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Bc. Vojtěch Skalák

Faculty of Information Technology
Katedra informačńı bezpečnosti
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Abstract

This paper examines malware classification using self-organizing maps. Detection using artificial
intelligence is one way to effectively combat the spread of malware, and the ability of self-
organizing maps to organize data into clusters can aid in classification. This paper summarizes
the theoretical basis and the development of self-organization maps so far. Afterward, a test
map is trained on a publicly available dataset with parameters selected for this type of data. In
the last section, the measured results are compared with other machine learning methods.

Keywords Self-organizing map, Kohonen map, Machine learning, Malware classification

Abstrakt

Tato práce se zabývá klasifikaćı malware pomoćı samoorganizačńıch map. Detekce pomoćı umělé
inteligence je jedńım ze zp̊usob̊u, jak efektivně bojovat proti š́ı̌reńı malware a schopnost samoor-
ganizačńıch map uspořádat data do klastr̊u mohou pomoci při klasifikaci. V práci je shrnut
teoretický základ a dosavadńı vývoj samoorganizačńıch map. Posléze je na veřejně dostupném
datasetu natrénována zkušebńı mapa s parametry vybranými pro tento typ dat. V posledńı části
jsou naměřené výsledky porovnány s ostatńımi metodami strojového učeńı.

Kĺıčová slova Samoorganizačńı mapy, Kohonenovy mapy, Strojové učeńı, Klasifikace malware
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Summary

Introduction

The theoretical basis of self-organizing maps and
the mathematical principles behind some of the
functions used.

Literature review

The summary of the development in the self-
organizing maps, malware classification and ma-
chine learning

Methodology

The methods used for data and parameter selec-
tion.

Results

Results achieved by the self-organizing map on
the selected dataset and results of the other ma-
chine learning methods.

Discussion

Comparison of the results and discussion.
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Introduction

Malware classification
Malware is a combination of the words malicious and software. It is software whose purpose is to
harm either user or the computer. To classify malware, the terms type and family are used. The
malware type refers mainly to its behavior. There are many types of malware, the most common
include Trojans, viruses, spyware, or worms. The malware family refers to characteristic features
of the malware and is used to mark specific groups or variants.

The malware classification techniques are used to divide malware samples into families. As-
signing a family to a malware sample provides information about the malware’s behavior and
characteristic features. Furthermore, it improves malware signature generation, one of the mal-
ware detection techniques. [1]

Malware detection
Malware detection techniques aim to decide, whether given software is malware or not. As
malware is continuously evolving and poses a threat as the number of both attacks and devices
in the world is increasing, the need to rapidly and effectively detect malware samples is rising.
Also, detecting malware becomes more challenging with the number of malware types increasing.
There are several approaches used to detect malware:

The signature-based detection consists in reverse-engineering malware, extracting patterns,
and selecting labels based on the pattern. Detection on endpoints is done by comparing
hashes with a vast antivirus database stored either at the endpoint itself or in the cloud
so that it can accommodate a more extensive amount of data. This approach is fast and
effective, however, it may be insufficient when detecting new types or variants of malware.

The behavior-based detection is determining if the software is malicious based on its be-
havior. It is using various tools to capture API calls, system calls, etc. Contrary to the
signature-based approach, it can detect new types of malware if their behavior is similar.

The heuristic-based detection uses rules and ML techniques to achieve a high accuracy rate
of malware detection on zero-day, low-complex malware. However, it is not efficient at de-
tecting malware that is using metamorphic techniques.

Model checking-based detection , used for system verification, creating a formal specifica-
tion of software given using mathematical language and logical formulas. The model created
either manually or automatically is then checked for any behavior matching known malware.

1



2 Introduction

This technique is effective against obfuscated or polymorphic malware. The main disadvan-
tage is that this approach is computationally expensive, especially for more complex systems.

Deep learning-based detection learns from malware samples. It is an effective detecting
method but it is also vulnerable to evasion attacks i.e. manipulation of the input data aimed
to confuse the machine learning model.

From those detection techniques, the highest accuracy rate when detecting more complex malware
achieve behavior-based methods, while the signature-based technique has the lowest accuracy
rate. [2]

Figure 1 Malware detection techniques overview [2]

The malware detection techniques can be improved by malware classification techniques and
together lead to a faster and more efficient detection method. An overview of all the techniques
can be seen in figure 1
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PE file format
The Portable Executable (PE) file format is a binary format used in the Microsoft Windows OS.
It is used for executable files, dynamic link libraries (DLL), device drivers, or object code files.
Each PE file includes a header with several sections. The overview of the section can be seen in
2. Brief contents of the sections:

DOS Header An executable header allowing the file to be executed in MS-DOS. Every PE file
starts with this header.

PE Signature Fixed 4-byte signature (”PE
0
0”) marking the beginning of the PE file.

COFF Header (Common Object File Format Header) Contains information about the executable
such as architecture type, number of sections, timestamp, entry point, etc.

Optional Header Additional information about the executable.

Section Header Information about the sections of the PE file.

Figure 2 The PE file header
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Self-organizing map
A self-organizing map (referred to as ’SOM’), also called Kohonen or feature map, was first
described by Teuvo Kohonen in [3]. According to [4] and [5], it is a neural network architecture
that is used to represent high-dimensional input data in a low-dimensional format. To train the
network unsupervised, competitive learning is used.

Unsupervised learning is the training of neural networks on unlabeled data sets. The network’s
output is therefore not compared with the expected output; instead, the network self-organizes
its neurons. This leads to data clustering based on input data features. Competitive learning
means that the neurons compete for each input vector based on a selected metric. Only one
winning neuron is selected for each input, although more than one can be updated.

Each neuron has a weight vector initialized to a value that is:

1. random

2. picked from input space

3. picked to reflect the distribution of the input space

The third option is preceded by Principal Component Analysis (referred to as ’PCA’). PCA
is also used to reduce the dimension of the data set without significant loss of information.
According to [6] random initialization is seldom used for practical purposes because it lowers the
convergence rate of the learning process. Values for initialization may be derived from the two
largest principal components so that the values reflect the distribution of the input space.

