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Abstract

The purpose of this thesis is to study the Universal Verification Methodology (UVM) for digital
circuit verification and its Register Abstraction Layer (RAL) in particular. This thesis describes
the process of testbench implementation for registers and memories using UVM RAL. Next, it
is explained how the user can set up automatic coverage collection and how the user can execute
built-in UVM RAL sequences for checking functionality of registers and memories.

Keywords SystemVerilog, Verilog, Universal Verification Methodology, UVM, Register Ab-
straction Layer, RAL, Verification, Simulation, Register model, Register, Memory, RAM, ROM,
Coverage, Coverage collection, Built-in sequences

Abstrakt

Tato práce se zabývá metodologíı pro verifikaci digitálńıch integrovaných obvod̊u (Universal
Verification Methodology – UVM), zejména jej́ı registrovou vrstvou (Register Abstraction Layer
– RAL). V dané práci je popsán proces implementace prostřed́ı pro testováńı registr̊u a pamět́ı
s využit́ım komponent a metod UVM RAL. Dále je zde detailně popsáno, jak uživatel může
nastavit automatickou kontrolu pokryt́ı a jak se dá spustit vestavěné UVM RAL sekvence pro
verifikaci funkcionality testovaných registr̊u a pamět́ı.

Kĺıčová slova SystemVerilog, Verilog, Universal Verification Methodology, UVM, Register
Abstraction Layer, RAL, Registrová vrstva, Verifikace, Simulace, Registrový model, Registr,
Pamět’, RAM, ROM, Pokryt́ı, Kontrola pokryt́ı, Vestavěné sekvence
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Introduction

In this day and age embedded systems have become a part of our normal lives and are present
all around us – from computers, mobile phones and tablets to TVs, dishwashers and credit cards.
Such systems are very robust and complex and can contains billions of transistors. Because of
that, it is not impossible to have a bug in such system. If a bug is not discovered in time, it can
cost a lot of money to deal with the consequences, since the earlier the bug is discovered – the
less it will cost. Textbook example of such a thing is an Intel Pentium FDIV bug in 1994. It
affected the division of certain pairs of high-precision numbers and, as a result, processor would
return incorrect binary floating-point numbers. In total in costed Intel $475 million pre-tax to
recover replacement and write-off these microprocessors.

Verification of such digital designs is one of the crucial tasks during design process and it
cant take up to 70% of the total time spent working on a chip. The end goal of verification is
a confirmation, that produced design meets all requirements and specifications. Just for that
reason Universal Verification Methodology (UVM) was created with initial version releasing in
2011. It is a standardized methodology, which purpose is to verify integrated circuits. It utilizes
SystemVerilog language and follows the principles of object-oriented programming. UVM was
derived from the Open Verification Methodology (OVM), which is an open-source verification
methodology for digital designs and systems-on-chip and was released in 2008. UVM is more
flexible and reusable methodology that can be easily applied to different digital designs.

One of the crucial parts of such designs are registers and memories. Registers can be used
for setting desired configurations while memories contain instructions and data. For design to
behave without errors they also need to be verified. For that reason UVM contains base class
library for registers and memory structures, which is called Register Abstraction Layer (RAL).
It is not necessary to use UVM RAL to verify them, but without it, programmer has to take
care of each register individually, which can prove to be a tedious task, since typical design can
contain hundreds of them. This thesis describes how to create and configure UVM RAL register
model to verify registers and memories in design under test (DUT).

Structure of this thesis is as follows: chapter 1 further describes the goals of this work. Chap-
ter 2 contains the research regarding current existing solutions, i.e. websites, articles or theses
that present the process of DUT integration into the UVM RAL register model. Chapter 3 talks
about UVM in general and shows the usage of individual UVM and RAL components. Chap-
ter 4 describes the process of DUT verification using UVM register abstraction layer. Finally,
chapter 5 validates, that DUT was integrated correctly and register model is capable of catching
artificially inserted bugs in the design.
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2 Introduction



Chapter 1

Specification of the assignment

This chapter further describes goals of the assignment of this thesis.

The purpose of this thesis is to showcase the process of integration of registers, RAM and ROM
memories into UVM register model and their subsequent verification using UVM RAL. This
includes coverage collection and built-in UVM RAL sequences for testing registers and memories.

Before that, this thesis also describes UVM and RAL themselves, so that anyone who is not
familiar with it can still understand the essence of this work.

Another purpose of this work is to describe the configuration of individual UVM and RAL
components to successfully integrate DUT into the register model.

Implemented testbench will be located in a GitLab repository [1].

3
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Chapter 2

Research

This chapter describes existing solutions, i.e. websites, theses and articles, which describe the
process of verification of DUT using UVM RAL.

2.1 ChipVerify

Website [2] is an extensive guide to UVM. It describes every basic component of this methodology
and shows how a programmer can use it for verification of DUT of their choice. This website
goes into great detail about a lot of aspects of UVM and is a great starting point for everyone,
who wants to learn about it from scratch.

It also contains a section about register abstraction layer, where the author describes indi-
vidual components of this layer and provides complete example of integrated registers in RAL
environment.

What this website does not describe, however, is how the user can integrate memories
(RAM/ROM) into the RAL. Therefore, it does not provide any information about memory
operations that can be used to verify their behavior.

There is also no information about the differences between implicit and explicit prediction
in register model (prediction modes are explained in detail later in this work). In the complete
example author actually has implemented predictor, but does not provide any explanation as to
why and when we should actually use it in our testbenches.

Another thing that this website is lacking is the process of automatic coverage collection
during verification using UVM RAL. The only thing, that is related to coverage, is a general
description of it using standard SystemVerilog language.

Finally, there is no information at all about built-in UVM RAL sequences.

2.2 Verification Guide

Website [3] is also another place, where one can learn more about UVM and RAL in general. In
comparison with ChipVerify [2] this website contains even less information and can be a little
difficult to understand.

The author briefly explains functionality of implicit and explicit predictions, but does not
use any predictors in the complete example, i.e. there is no practical example as to how the user
can implement implicit/explicit predictions in their testbenches.

Similarly to [2], there is no information about integrating memories in register model, auto-
matic coverage collection and built-in UVM RAL sequences.

5



6 Research

2.3 VLSI Verify
VLSI Verify website [4] is another place containing useful information about UVM itself and
about register abstraction layer.

There are plenty of pictures and schemes describing different aspects of UVM. In comparison
with previous websites, this website has a section about implicit, explicit and passive predictions.
Author presents advantages and disadvantages of each prediction mode and even provides an
example as to how one can turn on desired prediction in their own testbench. But author does
so without going into too much detail.

What website does not describe, however, are how the user can integrate memories into
register abstraction layer, how to enable automatic coverage collection and how to execute built-
in RAL sequences.

2.4 Vojtěch J́ılek’s Master Thesis
The goal of Vojtěch J́ılek’s master’s thesis [5] was to showcase the usage of UVM and RAL in
general and to verify the functionality of a simple single cycle and pipelined processor. Another
goal of that thesis was to describe common mistakes and problems that a novice developer may
encounter while using register abstraction layer.

Vojtěch J́ılek was able to accomplish initial goal with his thesis. It contains useful information
about UVM and register layer and can be used to quickly get to know all its general components
and functions.

The code of the thesis [6] contains testbenches for single cycle and pipelined processors and
utilizes a wide variety of constructions, that are supported by UVM to make the verification
process as simple as possible. The only problem is that the code barely contains any comments
and it can be quite difficult to comprehend what each individual component or function is
supposed to do.

Another thing that this thesis is lacking in is the usage of RAL automatic coverage collection
and built-in register abstraction layer sequences. The author also does not describe the differences
between implicit and explicit predictions.



Chapter 3

Analysis

The purpose of this chapter is to describe basic concepts of UVM and its register abstraction
layer.

3.1 Universal Verification Methodology

As it was already stated in the introduction, UVM is used to verify digital designs. It was created
with a purpose of standardizing the structures of verification programs and testing methodologies.
With UVM the user can create verification environment for complex designs with the help of
built-in classes and methods.

Main features of UVM are:

Testbench Components UVM contains a set of classes, that can be used in verification pro-
cess. They can be extended and modified as the user sees fit.

Transactions Communication between the DUT and testbench happens with a help of the
so-called transactions. The user can extend the existing transaction class, which is used to
transfer information between DUT and testbench.

Communication between individual components inside a testbench happens on a Transaction
Level Modeling (TLM) level.

Messaging and Reporting With a help of UVM the user can printout relevant information
about the simulation runs, such as warnings and errors, which can be used to further improve
verification environment and for debugging.

Configuration With a help of configuration database the user can store and retrieve appropriate
information for testbench components.

Functional Coverage Functional coverage is a process, that evaluates how thoroughly were
the functionalities of the design tested. It is a user-defined metric, and, with a help of UVM,
the user can ensure, that the DUT was exhaustively verified.

Register Abstraction Layer RAL simplifies the process of verification of DUT registers and
memories. For more in-depth information about RAL refer to section 3.2.

Basic information about UVM is taken from [7].

7



8 Analysis
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Figure 3.1 Basic structure of UVM testbench. Source: [8, s. 4]
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3.1.1 UVM Testbench Components
Here we will describe every major component of UVM. Basic structure of a typical testbench,
that utilizes UVM, is shown in figure 3.1.

UVM Testbench (Top)
Testbench top is used to statically store the instance of DUT and corresponding interfaces.
Interfaces are used for DUT and UVM test to communicate with each other. Testbench top
is also responsible for generating clock and reset signals, and for choosing a test that will be
executed on a DUT block [9].

UVM Test
Before the simulation starts, UVM test dynamically generates and configures verification envi-
ronment (UVM Environment). UVM test is also responsible for connecting this environment to
DUT using interfaces and it is achieved with a help of configuration database. UVM test can
start the simulation itself by executing UVM sequence on UVM sequencers [8, s. 5].

UVM Environment
UVM environment is a container for multiple, reusable verification components, such as agents,
drivers, monitors, scoreboards and other environments. These components communicate with
each other using TLM ports [8, s. 5].

UVM Sequence Item
UVM sequence item is a data packet, that encapsulates all relevant signals that should be sent
to DUT in order to verify its desired functionality. For example, sequence item that would be
used to send some data to some register can contain write enable bit, register address and data.

Having these signals in a structure allows user to perform useful operation on them, such as
randomizing, modifying, printing out, copying etc.

UVM Sequence
UVM sequence contains data items (uvm_sequence_item), which are later sent to the DUT with
a help of a driver via sequencer. Sequence can randomize and send these sequence items in a
specified order, therefore we can create interesting scenarios for DUT to process. Sequence is
not a part of the UVM environment and can be connected to only one UVM Sequencer [8, s. 6].

UVM Sequencer
UVM sequencer is a mediator between sequence and driver. It chooses what data items coming
from a sequence should be passed to a driver so that they can be later sent to a DUT. Sequencer
is also able to receive response data items from a DUT via driver. Single sequencer can have
multiple sequences connected to it [8, s. 6].

UVM Driver
UVM driver communicates with a DUT. It retrieves randomized uvm_sequence_item from a
sequencer and converts it to a logical level signals for interface. Corresponding interface handle
can be acquired from configuration database. Driver class contains REQ (request) and RSP
(response) parameterized types, which are of type uvm_sequence_item by default. Request is a
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sequence item, that will be sent to DUT via interface, whereas response is a sequence item, that
contains data sent from the DUT to the testbench [10].

UVM Monitor
UVM Monitor is used to observe signal activity from the interface (logic level) and converts
it into transaction level objects (uvm_sequence_item) that can be sent to other verification
components via TLM analysis port. Monitor can be configured for basic protocol checking and
coverage collection [11].

UVM Agent
UVM agent encapsulates sequencer, driver and monitor into a single block. Agent is responsible
for their instantiation and for establishing connection between them. Agent can be configured
for basic protocol checking and for coverage collection. Agent can be active or passive [12]:

Active agent instantiates all three components (sequencer, driver and monitor). Data can be
driven to DUT.

Passive agent only instantiates a monitor. Data can not be driven to DUT. This way agent
can only observe signals from the interface and send them to other components. Useful when
we do not need to send data to DUT.

UVM Scoreboard
UVM scoreboard is a verification component that checks functionality of the DUT. It receives
data items from monitor through TLM port and compares it with a reference (golden) DUT
model [13].

3.1.2 UVM Phases
In UVM based SystemVerilog testbench class object can be created at any time during simulation.
That means that we need to somehow check if object we are about to call is already created, i.e.
we need some kind of synchronization mechanism. For that reason UVM introduces the concept
of so-called phases.

Each verification component is derived from uvm_component class and hence supports the
usage of phases. Phases are implemented as virtual callback functions/methods and can be
defined by the user. Each individual component can not proceed to the next phase, unless all
other components finish their operations in the current phase. That way proper synchronization
between all components is guaranteed.

Order of execution of these phases is depicted in figure 3.2. Each individual phase is described
in detail in the following sections.

All information regarding UVM phases is taken from [15], [14], [16] and [17].

3.1.2.1 build phase
Build phase is responsible for creating and configuring testbench structure. It calls build_phase()
of every uvm_component that is currently present in a testbench in a top-down order. This phase
does not consume any simulation time and therefore is implemented as a function.

Typical uses of build_phase() include instantiation of sub-components, instantiation of reg-
ister model, getting configuration values for the components being built and setting configuration
values for sub-components.

Phase ends when all uvm_component components have been instantiated.
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Figure 3.2 Universal Verification Methodology Phases. Source: [14]

3.1.2.2 connect phase
Connect phase is used to connect all verification components with each other. connect_phase()
of every uvm_component that is currently present in a testbench is called in a bottom-up order.
This phase does not consume any simulation time and therefore is implemented as a function.

Typical uses of connect_phase include connecting TLM ports and connecting register model
to adapter components.

Phase ends when the connection between all uvm_components has been established.

3.1.2.3 end of elaboration phase
End of elaboration phase is responsible for potential parametrization of verification components.
It calls end_of_elaboration_phase() of every uvm_component that is currently present in a
testbench in a bottom-up order. This phase does not consume any simulation time and therefore
is implemented as a function.

Typical uses of end_of_elaboration_phase include displaying environment topology, open-
ing files and defining additional configuration settings for components.

Phase ends when all defined operations in it have been executed.

3.1.2.4 start of simulation phase
Start of simulation phase is used to print out additional information about verification topology.
It calls start_of_simulation_phase() of every uvm_component that is currently present in a
testbench in a bottom-up order. This phase does not consume any simulation time and therefore
is implemented as a function.

Typical uses of start_of_simulation_phase include displaying environment topology, set-
ting debugger breakpoints and setting initial run-time configuration values.

Phase ends when all defined operations in it have been executed.

3.1.2.5 run phase
Run phase starts the simulation of DUT. It calls run_phase() of every uvm_component that
is currently present in a testbench. Run phase runs in parallel to the other runtime phases,
as shown in figure 3.3. All components are synchronized with the respect to the current run
phase. This phase (i.e. the simulation itself) consumes actual simulation time and therefore is
implemented as a task.

Other runtime phases (apart from run_phase) are:
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Figure 3.3 Universal Verification Methodology Run Phases. Source: [14]

reset phase This phase is responsible for generating reset and clock signals for verification
components that are connected to an interface.

configure phase This phase is used to configure DUT and its memories to be compatible with
the verification environment.

main phase This phase is used for primary test stimulus, i.e. its purpose is to properly start
stimulus sequences.

shutdown phase This phase waits for all data to be drained out of the DUT after simulation
ends. Buffered data from the DUT is extracted with a help of read/write operations or
sequences.

Phases with a name pre_* or post_*, where * is a name of a runtime phase, are used to
further fine-tune corresponding runtime phase.

Phase run_phase ends when two conditions are satisfied:

1. There is no need for DUT to be simulated further.

2. post_shutdown_phase is ready to end.

In that case run_phase terminates in one of two ways:

1. Every verification component can raise and drop so-called “objections” on the specified phase.
Raised objection indicates, that this component is not ready to end and is still executing some
operations. If all objections on run_phase are dropped – phase ends.

2. Even if there are raised objections on run_phase, it can still end if the timeout expires.
By default, the timeout is set to 9200 seconds, but can be overridden with set_timeout()
method.

3.1.2.6 extract phase
This phase is used to extract data from different points of the verification environment. It calls
extract_phase() of every uvm_component that is currently present in a testbench in a bottom-
up order. This phase does not consume any simulation time and therefore is implemented as a
function.

Typical uses of extract_phase include extracting remaining data and final state information
from verification components, computing and displaying statistics and closing files.

Phase ends when all desired information has been collected and summarized.



UVM – Register Abstraction Layer 13

3.1.2.7 check phase
Check phase is used for checking for any unexpected events in the verification environment. It
calls check_phase() of every uvm_component that is currently present in a testbench in a bottom-
up order. This phase does not consume any simulation time and therefore is implemented as a
function.

Main purpose of this phase is to check if there is no unaccounted-for data remains in the
testbench.

Phase ends when current test is known to have passed or failed.

3.1.2.8 report phase
Report phase is responsible for reporting results of the test. It calls report_phase() of every
uvm_component that is currently present in a testbench in a bottom-up order. This phase does
not consume any simulation time and therefore is implemented as a function.

Phase ends when the current test ends.

3.1.2.9 final phase
Final phase is used for clearing up various things that are related to current simulation run.
It calls final_phase() of every uvm_component that is currently present in a testbench in a
top-down order. This phase does not consume any simulation time and therefore is implemented
as a function.

Phase ends when the simulator tool is ready to exit.

3.2 UVM – Register Abstraction Layer
Registers are indispensable parts of every hardware design. They can be used to store configu-
ration data and can be written to with a help of software. Such software can use some kind of
bus protocol, for example AMBA (Advanced Microcontroller Bus Architecture), to set registers
to certain values.

Verifying registers can be tedious, as the user would need to manually create sequence items
with desired data, create uvm_sequence and execute this sequence on an appropriate sequencer.
For that reason UVM contains so-called Register Abstraction Layer (RAL).

This register abstraction layer not only makes the process of register verification easier, but
is also capable of verifying various memory blocks.

UVM RAL is not necessary in order to verify functionality of the registers and memories,
but it contains useful abstract classes and methods, which make verification engineer’s job much
easier.

All information about RAL is taken from [2] and [18].

3.2.1 Frontdoor and Backdoor
Reading and writing registers and memory words through RAL can be done via so-called front-
door or backdoor.

Communication between register model and DUT via frontdoor means converting register
model transaction to a protocol specific bus transaction and driving this transaction into the
DUT through a physical interface. In other words, it is the same as when some component in
the actual digital design is communicating with registers or memories in the same design. It
means that all logic surrounding such communication is active and clock cycles (i.e. simulation
time) are consumed.
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Figure 3.4 UVM Register Abstraction Layer – Register Model Structure. Source: [18]

Communication via backdoor is done via simulator database. The value of signal is written
or read based on its name in the design. Transactions that use backdoor to access registers and
memories are executed instantaneously and do not consume any clock cycles (i.e. simulation
time). The drawback of backdoor access is the absence of a control logic, that is typically active
during “normal” operations involving bus communication.

In order to utilize backdoor access the user must specify the hardware description language
(HDL) path for a desired register or memory.

Information about frontdoor and backdoor is taken from [19].

3.2.2 UVM RAL – Register Model Structure
“Register Model” is the main block of the register abstraction layer. It contains everything that is
needed to successfully create testbench that would be capable of verifying registers and memories
within a digital design.

Since typical digital design can consist of hundreds of registers and memories, the task of
manually creating a register model can be time-consuming. That is why it is a common practice
to use some kind of script or software, that takes the register specification as an input, for example
in IP-XACT XML format, and generates corresponding register model in SystemVerilog language
using RAL base classes [18].

