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Abstract

This thesis focuses on the problem of multi-target tracking, especially on the
probability hypothesis density (PHD) filter, and on methods of improving its
performance in regions where the sensor is affected by significant misdetections
or high clutter rate. To this end, the information from on-demand external
sensors is employed. We introduce three approaches to include additional in-
formation from single-target trackers – probabilistic data association (PDA)
filters. We provide all required theoretical background for single-target trac-
king, multi-target tracking, and information fusion methods. We evaluate the
performance of proposed approaches and demonstrate that they improve trac-
king results.

Keywords single-target tracking, multi-target tracking, probability hypoth-
esis density filter, probabilistic data association filter, state estimation, random
finite sets, information fusion

Abstrakt

Tato práce se zabývá problematikou sledováńı v́ıce ćıl̊u, předevš́ım probabi-
lity hypothesis density (PHD) filtrem, a metodami, jak zlepšit jeho výkonnost
v oblastech, kde je senzor zat́ıžen významným množstv́ım misdetekćı nebo
vysokou intenzitou clutteru. K tomuto účelu jsou využ́ıvány informace z
on-demand exterńıch senzor̊u. Představujeme tři postupy, jak zahrnout do-
datečné informace z algoritmů pro sledováńı jednoho ćıle – probabilistic data
association (PDA) filtr̊u. Poskytujeme veškeré potřebné teoretické základy
pro metody sledováńı jednoho ćıle, sledováńı v́ıce ćıl̊u a fúze informaćı. Vy-
hodnot́ıme výkonnost navrhovaných postup̊u a ukážeme, že zlepšuj́ı výsledky
sledováńı.

Kĺıčová slova sledováńı jednoho ćıle, sledováńı v́ıce ćıl̊u, probability hy-
pothesis density filtr, probabilistic data association filtr, odhad stav̊u, konečné
náhodné množiny, fúze informaćı
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Introduction

Target tracking is a research field that finds a lot of applications in numer-
ous civilian and military fields such as border patrolling, convey protection,
or aerial and underwater surveillance. It is is a process in which the state of
single or multiple targets is estimated using measurements from sensors. The
measurements are received at regular intervals and the states of the targets
are determined at each time step. The state of a target may consist of, e.g.,
the target position, velocity, acceleration, and potentially other attributes.

An approach which is widely used to describe this problem is Bayesian
filtering. The Bayesian filters are able to predict the current state of a target
based on past measurements. These algorithms perform recursive prediction of
the target state probability distribution by propagation through a state evolu-
tion model and update this distribution when new measurements are received.
The fundamental algorithm for many tracking methods is the Kalman filter,
which was introduced in 1960. In this thesis, the Kalman filter is described in
detail.

A common problem in target tracking is the presence of clutter. Clut-
ter is the unwanted echoes that occur when using electronic systems such as
radars to obtain measurements. The clutter points are difficult to distinguish
from actual measurements originating from targets and can be interpreted as
false target measurements, that make the association among true targets and
their measurements ambiguous. This naturally needs to be addressed by all
target tracking algorithms, be it the basic ones, e.g., the probabilistic data
association-based filters, or the advanced random finite sets-based filters. The
single-target probabilistic data association (PDA) filter is presented in the fol-
lowing.

The multi-target tracking with unknown number of targets is widely rec-
ognized to be extremely difficult. It aims to estimate the number of targets
as well as their states. The number of targets often varies in time due to tar-

1



Introduction 2

gets appearing and disappearing and the whole task is more difficult due to
the presence of clutter. This thesis describes the random finite sets formula-
tion of this problem, especially the probability hypothesis density (PHD) filter.

The aim of this thesis is to improve the performance of the PHD filter
by proposing methods to incorporate information from external sensors. Such
sensors may have smaller field of view, but their resolution could be much bet-
ter. They are able to track single targets only, which is a less computationally
demanding task. We introduce three methods of integrating external informa-
tion to the primary PHD filter and analyze their impact on its performance.



Chapter 1

Target tracking preliminaries

In this chapter, we present the state-space model, which is widely used to
describe the evolution of a target state. We introduce the Kalman filter, which
is one of the most important algorithms for sequential estimation.

1.1 State-space model

State-space model is a mathematical model of a physical system. It is cha-
racterized by state, which is usually marked as xt, and output (also called
measurement or observation), marked as zt. The state contains all informa-
tion of interest to the user about the current state of the system and cannot
be measured directly, but can be estimated. The output can be observed. It is
determined by the state xt and can be used to estimate the state of the system.
In general, both the state xt and the output zt can be uni- or multivariate and
therefore consist of more than one element [1].

The state-space model can be either discrete – described for time steps
t = 1, 2, ..., or continuous – described by derivatives. In the following, we will
consider only the discrete model.

Usually, we describe the model by functions of state, which are known but
stochastic mainly due to statistical noise,

xt = ft(xt−1), (1.1)
zt = gt(xt), (1.2)

where t is the time index. These functions may be time-varying or time-
invariant.

3



State-space model 4

If the system is linear, the equations can be written in a matrix form,

xt = Ftxt−1 + wt, (1.3)
zt = Htxt + ϵt, (1.4)

where wt is the process noise, ϵt is the measurement noise, and Ft and Ht

are matrices of corresponding dimensions. If the system is time-invariant, the
matrices are constant, Ft = F , Ht = H. Apparently, the state equation (1.3)
describes the evolution of the state from time t−1 to t. It is a Markov process
that is not observable. The output zt is then generated by the current state
xt. The state model (1.3)-(1.4) is therefore also known as the hidden Markov
model [2].

Figure 1.1 Hidden Markov model. (Source: www.dlab.berkeley.edu)

The process noise wt and the measurement noise ϵt are both independent
identically distributed and zero-centered. We often assume normality,

wt ∼ N (0, Qt), (1.5)
ϵt ∼ N (0, Rt). (1.6)

The matrix Qt is the process noise covariance and Rt is the measurement noise
covariance. In this work, Qt and Rt are assumed constant in time, Qt = Q,
Rt = R.

1.1.1 Example: constant velocity model
The constant velocity model is one of the most widely used state-space mo-
dels. In its basic version, it describes the location of a target in two-dimensional
space. The key assumption is that the true velocity of the target is known to
be a constant.

The state vector is represented as

xt =


x1,t

x2,t

v1,t

v2,t

 (1.7)
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and we keep track there of the longitude and latitude x1,t, x2,t and the velocities
v1,t, v2,t in these directions. The location is modeled by the previous location at
time t − 1 and the velocities during the period ∆t. The velocities are modeled
as a random walk. The state evolution equations are

x1,t = x1,t−1 + v1,t∆t + wx1,t, (1.8)
x2,t = x2,t−1 + v2,t∆t + wx2,t, (1.9)
v1,t = v1,t−1 + wv1,t, (1.10)
v2,t = v2,t−1 + wv2,t, (1.11)

and can be written in a matrix form as
x1,t

x2,t

v1,t

v2,t


︸ ︷︷ ︸

xt

=


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

F


x1,t−1
x2,t−1
v1,t−1
v2,t−1


︸ ︷︷ ︸

xt−1

+


wx1,t

wx2,t

wv1,t

wv2,t


︸ ︷︷ ︸

wt

, (1.12)

where

wt ∼ N (0, Q), (1.13)

and therefore

xt ∼ N (Fxt−1, Q). (1.14)

A widely used form of the covariance matrix Q is

Q = q2


∆t3

3 0 ∆t2

2 0
0 ∆t3

3 0 ∆t2

2
∆t2

2 0 ∆t 0
0 ∆t2

2 0 ∆t

 , (1.15)

where q is a parameter which can be tuned.

In the same coordinate space, there are noisy measurements modeled as

z1,t = x1,t + ϵz1,t, (1.16)
z2,t = x2,t + ϵz2,t, (1.17)

and their matrix notation is[
z1,t

z2,t

]
︸ ︷︷ ︸

zt

=
[
1 0 0 0
0 1 0 0

]
︸ ︷︷ ︸

H

[
x1,t

x2,t

]
︸ ︷︷ ︸

xt

+
[
ϵz1,t

ϵz2,t

]
︸ ︷︷ ︸

ϵt

, (1.18)
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where

ϵt ∼ N (0, R), (1.19)

and therefore

zt ∼ N (Htxt, R). (1.20)

Another examples of state-space models are the Brownian motion, remo-
ving the velocity components, and the constant acceleration model, adding the
acceleration components [3].

1.2 Kalman filter

The Kalman filter is an algorithm that uses a series of measurements zt ob-
served over time to produce estimates of the state of the system xt. Such
estimates are usually more accurate than those based on a single measurement
alone. The filter was primarily created by Rudolf E. Kálman [4], although
similar algorithms occured eariler.

The filter aims to estimate the hidden states of xt from the measurements
zt. It assumes the linear state-space model described above and the system of
equations

xt = Ftxt−1 + wt, (1.21)
zt = Htxt + ϵt. (1.22)

It meets the following requirements:

the average value of the state estimate is equal to the average value of the
true state (it is not biased);

the state estimate has the smallest possible variation;

as long as the process noise wt and the measurement noise ϵt are Gaussian, the
mean value of both of them is zero, and no correlation exists between them
(they are independent random variables at any time step) [1].