These initiated vectors, called models, are associated with neurons, which are organized into a
grid. For most cases, [6] recommends two dimensional, hexagonal-shaped grid. A higher dimen-
sion grid can be used for special purposes only as one of the features of SOM is a representation
of high-dimensional data into a low-dimensional plane. Toroidal or spherical grids may be used
for the data representation across grid borders to be smoothed.

Implementation of the SOM network can follow two different approaches. The first approach
is a step-wise algorithm that processes one input vector at a time. The main idea of the SOM
algorithm is as follows. Input data item selected at random or in predefined order is compared
with all models associated with all neurons of the network. The winning model is determined
based on a function, most commonly Euclidean distance. This is also called the competitive
process [4] as the neurons compete with each other for the input. After selecting the winning
neuron or Best Matching Unit (referred to as BMU), several neurons that are spatially near him
on the grid are selected based on the neighborhood function (1). This step of the algorithm is
called the cooperative process. In the next step, all selected neurons are updated by function
(2), also called the adjustment process.

According to [6] function (1) is often used as a neighborhood function.
Example of neighborhood function choice:

hci(t) = α(t)exp[(−sqdist(c, i)/2σ2(t))] (1)

Indexes c and i again represent neurons for which the neighborhood distance is calculated, c
is the winning neuron and i is the neuron on which the function is applied. Function α(t) is a
monotonically decreasing scalar function of t and σ(t) is a monotonically decreasing function of
t. The function sqdist(c, i) is a squared distance between neurons c and i. This function with
minor changes is also proposed by [5] as a neighborhood function.

The update function is defined as follows:

ω⃗s⃗(t + 1) = ω⃗s⃗(t) + ϵh(r⃗, s⃗)(v⃗(t) − ω⃗s⃗(t)) (2)

The update function (2) as described in [7] contains neighborhood function h(r⃗, s⃗) so the
function is applied to all the neurons after each input. Vector r⃗ represents the position of BMU
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and vector s⃗ represents the position of the neuron on which the update is applied. Function
h() represents a function that decreases with the distance between the two nodes. Distance
is calculated from their coordinates in the network topology. Vector ω⃗s⃗ denotes the weight
vector associated with neuron s, the one that is updated by the function. Symbol ϵ represents
the learning step. It is a constant set as 0 < ϵ < 1. The nodes that do not belong to the
neighborhood distance are therefore not affected.

Euclidean distance is the most common choice according to [4], but other metrics can be used
as well. In the two-dimensional space of the SOM, the Euclidean distance between two points
A = (x1, y2) and B = (x2, y2) is defined as follows:

d(A, B) =
√

(x2 − x1)2 + (y2 − y1)2

This metric calculates the direct distance between two points and in the context of the SOM,
it preserves the relative distances. However, it could be influenced by extreme values more easily
than the other metrics described below.

Another option is to use the Manhattan distance, which is a measure of distance in a lattice
structure. The distance is calculated as:

d(A, B) = |x2 − x1| + |y2 − y1|

The Manhattan distance is commonly used if the points are distributed in a grid-like structure.
It is less influenced by extreme values than the Euclidean distance. However, it may not reflect
the shortest path between the points. It is a common choice for a structure with points distributed
over two perpendicular directions.

The third metric discussed in this work is the Chebyshev distance. Like the Manhattan
distance, it is measured on a lattice structure, but it is calculated as the maximum difference
between two points’ coordinates along any dimension:

d(A, B) = max(|x2 − x1|, |y2 − y1|)

This metric is an alternative to Manhattan distance on grid-like structures. It is even less
influenced by extreme values, as can be derived from the metric equation, and it is a more
suitable choice to be used in a lattice structure with more than two directions, i. e. measure the
distance between points on a diagonal.

After the three steps of the step-wise approach, the stopping condition is checked. The
algorithm can stop if the network reached a stable state. In such a state, the values of models
do not change in time: for each model mi associated with neuron i the following equation is
satisfied:

mi(t + 1) = mi(t) (3)

From equation (3) where t → ∞ the equation for batch computation (4) is derived.
An example of a step-wise learning process in a two-dimensional hexagonal-shaped grid can

be seen in Figure 3. Label A denotes the data item from input space which is compared with all
models, B is labeled the BMU, the winning neuron, while C is the neighborhood at some point
in the learning process. Models associated with all of the neurons in area C are updated in this
iteration.

The second approach to implementing SOM is the batch-type process. With the presumption
of a finite number of input data items, all of these items are applied in one batch. If there is
a very large number of input items, a selected subset is applied instead. Models of neurons in
this approach are not updated one by one but all at once. For each model mi are selected data
items that are closest to the model, that is mi is BMU for data items assigned to the associated
neuron. The neighborhood is specified for neurons and new values of models are computed from
means of values across the whole neighborhood using the function (4) derived from stable state
equation (3).
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A

B

C

Figure 3 Step-wise learning in hexagonal SOM

Batch-computation update function:

m∗
i =

∑
j njhjixm,j∑

j njhji
(4)

The function computes the value of m∗
i which is the value of the model associated with

neuron i and which is independent of the current time step. For this reason, all input items can
be processed at once during one iteration of the batch algorithm. xm,j represents the mean of
inputs assigned to the model mj in the first step of the iteration. Value nj denotes the number
of these inputs and hji represents the neighborhood function of neurons mi and mj .

This concludes one iteration of the batch processing. Again the process is repeated until a
stable state is reached. According to [5] the number of iterations must be at least 500 times the
number of neurons in the output layer.

In the general description of the SOM learning process, the learning rate and neighborhood
size decrease over time. The changes in these parameters divide the learning process into two
phases described in [8]. The phases are:

1. Great topological changes phase

2. Fine-tuning phase

The first phase is denoted by great changes in the topological space of the network. In this
phase, the size of the neighborhood and the learning rate are both large. Changes in neuron
values and positions are bigger than later. The aim of this phase is approximate the density of
input space distribution.