Typical structure of a UVM RAL register model is depicted in figure 3.4. In the following
sections each component of the register model will be described in detail.
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3.2.2.1 uvm reg
This base class mimics the actual register in the design. User can extend uvm_reg class to create
and configure their own register, so that it would correspond (functionality wise) to the register
in the design. The user can read() from or write() the specified value in the register.

Each UVM RAL register contains so-called desired and mirrored values:

Desired value is the value, that we want register to have. We can set and get this value using
set() and get() methods. We can also update() the corresponding register in the DUT to
have this desired value.

Mirrored value is the value, that should be in the actual register in the DUT. If implicit (auto)
prediction is turned on, each time a read() or write() transaction occurs, corresponding
register is updated with a value from the DUT. Mirrored values can be modified manually
with predict() method. Method called mirror() updates, and optionally compares, the
current mirrored value in the register model with the actual register value from the DUT.
Current mirrored value can be read using get_mirrored_value() method.
More about register model prediction modes is described in section 3.2.3.

Registers can have multiple “fields”, i.e. blocks of continuous bits. Each field represents a
certain feature in the design and every field can have different access policies. For example one
32 bits register can have first 16 bits ([31:16]) with read-write access, while the remaining 16
bits ([15:0]) can be read-only. In the RAL fields are represented by uvm_reg_field base class.

Relevant uvm_reg methods are described in detail below.

Code listing 3.1 uvm reg::new()
function new ( string name = "",

int unsigned n_bits ,
int has_coverage )

Creates a new instance of RAL register with a specified name, total number of bits and
functional coverage models.

Code listing 3.2 uvm reg::configure()
function void configure ( uvm_reg_block blk_parent ,

uvm_reg_file regfile_parent = null ,
string hdl_path = "" )

Configures the existing RAL register. Specify the parent register block of this register, parent
register file (optional) and register’s HDL path.

Code listing 3.3 uvm reg::needs update()
virtual function bit needs_update ()

Returns ’1’ if desired and mirrored values of the fields in this registers are not equal.

Code listing 3.4 uvm reg::write()
virtual task write ( output uvm_status_e status ,

input uvm_reg_data_t value ,
input uvm_path_e path = UVM_DEFAULT_PATH ,
input uvm_reg_map map = null ,
input uvm_sequence_base parent = null ,
input int prior = -1,
input uvm_object extension = null ,
input string fname = "",
input int lineno = 0 )
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Writes the specified value in this register using specified path. Path can have values
UVM_FRONTDOOR or UVM_BACKDOOR. Both of these paths respect access policies of the registers, i.e.
writing to a read-only register will not change the register value.

Code listing 3.5 uvm reg::read()
virtual task read ( output uvm_status_e status ,

input uvm_reg_data_t value ,
input uvm_path_e path = UVM_DEFAULT_PATH ,
input uvm_reg_map map = null ,
input uvm_sequence_base parent = null ,
input int prior = -1,
input uvm_object extension = null ,
input string fname = "",
input int lineno = 0 )

Reads the current register and stores its value in value variable using specified path. Path
can have values UVM_FRONTDOOR or UVM_BACKDOOR. Both of these paths respect access policies of
the registers, i.e. reading read-clear register will set this register value to zeroes.

Code listing 3.6 uvm reg::poke()
virtual task poke ( output uvm_status_e status ,

input uvm_reg_data_t value ,
input string kind = "",
input uvm_sequence_base parent = null ,
input uvm_object extension = null ,
input string fname = "",
input int lineno = 0 )

Deposits the specified value into this register using its HDL path (backdoor access). Poke
method does not respect access policies of the registers, i.e. read-only registers can be written
to.

Code listing 3.7 uvm reg::peek()
virtual task peek ( output uvm_status_e status ,

input uvm_reg_data_t value ,
input string kind = "",
input uvm_sequence_base parent = null ,
input uvm_object extension = null ,
input string fname = "",
input int lineno = 0 )

Reads current register and stores its value in value variable using its HDL path (backdoor
access). Peek method does not respect access policies of the registers, i.e. read-clear register will
not change its value after peek() method is executed.

Code listing 3.8 uvm reg::update()
virtual task update ( output uvm_status_e status ,

input uvm_path_e path = UVM_DEFAULT_PATH ,
input uvm_reg_map map = null ,
input uvm_sequence_base parent = null ,
input int prior = -1,
input uvm_object extension = null ,
input string fname = "",
input int lineno = 0 )

Updates the DUT register value with its desired RAL value. It can be done using frontdoor
(write()) or backdoor (poke()) access.
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Code listing 3.9 uvm reg::mirror()
virtual task mirror ( output uvm_status_e status ,

input uvm_check_e check = UVM_NO_CHECK ,
input uvm_path_e path = UVM_DEFAULT_PATH ,
input uvm_reg_map map = null ,
input uvm_sequence_base parent = null ,
input int prior = -1,
input uvm_object extension = null ,
input string fname = "",
input int lineno = 0 )

Updates and optionally compares register’s mirrored value with an actual value from the
DUT. Using arguments UVM_NO_CHECK and UVM_CHECK current mirrored value can be compared
with an actual DUT register value and an error message can be displayed in case of these values
not being equal. This method can be executed with frontdoor (write()) or backdoor (poke())
accesses.

Code listing 3.10 uvm reg::predict()
virtual function bit predict ( uvm_reg_data_t value ,

uvm_reg_byte_en_t be = -1,
uvm_predict_e kind = UVM_PREDICT_DIRECT ,
uvm_path_e path = UVM_FRONTDOOR ,
uvm_reg_map map = null ,
string fname = "",
int lineno = 0 )

Manually changes the mirrored value of this register. Returns TRUE if the prediction was
successful for every field in the register.

All information about uvm_reg class is taken from [18] and [20].

3.2.2.2 uvm reg field
This class represents individual bits in a register. They can be configured to have specified
size, least significant bit (LSB), reset value and access policy using configure() method. RAL
supports wide variety of access policies as shown in the table 3.1 (information about them is
taken from [21]).

Relevant uvm_reg_field methods are described in detail below.

Code listing 3.11 uvm reg field::new()
function new ( string name = "uvm_reg_field" )

Creates a new field instance. This method should not be called directly, instead,
uvm_reg_field::type_id::create()
factory method should be invoked.

Code listing 3.12 uvm reg field::configure()
function void configure ( uvm_reg parent ,

int unsigned size ,
int unsigned lsb_pos ,
string access ,
bit volatile ,
uvm_reg_data_t reset ,
bit has_reset ,
bit is_rand ,
bit individually_accessible )
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Table 3.1 Register field access policies supported by UVM RAL

Access policy Description

RO (Read-only) Writing has no effect, reading returns current register
value

RW (Read-write) Writing updates current register value, reading returns
current register value

RC (Read-clear) Writing has no effect, reading clears all register bits
RS (Read-set) Writing has no effect, reading sets all register bits

WRC (Write-read-clear) Writing updates current register value, reading clears
all register bits

WRS (Write-read-set) Writing updates current register value, reading sets all
register bits

WC (Write-clear) Writing clears all register bits, reading returns current
register value

WS (Write-set) Writing sets all register bits, reading returns current
register value

WSRC
(Write-set-read-clear)

Writing sets all register bits, reading clears all register
bits

WCRS
(Write-clear-read-set)

Writing clears all register bits, reading sets all register
bits

W1C (Write-1-clear) Writing ’1’ clears matching bit, reading returns current
register value

W1S (Write-1-set) Writing ’1’ sets matching bit, reading returns current
register value

W1T (Write-1-toggle) Writing ’1’ toggles matching bit, reading returns
current register value

W0C (Write-0-clear) Writing ’0’ clears matching bit, reading returns current
register value

W0S (Write-0-set) Writing ’0’ sets matching bit, reading returns current
register value

W0T (Write-0-toggle) Writing ’0’ toggles matching bit, reading returns
current register value

W1SRC
(Write-1-set-read-clear)

Writing ’1’ sets matching bit, reading clears all register
bits

W1CRS
(Write-1-clear-read-set)

Writing ’1’ clears matching bit, reading sets all register
bits

W0SRC
(Write-0-set-read-clear)

Writing ’0’ sets matching bit, reading clears all register
bits

W0CRS
(Write-0-clear-read-set)

Writing ’0’ clears matching bit, reading sets all register
bits

WO (Write-only) Writing updates current register value, reading results
in error

WOC (Write-only-clear) Writing clears all register bits, reading results in error
WOS (Write-only-set) Writing sets all register bits, reading results in error

W1 (Write-once)
First write operation updates current register value,
other write operations have no effect, reading returns

current register value

WO1 (Write-only-once)
First write operation updates current register value,

other write operations have no effect, reading results in
error
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Configures the instance of current register field. Specify the parent register of this field, field
size in bits, its position of the LSB relative to the LSB of the register, field’s access policy,
its reset value, whether the field is actually reset, whether the field may be randomized and
whether the field is the only one to occupy a byte lane.

Other relevant methods have the same structure as the uvm_reg ones.

3.2.2.3 uvm reg file
This class encapsulates a collection of registers and other register files.

Relevant methods include:

Code listing 3.13 uvm reg file::new()
function new ( string name = "" )

Creates a new instance of a register file with a specified name.

Code listing 3.14 uvm reg file::configure()
function void configure ( uvm_reg_block blk_parent ,

uvm_reg_file regfile_parent ,
string hdl_path = "" )

Configures this register file. Specify the parent register block and parent register file. If
current register file is instantiated in a register block, regfile_parent should be set to NULL.
If current register file is instantiated in another register file, blk_parent should be set to that
register file’s parent block and regfile_parent should be set to that register file. We can also
specify the register file’s HDL path [22].

3.2.2.4 uvm mem
This class represents memory block in the actual design. It can be extended and configured to
have specified memory depth, width and access policy. Supported access policies are read-write
for RAM and read-only for ROM memories.

Just like with registers, RAL memories can be read and written with read()/peek() and
write()/poke() methods. These methods are structurally the same as in the uvm_reg base class
with the exception of offset parameter, which can be used to read/write data from/to specified
offset in the memory.

Unlike registers, however, memories do not have desired and mirrored values, since mem-
ories are usually much larger than any register file and duplicating all memory words will be
counterproductive.

In case of memories, we are able to use burst_read() and burst_write() methods. With
these methods we can read and write multiple memory words at once, without the need to
execute read() and write() on every individual word.

All relevant methods are described below.

Code listing 3.15 uvm mem::new()
function new ( string name ,

longint unsigned size ,
int unsigned n_bits ,
string access = "RW",
int has_coverage = UVM_NO_COVERAGE )

Creates new RAL memory with a specified name. Parameter size specifies the number of
memory locations (memory depth), while n_bits is a number of bits in every memory location
(memory width). Access policy and functional coverage models can also be specified.
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Code listing 3.16 uvm mem::configure()
function void configure ( uvm_reg_block parent ,

string hdl_path = "" )

Configures current instance of RAL memory with specified parent register block and HDL
path.

Code listing 3.17 uvm mem::burst write()
virtual task burst_write ( output uvm_status_e status ,

input uvm_reg_addr_t offset ,
input uvm_reg_data_t value[],
input uvm_path_e path = UVM_DEFAULT_PATH ,
input uvm_reg_map map = null ,
input uvm_sequence_base parent = null ,
input int prior = -1,
input uvm_object extension = null ,
input string fname = "",
input int lineno = 0 )

Writes the values from the value dynamic array into the memory starting at the specified
offset. Frontdoor (UVM_FRONTDOOR) or backdoor (UVM_BACKDOOR) accesses can be used. This
method respects the access policy of a memory, i.e. values inside of a ROM memory will not be
overwritten.

Code listing 3.18 uvm mem::burst read()
virtual task burst_read ( output uvm_status_e status ,

input uvm_reg_addr_t offset ,
output uvm_reg_data_t value[],
input uvm_path_e path = UVM_DEFAULT_PATH ,
input uvm_reg_map map = null ,
input uvm_sequence_base parent = null ,
input int prior = -1,
input uvm_object extension = null ,
input string fname = "",
input int lineno = 0 )

Reads and stores data from the memory starting at the specified offset into the value[]
dynamic array. The number of read memory locations is defined by the size of value[] array.

Frontdoor (UVM_FRONTDOOR) or backdoor (UVM_BACKDOOR) accesses can be used. This method
respects the access policy of a memory.

All information about uvm_mem base class is taken from [23].

3.2.2.5 uvm reg map
Every register and memory block is mapped to specific addresses in the register block. This
uvm_reg_map base class represents an address map, i.e. a collection of registers and memories
that are accessible via specific physical interface. Register block can have multiple address maps,
each corresponding to a physical interface that is connected to a DUT.

Registers and memories can be added to an address map with add_reg() and add_mem()
methods respectively. By using these methods we can specify register/memory access policy
and offset in current address map. Valid policies are read-write, read-only and write-only. These
policies refer to the registers’ or memories’ accessibility via this address map, not the accessibility
of registers and memories themselves.
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For example, register can have read-write policy, while not begin accessible for writing via
this specific register map. That same register can be mapped to another address map with
read-write accessibility and in that case it can be successfully written to.

Address map of another register sub-block can be added to current register block at a specified
offset with a add_submap() method.

Before executing any read and write transaction on registers and memories a sequencer and
an adapter must be specified for current address map. It can be achieved using set_sequencer()
method.

All relevant uvmr_reg_map methods are described below.

Code listing 3.19 uvm reg map::new()
function new ( string name = "uvm_reg_map" )

Creates a new instance of register address map with a specified name.

Code listing 3.20 uvm reg map::configure()
function void configure ( uvm_reg_block parent ,

uvm_reg_addr_t base_addr ,
int unsigned n_bytes ,
uvm_endianness_e endian ,
bit byte_addressing = 1 )

Configures the current address map of parent register block. Every register, memory or sub-
block will be offset relative to the base address (base_addr) of this address map. Byte width
of the bus, on which this map is used, can be specified with n_bytes parameter. Parameter
byte_addressing specifies whether or not consecutive memory addresses refer to the data that
is one byte apart.

Code listing 3.21 uvm reg map::add reg()
virtual function void add_reg ( uvm_reg rg ,

uvm_reg_addr_t offset ,
string rights = "RW",
bit unmapped = 0,
uvm_reg_frontdoor frontdoor = null )

Adds the rg register to this address map at the specified offset relative to the base address
of the map. Register’s accessibility is defined by the rights parameter. Valid options are “RW”,
“RO” and “WO”. A register can only be added to an address map whose parent block is the
same as the register’s parent block.

Code listing 3.22 uvm reg map::add mem()
virtual function void add_mem ( uvm_mem mem ,

uvm_reg_addr_t offset ,
string rights = "RW",
bit unmapped = 0,
uvm_reg_frontdoor frontdoor = null )

Adds the mem memory to this address map at the specified offset relative to the base address
of the map. Memory’s accessibility is defined by the rights parameter. Valid options are “RW”,
“RO” and “WO”. A memory can only be added to an address map whose parent block is the
same as the memory’s parent block.

Code listing 3.23 uvm reg map::add submap()
virtual function void add_submap ( uvm_reg_map child_map ,

uvm_reg_addr_t offset )
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Adds the child_map address sub-map to this address map at the specified offset relative
to the base address of this map. An address sub-map can only be added to an address map in
the grandparent register block of the address sub-map.

Code listing 3.24 uvm reg map::set sequencer()
virtual function void set_sequencer ( uvm_sequencer_base sequencer ,

uvm_reg_adapter adapter = null )

Sets the sequencer and adapter for this register address map. Before executing any methods
that communicate with the DUT registers and memories via this address map, set_sequencer()
method for this map must be called.

Code listing 3.25 uvm reg map::set base addr()
virtual function void set_base_addr ( uvm_reg_addr_t offset )

Sets the base address for this this map.

Code listing 3.26 uvm reg map::set auto predict()
function void set_auto_predict ( bit on = 1 )

Enables the implicit (auto) prediction for this map. When implicit prediction is turned on,
register’s mirorred value is updated whenever any read or write operation is executed on the
corresponding register in the register model. It is done with via uvm_reg::predict() method.

If implicit prediction is turned off, mirrored values of the registers are not updated after any
read or write operations.

Code listing 3.27 uvm reg map::get auto predict()
function bit get_auto_predict ()

Returns ’1’ if implicit (auto) prediction mode is turned on for this map. Returns ’0’ otherwise.
All information about uvm_reg_map base class is taken from [24].

3.2.2.6 uvm reg adapter
Register model communicates with DUT by executing various RAL methods, such as

uvm_reg::read() and uvm_reg::write()

or

uvm_mem::read()/burst_read() and uvm_mem::write()/burst_write()

During the execution of these methods register model components communicate with each
other using generic structure of type uvm_reg_bus_op:

Code listing 3.28 Structure uvm reg bus op
typedef struct {

uvm_access_e kind;
uvm_reg_addr_t addr;
uvm_reg_data_t data;
int n_bits;
uvm_reg_byte_en_t byte_en;
uvm_status_e status;

} uvm_reg_bus_op;

This structure consists of
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kind Kind of current transaction – read or write.

addr Target address in address map.

data Data to read or write.

n bits Number of bits being transferred.

byte en Enables for the byte lanes on the bus. Meaningful only when the bus supports byte
enables and the operation originates from a field write/read, i.e. when the width of the bus
is shorter than the width of a register/memory word.

status Result of the transaction.

In order for driver to understand, what register or memory word should be written to or read
from, we need to convert this register model transaction to a protocol specific bus transaction.
This can be achieved using uvm_reg_adapter base class.

In order for register model to successfully communicate with DUT, the user should extend
adapter base class and implement two methods:

Code listing 3.29 uvm reg adapter::reg2bus()
pure virtual function uvm_sequence_item reg2bus (

const ref uvm_reg_bus_op rw
)

and

Code listing 3.30 uvm reg adapter::bus2reg()
pure virtual function void bus2reg (

uvm_sequence_item bus_item ,
ref uvm_reg_bus_op rw

)

Method reg2bus() is responsible for converting uvm_reg_bus_op transaction to sequence
item. Inside it the user must create new bus-specific sequence item, set its members to corre-
sponding values based on a rw register model transaction, and return it.

Method bus2reg() does the opposite. The user must set the members of the rw register
transaction to the corresponding values based on a bus_item bus transaction. Unlike in the
reg2bus(), bus transaction is already created.

All information about uvm_reg_adapter base class is taken from [25].

3.2.2.7 uvm reg block
Register block can contain registers, register files, memories, address maps and other register
blocks, and is represented by uvm_reg_block base class.

Address map can be created in this block using create_map() method. With this method
we can also specify base address for this map. All registers, memories and sub-blocks in current
map will be offset with regard to this base address.

Before executing any read and write transaction on registers and memories, top-level register
block should be locked. It can be done with a help of lock_model() method. This method
recursively locks an entire register block and builds its address map. After this, no more registers
and memories can be added to current register block. Once the block is locked, it can not be
unlocked.

Relevant uvm_reg_block methods are described in detail below.
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Code listing 3.31 uvm reg block::new()
function new (

string name = "",
int has_coverage = UVM_NO_COVERAGE

)

Creates an instance of a new register block with a specified name and functional coverage
models.

Code listing 3.32 uvm reg block::configure()
function void configure (

uvm_reg_block parent = null ,
string hdl_path = ""

)

Configure current register block’s parent block and HDL path.

Code listing 3.33 uvm reg block::create map()
virtual function uvm_reg_map create_map (

string name ,
uvm_reg_addr_t base_addr ,
int unsigned n_bytes ,
uvm_endianness_e endian ,
bit byte_addressing = 1

)

Creates and returns a new address map for this register block. Base address of the map, width
of the bus (that will be associated with this map) in bytes, endianness and byte addressing can
be configured. Every register block already has instantiated default_map of type uvm_reg_map.

