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Abstrakt

Tato práce popisuje metody pro klasifikaci śıt’ového provozu, detekci hrozeb
a bezpečnostńıho monitorováńı poč́ıtačových śıt́ı. Poté je představena nová
knihovna s názvem Weak Indication Framework, která si klade za ćıl usnadňovat
vývoj nových detektor̊u. Knihovna také umožňuje vyv́ıjet výkonné detekčńı
systémy pro vysokorychlostńı śıtě. Dále je vyvinuto několik detektor̊u s pomoćı
této knihovny jako demonstrace jej́ı použitelnosti. Všechny detektory byly nav́ıc
úspěšně nasazené na národńı śıt’ CESNET3 s v́ıce než p̊ul milionem uživatel̊u.

Kĺıčová slova klasifikace śıt’ového provozu, detekce hrozeb, bezpečnostńı
monitorováńı śıtě, slabé indikátory

Abstract

This thesis studies methods for network traffic classification, threat detection,
and network security monitoring. Moreover, a new software library called
Weak Indication Framework (WIF) is introduced to ease the development of
new threat detector systems. The WIF supports systems with high explainabil-
ity and high performance for high-speed networks. Several detectors are also
developed to demonstrate the usability of the WIF. Furthermore, all developed
detectors were successfully deployed to the national network CESNET3 with
more than half a million users.

Keywords network traffic classification, threat detection, network security
monitoring, weak indications
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Introduction

Most Internet traffic is encrypted nowadays, meaning knowing and understand-
ing what is happening in our computer networks is non-trivial. However, we
must still protect our users and infrastructure, which is only possible with net-
work monitoring. Moreover, network monitoring is essential for discovering
security threats, outgoing attacks, and more. Many detection and network
traffic classification methods were developed for this purpose. Unfortunately,
network traffic evolves: new communication protocols (for example, QUIC
and HTTP/3) are being developed, traffic of newly-developed applications can
cause an existing detector to produce false outputs, and even new versions of
existing applications can change the way the application communicates over
a computer network, and an existing detector may stop working. Therefore,
new detection and classification methods must be developed to respond to the
changing environment of computer networks.

One of the goals of this thesis is to perform a thorough review of current
classification and detection methods and to identify the most used principles
in the field. The main goal of this thesis is to design and implement a li-
brary, Weak Indication Framework (WIF), that contains the identified com-
monly used methods, making the development of new network threats and
application detectors much easier and faster. Moreover, it will reduce the re-
action time between discovering a new traffic type on a computer network and
deploying a detector for the newly discovered traffic. Other goals include de-
veloping several Proof-of-Concept detectors based on the newly designed WIF
and thorough testing both functionality and performance.

This thesis was developed in coordination with CESNET, the Czech Na-
tional and Research Network (NREN) operator. CESNET operates the na-
tional research and educational network CESNET3, which has 100+ Gbps
lines and half a million daily users. WIF and WIF-based detectors primarily
target the CESNET3 network in terms of performance, the information con-
tained in the output alerts, and other use cases. WIF-based software will target
national-level high-speed networks and provide the ability to process thousands
of network flows per second.
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Chapter 1
Network Communication Protocols

Understanding network traffic and communication protocols is essential before
attempting to design detection methods. Therefore, this chapter provides ba-
sic principles of communication over computer networks together with a brief
description of chosen communication protocols. Protocols were chosen with
emphasis on the thesis topic and detection methods described later.

1.1 ISO/OSI Model

ISO/OSI model is an abstract description of interprocess communication [1].
Day and Zimmermann [1] further explain that this model divides communi-
cation into 7 abstract layers, which are shown on the Figure 1.1. The layer
names (from the top) are Application, Presentation, Session, Transport, Net-
work, Data Link, and Physical. As also stated in [1], each layer is independent
and provides services to higher layers. Therefore, the operation of each layer
can be changed, provided that the offered service will remain the same [1].

Application

Presentation

Session

Transport

Network

Data Link

Physical

Application

Presentation

Session

Transport

Network

Data Link

Physical

Network

Data Link

Physical

Network

Data Link

Physical

Communication Subnet Boundry

Application Protocol

Presentation Protocol

Session Protocol

Transport Protocol

Figure 1.1: ISO/OSI model

Application layer is the most top layer, and therefore, it does not provide
services to higher layers [1]. It is the only one communicating directly with
the end user and defines services presented at the user-end [2]. The end user
typically interacts directly with software (web browsers, email clients, . . .),
which initiates communication.
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1. Network Communication Protocols

Presentation layer transforms data into a specific format and encapsu-
lates it into messages, which are then passed to the next layer. As explained
in [2], it is responsible for the way data is presented to the application. More-
over, encryption, translation, and compression are realized by the presentation
layer [2].

Session layer manages connections (a link or a path between two comput-
ers is called a connection). It has the ability to organize multiple connections
at once [1, 2]. The connection between two computers has to be created, con-
trolled, kept alive, and destroyed at the end. It is also possible that this layer
performs user authentication and token management [2].

Transport layer provides protocols and procedures for data transfer from
one host to another [1]. Protocols of this layer are divided into connection-
oriented and connectionless [1, 2]. Data is divided into smaller chunks called
segments, which is the Processing Data Unit (PDU) of this layer [2]. Segment
must be small enough, so network-layer and transport-layer headers can be
added. The transport layer provides end-to-end error detection and recovery,
sequence control, segmentation, and more [2].

Network layer provides independent data transfer technology, such as
relaying and routing decisions [1]. PDU of this layer is called packet. The
network layer provides protocols for packet transfer between nodes and different
networks. Every node (a computer connected to the network) has an address,
which can be used as a unique identifier [2]. One node can send data to another
by providing the destination address. The network will find a way to deliver
the packet to the correct destination — by routing process.

Data Link layer provides data transfer between two hosts on the same
computer network [1]. It is able to detect and potentially correct errors that
could occur on the physical layer [1, 2]. PDU used on the Data Link layer is
called frame. It also provides identification and parameter exchange possibili-
ties, which are needed for communication to take place [2].

Physical layer performs the actual transmission (transmit and receive) of
raw data between devices. As mentioned in [1], it provides electrical, mechani-
cal, and other functionalities to access physical mediums.

1.2 TCP/IP Model

TCP/IP model, also known as the Internet protocol suite, is a framework of
organized communication protocols used in the Internet [3, 4]. TCP/IP is a
practical model which relies on standardized protocols. On the other hand,
ISO/OSI serves as a comprehensive protocol-independent framework and is
used only in theory. TCP/IP is also a layered model [4] and very similar to the
ISO/OSI model. Comparison is shown on the Figure 1.2.

In the TCP/IP framework, the Application, Presentation and Session layers
of ISO/OSI are grouped together and they form one layer called the Application
layer. Moreover, Data Link and Physical are grouped into the Link layer. The
layer names (from the top) in the TCP/IP model are: Application, Transport,
Network, and Link layer [5].

Application layer is the most upper layer and provides protocols used
directly by most software. It includes HTTP (web surfing), FTP (file transfer),

4



1.2. TCP/IP Model

Application

Transport

Internet

Network

TCP/IP

Application

Presentation
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Transport
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Figure 1.2: TCP/IP and ISO/OSI model comparison

Table 1.1: TCP/IP Overview

No. Layer Protocols Data Unit
4 Application HTTP, FTP, SMTP APDU
3 Transport TCP, UDP, QUIC Stream, Datagram, Segment
2 Internet IP Packet
1 Link Ethernet Frame

SMTP (emails), and many more protocols [2]. It handles data representation
and encoding, and it also interacts with end-user [2].

Transport layer contains connection-oriented (TCP) and connectionless
(UDP) protocols [2]. Protocols of this layer can communicate with other hosts
independently on which protocol is used on the lower layer. Segmentation and
error control (prevention of network overload) are provided on this layer. TCP
provides reliability over non-reliable IP protocol [2]. However, reliability is not
needed in some cases. UDP provides a much smaller communication overhead
and is suitable for real-time applications [2].

Internet layer performs unreliable data transmission from a source host to
a destination host (even between different networks) [4]. This is achieved by the
routing process, host addressing and IP addresses [4]. The most used protocol
of this layer is IP protocol. Two addressing systems defined for network host
identification are: IPv4 (32-bit IP address) and IPv6 (128-bit IP address) [6].

Link layer performs transmission (send and receive) on the local network
— the network, to which a computer is connected to. It contains protocols and
methods used by a host to access a network [4]. Media Access Control (MAC)
addresses are used for host identification on the local network [2]. Moreover,
data is divided into frames, which are then transmitted by a network interface
card (NIC) [2].

A summary of the TCP/IP framework and its protocols is available in Table 1.1.
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1.3 Description of Selected Protocols

This section contains a brief description of selected communication protocols.
The selection was performed based on relevancy to the thesis topic.

1.3.1 IP

Internet Protocol (IP) is a Network layer protocol initially defined by RFC
791 [7]. It is used for the transmission of packets over IP networks with the use
of a routing process. Internet Protocol version 4 (IPv4) is the most used proto-
col on the Internet, developed in 1978. Internet Protocol version 6 (IPv6) [8] is
the newer version from 1996. However, IPv6 is being adopted on the Internet
very slowly, and IPv4 remains dominant.

Hosts on IP networks are labeled by numerical IP addresses, which are then
used for “navigation” in IP networks. IPv4 uses 32-bit addresses, usually writ-
ten in decimal system, for example 192.168.0.1. IPv4 can provide almost 4.3
billion different addresses. IPv6 uses 128-bit addresses, usually written in hex-
adecimal system, for example 2001:0db8:85a3:0000:0000:8a2e:0370:7334.

Moreover, both IPv4 and IPv6 can be divided into subnets. IP subnets are
defined by network address and number of bits used for network prefix, usually
written in CIDR format: 10.0.0.0/24 defines an IP subnet, in which all IP
addresses have prefix 10.0.0. The last 8 bits are used for local identification.
The 10.0.0.0/24 defines a subnet with IP addresses ranging from 10.0.0.0
to 10.0.0.255. Subnets can also be specified by network address and subnet
mask. The same subnet can be defined as 10.0.0.0 and its subnet mask
255.255.255.0.

The initial idea was that each device connected to the Internet would have
its own unique (public) IP address. However, it was assessed that not every
device needs a public IP address, for example, for security reasons. Therefore,
some IP subnets were declared as private. Network devices do not perform
routing for these addresses and they rather use Network Address Translation
(NAT) before transmission to the next IP network.