In the second phase, the network does not undergo great topological changes, only small
updates of one or a few neurons. The target of this phase is to train the network to distinguish
between patterns that are close in the input space but do not belong to the same cluster.

An essential aspect of SOM is network size, which shall reflect the size of the input space.
According to [6] the use of SOM on small data sets is not practical, as there are other methods to
analyze such data. Furthermore, [9] states that the size of the network affects the initial size of
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the neighborhood and the number of iterations. Another characteristic that depends on network
size is the granularity of the final feature map. A smaller network size to data space size ratio
will result in a coarse texture of the feature map displaying only the most significant clusters.
SOM network with a bigger ratio will produce a more precise division of input space features
and create more clusters. The drawback of creating a network that is too large is that it may
produce sparse data on the output. Again the size of the network can correlate with the two
largest principal components of the input data. For these reasons, the network can contain from
a few dozen to several hundred neurons. In [6] the author claims that 50 items per neuron are
enough for practical usage.

The SOM is a method close to the k-means clustering, which is a vector quantization method.
Similarities can also be found with dimensionality reduction methods. In [10] the authors assess
the SOM method as a partitioning method with practical usage, although it differs from other
partitioning and dimension-reduction methods. The authors conclude that SOM is a useful
technique. These are the most useful objectives they assumed after a series of experiments:

1. unsupervised classification method

2. object classification while the object groups are known

3. testing of theoretical models

The authors point out that the method can accomplish these objectives simultaneously. The
capability to be practically used as an unsupervised classification method is derived from the
fact that SOM is clustering data based on their similarity. The authors also state that the
network associates a similar number of items with each cluster center. Classification of objects
into known groups can be useful for malware detection and analysis as will be discussed in the
next section. Usefulness for testing of theoretical models authors proved by experimenting with
real-life objects, stars in this case, which were merged with tracer objects, synthetic objects with
properties to match the presumed cluster center. The Kohonen map resulting from applying
the SOM method to such data fulfilled the presumptions and divided the map into regions
corresponding to the synthetic object’s properties.
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Chapter 1

Literature review

Potential profits from successful malware are rising and so is the number of new malware types
and modifications. In the work [11] authors further claim that malicious actors evolve and adapt
their strategies as well as existing malware to be able to exploit vulnerabilities as soon as they
are revealed.

New versions of the same malware appear more often. For example in [12] authors state that
Agobot, a malware family written in C++, appeared between the years 2002 and 2007 in more
than 580 variants.

In the work [11] authors found significant differences between labels issued by various AV
providers, as suggested by the comparison of several malware samples of VirusTotal, a cloud
solution that compares results of more than 50 AV vendors.

They explained that this is because types of malware are often similar to one another, present-
ing the same methods and behavior. Thus determining one exact type for each malware is often
not possible and the label assigned this way does not have to correspond with the malware’s real
properties. On the contrary, SOM based detection method processes the input data in such a
way, that the resulting feature map not only divides malware into clusters, possibly representing
malware families but also shows the similarity between each sample based on their respective
position. This feature of SOM that comes from a combination of cooperative and competitive
approaches can define a relationship between individual samples better than single labels.

For these reasons, there is a need to implement new ways of malware detection. One of the
promising approaches is malware clustering using a neural network.

To analyze malware it is necessary to find its characteristic features. these parameters of mal-
ware must differentiate one sample from another. On Windows, one of the common approaches
is analyzing API calls as it was used in [13] and [11].

The number of malware grows and new samples appear every day. According to [14] there are
more than 450 000 new samples every day. To cope with new malicious programs, [13] proposed
a novel approach to classifying malware samples. The main idea is that the new samples are
often made by modifying existing malware and thus have the same behavior patterns. These
samples can be filtered from those that are new and speed up the detecting process.

To extract malware features, several methods can be used. In the work [2] the authors
mention these data mining techniques used for malware features extraction:

The n-gram model is a widely used feature extraction technique that uses both static and
dynamic extraction. The technique groups system and API calls in successive order for a
given n, creating unigrams for n = 1, bigrams for n = 2, trigrams for n = 3, etc. The
disadvantage is that it creates vast feature space. Nevertheless, it is widely used for malware
feature extraction.

9
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Graph-based model technique converts system calls into a graph. With increasing complexity,
sub-diagrams are created to describe the graph. With few enough nodes and edges, the
classification of the software can be done. However, many studies define the creation of the
sub-diagrams as NP-Complete and thus computationally very demanding.

Malware dataset prepared to be used in research. Instead of extracting data from malware,
one of the well-known and widely used datasets can be used. The authors list the following
datasets:

NSL-KDD dataset (2009) [15]
Drebin dataset (2014) [16]
Microsoft malware classification challenge dataset (2015) [16]
ClaMP (Classification of Malware with PE headers) dataset (2016) [17]
AAGM dataset (2017) [18]
EMBER dataset (2018) [19]

Other methods to collect malware features can be used. In [13] the authors used dynamic
analysis to extract malware features. They recorded the first 200 API calls plus complementary
information. Then they stored it in the matrix and modified it so that the same patterns
appeared. For sample classification, supervised learning was used with a total of 42 068 samples,
67 % as a training set and the rest as the testing set. The authors used labels provided by
VirusTotal and selected four different types of malware to detect:

1. Trojan

2. Potentially unwanted program (PUP)

3. Adware

4. Rootkit

Overall results were very satisfactory. It worked well for Trojans, PUPs, and Rootkits.
Although they measured a significant false positive rate for Adware, the weighted averaged
results were not greatly affected and the classifier was evaluated as able to filter out known
modified known malware.

In [11] authors based feature selection on API calls of malware and their parameters. API
calls were collected during the first two minutes of malware execution. API calls were divided
as follows:

1. Passed API calls - managed to successfully change the system state

2. Failed API calls - failed to change the system state

3. Return codes of the failed API calls

This method led to hundreds of features representing malware. To process by SOM, Principal
Component analysis had to be used to reduce the number of features. these features were then
sent to SOM in form of input vectors. The results of this approach again differentiate from the
labels provided by AV vendors.