From normality, we can see that

xt ∼ N (Ftxt−1, Q) with the density p(xt|xt−1), (1.23)
zt ∼ N (Htxt, R) with the density f(zt|xt), (1.24)

and the prior distribution for xt is also a normal distribution,

π(xt|z0:t−1) = N (xt−1, Pt−1). (1.25)
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The Kalman filter consists of two steps: prediction and update. The pre-
dict step uses the state estimate from the previous time step to produce the
state estimate at the current time step, the prior state estimate. The up-
date step combines the current measurement information with the prior state
estimate and creates the posterior state estimate. These two steps typically
alternate; if a measurement is unavailable, the update can be skipped and
multiple predictions can be performed.

1.2.1 Prediction
In the prediction step, the model for state development (1.21) is used to cre-
ate a state estimate for the current time step. The estimate is based on the
posterior estimate from the previous step, which becomes the prior estimate
at the current step.

We obtain the posterior distribution by combining the prior distribution
with the evolution model. Using the Chapman-Kolmogorov formula, also
known as the chain rule and marginalization, we see that

π(xt|z0:t−1) =
∫

p(xt|xt−1)π(xt−1|z0:t−1)dxt−1. (1.26)

As the factors on the right-hand side are Gaussian distributions, it can be
shown that the result is again a Gaussian distribution N (xt|t−1, Pt|t−1). The
predicted state estimate xt|t−1 and the predicted estimate covariance Pt|t−1 are
obtained by equations

xt|t−1 = Ftxt−1, (1.27)
Pt|t−1 = FtPt−1F ⊺

t + Q. (1.28)

The predicted state estimate xt|t−1 describes our knowledge about the state xt

based on its past value and its evolution model (1.21). The covariance matrix
Pt|t−1 expresses our uncertainty connected with this knowledge. It is obvious
that Equations (1.27) and (1.28) can be derived directly as a linear transform
of the state variable described by Equation (1.25).

1.2.2 Update
The update step corrects the predicted state estimate by using a measurement
zt. It is a Bayesian update and the Bayes formula is used in the following way

π(xt|z0:t) ∝ f(zt|xt)π(xt|z0:t−1). (1.29)

The updated state estimate xt and the updated estimate covariance Pt are
expressed as follows,

xt = xt|t−1 + Ktz̃t, (1.30)
Pt = (I − KtHt)Pt|t−1, (1.31)
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where z̃t is the innovation and Kt is the Kalman gain,

z̃t = zt − Htxt|t−1, (1.32)
Kt = Pt|t−1H⊺

t S−1
t , (1.33)

and St is the innovation covariance,

St = HtPt|t−1H⊺
t + R. (1.34)

These formulas are valid for the optimal Kalman gain which minimizes the
mean-square error. For greater gain, more emphasis is placed on new mea-
surements. The filter is more sensitive, but the filtration of noise is worse.

1.2.3 Remarks
The standard Kalman filter assumes the state-space model to be linear. But
if any or both of the functions

xt = ft(xt−1), (1.35)
zt = gt(xt), (1.36)

are nonlinear, there are still ways to perform filtering. In case of weak nonline-
arity, the extended Kalman filter (EKF) [5] can be used. The EKF performs
linearization of the functions using derivatives and is not optimal, but usu-
ally works well and is a standard in the GPS navigation. In case of stronger
nonlinearity, the unscented Kalman filter (UKF) [6] can be used. The UKF
uses sigma points to estimate the state. Antoher option is to use Monte Carlo
methods, e.g., the particle filter [7].



Chapter 2

Single-target tracking

In single-target tracking, we only focus on one target of interest and we use
sensor data to estimate its state. In the previous chapter, we described the
Kalman filter which is capable of tracking one target. However, a frequent
problem in target tracking is cluttered environment and the resulting uncer-
tainity about the target-measurement association.

The uncertainty, which measurement was produced by the tracked object
(target) and which are false alarms (clutter), has attracted considerable focus
in the engineering community in the past five decades, giving rise to a multi-
tude of algorithms. Generally, two branches can be distinguished. First, the
association-based, explicitly enumerating possible target-measurement associ-
ations. The nearest neighbor [8], multiple hypothesis tracking (MHT) filter [9],
and the probabilistic data association (PDA) filter [10] belong to this branch.
The second branch is based on random finite set (RFS) setting of the problem.
The probability hypothesis density (PHD) filter [11], multi-Bernoulli mixture
(MBM) filter [12], and Poisson multi-Bernoulli mixture (PMBM) filter [13]
belong to the second branch.

In this chapter, we describe clutter and its mathematical models. We
focus on the PDA filter and its ability to perform target tracking in cluttered
environment.

2.1 Clutter

The term ”clutter” (or false alarms, false measurements) refers to all unwanted
returns in electronic systems, for instance, radars. Similarly, unwanted return
occurs in tracking of objects in video, or lidar-based surveillance. Its nature
varies with application and radar parameters; what we consider clutter in one
case may be a desired target in another. Clutter is usually returned from land,

9
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sea, rain, or atmospheric turbulences. In radar systems, it can cause serious
performance issues, because it could be confused with targets.

Clutter may have many varieties and many models or models with nu-
merous parameters are needed to represent them. One of the most common
models for clutter is a set of independent and identically distributed random
variables with uniform spatial distribution. The probability density funciton
of such clutter over the observation volume V is

p0(z) = p(z|z is a false measurement) = 1
V

. (2.1)

The number of clutter points obeys a Poisson distribution,

PFA(n) = e−λV (λV )n

n! , (2.2)

where λ is the spatial density of the false alarms (number of false alarms per
unit volume) [14].

Figure 2.1 Example of radar clutter. (Source: www.radartutorial.eu)

Figure 2.2 Clutter in simulation for λ = 0.0001, λ = 0.0005, and λ = 0.001.
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2.2 PDA filter

The PDA filter is based on Kalman filter, or extended Kalman filter in case of
nonlinear state or measurement equations (we leave this filter behind the scope
of this thesis). At each time step, it calculates the association probabilities to
the tracked target for each validated measurement. This process usually takes
place when the measurements have origin uncertainty due to false alarms,
clutter, or interfering targets. This section is mostly inspired by [10] and [15].

2.2.1 Assumptions
There are some assumptions which make it possible to create a state-estimation
scheme that is almost as simple as the Kalman filter, but more effective in
clutter.
1. Only one target of interest is present and its state x evolves in time by the

equation

xt = Ftxt−1 + wt, wt ∼ N (0, Q), (2.3)

and the true, target-originated measurement is given by

zt = Htxt + ϵt, ϵt ∼ N (0, R), (2.4)

where Q is the process noise covariance matrix and R is the measurement
noise covariance matrix.

2. The track of the target has been initialized.

3. The target’s past information through time t − 1 is approximately summa-
rized by the prior probability density function

p(xt−1|Z0:t−1) = N (xt−1; x̂t−1, Pt−1), (2.5)

where x̂t−1 is the state estimate and Z0:t−1 is the set of all past measure-
ments.

4. At each time step, a measurement validation region is used for the selection
of candidate measurements. The region is set up around the predicted
measurements and the selected candidates are associated to the target of
interest.

5. At most one of the validated measurements can be target originated.

6. The remaining measurements originate from false alarms or clutter. The
clutter is modeled as a set of independent and identically distributed ran-
dom variables with uniform spatial distribution; the number of clutter
points obeys a Poisson distribution or a diffuse prior.

7. The target detections occur independently over time. The detection pro-
bability PD is known.
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2.2.2 Algorithm
A cycle of the PDA filter is similar to Kalman filter, but contains these addi-
tional features for update step:

1. Candidate measurements are selected using the measurement validation
region.

2. An association probability is computed for each measurement. This pro-
bability is used as the weighting of this measurement in the combined
innovation.

3. The final updated state covariance takes into account the measurement
origin uncertainty.

2.2.3 Prediction
As in the standard Kalman filter, the state vector x̂ and the covariance matrix
P are predicted in time from t − 1 to t,

x̂t|t−1 = Ftx̂t−1, (2.6)
Pt|t−1 = FtPt−1F ⊺

t + Q. (2.7)

Also the predicted measurement ẑt|t−1 and the innovation covariance matrix
St are computed,

ẑt|t−1 = Htx̂t|t−1, (2.8)
St = HtPt|t−1H⊺

t + R. (2.9)

The matrix St describes the spread of the distribution, where the measurement
is expected to occur, based on the uncertain knowledge about the state and
the measurement noise properties.

2.2.4 Measurement validation
The validation region is the ellipsoidal gating region given by

{z : (z − ẑt|t−1)⊺S−1
t (z − ẑt|t−1) ≤ γ}, γ > 0, (2.10)

where the gate threshold γ corresponds to the gate probability PG. The pro-
bability PG is the probability that the gate contains the true measurement
if detected. Only the measurements lying inside the gate are taken for the
update step.
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Figure 2.3 Example of validation region around a predicted measurement [15].