Code listing 3.34 uvm reg block::lock model()
virtual function void lock_model ()

Recursively locks current register model.

Code listing 3.35 uvm reg block::is locked()
function bit is_locked ()

Returns ’1’ if current register block is locked, returns ’0’ otherwise.
All information about uvm_reg_block base class is taken from [26].

3.2.2.8 uvm reg predictor
Base class uvm_reg_predictor is capable of updating mirrored values of RAL registers based
on observed transactions on the interface. Detailed description of RAL predictor is presented in
section 3.2.3.2.

3.2.3 Prediction modes
UVM RAL supports three prediction modes for register models: implicit (auto), explicit and
passive.

All information about RAL prediction modes is taken from [27].
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Figure 3.5 Testbench Structure of a Register Model with Implicit Prediction. Unedited picture is
taken from: [28]

3.2.3.1 Implicit (auto) prediction
Register model with implicit prediction updates corresponding registers’ mirrored values (with
uvm_reg::predict() method) after any read or write operation is executed in current register
model. Typical structure of such register model is depicted in figure 3.5.

To enable implicit mode all the user needs to do is to call

uvm_reg_map::set_auto_predict(1)

for the address map of the top-level register block. With this mode enabled, all registers, that
are mapped to that address map, will be updated after any read or write operation is executed
via this map.

The sole advantage of implicit prediction is that it is easy to set up – it can be enabled with
one method. Big disadvantage of such prediction mode is not being able to update mirrored
values if the registers are read or written with sequences that are executed directly on the agent’s
sequencer. To be more specific – register model is blind to any operations with DUT registers if
they are not executed through a register model.

3.2.3.2 Explicit prediction
Register model with explicit prediction enabled is able to monitor all transactions (including those
outside of register model) that are occurring on the interfaces. To achieve that, register model
utilizes so-called predictor, which is represented by uvm_reg_predictor base class. Typical
structure of such register model is depicted in 3.6.

Explicit prediction is enabled by default, but in order for it to work properly we need to take
following steps:

1. Monitor (uvm_monitor) needs to be set up on the bus and should be able to catch every
transaction that is executed on the registers in the DUT.

2. The predictor (uvm_reg_predictor) should be configured:

a. Corresponding register model address map should be assigned to map variable of the
uvm_reg_predictor.
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Figure 3.6 Testbench Structure of a Register Model with Explicit Prediction. Source: [28]

Figure 3.7 Testbench Structure of a Register Model with Passive Prediction. Unedited picture is
taken from: [28]

b. Register model adapter should be assigned to adapter variable of the uvm_reg_predictor.
Predictor should be able to convert bus transaction that it gets from the monitor, to register
model transactions.

c. Monitor’s analysis port should be connected to the bus_in analysis port of the predictor.

With predictor properly set up, register model will be able to monitor every occurring trans-
action on the bus and will be able to update corresponding register’s mirrored value.

Disadvantage of explicit prediction is that two extra components (monitor and predictor)
need to be created and configured.

3.2.3.3 Passive prediction
Register model with passive prediction is able to monitor all transactions on the bus, but is
unable to execute any frontdoor operations on the registers itself. Typical structure of register
model with passive prediction is presented in figure 3.7.

The sole purpose of such register model is to keep registers up to date with the actual DUT
registers.
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The only way for such register model to read or write values in DUT registers is to execute
methods using backdoor access.

3.2.4 Coverage collection
UVM RAL supports automatic coverage collection for registers and memories. If implemented
correctly, coverage can be used to check whether all registers or memory words were read or
written, and whether registers and memories had specified values at some point during the
simulation.

All information about coverage collection for registers, register blocks and memories are taken
from [20], [26] and [23] respectively.

3.2.4.1 include coverage()
With static method

Code listing 3.36 uvm reg::include coverage()
function void uvm_reg :: include_coverage ( string scope ,

uvm_reg_cvr_t models ,
uvm_object accessor = null );

uvm_reg_cvr_rsrc_db ::set({"uvm_reg ::", scope},
"include_coverage",
models , accessor );

endfunction

we can specify which functional coverage model should be used in corresponding register,
register block or memory. This method creates a new database resource, writes models value to
it, and sets it into the database using scope {"uvm_reg::", scope} and name “include coverage”
as the lookup parameters.

Values of models variable can be user-defined or predefined by RAL, since uvm_reg_cvr_t
is just a 32-bit wide variable:

Code listing 3.37 uvm reg cvr t
typedef bit [‘UVM_REG_CVR_WIDTH -1:0] uvm_reg_cvr_t;

‘UVM_REG_CVR_WIDTH has a value of 32 by default.
Predefined functional coverage models are:

Code listing 3.38 Enumeration uvm coverage model e
typedef enum uvm_reg_cvr_t {

UVM_NO_COVERAGE = ’h0000 ,
UVM_CVR_REG_BITS = ’h0001 ,
UVM_CVR_ADDR_MAP = ’h0002 ,
UVM_CVR_FIELD_VALS = ’h0004 ,
UVM_CVR_ALL = -1

} uvm_coverage_model_e;

Because these values are the powers of two, desired functional coverage model can be cre-
ated by bit-wise OR operation between individual model identifiers. Each model represents the
following [29]:

UVM NO COVERAGE Coverage collection is turned off.

UVM CVR REG BITS Individual register bits.
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UVM CVR ADDR MAP Individual register and memory addresses.

UVM CVR FIELD VALS Field values.

UVM CVR ALL All coverage models.

3.2.4.2 build coverage()
The new() method of base classes uvm_reg, uvm_reg_block and uvm_mem has a functional cov-
erage model as one of the parameters, which can be set for this register/register block/memory.
To properly do so we need to utilize build_coverage() method:

Code listing 3.39 uvm reg::build coverage()
function uvm_reg_cvr_t uvm_reg :: build_coverage (uvm_reg_cvr_t models );

build_coverage = UVM_NO_COVERAGE;
void ’( uvm_reg_cvr_rsrc_db :: read_by_name ({"uvm_reg ::", get_full_name ()},

"include_coverage",
build_coverage , this ));

return build_coverage & models;
endfunction: build_coverage

Register blocks and memories also have this method with the same structure. This method
controls what functional coverage model should be built in current register/register block/mem-
ory. It locates a resource by scope

{"uvm_reg::", get_full_name()}

and name “include coverage” and compares its value against models coverage model. This
method then returns bit-wise AND between models and coverage model from database set by
uvm_reg::include_coverage().

Build coverage method then should be used when the new instance of register/register block-
/memory is created. For example, if we want to create 32 bit register with coverage model
UVM_CVR_ALL we would call new() method like that:
class my_register extends uvm_reg;

function new (string name = "my_register");
super.new(name , 32, build_coverage(UVM_CVR_ALL ));

endfunction
endclass : my_register

By using build_coverage() method we ensure, that only the desired coverage model is built
for current register/register block/memory. For example, if coverage model for a whole register
model was set by uvm_reg::include_coverage() to UVM_NO_COVERAGE and new() method was
the same as in the code above, no coverage model will be built for this register.

3.2.4.3 add coverage()
We can expand current functional coverage model with method

Code listing 3.40 uvm reg::add coverage()
function void uvm_reg :: add_coverage (uvm_reg_cvr_t models );

m_has_cover |= models;
endfunction: add_coverage

Notice that there is no way to “delete” an already built coverage model, we can only add
new ones (m_has_cover is of type int). This method should only be called in the constructor
of subsequently derived classes.

Register blocks and memories also have this method with the same structure.
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3.2.4.4 has coverage()
We can check if current register/register block/memory has specified functional coverage models.

Code listing 3.41 uvm reg::has coverage()
function bit uvm_reg :: has_coverage (uvm_reg_cvr_t models );

return (( m_has_cover & models) == models );
endfunction: has_coverage

This method returns ’1’ even when there are other coverage models enabled besides coverage
models specified in models.

Register blocks and memories also have this method with the same structure.

3.2.4.5 set coverage()
Coverage sampling can be turned on or off for specified coverage models.

Code listing 3.42 uvm reg::set coverage()
function uvm_reg_cvr_t uvm_reg :: set_coverage (uvm_reg_cvr_t is_on );

if (is_on == uvm_reg_cvr_t ’( UVM_NO_COVERAGE )) begin
m_cover_on = is_on;
return m_cover_on;

end

m_cover_on = m_has_cover & is_on;

return m_cover_on;
endfunction: set_coverage

This method returns sum of coverage models with enabled coverage sampling (m_cover_on
is of type int). Coverage sampling is not enabled by default.

Memories also have this method with the same structure.
By executing this method on a register block, we enable sampling for specified coverage models

for this register block and recursively for all register blocks, registers and memories within it.

3.2.4.6 get coverage()
To check whether the coverage sampling is turned on for specified coverage models we can use
method

Code listing 3.43 uvm reg::get coverage()
function bit uvm_reg :: get_coverage (uvm_reg_cvr_t is_on);

if (has_coverage(is_on) == 0)
return 0;

return (( m_cover_on & is_on) == is_on);
endfunction: get_coverage

This method returns ’1’ even if coverage sampling is enabled for other coverage models besides
coverage models specified in is_on.

Register blocks and memories also have this method with the same structure.

3.2.4.7 sample()
Sample method for RAL registers
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Code listing 3.44 uvm reg::sample()
protected virtual function void sample ( uvm_reg_data_t data ,

uvm_reg_data_t byte_en ,
bit is_read ,
uvm_reg_map map )

is empty by default and is executed every time current RAL register is read or written with
specified data via specified map (only if implicit or explicit prediction is correctly set up for this
map).

Sample method for RAL register blocks

Code listing 3.45 uvm reg block::sample()
protected virtual function void sample ( uvm_reg_addr_t offset ,

bit is_read ,
uvm_reg_map map )

is also empty by default and is executed every time an address within one of its address maps
in current register block is read or written (only if implicit or explicit prediction is correctly set
up for these maps). Offset refers to the offset within current register block, not the absolute
address.

Sample method for RAL memories

Code listing 3.46 uvm mem::sample()
protected virtual function void sample ( uvm_reg_addr_t offset ,

bit is_read ,
uvm_reg_map map )

is also empty by default and is executed every time memory word at a specified offset in
current memory is read or written. Offset refers to the offset within current memory, not the
absolute address.

It is user’s responsibility to correctly implement these sample methods for correct coverage
collection.

3.2.4.8 sample values()
This method is almost identical to the sample() methods above. The main difference is that it
is completely up to user to correctly implement this method, since it is not automatically called
whenever RAL register is read or written in register model. Only register blocks and registers
support the usage of this method, while memories do not.

If this method is implemented correctly, user can sample values at any point in time during
simulation, not necessarily only after read and write operations on registers.

3.2.4.9 Setting up coverage collection
In order to properly set up automatic coverage collection for register block/register/memory we
need to:

1. Specify which functional coverage models should be built in register blocks/registers/memo-
ries. It should be done before register model is built by utilizing

uvm_reg::include_coverage()

2. Register block/register/memory should be constructed (new()) with a desired coverage model
by utilizing build_coverage() method.
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3. Cover groups should be instantiated for specified coverage models based on a has_coverage()
method.

4. Sample method(s) should sample values based on a get_coverage() method.

5. Before starting any sequence/test, sampling for desired coverage models should be enabled
for desired register blocks/registers/memories by utilizing set_coverage() method.

3.2.5 Built-in RAL sequences
UVM register abstraction layer provides a set of built-in sequences for register model testing.
These sequences can be used to check basic functionality of RAL registers and memories. For
example, reset values, reading and writing, HDL paths and access policies can be checked by
executing corresponding sequence.

To start the desired sequence all the user needs to to is to specify what register/register
block/memory should be tested. Than method start() of the sequence should be called.

Before starting any RAL built-in sequence DUT should be reset.
Each register/register block/memory can be left out from testing by current sequence. This

can be done by setting a bit-type resource into database:

uvm_resource_db #(bit)::set (
{"REG::",regmodel.blk.get_full_name (),".*"},
"NO_REG_TESTS", 1

);

where regmodel.blk is either register, register block or memory. Each sequence has their
own set of disable resources, which are listed in the following sections.

3.2.5.1 Register Sequences
Built-in RAL registers sequences are:

uvm reg hw reset seq tests the reset values of registers in specified register block. This se-
quence reads all registers in register block through all available address maps and compares
these read back values with expected reset values [30].

uvm reg single bit bash seq tests specified register by writing ’1’ and ’0’ values in every bit
via all available address maps. With register’s mirrored value sequence checks if these values
were successfully written.
Registers containing fields with unknown access policies can not be tested [31].

uvm reg bit bash seq sequence executes uvm_reg_single_bit_bash_seq sequence on every
register in a provided register block [31].

uvm reg single access seq verifies, that a specified register can be written through its default
address map (via frontdoor) and then can be read using backdoor access and vice versa.
Sequence checks, that the result of an operation is equal to register’s mirrored value.
This sequence:

1. Writes reverted reset value via frontdoor.
2. Reads that value via backdoor and compares it against mirrored value.
3. Writes reset value via backdoor.
4. Reads that value via frontdoor and compares it against mirrored value.
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Table 3.2 Built-in RAL register sequences

Sequence Disable Resource Can be executed
on

uvm_reg_hw_reset_seq
NO_REG_TESTS
NO_REG_HW_RESET_TEST

Register Block

uvm_reg_single_bit_bash_seq
NO_REG_TESTS
NO_REG_BIT_BASH_TEST

Register

uvm_reg_bit_bash_seq
NO_REG_TESTS
NO_REG_BIT_BASH_TEST

Register Block

uvm_reg_single_access_seq
NO_REG_TESTS
NO_REG_ACCESS_TEST

Register

uvm_reg_access_seq
NO_REG_TESTS
NO_REG_ACCESS_TEST

Register Block

uvm_reg_shared_access_seq
NO_REG_TESTS
NO_REG_SHARED_ACCESS_TEST

Register

Registers that can not be accessed via backdoor, registers with read-only fields or registers
containing fields with unknown access policies can not be tested [32].

uvm reg access seq sequence executes uvm_reg_single_access_seq sequence on every reg-
ister in a provided register block [32].

uvm reg shared access seq verifies the accessibility of a specified register through multiple
address maps by writing values to it via all available address maps and then reading it back
from all other address maps. Mirrored value of a register is used to check the results.
Registers containing fields with unknown access policies can not be tested [33].
If specified register is only mapped in one address map – sequence does nothing.

Table 3.2 describes the disable resources for these sequences and RAL components, on which
they can be executed. Sequence is not executed on a register or register block, if at least one of
the corresponding disable resources was set for that register or register block.

3.2.5.2 Memory Sequences
Built-in RAL memory sequences are:

uvm mem single walk seq executes walking-ones algorithm on a specified memory [34]. Al-
gorithm can be described using pseudocode:
// The walking process is , for address k:
// - Write ˜k
// - Read k-1 and expect ˜(k -1) if k > 0
// - Write k-1 at k-1
// - Read k and expect ˜k if k == last address

uvm mem walk seq executes uvm_mem_single_walk_seq on every memory in specified regis-
ter block [34].

uvm mem single access seq writes data to a specified memory using its default address map
(via frontdoor) and then reads it back using backdoor access and vice versa. Sequence checks
if written and read data are equal.
This sequence:
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Table 3.3 Built-in RAL memory sequences

Sequence Disable Resource Can be executed
on

uvm_mem_single_walk_seq
NO_REG_TESTS
NO_MEM_TESTS
NO_MEM_WALK_TEST

Memory

uvm_mem_walk_seq
NO_REG_TESTS
NO_MEM_TESTS
NO_MEM_WALK_TEST

Register Block

uvm_mem_single_access_seq
NO_REG_TESTS
NO_MEM_TESTS
NO_MEM_ACCESS_TEST

Memory

uvm_mem_access_seq
NO_REG_TESTS
NO_MEM_TESTS
NO_MEM_ACCESS_TEST

Register Block

uvm_mem_shared_access_seq

NO_REG_TESTS
NO_MEM_TESTS
NO_REG_SHARED_ACCESS_TEST
NO_MEM_SHARED_ACCESS_TEST

Memory

1. Writes random value via frontdoor.
2. If memory can be read, reads that value via backdoor and compares it against written

value.
3. Writes the value from step 1 with inverted bits via backdoor.
4. Reads that value via frontdoor and compares it against written value.

Memories without specified backdoor HDL paths can not be tested [35].

uvm mem access seq executes uvm_mem_single_access_seq on every memory in specified
register block [35].

uvm mem shared access seq verifies the accessibility of a memory through multiple address
maps. This sequence writes data to a specified memory through all available address maps
and then reads it back through all other address maps. Sequence checks if written and read
data are equal [33].
If specified memory is only mapped in one address map – sequence does nothing.

Table 3.3 describes the disable resources for these sequences and RAL components, on which
they can be executed. Sequence is not executed on a memory or register block, if at least one of
the corresponding disable resources was set for that memory or register block.

3.2.5.3 Aggregated Sequences
Aggregated sequences execute aforementioned sequences on a specified register block. These
sequences are:

uvm reg mem shared access seq executes

uvm_reg_shared_access_seq on every register in specified register block [33].
uvm_mem_shared_access_seq on every memory in specified register block [33].
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uvm reg mem built in seq executes user-defined set of built-in RAL sequences depending on
tests variable of this sequence [36]:
bit [63:0] tests = UVM_DO_ALL_REG_MEM_TESTS;

UVM_DO_ALL_REG_MEM_TESTS is a default value of tests and is a part of the enumeration [29]:

Code listing 3.47 Enumeration uvm reg mem tests e
typedef enum bit [63:0] {

// Executes uvm_reg_hw_reset_seq
UVM_DO_REG_HW_RESET = 64’ h0000_0000_0000_0001 ,

// Executes uvm_reg_bit_bash_seq
UVM_DO_REG_BIT_BASH = 64’ h0000_0000_0000_0002 ,

// Executes uvm_reg_access_seq
UVM_DO_REG_ACCESS = 64’ h0000_0000_0000_0004 ,

// Executes uvm_mem_access_seq
UVM_DO_MEM_ACCESS = 64’ h0000_0000_0000_0008 ,

// Executes uvm_reg_mem_shared_access_seq
UVM_DO_SHARED_ACCESS = 64’ h0000_0000_0000_0010 ,

// Executes uvm_mem_walk_seq
UVM_DO_MEM_WALK = 64’ h0000_0000_0000_0020 ,

// Executes all of the above
UVM_DO_ALL_REG_MEM_TESTS = 64’ hffff_ffff_ffff_ffff

} uvm_reg_mem_tests_e;

By looking at the source code of this sequence [37] we can see that if this sequence is set to
execute uvm_reg_mem_shared_access_seq, register blocks that have disable resource set to
NO_MEM_TESTS or NO_MEM_SHARED_ACCESS_TEST

would still have uvm_reg_mem_shared_access_seq executed on them, contrary to the source
code of uvm_reg_mem_shared_access_seq [38] and what is specified in [33].
Same thing happens in case of uvm_mem_walk_seq sequence. Register blocks that have disable
resource set to
NO_MEM_TESTS

would still have uvm_mem_walk_seq executed oh them, contrary to the source code of the
sequence uvm_mem_walk_seq [39] and what is specified in [34].

uvm reg mem hdl paths seq verifies that HDL paths for the default design abstraction are
accessible by the simulator via backdoor access. If register or memory does not have defined
HDL path – it is not checked. This sequence is performed in zero simulation time and does
not read/write from/to the DUT [40].