Another method is to analyze PE files and headers and extract features from them. PE stands
for Portable Executable and it is a file format standardized by Microsoft Windows as described
in the introduction. According to [20] detection of malware based on PE files can achieve a high
detection rate which is exceeding 99 % and a false positive rate below 0.5 %.

In the work [21], the authors used PE files header data to detect malware. Vectors of extracted
malware features are then, in one batch with an equal number of benign feature vectors, passed
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to the neural network. After processing, n neurons of the output layer form an n-dimensional
vector for each input, point in n-dimensional space. On the points obtained is applied k-clustering
method to divide benign files from malware into two clusters. Based on the distance between
points and cluster centers, the values of neurons are updated. This concludes one round of
training. Each step of training uses a new batch of feature vectors mixed with the feature
vectors of the previous batch.

After a series of experiments, the authors compared the results of this approach with other
recent works based on PE file header features or deep learning. Their method was evaluated as
better in most aspects. The better performance against the other PE file header-based malware
detection was due to the optimal extraction of features. The headers of PE files were selected
based on their effectiveness in differentiating malware from benign files. these assessed as effective
were namely NumberOfSections, NumberOfSymbols, or Checksum.

In the article[22] author claims that the detection of malware based solely on selected PE
headers and their features can lead to a 99.5 % detection rate, 0.16 % false positive rate, and
time below 20 minutes to process data set consisting of 5598 malware samples and 1237 benign
files. Another advantage of this approach is that it can detect 0-day vulnerabilities as it is not
dependent on an existing AV database according to [20].

Capabilities of SOM clustering can also be used in forensic analysis to separate files of no
importance, so-called noise files, from files that can benefit the analysis. In work [23] file metadata
is used to train SOM and then compare this method against standard forensic analysis tools. In
the work, the authors concluded that the SOM approach is significantly faster because it does
not require human eyes to check the patterns and the trained neural network takes little time to
produce the output, in this case, data clustered to their respective categories.
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Chapter 2

Methodology

2.1 Data collection

For testing, the EMBER dataset [19] is used. The EMBER 2018 dataset consists of 1 million
samples collected in or before the year 2018. Each sample has 2381 features extracted from a
binary file. The dataset is divided as follows: 200 000 unlabeled samples, 400 000 labeled benign
samples, and 400 000 labeled malware samples divided into one of more than 3 000 malware
families. The dataset is furthermore divided into training and testing sets. While omitting the
unlabeled data items, the training set consists of 600 000 samples and the testing set of 200 000
samples. Samples are equally divided between benign and malicious data. Malware families are
not evenly distributed between training and testing sets.

For the purpose of testing classification by SOM, only the labeled samples are used, the
unlabeled samples are filtered from the dataset. Also, a custom dataset division into three sets
is used to distribute the malware families evenly.

2.2 Data analysis

The four most common, labeled malware families from the Ember dataset are included in the
three sets. These are the families: xtrat with a total count of 35 969 samples, zbot with 24 075
samples, ramnit with 20 595 samples, and sality with 16 691 samples.

The four family classes together with labeled benign samples form the base of the dataset
used in this paper, counting 497 330 samples. However, only a subset of the data is used, as the
undersampling technique RandomUnderSampler from [24] is used to achieve balanced training
and testing dataset.

From the base set, three subsets are created to be used in different parts of the training. The
division into three groups is done before any other operation, to prevent the training subset from
affecting the testing subset and vice versa. The base dataset is divided into training and testing
subsets, both consisting of 50 % of the samples. The division is done on the level of individual
classes so that the ratio between benign and malware samples is preserved. Then the training
subset is divided again in the same manner to create a validation set, consisting of 50 % samples
of the training subset. The training subset is therefore reduced to 50 % of its size.

After dividing the data into three subsets, each subset is normalized using the StandardScaler
function from [24].

13
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2.3 Dataset limitations

One of the EMBER 2018 dataset limitations, as used in this work, is the data imbalance. The
classes of malware chosen as the most numerous ones are significantly smaller in number than
the benign class. This can lead to a model that performs well only when detecting benign
samples. To remedy this, several approaches are possible. The approach already discussed in
the 2.1 section is to reduce the number of benign samples using some undersampling technique.
Another approach is to use a classification metric that considers the data imbalance, such as
F1-score.

The dataset consists of malware and benign samples recognized and analyzed before 2019.
The model is trained and evaluated using such data that it may not perform well on newer
malware classes. However, this work does not aim to create a general detection tool but to show
the possibilities of using SOM to classify malware.

2.4 The training process

The training process consists of several phases. First, the data vectors are selected from the
dataset and divided into three subsets as described in 2.1. Then normalization is applied to scale
the data items. PCA is then used to reduce the number of components. To even the number
of data items in each class, the undersampling technique is used. From the three subsets, the
training set is selected and used as the input to the SOM. This process is displayed in figure 2.1.

Figure 2.1 Training process of the SOM
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2.5 Implementation
For the purposes of this work, the SOM was implemented using C++ programming language.
The main functionality of the map is the training and then the evaluation of input items. As
the input, the program accepts Numpy array and several parameters, that defines the map and
the training phase. All of the parameters accepted by the SOM are:

input data (Numpy array): the training set.

map size (unsigned int): the size of one side of the map, the resulting number of nodes depends
on the map size and on the shape of the map.

epochs (unsigned int): the number of training epochs, each one consisting of a number of
iterations.

learning rate (double): defines the amount by which the weights are updated, and decrease
over time.

radius (double): determines the size of the neighborhood of the BMU that is updated. As well
as the learning rate, decreases over time.

shape (string): the shape of the map can be either square or hexagonal. Together with map size
defines the number of nodes.

distance metric (string): metric used to measure the distance between nodes. Supported
distances are Euclidean, Manhattan, and Chebyshev.

nodes initialization (string): defines how the nodes of the map are initially set. Supported
methods are random and sample.

batch size (int): defines the number of data items processed at once.

update learning rate function (string): selects a function that updates the learning rate
before each epoch. Supported functions are linear, inverse, and decay.

calculate neighborhood function (string): selects a function that calculates the neighbor-
hood size for the winning node. Supported functions are gaussian, bubble.

update radius size function (string): selects a function that calculates the radius size before
each epoch. The supported function is decay.