2.2.5 Data association
The association probability of the parametric PDA with the Poisson clutter
model with spatial density λ for zi being the correct measurement is given by

βi,t =


Li,t

1−PDPG+
∑mt

j=1 Lj,t
i = 1, ..., mt,

1−PDPG

1−PDPG+
∑mt

j=1 Lj,t
i = 0,

(2.11)

where i = 0 means that not a single measurement has been originated from
the target, PD is the target detection probability, PG is the gate probability,
and mt is the number of measurements in the validation region. The likelihood
ratio of the ith measurement originating from the target rather than from the
clutter Li,t is given by

Li,t =
N (zi,t; ẑt|t−1, St)PD

λ
. (2.12)

2.2.6 Update
The update state equation of the PDA filter is

x̂t = x̂t|t−1 + Ktνt, (2.13)
where Kt is the gain, same as in the standard Kalman filter, and νt is the
combined innovation,

νt =
mt∑
i=1

βi,tνi,t. (2.14)

The covariance of the updated state is given by
Pt = β0,tPt|t−1 + (1 − β0,t)P C

t + P̃t, (2.15)

where P C
t is the covariance of the state updated with the correct measurement

and P̃t is the spread of the innovation term,
P C

t = Pt|t−1 + KtStK
⊺
t , (2.16)

P̃t = Kt

(
mt∑
i=1

βi,tνi,tν
⊺
i,t − νtν

⊺
t

)
K⊺

t . (2.17)
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With probability β0,t, there is no correct measurement for updating, so there is
no update of the state estimate and the covariance from prediction step Pt|t−1 is
used with weighting β0,t. With probability 1−β0,t, there is an available correct
measurement and the updated covariance P C

t is used with weighting 1 − β0,t.
The term P̃t increases the covariance of the updated state, since we do not
know which measurement is correct. It can be written as a merge of multiple
posterior distributions which are generated from the predicted distribution by
each measurement in the validation region and weighted by probabilities βi,t.



Chapter 3

Multi-target tracking

In the previous chapter, we discussed target tracking in an environment where
only one target of interest is present. In this chapter, we discuss tracking of
multiple targets. In a multiple-target environment, we use sensor data to esti-
mate not only the states of the targets, but also the number of targets which
varies in time due to targets appearing and disappearing. Moreover, the ob-
servations usually contain clutter, which cannot be simply distinguished from
target-originated measurements.

The main problem in multi-target tracking is to decide which measure-
ments originate from which targets or whether they are false alarms. Due
to its combinational nature, the data association problem creates the most of
the computational load of multi-target tracking algorithms. Many traditional
approaches are based on explicit target-measurement associations, such as the
joint probabilistic data association (JPDA) filter [10] and the joint integrated
probabilistic data assocaition (JIPDA) filter [16]. Alternative formulations of
the problem avoid explicit associations. In this chapter, we discuss the random
finite sets (RFS) approach, especially the PHD filter. This chapter is mainly
inspired by [17] and [18].

3.1 Derivation of PHD filter

In this section, we present a formulation of multi-target filtering in the random
finite set approach. We derive all the important concepts of the PHD filter.

3.1.1 Multiple target scenario
Let Mt be the number of targets at time t. At time t − 1, the target states
are x1,t−1, ..., xMt−1,t−1 ∈ X , where X is the set of all states. At the next time
step, there are three possibilities of what may happen to a target:

15
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1. The target may survive and evolve to its new state. We model this situation
using a probability pS,t(xt−1), which is the probability of the target survival.
The probability density of a transition to state xt at time t is ft|t−1(xt|xt−1).

2. The target may die. This happens with probability 1 − pS,t(xt−1).

3. A new target may appear. This can be either by a spontaneous birth
(independent of any existing target) or by spawning from another target.
Modeling of target birth may vary in different applications of the PHD
filter, but in case of this thesis, we consider that a target can only appear
in a location which we know in advance.

The result of this process is Mt new targets with states x1,t, ..., xMt,t ∈ X . In
the RFS multi-target model formulation, their order has no significance.

At time t, Nt measurements z1,t, ..., zNt,t ∈ Z, where Z stands for the set of
all measurements, are returned by the sensor. In general, only some of these
measurements are target-originated and cannot be distinguished from false
alarms. Even if all measurements are target-originated and all targets were
detected by the sensor, we still have no information about which measurement
comes from which target. Due to the measurements’ origin uncertainty, the
order in which they appear is not important. The aim od multi-target tracking
is to jointly estimate the number of targets and the states of these targets from
such observations.

Since there is no significant ordering of target states and measurements,
they can be represented as finite sets,

Xt = {x1,t, ..., xMt,t} ∈ F(X ), (3.1)
Zt = {z1,t, ..., zNt,t} ∈ F(Z), (3.2)

where F(X ) and F(Z) are the respective collections of all finite subsets of X
and Z.

3.1.2 Random finite set formulation
In the random finite set formulation, the target set Xt and the measurement
set Zt are treated as a multi-target state and a multi-target observation. The
multi-target tracking problem can then be stated as a filtering problem with
multi-target state space F(X ) and observation space F(Z). The uncertainty
in multi-target system is expressed by modeling Xt and Zt as random finite
sets.

A random finite set is a random variable that takes values as unordered
sets with a finite number of elements. The number of elements is random as
well as the elements themselves. It can be described by a discrete distribution
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which characterizes the cardinality (number of elements) and a family of joint
distributions which specifies the distribution of the elements depending on the
cardinality [19].

In the RFS model for the time evolution of the multi-target state, the Xt

is created by merging three RFSs: the set of surviving targets from previous
time step, the set of spawn targets, and the set of newborn targets.

The set of surviving targets is formed by computing a RFS St|t−1(xt−1) for
each xt−1 ∈ Xt−1 at time t − 1. This RFS can be either {xt} if the target
survives, or ∅ if the target dies. The computation of the set of spawn targets
Bt|t−1(xt−1) is analogous. The set of newborn targets Γt is created by adding
a target to all birthplaces.

The multi-target state Xt is then given by

Xt =

 ⋃
ζ∈Xt−1

St|t−1(ζ)

 ∪

 ⋃
ζ∈Xt−1

Bt|t−1(ζ)

 ∪ Γt. (3.3)

It is assumed that the RFSs from (3.3) are independent of each other.

The RFS model of measurements is similar. It takes into account detection
uncertainity and clutter. A target xt ∈ Xt is either detected with probability
pD,t(xt), or misdetedted with probability 1 − pD,t(xt). The probability density
of receiving an observation zt from state xt is gt(zt|xt). For each state xt, the
RFS Θt(xt) is computed. This RFS can be either {zt} if the target is detected,
or ∅ if the target is misdetected. In addition to the target-originated measure-
ments, the sensor may also receive a set of clutter Kt.

Given the multi-target state Xt, the multi-target measurement Zt can be
written as

Zt = Kt ∪

 ⋃
x∈Xt

Θt(x)

 . (3.4)

The RFSs from (3.4) are also assumed to be independent of each other.
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3.1.3 Multi-target Bayes filter
The optimal multi-target Bayes filter propagates the multi-target posterior
density pt(.|Z1:t) in time via the recursion

pt|t−1(Xt|Z1:t−1) =
∫

ft|t−1(Xt|X)pt−1(X|Z1:t−1)µs(dX), (prediction)

(3.5)

pt(Xt|Z1:t) =
gt(Zt|Xt)pt|t−1(Xt|Z1:t−1)∫

gt(Zt|X)pt|t−1(X|Z1:t−1)µs(dX) , (update) (3.6)

where ft|t−1(.|.) is the multi-target transition density, gt(.|.) is the multi-target
likelihood, and µs is an appropriate reference measure on F(X ).

3.2 PHD filter

Due to the computational complexity of recursion (3.5) and (3.6), which in-
volves multiple integrals on the space F(X ), an approximation of the optimal
multi-target Bayes filter is needed. The PHD filter provides a sub-optimal
strategy and propagates the posterior intensity, a first-order statistical mo-
ment of the posterior multi-target state, in time instead of the full multi-target
posterior density.

3.2.1 Intensity
For a RFS X on X with probability distribution P , the intensity (also known
as the probability hypothesis density) is a nonnegative function v on X such
that for each region S ⊆ X∫

|X ∩ S|P (dX) =
∫

S
v(x)dx, (3.7)

where |.| stands for the cardinality of the set. This means that when v is
integrated over any region S, it gives the expected number of targets from X
that are in S. The estimates for elements of X can be created using the local
maxima of v, which are points in X where the local concentration of expected
number of elements is the highest. One of the possible approaches to estimate
the number of targets N̂ in X is to choose the intensity peaks that exceed a
predetermined threshold.

An important class of RFSs are the Poisson RFSs which can be completely
described by their intensities. A RFS X is Poisson if its cardinality distribu-
tion is Poisson with mean N̂ and for any finite cardinality, its elements are
independently identically distributed. Because the intensities of Poisson RFSs
fully characterize them, they can be used as prior and posterior distributions.
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3.2.2 PHD recursion
For the PHD filter, the following assumptions are made:

1. Each target evolves and generates observations independently of one an-
other.

2. Clutter is Poisson and independent of target-originated measurements.

3. The predicted multi-target RFS is Poisson.

Under these assumptions, the PHD recursion, using the prediction and update
step, is defined as

vt|t−1(x) =
∫

pS,t(ζ)ft|t−1(x|ζ)vt−1(ζ)dζ +
∫

βt|t−1(x|ζ)vt−1(ζ)dζ + γt(x),

(3.8)

vt(x) = (1 − pD,t(x))vt|t−1(x) +
∑

z∈Zt

pD,t(x)gt(z|x)vt|t−1(x)
κt(z) +

∫
pD,t(ξ)gt(z|ξ)vt|t−1(ξ) ,

(3.9)

where vt and vt|t−1 are the respective intensities associated with the multi-
target posterior density pt and predicted density pt|t−1, and

γt(.) is the intensity of the birth RFS Γt;

βt|t−1(.|ζ) is the intensity of the RFS Bt|t−1(ζ) spawned by a target with
previous state ζ;

pS,t(ζ) is the probability of survival of a target with previous state ζ;

pD,t(x) is the probability of detection of a target with state x;

κt(.) is the intensity of the clutter RFS Kt.

