shape that was developed
checks whether the date of creation of the playlist is earlier or the same as the
date of its modification.
mkgsh:

DateCreatedLessThanOrEqualsDateModifiedPropertyShape a
sh: PropertyShape ;
sh:path schema : dateCreated ;
sh: lessThanOrEquals schema : dateModified ;
sh:name " dateCreated - dateModified chronological

sequence "@en ;
sh: message " dateModified is earlier than dateCreated "

@en ;
sh: severity sh: Violation .

Other Constraint Components

The other constraint components developed are designed to verify whether
the property adheres to an allowed value of an enumerated type. Within the
Music KG system, both the production type and release type of the albums
are derived from an enumeration type. The following shapes verifies that the
album’s production type is one of the allowed values:
mkgsh: AlbumProductionTypeEnumValuePropertyShape a sh:

PropertyShape ;

RDF Store 80

sh:path schema : albumProductionType ;
sh:in (

schema : CompilationAlbum
schema : DJMixAlbum
schema : DemoAlbum
schema : LiveAlbum
schema : MixtapeAlbum
schema : RemixAlbum
schema : SoundtrackAlbum
schema : SpokenWordAlbum
schema : StudioAlbum

) ;
sh:name " albumProductionType enum value"@en ;
sh: message " albumProductionType must be one of these

values : (schema : CompilationAlbum , schema :
DJMixAlbum , schema :DemoAlbum , schema :LiveAlbum ,
schema : MixtapeAlbum , schema :RemixAlbum , schema :
SoundtrackAlbum , schema : SpokenWordAlbum , or schema
: StudioAlbum)." @en ;

sh: severity sh: Violation .

Node Shapes

The developed node shapes incorporate property shapes to provide different
validations for the whole targeted class. The following example presents a node
shape that validates entities of the schema:MusicRecording class. It checks:

whether the entity’s artists and album belong to the correct class,

whether all properties have the correct cardinalities,

and whether the provided ISRC follows the right pattern

mkgsh: MusicRecordingShape a sh: NodeShape ;
sh: targetClass schema : MusicRecording ;
sh: property

mkgsh: ByArtistClassPropertyShape ,
mkgsh: DatePublishedDatatypePropertyShape ,
mkgsh: DatePublishedQuantityPropertyShape ,
mkgsh: DurationDatatypePropertyShape ,
mkgsh: DurationQuantityPropertyShape ,
mkgsh: InAlbumClassPropertyShape ,
mkgsh: InAlbumQuantityPropertyShape ,
mkgsh: ISRCCodePatternPropertyShape ,
mkgsh: ISRCCodeQuantityPropertyShape .

To trigger the RDF validation, an HTTP POST request should be made, in-
cluding the Shapes Graph in Turtle format. The curl command to retrieve

Wikidata Dump 81

a validation report from the SHACL service is structured as follows (using
?graph=union to perform the validation on all graphs within the RDF store):
curl -XPOST --data - binary shacl.ttl \

--header ’Content -type: text/turtle ’ \
’http :// localhost :3030/ music -kg/shacl?graph=union ’

4.6 Wikidata Dump

To effectively manage large datasets and knowledge graphs, utilizing pre-loaded
data is advantageous as it avoids the need for repeated service queries every
time data access is required. Data dumps, which are pre-loaded files, may
contain complete or partial datasets. Typically, data providers release these
dumps at regular or sporadic intervals. These can then be downloaded and
used without burdening the system with excessive queries.

Wikidata offers their knowledge base as a data dump in multiple formats
— JSON, XML and RDF. Since it contains over 1.4 billion triples, it is almost
impossible to work with the whole data dump at once. Unfortunately, smaller
data dumps (e.g. based on some topic or some domain) are not available. To
facilitate the use of the Wikidata’s music-knowledge base, the creation of a spe-
cialized data dump containing solely music-related information was considered.
Various methods for this were explored.