The learning rate is updated during the training phase before each epoch. The learning rate
function should have some properties so that the training process of the SOM is performed in
the expected way. The properties are:

Monotonic decrease - the learning rate decreases over time and the SOM converges to a
stable state. Furthermore, the weight updates should be smaller as the training enters the
Fine Tuning phase as described in .

Positive values - the function has positive values so that the weight updates are not inverted.
The zero value of the learning rate has no effect on the neuron weights, therefore it is not
necessary.

Smoothness - containing no discontinuities that would lead to unpredictable behavior.

Convergence to zero - with increasing input values, the learning rate should converge to zero
to restrain the training process from further updates that would disrupt the stable state of
the SOM.
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There are various functions fulfilling these properties. According to [25] the most used are:

Linear function is defined as:
α(t) = α(0) ∗ 1

t
(2.1)

where t “is the order number of a current iteration”

Inverse of Time function is defined as:

α(t, T ) = α(0) ∗ (1 − t

T
) (2.2)

where T is the number of epochs and t has the same meaning as in 2.1.

Exponential decay function is defined as:

α(t, T ) = α(0) ∗ e
−t
T (2.3)

where t and T have the same meaning as in 2.1 and 2.2

Functions 2.1, 2.2, and 2.3 are the supported functions in this implementation. The shape
of these functions can be seen in figure 2.2. The initial parameters were set to provide better
visualization and do not correspond with the initial settings of SOM parameters. The setting of
these parameters is described in one of the next sections.

In the figure is apparent the difference between the three functions. The Linear function is
quick to decrease and then is slowly converging to zero. This behavior imitates the division of
the learning process, giving bigger values for the first phase and smaller values for the second
phase. However, the only parameter to influence the progress of the decrease is the initial value
of the learning rate, which does not affect the shape of the function.

The Inverse of Time function stably decreases over time, fulfilling the conditions of the
learning rate function. The function depends on the total number of iterations. However, a
smaller number of iterations leads to the learning rate becoming zero earlier than the Linear
function, while a bigger number of iterations means that the first phase is significantly longer,
making greater changes to the topology.

The Exponential decay function also depends on the total number of iterations and the de-
crease of the function can be manipulated by this parameter, as well as by the initial learning
rate value. Overall, the decrease is slower than with the Linear function and the convergence to
zero is slower than the Inverse of Time function.

The neighborhood function defines the size of the neighborhood that is updated around the
BMU. As well as the learning rate function, it should have some properties for the training phase
to perform properly. These properties are:

Non-negativity - the function gives only positive values or zero as its output so that the
neighborhood update is a well-defined value around the BMU or there is no neighborhood
and only the BMU is updated.

Monotonic decrease - as the learning rate function, the neighborhood function should decrease
with increasing distance from the BMU as the neurons on the edge of the neighborhood radius
are the least influenced by the update.

Continuous - to avoid big changes in the neurons that are close to each other.

Symmetry - the update to neurons with the same relative distance to the BMU should be
the same to achieve a balanced and stable configuration.

According to [25] the Bubble and Gaussian functions are widely used in the training process
of the SOM.
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Figure 2.2 Learning rate functions

Bubble function is defined as:

hc
ij =

{
α(t), (i, j) ∈ Nc

0, (i, j) ̸∈ Nc

where α(t) is the learning rate function and Nc is the set of nodes that are neighboring the
node c, which is the node for which the neighborhood function is calculated, the BMU.

Gaussian function is defined as:

hc
ij = α(t) × e

−∥Rc−Rij ∥2

2×(ηc
ij

(t))2 (2.4)
where the function ηc

ij defines the radius of the neighborhood. The authors of [25] suggest
using the exponential decay function described below.

The implemented radius functions that are used in the neighborhood update function are:

Exponential decay defined in [25] as:

ηc
ij(t) = η(0) × e− t

T
(2.5)

where η(0) is the initial value of the neighborhood radius.

Interpolation function suggested by [26] is defined as:

ηc(t) = η(0) × e− t

λ
(2.6)

where λ = T
log(η(0)) is time constant.
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2.5.1 Training process
After the nodes are initialized, the training phase takes place. The training process implemented
consists of the defined number of epochs, each with a fixed number of inner iterations. In each
iteration, items from the input space are presented at random to the SOM, and the weights are
updated accordingly. The process implemented is the batch process as described in section.

During the training phase, quantization error (QE) and topological or topographic error (TE)
are calculated after each epoch. Values of these errors and their visualization are important
markers of the quality of the SOM.

QE “is a statistical metric representing the difference between data and results obtained
by letting a Self-Organizing neural network learn the data” [27]. It is the “measure of the
average distance between the data points and the map nodes to which they are mapped, with
smaller values indicating a better fit” and “Kohonen suggested QE as the basic quality measure
for evaluating self-organizing maps” [28]. Such a measure indicates how well the trained map
approximates the input data, which is one of the most important features of the SOM. The QE
is calculated as follows [28]:

QE(M) = 1
n

n∑
i=1

∥ϕ(xi) − xi∥ (2.7)

where n is the number of data items in the training set, ϕ : D 7→ M is a mapping function
from input space D to the SOM M .