IP protocol also defines a structure that holds data during transmission,
called an IP packet. Each packet has two components: a header and a payload.
The IP header of version 4, version 6 is shown on the Figure 1.3, Figure 1.4.
Packet payload contains application data. Usually, it is a datagram of a proto-
col from a higher layer, for example, a TCP segment or UDP datagram. It is a
connectionless protocol, potentially unreliable. Reliability is typically ensured
by a higher-layer protocol, such as TCP.

1.3.2 TCP

Transmission Control Protocol (TCP) is a protocol working on the Transport
layer defined by RFC 793 [9]. It provides a reliable connection between two
hosts over an IP network for delivering streams of bytes. TCP was developed
in 1974 by Vint Cerf and Bob Kahn [10].

TCP accepts a data stream, divides it into chunks, and prepends the TCP
header to each one, creating TCP segments. TCP segment is then passed to
the IP protocol and sent. The structure of the TCP header is shown on the Fig-
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Version IHL Type of Service Total Length

Identification Flags Fragment Offset

Time To Live Protocol Header Checksum

Source IP Address

Destination IP Address

Options

Data

0 4 8 16 31Bit

Figure 1.3: IPv4 Packet

Version Traffic Class Flow Label

Payload Length Next Header Hop Limit

Source IP Address

Destination IP Address

Data

0 4 12 31Bit

Figure 1.4: IPv6 Packet

ure 1.5. TCP flags indicate a particular state and hold additional information
about the connection. TCP flags are explained below [11]:

CWR Congestion window reduced: Used to indicate that a TCP segment
with ECE flag set was received.

ECE ECN-Echo: used together with SYN flag. A TCP segment with both
ECN and SYN flags set means that the host supports ECN. If the SYN
flag is not set, it indicates that the network is congested.

URG Urgent: TCP segment holds urgent data which should be processed as
soon as possible.

ACK Acknowledgement: sent by the receiver to the sender to confirm that
data was received successfully.

PSH Push: indicates that received buffered data should be pushed to the
receiving application.

RST Reset: used to reset the connection. The host informs the other one that
it will not receive or send any more data.

SYN Synchronization: used for synchronization of sequence numbers for packet
labeling. Usually, SYN should be only sent once and as the first packet
by each side.

FIN Finalize: used to close the connection. TCP segment with FIN set is the
last packet from the sender.

7



1. Network Communication Protocols

Source Port Destination Port

Sequence Number

Acknowledgement Number

WindowFlagsDO RSV

Checksum Urgent Pointer

Options

Figure 1.5: TCP Header

Receive SYN-ACK

Send SYN
Receive SYN

Send ACK
Receive ACK

Send SYN-ACK

Host A Host B

(a) TCP Three-way Handshake

Receive ACK

Send FIN
Receive FIN

Receive FIN

Receive ACK

Send ACK

Host A Host B

Send FIN

Send ACK

(b) TCP Four-way Handshake

Figure 1.6: TCP Connection Management

A three-way handshake is used to establish a reliable connection. Firstly,
host A sends a TCP message with the SYN flag set. Host B replies with a TCP
message with flags SYN and ACK set. Host A replies with a TCP message with
an ACK flag. The process is shown on Figure 1.6a.

Termination of connection is performed by a four-way handshake. Firstly,
host A sends a TCP message with the FIN flag. Host B replies with a TCP
message with an ACK flag. Then, host B sends another TCP message with
the FIN flag. After host A replies with a TCP message with an ACK flag,
the connection is terminated on both sides. See Figure 1.6b with visualized
four-way handshake.

IP packets can be lost during transmission due to network overload, errors,
and more. Moreover, packets can be duplicated and arrive in incorrect order.
TCP can detect these problems and handle them. TCP segment header con-
tains the Sequence number, which is used for the detection of missing data.
The receiving side is sending acknowledgments (ACKs) to confirm the data
was received. If the receiving side does not send ACK, the sending side will
transmit the same data again, as shown on the Figure 1.7. Furthermore, Se-
quence number defines an unambiguous order of data. Therefore, the receiving
side is assured to have all data in the correct order.

8



1.3. Description of Selected Protocols

Send SEQ X

Receive SEQ X
Send ACK X

Host A Host B

Retransmission Timeout
Retransmission

Send SEQ X

Receive ACK X

Figure 1.7: TCP Re-transmit

1.3.3 UDP
User Datagram Protocol (UDP) is an alternative to TCP protocol on the Trans-
port layer. It was designed by David P. Reed in 1980 and defined in RFC
768 [12]. UDP does not require a three-way handshake or any other prior com-
munication compared to the TCP. UDP is a simple, connectionless protocol.
It does not contain ordering or deduplication checks. Moreover, there is no
guarantee of delivery.

Source Port Destination Port

Length Checksum

Data

Figure 1.8: UDP Header

UDP header, shown on the Figure 1.8, only contains several fields. It con-
tains source and destination ports for application identification. A checksum is
used for error-checking. Since it adds a minimal overhead, it is typically used
in real-time applications, such as voice and video streaming.

1.3.4 TLS
Transport Layer Security (TLS) is a cryptographic protocol operating above
the Transport layer. It was initially introduced by RFC 2246 [13] and its cur-
rent version is TLS 1.3 defined by RFC 8446 [14]. Cryptography means pro-
viding confidentiality (privacy), integrity and authenticity. It has two layers:
TLS handshake and TLS record protocols. TLS-secured communication can-
not be eavesdropped and tampered with. During the connection establishment,
asymmetric cryptography is used to establish shared key and cryptographic al-
gorithm parameters, which are then used for faster symmetric cryptography
and data exchange.

TLS connection starts with a TLS handshake, during which a server is
authenticated by its certificate. Moreover, protocol versions and lists of sup-
ported ciphers by both sides are exchanged. The TLS version and the cipher
supported by both sides are chosen. TLS handshake is shown on the Figure 1.9.
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ClientHello

ServerHello
Certificate
ServerHelloDone

ChangeCipherSpec

Client Server

ClientKeyExchange
ChangeCipherSpec

Finished

Finished

Application Data

Application Data

Plain

Encrypted

Figure 1.9: TLS handshake

TLS also offers lots of extensions, such as Server Name Indication (SNI). A
client uses SNI to indicate, to which server it is trying to connect. It is sent
during the TLS handshake. TLS SNI is helpful when multiple (web) servers
are running on the same IP address and port. The server can present a correct
certificate for a hostname that is being accessed.

1.3.5 DNS

Domain Name System is a hierarchical naming system of computers, introduced
by RFCs 1034 [15] and 1035 [16]. Domain Name System (DNS) protocol is used
for resolving domain names to IP addresses of corresponding servers. Each
domain has its own authoritative name servers. Management of sub-domains
can be delegated to other name servers. For example, when a user is accessing
www.google.com, the authoritative name server for com is queried first. The
query is delegated to the name server for google, which provides an IP address,
where the user should connect to access the www.google.com service. DNS
typically uses UDP protocol.

1.3.6 OpenVPN

OpenVPN [17] is a tunneling protocol used in virtual private networks (VPNs).
It provides authentication of peers and also confidentiality by using encryption.
It is used to securely access private corporate networks from home and other
remote resources. Moreover, OpenVPN can be used to access the Internet
privately over an unsecured network.

Firstly, OpenVPN establishes a secured connection (tunnel) to a VPN
server. Regular traffic is then transmitted through this tunnel. Packets are
passed to the OpenVPN protocol; each packet receives a new OpenVPN proto-
col header and is sent through the tunnel. The destination VPN client unwraps
such packets and retrieves the original ones. Then, each packet is processed
and routed as it would have been in the regular send process. The process is
shown on the Figure 1.10.
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TCP/UDP

Computer VPN box

Internet

VPN box Computer

Data TCP/UDP IP MAC Data IP MAC TCP IP MAC

Packets Status

Original Data Encrypted New Packet HeadersPacket

Figure 1.10: OpenVPN tunnel

1.3.7 WireGuard
WireGuard [18] is another protocol for VPN tunneling. It uses UDP as an un-
derlying protocol to provide better performance and higher speed than Open-
VPN. It works similarly to OpenVPN and other tunneling protocols. Wire-
Guard also uses state-of-the-art cryptography, such as Curve25519 and ChaCha20.
Moreover, it can be extended by third-party scripts.
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Chapter 2
Network Monitoring

Once we understand how computers talk to each other and what is transmitted
over computer networks, it is essential to understand how computer networks
can be monitored. This chapter provides a brief introduction to network mon-
itoring approaches, and their pros and cons, with an emphasis on high-speed
network monitoring. Furthermore, threat detection and response principles are
briefly discussed.

2.1 Deep Packet Inspection

Deep Packet Inspection (DPI) is a technique for data processing which in-
spects data carried by the packet [19]. It tries to understand the structure and
meaning of the data. DPI is used for exploring the behavior of network ap-
plications, network performance troubleshooting, malformed packet detection,
threat detection, and more [19].

As explained by El-Maghraby et al. [19], DPI is looking not only at protocol
headers but also at the packet payload. It can recognize traffic types based on
the headers (TCP, UDP, . . .) and identify the communicating sides (based on
the IP header). Moreover, the Application layer header can be recognized as
well. Therefore, DPI can mark traffic as HTTP, SMTP, DNS and other types.
DPI can also verify that headers contain valid information and that the packet
is well-formed. Detection of an ill-formed packet can mean that someone is
trying to break into the system by exploiting a known vulnerability — for
example, the TLS Heartbleed exploit. DPI is able to detect such attempts.

The packet payload is also inspected [19]. DPI can detect data exfiltration,
botnet communication, and more. Similar to ill-formed packet headers, DPI
can detect ill-formed SQL queries and possible attempts to perform SQL in-
jection. Furthermore, it can be used to restrict access to certain websites in
corporate networks, such as social media, adult-content sites, and more [20].

DPI is a very useful tool for network monitoring. It can classify network
traffic and discover possible threats and attacks [19]. However, there are several
drawbacks as well. Firstly, DPI requires network traffic to be unencrypted
— meaning that encryption is not used at all, or traffic is decrypted by the
system performing DPI. This raises huge concerns regarding user privacy and
security [20]. Moreover, DPI can be used for censorship by oppressive regimes.
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DPI also needs to have full packets available for analysis which creates an-
other problem: scalability. It is feasible to use DPI in home and small business
networks because network traffic load stays in reasonable numbers. However,
corporate and ISP-level networks with 100+ Gbps lines produce huge amounts
of traffic (packets) that must be processed. Moreover, processing time needs to
be low; otherwise, users would experience long round trip times [21]. Therefore,
operating DPI on large networks is demanding and might be impossible [22].