1. Downloading the whole data dump and filtering the music-related
data — the first question is: How to choose the correct data to be in-
cluded in the custom specialized dump? Insights into this can be discovered
within the WikiProject: Music segment of Wikidata’s ontology, specif-
ically through the use of relevant classes and properties associated with
music. Various entity classes detail musical-related entities: musical en-
semble (Q2088357) — 113669 unique entities, musician (Q639669)
— 384665 unique entities, audio track (Q7302866) — 28493 unique en-
tities, musical release (Q2031291) — 3886 unique entities, and album
(Q482994) — 296487 unique entities. The entity counts are current as
of April 4, 2024. This would involve processing more than 827 thousand
entities in some manner. The second question is: Once the data is selected,
how can we filter the data dump to include only the desired data? The
compressed data dump can be filtered using a combination of zcat and
grep, or simply using zgrep. However, constructing a pattern that effi-
ciently and accurately captures the required entities is nearly unfeasible.
Alternatively, a custom program, such as a Python script, could be utilized
to sequentially read and filter the data dump, although this method also
suffers from inefficiency.

https://www.wikidata.org/wiki/Wikidata:Database_download
https://www.wikidata.org/wiki/Wikidata:WikiProject_Music
https://www.wikidata.org/wiki/Q2088357
https://www.wikidata.org/wiki/Q2088357
https://www.wikidata.org/wiki/Q639669
https://www.wikidata.org/wiki/Q7302866
https://www.wikidata.org/wiki/Q2031291
https://www.wikidata.org/wiki/Q482994
https://www.wikidata.org/wiki/Q482994
https://linux.die.net/man/1/zcat
https://linux.die.net/man/1/grep
https://linux.die.net/man/1/zgrep

Wikidata Dump 82

2. Accessing data through the SPARQL endpoint — An alternative
method involves using the Wikidata’s SPARQL endpoint to access the
required information. It is possible to formulate a SPARQL CONSTRUCT
query to gather specific triples concerning the targeted entities. However,
the reliability of the Wikidata’s SPARQL endpoint fluctuates significantly:
at times, data are retrieved almost instantly, while at other times, the
process may fail due to timeouts. The task of fetching millions, or even tens
or hundreds of millions, of music-related triples can require a considerable
and unpredictable amount of time.

3. Direct Access to Entity Triples — Directly access the triples for any
entity in the Wikidata knowledge base through the Special:EntityData
endpoint. Data is available in several formats, including JSON, RD-
F/XML, N-Triples, and Turtle. The Special:EntityData endpoint ensures
comprehensive data provision by including all triples and extensive addi-
tional information for the specified entity.

To simplify the creation process and focus on data that can be connected
via their Spotify IDs, it was determined to only include music-related entities
featuring any of the Spotify properties (Spotify artist ID (P1902), Spotify
track ID (P2207), or Spotify album ID (P2205)). Ultimately, a hybrid
of the second and third approaches was adopted. Initially, the relevant entity
IDs were retrieved through the Wikidata’s SPARQL endpoint.
SELECT DISTINCT ?item WHERE {

{
?item p:P1902/ps:P1902 _: anyValueP1902 .

}
UNION
{

?item p:P2205/ps:P2205 _: anyValueP2205 .
}
UNION
{

?item p:P2207/ps:P2207 _: anyValueP2207 .
}

}

Using the SELECT query shown above, 96926 unique IDs were collected. It
should be noted that this represents just a fraction of the music-related data
available in the Wikidata’s knowledge base. Subsequently, the Special:EntityData
endpoint was used to get all triples with respect to the chosen entities. Then
these triples were merged into a single file, creating a custom data dump.
Due to numerous duplicates resulting from this merging process, a simple
bash script was utilized to eliminate these duplicates. Ultimately, the process
yielded more than 35 million unique triples.

https://query.wikidata.org/
https://www.wikidata.org/wiki/Special:EntityData
https://www.wikidata.org/wiki/Special:EntityData
https://www.wikidata.org/wiki/Property:P1902
https://www.wikidata.org/wiki/Property:P2207
https://www.wikidata.org/wiki/Property:P2207
https://www.wikidata.org/wiki/Property:P2205

User Credentials Database 83

4.7 User Credentials Database

The MongoDB database, though the smallest, is an essential component of the
system. This database is used for holding user credentials. Currently, the
system lacks designated private and public sections (where users can choose
which segments of their knowledge graph are accessible to all), but such fea-
tures may be added later. As a result, a user authentication system is already
in place, ensuring availability should the feature be introduced later. The
database operates on a free shared cluster within the MongoDB Atlas cloud
environment. To connect to the database, the system uses a native Node.js
driver along with the connection string.

https://www.mongodb.com/products/platform/cloud

Chapter 5

Validation and Evaluation

5.1 Software Evaluation

After developing the front-end client, a short user evaluation was performed.
The main focus of the evaluation was the fulfillment of the functional and non-
functional requirements set in Section 3.1.3 and Section 3.1.4. The test was
performed by a few voluntary users, who wanted to participate in the test.
They were asked to perform tasks reflecting use case scenarios presented in
Section 3.1.2. Each test session took between 15 and 30 minutes. Two testing
environments were tried during the tests: testing on the device, where the
system was mostly developed on; and setting up the environment on the user’s
device. Both environments were prepared for the user before the test.