Table 3.4 describes the disable resources for these sequences and RAL components, on which
they can be executed. Sequence is not executed on a register block, if at least one of the
corresponding disable resources was set for that register block.
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Table 3.4 Built-in RAL aggregated sequences

Sequence Disable Resource Can be executed
on

uvm_reg_mem_shared_access_seq

NO_REG_TESTS
NO_MEM_TESTS
NO_REG_SHARED_ACCESS_TEST
NO_MEM_SHARED_ACCESS_TEST

Register Block

uvm_reg_mem_built_in_seq
Depends on the specified se-
quences Register Block

uvm_reg_mem_hdl_paths_seq None Default Design
Abstraction
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Chapter 4

Implementation

This chapter describes the process of creating testbench and RAL register model for DUT,
which consists of block of registers and RAM and ROM memories. After that, the process of
integrating this register model into the testbench is explained.

4.1 Used Software and Tools
DVT Eclipse was used as an IDE for this project and Questa simulator was used for simulations.
These tools were chosen because the author of this thesis was already familiar with these tools
while studying the subject “Digital Circuit Simulation and Verification” (NI-SIM), which is
taught at Faculty of Information Technology at Czech technical university in Prague (CTU
FIT).

4.2 Initial Testbench
At the start of this project, the goal was to create simple DUT blocks and register model to
check if they would work correctly. Initial testbench is depicted in figure 4.1 and:
1. Has DUT block of 16 read-write and 16 read-only registers each 32-bit wide.

2. Has DUT block of RAM.

3. Has implemented register model, which consists of:

a. 16 read-write and 16 read-only RAL registers.
b. RAL RAM.
c. One (default) address map with implicit prediction.
d. Adapter.

4. Has passive agent which is connected to a default address map.

5. Does not support coverage collection in register model.

6. Is capable of reading and writing registers and RAM using read() and write() RAL meth-
ods, i.e. address map of register model correctly communicates with agent’s sequencer and is
able to employ adapter component to convert RAL transactions to bus transaction and vice
versa.
After that, various improvements were added to that testbench, which are described in section

about final testbench 4.3.

37
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Figure 4.1 Structure of Initial Testbench
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4.2.1 Design Under Test
4.2.1.1 Block of Registers
The structure of block of registers is the same as in the Vojtěch J́ılek’s master’s thesis [5], i.e. it
contains 32 registers each 32 bits wide. Such structure of general purpose registers is used in the
MIPS processors with 32-bit long instructions.

Initial block of registers consists of 16 read-write and 16 read-only registers:

Code listing 4.1 Initial block of registers
module my_regs
(

input logic clk ,
input logic reset ,
input logic [31:0] reg_addr ,
input logic write_enable ,
input logic [31:0] reg_in ,
output logic [31:0] reg_out

);

logic [31:0] regs [0:31];

assign reg_out = regs[reg_addr ];

always @(posedge clk) begin
if (reset === 1’b0) begin

foreach (regs[i]) begin
regs[i] <= 32’ h0000_0000;

end
end else begin

if (write_enable === 1’b1) begin
// First 16 registers are read -write (regs [0:15])
// Last 16 registers are read -only (regs [16:31])
if (reg_addr >= 32’d0 && reg_addr <= 32’d15) begin

regs[reg_addr] <= reg_in;
end

end
end

end

4.2.1.2 RAM
Initial RAM memory consists of 1024 words each 32 bits wide. Such width and depth of the
memory are the same as in the Vojtěch J́ılek’s master’s thesis [5]:

Code listing 4.2 Initial RAM
module my_mem
(

input logic clk ,
input logic reset ,
input logic [31:0] mem_addr ,
input logic write_enable ,
input logic [31:0] mem_in ,
output logic [31:0] mem_out

);
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logic [31:0] mem [0:1023];

assign mem_out = mem[mem_addr ];

always @(posedge clk) begin
if (reset === 1’b0) begin

foreach (mem[i]) begin
mem[i] <= 32’ h0000_0000;

end
end else begin

if (write_enable === 1’b1) begin
mem[mem_addr] <= mem_in;

end
end

end

4.2.2 Interface
Interface is needed for driver (and later for monitor) to successfully communicate with DUT:

Code listing 4.3 Initial interface
interface my_interface;

logic clk;
logic reset;

// Signals that communicate with registers
logic [31:0] reg_addr;
logic reg_write_enable;
logic [31:0] reg_in;
logic [31:0] reg_out;

// Signals that communicate with memory
logic [31:0] mem_addr;
logic mem_write_enable;
logic [31:0] mem_in;
logic [31:0] mem_out;

endinterface

4.2.3 Bus Transaction Sequence Item
In order for driver (and later for monitor) to drive (observe) logic level signals on the interface,
we need to specify the structure of bus transaction that register model would pass to the driver
(would receive from the monitor). We can do that by extending base uvm_sequence_item class,
where we declare all variables that are needed for communication between DUT and testbench:
class my_reg_model_item extends uvm_sequence_item;

rand logic mem_op;
rand logic [31:0] addr;
rand logic write_enable;
rand logic [31:0] data;

‘uvm_object_utils_begin(my_reg_model_item)
‘uvm_field_int(mem_op , UVM_ALL_ON)
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‘uvm_field_int(addr , UVM_ALL_ON)
‘uvm_field_int(write_enable , UVM_ALL_ON)
‘uvm_field_int(data , UVM_ALL_ON)

‘uvm_object_utils_end

function new (string name = "my_reg_model_item");
super.new(name);

endfunction

endclass

We need to differentiate between memory and register block operations, that is why 1-bit
variable mem_op is instantiated (mem_op == 1’b1 means that current operation is executed in
RAM).

Variable data can be used as an input and as an output, since write_enable variable tells
us whether current transaction is of type READ or WRITE.

4.2.4 Register Model
4.2.4.1 RAL Read-write Registers
Each register needs to have register field that can be instantiated and set up later:

rand uvm_reg_field reg_data;

Function new() is as follows:
function new (string name = "my_ral_reg_rw");

super.new(name , 32, UVM_NO_COVERAGE );
endfunction

Total number of bits in this register is 32 and no functional coverage models are supported
in it.

Function build() is as follows:

function void build ();
reg_data = uvm_reg_field :: type_id :: create("reg_data");
reg_data.configure(this , 32, 0, "RW", 0, 0, 1, 1, 1);

endfunction

Instance of register field is created in build method and then configured to:

1. Have this register as a parent.

2. Have 32 bits.

3. Have the position of LSB to be set to 0 (relative to the LSB of the whole register).

4. Have read-write access.

5. Have volatility bit set to 0.

6. Have reset values set to 0.

7. Have “is bit actually reset?” bit set to 1.

8. Have “can value be randomized?” bit set to 1.

9. Have “is field the only one to occupy a byte lane in the register?” bit set to 1.
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4.2.4.2 RAL Read-only Registers
Read-only registers are created in the same way as read-write registers, the only difference is the
“RO” access policy in uvm_reg_field::configure() method.

4.2.4.3 RAL Register File
Register file consists of aforementioned 16 read-write registers and 16 read-only registers. Con-
trary to this section’s name, these registers were instantiated in uvm_reg_block type block, not
the uvm_reg_file. The reason for this is that when configure() method of a register is called,
expected arguments are this register’s register block parent, register file parent and register’s
HDL path (refer to 3.2). Register block argument can not have NULL value (otherwise compila-
tion error occurs), therefore in order to properly configure any register we need to have its parent
register block already instantiated. That requirement violates the structure of the register model
and that is why the decision was made to have all registers in uvm_reg_block.

Another reason to use uvm_reg_block instead of uvm_reg_file is that register file does not
support enabling of a desired functional coverage model for registers in it (refer to 3.13 and 3.31).

From this point forward this collection of 32 registers would still be referred to as “register
file”, whereas “register block” would refer to a RAL component with register file, RAM and
register map.

Registers in this register file are instantiated like this:

rand my_ral_reg_rw ral_reg_rw_inst [0:15];
rand my_ral_reg_ro ral_reg_ro_inst [0:15];

Method new():

function new (string name = "my_ral_reg_file");
super.new(name , UVM_NO_COVERAGE );

endfunction

Build method consists of:

default_map = create_map("ral_reg_file_map", 0, 4, UVM_LITTLE_ENDIAN );

where we create and configure the default address map of this register file to have:

1. Specified name.

2. Specified base address.

3. Specified byte width of the bus on which this map is used.

4. Specified endian format.

Then we need to create, build, configure and set HDL path for each register in this register
file:

foreach (ral_reg_rw_inst[i]) begin
ral_reg_rw_inst[i] = my_ral_reg_rw :: type_id :: create(

$sformatf("ral_reg_rw_inst_ %0d", i)
);

ral_reg_rw_inst[i].build ();

ral_reg_rw_inst[i]. configure(this);

ral_reg_rw_inst[i]. add_hdl_path_slice(
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$sformatf("regs [%0d]", i), 0, ral_reg_rw_inst[i]. get_n_bits ()
);

default_map.add_reg(ral_reg_rw_inst[i], 4 * i, "RW");
end

Configure method sets this register “file” as parent register block for specified register. Using
add_hdl_path_slice() we can set HDL path for this register to be “regs[i]”, where “i” is register
index (from 0 to 15). HDL paths for the registers are set to that string value because registers’
values in the DUT are stored using signal with a name “regs”. These HDL paths would refer
to the register field from zero bit (relative to the LSB of the register) with length of 32 bits
(get_n_bits() returns the width of the register in bits).

After that, current register is added to the default address map of this register file with
specified offset and access policy. Offset is set like that because it points to a single byte and
each register consists of 4 bytes.

The same process is applied to 16 read-only registers.

4.2.4.4 RAL RAM
Method new() of RAM:

function new (string name = "my_ral_mem");
super.new(name , 1024, 32, "RW", UVM_NO_COVERAGE );

endfunction

creates RAL instance of memory with specified name, number of memory locations, number
of bits in each memory location, access policy and functional coverage model.

Build function:

function void build ();
this.add_hdl_path_slice("mem_inst.mem", 0, 1024 * 32);

endfunction

sets HDL path for this memory to a specified string. That HDL path will refer to this
memory’s data from specified offset (bit) with a specified size (in bits). HDL path for the
memory is set to that string value because memory words in the DUT are stored using signal
with a name “mem”. Notice that we do not need to specify HDL path as “mem inst.mem[i]”,
where “i” is an index of a memory word. Instance of DUT RAM in the testbench would need to
be called “mem inst”.

4.2.4.5 RAL Register Block
RAL component regarded as “register block” in the context of this thesis would contain register
file and RAM (and ROM in the final testbench):

rand my_ral_reg_file ral_reg_file_inst;
rand my_ral_mem ral_mem_inst;

Function new():

function new (string name = "my_ral_reg_block");
super.new(name , UVM_NO_COVERAGE );

endfunction

Function build() consists of:

default_map = create_map("ral_reg_block_map", 0, 4, UVM_LITTLE_ENDIAN );
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Here we configure default map of this register block with specified name, base address, bus
width in bytes and endian format.

After that we need to create, build and configure register file:

ral_reg_file_inst = my_ral_reg_file :: type_id :: create(
"ral_reg_file_inst"

);

ral_reg_file_inst.build ();

ral_reg_file_inst.configure(this , "regs_inst");

default_map.add_submap(ral_reg_file_inst.default_map , 0);

Configure method sets parent register block and HDL path for this register file. After setting
HDL path for this register file to a specified value, all HDL paths of every register in it would
start with “regs inst”. For example, HDL path for a first register would be “regs inst.regs[0]”.
Instance of DUT block of registers in the testbench would need to be called “regs inst”.

With add_submap() method we add a default address map of the register file to a default
address map of the register block with a zero offset.

Lastly, we need to create, build and configure RAM:

ral_mem_inst = my_ral_mem :: type_id :: create("ral_mem_inst");
ral_mem_inst.build ();
ral_mem_inst.configure(this);
default_map.add_mem(ral_mem_inst , 64’ h0000_0000_FF00_0000 , "RW");

Configure method sets the parent register block of the memory and optionally its HDL path.
We do not need to specify HDL path of the memory, because if was already set in the RAL
memory itself.

Finally, we add memory to this register block’s default address map with specified offset and
access policy. Offset is set to that value to avoid overlapping between register file addresses and
memory word addresses.

Address map of the register file was added with zero offset. That means that address
64’h0000_0000_0000_0000 in default map of the register block would refer to the register

regs[0],
64’h0000_0000_0000_0004 to the register regs[1],
64’h0000_0000_0000_0008 to the register regs[2]
and so on. Last register would have an address
64’h0000_0000_0000_007C or 124 in decimal numeral system, since we have 32 registers each

4 bytes wide.
With memory offset being as it is specified, address
64’h0000_0000_FF00_0000 in default map of the register block would refer to a first memory

word – mem[0] and
64’h0000_0000_FF00_0FFC or 4092 in decimal numeral system would refer to the last memory

word – mem[1023], since we have 1024 memory words each 4 bytes wide.

4.2.4.6 RAL Adapter
Adapter needs to have implemented reg2bus() and bus2reg() methods:

function uvm_sequence_item reg2bus(const ref uvm_reg_bus_op rw);
tx = my_pkg :: my_reg_model_item :: type_id :: create("tx");

tx.addr = rw.addr;
tx.write_enable = (rw.kind == UVM_WRITE) ? 1 : 0;
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tx.data = rw.data;

if (rw.addr [31:24] == 8’hFF) begin
tx.mem_op = 1’b1;
tx.addr [31:24] = 8’h00;

end else begin
tx.mem_op = 1’b0;

end

tx.addr = tx.addr >> 2;
return tx;

endfunction

Firstly, we need to create bus transaction (sequence item) and assign proper values to its
variables based on a current RAL transaction. Variable mem_op is set that way, because when
we added memory to the register block we set its address offset to the value

64’h0000_0000_FF00_0000

If the current transaction is executed in memory, we set the address byte [[31:24]] of bus
transaction to zeroes, since in the beginning of this method we just copied the whole address of
RAL transaction.

Lastly, we divide that address by 4 (or logically shift it by 2 bits to the right). We need to
do that, because in RAL transaction each address points to a single byte of data and therefore
address 64’d0 would refer to the first register, address 64’d4 to the second register and so on.
But in the actual design each address points to a single register or memory word. For example
address 64’d0 in the actual block of registers would refer to the first register, address 64’d1 to
the second register and so on.

In bus2reg() method:
function void bus2reg(uvm_sequence_item bus_item , ref uvm_reg_bus_op rw);

assert( $cast(tx, bus_item) ) else begin
‘uvm_fatal("my_adapter", "Failed␣to␣cast")

end

rw.addr = tx.addr << 2;
rw.kind = tx.write_enable ? UVM_WRITE : UVM_READ;
rw.data = tx.data;

if (tx.mem_op === 1’b1) begin
rw.addr [31:24] = 8’hFF;

end

rw.status = UVM_IS_OK;
endfunction

RAL transaction does not need to be created, since it is passed to the method by reference.
Firstly, we cast bus_item of uvm_sequence_item type to our specified bus transaction, i.e. to
my_reg_model_item. Then we set its variables to proper values. Address needs to be logically
shift to the left by 2 bits. If current bus transaction was executed in the memory, we set [31:24]
address byte of RAL transaction to 8’hFF, since we set memory address offset to that value in
the register model.

4.2.4.7 UVM RAL Environment
UVM RAL environment consists of register block and adapter. In the build phase of UVM RAL
environment:
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function void build_phase (uvm_phase phase);
super.build_phase(phase );

ral_reg_block_inst = my_ral_reg_block :: type_id :: create(
"ral_reg_block_inst", this

);

adapter_inst = my_adapter :: type_id :: create("adapter_inst", this);

ral_reg_block_inst.build ();
ral_reg_block_inst.lock_model ();
ral_reg_block_inst.default_map.set_auto_predict (1);
ral_reg_block_inst.set_hdl_path_root("uvm_ral_top");

endfunction

we create instances of register block and adapter, build the register model and then lock it,
set implicit prediction mode for default address map of the register block and set HDL path for
the register block to a specified string. With such HDL path we can access every register or
memory word in it with

“uvm ral top.regs inst.regs[i]” path, where “i” is register index
and
“uvm ral top.mem inst.mem[i]” path , where “i” is memory word index.

4.2.5 UVM Sequencer
Sequencer is parameterized with bus transaction that it will receive from register model. The
sole purpose of sequencer is to send that transaction to the driver.

4.2.6 UVM Driver
Driver is parameterized with bus transaction that it will receive from the sequencer. Build phase
is used to get interface handle from the database:

function void build_phase (uvm_phase phase);
super.build_phase (phase );

if (! uvm_config_db #( virtual my_interface ):: get(
null , "", "interface_inst", interface_inst

))

‘uvm_fatal("NOVIF", {
"Missing␣interface_inst:␣", get_full_name (), ".interface_inst"

})
endfunction

In the run phase we:

1. Set interface signals to zeroes.

2. Wait for reset signal to be deasserted.

3. Get new bus transaction from the sequencer.

4. Based on whether current transaction is executed on registers or memory, and whether it
is of type READ or WRITE, we set relevant interface signals to proper values. In case of
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WRITE transactions we write data on the negative edge of the clock and in case of READ
transactions we read data on the positive edge of the clock.

We can get transaction from the sequencer by using

seq_item_port.get_next_item(reg_model_item_inst );

method, where seq_item_port is driver’s port to request items from the sequencer and
reg_model_item_inst is an instance of bus transaction.

With method

seq_item_port.item_done ();

we let the sequencer know, that current bus transaction was written/contains read information
from the DUT and is ready to be received.

4.2.7 UVM Agent
UVM agent contains sequencer, driver and no monitor (passive agent). In its build phase we
create instance of driver and sequencer and in the connect phase we connect sequencer’s port to
the driver’s port:

function void connect_phase (uvm_phase phase);
driver_inst.seq_item_port.connect(sequencer_inst.seq_item_export );

endfunction

4.2.8 UVM Environment
UVM environment consists of UVM agent and UVM RAL environment. In its build phase we
create instances of agent and RAL environment and in its connect phase we assign sequencer
and adapter for register block’s default address map:

virtual function void connect_phase (uvm_phase phase);

ral_env_inst.ral_reg_block_inst.default_map.set_sequencer(
.sequencer(agent_inst.sequencer_inst),
.adapter(ral_env_inst.adapter_inst)

);

endfunction

4.2.9 UVM Sequences
All sequences are parameterized with bus transaction sequence item.

4.2.9.1 my simple regs sequence 1
This sequence tests read-write and read-only registers currently present in register model.

Firstly, this sequence gets all registers from the register model with

uvm_reg_block::get_registers()
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method and stores them in a queue. Then, these registers are divided into read-write and
read-only register queues using uvm_reg::get_rights() method. This method returns the
accessibility of a register in a specified map, not the access policy of the register itself. Since
we set the accessibility of read-write and read-only registers for default address map of the
register block to “RW” and “RO” respectively, we can use uvm_reg::get_rights() method to
differentiate between the registers.

Next, for each read-write register this sequence executes following methods:
foreach (rwregs[i]) begin

wdata = $urandom ();
rwregs[i]. write(status , wdata , UVM_FRONTDOOR );
rwregs[i].peek(status , rdata);
assert (wdata === rdata);

wdata = $urandom ();
rwregs[i].poke(status , wdata);
rwregs[i].read(status , rdata , UVM_FRONTDOOR );
assert (wdata === rdata);

end

1. Writes random data to a register using write() method with frontdoor access.

2. Uses peek() method (backdoor access) and checks if this peeked data is equal to the written
data.

3. Pokes random data into the register using poke() method (backdoor access).

4. Reads the register using read() method with frontdoor access and compares poked and read
data.

And for each read-only register, sequence:
foreach (roregs[i]) begin

wdata = $urandom ();
roregs[i].poke(status , wdata);
roregs[i].read(status , rdata , UVM_FRONTDOOR );
assert (wdata === rdata);

poked_wdata = wdata;
wdata = $urandom ();
roregs[i]. write(status , wdata , UVM_FRONTDOOR );
roregs[i].peek(status , rdata);
assert (poked_wdata === rdata);

end

1. Pokes random data into the register using poke() method (backdoor access).

2. Reads the register using read() with frontdoor access and checks that poked and read data
are equal.

3. Writes new random data into the register using write() method with frontdoor access.

4. Peeks into the register using peek() method (backdoor access) and checks that peeked and
poked value from the first step are equal, i.e. register value did not change after frontdoor
write.