TE is a metric used to evaluate how the topological relationships of the input space are
preserved in the trained map as the neighborhood properties of the input data items should be
represented in the 2D space of the SOM. According to [28], TE

is a measure of how well the structure of the input space is modeled by the map. Specif-
ically, it evaluates the local discontinuities in the mapping. TE is calculated as follows
[28]:

TE(M) = 1
n

n∑
i=1

t(xi) (2.8)

where n is the number of data items in the training set and t(xi) is a function defined for
a data item x, BMU of x µ(x) and second-best-matching unit of x µ′(x) as:

t(x) =
{

0 if µ(x) and µ′(x) are neighbors
1 otherwise

The training process implemented follows these steps:

1. The values of the learning rate and radius are calculated
2. The input data items are shuffled and divided into batches according to the number of

available threads, each thread computes one batch
3. For each item in the batch, the BMU is found and the update of weights of the BMU

and the neighboring neurons is calculated using the learning rate and radius values and
the neighborhood function

4. The weight update is stored in the matrix
5. After all batches are processed, the weight updates are merged with the neuron weights
6. The TE and QE are calculated
7. The epoch number is increased
8. If the epoch number exceeds the number of all epochs or the learning rate drops below

the threshold, the training process ends, otherwise continue with the first step
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2.5.2 Evaluation process
After the training phase is concluded, the SOM is ready for evaluating data. The function
evaluation accepts as parameters:

som (Python dictionary): trained map and configuration settings returned from the train map
function

data (Numpy array): the data items to be evaluated, the testing set
labels (Numpy array): the labels of the data from the testing set

The data items are then evaluated by finding the BMU for each data item and the label
of the data item and BMU is compared. To evaluate the testing set, several metrics are
implemented:

Accuracy computed as:

Number of correctly classified instances
Total number of instances × 100%

Error rate is the complement of the accuracy.
Precision measures the proportion of true positives among all predicted positives, i.e.

True positives
True positives + False positives

Recall or sensitivity is the measure of true positives among all actual positives, i. e.

True positives
True positives + False negatives

F1 score is a combination of precision and recall and it is calculated as:

2 × Precision x Recall
Precision + Recall

. It provides a balanced measure of the classifier’s performance, ranging from 0 to 1,
a higher number indicates higher performance. This metric is useful for imbalanced
datasets where accuracy does not provide reliable information about the results of the
classification.

For the calculation of the metrics above, the confusion matrix is used. The confusion
matrix contains the number of true positives, true negatives, false positives, and false
negatives for each class of the dataset.
To expose the SOM as a Python module, the Pybind11 library is used. Exposed are the
default constructor of the SOM, the training method train map, the evaluation method
evaluate, and the train and evaluate method.
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Chapter 3

Results

3.1 Parameter setting

In this section, the setting of the SOM parameters is described. The SOM parameters are
set differently for different types of usage and different types of data. For these reasons,
it is important to fine-tune the parameters so that the trained network can classify the
malware samples to their respective classes based on their PE headers.

3.1.1 PCA
Before setting the SOM parameters, dimensionality reduction must be applied to the data.
As per [29], “PCA converts a group of correlated variables to a group of uncorrelated
variables”, hence the redundant variables are eliminated by the algorithm.
The PCA algorithm as described by [29] has multiple steps:

1. Standardization of the data:
xi

j =
xi

j − xj

σj
∀j

2. Calculation of the covariance matrix:∑
= 1

m

m∑
i

(xi)(xi)T ,
∑

∈ Rn∗n

3. Calculation of the eigenvector and eigenvalue of the covariance matrix:

uT
∑

=λµ

U =

 | | |
u1 u2 . . . un

| | |

 , ui ∈ Rn

4. Top k eigenvectors of the covariance matrix are chosen:

xi
new =


uT

1 xi

uT
2 xi

:::::
:::::

uT
k xi

 ∈ Rk
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Number of features Quantization Error Topological error Accuracy in percentage
10 4.22 0.62 44.97
15 5.48 0.42 64.72
20 6.57 0.37 70.05
25 7.50 0.31 69.10
30 8.38 0.32 69.49
35 9.39 0.29 67.77
40 10.57 0.29 63.58
50 10.92 0.29 70.25

Table 3.1 PCA selection

Training the map on data items with too many dimensions may lead to longer training
times and inferior performance. The exact number of components to be further used was
selected by testing various options. The results can be seen in table 3.1. The decisive
criteria were QE and overall accuracy. The overall accuracy is simpler to evaluate than
the F1 score and can be used in this case, because the dataset used is balanced. The time
has been omitted here as it took longer for the map to train on data items with more
components.
For the following tests, the value of PCA was chosen as 20, because of the achieved
accuracy and quantization and topological errors.

3.1.2 The selection of parameters

3.1.2.1 Size of the map

The size of the map should reflect the size of the input space. According to [3] one neuron
per 50 input items is enough. Reflecting this, several values of map size were tested based
on the items per neurons ratio. However, the results for a higher ratio showed that the
map is not big enough, resulting in large QE and TE. For this reason, bigger maps were
tested as well. The size of the map variable is the number of nodes on one side of the
square map, thus the overall number of nodes is the size of the map squared.
As can be seen from table 3.2, the best results, the combination of accuracy percentage
and SOM characteristics are with the size of the map set to 100.

3.1.2.2 Number of iterations and learning rate

The number of iterations or epochs defines how many times are the data items presented
to the network. To set this parameter, several tests were performed with a combination
of the number of iterations and learning rate parameters to choose the best option. The
results in the table 3.3 suggest that the combination with the best performance is 100
iterations and 0.01 learning rate.
The QE is a critical metric to select the number of epochs and other parameters, i.e. the
size of the map. One of the objectives of the training is to minimize the QE. From the
evolution of the error can be decided whether there are enough iterations to train the
map. As can be seen from figure 3.1, which visualizes the QE development during 200
epochs, the QE for the learning rate set to 0.1 quickly diverges. Thus the learning rate
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Size of the map Quantization Error Topological error Accuracy in percentage
25 9606.72 0.91 20.0
28 664.12 0.93 20.0
34 141.66 0.94 38.75
40 91.84 0.87 37.70
49 43.57 0.87 53.85
68 19.05 0.75 45.96
70 9.02 0.59 50.19
80 6.16 0.55 46.50
90 4.29 0.48 48.07
100 3.43 0.49 67.80
110 2.91 0.53 43.53
120 2.14 0.51 50.83

Table 3.2 Results of items per neuron setting

Number of iterations Learning rate Quantization Error Topological error Accuracy in percentage
200 0.1 17.08 0.88 32.40
200 0.01 5.37 0.54 68.25
200 0.001 9.84 0.96 40.32
500 0.1 29.47 0.96 21.07
500 0.01 6.93 0.75 67.01
500 0.001 7.28 0.61 64.44
1000 0.1 109.36 0.98 19.18
1000 0.01 6.75 0.84 67.54
1000 0.001 6.34 0.49 69.35

Table 3.3 Number of iterations and learning rate combination test results
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of 0.1 has been omitted while measuring the QE for 500 and 1000 epochs, as it distorted
the figures.
For the lower learning rates, the overall development can be seen in figure 3.2. Training
with a learning rate of 0.01 leads to the lowest QE value after roughly 150 epochs. The
value is then slowly increasing and the accuracy is decreasing. The learning rate of 0.001
takes more epochs to reach its minimum, approximately 600 epochs, and after 800 starts
to slowly increase, the same as for the previous values of the learning rate.