Initially, users were required to sign up for a new account and log into the
system. Subsequently, they needed to set up their profiles. Then they were in-
structed to upload a file from a given selection. The next step involved editing
the parsed metadata and attempting to link Spotify IDs. The users were then
directed to incorporate this parsed data into their knowledge graphs. Follow-
ing this, they were to authenticate a provided Spotify account. Users were also
asked to select a recently played track and incorporate it into the knowledge
graph, followed by selecting a playlist to add. Towards the end, they were to
navigate the knowledge graph via the GUI, reviewing the data they had previ-
ously entered. Finally, users were encouraged to explore the application freely
to understand its capabilities. Usability feedback was collected throughout
these activities.

Table 5.1 shows the failed requirements and only partially successful re-
quirements and the steps taken to address them. The requirements not shown
in this table were fulfilled successfully.

84

SHACL Evaluation 85

ID Status Notes Resolution
FR-3 fail the success message is missing fixed
FR-5 fail the success message is missing will not fix, user is redirected

after a successful log-in
FR-12 success the application handles the exception when the user uploads an fixed

unsupported file (such as an image), but does not show the user
any message

FR-15 success the form does not reset completely when choosing a different track fixed
FR-16 success if there is only one search criterion option available, it should be will not be implemented

selected by default
FR-27 success the Music KG API does not handle Spotify authorization rejection fixed

correctly
NFR-1 success loaders should be added to notify the user that there is something implemented

happening in the background
NFR-3 success error/success messages should be displayed longer fixed

Table 5.1 User evaluation results

5.2 SHACL Evaluation

After user evaluation, the added data was validated using the SHACL shapes
presented in Section 4.5.1. The evaluation is done using the following HTTP
POST request, which was first presented in the same section.
curl -XPOST --data - binary shacl.ttl \

--header ’Content -type: text/turtle ’ \
’http :// localhost :3030/ music -kg/shacl?graph=union ’

Calling a SHACL validation endpoint returns a SHACL validation report. A
SHACL validation report represents the outcome of the validation proce-
dure, detailing both the conformance and all associated validation results. The
evaluation revealed that datatype mismatches exist in the schema:datePublished
property for certain entities. Further investigations revealed that the Spotify
API provides only the year of publication as the release date for certain en-
tities. This leads to a data type mismatch when these dates are entered into
the RDF store. As users cannot modify the data retrieved from the Spotify
API prior to adding them to the RDF store, they lack the capability to avoid
mismatch of data types. A potential solution could be to allow users to change
the data before storing them in the RDF store, or to have the Music KG API
address the mismatches in data types by retrieving the complete release date
from an alternative service or adding an arbitrary day and month to meet the
xsd:date requirements.

Short excerpt from the SHACL validation report:
PREFIX mkgs: <http :// localhost :3030/ music -kg/ spotify />
PREFIX mkgsh: <http :// localhost :3030/ music -kg/shacl/>
PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -

ns#>
PREFIX schema : <https :// schema .org/>
PREFIX sh: <http :// www.w3.org/ns/shacl#>

https://www.w3.org/TR/shacl/#validation-report

Discussion and Future Work 86

PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema #>

[rdf:type sh: ValidationReport ;
sh: conforms false;
sh: result [rdf:type sh: ValidationResult ;

sh: focusNode mkgs :724783 ff -0bb6 -4b53 -a221 -
a1ffe42027f3 ;

sh: resultMessage " datePublished should use
datatype xsd:date ." @en;

sh: resultPath schema : datePublished ;
sh: resultSeverity sh: Warning ;
sh: sourceConstraintComponent sh:

DatatypeConstraintComponent ;
sh: sourceShape mkgsh:

DatePublishedDatatypePropertyShape ;
sh:value "2008"ˆˆ xsd:date

];
sh: result [rdf:type sh: ValidationResult ;

sh: focusNode mkgs :40 b863bb -a5aa -4c17 -9d5f -
b6a176d861c3 ;

sh: resultMessage " datePublished should use
datatype xsd:date ." @en;

sh: resultPath schema : datePublished ;
sh: resultSeverity sh: Warning ;
sh: sourceConstraintComponent sh:

DatatypeConstraintComponent ;
sh: sourceShape mkgsh:

DatePublishedDatatypePropertyShape ;
sh:value "1984"ˆˆ xsd:date

]
] .