By using frontdoor and backdoor accesses we ensure that the registers can be successfully
read/written and that their HDL paths are set correctly.
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4.2.9.2 my simple regs sequence 2
This sequence checks the functionality of read-write and read-only registers the same way as
in the my_simple_regs_sequence_1 sequence, with the exception of comparison between writ-
ten/poked and read/peeked values. In my_simple_regs_sequence_2 sequence comparing is done
via uvm_reg::mirror() method with UVM_CHECK argument using frontdoor access. That way
there is no need to manually compare written and read values of the register. Code for checking
read-write registers:

foreach (rwregs[i]) begin
wdata = $urandom ();
rwregs[i]. write(status , wdata , UVM_FRONTDOOR );
rwregs[i].peek(status , rdata);
assert (wdata === rdata);

rwregs[i].poke(status , wdata);
rwregs[i]. mirror(status , UVM_CHECK , UVM_FRONTDOOR );

end

Code for checking read-only registers:

foreach (roregs[i]) begin
wdata = $urandom ();
roregs[i].poke(status , wdata);
roregs[i]. mirror(status , UVM_CHECK , UVM_FRONTDOOR );

poked_wdata = wdata;
wdata = $urandom ();
roregs[i]. write(status , wdata , UVM_FRONTDOOR );
roregs[i].peek(status , rdata);
assert (poked_wdata === rdata);

end

Comparison still needs to be done manually if we use peek() method.

4.2.9.3 my simple mem sequence 1
This sequence tries to write to/read from memory word at offset 512 in all memories in register
model (there is only one RAM memory in our register model). By using

uvm_reg_block::get_memories()

we store all memories into a queue and then write/read data to/from the memory word with
offset 512 using frontdoor and backdoor accesses:

foreach (mems[i]) begin
mems[i].read(status , 512, rdata , UVM_FRONTDOOR );
wdata = $urandom ();
mems[i].write(status , 512, wdata , UVM_FRONTDOOR );
mems[i].read(status , 512, rdata , UVM_FRONTDOOR );

// ---------------------------------------------------------//

mems[i].read(status , 512, rdata , UVM_BACKDOOR );
wdata = $urandom ();
mems[i].write(status , 512, wdata , UVM_BACKDOOR );
mems[i].read(status , 512, rdata , UVM_BACKDOOR );
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// ---------------------------------------------------------//

mems[i].read(status , 512, rdata , UVM_FRONTDOOR );
wdata = $urandom ();
mems[i]. write(status , 512, wdata , UVM_FRONTDOOR );
mems[i].read(status , 512, rdata , UVM_FRONTDOOR );

end

Queue mem[i] cycles through all memories in register block (there is only one in our regis-
ter block). After each read() and write() methods we display the written/read value using
$display() methods, which are not present in the code snippet above for the sake of brevity.
Comparison between written and read values were done only visually.

4.2.10 UVM Tests

4.2.10.1 my base test

Every test is executed on the register model, therefore we would need to instantiate that register
model every time we create a new test. To avoid that, this base test was created, where we
instantiate whole environment in its build phase. Every subsequent test is extended from this
base test.

4.2.10.2 my custom sequences test

This test executes all sequences described in “UVM Sequences” section. In its build phase we
instantiate these sequences and in its run phase we pass the instance of the register model to the
sequences and then we start them:

task run_phase (uvm_phase phase );
phase.raise_objection(this);

sequence_inst_1.ral_reg_block_inst =
env_inst.ral_env_inst.ral_reg_block_inst;

sequence_inst_2.ral_reg_block_inst =
env_inst.ral_env_inst.ral_reg_block_inst;

sequence_inst_3.ral_reg_block_inst =
env_inst.ral_env_inst.ral_reg_block_inst;

sequence_inst_1.start(null);
sequence_inst_2.start(null);
sequence_inst_3.start(null);

phase.drop_objection(this);
endtask

Normally we would need to pass the handle of a sequencer, on which corresponding sequence
needs to be executed, to a start() method. In case of sequences, that operate on register model,
there is no need for that, since the sequencer of the default address map of the register block is
used (that was set with uvm_reg_map::set_sequencer()).
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Table 4.1 Structure of block of registers in final testbench

Number of
registers Type of register

Indices of
registers in

DUT
1 READ-WRITE [0]
1 READ-CLEAR [1]
1 READ-SET [2]
1 WRITE-READ-CLEAR [3]
1 WRITE-READ-SET [4]
1 WRITE-CLEAR [5]
1 WRITE-SET [6]
1 WRITE-1-TOGGLE [7]
1 WRITE-0-TOGGLE [8]
7 READ-WRITE [9:15]
1 READ-ONLY [16]
1 RW/RO (16b/16b) [17]
1 RC/RS (16b/16b) [18]
1 WRC/WRS (16b/16b) [19]
1 WC/WS (16b/16b) [20]
1 W1T/W0T (16b/16b) [21]
10 READ-WRITE [22:31]

4.2.11 UVM RAL Top Module (Testbench)
Top module is responsible for generating clock signal, invoking active-low reset, instantiating
block of registers (with instance name “regs inst”) and RAM (with instance name “mem inst”),
and for starting specified UVM test.

Before the specified test is started, interface handle needs to be deposited into the UVM
database:
initial begin

uvm_config_db #( virtual my_interface )::set(
uvm_root ::get(), "*", "interface_inst", interface_inst

);

run_test("my_custom_sequences_test");
end

4.2.12 Results of Simulation of Initial Testbench
After executing test my_custom_sequences_test no errors were reported. Results of executing
my_simple_mem_sequence_1 were checked visually in console and in waveform viewer, but no
inconsistencies were found.

Register model was successfully integrated into the testbench and basic read and write func-
tions were working properly on registers and memory. Now current testbench is ready to be
improved further.

4.3 Final Testbench
The structure of final testbench is depicted in figure 4.2 and this testbench:
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Figure 4.2 Structure of Final Testbench
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1. Has DUT block of registers described in the table 4.1, each 32-bit wide.

2. Has DUT blocks of RAM and ROM.

3. Has implemented register model, which consists of:

a. RAL registers that correspond to the registers in the DUT block of registers.

b. RAL RAM and ROM.

c. One or two address maps based on a TWO_MAPS macro. If two address maps are used, both
of them have implicit prediction turned on. In case of only one (default) address map
present – that map is set to have explicit prediction enabled.

d. One or two adapters based on a TWO_MAPS macro.

e. Has predictor which is connected to default address map.

4. Has active agent, which is connected to default address map. If macro TWO_MAPS is not
defined, its monitor sends observed transactions to the predictor.

5. Has passive agent, which is connected to the second address map, and is instantiated if
TWO_MAPS is defined.

6. Fully supports coverage collection based on a specified functional coverage model.

7. Is capable of verifying the functionality of DUT blocks using custom and built-in RAL se-
quences.

The reason for instantiating components and setting prediction modes based on a TWO_MAPS
macro is described in 4.3.10.

4.3.1 Design Under Test

4.3.1.1 Block of Registers

RTL code of block of registers was re-written to reflect its new structure described in the table
4.1.

4.3.1.2 RAM

Structure of RAM remained the same as in the initial testbench with the exception of its size.
Now it is possible to define RAM size with RAM_BYTES macro, which can be specified in the
package my_pkg.sv. Size of RAM should be at least 4 bytes. Default value of RAM_BYTES is 212.

logic [31:0] mem [0:( ‘RAM_BYTES /4) -1];

4.3.1.3 ROM

ROM has the same structure as RAM minus the possibility of outputting any data. Its size can
be configured using ROM_BYTES macro in my_pkg.sv package. Default value of ROM_BYTES is 212.



54 Implementation

4.3.2 Interface
Interface was updated to support communication with ROM:

interface my_interface;
logic clk;
logic reset;

// Signals that communicate with registers
logic [31:0] reg_addr;
logic reg_write_enable;
logic [31:0] reg_in;
logic [31:0] reg_out;

// Signals that communicate with RAM
logic [31:0] ram_addr;
logic ram_write_enable;
logic [31:0] ram_in;
logic [31:0] ram_out;

// Signals that communicate with ROM
logic [31:0] rom_addr;
logic [31:0] rom_out;

endinterface

4.3.3 Bus Transaction Sequence Item
Bus transaction sequence item was updated to support transaction that would be executed on
ROM. Instead of one-bit variable new enumeration was created in package my_pkg.sv:

typedef enum bit [1:0] {REGS = 2’b00 ,
RAM = 2’b01 ,
ROM = 2’b10} target_type;

Variables in the bus sequence item were changed as follows:

rand my_pkg :: target_type target;
rand logic [31:0] addr;
rand logic write_enable;
rand logic [31:0] data;
logic reset = 1’b1;

With reset variable this bus sequence item can be used to invoke reset in the DUT at any
given time – there is no reason to invoke reset from the top testbench module anymore.

4.3.4 Register Model
Registers, register file and memories are configured in the same way as in the initial testbench
with the exception of coverage collection settings, which are described in detail in the following
sections.

Because RAL provides functional coverage models for individual register bits, field values
and addresses 3.38, cover groups for written/read bits/values/addresses were created for regis-
ters/register file/memories in this register model.
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4.3.4.1 RAL Read-write Registers
To check, whether current register had specified value during read operation or specified value
was written to it at some time during simulation, we need to create a cover group for it.

Cover group for checking if all individual bits were written to RW register:

covergroup wr_bits;
option.per_instance = 1;

wr_bits : coverpoint reg_data.value [31:0] {
bins wr_bits [] = { [0:(33 ’d2**33’d32)-1] }
with ( $onehot(item) == 1 );

}
endgroup

Variable per_instance is responsible for saving statistics of current cover group individually
for every instance of this register. Variable reg_data is a register field of current register and
variable value contains its mirrored value.

Then, we check if current field value is within a specified range – it should be greater or equal
than 0 and lesser or equal than 232 − 1. Those are all possible values of a 32-bit field. Since
default width of integers in SystemVerilog is 32 bits, we need to extend operands to 33 bits first.

Lastly, separate cover point bin is created for every one-hot value.
Identical cover group that checks whether every individual bit of the register was read is

created with a name rd_bits.
Cover group for written field values is than created and is as follows:

covergroup wr_vals;
option.per_instance = 1;

wr_vals : coverpoint reg_data.value [31:0] {
bins wr_vals [4] = { [0:(33 ’d2**33’d32)-1] };

}
endgroup

where all possible values are equally divided between four cover point bins.
Identical cover group for read values is created with a name rd_vals.
Function new() of the register was updated to create current register with potentially all

functional coverage models. What models are actually created depends on:

uvm_reg :: include_coverage ()

Then, aforementioned cover groups are instantiated based on with what coverage models
current register was created:

function new (string name = "my_ral_reg_rw");
super.new(name , 32, build_coverage(UVM_CVR_ALL ));

if (has_coverage(UVM_CVR_REG_BITS )) begin
wr_bits = new ();
rd_bits = new ();

end

if (has_coverage(UVM_CVR_FIELD_VALS )) begin
wr_vals = new ();
rd_vals = new ();

end
endfunction
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Sampling method is than implemented. Values are sampled based on whether sampling was
enabled (set_coverage()) for specified functional coverage models in current register:

virtual function void sample (uvm_reg_data_t data ,
uvm_reg_data_t byte_en ,
bit is_read ,
uvm_reg_map map);

if (get_coverage(UVM_CVR_REG_BITS )) begin
if (is_read) begin

rd_bits.sample ();
end else if (! is_read) begin

wr_bits.sample ();
end

end

if (get_coverage(UVM_CVR_FIELD_VALS )) begin
if (is_read) begin

rd_vals.sample ();
end else if (! is_read) begin

wr_vals.sample ();
end

end
endfunction

Sampling for read and write cover groups occurs based on a type of current operation.

4.3.4.2 Remaining RAL Registers

Cover groups for all remaining registers are configured the same way as for read-write registers
and according to the table 4.2.

Registers, that contain two 16-bits fields can be configured the same way as registers, that
contain one 32-bits field. The user only needs to instantiate and configure two separate fields.
For example, to create W1T/W0T register, we need to instantiate two register fields:

rand uvm_reg_field reg_data_w1t;
rand uvm_reg_field reg_data_w0t;

And then properly configure them in the build phase:

function void build ();
reg_data_w1t = uvm_reg_field :: type_id :: create("reg_data_w1t");
reg_data_w0t = uvm_reg_field :: type_id :: create("reg_data_w0t");

reg_data_w0t.configure(this , 16, 0, "W0T", 0, 0, 1, 1, 1);
reg_data_w1t.configure(this , 16, 16, "W1T", 0, 0, 1, 1, 1);

endfunction

Second parameter is width of this field and third parameter is position of its LSB relative to
the LSB of the whole register.

In case of write-1-toggle and write-0-toggle registers we do not sample mirrored value of
the field, but auxiliary variable. The reason for that is because when we write values to these
registers they will not contain these exact values after write operations. That is why we need
to sample values that is about to be written, not the value the register will contain after the
operation.
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Table 4.2 Data sampling settings for RAL registers

Register Individual register bits Field values
During WRITE During READ During WRITE During READ

RW One-hot values One-hot values
All possible values
divided into four

bins

All possible values
divided into four

bins

RC × One-hot values ×

All possible values
divided into four

bins and all zeroes
value

RS × One-cold values ×

All possible values
divided into four
bins and all ones

value

WRC One-hot values One-hot values
All possible values
divided into four

bins

All possible values
divided into four

bins and all zeroes
value

WRS One-cold values One-cold values
All possible values
divided into four

bins

All possible values
divided into four
bins and all ones

value

WC × One-hot values ×

All possible values
divided into four

bins and all zeroes
value

WS × One-cold values ×

All possible values
divided into four
bins and all ones

value

W1T One-hot values to
be written One-hot values ×

All possible values
divided into four

bins

W0T One-cold values to
be written One-cold values ×

All possible values
divided into four

bins

RO × One-hot values ×
All possible values
divided into four

bins
RW/RO

Coverage settings for individual fields are the same as
for corresponding access policy above

RC/RS
WRC/WRS

WC/WS
W1T/W0T
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4.3.4.3 RAL Register File
Register file is configured the same way as in the initial testbench. The only difference is coverage
settings and presence of the second address map.

Second address map is instantiated and registers are added to it only if macro TWO_MAPS is
defined.

Cover groups for individual register addresses are created to check if all registers have been
read or written. Cover group for write operations is as follows:

wr_addr : coverpoint cov_offset {
bins wr_addr [] = { [0:(31*4)] } with ( (item % 4) == 0 );

ignore_bins ignore_addr = { 1*4, 2*4, 16*4, 18*4, 22*4, 23*4, 24*4,
25*4, 26*4, 27*4, 28*4, 29*4, 30*4, 31*4};

}

Auxiliary variable cov_offset contains an offset of a register that is a target of a write
operation. Aforementioned offsets are excluded from coverage collection, since these they refer
to the read-only registers: RC (regs[1]), RS (regs[2]), RO (regs[16]), RC/RS (regs[18]) and 10
RO registers (regs[22-31]).

Cover group for register addresses during read operations is:

rd_addr : coverpoint cov_offset {
bins rd_addr [] = { [0:(31*4)] } with ( (item % 4) == 0 );

}

Since all registers can be read, we need to check all possible register offsets.
Register file is then created with potentially all coverage models. Cover groups for register

addresses are instantiated in a new() function based on a UVM_CVR_ADDR_MAP coverage model
and are sampled if sampling for that model is enabled.

4.3.4.4 RAL RAM
RAM is configured the same way as in the initial testbench with the exception of coverage
collection that checks if all memory words were read and written:

wr_addr : coverpoint cov_offset {
bins wr_addr [] = { [0:( (( ‘RAM_BYTES /4) -1) * 4 )] } with

( (item % 4) == 0 );
}

Identical cover group with a name rd_addr for memory word offsets during read operations
is also created.

RAM is then created with potentially all coverage models. Cover groups are instantiated and
data are sampled based on a UVM_CVR_ADDR_MAP coverage model.

4.3.4.5 RAL ROM
ROM is identical to the RAL RAM with the exception of cover group for memory word offsets
during write operations. Since ROM can not be written, cover group for write operations does
not exist.

4.3.4.6 RAL Register Block
Register block is configured the same way as in the initial testbench with the exception of second
address map and offsets of register file and memories.
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Register block is created with potentially all coverage models. Second address map is instan-
tiated, created and register file and memories are added to it if macro TWO_MAPS is defined.

Offsets of register file, RAM and ROM for default address map are as follows:

default_map.add_submap(ral_reg_file_inst.default_map , 0);
default_map.add_mem(ral_ram_inst , 64’ h4000_0000_0000_0000 , "RW");
default_map.add_mem(ral_rom_inst , 64’ h8000_0000_0000_0000 , "RO");

Offsets are set like that to correspond to the enumeration specified in 4.3.3 (we can differen-
tiate between register file and memories based on the two most significant bits of the address).

Offsets for second address map are set differently:

‘ifdef TWO_MAPS
second_map.add_mem(ral_rom_inst , 0, "RO");
second_map.add_submap(ral_reg_file_inst.second_map ,

64’ h4000_0000_0000_0000 );
second_map.add_mem(ral_ram_inst ,

64’ h8000_0000_0000_0000 , "RW");
‘endif

The reason for that is to showcase that both of the address maps would refer to the same
register/RAM/ROM even if their offsets for them are different.

4.3.4.7 RAL Adapter
Adapter for default address map of the register block was changed to reflect new offsets for
registers/RAM/ROM:

function uvm_sequence_item reg2bus(const ref uvm_reg_bus_op rw);
tx = my_pkg :: my_reg_model_item :: type_id :: create("tx");
tx.addr = rw.addr;
tx.write_enable = ((rw.kind == UVM_WRITE) ||

(rw.kind == UVM_BURST_WRITE )) ? 1 : 0;
tx.data = rw.data;

case (rw.addr [63:62])
2’b00 : begin

tx.target = my_pkg ::REGS;
end

2’b01 : begin
tx.target = my_pkg ::RAM;

end

2’b10 : begin
tx.target = my_pkg ::ROM;

end
endcase

tx.addr = tx.addr >> 2;
return tx;

endfunction

UVM_BURST_WRITE kind of operation is used when memory burst_write() method is exe-
cuted. Function bus2reg() is:

function void bus2reg(uvm_sequence_item bus_item , ref uvm_reg_bus_op rw);
assert( $cast(tx, bus_item) ) else begin
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‘uvm_fatal("my_adapter", "Failed␣to␣cast")
end

rw.addr = tx.addr << 2;
rw.kind = tx.write_enable ? UVM_WRITE : UVM_READ;
rw.data = tx.data;

case (tx.target)
my_pkg ::REGS : begin

rw.addr [63:62] = 2’b00;
end

my_pkg ::RAM : begin
rw.addr [63:62] = 2’b01;

end

my_pkg ::ROM : begin
rw.addr [63:62] = 2’b10;

end
endcase

rw.status = UVM_IS_OK;
endfunction

While converting bus transaction to a register layer transaction there is no need to differen-
tiate between UVM_BURST_READ/WRITE and UVM_READ/WRITE kinds of transactions, since burst
read/write operation is just an array of individual read/write operations.

4.3.4.8 RAL Second Adapter
Second adapter is associated with the second address map in the register model and is identical
to the adapter of the default address map. The only difference is that it converts transaction
based on the offsets for registers/RAM/ROM in second address map.

4.3.4.9 RAL Predictor
In order to properly connect predictor to an address map there is no need to implement custom
class which would be extended from the base class of the predictor – everything can be done
inside RAL environment.