2.2 Flow-based Monitoring

Flow-based network monitoring is a prevalent method for monitoring of high-
speed networks [22]. As explained by Čeleda et al. [22], it focuses on the analysis
of flows, rather than packets. The basic idea is that rather than processing full
packets, packets are aggregated into “flows” based on common characteristics.
A flow is defined as “a set of packets or frames passing an Observation Point
in the network during a specific time interval” [23]. The amount of data is
significantly lowered and monitoring of large networks is possible [22]. However,
since packets are aggregated into flows, less information is available for analysis
than in the DPI approach. A typical flow-based network monitoring setup is
shown in the Figure 2.1.

Internet

Forwarding Device

Flow Probe 1

Flow Probe 2

Flow Collector 1

Flow Collector 2

Manual Analysis

Automated Analysis

Packets
Flows
Files, ...

Figure 2.1: Flow-based network monitoring

2.2.1 Flow Exporter
Firstly, traffic copy passing through the monitored line is created. This traffic
is sent to the server where a so-called flow exporter is running. A flow exporter
(flow probe) is a software where Flow Metering and Exporting processes take
place [24]. During the Metering process, packets are aggregated into flows, and
exported during the Exporting process. Therefore, flow exporters and probes
create IP flows.

FlowKey = Hash(SRC IP, DST IP, SRC PORT, DST PORT, PROTO) (2.1)

Packets are aggregated by using a flow key, which is usually a hash of the
5-tuple: source and destination IP addresses, source and destination ports, and
the protocol used at the Transport layer [22, 24, 25], also shown on equation 2.1.
In this case, a flow will contain information about communication between two
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communicating applications. However, the flow key and aggregation procedure
can be defined in various ways. Fioreze et al. [25] proposed multiple sets of
properties which produce IP flows with different granularity levels. For exam-
ple, /24 subnets can be used. Packets from the same subnet will be aggregated
together. Then, each flow will contain information about all traffic of the sub-
net it represents.

Čeleda et al. [22] also explain how packets are aggregated inside flow caches:
tables of flows in flow exporters. When a packet whose flow key is not yet in
memory is received, a new flow record is created. All packets with the same
flow key received afterwards will cause an update of the corresponding flow.
However, flow cannot wait for new packets indefinitely. Passive timeout is
used for exporting a flow which did not receive a new packet for more than
N seconds, usually between 120 seconds and 30 minutes [22]. Active timeout
is used when flow keeps receiving new packets and would not be exported by
passive timeout. Active timeout causes a flow to be exported after a maximum
of M seconds even if new packets are still coming, usually between 15 seconds
and 5 minutes [22]. The current flow is exported, and a new flow for the same
key is created. Exported flows are sent to the flow collector using flow export
protocols.

NetFlow is a flow export protocol developed by Cisco [24]. The two most
used versions are NetFlow v5 (2002) and v9 (2004). Another flow export pro-
tocol is J-Flow by Juniper, which is mostly compatible with NetFlow v9. How-
ever, IP Flow Information Export (IPFIX) defined in RFC 7011 [26] is the only
standardized protocol (2013), based on NetFlow v9 [24]. Trammell et al. [24]
explain that IPFIX messages are defined via templates. Users can define their
own data fields and highly customize the protocol. IPFIX message is shown on
the Figure 2.2. IPFIX template defines what fields (Information Elements, IEs;
defined by IANA) are contained in flow records [24]. Each flow record starts
with the template ID it uses. Therefore, it is also possible to send messages
with different formats [22].

Template ID = 257 Length = 9 IEs

flowStartMilliseconds (ID = 152)

flowEndMilliseconds (ID = 153)

sourceIPv4Address (ID = 8)

destinationIPv4Address (ID = 12)

sourceTransportPort (ID = 7)

destinationTransportPort (ID = 11)

protocolIdentifier (ID = 4)

packetDeltaCount (ID = 2)

octetDeltaCount (ID = 1)

IPFIX Template Data Records

Set Header (Set ID = 257)

Record 1

Record 2

Record N

...

flowStartMilliseconds = 2024-03-01 14:34:54.352

flowEndMilliseconds = 2024-03-01 14:37:21.375

sourceIPv4Address = 192.168.0.32

destinationIPv4Address = 192.168.0.1

sourceTransportPort = 8465

destinationTransportPort = 443

protocolIdentifier = 6

packetDeltaCount = 21

octetDeltaCount = 6436

Flow Record

...

Record M

Figure 2.2: IPFIX messages

2.2.2 Flow Collector

Flow collector stores and pre-processes flow records, which are received from
flow exporters [22]. It is possible that the collector receives data from more
than one flow exporter. Čeleda et al. [22] write that after received flow records
are pre-processed and stored, data analysis takes place.
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Flow collector usually consists of a server and a process running on it. It has
an open port for incoming flow data. Several flow collector implementations
are available, such as open-source ipfixcol21. Commercial flow collectors such
as FlowMon Collector2 are also available. Moreover, Cisco provides a physical
device with flow collector capabilities3.

2.3 Network Traffic Analysis

Network traffic analysis is a process of examining network telemetry and trying
to deduce as much information as possible [27]. It can be applied to both
unencrypted and encrypted communication [28]. As mentioned before, most
network traffic nowadays is encrypted; therefore, this method is essential for
providing insight into what is going on in the computer network.

When it comes to traffic analysis, more information can be deduced from
more data available. More available data also helps to create more accurate
communication patterns and better situational awareness [29]. Since commu-
nication patterns usually differ based on the communication protocol used,
traffic analysis can provide a traffic type label or used communication protocol
for each analyzed flow record. Therefore, network traffic can be divided into
groups based on similar traffic types and used protocols. This provides basic
but essential insight into computer networks.

Once network traffic has been classified, network traffic models can be built.
Such models can be used for the prediction of network load and for the detection
of traffic loads that are much larger than expected: anomalous traffic. When
anomalous traffic is detected, it can mean that a Denial-of-Service or data
exfiltration is taking place. Therefore, it provides essential information about
monitored computer networks. Moreover, characteristics of flows representing
known attacks can be extracted and used for the detection of similar flows and
other potential times when this attack happened.

2.3.1 Threat Detection

Threat detection monitors a network for policy violations, malicious activity,
and potential security threats [30]. Once a threat is detected, an alert is created
and either directly sent to the network operator or to a Security Information
and Event Management (SIEM) system. The SIEM then enables operators to
examine the alert in a wider context [31].

A possible setup for threat detection is shown on Figure 2.3. Network
telemetry is processed by automatic threat detectors, which send alerts to
its output with information about detected threats and security incidents [31].
Such alerts are collected by a SIEM system and stored in a database. Network
security operators access this database, process and validate alerts and take
appropriate action [31]. The action can vary from sending a warning email to
a user or an institution, which causes the alert, to blocking ongoing communi-
cation of the guilty node.

1https://github.com/CESNET/ipfixcol2
2https://www.flowmon.com/en/products/appliances/netflow-collector
3https://www.cisco.com/c/en/us/support/security/stealthwatch-flow-collector-

series/series.html
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Flow Collector
Flow Telemetry

Automatic
Detection Systems

Flow Telemetry Alerts

Alert
Storage

Security Operator

Response

Notification

Figure 2.3: Threat detection pipeline

Threat detection mechanisms are divided into two groups. The first one
is called signature-based threat detection [30]. Network traffic is searched for
known patterns of malware and attacks, such as a sequence of bytes or a unique
traffic type (for example, created by an SSH bruteforce attack). However,
signature-based detection cannot detect any new attacks, only the ones we al-
ready know. The second group is called anomaly-based detection [30]. It can
detect previously unknown attacks by modeling normal behavior and then per-
forming detection of behavior that significantly differs from normal behavior.
Methods used for network traffic analysis and threat detection are described
in the Chapter 3.

2.3.2 NEMEA
Network Measurements Analysis (NEMEA) system was introduced by Čejka
et al. in [32]. It is a system for online stream-wise network traffic analysis. As
explained by Čejka et al. [32], the NEMEA system is composed of a number
of independent interconnected modules. Every module serves a specific task,
such as filtering, anomaly and threat detection, statistics, and more.

NEMEA works with network flows and is situated after the flow collector.
Čejka et al. [32] explain that is a key difference when compared to other systems,
such as Suricata4 and Snort5. Since these systems work with packets, they have
more information available. On the other hand, NEMEA processes flow and
can achieve better performance [32].

Input

Preprocessor

Detector

Detector

Filter Logger

Statistics

Reporter

Detector

Figure 2.4: NEMEA System

Čejka et al. [32] demonstrate a possible deployment of a NEMEA system
shown on Figure 2.4. Module interconnection is performed by unidirectional
interfaces. A special binary format called UniRec is used for message transfer.
As also explained by Čejka et al. [32], every deployed NEMEA system is unique
since everyone can create a different interconnection and use and implement
its own modules.

4https://suricata.io
5https://snort.org
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Chapter 3
Classification Methods

After network telemetry is captured, it has to be processed and analyzed. This
chapter describes the most important methods for network traffic classification
and threat detection. The basics of Machine Learning, data fusion and others
are discussed. Furthermore, several (already implemented) software prototypes
are discussed at the end of the chapter.

3.1 Pattern Matching

Pattern matching is a technique that searches supplied string data for a known
pattern, it counts a number of occurrences of the pattern in data and discovers
its positions [33]. For example, DPI uses pattern matching to look for known
byte sequences and strings in packet payload to identify source applications [34].

The most basic pattern-matching technique is to match exact strings [33].
However, we can define more complex patterns to be searched for. Following
pattern types were defined by Navarro in [33]:

Classes of characters The simplest possible pattern which is defined as a
fixed-length string of text. We can describe every character by either the
character itself or a group of characters, such as: A[BC]D[0-9]. For the
pattern to be matched, the first character of the supplied string must be
A, then either B or C must follow, then D, and then any character from
range 0-9, which is basically any digit character. Example strings where
this pattern would be matched are ABD1, ACD9.

Optional and repeatable characters Previous pattern type can be extended
by conditional occurrences of characters. This is indicated by the ? fol-
lowing the symbol: A? means that A may be present in the corresponding
position but is not required. This is useful, for example, when matching
URLs: https?://domain.com can be used to match both HTTP and
HTTPS traffic. Furthermore, multiple occurrences of characters can be
permitted by using + (one or more occurrences) and * (zero or more oc-
currences), such as A+C*D will match strings, which start with at least
one A character, followed by zero or more C characters, and end with the
character D.