All other entities were valid, and no other shapes were violated, ensuring that
the added data are mostly consistent.

5.3 Discussion and Future Work

The Music KG system offers a platform for the creation, modification, re-
moval, and utilization of RDF data through a RESTful API. This allows even
applications unfamiliar with RDF to engage with the system. As the data
are already in RDF format, they are ready for connection to the Linked Open
Data Cloud, thus enriching the current knowledge base. Using a service like
Wikidata, which provides connections to various music-related services, users
can link their data to multiple other platforms, helping to further integrate
existing RDF data. Furthermore, the Music KG’s RDF store includes a
SPARQL endpoint for querying and accessing the stored data. The system is
also equipped with a simple GUI, which provides the viewing of the data in an

Discussion and Future Work 87

interpreted way. This GUI can also interact with the Spotify API via the Mu-
sic KG API to fetch user-specific data, such as playlists or recently played
songs. These data can be easily incorporated into the user’s music knowledge
graph with just a few clicks, simplifying the creation of new music-related RDF
data.

The designed API facilitates easy addition of various music-related services,
enhancing the diversity of sources for user data integration. A key enhance-
ment would be the capability for users to modify RDF data directly within
the GUI, making data management more straightforward. Currently, the sys-
tem is unable to distinguish between private and public segments of the user’s
music libraries; however, this feature might be implemented in the future to
allow users more privacy control. Furthermore, users would have the ability to
move their playlists between different services through music library synchro-
nization, giving them complete autonomy over their data irrespective of the
service provider. These are just a few of the potential future enhancements
and ideas.

Chapter 6

Conclusion

With the increasing popularity of multimedia streaming services, users may
face challenges with data control, backup, and integration across platforms.
This includes concerns about losing their music library and playlists if a ser-
vice is shut down, as well as difficulties managing duplicate or disorganized
content when using multiple platforms. Furthermore, it could be beneficial
to integrate music libraries with knowledge bases such as Wikidata for richer
music information. The objective of this thesis was to design and implement
a system that allows users to organize their music collections, add data from
multiple sources, and link them to existing knowledge bases.

To achieve this goal, the Music KG system was developed. This system
comprises four key components: the back-end server, which facilitates in-
tegration among the Spotify API, users’ music libraries on their devices, and
Wikidata data dump, all feeding into the dedicated music knowledge graph;
the front-end client, which allows users to view or add data to their mu-
sic knowledge graph; the RDF store, which maintains the music knowledge
graphs; and the database that stores users’ credentials.

Initially, an analysis of the background on knowledge graphs, music ser-
vices, community initiatives, and their applications in the field was conducted.
Following this, key technologies were explored and described, such as Seman-
tic Web, RDF, SPARQL, Music Ontologies, Linked Data, and RDF validation.
Subsequently, an analysis of the requirements was performed, and the system
was developed to fulfill these specifications. The details of the system’s imple-
mentation were then elaborated, showcasing examples of the integrated data.
Additionally, a Wikidata dump was generated, encompassing more than 90
thousand unique music-related entities.

Through the Music KG system the users can authorize their Spotify
accounts to gain access to their playlists and recently played tracks and add
music-related data to their knowledge graph. The system also enables users
to upload media files to obtain metadata of tracks from their offline music
libraries. Furthermore, the system is able to link the added data to the created

88

89

Wikidata dump to gain access to one of the most extensive knowledge bases
available.

Lastly, a software validation was performed and evaluated against the set
requirements, proving that the developed system met the expectations and the
set goals of this thesis. In addition, several future enhancements and directions
were suggested.

Appendix A

Manual

A.1 Running a project

The compressed archive music-kg-develop.zip enclosed with the thesis con-
tains the source code repository for the implemented system. The same repos-
itory can be cloned from GitHub.

It is possible to get the environment files for both applications to run from
Google Drive. It must be accessed using a Google account from the ČVUT
FIT group.

After retrieving the environment files, they have to be placed in the following
directories:
.env -> /apps/api
.env.local -> /apps/ dashboard

There are two ways to run applications. Using either npm scripts or using
Docker images.