From (3.8) and (3.9) can be seen that the PHD filter avoids the combinato-
rial computations which result from the unknown association of measurements
with corresponding targets. The PHD recursion is also less computationally
intensive than (3.5) and (3.6) since it operates on the single-target state space
X instead of F(X ). In general, the PHD recursion unfortunately does not
have closed-form solutions, and numerical integration suffers from the ”curse
of dimensionality”.

3.3 GM-PHD

For a certain class of multi-target models, the closed-form solution of the PHD
recursion can be found. These models are the linear Gaussian multi-target
models. For these models, an efficient multi-target tracking algorithm can be
developed.
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3.3.1 Linear Gaussian multi-target model
In addition to the PHD recursion assumptions in Section 3.2.2, the linear
Gaussian multi-target model requires the following three assumptions on the
birth, death, detection, and evolution of targets:

1. Each target follows a linear Gaussian dynamical model and the sensor has
a linear Gaussian measurement model,

ft|t−1(x|ζ) = N (x; Ft−1ζ, Qt−1), (3.10)
gt(z|x) = N (z; Htx, Rt), (3.11)

where N (.; m, P ) is a Gaussian density with mean m and covariance P ,
Ft−1 is the state transition matrix, Ht is the observation matrix, and Qt−1
and Rt are the process noise and measurement noise covariances.

2. The probabilities of survival and detection are state independent,

pS,t(x) = pS,t, (3.12)
pD,t(x) = pD,t. (3.13)

3. The intensities of the birth and spawn RFSs are modeled as Gaussian
mixtures of the form

γt(x) =
Jγ,t∑
i=1

w
(i)
γ,tN (x; m

(i)
γ,t, P

(i)
γ,t), (3.14)

βt|t−1(x|ζ) =
Jβ,t∑
i=1

w
(i)
β,tN (x; F

(i)
β,t−1ζ + d

(i)
β,t−1, Q

(i)
β,t−1), (3.15)

where Jγ,t, w
(i)
γ,t, m

(i)
γ,t, P

(i)
γ,t , i = 1, ..., Jγ,t are model parameters which

determine the shape of the birth intensity, and similarly Jβ,t, w
(i)
β,t, F

(i)
β,t−1,

d
(i)
β,t−1, Q

(i)
β,t−1, i = 1, ..., Jγ,t determine the shape of the spawning intensity

of a target with previous state ζ.

3.3.2 Prediction
Suppose that we have a posterior intensity vt−1 from previous time step t − 1.
This posterior intensity is a Gaussian mixture,

vt−1(x) =
Jt−1∑
i=1

w
(i)
t−1N (x; m

(i)
t−1, P

(i)
t−1). (3.16)

The predicted intensity at time t is then also a Gaussian mixture and is given
by

vt|t−1(x) = vS,t|t−1(x) + vβ,t|t−1(x) + γt(x), (3.17)
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where the birth intensity γt is described in (3.14). The intensity vS,t|t−1 is the
intensity of the surviving targets and is given by

vS,t|t−1(x) = pS,t

Jt−1∑
j=1

w
(j)
t−1N (x; m

(j)
S,t|t−1, P

(j)
S,t|t−1), (3.18)

where

m
(j)
S,t|t−1 = Ft−1m

(j)
t−1, (3.19)

P
(j)
S,t|t−1 = Qt−1 + Ft−1P

(j)
t−1F ⊺

t−1. (3.20)

The intensity vβ,t|t−1 is the spawn intensity and is computed as

vβ,t|t−1(x) =
Jt−1∑
j=1

Jβ,t∑
l=1

w
(j)
t−1w

(l)
β,tN (x; m

(j,l)
β,t|t−1, P

(j,l)
β,t|t−1), (3.21)

where

m
(j,l)
β,t|t−1 = F

(l)
β,t−1m

(j)
t−1 + d

(l)
β,t−1, (3.22)

P
(j,l)
β,t|t−1 = Q

(l)
β,t−1 + F

(l)
β,t−1P

(j)
β,t−1(F (l)

β,t−1)
⊺
. (3.23)

The mean of the predicted number of targets is

N̂t|t−1 = N̂t−1

pS,t +
Jβ,t∑
j=1

w
(j)
β,t

+
Jγ,t∑
j=1

w
(j)
γ,t . (3.24)

3.3.3 Update
From the prediction step, we have the predicted intensity vt|t−1. The posterior
intensity vt at time t is a Gaussian mixture given by

vt(x) = (1 − pD,t)vt|t−1(x) +
∑

z∈Zt

vD,t(x; z). (3.25)

The equation consists of a misdetection term (1 − pD,t)vt|t−1(x) and |Zt| de-
tection terms vD,t(x; z). The intensity vD,t is the intensity of one detected
measurement z ∈ Zt and is computed as

vD,t(x; z) =
Jt|t−1∑
j=1

w
(j)
t (z)N (x; m

(j)
t|t (z), P

(j)
t|t ), (3.26)
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where

w
(j)
t (z) =

pD,tw
(j)
t|t−1q

(j)
t (z)

κt(z) + pD,t
∑Jt|t−1

l=1 wt|t−1(l)q(l)
t (z)

, (3.27)

m
(j)
t|t (z) = m

(j)
t|t−1 + K

(j)
t (z − Htm

(j)
t|t−1), (3.28)

P
(j)
t|t = (I − K

(j)
t Ht)P (j)

t|t−1, (3.29)

K
(j)
t = P

(j)
t|t−1H⊺

t (HtP
(j)
t|t−1H⊺

t + Rt)
−1

. (3.30)

The mean of the updated number of targets is

N̂t = N̂t|t−1(1 − pD,t) +
∑

z∈Zt

Jt|t−1∑
j=1

w
(j)
t (z). (3.31)

It is worth noting that the recursions for means and covariances of vS,t|t−1
and vβ,t|t−1 are Kalman predictions as well as the recursions for means and
covariances of vD,t are Kalman updates.

3.3.4 Pruning
The number of Gaussian components in the posterior intensities, as well as the
computation time, increases quickly and some pruning procedure is therefore
needed. The number of Gaussian components can be reduced by discarding
those components with weights lower than some predetermined threshold, or
by keeping only a certain number of components with highest weights. Some
of the Gaussian components are also close together enough to be merged into
a single component.

3.3.5 State estimation
After computing the posterior intensity vt, the multi-target state estimates
have to be extracted. In the Gaussian mixture representation, the extraction
is straightforward, since the means of the Gaussian components are the local
maxima of vt. One idea is to select the N̂t highest peaks of vt, but this
may result in state estimates corresponding to Gaussian components with low
weights, because the height of each peak depends on both the weight and
covariance. A better alternative is to select the components that have weights
higher than some predetermined threshold.
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Algorithm 1 Pseudocode for the prediction step of the GM-PHD filter

given
{

w
(i)
t−1, m

(i)
t−1, P

(i)
t−1

}Jt−1

i=1
.

step 1. (prediction for newborn targets)
i = 0.
for j = 1, ..., Jγ,t:

i := i + 1.
w

(i)
t|t−1 = w

(j)
γ,t .

m
(i)
t|t−1 = m

(j)
γ,t.

P
(i)
t|t−1 = P

(j)
γ,t .

end
step 2. (prediction for spawned targets)

for j = 1, ..., Jβ,t:
for l = 1, ..., Jt−1:

i := i + 1.
w

(i)
t|t−1 = w

(l)
t−1w

(j)
β,t.

m
(i)
t|t−1 = d

(j)
β,t−1 + F

(j)
β,t−1m

(l)
t−1.

P
(i)
t|t−1 = Q

(j)
β,t−1 + F

(j)
β,t−1P

(l)
t−1(F (j)

β,t−1)
⊺
.

end
end

step 3. (prediction for existing targets)
for j = 1, ..., Jt−1:

i := i + 1.
w

(i)
t|t−1 = pS,tw

(j)
t−1.

m
(i)
t|t−1 = Ft−1m

(j)
t−1.

P
(i)
t|t−1 = Qt−1 + Ft−1P

(j)
t−1F ⊺

t−1.
end
Jt|t−1 = i.

output
{

w
(i)
t|t−1, m

(i)
t|t−1, P

(i)
t|t−1

}Jt|t−1

i=1
.
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Algorithm 2 Pseudocode for the update step of the GM-PHD filter

given
{

w
(i)
t|t−1, m

(i)
t|t−1, P

(i)
t|t−1

}Jt|t−1

i=1
, and the measurement set Zt.

step 1. (construction of PHD update components)
for j = 1, ..., Jt|t−1:

η
(j)
t|t−1 = Htm

(j)
t|t−1.