19



3. Classification Methods

Bounded length gaps This type is used to match strings with specified lengths.
For example, x(2,5) will be satisfied for strings with length from 2 to
5 characters. It is used when we need to denote distance: Ax(2,5)B
will discover strings which contain A and B patterns with 2-5 characters
between them.

Regular expressions (REs) are complex patterns, which are typically used
by commonly-used IDSs (Suricata, Snort) [35]. Regular expressions are
recursive structures consisting of basic strings and union (denoted by |),
concatenation (simply multiple RE put one after another), and repetition
(denoted by +, *) of other RE. Operator precedence is as follows: repeti-
tion, concatenation, and union. However, parentheses () can be used to
change this order.

Network Expressions Special type of RE with excluded * operator.

Regular expressions allow us to describe what patterns should be matched.
However, it is also crucial to use effective pattern-matching algorithms, espe-
cially with nowadays constantly increasing loads of network traffic [36]. Gupta
et al. [36] described several pattern-matching algorithms: Brute-Force Search
and Rabin-Karp, Knuth-Morris-Pratt, and Boyer-Moore algorithms. A de-
scription of the chosen algorithms is provided below.

Brute-Force Search (also called Naive Search) is an algorithm which uses
character-by-character matching. It requires no pre-processing and uses con-
stant memory space. Naive search starts at the first character and tries to
match the pattern. If the match fails, the algorithm moves to the next char-
acter and repeats the process. However, it is not efficient and suitable for
practical deployment [36].

Rabin-Karp algorithm was introduced by Michael O. Rabin and Richard M.
Karp in 1987 [37]. It uses hash values of the pattern and substrings with the
same length as the length of the pattern. If the pattern hash and substring hash
are not equal, hash of the next substring is calculated. If the hashes are equal,
then a customized naive search is used to compare patterns and subsequences.
However, Gupta et al. [36] found out that the practical use of this algorithm is
highly dependent on the used hash function.

Knuth-Morris-Pratt algorithm was introduced by Donald E. Knuth, James
H. Morris, and Vaughan R. Pratt in 1977 [38]. It is the first pattern-matching
algorithm to achieve linear complexity. Knuth-Morris-Pratt algorithm uses
prefixes: it matches prefixes of the pattern until the whole pattern is matched.
Gupta et al. [36] assessed that this algorithm is efficient and can be used in
practice.

Boyer-Moore algorithm was introduced by Robert S. Boyer and Strother
J. Moore also in 1977 [39]. This algorithm searches for the index of the first
occurrence in the text from right to left of the substring. It is considered the
most efficient string-matching algorithm for many applications, such as IDSs
and text editors [36]. As also assessed by Gupta el al. [36], the Boyer-Moore
algorithm is suitable even for large text and pattern scenarios.
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3.2 Machine Learning

A. L. Samuel was the first one to use the term Machine Learning (ML) in [40] in
1959. According to Samuel, ML is a field of study for making computers learn
from data and experience to solve problems without explicit programming [40].
ML algorithms can be applied to various fields and tasks, such as computer vi-
sion, speech recognition, natural language processing, and more [41]. However,
ML algorithms have to be trained before they can be applied and used to solve
tasks. Moreover, ML can discover hidden data patterns which may be easily
missed by humans [42]. Algorithms and models of ML are divided into several
groups: supervised, unsupervised, semi-supervised, and ensemble learning [42].

The typical process of using ML is depicted on the Figure 3.1. Firstly,
data pre-processing and dataset cleaning take place because the performance
of Machine Learning highly depends on the used data, as known from the
”garbage in, garbage out” principle (the term was coined by IBM programmer
George Fuechsel) [43, 44]. It is followed by training the model and searching for
the best hyperparameters (parameters of ML model; hyperparameter tuning).
After a suitable model and its hyperparameters have been chosen, the model’s
performance is evaluated, and the model is ready to use.

Data Collection &
Preparation Data Cleanup Model Training &

Hyperparameters Tuning Production UseModel VerificationModel Selection

Figure 3.1: ML Model Development Process

Supervised ML uses a function which maps an input to an output [42].
This function is learned during the training phase and is used to deduce the
output for previously unseen data. However, supervised models require ex-
ternal assistance [45]. Each element is represented by its feature vector. A
class label for each element of the training dataset is required to infer the map
function. Once the model is trained, it can produce class labels for previously
unseen elements (their feature vectors). Supervised ML methods obtain a la-
beled dataset and can learn by example [46]. Moreover, Mahesh [42] writes that
this dataset is split into train and test parts. The train part of the dataset is
used to infer map function and model parameters. The test part of the dataset
is used to assess the performance of the model: the model deduces class labels
for elements which are then compared with the known and correct class labels
from the original test dataset. Then, evaluation metrics can be calcuted from
these statistics.

Unsupervised ML does not use externally provided information nor a
teacher and datasets used during the training phase contain no labeled data.
On the other hand, large amounts of data are required to train unsupervised
ML models [46]. These algorithms can discover hidden characteristics and pat-
terns in data which would normally be almost impossible to find by humans.
Unsupervised ML is typically used for clustering and association, anomaly de-
tection, and autoencoding [46].

Semi-supervised ML is a combination of both supervised and unsuper-
vised approaches [42]. It is useful when only part of the data is labeled. ML
model is trained on the labeled data and can be used to label the rest of the
data [42].

21



3. Classification Methods

Ensemble learning is a type of learning where multiple ML models are
used. This increases the performance of the model and reduces the likelihood
of choosing a poor model [42]. Ensemble learning is based on the idea that ”a
group is stronger than an individual”.

3.2.1 Machine Learning in Network Domain
Network traffic constantly evolves, as shown by Brabec et al. [47], and trained
(and deployed) ML models can become obsolete in time [48]. This means that
the accuracy of deployed ML models will be lower due to the appearance of
new network protocols (or their new variants) in computer networks. Moreover,
new application versions using the network differently will cause the same thing.
Then, ML models can degrade over time, and training them with relevant data
and keeping them up-to-date is essential. One of the possible solutions is an
Active Learning (AL) approach. AL can manage the dataset on its own and
quickly re-train the ML models.

Settles [49] explains that the key hypothesis of Active Learning (AL) is the
following: ”if the learning algorithm is allowed to choose the data from which
it learns, it will perform better with less training” [49]. AL uses smart data
querying to reduce the amount of labeled data needed and also deals with vast
amounts of incoming data [50].

Pešek et al. [50] proposed Active Learning Framework (ALF): a modular
framework with state-of-the-art methods of AL for continuous and autonomous
dataset management and automatic ML model re-training. According to Pešek
et al. [50], ALF can manage datasets and update deployed ML models to keep
them as reliable and accurate as possible.

3.2.2 Description of Selected Supervised ML Models
Decision Tree

Decision Tree is a model of supervised learning. As explained by Quinlan
in [51], it is a flow-chart-like structure (a tree graph), which starts in its root.
Every internal node represents a condition (a test) for a value of a feature,
such as Number of packets >= 30 and each subtree represents the result of
the condition [45]. Moreover, every leaf node represents a class label and the
full decision path taken. One of the first algorithms for building a decision tree
from data was designed by John Ross Quinlan in 1983 [52].

Random Forest

Random Forest is a model of ensemble learning approach that uses multiple
decision trees [53]. It was introduced by Tin Kam Ho in 1995 [53]. As explained
by Biau et al. [54], this model works on the ”divide and conquer” principle:
”sample fractions of the data, grow a randomized tree predictor on each small
piece, then paste (aggregate) these predictors together” [54].

K-Nearest Neighbours

K -Nearest Neighbours (KNN) uses reasoning based on memories rather than
other methods [55]. KNN was initially introduced by Evelyn Fix and Joseph
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Lawson Hodges [56] in 1951. As explained by Stanfill et al. [55], the core concept
is similarity-based induction. Moreover, KNN works directly with data instead
of inferring rules for later decision-making. When asked to classify an element,
KNN looks for the best match in its ”memory” (training dataset). The final
label is assigned based on the prevalent label of the K closest samples.

AdaBoost

Adaptive Boosting (AdaBoost) was introduced by Yoav Freund and Robert E.
Schapire [57] in 1995. AdaBoost was the first practical boosting algorithm [58],
based on the idea of creating highly accurate predictions by utilizing and com-
bining many relatively weak and inaccurate rules.

3.2.3 Description of Selected Unsupervised ML Models
K-Means Clustering

K -Means Clustering is an algorithm of unsupervised learning, introduced by
Stuart Lloyd in [59]. K -Means divides data into K groups based on their sim-
ilarity. Naeem et al. [46] explain that the key is to find a centroid for each
cluster. Then, an element belongs to any cluster whose centroid is the closest
one.

Neural Network

Neural Network (NN) was initially proposed by Warren S. McCulloch and
Walter Pitts [60] in 1943. Nowadays, a special type of NNs called autoencoders
are part of unsupervised learning. General NNs are commonly referred to as
self-supervised learning. Schmidhuber [61] explains that a neural network is
a network of many simple processors (neurons). The first layer of neurons is
activated by input sensors or data, and others are activated through weighted
connections of previously activated neurons. Typical neuron activation func-
tion is shown on equation 3.1, where wi is a weight of i-th input, xi is a value of
i-th input, and b is a bias. Neurons and their structures are inspired by animal
and human brains: a nervous system formed by neurons, each having a certain
threshold to initiate an impulse [60]. Neural networks can be used as unsuper-
vised learning models, however, they can also be trained using backpropagation
as a supervised learning model [61].

y =
∑

i

wixi + b (3.1)
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3.3 Anomaly Detection

Anomaly detection is a data analysis task which is used to find observations
in datasets that do not conform to expected behavior. Hawkins defined an
anomaly as ”an observation which deviates so much from other observations
as to raise suspicions that it was generated by a different mechanism” [62].
Anomalous observations are important because they represent rare but signif-
icant events [63]. For example, detection of anomalous traffic can mean that a
computer was hacked or that there is an ongoing attack. Moreover, such events
usually invoke critical actions to contain the attack. Ahmed et al. [63] defined
several types of anomalies, described below.

Point Anomaly is an individual observation which significantly deviates from
the rest of the data points [63]. For example, fuel consumption is usually
around 5 liters per day but if it were 50 liters on any random day, it
would be considered a point anomaly.

Contextual Anomaly is a type of anomaly which is caused by a particular
context or when a certain condition is fulfilled [63]. For example, higher
expenses on a credit card are caused by the Christmas period. It can
be considered as normal behavior, but the same high expense during any
other month would be considered anomalous.