Figure 3.1 Quantization Error for 200 epochs

The TE was evaluated more in detail for the learning rate and the number of iterations
as well as the QE. This is because the topographical error represents how well the map
projects the topology of the original data. For this topology to be preserved, there must be
enough iterations in the first phase of the learning process. However, too many iterations
may lead to overfitting.
For the TE, only the figure for 1000 epochs 3.3 is shown as the development is the same
and it is clearly visible on the 1000 epochs figure, unlike the figures for the QE. The
quick decrease in the TE for the learning rate of 0.1 accounted for the great changes in
the topology caused by the bigger adjustment to the weights. This means that a lower
learning rate is necessary.
The lower learning rate of 0.01 reached the minimum around 60 epochs, which is again
too soon to end the training, as the QE values do not converge to their minimums before
100 epochs. The possible solutions for this issue are either setting the number of iterations
to a point where the TE and QE combined are at their lowest, i.e. 200 epochs, or using
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Figure 3.2 Quantization Error for 1000 epochs

a learning rate of 0.001. As for the latter solution, the TE, as well as QE, reached its
minimum after 600 epochs. However, the TE is significantly higher for the learning rate
of 0.001 after 600 epochs than it is for the learning rate of 0.01 after 60 epochs. The QE
is similar for both values.

3.1.2.3 Neighborhood distance

The initial value of neighborhood distance setting affects the first phase of the learning
process, as it decreases over time to just a single unit in the end. Bigger values of this
parameter mean greater topological changes to the SOM. The important metrics to evalu-
ate when testing the neighborhood distance are the map characteristics, the quantization,
and topological errors. The topological error strongly depends on the initial neighborhood
distance and is measured in detail again.
Best results in terms of accuracy were achieved for the value of 50 and 20, as can be seen
from table 3.4, even though the TE for these values is higher than for the bigger values of
neighborhood distance. Figure 3.4 shows that the development of TE for various values
of neighborhood distance copies the same pattern that can be seen in figure 3.3, and the
values for the neighborhood distance bigger than 10 are similar. However, as was already
discussed, the number of epochs should be at least 200 to sufficiently adjust the map to
the input values.
Additionally, the neighborhood distance should at the first phase allow the algorithm to
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Figure 3.3 Topographical Error for 1000 epochs

make the necessary topological changes, thus it is recommendable to start with such a
value that the area includes at least half of the map. This is achieved with the initial
neighborhood distance of 50 with the size of the map previously set to 100.

3.1.2.4 Weight initialization

The nodes of the untrained map can be initialized in several ways before the training
process. The first option is to give each node a vector of random values from the interval
⟨0, 1⟩ as its initial value. This method is fast, however, an initialization out of the scope
of the training sample values can slow or otherwise disrupt the learning process. The
normalization of data items should partially prevent this.
The second option is to initiate nodes with random values from the interval ⟨−1, 1⟩. This
method is better suited to data items containing negative values. Aside from this, the
disadvantages are the same as the previous method. This method is referred to as Random
negative
The third option is to set the initial values of SOM nodes to random sample values from the
training set. This option ensures that the initial values are within the range of the training
set. Depending on the sample selection, it may be more computationally demanding.
Based on the results of testing 3.5, the method chosen for this purpose is random negative
weight initialization, although the differences in the topological properties between the
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Initial neighborhood Quantization Error Topological error Accuracy in percentage
5 6.97 0.90 64.72
10 5.29 0.79 65.35
20 5.18 0.63 72.25
30 5.35 0.62 53.94
40 5.76 0.59 53.81
50 5.03 0.61 72.79
60 5.94 0.51 69.87
70 6.93 0.51 68.06
80 6.49 0.49 53.80

Table 3.4 Neighborhood distance results

Weight initialization method Quantization Error Topological error Accuracy in percentage
Random positive 5.00 0.57 72.54
Random negative 7.09 0.54 72.95

Sample 7.37 0.55 62.09
Table 3.5 Weight initialization

three methods are small.

3.1.2.5 Distance metric

The tested distance metrics were Euclidean, Manhattan, and Chebyshev, all previously
described.

From table 3.6 can be seen, that the best results in terms of accuracy were achieved for
the Euclidean and Chebyshev distances. For the final testing, the Chebyshev distance
was chosen because of the better topological properties.

3.1.2.6 Learning rate function

As the learning rate function, the following options were tested: Linear, Decay, and
Inverse.

From the table 3.7 can be seen that the best option for the data used is the Inverse
learning rate function.

Distance metric Quantization Error Topological error Accuracy in percentage
Euclidean 5.21 0.47 80.82

Manhattan 20.66 0.47 78.27
Chebyshev 4.09 0.44 80.78

Table 3.6 Distance metric
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Figure 3.4 Neighborhood distance

3.1.2.7 Neighborhood function

The neighborhood function was chosen amongst the Gaussian and Bubble functions.
The Gaussian function is a better choice according to the results from the table 3.8.

3.1.2.8 Radius function

The radius function used to calculate the neighborhood function was chosen amongst the
Decay and Interpolate functions.
Although the Decay function resulted in better topological properties, the overall accuracy
was significantly better with the Interpolate function. However, as the function is a part
of the neighborhood function, the combinations of these functions were tested too.