S
(j)
t = Rt + HtP

(j)
t|t−1H⊺

t .

K
(j)
t = P

(j)
t|t−1H⊺

t (S(j)
t )

−1
.

Pt|t = (I − K
(j)
t Ht)P (j)

t|t−1.
end

step 2. (update)
for j = 1, ..., Jt|t−1:

w
(j)
t = (1 − pD,t)w(j)

t|t−1.
mt(j) = m

(j)
t|t−1.

P
(j)
t = P

(j)
t|t−1.

end
l := 0.
for each z ∈ Zt:

l := l + 1.
for j = 1, ..., Jt|t−1:

w
(lJt|t−1+j)
t = pD,tw

(j)
t|t−1N (z; η

(j)
t|t−1, S

(j)
t ).

m
(lJt|t−1+j)
t = m

(j)
t|t−1 + K

(j)
t (z − η

(j)
t|t−1).

P
(lJt|t−1+j)
t = P

(j)
t|t .

end
for j = 1, ..., Jt|t−1:

w
(lJt|t−1+j)
t := w

(lJt|t−1+j)
t

κt(z)+
∑Jt|t−1

i=1 w
(lJt|t−1+i)
t

.

end
end
Jt = lJt|t−1 + Jt|t−1.

output
{

w
(i)
t , m

(i)
t , P

(i)
t

}Jt

i=1
.
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Algorithm 3 Pruning for the GM-PHD filter

given
{

w
(i)
t , m

(i)
t , P

(i)
t

}Jt

i=1
, a truncation threshold T , a merging threshold U ,

and a maximum allowable number of Gaussian terms Jmax.

l := 0.
I = {i = 1, ..., Jt | w

(i)
t > T}.

repeat
l := l + 1.
j := arg max

i∈I
w

(i)
t .

L :=
{

i ∈ I | (m(i)
t − m

(j)
t )

⊺
(P (i)

t )
−1

(m(i)
t − m

(j)
t ) ≤ U

}
.

w̃
(l)
t = ∑

i∈L
w

(i)
t .

m̃
(l)
t = 1

w̃
(l)
t

∑
i∈L

w
(i)
t m

(i)
t .

P̃
(l)
t = 1

w̃
(l)
t

∑
i∈L

w
(i)
t (P (i)

t + (m̃(l)
t − m

(i)
t )(m̃(l)

t − m
(i)
t )

⊺
).

I := I \ L.
until I = ∅.
if l > Jmax then replace

{
w̃

(i)
t , m̃

(i)
t , P̃

(i)
t

}l

i=1
by those of the Jmax Gaussians

with largest weights.

output
{

w̃
(i)
t , m̃

(i)
t , P̃

(i)
t

}l

i=1
as pruned Gaussian components.

Algorithm 4 Multi-target state extraction for GM-PHD filter

given
{

w
(i)
t , m

(i)
t , P

(i)
t

}Jt

i=1
.

X̂t := ∅.
for i = 1, ..., Jt:

if w
(i)
t > 0.5,
for j = 1, ..., round(w(i)

t ):
X̂t :=

[
X̂t, m

(i)
t

]
.

end
end

end
output X̂t as the multi-target state estimate.



Chapter 4

Information fusion

In general, information fusion is a term that describes the combination of data
from multiple sources to produce more consistent and useful information and
reduce redundancy and uncertainty. It has many subsets such as data fusion
or image fusion. In this chapter, we discuss another subset called sensor fusion.

In many civilian and military fields, a large number of various sensors is
widely used. Processing the information collected by them separately and in
isolation would discard all the internal connection between the information of
each sensor and may eventually lead to the loss of key information. The current
research therefore focuses on the advantages of various sensors, on sensor net-
works, and on methods of combining information collected by multiple sensors.

A sensor network consists of a number of spatially distributed and inter-
connected sensor nodes. These nodes are able to process information and
communicate with each other [20]. An important application of sensor net-
works is collaborative target tracking, which is the subject of this thesis.

The multi-sensor fusion makes full use of the information collected by each
sensor, analyzes this information to obtain a consistent and more accurate de-
scription of the measured object, and creates the corresponding decision and
estimation. The aim of multi-sensor fusion is to improve the performance of
the total sensor system and eliminate the limitations of individual sensors [21].

The multi-sensor fusion can be centralized or distributed. Centralized fu-
sion is optimal and easier to implement, but may bring significant communi-
cation overhead and has a single point of failure which makes it vulnerable.
Distributed fusion is more robust to failure and more flexible and scalable, but
unless the network is synchronous and tree-connected, it is difficult to perform
the fusion in a consistent manner [22].
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This thesis focuses on the use of on-demand external sensors to improve
the performance of a multi-target tracking algorithm. These external sensors
provide data to PDA filters, which can only track one individual target. There-
fore, we need to combine only the state estimates of a single target. In this
chapter, we introduce the methods of state estimate fusion.

4.1 Normal mixture model

In many areas of applied statistics, data for which two or more normal distribu-
tions are mixed appear frequently. A state estimate of a target in a multi-sensor
system can be also seen as a mixture of several normal distributions given by
individual sensors.

4.1.1 Finite mixture model
At first, let us look at the finite mixture model for univariate random variable
Y . It is assumed that the distribution of Y is a mixture of K univariate normal
distributions. The density of this distribution is given by

p(y|ϑ) = ω1fN (y; µ1, σ2
1) + ... + ωKfN (y; µK , σ2

K), (4.1)

where fN (y; µk, σ2
k) is the density of a univariate normal distribution. The

model parameters are ϑ = (θ1, ..., θK , ω1, ..., ωK), where θk = (µk, σ2
k) and

ω1, ..., ωK are weights of each normal distributions. The weights satisfy

0 < ωk < 1 (4.2)

and
K∑

k=1
ωk = 1, (4.3)

but are arbitrary otherwise.

The model for a mixture of multivariate normal distributions is similar.
The distribution of a multivariate random variable Y is assumed to be a mix-
ture of K multivariate normal distributions and its density can be described
as

p(y|ϑ) = ω1fN (y; µ1, Σ1) + ... + ωKfN (y; µK , ΣK), (4.4)

where fN (y; µk, Σk) is the density of a multivariate normal distribution with
mean µk and covariance Σk [23].
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4.1.2 Mean and covariance of a multivariate mix-
ture

For a multivariate mixture, the overall center of the distribution of Y is defined
by the expected value

E(Y |ϑ) =
K∑

k=1
ωkµk. (4.5)

The covariance matrix of Y is then given by

Var(Y |ϑ) =
K∑

k=1
ωkΣk +

K∑
k=1

ωk(µk − E(Y |ϑ))(µk − E(Y |ϑ)⊺. (4.6)

The total covariance Var(Y |ϑ) takes into account two sources of variability.
These sources are the within-group heterogeneity and the between-group he-
terogeneity [23].

4.2 Mixture reduction

The normal mixture can be reduced to a single Gaussian. This corresponds
to the fusion of multiple state estimates from different sensors into one state
estimate. In this section, two methods are described: the moment matching
method and the covariance intersection method.

4.2.1 Moment matching
In the moment matching method, the mixture is replaced by a single Gaussian
with mean and covariance given by Equations (4.5) and (4.6). In case of target
tracking, it means that the state estimate x̂t at time t is given by

x̂t =
N∑

i=1
ωix̂i,t (4.7)

and the covariance matrix Pt is computed as

Pt =
N∑

i=1
ωiPi,t +

N∑
i=1

ωi(x̂i,t − x̂t)(x̂i,t − x̂t)⊺, (4.8)

where N is the number of sensors which have observed the given target and
ω1, ..., ωN are the weights of each sensors, 0 < ωi < 1 and ∑N

i=1 ωi = 1.
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4.2.2 Covariance intersection
Covariance intersection (CI) [24] is a popular algorithm of data fusion which
fuses the local estimates of individual sensors for arbitrary cross-correlations.
The unknown cross-correlations of the local estimates are often problematic
and ignoring these correlations may lead to overconfident covariance matrices
of fused estimates. The CI algorithm can be easily employed as a part of a
sequential estimation scheme.

Let us consider a sensor network of N sensors. At each time step t, each
sensor i computes a local estimate x̂i,t of an unknown state vector xt and a
corresponding covariance matrix Pi,t. The local estimates x̂i,t are assumed
unbiased and can be correlated with unknown cross-correlations.

The aim of the CI algorithm is to fuse the local estimates x̂i,t and their
local covariances Pi,t into a global estimate x̂t and its global covariance Pt. At
first, Pt is calculated as

Pt =
(

N∑
i=1

ωiP
−1
i,t

)−1

(4.9)

and x̂t is then given by

x̂t = Pt

N∑
i=1

ωiP
−1
i,t x̂i,t. (4.10)

The weights satisfy 0 < ωi < 1 and ∑N
i=1 ωi = 1, but are arbitrary otherwise

[24]. There are more ways to choose them.