Collective Anomaly is when a collection of similar observations behave as
anomalies with respect to the rest of the dataset [63]. For example, many
low values in the ECG (electrocardiogram) graph can mean an abnor-
mal premature contradiction, but one low value in ECG would not be
considered anomalous [63].

As pointed out by Chandola et al. [64], the output of the anomaly detec-
tion process can be either a score or a label. Usually, binary labels are used
and observations are labeled as either normal or anomalous [64]. Scoring is
useful when an analyst later wants to filter the reported anomalies. Moreover,
analysts can prioritely respond to the anomalies with higher scores [64].

Classification-based Anomaly Detection
Classification-based anomaly detection relies on experts’ knowledge [63]. Net-
work operators provide characteristics about attacks to the detection system
and similar attack patterns can be detected in the future [63]. However, such
a system is vulnerable to new types of attacks. As explained by Ahmed et
al. [63], classification-based detection builds a profile of normal traffic and
detects anomalous traffic which deviates from the built profile. According
to [63, 64], Support Vector Machine (SVM; a supervised ML model), Bayesian
Network, Neural Networks, and rule-based techniques are used in classification-
based anomaly detection process.

Nearest-Neigbour-based Anomaly Detection
According to Chandula et al. [64], nearest-neighbor-based anomaly detection
is based on the assumption that ”normal data instances occur in dense neigh-
borhoods, while anomalies occur far from their closest neighbors” [64]. Such
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methods require distance or similarity metrics which measure how close two
data points are, for which Euclidean distance is a popular choice. For multivari-
ate data points, distance is calculated for each element and then combined [64].

Clustering-based Anomaly Detection
Clustering-based anomaly detection uses unsupervised ML models to group
similar data points into clusters [63, 64]. Moreover, several types of clustering
can be used, as described below.

1. Normal data points belong to a cluster, anomalies are data points that
do not belong to any cluster [64]

2. Normal data points lie close to the closest cluster centroid and anomalies
lie far away [64]

3. Normal data points belong to large and dense clusters while anomalies
form small or sparse clusters [64]

Statistical-based Anomaly Detection
Statistical-based anomaly detection fits statistical models to the given data
and then uses statistical inference tests to check if unseen data points fit the
model as well or not [64]. Data points with a low probability of being present
in the statistical model are declared as anomalies. Statistical models can be
divided into parametric (Gaussian-based models, χ2 test) and non-parametric
(histogram-based models) [64].

X̂(t + T ) = X̄(t) + b̄(t)[ 1
α

+ T − 1] (3.2)

X̄(t) = αX(t) + (1 − α)X̂(t − 1) 0 < α < 1
b̄(t) = α[X̂(t) − X̂(t − 1)] + (1 − α)b̂(t − 1)

Simple Exponential Smoothing (SES) is a widely used method for anomaly
detection [65]. It was introduced by Robert G. Brown and Arthur D. Little
in 1956 [66]. According to Brown [66], if values of a function X(t) for times
t = 0, 1, ..., t are known, an estimate of the future value at the time t + T can
be calculated as shown on equation 3.2. Parameter α defines the period over
which the past values effectively contribute to the estimation of the next value.
Small choices of α define long periods, therefore the average moves slowly and
sudden peaks of values are missed. On the other hand, large values α create
short periods and sudden peak values are more projected into the estimated
values [66].

3.4 Data Fusion

Castanedo [67] defined data fusion as a combination of multiple data sources to
obtain improved (higher quality, more relevant) information. Data fusion tech-
niques are typically used in multisensor environments, with the main goal of
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aggregating information from multiple data sources to obtain lower error prob-
ability and higher reliability [67]. Moreover, Castanedo [67] divides data fusion
techniques into: (i) data association, (ii) state estimation, and (iii) decision
fusion.

Data association problem is when a sensor provides measurements whose
origins are uncertain; meaning not necessarily the target of interest [68]. The
consequent problem is how to select measurements to be used to update the
state of the target of interest. According to Bar-Shalom et al. [68], (Extended)
Kalman Filter can be used to solve such problems. Moreover, minimum mean
square error (MMSE) is used to estimate the target state and the associated
uncertainty.

State estimation tries to determine the state of the target based on the
provided observations and measurements [67]. However, observations can be
either valid observations of the target or irrelevant noise. The problem is to
determine a global state of the target from these observations [67], usually
with the MMSE estimate [68]. According to Bar-Shalom et al. [68], this can be
achieved by the pure MMSE approach which uses smoothing over all events.
However, other approaches can be used as well, for example heuristics. Cas-
tanedo [67] states that Maximum Likelihood and Maximum Posterior approach,
and Kalman Filter can be used as well.

Decision fusion makes a high-level inference about observations produced
by sensors about targets of interest [67]. Castanedo [67] explains that a deci-
sion is taken based on knowledge of the observed situation. Moreover, the
decision process must take uncertainties and constraints into consideration.
Bayesian methods perform information fusion by combining evidence based on
the Bayes rule, shown on equation 3.3. Moreover, Dempster-Shafer inference
can be used [67].

P (B|A) = P (A|B)P (B)
P (A) (3.3)

3.4.1 Kalman Filter

Kalman filter was introduced by Rudolf E. Kálmán [69] in 1960. According
to Welsch et al. [70], Kalman filter is a ”set of mathematical equations that
provides an efficient computational (recursive) solution of the least-squares
method” [70]. It is a powerful method since it can estimate past, present, and
future states.

As explained by Welch et al. [70], discrete Kalman filter estimates the state
x of a process governed by the linear stochastic difference equation (3.4) with a
measurement z (3.5). Matrix A relates to the state at the time k to the state at
the time k + 1. Matrix B relates to the control input u to the state x. Matrix
H relates to the state of the measurement zk. Random variable wk represents
the process noise, vk represents the measurement noise.

xk+1 = Akxk + Buk + wk (3.4)
zk = Hkxk + vk (3.5)
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3.4.2 Dempster-Shafer Theory
Dempster-Shafer Theory (DST) was initially introduced by Arthur P. Demp-
ster [71] and later extended by Glenn Shafer [72]. DST is a mathematical theory
of probability which generalizes the Bayesian theory. It can represent incom-
plete knowledge, updating beliefs, and it allows evidence combination and un-
certainty representation [67].

The base concept is called the frame of discernment, which is defined
in Lemma 1. Then, elements of the set 2Θ are called hypotheses and based
on evidence E, each hypothesis is assigned a probability by basic probability
assignment or a mass function m: m : 2Θ → [0..1] satisfying m(∅) = 0 and
m(2Θ) = 1 (sum of probabilities of all hypotheses is 1).

Lemma 1 (Frame of Discernment) Let Θ = θ1, θ2, ..., θN be the set of all
possible states that define the system, and let Θ be exhaustive and mutually
exclusive due to the system being only in one state θi ∈ Θ, where 1 <= i <= N .
The set Θ is called a frame of discernment because its elements are employed
to discern the current state of the system [67].

As explained by Castanedo [67], DST defines belief function bel(H) : 2Θ →
[0..1] to express incomplete beliefs in hypothesis H as: bel(H) =

∑
A⊆H m(A).

Moreover, the doubt level of H can be expressed as: doubt(H) = bel(¬H).
In addition, DST defines plausibility function pl(H) : 2Θ → [0..1] to express

a plausibility of each hypothesis H as: pl(H) = 1−doubt(H) =
∑

A∩H=∅ m(A).
Finally, DST provides a method to combine two mass probability functions

m1 and m2 by the following mechanism, known as the Dempster’s Rule of
Combination [67]:

m1 ⊕ m2 =
∑

X∩Y =H m1(X)m2(Y )
1 −

∑
X∩Y =∅ m1(X)m2(Y )

3.5 BOTA

Botnet Analysis (BOTA) system was introduced by Uhř́ıček et al. in [73].
BOTA targets high accuracy and explainability by utilizing weak indicators and
heterogeneous meta-classifiers. Moreover, BOTA targets high-speed networks
achieving high efficiency and can potentially protect millions of devices [73].

As described by Uhř́ıček et al. [73], the classification pipeline has two lev-
els: (i) weak indicators and (ii) heterogeneous meta-classifiers. Each weak
indicator is processed by its associated detector: Command & Control com-
munication detector, anomaly detectors, DHT, Tor, and Stratum detectors.
Then, the results of the listed detectors are combined together by the func-
tions listed in (3.6), (3.7), and (3.8). Ab is the anomaly in total bytes sent, Ap

is the anomaly of total packets sent, Adip is the anomaly in the used number
of destination IP addresses, and finally Adp is the anomaly in the used number
of destination ports.

F1 = C&C ∧ (Ab ∨ Ap ∨ Adip ∨ Adp) (3.6)
F2 = Tor ∧ (Ab ∨ Ap ∨ Adip ∨ Adp) (3.7)
F3 = DHT ∧ Stratum (3.8)
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Combination function F1 ( equation 3.6) detects devices infected with Mi-
rai, Gafgyt, and Tsunami botnets. Combination function F2 (equation 3.7)
detects C&C communication hidden in Tor. Finally, combination function F3
(equation 3.8) targets peer-to-peer communicating cryptocurrency miners.

Uhř́ıček et al. [73] proposed a C&C communication detector as a Machine-
Learning-based classifier which utilizes the AdaBoost model. DHT detector is
a simple signature-based detector that looks for d1:ad2:id20: pattern, which
reveals BitTorrent’s DHT communication. Stratum detector detects Stratum
mining protocol also by pattern-matching. Tor detector utilizes REST API
provided by The Tor Project and detects communication with Tor relay nodes
by simple IP blocklist. Anomaly detectors of the number of packets sent, the
number of bytes sent, the number of unique destination IP addresses, and
finally the number of unique destination ports are based on Brown’s simple
exponential smoothing algorithm.

BOTA system works in 5-minute time windows [73], meaning that the de-
scribed combination functions are invoked once every 5 minutes. After the
combination, each detector is reset. Moreover, anomaly detectors work in one-
minute windows meaning that for every tick of the whole BOTA system, the
final result of each anomaly detector is composed of 5 sub-results. For a final
result to be positive, the anomaly must be detected in at least two consecutive
one-minute windows [73].

3.6 DeCrypto

DeCrypto is a system for detection of cryptocurrency miners, presented in [74].
It uses a similar weak-indicators principle as BOTA [73], to achieve more reli-
able results and lower false-positive rates. Moreover, Dempster-Shafer theory
is used for data fusion to further lower the false-positive rate and to increase
its reliability [74].