4.3.4.10 UVM RAL Environment
UVM RAL environment consists of register block, adapter for the default address map, predictor
and adapter for the second address map if macro TWO_MAPS is defined. Predictor is instantiated
and parameterized with bus transaction sequence item:

uvm_reg_predictor #( my_pkg :: my_reg_model_item) predictor_inst;

In the build phase these components are created (based on a TWO_MAPS), register model is
built, locked, its HDL root path is set and prediction modes are configured for default and second
address maps. Predictor is created as follows:

predictor_inst = uvm_reg_predictor #( my_pkg :: my_reg_model_item )::
type_id :: create("predictor_inst", this);



Final Testbench 61

If we are using two address maps in our register model – both of them should be set to have
implicit prediction enabled, otherwise only one (default) address map is used and is set to have
explicit prediction enabled:

‘ifdef TWO_MAPS
ral_reg_block_inst.default_map.set_auto_predict (1);
ral_reg_block_inst.second_map.set_auto_predict (1);

‘else
ral_reg_block_inst.default_map.set_auto_predict (0);

‘endif

In the connect phase we specify what address map should be associated with predictor and
what adapter it should use to convert bus transactions to RAL transactions:

function void connect_phase (uvm_phase phase);
super.connect_phase(phase );

predictor_inst.map = ral_reg_block_inst.default_map;
predictor_inst.adapter = default_map_adapter_inst;

endfunction

The only thing left to do for predictor to work properly is to connect monitor to it – that
will be done in the UVM environment.

4.3.5 UVM Sequencer
This sequencer is identical to the sequencer in the initial testbench, it serves only one purpose –
to send bus transactions from the sequence to the driver.

4.3.6 UVM Driver
Driver was changed to support communication with ROM and to be able to invoke reset based
on a corresponding bit in the bus transaction.

In case of transactions, that are executed on a block of registers, we change the address of
a target register to 32’hFFFF_FFFF on the next negative edge of the clock after reading/writing
data from/to that register. The reason for that change is the presence of write-1/0-toggle type
registers. Initially, we would write data to the register and wait for a couple of positive edges
of the clock, all the while register address on the interface stays the same. But if we write to
write-1/0-toggle register that way – the value of the register would change multiple times, even
if we initially intended to only write to this register once. That is why we need to change the
address to a value, that does not correspond to any existing register in the DUT.

4.3.7 UVM Monitor
Monitor is used to observe transactions on the interface and is needed for predictor. It contains
UVM analysis port which is parameterized with bus transaction sequence item. In its build
phase, analysis port is created and interface handle is received from the UVM database.

Run phase consists of one forever loop, where the interface is observed for register read and
write transactions on every positive edge of the clock. Valid transaction is the one that does not
have its address set to 32’hFFFF_FFFF. Caught register transaction is then send to the analysis
port only if macro TWO_MAPS is not defined. That way we can ensure, that predictor would
actually receive any transactions from the monitor only if one (default) address map is present
and it has explicit prediction enabled:
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‘ifndef TWO_MAPS
monitor_port.write(reg_model_item_inst );

‘endif

Since RAL memories does not support desired and mirrored values, there is no need to
monitor interface for memory transactions.

4.3.8 UVM Agent and Second Agent
Agent and second agent are the instances of the same class and they consist of aforementioned
driver, sequencer and monitor.

Sequencer’s port and driver’s port are connected in the connect phase.

4.3.9 UVM Environment
Environment consists of agent, second agent if macro TWO_MAPS is defined, and RAL environment.
These components are instantiated and then created in the build phase (depending on TWO_MAPS
macro).

Connect phase is used to

1. Set default map’s sequencer and adapter to agent’s sequencer and adapter.

2. Set second map’s sequencer and adapter to second agent’s sequencer and second adapter if
macro TWO_MAPS is defined.

3. Connect analysis ports of the agent’s monitor and predictor with each other.

virtual function void connect_phase (uvm_phase phase);
ral_env_inst.ral_reg_block_inst.default_map.set_sequencer(

.sequencer(agent_inst.sequencer_inst),

.adapter(ral_env_inst.default_map_adapter_inst)
);

‘ifdef TWO_MAPS
ral_env_inst.ral_reg_block_inst.second_map.set_sequencer(

.sequencer(second_agent_inst.sequencer_inst),

.adapter(ral_env_inst.second_map_adapter_inst)
);

‘endif

agent_inst.monitor_inst.monitor_port.connect(
ral_env_inst.predictor_inst.bus_in

);
endfunction

Contrary to what was depicted in figure 4.2, second agent actually has a monitor, but it is
not connected to any other UVM component, and if second agent is instantiated, its monitor
does not send any data at all.

4.3.10 Reason for utilization of TWO MAPS macro
After the testbench was implemented some simple methods that read/write data from/to the
registers/memories and methods that manipulate with desired/mirrored values were executed



Final Testbench 63

to test if testbench is working at all. At this point TWO_MAPS macro did not exist and register
model had two address maps – default map with explicit prediction and second map with implicit
prediction enabled. After the execution of some RAL methods it was discovered, that mirrored
values of the registers did not contain the correct values after write and read operation, and the
reason for that is the presence of write-1/0-toggle registers.

Let’s say we want to write to write-1-toggle register via the second map. Because it is
configured to have implicit prediction, it updates the mirrored value of that register in the
register model with value, that this register will have after the operation. But because we also
have a default map with explicit prediction, agent’s monitor catches that write transaction on
the interface, sends it to the predictor, and predictor sends it to the default map, which, in turn,
updates mirrored value of the same register again, thus reverting its value back to the previous
one. In the end, register model thinks that two write operations occurred on that register.

The reason for such behavior is because every address map in the register model is sup-
posed to be connected to a different physical interface – multiple address maps should not be
connected to the same interface, otherwise errors like described above will occur. In our test-
bench we have two address maps on the same interface mainly to showcase the usage of built-in
uvm_reg_mem_shared_access_seq sequence, which tests the accessibility of each register and
memory in the register model via multiple address maps. If we want to have multiple maps on
the same interface we need to make them blind to the transactions, that are occurring on that
same interface – i.e. we need them to have implicit prediction enabled.

To summarize the effects of the TWO_MAPS macro – if this macro is defined:

1. Second address map, its corresponding adapter and second agent are instantiated, created
and configured.

2. Both default and second maps are configured to have implicit prediction enabled.

3. Monitors do not send any values to their analysis ports.

If TWO_MAPS macro is not defined:

1. Second address map, its corresponding adapter and second agent are not instantiated.

2. Only one (default) address map is present in the register model and it is configured to have
explicit prediction enabled.

3. Monitor sends caught transactions on the interface to the predictor.

4.3.11 UVM Sequences
my reg rw manual seq
This sequence is similar to the my_simple_regs_sequence_1 in the initial testbench. The dif-
ference is that here we execute frontdoor write, peek, poke, frontdoor read methods to verify the
functionality of only read-write registers in the register model.

The other difference is the manner of detecting which registers in the register model is of type
read-write, since we can not use uvm_reg::get_rights() method anymore, because it returns
the accessibility of a register in a given address map. For example, read-write and write-1-toggle
registers would both have their accessibility set to “RW” in address map(s).

That is why we utilize methods

1. uvm_reg_block::get_registers() to get all registers in specified register block.

2. uvm_reg::get_fields() to get all register fields in specified register.

3. uvm_reg_field::get_access() to get the actual access policy of specified register field.
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my reg rw mirror seq
This sequence is identical to my_reg_rw_manual_seq with the exception of using mirror method
for checking written and poked values instead of doing it manually. For every read-write reg-
ister in the register model we execute frontdoor write, backdoor mirror, poke, frontdoor mirror
methods to verify their functionality.

my reg ro manual seq
This sequence is similar to my_reg_rw_manual_seq with the exception of verifying read-only
registers. For every read-only register in the register block we execute poke, frontdoor read,
frontdoor write, peek methods to verify their functionality.

my reg ro mirror seq
This sequence is identical to my_reg_ro_manual_seq with the exception of using mirror method
for checking poked and written values instead of doing it manually. For every read-only register in
the register model we execute poke, frontdoor mirror, frontdoor write, backdoor mirror methods
to verify their functionality.

my reg desired seq
This sequence does not actually test any registers but only showcases the usage of set(), get()
and update() methods by executing them on read-only and read-write registers. These methods
are related to the desired values of the registers and this sequence is used to present how the
users can utilize such methods in their testbenches.

my reg mirrored seq
This sequence does not actually test any registers but only showcases the usage of predict()
and mirror() methods by executing them on read-only and read-write registers. These methods
are related to the mirrored values of the registers and this sequence is used to present how the
users can utilize such methods in their testbenches.

my reg exp prediction
This sequence shows the difference between implicit and explicit prediction. Random value is
written to write-read-set register without using RAL and mirrored value of that register is then
displayed. If implicit prediction is enabled – mirrored value is not updated and in case of explicit
prediction – mirrored value is updated.

my all regs 0 1 seq
This sequence writes and pokes all possible one-hot and one-cold values to all registers present
in the current register model. For every register:

1. One-hot value is written using frontdoor.

2. Two frontdoor mirror methods are executed. It is done to verify functionality of (write)-read-
clear/set registers.

3. Same one-hot value is poked into the register.

4. Two frontdoor mirror methods are executed.
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5. Steps 1 through 4 are executed for every possible one-hot value.

6. Step 5 is executed but one-cold values are used instead.

my mem ram read write seq
This sequence checks the functionality of RAM. For every memory word:

1. Random data is written via frontdoor.

2. Data is peeked and compared with written data.

3. Random data is poked.

4. Data is read via frontdoor and compared with poked data.

my mem rom read write seq
This sequence is identical to my_mem_ram_read_write_seq, but instead, it verifies functionality
of ROM. For every memory word:

1. Random data is poked.

2. Data is read via frontdoor and compared with poked data.

3. Random data is written via frontdoor.

4. Data is peeked and compared with poked data.

my mem burst seq
This sequence uses burst methods to verify functionality of RAM:

1. Dynamic arrays for writing and reading with the size of RAM are created and randomized.

2. Write array is written to RAM using frontdoor burst_write().

3. By using backdoor burst_read() we store all of the RAM data into the read array and
compare it with array containing written values.

4. We repeat steps 2 and 3 with backdoor burst_write() and frontdoor burst_read().

Since backdoor burst methods respect access policies of memories, we can not use burst
methods to verify ROM.

my reset seq
This sequence resets all DUT blocks and register model. DUT blocks are reset by sending
bus transaction sequence item with reset bit directly to the sequencer without RAL. After
that, all mirrored and desired values of the registers in the register model are reset using
uvm_reg_block::reset() method.
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4.3.12 UVM Tests
4.3.12.1 my base test
This base test is identical to the one in the initial testbench with the exception of coverage
setting:

uvm_reg :: include_coverage("*", UVM_CVR_ALL );

This way all coverage models are set for all RAL components (for their build_coverage()
methods) in the register model.

4.3.12.2 my built in sequences test
This sequence executes built-in RAL sequences on current register model. These sequences are:

1. uvm_reg_hw_reset_seq

2. uvm_reg_bit_bash_seq

3. uvm_reg_access_seq

4. uvm_mem_walk_seq

5. uvm_mem_access_seq

6. uvm_reg_mem_shared_access_seq

7. uvm_reg_mem_hdl_paths_seq

After instantiating and creating these sequences, register model that these sequences should
be executed on is passed to a model variable of these sequences. Sequences then can be started
by calling their start(null) method.

Before starting any built-in sequences, DUT and register model should be reset. It is done
via my_reset_seq sequence, which is executed before starting any built-in sequence. In contrast
to built-in RAL sequences, we need to specify reset sequence’s sequencer, since it is executed
outside of RAL:

reset_seq_inst.start(env_inst.agent_inst.sequencer_inst );

Coverage sampling is also enabled for all coverage models for all RAL components (for their
get_coverage() methods) in register model:

env_inst.ral_env_inst.ral_reg_block_inst.set_coverage(UVM_CVR_ALL );

4.3.12.3 my custom sequences test
This sequence resets the DUT and register model and then executes following sequences:

1. my_reg_rw_manual_seq

2. my_reg_rw_mirror_seq

3. my_reg_ro_manual_seq

4. my_reg_ro_mirror_seq

5. my_reg_desired_seq
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6. my_reg_mirrored_seq

7. my_reg_exp_prediction

8. my_all_regs_0_1_seq

9. my_mem_ram_read_write_seq

10. my_mem_rom_read_write_seq

11. my_mem_burst_seq

Coverage sampling is also enabled for all coverage models for all RAL components (for their
get_coverage() methods) in register model.

4.3.12.4 my full test
This sequence executes all sequences described in

my_built_in_sequences_test

and

my_custom_sequences_test

with the exception of sequences that do not verify any functionality of DUT blocks:

1. my_reg_desired_seq

2. my_reg_mirrored_seq

3. my_reg_exp_prediction

4.3.13 UVM RAL Top Module (Testbench)
Top testbench module is identical to the one in the initial testbench. The only difference is the
absence of active-low reset generation, since sequence my_reset_seq is now used to trigger reset
in the DUT blocks.
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Chapter 5

Testing

The purpose of this chapter is to run aforementioned tests with different coverage models and
sampling settings to ensure, that coverage collection for register model was built correctly. A
number of bugs were also artificially inserted into the DUT blocks to showcase that custom
and built-in sequences would be capable of catching them.

5.1 Inserted Bugs
Bugs are artificially inserted into the block of registers, RAM and ROM if macros REG_BUGS,
RAM_BUGS and ROM_BUGS respectively are defined. What kind of bugs are inserted is described in
the table 5.1.

5.2 Execution of my custom sequences test

5.2.1 Identifying Bugs
This test was executed with all bugs related macros defined. Test was able to discover all inserted
bugs with the exception of bug regarding reset value of WC register, since none of the sequences
in this test check reset values of the registers.

All log messages with caught bugs is too long to list here, that is why the whole log file after
executing this test is available on the GitLab page of this project. Some of these log messages
are:

Read-write register (regs[0]):

# Frontdoor write 32’h40026e11 to register ral_reg_rw_inst_0. (@ 80.00 ns)
# Peeked value in register ral_reg_rw_inst_0 is 32’h40026e12. (@ 80.00 ns)
# UVM_ERROR ./UVM/Sequences/Register_Sequences/my_reg_rw_manual_seq.sv(91)
@ 80.00 ns: reporter@@reg_rw_manual_seq_inst [peek_after_write]
Peeked value is not the same as written value in register ral_reg_rw_inst_0.
Written value = 32’h40026e11, peeked value = 32’h40026e12

Read-clear/read-set register:

# Frontdoor write 32’h00000001 to register ral_reg_rc_rs_inst_18.
(@ 42000.00 ns)
# Read register ral_reg_rc_rs_inst_18 and compare its value with the current
mirrored value in register model. (@ 42000.00 ns)

69
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Table 5.1 Inserted bugs in the DUT blocks

Name of the
register/RAM/ROM Description of the bug

RW (regs[0]) Written value is incremented by 1

RC After every read operation register value is set to
32’h8000_0000

RS After every read operation register value is set to
32’hFFFF_FFFE

WRC Only 16 LSB bits can be written, register is not cleared after
read operations

WRS Only 16 MSB bits can be written, register value after read
operations is 32’h1111_1111

WC After write operations register value is set to 32’h8000_0000,
reset value is set to 32’h0010_0000

WS Register can be written (behavior of a RW register)
W1T Value is toggled on ’0’ value (behavior of W0T register)
W0T After toggling, value is incremented by 1

7 RW (regs[9:15]) Values are not written (behavior of RO register)
RO (regs[16]) Values can be written (behavior of RW register)

RW/RO RW field value is set to 16’hCAFE after every write operation
RC/RS [31:17] bits are RC while [16:0] bits of the register are RS

WRC/WRS
WRC field value is set to 16’h0000 after every write

operation, WRS field value is set to 16’hF7FF after every
read operation

WC/WS 16 MSB bits are WS while 16 LSB bits are WC
W1T/W0T Whole register behaves like W1T register

RAM

Word with index ’0’ is always written with value incremented
by 1, word with index (‘RAM_BYTES/4)/2 is always written

with value 32’hABCD_DCBA, word with index
(‘RAM_BYTES/4)-1 can not be written

ROM

On every positive edge of the clock, word with index ’0’ is
written with zeroes, word with index (‘ROM_BYTES/4)/2 is

written with value 32’hABCD_DCBA, word with index
(‘ROM_BYTES/4)-1 is written with value 32’h1234_5678
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# Read register ral_reg_rc_rs_inst_18 one more time
(check value after read operation) and compare its value with the current
mirrored value in register model. (@ 42040.00 ns)
# UVM_ERROR verilog_src/uvm-1.1d/src/reg/uvm_reg.svh(2889) @ 42080.00 ns:
reporter [RegModel] Register "ral_reg_block_inst.ral_reg_file_inst.
ral_reg_rc_rs_inst_18" value read from DUT (0x000000000001ffff) does not
match mirrored value (0x000000000000ffff)
# UVM_INFO verilog_src/uvm-1.1d/src/reg/uvm_reg.svh(2902) @ 42080.00 ns:
reporter [RegModel] Field reg_data_rc (ral_reg_block_inst.ral_reg_file_inst.
ral_reg_rc_rs_inst_18[31:16]) mismatch read=16’h1 mirrored=16’h0

Write-clear/write-set register:

# Frontdoor write 32’h00000001 to register ral_reg_wc_ws_inst_20.
(@ 16400.00 ns)
# Read register ral_reg_wc_ws_inst_20 and compare its value with
the current mirrored value in register model. (@ 16400.00 ns)
# UVM_ERROR verilog_src/uvm-1.1d/src/reg/uvm_reg.svh(2889) @ 16440.00 ns:
reporter [RegModel] Register "ral_reg_block_inst.ral_reg_file_inst.
ral_reg_wc_ws_inst_20" value read from DUT (0x00000000ffff0000)
does not match mirrored value (0x000000000000ffff)
# UVM_INFO verilog_src/uvm-1.1d/src/reg/uvm_reg.svh(2902) @ 16440.00 ns:
reporter [RegModel] Field reg_data_ws (ral_reg_block_inst.ral_reg_file_inst.
ral_reg_wc_ws_inst_20[15:0]) mismatch read=16’h0 mirrored=16’hffff
# UVM_INFO verilog_src/uvm-1.1d/src/reg/uvm_reg.svh(2902) @ 16440.00 ns:
reporter [RegModel] Field reg_data_wc (ral_reg_block_inst.ral_reg_file_inst.
ral_reg_wc_ws_inst_20[31:16]) mismatch read=16’hffff mirrored=16’h0

RAM:

# UVM_ERROR ./UVM/Sequences/Memory_Sequences/my_mem_burst_seq.sv(72)
@ 597480.00 ns: reporter@@mem_burst_seq_inst [Written and read values
are not equal] Written memory word wdata[0] = 32’he5c0e086 is not equal
to read memory word rdata[0] = 32’he5c0e087
# UVM_ERROR ./UVM/Sequences/Memory_Sequences/my_mem_burst_seq.sv(72)
@ 597480.00 ns: reporter@@mem_burst_seq_inst [Written and read values
are not equal] Written memory word wdata[512] = 32’h425717fb is not equal
to read memory word rdata[512] = 32’habcddcba
# UVM_ERROR ./UVM/Sequences/Memory_Sequences/my_mem_burst_seq.sv(72)
@ 597480.00 ns: reporter@@mem_burst_seq_inst [Written and read values
are not equal] Written memory word wdata[1023] = 32’h10654181 is not equal
to read memory word rdata[1023] = 32’hc89a216a

ROM:

# UVM_ERROR ./UVM/Sequences/Memory_Sequences/my_mem_rom_read_write_seq.sv(97)
@ 484920.00 ns: reporter@@mem_rom_read_write_seq_inst [peek_after_poke]
Peeked value is not the same as the initially poked value in memory
ral_rom_inst at offset 0.
Poked value = 32’h50c66d2a, peeked value = 32’h00000000

# UVM_ERROR ./UVM/Sequences/Memory_Sequences/my_mem_rom_read_write_seq.sv(97)
@ 525880.00 ns: reporter@@mem_rom_read_write_seq_inst [peek_after_poke]
Peeked value is not the same as the initially poked value in memory
ral_rom_inst at offset 512.
Poked value = 32’h65598b51, peeked value = 32’habcddcba
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Figure 5.1 Custom sequences test – collected coverage for individual register and memory addresses
models only

# UVM_ERROR ./UVM/Sequences/Memory_Sequences/my_mem_rom_read_write_seq.sv(97)
@ 566760.00 ns: reporter@@mem_rom_read_write_seq_inst [peek_after_poke]
Peeked value is not the same as the initially poked value in memory
ral_rom_inst at offset 1023.
Poked value = 32’h547ba9bc, peeked value = 32’h12345678

Test was also executed with defined macro TWO_MAPS – test produced the same results, with
the exact number of UVM info and UVM error messages as in the previous run.