Learning function Quantization Error Topological error Accuracy in percentage
Linear 7.01 0.82 75.02
Decay 7.43 0.49 80.60
Inverse 4.05 0.55 84.24

Table 3.7 Learning rate function
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Neighborhood function Quantization Error Topological error Accuracy in percentage
Gaussian 5.42 0.45 84.42
Bubble 7.43 0.49 82.11

Table 3.8 Neighborhood function

Radius function Quantization Error Topological error Accuracy in percentage
Decay 6.46 0.45 77.36

Interpolate 7.31 0.49 84.84
Table 3.9 Radius function

From the table 3.10 can be seen that the best results were achieved with the neighborhood
function Bubble and radius function Interpolate. For this reason, these functions were used
for further evaluation.

3.2 Malware classification results

The SOM was trained with the training dataset and with the parameters that resulted
from the testing process. The evaluation was done with the testing dataset. The training
and evaluation were performed multiple times and the best results were taken. The results
can be seen in table 3.11.
Both types of data were evaluated, malware families only and malware families with
benign files. The F1 score shows partial results for each class. The classes in order are:
benign, xtrat, zbot, ramnit, and sality.

3.2.1 Other ML methods
For comparison, other machine ML methods were used to classify the same data. Also,
the same dataset was used to train the models. The methods used were the K-nearest

Neighborhood function Radius function Quantization Error Topological error Accuracy in percentage
Gaussian Decay 2.66 0.83 67.17
Gaussian Interpolate 3.05 0.86 46.32
Bubble Decay 3.16 0.80 52.61
Bubble Interpolate 4.11 0.77 72.02

Table 3.10 Neighborhood and Radius functions

Files Accuracy in percentage F1 score
Malware and benign 57.68 0.54898011, 0.86265761, 0.5622651, 0.45501348, 0.43317316

Malware only 67.18 0.98234297, 0.81148417, 0.49576172, 0.38267194
Table 3.11 Results comparison
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neighbors (KNN) and the Deep Neural Network algorithm, specifically the Multi-layer
Perceptron classifier (MLP).
The KNN rule is a classification algorithm used in statistical pattern recognition, according
to [30]. The classification is based on a majority vote of k sample vectors that are the
closest to the unknown sample. The authors further claim that “the k-NN rule has become
the standard comparison method against which any new classifiers, e.g. neural networks,
are compared” [30].
The MLP algorithm is a feed-forward artificial neural network providing an output vector
for any input vector. “The MLP can be defined as a directed graph with multiple node
layers, where the input layer is on the bottom, the output layer is on the top, and the
others in the middle are the hidden layers.” [31] The network usually contains at least one
hidden layer and is, therefore, able to process nonlinear data, contrary to a single-layer
perceptron.
For both algorithms, the Scikit-learn libraries were used [24], specifically KNeighborsClas-
sifier and MLPClassifier.

ML method Dataset Accuracy in percentage
KNN malware families 84.98
MLP malware families 91.57
KNN malware and benign files 85.02
MLP malware and benign files 91.89

Table 3.12 Results comparison

The results of both methods can be seen in table 3.12. For the KNN, odd values of k from
1 to 9 were tried and the best result among them was chosen. The result in the table is
for the value of k equal to 3 and the default settings of other parameters. For the MLP,
several combinations of sizes of hidden layers were tested. The best result was achieved
for the hidden layers of sizes 200 and 300 and the default settings of other parameters.
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Discussion

In this work, the self-organizing map was trained in order to classify malware samples
from the EMBER datasets. The parameters of the map were chosen based on a series
of tests. For the fine-tuning of the parameters, a training set consisting of the benign
samples and the four malware families, the most common in the training set was used.
The trained SOM was then evaluated on the EMBER testing dataset. Also, with the
same parameters, another SOM was trained on the previous training data without the
benign samples, i.e. with the four malware families only.
The SOM is able to cluster the data items into groups by their PE headers. An example
of the clustering can be seen in figure 4.1. The size of the map shown, as well as the
number of input data items was reduced to improve visibility. In the figure are apparent
clusters with irregularities.
For comparison, the k-Nearest Neighbors algorithm and Deep Neural Network were used
to classifying the same data. The SOM classifier compared worse than the KNN and the
DNN machine learning methods as can be seen from table 3.12. Slightly better results
were obtained by classifying malware and benign files together rather than classifying
individual malware families.
To improve the results of the SOM, other machine learning methods may be applied
to the SOM output, such as KNN or DNN. Those methods could further smooth the
irregularities shown in figure 4.1 in the clusters made by the SOM and achieve higher
performance. A combination of these methods may lead to a higher detection rate than
the KNN or DNN alone may provide, as the SOM preprocess the input of these methods,
significantly reducing the dimensionality.
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Figure 4.1 Trained SOM
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4. MILJKOVIĆ, Dubravko. Brief review of self-organizing maps. In: 2017 40th Interna-
tional Convention on Information and Communication Technology, Electronics and
Microelectronics (MIPRO). 2017, pp. 1061–1066. Available from doi: 10.23919/
MIPRO.2017.7973581.

5. KALTEH, A. M.; HJORTH, P.; BERNDTSSON, R. Review of the self-organizing
map (SOM) approach in water resources: Analysis, modelling and application. En-
vironmental Modelling & Software. 2008, vol. 23, no. 7, pp. 835–845. issn 1364-8152.
Available from doi: 10.1016/j.envsoft.2007.10.001.

6. KOHONEN, Teuvo. Essentials of the self-organizing map. Neural Networks. 2013,
vol. 37, pp. 52–65. issn 0893-6080. Available from doi: 10.1016/j.neunet.2012.
09.018.

7. ERWIN, E.; OBERMAYER, K.; SCHULTEN, K. Self-organizing maps: ordering,
convergence properties and energy functions. Biological Cybernetics. 1992, vol. 67,
no. 1, pp. 47–55. issn 1432-0770. Available from doi: 10.1007/BF00201801.
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readme.txt........................................brief description of the media contents
exe....................................................directory with a compiled module
src

impl...............................................source code of the implementation
thesis................................... source code of the work in the LATEX format

text................................................................... text of the work
thesis.pdf.......................................text of the work in the PDF format
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