As also explained in [74], multiple weak-indication classifiers are used: Stra-
tum detector, TLS SNI classifier, and ML classifier. DeCrypto system works
on a per-flow basis meaning each flow is supplied to all detectors, and their
output is processed by the Meta classifier. Stratum detector performs pattern-
matching and detects flows representing unencrypted Stratum (cryptocurrency
mining protocol) communication. TLS SNI classifier also performs pattern-
matching and detects flows representing encrypted communication with min-
ing and suspicious keywords in TLS SNI. Lastly, the ML classifier performs
statistical-based detection of flows with the same characteristics as crypto-
mining communication. Meta classifier takes the output of all the previously
described detectors, performs data fusion with the use of DST and provides
more reliable detection results.

3.7 VPN Detection

Čtrnáctý proposed the detection of OpenVPN communication based on finite
automatons in [75]. Packets are parsed based on known OpenVPN communi-
cation protocol. Moreover, Čtrnáctý [75] proposed finite-automaton detection
for Cisco AnyConnect VPN. The automaton for OpenVPN is shown on the
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Figure 3.2. However, proposed automatons can be used only for the specific
VPN protocol.
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Figure 3.2: Finite automaton for OpenVPN detection

Jirák proposed an algorithm for general detection of VPN protocols in [76].
The algorithm looks for packet patterns with the following TCP flags: SYN,
SYN-ACK, ACK; also called SSA sequence. The discovered SSA sequence of
the TCP handshake in UDP traffic is highly suspicious. According to Jirák [76],
it can be used for the detection of encapsulated packets and VPN.

Valach proposed the detection of WireGuard VPN in [77] based on DPI
and Machine Learning. The DPI approach scans packet contents and tries to
parse WireGuard protocol fields. On the other hand, the ML approach uses
packet features to predict if a flow represents WireGuard communication or
not. AdaBoost and LighGBM were used and both achieved similar results: F1
score between 90-91% [77].
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Chapter 4
Weak Indication Framework

After reviewing the state-of-the-art methods for network traffic classification,
we can design and define what the Weak Indication Framework should contain
and how it should work. This chapter describes how the WIF will look and
then all of its parts and features together with examples directly from the code.

4.1 Introduction

We noticed that more complex detection methods usually consist of multiple
detectors, based on our analysis in Chapter 3. Moreover, we can see that many
principles are used repeatedly. Therefore, we decided to implement the most
frequently used methods for network traffic classification as a library called
Weak Indication Framework (WIF). Then, everyone can develop new detectors
and mechanisms without re-implementing already prepared methods. Rather
than that, new and more complex methods can be implemented.

Furthermore, some detectors use multiple methods (or indicators). The final
prediction is obtained by combining the results of sub-detectors. Detection
methods designed in this manner provide more accurate results with higher
explainability. Moreover, it is becoming more common to design methods in
this way. Therefore, WIF will be designed to support such architectures.

Weak Indication Framework will contain several types of objects for differ-
ent purposes. This way, each group of classes will have the same interface, and
once a developer knows how to use one, he will also know how to use other
types from the same group. Therefore, the time needed to learn and use WIF
will be shorter than if every provided class had a different interface and use
case. The groups are shown on Figure 4.1 and are as follows: classifiers (imple-
mentation of classification methods), combinators (implementing data fusion
algorithms), and reporters (for reporting additional information about the de-
tection methods). It will be possible to chain classifiers and combinators one
after another. This modular architecture will allow researchers and developers
to quickly develop new and more advanced detection methods based on the
ones regularly used. Moreover, it will support the architectures using multiple
indicators and sub-detectors. Finally, high explainability can be achieved with
correctly-used reporters.

Since WIF aims to provide the most used methods for network traffic clas-
sification, it must contain a possibility to use Machine Learning. Machine
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Data Storage Utils

Combinators Reporters

Classifiers

Figure 4.1: High-level view of WIF object groups

Learning is widely used nowadays in network traffic classification and threat
detection, especially scikit-learn library6. It is a Python library that is ar-
guably the most commonly used by researchers worldwide. The majority of
ML models are trained and manufactured by the scikit-learn library. WIF will
contain functionality to work with this library and models, enabling its users
to utilize ML models from basically any researcher in the domain.

Another essential functionality that must be contained in WIF is pattern
matching. Pattern matching is widely used for searching for specially crafted
payloads, ill-formed packets, suspicious keywords indicating malicious activ-
ity, and more. It can detect known byte sequences used in SQL injections,
buffer–overflow attacks, and other threats. Moreover, pattern matching can
discover known protocol structures and their identifying magic values. WIF
will contain functionality for matching both plain strings (keywords) and fully-
featured regular expressions for advanced use cases.

Last but not least, functionality for blocklist-based detection must be present.
Despite being one of the oldest and most basic methods, blocklists are still
widely used. IP blocklist lookup must be efficient since blocklists can con-
tain thousands of IP addresses to ensure high throughput of the WIF library.
Moreover, exact matching is not always the wanted option. Another helpful
functionality is checking if an IP address belongs to a (blocklisted) IP subnet.
WIF will contain both exact checking and checking for being a member of a
particular IP subnet.

Even though WIF is primarily designed for network traffic classification,
threat detection, and building detection modules, it can also be used in other
scenarios. For example, information fusion plugins for Kibana and ELK can
also benefit from the WIF-provided functionalities. However, such use cases
are out of the scope of this thesis and are only mentioned as an example of the
possible multidisciplinary use of the WIF library.

6https://scikit-learn.org
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4.2 Development Environment & Process

Git and GitLab are used as version control tools and source file storage. The
dir tree below describes the repository structure.

ansible/.......................ansible for preparing the CI environment
ci/ .................................................. CI jobs definition
cmake/...................................... folder with cmake modules
docker/.......................folder containing the Docker image for CI
include/ ................................................ include folder

wif/...............................................WIF header files
pkg/ ....................... files needed for creating WIF RPM packages
src/ ............................................ folder with source files

external/.................................links for external libraries
wif/ .................................... folder with WIF source files

.clang-format .............................. clang-format configuration

.clang-tidy................................... clang-tidy configuration

.editor-config ............................. editor-config configuration

.gitignore ............................. definition of ignored files by git

.gitlab-ci.yaml..........................definition of Gitlab’s CI jobs
CMakeLists.txt...................................the main CMake file
Doxyfile .................................... Doxygen configuration file
LICENSE................................................file with license
Makefile ..................................................... Makefile
Pipfile.............................Python dependencies configuration
Pipfile.lock........................Python dependencies configuration
README.md ............................................ main readme file

CMake is used to manage the build system and the project’s dependencies.
Two compilation modes are defined: Debug and Release. The debug mode
appends the -g flag to the compilation options, causing the compiler to put
additional debug symbols into the output binary. On the other hand, the
release mode instructs the compiler to perform the best possible optimizations
and targets speed and performance.

In addition, we defined an argument called BUILD WITH UNIREC in CMake.
When this option is enabled, source files that depend on the libunirec and
libunirec++ are compiled and added to the library .so file. Then, the WIF
library contains additional classes, which will be described later. Otherwise,
they are not part of the library.

Furthermore, the repository contains rpm folder with everything needed to
create an RPM package with the WIF library. It can be created by calling
make rpm in the repository’s root. Then, a tar file with sources will be created
together with an RPM package with sources. In addition, target installation
folders can be set via CMake. By default, the WIF .so file is installed in
/usr/lib64/ and header files into /usr/include/wif.

Last but not least, CMake is used for library versioning. The WIF library
is attached to this thesis in LIBWIF v3.1.1. The Doxygen7 utility is used to
generate documentation from the source files automatically.

7https://www.doxygen.nl
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CI/CD on the GitLab server performs several checks to keep the code in
high quality. Firstly, compliance with the defined code style is checked via
clang-format and editorconfig tools. The alphabetical order of the included
clauses (#include <headerFile>) is also checked. Then, the clang-tidy linter
evaluates the committed code and diagnoses typical programming errors and
inefficiencies. If all previous checks were passed, the follow-up job tries to
build the library. The last performed job verifies that the RPM build is set up
correctly and that the RPM package can be created and installed.

Development of new functionalities takes place in separate branches. The
main branch is marked as protected, meaning that no changes can be commit-
ted directly to it. Before any branch is merged to the main branch, a review
must be performed and review notes must be integrated into the proposed
changes. In addition, all CI tests must be passed. The reviews were conducted
by Ing. Pavel Šǐska — a very experienced C++ developer from CESNET, for
which he deserves a big thanks. His review notes made source codes be written
in a very clear and readable way and took the WIF software to a professional
level.

4.3 Architecture

Weak Indication Framework uses a modular architecture. It consists of several
parts that group together objects with similar purposes. Objects of the main
groups have the same interface. Then, we can implement new functionalities
while keeping the previously defined and well-known interface of each group,
simplifying the usage of our library.

The first part called storage will contain structures for data representation
in memory. Therefore, WIF will be able to process any provided data. We focus
on the flow data, but no limitation is defined; theoretically, it can also represent
other types. The object representing one flow in memory is called FlowFeatures.
Objects in this group share a common purpose (data representation in memory)
rather than a common interface.

The second and probably the most crucial part of the WIF library contains
classifiers. Classifiers are objects that implement classification and detec-
tion methods. They perform an actual classification of FlowFeatures objects.
Moreover, classifiers share a common interface. The common interface will pro-
vide methods for the classification of a single flow or a burst of flows. Selected
methods from the Chapter 3 will be implemented, each as its own classifier.

The third part consists of combinators. Combinators are similar to classi-
fiers but implement data fusion and combination methods rather than classi-
fication methods. Combinators are also an essential part of the WIF library
because they allow the building of detection methods using multiple indications
and sub-detectors. Combinators also share a common interface.

For example, passing the combined output of several classifiers into another
classifier will be possible, creating more complex but more accurate detection
methods. Therefore, advanced detection methods can be easily implemented
using multiple classifiers and combinators, following the modular architecture
of the WIF library.

The fourth part will contain reporters. Understanding how an advanced
detection method (consisting of several classifiers and combinators) produces
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the final results can be non-trivial. Reporter objects can be used to exfiltrate
internal states, sub-results, and additional data to support high explainability.
Exfiltered data can be sent to other processes (ML features to Active Learning
Framework, for example) or stored in a database. A network operator respond-
ing to a threat can then use stored data and logs to further investigate and
better understand what is happening.