The simplest way to determine weights for the CI algorithm is to assign
equal weights to all sensors. This method is sufficient for practical use. How-
ever, the optimal weights can be found by minimizing the performance index
tr {Pt} such that

min tr {Pt} = min tr


(

N∑
i=1

ωiP
−1
i,t

)−1 , (4.11)

where the weights satisfy the constraints described above and tr{.} denotes
the trace of a matrix. It is a nonlinear optimization problem and the resulting
weights are different at every time step. If the number of sensors N is larger,
optimizing the weights is complex and more computationally demanding [25].

Another option is to minimize the determinant of the fused covariance or
to use the Metropolis weights, which are simple to compute, well-suited for
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distributed implementation, and take into account the network topology [26].

The advantage of the CI algorithm is that the computation of cross co-
variances is completely avoided. The method also creates a consistent fused
estimate, and a non-divergent filter is therefore obtained. The accuracy of the
fused estimate outperforms each local one [25].



Chapter 5

Experiments

In this chapter, we describe the methods of sensor fusion and their impact on
the performance of a multi-target tracking algorithm, in this case, a GM-PHD
filter. We present three methods: the temporary birthplaces approach, the
moment matching approach, and the covariance intersection approach. We
introduce several test scenarios, measure the estimation performance of these
methods, and compare it to the estimation performance of a plain GM-PHD
filter.

5.1 Sensor fusion methods

In the following experiments, we assume this situation: A primary sensor with
a large field of view performs a surveillance task, namely detection and trac-
king of moving targets. For this purpose, it employs the Gaussian mixture
probability density (GM-PHD) filter. Quite naturally, the price paid for the
large field of view is the sensor’s sensitivity to clutter, lower spatial resolution
etc.

In order to resolve these issues, a deployment of secondary sensors in prob-
lematic areas is supposed. These sensors could be much cheaper, which im-
mediately imposes some advantages and disadvantages. First, they could be
much smaller in size, which would allow their easier deployment. Also, due
to their smaller field of view, it could be expected that their resolution could
be much better, and the intensity of clutter could be much lower than in the
case of the primary sensor. They may have, e.g., smaller measurement covari-
ance R. However, the expected drawback would be their lower computational
and memory performance. We simulate this by running the basic single-target
PDA filter in them.

The fields of view of secondary sensors, which cover the problematic areas,

31
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lie within the field of view of the primary sensor and are non-overlapping. The
state estimates from the additional PDA filters are provided to the PHD filter
to perform fusion. The sensor fusion is therefore centralized.

Figure 5.1 Example of a field of view of a primary sensor with a problematic,
high-cluttered area.

A sensor is enabled only when a target appears in its field of view. The
weight w of such target must be higher than a predetermined threshold, in this
case, w > 0.8 to prevent enabling sensors due to false targets. If a target leaves
the field of view of a sensor, the sensor is disabled. A sensor is also disabled if
the estimate covariance of corresponding PDA filter is too large, which means
that the filter probably tracks false alarms instead of target.

A cycle of the sensor fusion algorithm is as follows:
1. Combine step, which combines estimates from previous time step (if there

are any) and also includes enabling sensors if there is a target in their field
of view and disabling them if there is no target in their field of view.

2. Prediction step of the PHD filter and prediction steps of the PDA filters
of enabled sensors.

3. Update step of the PHD filter and update steps of the PDA filters of enabled
sensors.
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5.1.1 Temporary birthplaces approach
The first method is the temporary birthplaces approach. This method does
not perform any combination of PDA and PHD estimates. Instead, it passes
the estimates from PDA filters to PHD filter as birthplaces. These birthplaces
are temporary – they are only present in the PHD filter for one time step. The
PHD filter treats them like any other of its birthplaces. They become part of
the prediction step (the prediction for newborn targets), but they are removed
afterwards.

To avoid an excessive increase in the number of targets and thus an increase
in computational complexity, it is determined that there is lower survival pro-
bability in the problematic areas. All targets from PHD filter that appear
in these areas are set to a lower probability of survival than targets outside
these areas. If a target leaves the problematic area, its previous probability of
survival is set again.

The weight w of targets born at temporary birthplaces is set to w = 0.7.
The algorithm of this method is described by the pseudocode in Algorithm
5. For simplicity, pseudocodes of individual methods do not contain any time
indices.

5.1.2 Moment matching approach
The second method is the moment matching approach presented in Section
4.2.1. This method performs fusion of the state estimate from PDA filter with
the state estimate of the nearest target from PHD filter.

At first, the target from PHD filter which is the closest to the target from
PDA filter is selected. This is performed using the Mahalanobis distance. The
nearest target from PHD filter is the one whose state estimate mPHD has the
shortest Mahalanobis distance to the PDA state estimate mPDA with respect
to PDA estimate covariance PPDA. The formula of the Mahalanobis distance
is

dM (mPHD, mPDA, PPDA) =
√

(mPHD − mPDA)⊺(PPDA)−1(mPHD − mPDA).
(5.1)

The selected PHD target should preferably have weight w > 0.5. If no such tar-
get is present in the field of view of the sensor, a target with w ≤ 0.5 is selected.

The PDA target and the nearest PHD target are then combined by moment
matching. The fused state estimate mnew and the fused estimate covariance
Pnew with respect to ω as the fusion weight of the additional sensor are given
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by

mnew = ωmPDA + (1 − ω)mPHD, (5.2)
Pnew = ωPPDA + (1 − ω)PPHD + ω(mPDA − mnew)(mPDA − mnew)⊺

+ (1 − ω)(mPHD − mnew)(mPHD − mnew)⊺. (5.3)

The state estimate and covariance of the nearest PHD target are then replaced
by mnew and Pnew. The new weight of this target is given by

wnew = ωwPDA + (1 − ω)wPHD. (5.4)

The weight wPHD of the PHD target is known, the weight wPDA of the PDA
target needs to be specified. In this work, it is set to fixed value of 0.95. A
pseudocode for this method is shown in Algorithm 6.

5.1.3 Covariance intersection approach
The third method is the covariance intersection approach presented in Section
4.2.2. This method is similar to the previous method, but instead of moment
matching, the covariance intersection is used to fuse the state estimates to-
gether.

As in the previous method, the target from PHD filter that is the closest
to the PDA target is selected using the Mahalanobis distance. Targets with
w > 0.5 are prefered. The state estimates of the PDA and PHD targets are
then combined as follows with respect to the fusion weight of the additional
sensor ω,

Pnew =
(
ω(PPDA)−1 + (1 − ω)(PPHD)−1

)−1
, (5.5)

mnew = Pnew
(
ω(PPDA)−1mPDA + (1 − ω)(PPHD)−1mPHD

)
. (5.6)

The state estimate and covariance of the nearest PHD target are then replaced
by mnew and Pnew. The new weight of the PHD target is also computed as in
the previous method,

wnew = ωwPDA + (1 − ω)wPHD, (5.7)

with the weight wPDA set to fixed value of 0.95. The algorithm of this method
is described by Algorithm 7.
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Algorithm 5 Temporary birthplaces approach
given T as a set of PHD targets, mPDA and PPDA from additional PDA
filters, pS as the survival probability, and pS,add as the survival probability in
areas of interest.

for each t ∈ T :
if t is in the field of view of a sensor s:

if sensor s is not enabled and w(t) > 0.8:
enable sensor s
p

(t)
S = pS,add

m
(s)
PDA = m(t)

P
(s)
PDA = P (t)

else if sensor s is enabled:
p

(t)
S = pS,add

else if t is not in the field of view of any sensor and p
(t)
S ̸= pS :

p
(t)
S = pS

for each s in enabled sensors:
if the target tracked by sensor s is in its field of view:

add m
(s)
PDA and P

(s)
PDA to PHD filter as a temporary birthplace with

weight 0.7
else if the target tracked by sensor s disappeared from its field of view:

disable sensor s

output a set of temporary birthplaces for PHD filter.
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Algorithm 6 Moment matching approach
given T as a set of PHD targets, mPDA and PPDA from additional PDA
filters, and additional sensor fusion weight ω.

for each t ∈ T :
if t is in the field of view of a sensor s:

if sensor s is not enabled and w(t) > 0.8:
enable sensor s
m

(s)
PDA = m(t)

P
(s)
PDA = P (t)

for each s in enabled sensors:
if the target tracked by sensor s is in its field of view:

find PHD target t such that w(t) > 0.5 and m(t) is the closest to
m

(s)
PDA

if there is no such target:
find the closest target with w(t) ≤ 0.5

mnew = ωm
(s)
PDA + (1 − ω)m(t)

Pnew = ωP
(s)
PDA + (1 − ω)P (t)

Pnew = Pnew + ω(m(s)
PDA − mnew)(m(s)

PDA − mnew)
⊺

Pnew = Pnew + (1 − ω)(m(t) − mnew)(m(t) − mnew)⊺

wnew = ω · 0.95 + (1 − ω)w(t)

m(t) = mnew
P (t) = Pnew
w(t) = wnew

else if the target tracked by sensor s disappeared from its field of view:

disable sensor s

output a new set of PHD targets.
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Algorithm 7 Covariance intersection approach
given T as a set of PHD targets, mPDA and PPDA from additional PDA
filters, and additional sensor fusion weight ω.

for each t ∈ T :
if t is in the field of view of a sensor s:

if sensor s is not enabled and w(t) > 0.8:
enable sensor s
m

(s)
PDA = m(t)

P
(s)
PDA = P (t)

for each s in enabled sensors:
if the target tracked by sensor s is in its field of view:

find PHD target t such that w(t) > 0.5 and m(t) is the closest to
m

(s)
PDA

if there is no such target:
find the closest target with w(t) ≤ 0.5

Pnew =
(

ω(P (s)
PDA)

−1
+ (1 − ω)(P (t))−1

)−1

mnew = Pnew

(
ω(P (s)

PDA)
−1

m
(s)
PDA + (1 − ω)(P (t))−1

m(t)
)

wnew = ω · 0.95 + (1 − ω)w(t)

m(t) = mnew
P (t) = Pnew
w(t) = wnew

else if the target tracked by sensor s disappeared from its field of view:

disable sensor s

output a new set of PHD targets.