Using npm scripts — Make sure that Node.js is installed. For the de-
velopment, Node.js v20.12.2 was used. To set the repository up, run these
commands:
npm install -g pnpm@8
pnpm install

After successful installation, the API and the front-end client can be started.
The following command will start the API development server, which will
listen on port 8000.
npx nx run api:serve

90

https://github.com/onjvis/music-kg
https://drive.google.com/file/d/1V7HBouEWEV66aydFJrbB6Q6sTKt4jLMY/view?usp=share_link

Running a project 91

To start the React FE development server, run the following command. The
GUI will be available at http://localhost:4200.
npx nx run dashboard :serve --host 0.0.0.0

Using Docker images — There are Dockerfiles for both applications to
create Docker images. The created images will then be used in a Docker com-
pose script, which effectively runs the applications. To proceed, call these
commands from the root directory of the repository:
docker build --file=apps/ dashboard / Dockerfile -t music -

kg - dashboard .
docker build --file=apps/api/ Dockerfile -t music -kg -api

.
docker compose -f docker - compose .yaml up

A.1.1 RDF store
1. Use ./tools/download-fuseki.sh to download Apache Jena Fuseki

2. Navigate to tools/fuseki folder

3. Run ./fuseki-server to start a Fuseki server

4. Open http://localhost:3030 to access Fuseki GUI

5. Create a new dataset called music-kg and choose Persistent (TDB2) as
Dataset type

A SHACL validation service is not enabled by default. To enable it, open the
configuration file tools/fuseki/run/configuration/music-kg.ttl and add
the following triple to it:
: service_tdb_all fuseki : endpoint [fuseki :name "shacl ";

fuseki : operation
fuseki :shacl

] .

For more information on SHACL validation in Fuseki, refer to Fuseki Docu-
mentation.

SHACL shapes for the project are available in tools/shacl.ttl.

A.1.2 Testing
For testing purposes, it is possible to create a new user account within the
system or use the existing one. For passwords to the Music KG system or
Spotify testing account, refer to Google Drive. It must be accessed using a
Google account from the ČVUT FIT group.

http://localhost:4200
http://localhost:3030
https://jena.apache.org/documentation/shacl/
https://jena.apache.org/documentation/shacl/
https://drive.google.com/file/d/1UfJCXG8lUoJA_cUBX7EX-FjNHmYAAXHD/view?usp=share_link

Wikidata dump 92

A.2 Wikidata dump

The created Wikidata dump can be obtained from Google Drive (around
400MB). It must be accessed using a Google account from the ČVUT FIT
group.

To use it with the Music KG system, it is possible to insert it into Fuseki
RDF store using its GUI. In the Dataset graph name form field input put:

http://localhost:3030/music-kg/wikidata-dump

Then, unzip the retrieved data dump (around 5.3GB) and upload it to the
RDF store by selecting the uncompressed file and choosing upload now in the
actions column.

https://drive.google.com/file/d/13VuWbTMpVywSMb4KWdm4byBjTkcaiYoa/view?usp=share_link
http://localhost:3030/#/dataset/music-kg/upload

Bibliography

1. The American Heritage Dictionary entry: Music [https://ahdictionary.
com/word/search.html?q=Music]. [N.d.]. [access. 2024-04-14].

2. music - Wikitionary, the free dictionary [https://en.wiktionary.org/
wiki/music]. [N.d.]. [access. 2024-04-14].

3. What is a knowledge graph? [https://www.ibm.com/topics/knowledge-
graph]. [N.d.]. [access. 2024-04-15].

4. What is a Knowledge Graph? [https://www.ontotext.com/knowledgehub/
fundamentals/what-is-a-knowledge-graph]. [N.d.]. [access. 2024-04-
15].

5. FENSEL, Dieter; ŞIMŞEK, Umutcan; ANGELE, Kevin; HUAMAN, El-
win; KÄRLE, Elias; PANASIUK, Oleksandra; TOMA, Ioan; UMBRICH,
Jürgen; WAHLER, Alexander. Why We Need Knowledge Graphs: Ap-
plications. In: Knowledge Graphs: Methodology, Tools and Selected Use
Cases. Cham: Springer International Publishing, 2020, pp. 95–112. isbn
978-3-030-37439-6. Available from doi: 10.1007/978-3-030-37439-6_4.

6. EHRLINGER, Lisa; WÖSS, Wolfram. Towards a Definition of Knowl-
edge Graphs. In: International Conference on Semantic Systems. 2016.
Available also from: https://ceur-ws.org/Vol-1695/paper4.pdf.

7. Wikidata:Introduction - Wikidata [https://www.wikidata.org/wiki/
Wikidata:Introduction]. [N.d.]. [access. 2024-04-17].

8. About DBpedia - DBpedia Association [https://www.dbpedia.org/
about]. [N.d.]. [access. 2024-04-17].

9. Knowledge Graphs - DBpedia Association [https://www.dbpedia.org/
resources/knowledge-graphs]. [N.d.]. [access. 2024-04-17].