If test is executed without inserted bugs (with or without TWO_MAPS), no UVM error is re-
ported besides the two expected error messages from my_reg_mirrored_seq sequence, where we
manually change mirror value of the register and then execute mirror() method with UVM_CHECK.

5.2.2 Coverage Collection
Test was also executed with different coverage model and sampling settings. If we turn on only
specific coverage models in the base test, only these models will be built. If we have all coverage
models enabled, but only some of them have enabled sampling, only these specified models will
be sampled.

For example, if we only enable coverage model for individual register and memory addresses
(UVM_CVR_ADDR_MAP) in the base test (using include_coverage()) and enable sampling on all
possible coverage models – only cover groups for register and memory word addresses will be
built and sampled 5.1.

If we build all possible coverage models but enable sampling only for individual register
bits and for register and memory word addresses (set_coverage() with UVM_CVR_REG_BITS +
UVM_CVR_ADDR_MAP in the test before executing any sequences) – all coverage models will be
built, but only cover groups for register bits and for register and memory word addresses will be
sampled 5.2.

If all coverage models are built and sampled – coverage collection is at 100% 5.3.
Aforementioned coverage collections are the same with or without inserted bugs or TWO_MAPS

macro defined.

5.3 Execution of my built in sequences test

5.3.1 Identifying Bugs
Test was executed with all bugs related macros defined and without TWO_MAPS macro. Built-in
sequences were not able to detect following bugs:

1. Write-read-clear register is not cleared after read operations.
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Figure 5.2 Custom sequences test – collected coverage for all coverage models built, but with enabled
sampling only for individual register bits and for register and memory word addresses

Figure 5.3 Custom sequences test – collected coverage with all coverage models built and sampled
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2. Write-read-set register has a value of 32’h1111_1111 after read operations.

3. All ROM bugs.

All other bugs were successfully discovered. List of all error messages is too long to describe
here, log file after executing this test is saved on GitLab page of this project. Some of these error
messages are:

Reset value of WC register:

# Starting uvm_reg_hw_reset_seq_inst sequence...
# UVM_ERROR verilog_src/uvm-1.1d/src/reg/uvm_reg.svh(2889) @ 440.00 ns:
reporter [RegModel] Register "ral_reg_block_inst.ral_reg_file_inst.
ral_reg_wc_inst_5" value read from DUT (0x0000000000100000) does not
match mirrored value (0x0000000000000000)

Write-read-clear register (bug regarding the inability to write to 16 MSB bits of the register):

# Starting uvm_reg_bit_bash_seq_inst sequence...
# UVM_ERROR verilog_src/uvm-1.1d/src/reg/sequences/
uvm_reg_bit_bash_seq.svh(174) @ 60320.00 ns:
reporter@@uvm_reg_bit_bash_seq_inst.reg_single_bit_bash_seq
[uvm_reg_bit_bash_seq] Writing a 1 in bit #16 of register
"ral_reg_block_inst.ral_reg_file_inst.ral_reg_wrc_inst_3" with
initial value ’h0000000000000000 yielded ’h0000000000000000
instead of ’h0000000000010000

Write-1-toggle/write-0-toggle register:

# Starting uvm_reg_bit_bash_seq_inst sequence...
# UVM_ERROR verilog_src/uvm-1.1d/src/reg/sequences/
uvm_reg_bit_bash_seq.svh(174) @ 1440.00 ns:
reporter@@uvm_reg_bit_bash_seq_inst.
reg_single_bit_bash_seq [uvm_reg_bit_bash_seq] Writing a 1
in bit #0 of register "ral_reg_block_inst.ral_reg_file_inst.
ral_reg_w1t_w0t_inst_21" with initial value ’h0000000000000000
yielded ’h0000000000000001 instead of ’h000000000000fffe

RAM:

# Starting uvm_mem_walk_seq_inst sequence...
# UVM_ERROR verilog_src/uvm-1.1d/src/reg/sequences/uvm_mem_walk_seq.svh(143)
@ 166980.00 ns: reporter@@uvm_mem_walk_seq_inst.single_mem_walk_seq
[uvm_mem_walk_seq] "ral_reg_block_inst.ral_ram_inst[1-1]" read back as
’h0000000000000000 instead of ’h00000000ffffffff.
# UVM_ERROR verilog_src/uvm-1.1d/src/reg/sequences/uvm_mem_walk_seq.svh(143)
@ 218180.00 ns: reporter@@uvm_mem_walk_seq_inst.single_mem_walk_seq
[uvm_mem_walk_seq] "ral_reg_block_inst.ral_ram_inst[513-1]" read back as
’h00000000abcddcba instead of ’h00000000fffffdff.
# UVM_ERROR verilog_src/uvm-1.1d/src/reg/sequences/uvm_mem_walk_seq.svh(165)
@ 269250.00 ns: reporter@@uvm_mem_walk_seq_inst.single_mem_walk_seq
[uvm_mem_walk_seq] "ral_reg_block_inst.ral_ram_inst[1023]" read back as
’h0000000000000000 instead of ’h00000000fffffc00.
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Described register bugs were not discovered because built-in sequences write some value to
these registers and, after that, read them only once. That way register correctly returns that
written value, but fails to clear/set its bits after read operation. After that, built-in sequences
write another value to these registers, without reading it one more time to check if the bits were
cleared/set correctly after previous read operation. That was the exact reason for two mirror()
methods in our my_all_regs_0_1_seq sequence.

ROM bugs were not discovered, because uvm_mem_access_seq sequence writes some value
to the ROM via backdoor and reads it on the very next positive edge of the clock, at precisely
the same time when error data is about to be written. Because of that, sequence receives correct
data that was just written to a memory word and no error is reported. It is also stated, that
ROM should be idle and not modify its data during the execution of sequence [35].

If test is executed with all inserted bugs and with TWO_MAPS macro, all bugs besides the ROM
bugs are identified. Previously undiscovered bugs in write-read-clear and write-read-set registers
were caught thanks to the uvm_reg_mem_shared_access_seq sequence, which does nothing in
case of only one (default) address map in register model:

# Starting uvm_reg_mem_shared_access_seq_inst sequence...
# UVM_ERROR verilog_src/uvm-1.1d/src/reg/sequences/
uvm_reg_mem_shared_access_seq.svh(172) @ 1483260.00 ns: reporter@@
uvm_reg_mem_shared_access_seq_inst.reg_shared_access_seq
[uvm_reg_shared_access_seq] Register "ral_reg_block_inst.ral_reg_file_inst.
ral_reg_wrc_inst_3" through map "ral_reg_block_inst.ral_reg_file_inst.
ral_reg_file_second_map" is ’h000000000000c29e instead of ’h0000000000000000
after writing ’hb1fc7863cf54c29e via map "ral_reg_block_inst.ral_reg_file_inst.
ral_reg_file_default_map" over ’h0000000000000000.

# Starting uvm_reg_mem_shared_access_seq_inst sequence...
# UVM_ERROR verilog_src/uvm-1.1d/src/reg/sequences/
uvm_reg_mem_shared_access_seq.svh(172) @ 1483020.00 ns: reporter@@
uvm_reg_mem_shared_access_seq_inst.reg_shared_access_seq
[uvm_reg_shared_access_seq] Register "ral_reg_block_inst.ral_reg_file_inst.
ral_reg_wrs_inst_4" through map "ral_reg_block_inst.ral_reg_file_inst.
ral_reg_file_second_map" is ’h0000000011111111 instead of ’h00000000ffffffff
after writing ’hc8fb6c9121487b42 via map "ral_reg_block_inst.ral_reg_file_inst.
ral_reg_file_default_map" over ’h0000000000000000.

If the test is executed without any bugs inserted and with or without TWO_MAPS defined, no
errors are reported.

5.3.2 Coverage Collection
Test was executed with various functional coverage models enabled and with sampling enabled
for various coverage models. Coverage models were successfully (not) built and (not) sampled
based on a include_coverage() and set_coverage() methods.

If test is executed with all possible coverage models enabled and with sampling enabled on all
of them, total coverage is not at 100%. That is the reason why this test was executed a couple
more times with only one built-in sequence executed at a time to check coverage collection of
every individual sequence. No bugs were inserted during that process.

5.3.2.1 uvm reg hw reset seq
This sequence only reads registers and nothing more. We can see 5.4 that all registers were
actually read at least once and that they all have their first bin (bin with zero value) sampled. If



76 Testing

Figure 5.4 Collected coverage for uvm reg hw reset seq sequence
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Figure 5.5 Collected coverage for uvm reg bit bash seq sequence

TWO_MAPS macro is defined, coverage collection percentage is a little higher, because registers are
read twice (through both maps) and after the first read operation, registers of type write-read-set
and read-set have their values changed to all ones.

5.3.2.2 uvm reg bit bash seq
While looking at the collected coverage 5.5 we can see that in case of write-1/0-toggle registers,
sequence does not actually write one-hot and one-cold values to them, but such a value, so that
after write operations registers would contain one-hot (W1T) and one-cold (W0T) values.

Registers, that can be only be read, and registers of type write-clear and write-set have such
a low coverage percentage because in order to sample their read values, data needs to be poked
into them via backdoor, which this sequence does not do.

In case of write-read-clear and write-read-set registers, we can see, that they are never read
twice in a row, i.e. all ones (WRS) or all zeroes (WRC) values are not sampled.

In case of registers that are written with one-hot (RW and WRC) and one-cold (WRS) values
we can see that their write and read bins for field values are not at 100%. That happened because
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Figure 5.6 Collected coverage for uvm reg access seq sequence

one-hot and one-cold values do not cover all possible values, which are divided into four cover
bins.

All registers were written or read at least once.
With TWO_MAPS defined resulting coverage is identical.

5.3.2.3 uvm reg access seq
By looking at the coverage 5.6 we can see that only written inverted reset values (all ones) and
read reset values (all zeroes) are sampled. Values that were written via backdoor are not sampled.

Registers containing read-only fields are not tested at all (RW/RO register in cover group
wr_addr, RW/RO and all of RO registers in cover group rd_addr).

If executed with TWO_MAPS macro, coverage of some of the registers were increased by exactly
two times. That is to be expected, since this sequence reads and writes values via all currently
available address maps.
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Figure 5.7 Collected coverage for uvm reg mem shared access seq sequence

5.3.2.4 uvm mem walk seq
If executed with or without TWO_MAPS macro, coverage of this sequence is at 100% for RAM, i.e.
every memory word was written and read at least once. Coverage for all registers is at 0%.

5.3.2.5 uvm mem access seq
If executed with or without TWO_MAPS macro, coverage of this sequence is at 100% for RAM and
ROM, i.e. every memory word in RAM was written and read at least once and every memory
word in ROM was read at least once. Coverage for all registers is at 0%.

5.3.2.6 uvm reg mem shared access seq
If sequence is executed with only one address map, this sequence does nothing and no coverage
is collected. When executed with two address maps we can see 5.7 that no bin that covers
individual register bits is sampled, since this sequence only writes and reads random values via
all possible address maps.

All registers, RAM and ROM memory words were written and read at least once.
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5.3.2.7 uvm reg mem hdl paths seq
This sequence checks if specified backdoor HDL paths are accessible by the simulator and does
not interact with an actual DUT blocks.

5.4 Execution of my full test
Since this test contains same sequences as in the previous two tests, describing the execution of
this test in detail is redundant.

All inserted bugs were identified and collected coverage is at 100% (if all coverage models are
enabled and sampling is enabled on all of them).

5.5 Execution of uvm reg mem built in seq sequence
This sequence is used to execute a user-defined selection of built-in register block sequences. This
sequence is not a part of any of our tests, but it was executed individually to check, if it will
successfully start defined sequences.

If it is executed with only one sequence, that tests registers, or with only sequences, that
test memories, uvm_reg_mem_built_in_seq sequence starts them without any problems. But
if it executes at least two sequences, that test registers, unexpected errors occur. For example,
if we have no inserted errors, one or two address maps, and if we set this sequence to execute
sequences, that check reset values and do bit-bashing:

UVM_DO_REG_HW_RESET + UVM_DO_REG_BIT_BASH

we get these two errors:

# UVM_ERROR verilog_src/uvm-1.1d/src/reg/sequences/
uvm_reg_bit_bash_seq.svh(174) @ 16760.00 ns:
reporter@@uvm_reg_mem_built_in_seq_inst.reg_bit_bash_seq.
reg_single_bit_bash_seq [uvm_reg_bit_bash_seq] Writing a 1 in bit #0 of
register "ral_reg_block_inst.ral_reg_file_inst.ral_reg_rc_rs_inst_18"
with initial value ’h0000000000000000 yielded ’h000000000000ffff instead of
’h0000000000000000

# UVM_ERROR verilog_src/uvm-1.1d/src/reg/sequences/
uvm_reg_bit_bash_seq.svh(174) @ 62840.00 ns:
reporter@@uvm_reg_mem_built_in_seq_inst.reg_bit_bash_seq.
reg_single_bit_bash_seq [uvm_reg_bit_bash_seq] Writing a 1 in bit #0 of
register "ral_reg_block_inst.ral_reg_file_inst.ral_reg_rs_inst_2"
with initial value ’h0000000000000000 yielded ’h00000000ffffffff instead of
’h0000000000000000

That happened, because values of these registers were set after read operation invoked by
uvm_reg_hw_reset_seq.

After examining source code for uvm_reg_mem_built_in_seq sequence [37], it was discovered,
that there is no reset between any of the sequences in it, which is in contradiction to what is
specified in the source codes of register block built-in sequences (for example [31]). Each one
of them has a task called reset_blk() which is used to reset DUT, but it is empty by default.
Comments of this task state, that “DUT should be reset before executing this test sequence or
this method should be implemented in an extension to reset the DUT”.

Since uvm_reg_mem_built_in_seq uses UVM factory to create() instances of built-in se-
quences, we can:
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Figure 5.8 Collected coverage after writing to RAM memory word with offset 5

1. Create new classes that will be extended from the built-in sequences.

2. Implement their reset_blk() task to reset DUT.

3. Override built-in sequences with our classes using UVM factory set_inst_override() or
set_type_override().

After that we can successfully execute uvm_reg_mem_built_in_seq with all built-in se-
quences.

But this process can be quite tedious, since it is easier to simply create new UVM test, where
we would reset DUT manually after execution of every built-in sequence. That is exactly what
our my_built_in_sequences_test test does.

5.6 Potential memory sampling bug
While examining coverage collection for memories a potential memory sampling bug in UVM
RAL library was discovered.

Let’s say we want to write some value to RAM memory word with offset 5 (while all coverage
models are enabled and sampling is enabled on all of them):

env_inst.ral_env_inst.ral_reg_block_inst.ral_ram_inst.write(
status , 5, 32’hFFFF_FFFF , UVM_FRONTDOOR

);

If we look at the collected coverage after this operation 5.8, we can see that memory word with
offset 6 was also sampled. If we then write to words with offsets 5 and 6 – memory words with
offsets 5, 6 and 7 are sampled. Same thing occurs if we read(), burst_write() or burst_read()
data from/to memory.

After looking at the source code for UVM RAL memory (uvm_mem.svh [41]) we can see that
write() method calls do_write() method:

task uvm_mem :: write(output uvm_status_e status ,
input uvm_reg_addr_t offset ,
input uvm_reg_data_t value ,
input uvm_path_e path = UVM_DEFAULT_PATH ,
input uvm_reg_map map = null ,
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input uvm_sequence_base parent = null ,
input int prior = -1,
input uvm_object extension = null ,
input string fname = "",
input int lineno = 0);

// create an abstract transaction for this operation
uvm_reg_item rw = uvm_reg_item :: type_id :: create(

"mem_write",,get_full_name ()
);
rw.element = this;
rw.element_kind = UVM_MEM;
rw.kind = UVM_WRITE;
rw.offset = offset;
rw.value [0] = value;
rw.path = path;
rw.map = map;
rw.parent = parent;
rw.prior = prior;
rw.extension = extension;
rw.fname = fname;
rw.lineno = lineno;

do_write(rw);

status = rw.status;

endtask: write

Method do_write(), in turn, calls XsampleX():

task uvm_mem :: do_write(uvm_reg_item rw);
// ...
// FRONTDOOR
if (rw.path == UVM_FRONTDOOR) begin

// ...
if (rw.status != UVM_NOT_OK)

for (int idx = rw.offset;
idx <= rw.offset + rw.value.size ();
idx++) begin

XsampleX(map_info.mem_range.stride * idx , 0, rw.map);
m_parent.XsampleX(map_info.offset +

(map_info.mem_range.stride * idx),
0, rw.map);

end
end
// ...

endtask: do_read

And XsampleX() calls sample() method, that is implemented in our RAL memories:

/* local */ function void XsampleX(uvm_reg_addr_t addr ,
bit is_read ,
uvm_reg_map map);

sample(addr , is_read , map);
endfunction
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Table 5.2 Basic information about UVM RAL memory methods

RAL Memory method Triggers
sampling?

Respects
DUT memory
access policy?

Frontdoor write() Yes Yes
Backdoor write() No Yes
Frontdoor read() Yes Yes
Backdoor read() No Yes

Frontdoor burst write() Yes Yes
Backdoor burst write() No Yes
Frontdoor burst read() Yes Yes
Backdoor burst read() No Yes

poke() No No
peek() No No

When we write to memory word with offset 5, rw.offset is set to 5, rw.value.size() is
1, and that is why XsampleX() method is executed twice – with idx having values 5 and 6.
Methods read(), burst_write() and burst_read() have the exact same issue.

A post was created on a Siemens forum about UVM methodology, where this problem was
described, but there were no answers provided yet.

5.7 Simulation Results
All tests were successfully executed and all bugs were identified with the exception of test con-
sisting of built-in RAL sequences with one address map. Coverage collection was correctly
implemented – after every read and write operation on a register or memory word, data are
properly sampled. Functional coverage models and their sampling can be turned on and off and
corresponding cover groups are created and sampled as expected.

Since it can be difficult to understand which RAL methods respect access policy of a register,
which of them actually modify desired and mirrored values and which of them trigger sampling,
tables describing these methods were created (5.3 and 5.2). Information provided in these tables
was gathered based on the results of execution of our tests and by executing these RAL methods
individually.

https://verificationacademy.com/forums/t/uvm-ral-memory-sampling-after-read-write-operation/46059
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Table 5.3 Basic information about UVM RAL register methods

RAL Register method
Modifies
desired
value?

Modifies
mirrored

value?

Triggers
sampling?