5.2 Evaluation

For evaluation of the experiments, the generalized optimal sub-pattern assign-
ment (GOSPA) metric1 is used. It is a metric that evaluates multi-target
tracking algorithms and penalizes localization errors for detected targets as
well as missed and false targets. It is also able to handle the random finite sets
of targets.

Let c > 0, 0 < α ≤ 2, and 1 ≤ p < ∞. Assume that d(x, y) denotes a
metric for any x, y ∈ RN and d(c)(x, y) = min(d(x, y), c) is its cut-off metric.
Let Πn be the set of all permutations of {1, ..., n} for any n ∈ N and any
element π ∈ Πn be a sequence (π(1), ..., π(n)). Assume that X = {x1, ..., x|X|}

1In this work, implementation of GOSPA from https://github.com/ewilthil/gospapy/
tree/master is used.

https://github.com/ewilthil/gospapy/tree/master
https://github.com/ewilthil/gospapy/tree/master
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and Y = {y1, ..., y|Y |} are finite subsets of RN . For |X| ≤ |Y |, the GOSPA
metric is defined as

d(c,α)
p (X, Y ) =

 min
π∈Π|Y |

|X|∑
i=1

d(c)(xi, yπ(i))
p + cp

α
(|Y | − |X|)

 1
p

. (5.8)

If |X| > |Y |, then d
(c,α)
p (X, Y ) = d

(c,α)
p (Y, X).

The parameter p determines the penalization of outliers. Larger values of
p mean that the outliers are penalized more. The parameter c is the maximum
allowable localization error and, together with α, it also determines the error
due to cardinality mismatch. The most appropriate choice of α for evaluation
of multi-target tracking algorithms is α = 2 [27].

In this work, the GOSPA parameters are set as follows: c = 8, p = 1, and
α = 2.

5.3 Parameters

In this section, we describe the parameters common for all experiments. The
examples in the following are based on the CVM model known from Section
1.1.1. We can think of these examples as tracking airplanes in 2D space using
a radar instrument and additional on-demand radars which can track these
airplanes in problematic areas. The radar measuring period is one second.
The transition matrix F and the process noise covariance matrix Q of this
state-space model are

F =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

 , Q = q2


∆t3

3 0 ∆t2

2 0
0 ∆t3

3 0 ∆t2

2
∆t2

2 0 ∆t 0
0 ∆t2

2 0 ∆t

 , (5.9)

where ∆t = 1 is the time step and q is the parameter of the process noise
matrix, which is set to q = 1.2.

The measurement matrix H and the measurement noise covariance matrix
R have the form

H =
[
1 0 0 0
0 1 0 0

]
, R = r2

[
1 0
0 1

]
, (5.10)

where r is the parameter of the measurement noise matrix which shows how
inaccurate the sensor measurements are. We consider it as r = 4 for the main
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radar and r = 2 for the more precious additional radars.

The area where the targets are tracked has square shape with side length
300. The birthplaces of new targets, which we can think of as airports where
the airplanes take off, are located at coordinates [100, 100]⊺ and [200, 200]⊺.
These airports have the same matrix P and weight w which they pass to the
newborn targets. The parameters of the two airports are as follows,

w1 = w2 = 0.15, m1 =


100
100
0
0

 , m2 =


200
200
0
0

 ,

P1 = P2 =


20 0 20 0
0 20 0 20
20 0 40 0
0 20 0 40

 . (5.11)

These parameters create a newborn PHD target.

The parameters for the PHD pruning procedure also have to be set. The
truncation threshold T , the merging threshold U , and the maximum number
of components that can pass to the next step Jmax are

T = 0.00001, U = 4, Jmax = 100. (5.12)

The survival probability pS of PHD targets, the gate probability pD of PDA
filter and the detection probability pD of both of them are

pD = 0.95, pS = 0.99, pG = 0.99. (5.13)

There are also some common parameters for the sensor fusion methods. The
fusion weight of the additional sensors is

ω = 0.5. (5.14)

If a new weight of a selected PHD target is computed, the weight wPDA of the
PDA target is set for this computation to

wPDA = 0.95. (5.15)

For the temporary birthplaces approach, the survival probability inside the
problematic areas is set to

pS,add = 0.2. (5.16)
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5.4 Example 1: Homogeneous clutter case

The purpose of this simulation example is to demonstrate the behavior of the
proposed methods in the case of homogeneous clutter. That is, the spatial
distribution of clutter does not vary in the observed area. The aim is to show
that the collaboration does not negatively impact the performance of the pri-
mary estimator (the PHD filter).

In this example, four targets appear over time in the observed area and
follow independent paths. The simulation takes 100 time steps and the targets
are born at time steps t1 = 0, t2 = 25, t3 = 50, and t4 = 75. Their initial
states are

x1 = [200, 200, −1, −1]⊺, (5.17)
x2 = [100, 100, 1, −1]⊺, (5.18)
x3 = [200, 200, 0, −1]⊺, (5.19)
x4 = [100, 100, 1, −1]⊺. (5.20)

A secondary sensor is added. The field of view of this sensor has a square
shape with side length 170 and top left corner coordinates [20, 280].

Figure 5.2 The field of view of the primary and secondary sensor in simulation
examples.
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Four algorithms are tested: no fusion, temporary birthplaces approach,
moment matching approach, and covariance intersection approach. The per-
formance of these algorithms is measured using the GOSPA metric. The algo-
rithms are tested for several different values of main sensor clutter intensity λ.
The clutter intensity of the secondary sensor equals the clutter intensity of the
primary sensor, λPDA = λ. For each λ, 50 different trajectories are generated
and the average GOSPA error of each trajectory is computed.

method λ = 0.0001 λ = 0.0003 λ = 0.0005 λ = 0.0007 λ = 0.001
PHD avg 12.37996 12.49728 12.56554 12.39241 12.36013
PHD best 11.18835 11.40151 11.79767 11.29602 11.15049
PHD worst 13.37372 13.95824 13.97562 13.46601 13.78913
TB avg 12.49509 12.52925 12.57335 12.39107 12.17103
TB best 11.05388 11.54402 11.77318 11.54739 11.17907
TB worst 13.36078 13.74126 13.85764 13.47850 13.21648
MM avg 12.82672 12.76087 12.69413 12.50860 12.31817
MM best 10.98839 11.54012 11.79713 11.49984 11.14135
MM worst 14.09090 13.85145 14.24221 13.81632 13.62628
CI avg 12.00795 12.11625 12.22240 12.11454 12.07289
CI best 10.88331 10.79391 11.46600 11.38945 11.05966
CI worst 12.88551 13.32223 13.75112 13.07624 13.82783

Table 5.1 Average, best and worst GOSPA combined error over 50 runs for dif-
ferent values of clutter intensity λ.

method λ = 0.0001 λ = 0.0003 λ = 0.0005 λ = 0.0007 λ = 0.001
PHD avg 8.83596 8.01968 6.87834 5.64841 3.69053
PHD best 8.12384 6.44711 5.64590 4.38034 1.81063
PHD worst 9.79592 9.07137 8.29809 7.49087 5.09031
TB avg 8.80149 7.83485 6.63975 5.45827 3.44223
TB best 7.98180 6.29241 4.98308 4.20496 1.76744
TB worst 10.04078 8.94906 8.01318 7.30834 5.12209
MM avg 8.38192 7.39447 6.02453 4.95500 3.26457
MM best 6.31308 5.41593 3.61692 3.59416 1.91977
MM worst 9.54316 8.61340 7.70057 7.03696 4.75050
CI avg 6.33995 5.62985 5.00640 4.29694 3.15929
CI best 4.17184 3.57690 2.70867 1.80497 1.38392
CI worst 9.54316 7.82429 7.41209 5.96105 4.59233

Table 5.2 Average, best and worst GOSPA localization error over 50 runs for
different values of clutter intensity λ.
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Figure 5.3 Visualization of GOSPA combined error for λ = 0.0005. Each box
contains 50 samples.

Figure 5.4 Visualization of GOSPA localization error for λ = 0.0005. Each box
contains 50 samples.
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The results as well as the tested values of λ are shown in Table 5.1. The
computed values of GOSPA localization error, which is a component of the
GOSPA combined error, are shown in Table 5.2. As an example, Figure 5.3
and Figure 5.4 present graphs of the distribution of the GOSPA combined er-
ror and GOSPA localization error for λ = 0.0005.