10. About - MusicBrainz [https://musicbrainz.org/doc/About]. [N.d.].
[access. 2024-04-17].

11. About Last.fm - Last.fm [https://www.last.fm/about]. [N.d.]. [access.
2024-04-17].

93

https://ahdictionary.com/word/search.html?q=Music
https://ahdictionary.com/word/search.html?q=Music
https://en.wiktionary.org/wiki/music
https://en.wiktionary.org/wiki/music
https://www.ibm.com/topics/knowledge-graph
https://www.ibm.com/topics/knowledge-graph
https://www.ontotext.com/knowledgehub/fundamentals/what-is-a-knowledge-graph
https://www.ontotext.com/knowledgehub/fundamentals/what-is-a-knowledge-graph
https://doi.org/10.1007/978-3-030-37439-6_4
https://ceur-ws.org/Vol-1695/paper4.pdf
https://www.wikidata.org/wiki/Wikidata:Introduction
https://www.wikidata.org/wiki/Wikidata:Introduction
https://www.dbpedia.org/about
https://www.dbpedia.org/about
https://www.dbpedia.org/resources/knowledge-graphs
https://www.dbpedia.org/resources/knowledge-graphs
https://musicbrainz.org/doc/About
https://www.last.fm/about

Bibliography 94

12. API Docs - Last.fm [https://www.last.fm/api]. [N.d.]. [access. 2024-
04-17].

13. About Spotify - Spotify [https://newsroom.spotify.com/company-
info]. [N.d.]. [access. 2024-04-17].

14. Web API - Spotify [https://developer.spotify.com/documentation/
web-api]. [N.d.]. [access. 2024-04-17].

15. About - Bandcamp [https://bandcamp.com/about]. [N.d.]. [access. 2024-
04-27].

16. ORAMAS, Sergio; OSTUNI, Vito Claudio; NOIA, Tommaso Di; SERRA,
Xavier; SCIASCIO, Eugenio Di. Sound and Music Recommendation with
Knowledge Graphs. ACM Trans. Intell. Syst. Technol. 2016, vol. 8, no.
2. issn 2157-6904. Available from doi: 10.1145/2926718.

17. BERTRAM, Niels; DUNKEL, Jürgen; HERMOSO, Ramón. I am all
EARS: Using open data and knowledge graph embeddings for music rec-
ommendations. Expert Systems with Applications. 2023, vol. 229, p. 120347.
issn 0957-4174. Available from doi: https://doi.org/10.1016/j.
eswa.2023.120347.

18. BERNERS-LEE, Tim. Semantic Web Road map [https://www.w3.org/
DesignIssues/Semantic.html]. [N.d.]. [access. 2024-04-18].

19. RDF 1.1 Primer [https://www.w3.org/TR/rdf11- primer]. [N.d.].
[access. 2024-04-18].

20. IETF RFC 3987 [https://www.ietf.org/rfc/rfc3987.txt]. [N.d.].
[access. 2024-04-18].

21. SPARQL 1.1 Overview [https://www.w3.org/TR/sparql11-overview].
[N.d.]. [access. 2024-04-18].

22. SPARQL 1.1 Query Language [https://www.w3.org/TR/sparql11-
query]. [N.d.]. [access. 2024-04-18].

23. SPARQL 1.1 Update [https://www.w3.org/TR/2013/REC-sparql11-
update-20130321]. [N.d.]. [access. 2024-04-18].

24. SPARQL 1.1 Protocol [https://www.w3.org/TR/2013/REC-sparql11-
protocol-20130321]. [N.d.]. [access. 2024-04-18].

25. SPARQL 1.1 Graph Store HTTP Protocol [https://www.w3.org/TR/
2013 / REC - sparql11 - http - rdf - update - 20130321]. [N.d.]. [access.
2024-04-18].