Respects
DUT register
access policy?

set()

Only if
register
access
policy

allows it

No No
Does not

interact with
DUT registers

reset() Yes Yes No
Does not

interact with
DUT registers

Frontdoor write() Yes Only if implicit/explicit
prediction is set up Yes

Backdoor write() Yes Yes No Yes

Frontdoor read() Only if implicit/explicit
prediction is set up Yes

Backdoor read() Yes Yes No Yes
poke() Yes Yes No No
peek() Yes Yes No No

Frontdoor update() No Only if implicit/explicit
prediction is set up

Yes (see set()
method)

Backdoor update() No Yes No Yes (see set()
method)

Frontdoor mirror() Only if implicit/explicit
prediction is set up Yes

Backdoor mirror() Yes Yes No Yes
Frontdoor predict() with

UVM PREDICT WRITE or
UVM PREDICT READ

Only if register access
policy allows it No

Does not
interact with
DUT registers

Frontdoor predict() with
UVM PREDICT DIRECT Yes Yes No

Does not
interact with
DUT registers

Backdoor predict() Yes Yes No
Does not

interact with
DUT registers



Conclusion

The goal of this thesis was to study the constructs of UVM and its register abstraction layer
(RAL). Another purpose of this work was to present, how RAL can be used for automatic coverage
collection and how its built-in sequences can be utilized to verify functionality of registers and
memories.

As a result of this thesis, testbench for a block of registers and RAM and ROM memories was
successfully created. This testbench utilizes UVM RAL components and methods and contains
descriptive comments as to why and how they can be configured and used for user’s needs.

Number of sequences and tests, that showcase the use of RAL methods for verification, were
also created. Each of the built-in RAL sequence was described and used in our testbench. By
artificially inserting bugs in our design, we proved that our and built-in sequences are able to
identify them.

Automatic coverage collection was implemented for every register and memory. Functional
coverage models can be configured for desired register block/register/memory as we see fit. By
studying the collected coverage after each test and built-in RAL sequence, we made sure, that
coverage was configured and collected properly.

Couple of potential bugs in UVM register abstraction layer were also identified: aggregated
sequence can execute sequences, even if their disable attributes are set 3.2.5.3, built-in RAL
sequences are not able to detect that WRS and WRC are not set/cleared after read operations
5.3.1, and that one more memory word is sampled every time memory is read or written 5.6.

To summarize, this thesis and corresponding source codes can be used to showcase, how
the UVM RAL testbench can be created and configured, and how it can be used to verify
functionalities of registers and memories in digital design.
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8. KOHLÍK, Martin. Digital Circuit Simulation and Verification: Universal Verification Method-
ology [online]. 2021. [visited on 2024-03-17]. Available from: https://courses.fit.cvut.
cz/NI- SIM/media/lectures/11- UVM.pdf. [File is accessible after logging in to CTU
network].

9. VLSI Verify: UVM testbench Top [online]. 2024. [visited on 2024-03-17]. Available from:
https://vlsiverify.com/uvm/uvm-testbench-top/.

10. VLSI Verify: UVM Driver [online]. 2024. [visited on 2024-03-21]. Available from: https:
//vlsiverify.com/uvm/uvm-driver/.

11. ChipVerify: UVM Monitor [uvm monitor] [online]. 2023. [visited on 2024-03-21]. Available
from: https://www.chipverify.com/uvm/uvm-monitor.

12. ChipVerify: UVM Agent — uvm agent [online]. 2023. [visited on 2024-03-21]. Available from:
https://www.chipverify.com/uvm/uvm-agent.

13. ChipVerify: UVM Scoreboard [online]. 2023. [visited on 2024-03-22]. Available from: https:
//www.chipverify.com/uvm/uvm-scoreboard.

14. ChipVerify: UVM Phases [online]. 2023. [visited on 2024-03-22]. Available from: https:
//www.chipverify.com/uvm/uvm-phases.

87

https://gitlab.fit.cvut.cz/ganeetim/master_thesis_uvm_ral
https://www.chipverify.com/uvm/uvm-register-layer
https://verificationguide.com/uvm-ral/introduction-to-uvm-ral/
https://vlsiverify.com/uvm/ral/ral-model/
http://hdl.handle.net/10467/101053
https://gitlab.fit.cvut.cz/jilekvoj/sce---simulace-procesoru
https://www.chipverify.com/tutorials/uvm
https://www.chipverify.com/tutorials/uvm
https://courses.fit.cvut.cz/NI-SIM/media/lectures/11-UVM.pdf
https://courses.fit.cvut.cz/NI-SIM/media/lectures/11-UVM.pdf
https://vlsiverify.com/uvm/uvm-testbench-top/
https://vlsiverify.com/uvm/uvm-driver/
https://vlsiverify.com/uvm/uvm-driver/
https://www.chipverify.com/uvm/uvm-monitor
https://www.chipverify.com/uvm/uvm-agent
https://www.chipverify.com/uvm/uvm-scoreboard
https://www.chipverify.com/uvm/uvm-scoreboard
https://www.chipverify.com/uvm/uvm-phases
https://www.chipverify.com/uvm/uvm-phases


88 Bibliography

15. VLSI Verify: UVM Phases [online]. 2024. [visited on 2024-03-23]. Available from: https:
//vlsiverify.com/uvm/uvm-phases/.

16. Verification Academy: UVM Common Phases [online]. 2024. [visited on 2024-03-23]. Avail-
able from: https://verificationacademy.com/verification-methodology-reference/
uvm/docs_1.2/html/files/base/uvm_common_phases-svh.html#uvm_build_phase.

17. Verification Academy: UVM Run-Time Phases [online]. 2024. [visited on 2024-03-23]. Avail-
able from: https://verificationacademy.com/verification-methodology-reference/
uvm/docs_1.2/html/files/base/uvm_runtime_phases-svh.html.

18. ChipVerify: UVM Register Model Classes [online]. 2023. [visited on 2024-03-28]. Available
from: https://www.chipverify.com/uvm/uvm-register-model.

19. ChipVerify: UVM Register Backdoor Access [online]. 2023. [visited on 2024-03-31]. Available
from: https://www.chipverify.com/uvm/uvm-register-backdoor-access.

20. Verification Academy: uvm reg [online]. 2024. [visited on 2024-03-28]. Available from: https:
//verificationacademy.com/verification-methodology-reference/uvm/docs_1.1b/
html/files/reg/uvm_reg-svh.html.

21. Verification Academy: uvm reg field [online]. 2024. [visited on 2024-03-29]. Available from:
https : / / verificationacademy . com / verification - methodology - reference / uvm /
docs_1.1a/html/files/reg/uvm_reg_field-svh.html.

22. Verification Academy: uvm reg file [online]. 2024. [visited on 2024-03-31]. Available from:
https : / / verificationacademy . com / verification - methodology - reference / uvm /
docs_1.1b/html/files/reg/uvm_reg_file-svh.html.

23. Verification Academy: uvm mem [online]. 2024. [visited on 2024-03-31]. Available from:
https : / / verificationacademy . com / verification - methodology - reference / uvm /
docs_1.1b/html/files/reg/uvm_mem-svh.html.

24. Verification Academy: uvm reg map [online]. 2024. [visited on 2024-03-31]. Available from:
https : / / verificationacademy . com / verification - methodology - reference / uvm /
docs_1.1b/html/files/reg/uvm_reg_map-svh.html.

25. Verification Academy: Classes for Adapting Between Register and Bus Operations [on-
line]. 2024. [visited on 2024-04-01]. Available from: https://verificationacademy.com/
verification- methodology- reference/uvm/docs_1.2/html/files/reg/uvm_reg_
adapter-svh.html.

26. Verification Academy: uvm reg block [online]. 2024. [visited on 2024-04-01]. Available from:
https : / / verificationacademy . com / verification - methodology - reference / uvm /
docs_1.2/html/files/reg/uvm_reg_block-svh.html.

27. VLSI Verify: RAL Predictor [online]. 2024. [visited on 2024-04-01]. Available from: https:
//vlsiverify.com/uvm/ral/ral-predictor/.

28. ChipVerify: UVM Register Environment [online]. 2023. [visited on 2024-04-01]. Available
from: https://www.chipverify.com/uvm/uvm-register-environment.

29. Verification Academy: Global Declarations for the Register Layer [online]. 2024. [visited
on 2024-04-01]. Available from: https : / / verificationacademy . com / verification -
methodology-reference/uvm/docs_1.2/html/files/reg/uvm_reg_model-svh.html.

30. Verification Academy: uvm reg hw reset seq [online]. 2024. [visited on 2024-04-05]. Available
from: https://verificationacademy.com/verification- methodology- reference/
uvm/docs_1.2/html/files/reg/sequences/uvm_reg_hw_reset_seq-svh.html.

31. Verification Academy: Bit Bashing Test Sequences [online]. 2024. [visited on 2024-04-05].
Available from: https : / / verificationacademy . com / verification - methodology -
reference/uvm/docs_1.1a/html/files/reg/sequences/uvm_reg_bit_bash_seq-
svh.html.

https://vlsiverify.com/uvm/uvm-phases/
https://vlsiverify.com/uvm/uvm-phases/
https://verificationacademy.com/verification-methodology-reference/uvm/docs_1.2/html/files/base/uvm_common_phases-svh.html#uvm_build_phase
https://verificationacademy.com/verification-methodology-reference/uvm/docs_1.2/html/files/base/uvm_common_phases-svh.html#uvm_build_phase
https://verificationacademy.com/verification-methodology-reference/uvm/docs_1.2/html/files/base/uvm_runtime_phases-svh.html
https://verificationacademy.com/verification-methodology-reference/uvm/docs_1.2/html/files/base/uvm_runtime_phases-svh.html
https://www.chipverify.com/uvm/uvm-register-model
https://www.chipverify.com/uvm/uvm-register-backdoor-access
https://verificationacademy.com/verification-methodology-reference/uvm/docs_1.1b/html/files/reg/uvm_reg-svh.html
https://verificationacademy.com/verification-methodology-reference/uvm/docs_1.1b/html/files/reg/uvm_reg-svh.html
https://verificationacademy.com/verification-methodology-reference/uvm/docs_1.1b/html/files/reg/uvm_reg-svh.html
https://verificationacademy.com/verification-methodology-reference/uvm/docs_1.1a/html/files/reg/uvm_reg_field-svh.html
https://verificationacademy.com/verification-methodology-reference/uvm/docs_1.1a/html/files/reg/uvm_reg_field-svh.html
https://verificationacademy.com/verification-methodology-reference/uvm/docs_1.1b/html/files/reg/uvm_reg_file-svh.html
https://verificationacademy.com/verification-methodology-reference/uvm/docs_1.1b/html/files/reg/uvm_reg_file-svh.html
https://verificationacademy.com/verification-methodology-reference/uvm/docs_1.1b/html/files/reg/uvm_mem-svh.html
https://verificationacademy.com/verification-methodology-reference/uvm/docs_1.1b/html/files/reg/uvm_mem-svh.html
https://verificationacademy.com/verification-methodology-reference/uvm/docs_1.1b/html/files/reg/uvm_reg_map-svh.html
https://verificationacademy.com/verification-methodology-reference/uvm/docs_1.1b/html/files/reg/uvm_reg_map-svh.html
https://verificationacademy.com/verification-methodology-reference/uvm/docs_1.2/html/files/reg/uvm_reg_adapter-svh.html
https://verificationacademy.com/verification-methodology-reference/uvm/docs_1.2/html/files/reg/uvm_reg_adapter-svh.html
https://verificationacademy.com/verification-methodology-reference/uvm/docs_1.2/html/files/reg/uvm_reg_adapter-svh.html
https://verificationacademy.com/verification-methodology-reference/uvm/docs_1.2/html/files/reg/uvm_reg_block-svh.html
https://verificationacademy.com/verification-methodology-reference/uvm/docs_1.2/html/files/reg/uvm_reg_block-svh.html
https://vlsiverify.com/uvm/ral/ral-predictor/
https://vlsiverify.com/uvm/ral/ral-predictor/
https://www.chipverify.com/uvm/uvm-register-environment
https://verificationacademy.com/verification-methodology-reference/uvm/docs_1.2/html/files/reg/uvm_reg_model-svh.html
https://verificationacademy.com/verification-methodology-reference/uvm/docs_1.2/html/files/reg/uvm_reg_model-svh.html
https://verificationacademy.com/verification-methodology-reference/uvm/docs_1.2/html/files/reg/sequences/uvm_reg_hw_reset_seq-svh.html
https://verificationacademy.com/verification-methodology-reference/uvm/docs_1.2/html/files/reg/sequences/uvm_reg_hw_reset_seq-svh.html
https://verificationacademy.com/verification-methodology-reference/uvm/docs_1.1a/html/files/reg/sequences/uvm_reg_bit_bash_seq-svh.html
https://verificationacademy.com/verification-methodology-reference/uvm/docs_1.1a/html/files/reg/sequences/uvm_reg_bit_bash_seq-svh.html
https://verificationacademy.com/verification-methodology-reference/uvm/docs_1.1a/html/files/reg/sequences/uvm_reg_bit_bash_seq-svh.html


Bibliography 89

32. Verification Academy: Register Access Test Sequences [online]. 2024. [visited on 2024-04-
05]. Available from: https://verificationacademy.com/verification-methodology-
reference/uvm/docs_1.2/html/files/reg/sequences/uvm_reg_access_seq-svh.
html.

33. Verification Academy: Shared Register and Memory Access Test Sequences [online]. 2024.
[visited on 2024-04-05]. Available from: https://verificationacademy.com/verification-
methodology-reference/uvm/docs_1.2/html/files/reg/sequences/uvm_reg_mem_
shared_access_seq-svh.html.

34. Verification Academy: Memory Walking-Ones Test Sequences [online]. 2024. [visited on
2024-04-05]. Available from: https://verificationacademy.com/verification-methodology-
reference/uvm/docs_1.2/html/files/reg/sequences/uvm_mem_walk_seq-svh.html.

35. Verification Academy: Memory Access Test Sequence [online]. 2024. [visited on 2024-04-
05]. Available from: https://verificationacademy.com/verification-methodology-
reference/uvm/docs_1.2/html/files/reg/sequences/uvm_mem_access_seq-svh.
html.

36. Verification Academy: uvm reg mem built in seq [online]. 2024. [visited on 2024-04-05]. Avail-
able from: https://verificationacademy.com/verification-methodology-reference/
uvm/docs_1.2/html/files/reg/sequences/uvm_reg_mem_built_in_seq-svh.html.

37. Verification Academy: uvm reg mem built in seq.svh [online]. 2024. [visited on 2024-04-07].
Available from: https : / / verificationacademy . com / verification - methodology -
reference/uvm/docs_1.2/html/src/reg/sequences/uvm_reg_mem_built_in_seq.svh.

38. Verification Academy: uvm reg mem shared access seq.svh [online]. 2024. [visited on 2024-
04-07]. Available from: https://verificationacademy.com/verification-methodology-
reference/uvm/docs_1.2/html/src/reg/sequences/uvm_reg_mem_shared_access_
seq.svh.

39. Verification Academy: uvm mem walk seq.svh [online]. 2024. [visited on 2024-04-07]. Avail-
able from: https://verificationacademy.com/verification-methodology-reference/
uvm/docs_1.2/html/src/reg/sequences/uvm_mem_walk_seq.svh.

40. Verification Academy: HDL Paths Checking Test Sequence [online]. 2024. [visited on 2024-
04-05]. Available from: https://verificationacademy.com/verification-methodology-
reference/uvm/docs_1.2/html/files/reg/sequences/uvm_reg_mem_hdl_paths_seq-
svh.html.

41. Verification Academy: uvm mem.svh [online]. 2024. [visited on 2024-05-09]. Available from:
https://verificationacademy.com/verification-methodology-reference/uvm/src/
reg/uvm_mem.svh.

https://verificationacademy.com/verification-methodology-reference/uvm/docs_1.2/html/files/reg/sequences/uvm_reg_access_seq-svh.html
https://verificationacademy.com/verification-methodology-reference/uvm/docs_1.2/html/files/reg/sequences/uvm_reg_access_seq-svh.html
https://verificationacademy.com/verification-methodology-reference/uvm/docs_1.2/html/files/reg/sequences/uvm_reg_access_seq-svh.html
https://verificationacademy.com/verification-methodology-reference/uvm/docs_1.2/html/files/reg/sequences/uvm_reg_mem_shared_access_seq-svh.html
https://verificationacademy.com/verification-methodology-reference/uvm/docs_1.2/html/files/reg/sequences/uvm_reg_mem_shared_access_seq-svh.html
https://verificationacademy.com/verification-methodology-reference/uvm/docs_1.2/html/files/reg/sequences/uvm_reg_mem_shared_access_seq-svh.html
https://verificationacademy.com/verification-methodology-reference/uvm/docs_1.2/html/files/reg/sequences/uvm_mem_walk_seq-svh.html
https://verificationacademy.com/verification-methodology-reference/uvm/docs_1.2/html/files/reg/sequences/uvm_mem_walk_seq-svh.html
https://verificationacademy.com/verification-methodology-reference/uvm/docs_1.2/html/files/reg/sequences/uvm_mem_access_seq-svh.html
https://verificationacademy.com/verification-methodology-reference/uvm/docs_1.2/html/files/reg/sequences/uvm_mem_access_seq-svh.html
https://verificationacademy.com/verification-methodology-reference/uvm/docs_1.2/html/files/reg/sequences/uvm_mem_access_seq-svh.html
https://verificationacademy.com/verification-methodology-reference/uvm/docs_1.2/html/files/reg/sequences/uvm_reg_mem_built_in_seq-svh.html
https://verificationacademy.com/verification-methodology-reference/uvm/docs_1.2/html/files/reg/sequences/uvm_reg_mem_built_in_seq-svh.html
https://verificationacademy.com/verification-methodology-reference/uvm/docs_1.2/html/src/reg/sequences/uvm_reg_mem_built_in_seq.svh
https://verificationacademy.com/verification-methodology-reference/uvm/docs_1.2/html/src/reg/sequences/uvm_reg_mem_built_in_seq.svh
https://verificationacademy.com/verification-methodology-reference/uvm/docs_1.2/html/src/reg/sequences/uvm_reg_mem_shared_access_seq.svh
https://verificationacademy.com/verification-methodology-reference/uvm/docs_1.2/html/src/reg/sequences/uvm_reg_mem_shared_access_seq.svh
https://verificationacademy.com/verification-methodology-reference/uvm/docs_1.2/html/src/reg/sequences/uvm_reg_mem_shared_access_seq.svh
https://verificationacademy.com/verification-methodology-reference/uvm/docs_1.2/html/src/reg/sequences/uvm_mem_walk_seq.svh
https://verificationacademy.com/verification-methodology-reference/uvm/docs_1.2/html/src/reg/sequences/uvm_mem_walk_seq.svh
https://verificationacademy.com/verification-methodology-reference/uvm/docs_1.2/html/files/reg/sequences/uvm_reg_mem_hdl_paths_seq-svh.html
https://verificationacademy.com/verification-methodology-reference/uvm/docs_1.2/html/files/reg/sequences/uvm_reg_mem_hdl_paths_seq-svh.html
https://verificationacademy.com/verification-methodology-reference/uvm/docs_1.2/html/files/reg/sequences/uvm_reg_mem_hdl_paths_seq-svh.html
https://verificationacademy.com/verification-methodology-reference/uvm/src/reg/uvm_mem.svh
https://verificationacademy.com/verification-methodology-reference/uvm/src/reg/uvm_mem.svh


90 Bibliography



Contents of the attachment

readme.txt...........................................brief description of the attachment
src

Masters Thesis UVM RAL.............................source codes (GitLab repository)
Masters Thesis UVM RAL Latex. ............. source code of the thesis in LATEX format

text .................................................................. text of the thesis
Masters Thesis UVM RAL.pdf................................... thesis in PDF format
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