The final part of the library is called utils because it contains several
helper classes that other parts of the library require. However, they are made
available to the WIF users. These classes do not share a common interface.
For example, the utils part contains a class called Timer, which can be used to
run a code in another thread periodically.

A possible detection module built on the top of the WIF library is depicted
in the Figure 4.2. Any number of classifiers, combinators, and reporters can be
used and chained together in any way the developer wants. Moreover, adding
and expanding WIF-based modules will be easy because new classifiers can be
easily added to the existing WIF-based module. For example, adding support
for the newer protocol version to an existing detector of this protocol will be
non-demanding.

Classifier 1

Classifier 2

Flow Data

Classifier 3

Reporter 1

Combinator 1
Output

Additional Information 

Log File

Figure 4.2: Example of WIF-based detection module

Moreover, WIF will be implemented in C++ to achieve high efficiency so
that WIF-based classifiers can be deployed to high-speed national-level net-
works as part of the NEMEA system. Despite that the WIF library is designed
to be independent of NEMEA libraries: libtrap and libunirec(++). However,
additional features will be available in the WIF library when compiled with
BUILD WITH UNIREC option.

The intended use of WIF is depicted on the Figure 4.3. Firstly, a WIF-based
detector receives flow data and transforms it into a data representation from
WIF: FlowFeatures. Then, the used classifiers, combinators, and reporters
from WIF are invoked, and the detection is performed. Finally, an alert or
an output message is created and sent to the detector’s output. We intend to
develop WIF-based modules as modules of the NEMEA framework (described
in Subsection 2.3.2). Therefore, the flows are received via the input unirec
interface, and alerts are sent to the output unirec interface. However, it is not
required, and other architecture and data sources can be used. For example,
data can be retrieved from the database, and alerts can be sent to an unix
socket. Developers of the WIF-based detectors are free to use what they want.
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WIF-based Detector

Flows
Create FlowFeatures
from received flow Perform detection Create alert

Alerts

Figure 4.3: Intended use of the Weak Indication Framework

4.4 Data Structures

The WIF library contains its own data structures for internal data repre-
sentation. The primary type is called DataVariant. It is a wrapper over
std::variant with allowed types. The supported types and their possible
use are described in the Table 4.1. It is designed to hold any value from flow
telemetry.

Table 4.1: Supported data types by DataVariant class

Data type Possible use case
uint8 t TCP Flags, Transport layer protocol
uint16 t SRC and DST ports, packet length
uint32 t Transferred packet count, Burst information
uint64 t Transferred byte count, flow ID
double ML features (ratio, average size, . . .)
std::string TLS SNI, packet content
IpAddress SRC and DST IP addresses
std::vector<double> Feature vector, probability array

A class called FlowFeatures represents a flow in memory. It holds a
std::vector of DataVariant types pre-allocated to the specified number of
features (provided as the constructor’s parameter). This allows the object to
allocate memory only once at the beginning without reallocating the vector
later. Moreover, the FlowFeatures object can be cleared and re-used to rep-
resent another flow without allocating new memory. This is handy when the
detector runs in a loop: a flow is received, detection is performed, and an alert
is sent. The same FlowFeatures object can be used all over again, making
the detector more efficient. Furthermore, a buffer (a vector) of FlowFeatures
objects can be created and re-used.

Data stored in the FlowFeatures object can be accessed, set via tem-
plated get(), set() methods respectively. FeatureID type is a wrapped
uint16 t and is used as an index type of the FlowFeatures. A value of
type T stored on the certain FeatureID index can be obtained by calling
FlowFeatures::get<T>(FeatureID). Similarly, a value of type T can be set to
the specified FeatureID index by calling FlowFeatures::set<T>(FeatureID,
T). Type T must be supported by the DataVariant class. Full FlowFeatures
interface is shown on listing 1.

In addition, WIF contains a class called IpAddress. It can store both
IPv4 and IPv6 addresses and can be stored in the FlowFeatures object. The
interface of the IpAddress object is shown on listing 2. The object can be
constructed from a single uint32 t type (in the case of IPv4; line 7 on listing 1).
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1 // Note: virtual keywords, std namespace,
2 // and parameter names are omitted
3 // for increased code readability
4 using FeatureID = uint16_t;
5 class FlowFeatures {
6 public:
7 // Construct new object and pre-allocate memory for

featuresCount features↪→

8 FlowFeatures(size_t featuresCount);
9 // Get feature of type T from index featureID

10 template<typename T>
11 const T& get(FeatureID featureID) const;
12 // Get DataVariant from index featureID
13 const DataVariant& getRaw(FeatureID featureID) const;
14 // Get feature on index featureID to newValue of type T
15 template<typename T>
16 void set(FeatureID featureID, T newValue);
17 // Get number of features of this flow
18 size_t size() const;
19 // Clear the flow features object
20 void clear();
21 };

Listing 1: Interface of the FlowFeatures class

It can also be constructed from bytes with specified IP version and endianity
(the last parameter with the name isLittleEndian; line 8). Then, the class
contains all sorts of getter methods for the IP version and underlying data.
However, several basic methods were omitted to make the listing more legible.

Furthermore, the IpAddress class contains methods for comparison, sort-
ing, and bitwise operations. The operator less is implemented so that every
IPv4 address is before any IPv6 address. If IP versions are equal, operator <
is called for bytes on the first position where they differ. The logical and and
negation operators can be used to check if the IP address is a member of a
particular IP subnet.

Lastly, the storage part of the WIF library contains ClfResult class (short-
ened from the Classification Result). This object represents a result of the
classification operation of the classifier objects (discussed in Subsection 4.5):
a return type of the Classifier::classify() methods. ClfResult object can
hold two data types: either a value of a type double or a std::vector<double>.
Sometimes, the classification result is 0 or 1 (boolean value) or a value repre-
senting a score (decimal number). For example, the result of a blocklist-based
detection can be 0, 1 representing that the IP address was not found, found on
the blocklist respectively. However, the result of the ML classification can be
an array of probabilities for each known class. Therefore, the type used as a
result must be able to represent both value types. The author of each classifier
must define in the documentation what the ClfResult holds.
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1 // Note: virtual keywords, std namespace,
2 // and parameter names are omitted
3 // for increased code readability
4 class IpAddress {
5 public:
6 enum class IpVersion { V4, V6 };
7 IpAddress(uint32_t);
8 IpAddress(const uint8_t*, IpVersion, bool);
9 IpAddress(const std::string&);

10 const uint8_t* data() const noexcept;
11 uint32_t v4AsInt() const noexcept;
12 const char* v4AsBytes() const noexcept;
13 const uint32_t* v6AsIntArray() const noexcept;
14 const char* v6AsBytes() const noexcept;
15 std::string toString() const;
16 friend bool operator==(...);
17 friend IpAddress operator&(...);
18 friend IpAddress operator˜(...);
19 friend bool operator<(...);
20 };

Listing 2: Interface of IpAddress class, shortened.

4.5 Classifiers

Classifiers are the most important part of the WIF library. Each classifier
provides a particular classification method. Moreover, all classifiers have a
common interface defined by an abstract class called Classifier. This inter-
face is shown on listing 3.

Every classifier is a child of the Classifier class, inherits its interface and
implements the abstract methods. As we can see on lines 12 and 14 of the
listing 3, methods for classification of a single flow and burst of flows must be
implemented. In some cases, it may be more efficient to work with a burst
of flows; see description of ScikitMlClassifier below. On the other hand,
the efficiency of some classifiers is not affected, and single-flow classification
can be called in a loop for each flow in the processed burst; see description of
RegexClassifier below as an example.

Before any classify() method can be called, IDs of the source features
must be set. This is done by calling setSourceFeatureIDs(), line 11 in list-
ing 3, and providing a std::vector of indexes (FeatureID values) into the
FlowFeatures object. Whole FlowFeatures is sent for classification, but the
classifier only works with the DataVariant objects from the previously set
source feature IDs. Furthermore, each classifier can require additional meth-
ods to be called before the first classification can be done. After the classifier
object has been set up, classify() methods can be called repeatedly. The in-
tended use is that the classifier is firstly set up, and then classify() methods
are called in a loop for each received flow or burst of received flows.
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Following classifier specializations were chosen based on the discussion with
thesis supervisors and the review provided in Chapter 3: IpPrefixClassifier,
RegexClassifier, ScikitMLClassifier, and AlfClassifier.

1 // Note: virtual keywords, std namespace,
2 // and parameter names are omitted
3 // for increased code readability
4

5 // Abstract class defining the interface of Classifier objects
6 class Classifier {
7 public:
8 // Getter for source IDs
9 const vector<FeatureID>& getSourceFeatureIDs() const;

10 // Setter for source IDs
11 void setFeatureSourceIDs(const vector<FeatureID>&);
12 // Perform classification for a single flow
13 ClfResult classify(const FlowFeatures&) = 0;
14 // Perform classification for multiple flows
15 vector<ClfResult> classify(const vector<FlowFeatures>&) = 0;
16 };

Listing 3: Common interface of the Classifier objects

4.5.1 IP Prefix Classifier

IpPrefixClassifier performs blocklist-based classification. The source fea-
ture IDs must point to the values of type WIF::IpAddress in the provided
FlowFeatures instance. The resulting double value is set to either 0 or 1
depending on if at least one source feature contained an IP address on the
blocklist. The used blocklist is obtained via the classifier’s constructor but can
also be periodically set.

A utils class called IpPrefix represents a blocklist element. It contains an
IpAddress object and size t representing the number of bits in the prefix.
An exact match will be performed when the number of bits is set to 32 (IPv4)
or 128 (IPv6). The IpPrefix object can be constructed by either supplying
the WIF::IpAddress object and then the number of bits is set so an exact
match will be performed. Another option is to supply either a std::string
or IpAddress and manually set the number of bits in the prefix. Both exact
matching and checking if an IP address belongs to a particular IP range can
be performed.

The provided blocklist is sorted before the actual classification can take
place. The sorting order is set in a way that all elements of type IPv4 are
before any IPv6 element. Then, a comparison of prefixes is performed. In
a case that the prefixes match, the number of prefix bits is used. After the
blocklist has been sorted, std::binary search is used for an effective lookup
of an IP address on the blocklist. The classifier supports IP prefixes with any
prefix length. Full prefix length of IPv4 (32 bits) or IPv6 (128 bits) can be
used for exact matching.
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Another utils class FileModificationChecker can be used to detect a new
version of the source blocklist on disk. This class can detect a new version
of a file on disk by reading the last modification time. Periodical checks for
new versions can be performed by utils class called Timer and loading of a new
blocklist when the file change is detected.