26. GRIMM, Stephan; ABECKER, Andreas; VÖLKER, Johanna; STUDER,
Rudi. Ontologies and the Semantic Web. In: Handbook of Semantic Web
Technologies. Ed. by DOMINGUE, John; FENSEL, Dieter; HENDLER,
James A. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 507–
579. isbn 978-3-540-92913-0. Available from doi: 10.1007/978-3-540-
92913-0_13.

https://www.last.fm/api
https://newsroom.spotify.com/company-info
https://newsroom.spotify.com/company-info
https://developer.spotify.com/documentation/web-api
https://developer.spotify.com/documentation/web-api
https://bandcamp.com/about
https://doi.org/10.1145/2926718
https://doi.org/https://doi.org/10.1016/j.eswa.2023.120347
https://doi.org/https://doi.org/10.1016/j.eswa.2023.120347
https://www.w3.org/DesignIssues/Semantic.html
https://www.w3.org/DesignIssues/Semantic.html
https://www.w3.org/TR/rdf11-primer
https://www.ietf.org/rfc/rfc3987.txt
https://www.w3.org/TR/sparql11-overview
https://www.w3.org/TR/sparql11-query
https://www.w3.org/TR/sparql11-query
https://www.w3.org/TR/2013/REC-sparql11-update-20130321
https://www.w3.org/TR/2013/REC-sparql11-update-20130321
https://www.w3.org/TR/2013/REC-sparql11-protocol-20130321
https://www.w3.org/TR/2013/REC-sparql11-protocol-20130321
https://www.w3.org/TR/2013/REC-sparql11-http-rdf-update-20130321
https://www.w3.org/TR/2013/REC-sparql11-http-rdf-update-20130321
https://doi.org/10.1007/978-3-540-92913-0_13
https://doi.org/10.1007/978-3-540-92913-0_13

Bibliography 95

27. Specification - The Music Ontology [http://musicontology.com/specification].
[N.d.]. [access. 2024-04-27].

28. Terminology - MusicBrainz [https://musicbrainz.org/doc/Terminology].
[N.d.]. [access. 2024-04-28].

29. LinkedBrainz - MusicBrainz [https://musicbrainz.org/doc/LinkedBrainz].
[N.d.]. [access. 2024-04-28].

30. Schema.org [https://schema.org]. [N.d.]. [access. 2024-04-27].
31. WikiProject - Wikipedia [https://en.wikipedia.org/wiki/Wikipedia:

WikiProject]. [N.d.]. [access. 2024-04-28].
32. WikiProject Music - Wikidata [https : / / www . wikidata . org / wiki /

Wikidata:WikiProject_Music]. [N.d.]. [access. 2024-04-28].
33. Ontology Classes - DBpedia [https : / / dief . tools . dbpedia . org /

server/ontology/classes]. [N.d.]. [access. 2024-04-30].
34. BERNERS-LEE, Tim. Linked Data [https://www.w3.org/DesignIssues/

LinkedData.html]. [N.d.]. [access. 2024-04-21].
35. HOSE, Katja; SCHENKEL, Ralf. RDF Stores. In: Encyclopedia of Database

Systems. Ed. by LIU, Ling; ÖZSU, M. Tamer. New York, NY: Springer
New York, 2018, pp. 3100–3106. isbn 978-1-4614-8265-9. Available from
doi: 10.1007/978-1-4614-8265-9_80676.

36. TOMASZUK, Dominik. RDF Validation: A Brief Survey. In: KOZIEL-
SKI, Stanis law; MROZEK, Dariusz; KASPROWSKI, Pawe l; MA LYSIAK-
MROZEK, Bożena; KOSTRZEWA, Daniel (eds.). Beyond Databases, Ar-
chitectures and Structures. Towards Efficient Solutions for Data Analysis
and Knowledge Representation. Cham: Springer International Publishing,
2017, pp. 344–355. isbn 978-3-319-58274-0.

37. LABRA GAYO, Jose Emilio; PRUD’HOMMEAUX, Eric; BONEVA, Iovka;
KONTOKOSTAS, Dimitris. Validating RDF Data. Vol. 7. Morgan &
Claypool Publishers LLC, 2017. Synthesis Lectures on the Semantic Web:
Theory and Technology, no. 1. Available from doi: 10.2200/s00786ed1v01y201707wbe016.

38. Shapes Constraint Language (SHACL) [https : / / www . w3 . org / TR /
shacl/]. [N.d.]. [access. 2024-05-03].

39. History ID3.org - Web Archive [https : / / web . archive . org / web /
20101224080318/http://id3.org/History]. [N.d.]. [access. 2024-04-
18].

40. APEv2 Specification - Hydrogenaudio Knowledgebase [https://wiki.
hydrogenaud.io/index.php?title=APEv2_specification]. [N.d.].
[access. 2024-04-18].