The results show that the fusion methods can reduce the localization er-
ror. However, the combined error remains the same or even increases. This
is mainly due to the other components of GOSPA combined error, the missed
targets error and false targets error. Why this happens is a subject for further
research.

The decrease in localization error is most significant for the covariance
intersection approach. The second lowest error occurs with the moment mat-
ching method. These are the methods that directly combine the estimates
of PDA and PHD filter for a selected target. The temporary birthplaces ap-
proach, which performs no direct combination and only passes the estimates
from the PDA filter to the PHD filter as airports, shows less significant decrease
in localization error.

Figure 5.5 Example: real trajectories and target estimates with clutter (λ =
0.0003), simulated for 25 time steps.
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Figure 5.6 Example: real trajectories and target estimates with clutter (λ =
0.0003), simulated for 50 time steps.

Figure 5.7 Longitude and latitude of a target, simulated for 25 time steps.

5.5 Example 2: Inhomogeneous clutter case

The second example studies the case where the field of view of the main PHD
tracker contains areas with dense clutter. If a target enters these areas, the
PHD tracker performance may be significantly impaired. The aim of this si-
mulation example is to demonstrate that a collaboration with more precious
yet simpler PDA filter may positively affect the PHD tracker performance.
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As well as in the previous example, the simulation example takes 100 steps
and four targets appear in the observed area at time steps t1 = 0, t2 = 25,
t3 = 50, and t4 = 75. Their initial states are

x1 = [200, 200, −1, −1]⊺, (5.21)
x2 = [100, 100, 1, −1]⊺, (5.22)
x3 = [200, 200, 0, −1]⊺, (5.23)
x4 = [100, 100, 1, −1]⊺. (5.24)

A secondary sensor with the same field of view as in the previous example is
added.

The inhomogeneous spatial distribution of clutter is simulated as follows:
the clutter outside the problematic areas has intensity λ1 and the clutter in
the problematic areas has higher intensity λ2. This can be interpreted as a
situation in which the problematic areas are, e.g., covered by clouds or dis-
turbed by electromagnetic interference. In this example, there is one area with
higher clutter intensity which equals the field of view of the secondary sensor.

No fusion, temporary birthplaces approach, moment matching approach,
and covariance intersection approach are tested in such cluttered environment.
The algorithms are tested for several different combinations of clutter intensi-
ties λ1 and λ2. The clutter intensity of the secondary sensor equals the higher
one of those intensities, λPDA = λ2. For each combination, 50 different trajec-
tories are generated.

The resulting values of GOSPA combined error and GOSPA localization
error are shown in Table 5.3 and Table 5.4. Figure 5.8 and Figure 5.9 show
graphs of the distribution of GOSPA combined error and GOSPA localization
error for λ1 = 0.0005 and λ2 = 0.001.

The results are similar to the results of the first example. The fusion me-
thods can reduce the GOSPA localization error, while the GOSPA combined
error remains the same due to missed targets error and false targets error. An
exception is the case of λ2 = 0.002, which is rather extreme case. The com-
bined error is significantly lower for the temporary birthplaces approach and
higher for the moment matching approach.
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method λ1 = 0.0001,
λ2 = 0.0005

λ1 = 0.0005,
λ2 = 0.001

λ1 = 0.0005,
λ2 = 0.002

PHD avg 12.17661 11.62210 16.24350
PHD best 11.26360 10.55281 13.30828
PHD worst 13.73334 12.94708 20.00331
TB avg 11.95555 11.39246 11.89194
TB best 10.83213 10.64005 11.27865
TB worst 12.89080 12.08872 12.93776
MM avg 12.78197 11.91106 20.17275
MM best 11.57491 10.77584 17.01672
MM worst 14.39841 13.24457 23.23291
CI avg 11.79937 11.43072 16.98416
CI best 10.89226 10.66442 14.41285
CI worst 12.71226 12.68882 20.51757

Table 5.3 Average, best and worst GOSPA combined error over 50 runs for
different values of clutter intensity λ1 and clutter intensity in areas of interest λ2,
λPDA = λ2.

method λ1 = 0.0001,
λ2 = 0.0005

λ1 = 0.0005,
λ2 = 0.001

λ1 = 0.0005,
λ2 = 0.002

PHD avg 7.85581 4.16450 1.21470
PHD best 6.50696 2.62815 0.05853
PHD worst 9.09088 5.56847 3.70625
TB avg 7.63315 3.84846 0.54954
TB best 6.50701 1.66217 0.02807
TB worst 8.93432 4.97811 1.92582
MM avg 6.76677 3.50546 1.01675
MM best 4.22046 1.61154 0.07443
MM worst 8.24031 5.15858 2.86749
CI avg 4.64577 2.92912 0.81376
CI best 2.27873 1.26196 0.06048
CI worst 6.66079 4.59547 1.96115

Table 5.4 Average, best and worst GOSPA localization error over 50 runs for
different values of clutter intensity λ1 and clutter intensity in areas of interest λ2,
λPDA = λ2.
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Figure 5.8 Visualization of GOSPA combined error for λ1 = 0.0005 and λ2 =
0.001, λPDA = λ2. Each box contains 50 samples.

Figure 5.9 Visualization of GOSPA localization error for λ1 = 0.0005 and λ2 =
0.001, λPDA = λ2. Each box contains 50 samples.
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As in the first example, the decrease in localization error is most signifi-
cant for the covariance intersection approach, except for λ2 = 0.002 where the
most successful method is the temporary birthplaces approach. The clutter
intensity of 0.002 is rather high for the PHD filter and in this case it may be
advantageous to perform no direct combination of PHD and PDA estimates
and just pass the estimates from the more precious PDA filter to the PHD filter.

Another experiment was performed for the clutter intensity of the secon-
dary sensor that equals the lower one of the two clutter intensities, λPDA = λ1.
This corresponds to a situation where the sensor has a more accurate view of
the area of interest. Compared to the previous experiment, the results show
no significant improvement. This may be due to small validation region of the
PDA filter. Such region contains none or only a few clutter points and the
clutter has therefore minimal effect on performance.

Figure 5.10 Example: real trajectories and target estimates with clutter (λ1 =
0.0005, λ2 = 0.001), simulated for 25 time steps.



Future work 49

Figure 5.11 Example: real trajectories and target estimates with clutter (λ1 =
0.0005, λ2 = 0.001), simulated for 50 time steps.

Figure 5.12 Longitude and latitude of a target, simulated for 25 time steps.

5.6 Future work

An important subject for further research is to find the causes of the increase
in missed targets error and false targets error in the sensor fusion methods.
This increase is more significant in the moment matching approach and the
covariance intersection approach, which do not directly change the number of
PHD targets.
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One of the complications of the sensor fusion methods may be enabling
the additional sensors by false targets. In the current state, the only criterion
for enabling a sensor is the weight of the target that appears in its field of
view. The PDA filter also takes its state estimate and covariance directly from
this target, which may be problematic if this target is a false target. A more
spohisticated method of PDA track initiation could be used to prevent these
problems.

Another option is to focus on the parameters of the sensor fusion methods.
There are numerous parameters that can be tuned, such as the fusion weight
ω, the weight assigned to the PDA target wPDA, or the weight of a PHD target
born at a temporary birthplace. Similarly, we can look at the parameters of
the PHD filter.

An interesting problem may be using the proposed sensor fusion methods
on real data. This would bring more parameters to tune, such as the process
noise covariance matrix Q or the measurement noise covariance matrix R.



Chapter 6

Conclusion

In this work, we presented one of the most popular approaches to multi-target
filtering, the Gaussian mixture probability hypothesis density (GM-PHD) fil-
ter. We explained the single-target probabilistic data association (PDA) filter
and proposed three methods to improve the performance of the PHD filter by
using location-specific information from the PDA filter. These methods are
the temporary birthplaces approach, the moment matching approach, and the
covariance intersection approach. The temporary birthplaces approach uses
the state estimate and its covariance from the PDA filter to create airports
for the PHD filter which become part of the following prediction step and are
removed afterwards. The moment matching approach and the covariance in-
tersction approach search for a target from the PHD filter which is nearest to
the target from the PDA filter and fuse their state estimates together using
the moment matching method or the covariance intersection method.

The performance of these methods was evaluated using the GOSPA met-
ric and compared to the performance of a plain GM-PHD filter. Two main
simulation examples were introduced. First, the homogeneous clutter case,
where the spatial distribution of clutter did not vary in the observed area.
The purpose of this example was to demonstrate that the collaboration with
PDA filter does not negatively impact the performance of the primary PHD
tracker. Second, the inhomogeneous clutter case, where the field of view of the
primary tracker contained an area with dense clutter. The aim of this simula-
tion was to show that the collaboration may positively affect the performance
of the PHD estimator. The methods were tested for several different values of
clutter intensity in the first case and for several combinations of such values
in the second case.

We demonstrated that the proposed methods can improve the performance
of the GM-PHD filter. All methods have decreased the GOSPA localization
error. In most cases, the most significant decrease was brought by the co-
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variance intersection approach. In the case of high clutter intensity, the most
successful algorithm was the temporary birthplaces approach, which performs
no direct fusion of target state estimates. However, the GOSPA combined er-
ror has remained the same due to increase in missed targets and false targets
error. The next step in further research may be to examine the causes of this
increase.
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