41. Introduction to Node.js [https://nodejs.org/en/learn/getting-
started/introduction-to-nodejs]. [N.d.]. [access. 2024-04-28].

http://musicontology.com/specification
https://musicbrainz.org/doc/Terminology
https://musicbrainz.org/doc/LinkedBrainz
https://schema.org
https://en.wikipedia.org/wiki/Wikipedia:WikiProject
https://en.wikipedia.org/wiki/Wikipedia:WikiProject
https://www.wikidata.org/wiki/Wikidata:WikiProject_Music
https://www.wikidata.org/wiki/Wikidata:WikiProject_Music
https://dief.tools.dbpedia.org/server/ontology/classes
https://dief.tools.dbpedia.org/server/ontology/classes
https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/DesignIssues/LinkedData.html
https://doi.org/10.1007/978-1-4614-8265-9_80676
https://doi.org/10.2200/s00786ed1v01y201707wbe016
https://www.w3.org/TR/shacl/
https://www.w3.org/TR/shacl/
https://web.archive.org/web/20101224080318/http://id3.org/History
https://web.archive.org/web/20101224080318/http://id3.org/History
https://wiki.hydrogenaud.io/index.php?title=APEv2_specification
https://wiki.hydrogenaud.io/index.php?title=APEv2_specification
https://nodejs.org/en/learn/getting-started/introduction-to-nodejs
https://nodejs.org/en/learn/getting-started/introduction-to-nodejs

Bibliography 96

42. Express - Node.js web application framework [https://expressjs.com].
[N.d.]. [access. 2024-04-28].

43. TypeScript [https://www.typescriptlang.org]. [N.d.]. [access. 2024-
04-28].

44. Getting Started - Axios [https://axios-http.com/docs/intro]. [N.d.].
[access. 2024-04-28].

45. MongoDB [https://www.mongodb.com]. [N.d.]. [access. 2024-04-29].
46. React [https://react.dev]. [N.d.]. [access. 2024-04-30].
47. Vite [https://vitejs.dev]. [N.d.]. [access. 2024-04-30].
48. Tailwind CSS [https://tailwindcss.com/docs/installation]. [N.d.].

[access. 2024-05-01].
49. Music Metadata Browser - GitHub [https://github.com/Borewit/

music-metadata-browser]. [N.d.]. [access. 2024-05-01].
50. Monorepo Explained [https://monorepo.tools]. [N.d.]. [access. 2024-

05-01].
51. Intro to Nx [https://nx.dev/getting-started/intro]. [N.d.]. [access.

2024-05-01].

https://expressjs.com
https://www.typescriptlang.org
https://axios-http.com/docs/intro
https://www.mongodb.com
https://react.dev
https://vitejs.dev
https://tailwindcss.com/docs/installation
https://github.com/Borewit/music-metadata-browser
https://github.com/Borewit/music-metadata-browser
https://monorepo.tools
https://nx.dev/getting-started/intro

Contents of the Attachment

music-kg-develop.zip...............source code of the implementation
thesis-latex.zip.........source code of the thesis in the LATEX format
thesis.pdf..............................thesis text in the PDF format

97

	Acknowledgments
	Declaration
	Abstract
	List of abbreviations
	Introduction
	Motivation
	Thesis Objectives
	Thesis Structure Overview

	Background and Related Work
	Music
	Knowledge Graphs
	Open Data Sources
	Music Services

	Recommendation Systems
	Existing Solutions
	Relevant Technology
	Semantic Web
	Resource Description Framework
	SPARQL Protocol and RDF Query Language
	Ontologies
	Music Ontologies

	Linked Data and Data Mappings
	RDF Triple Stores
	RDF Validation
	MP3 Metadata

	Analysis and Design
	Requirements Analysis
	Target Group
	Use Case Scenarios
	User and User Profiles Use Case Scenarios
	Media Files Use Case Scenarios
	Music Library Management Use Case Scenarios
	Spotify Integration Use Case Scenarios

	Functional Requirements
	Non-functional Requirements

	System Design
	System Architecture
	Back-end Server
	RDF Store
	User Credentials Database
	Front-end Client

	Implementation
	Code Organization and Structure
	Back-end Server
	Code-base Structure
	Authentication Module
	SPARQL Communicator Module
	Spotify Adapter Module
	Error Handling

	Front-end Client
	Code-base Structure
	Authentication Module
	Browse Module
	Spotify Adapter Module
	Upload File Module
	Error Handling

	Data Type Libraries
	RDF Store
	SHACL Shapes

	Wikidata Dump
	User Credentials Database

	Validation and Evaluation
	Software Evaluation
	SHACL Evaluation
	Discussion and Future Work

	Conclusion
	Manual
	Running a project
	RDF store
	Testing

	Wikidata dump

	Contents of the Attachment