4.5.2 Regex Classifier
RegexClassifier is a classifier performing pattern matching. The required
type of fields in the FlowFeatures object for this classifier is std::string.
The classification result for each flow is a double value. However, the resulting
value depends on the selected operational mode of the regex pattern described
below.

RegexPattern class represents what and how it is supposed to be matched.
This class takes a vector of strings representing multiple regex patterns, which
will be matched. Elements of the supplied vectors can be full regex patterns
or keywords (plain strings). Then, character-by-character matching will take
place. The second parameter is an operational mode, described below.

ALL All provided patterns have to be matched. The resulting double value is
REGEX PATTERN FOUND (with a value 100.0) if all patterns were matched,
otherwise REGEX PATTERN NOT FOUND is returned with the value 0.0.

PART Matching of every pattern takes place. The resulting value is a percentage
of the successfully matched patterns. The value ranges from 0.0 up to
100.0.

ANY If at least one pattern was matched, REGEX PATTERN FOUND (with a value
100.0) is returned. Otherwise REGEX PATTERN NOT FOUND with value 0.0
is returned.

Regex Classifier has a RegexPattern object as the first parameter defining
what patterns and in which mode the matching will be performed. The second
parameter is a combinator object, used when multiple source features are used.
For example, if two source feature fields are set, the provided combinator will
be used to combine the pattern-matching results of each field to provide one
final result.

The performance of the single-flow and multiple-flow classifications are
equal since no demanding communication is needed, as in the case of the Scikit
ML Classifier. However, we found out during testing that the regex implemen-
tation in the standard C++ library called std::regex is very slow. Therefore,
boost regex library8 is used internally by the Regex Classifier.

We used DeCrypto datasets [74] and implemented a simple NEMEA and
WIF-based module with two Regex classifiers. The module receives a flow and
performs Stratum protocol detection using two regex patterns from the original
DeCrypto system (described in Section 3.6). The program was run 100 times
for each regex backend: std::regex and boost::regex. The data used for the
experiment contained 2 250 000 flows. The Table 4.2 shows runtime statistics
from our experiment. We can see that the boost::regex is almost ten times
faster than the regex implementation from the standard C++ library.

8https://www.boost.org/doc/libs/1_78_0/libs/regex/doc/html/index.html
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Table 4.2: Performance of DeCrypto systems

Seconds
Regex backend Min [s] Average [s] Median [s] Max [s]
std::regex 36.67 39.40 38.34 45.10
boost::regex 3.91 3.99 3.92 4.43

4.5.3 Scikit ML Classifier

ScikitMlClassifier is a classifier performing Machine-Learning-based clas-
sification via Python’s scikit-learn library. Its source features are features of
the used ML model, and the result of its single-flow classification is a vector
of doubles, representing the output of the predict proba() method called on
the scikit-learn model. It is presumed that all ML features are doubles. There-
fore, every index to FlowFeatures object must point to the double value. The
constructor of this classifier has two parameters: a string with a path to the
ML model in the pickle format9 and a path to the so-called bridge, described
below.

1 import pickle
2

3 def init(modelPath):
4 with open(modelPath, 'rb') as f:
5 return pickle.load(f)
6

7 def classify(classifier, features):
8 return classifier.predict_proba(features).tolist()

Listing 4: Bridge module used by Scikit ML Classifier

Since scikit-learn is a Python library, Python C API10 is used together with
a simple Python script called bridge for communication with the scikit library.
The bridge module shown on listing 4 has to contain two functions: init() and
classify(). The init() function obtains the ML model path, loads the pickle
file, and returns the ready-to-use scikit ML model. The classify() function
receives the scikit ML model and a 2D list of features. It internally calls the
predict proba() method and returns a 2D array of the resulting probabilities.
These probability arrays are then available in the resulting ClfResult object
for each flow.

It is highly recommended that this classifier only be used for processing
bursts of flows since the Python scikit-library has to be called internally by
the Scikit ML Classifier. Severe performance issues may arise when a single-
flow classify() function is used. However, processing of bursts with at least
50 000 flows achieves sufficient speed. Single-flow classification performance
issues are balanced by allowing the usage of ML models from the scikit-learn
library, arguably the most frequently used library for Machine Learning.

9https://docs.python.org/3/library/pickle.html
10https://docs.python.org/3/c-api/index.html
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4.5.4 ALF Classifier

AlfClassifier serves as a wrapper over Scikit ML Classifier. It provides
interconnection with the Active Learning Framework (ALF, described in Sub-
section 3.2.1). This way, ALF can re-train ML models and WIF-based module
can re-load them from the disk, preventing model degradation over time.

ALF requires several data to work correctly. The AlfClassifier must send
ML features and output probability array from the ML model. Moreover, WIF
will send a timestamp of the last model load. This is important because ALF
can distinguish if the WIF-based module already uses the up-to-date model or
if the incoming data are from the older version.

AlfClassifier class takes two arguments in its constructor. The first is an
instance of the ScikitMlClassifier, which is then used internally for the clas-
sification. The second argument is a C++ reference type to UnirecReporter
(described in Section 4.7), which forwards features and probability arrays to
the ALF via libtrap and libunirec libraries. Since the UnirecReporter is used,
it is only available if WIF was compiled with the unirec and trap support
(BUILD WITH UNIREC enabled).

Moreover, AlfClassifier uses Timer and FileModificationChecker to
check if the source ML model file was changed periodically. Once this event
occurs, the ML model reload is performed during the next classify() call: it
cannot be reloaded directly because the load operation must be performed by
the same thread that initialized Python C API.

Scikit ML Classifier

Unirec Reporter

ALF Classifier

FlowFeatures

Active Learning Framework

ML features and proba array

ML Model

Model reload when change on disk is
detected

ClfResults

Figure 4.4: WIF-ALF interconnection

4.6 Combinators

Combinators are classes that provide methods for data fusion. Similarly, as
classifiers, the common combinator interface is defined by abstract class Combinator,
shown on listing 5. Combinators are much simpler than classifier objects. The
primary method is called combine(), and it takes a vector of double values
and returns a double with the fusion result.
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1 // Note: virtual keywords, std namespace,
2 // and parameter names are omitted
3 // for increased code readability
4

5 // Abstract class defining the interface of Combinator objects
6 class Combinator {
7 public:
8 virtual double combine(const vector<double>&) = 0;
9 };

Listing 5: Common interface of the Combinator objects

4.6.1 Basic Combinators

Weak Indication Framework contains several combinators with basic functions.
The first one is called AverageCombinator and provides a simple average oper-
ation. The second one is called SumCombinator and provides a sum operation.

4.6.2 Binary DST Combinator

BinaryDSTCombinator provides a data fusion operation based on the Dempster-
Shafer Theory, described in Section 3.

Every input value is treated as a witness of an event, and each value is
used to define one basic probability assignment function (hence binary). The
value is used as a probability for the positive hypothesis and 1.0 − value as
a probability for the opposing hypothesis. All basic probability assignment
functions are combined together, and the resulting probability for the positive
hypothesis is returned.

4.7 Reporters

Reporters are used to exfiltrate additional information from detection mod-
ules. They can help to understand what is going on during the development
and research of new modules, as well as to help monitor deployed modules
and provide inside information. Reporters can boost the overall explainability.
Moreover, they can be used for active learning detection approaches.

The common interface is defined by an abstract class called Reporter,
shown on listing 6.

Reporters work differently than classifiers and combinators. Their func-
tion resembles a finite state automaton. Firstly, onRecordStart() must be
called to indicate the start of the new message. Then, the report() method
can be called multiple times to supply data for the current message. The
DataVariant type is the same variant used by FlowFeatures. Therefore, any
supported type by FlowFeatures can be reported. After all the data was sup-
plied, onRecordEnd() must be called to indicate the end of the current message.
However, it does not mean the message is sent immediately: reporters might
use buffering. The flush() method can be used to send messages immediately.
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1 // Note: virtual keywords, std namespace,
2 // and parameter names are omitted
3 // for increased code readability
4

5 // Abstract class defining the interface of Reporter objects
6 class Reporter {
7 public:
8 void onRecordStart() = 0;
9 void report(const DataVariant&) = 0;

10 void onRecordEnd() = 0;
11 void flush() = 0;
12 };

Listing 6: Common interface of the Reporter objects

4.7.1 Unirec Reporter

UnirecReporter class reports data in unirec format to NEMEA trap interface.
This class needs the unirec library and is only available when the COMPILE WITH UNIREC
option is enabled.

Firstly, the UnirecReporter obtains a reference to UnirecOutputInterface
class from the unirec++ library in the constructor. Then, IDs of the target
unirec fields must be set via the updateUnirecFieldIDs() method. After
that, the reporter is ready to use. The onRecordStart() resets the current
index to the unirec IDs vector, and every call of the report() method takes
the current unirec ID from the vector, sets the according field in unirec record
to the obtained value, and increments the pointer to the unirec ID vector.
The onRecordEnd() sends the unirec record to the output interface, and the
flush() method instructs the libunirec to send all currently pending records
to the trap interface.

The possible use and strength of this reporter are demonstrated on the
interconnection with Active Learning Framework in Section 5.2.

4.8 Utils

WIF also contains several utils classes needed by other parts. Currently, the
utils part consists of IpPrefix (already described in Subsection 4.5.1), Timer,
and TypeTraits.

The Timer class uses the standard C++ threads library std::thread and
provides functionality to run a function periodically in another thread. The
Timer class takes a number of seconds between each function call and a unique
pointer to a child of TimerCallback. TimerCallback is an abstract class with
the interface shown on listing 7. The onStart() method is called when the
new thread is started and can be used for initialization. The onEnd() method
is the last thing before the thread run ends and can be used for finalization.
The onTick() method is called periodically every N seconds (based on what
value was passed as the constructor’s argument). This process is also shown
on Figure 4.5.
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onStart() onTick

sleep X seconds after
each call

onEnd()

Timer::start()
called

Timer::cancel()
called

Figure 4.5: Process of TimerCallback utilization in Timer class

1 // Note: virtual keywords, std namespace,
2 // and parameter names are omitted
3 // for increased code readability
4

5 class TimerCallback {
6 public:
7 virtual void onStart() {};
8 virtual void onTick() = 0;
9 virtual void onEnd() {};

10 };

Listing 7: TimerCallback Interface

4.9 Discussion

Weak Indication Framework is a stand-alone C++ library that can be used
for network traffic classification and possibly other use cases. It achieves high
efficiency and can be used to develop detection modules suitable for high-
speed ISP-level networks. It provides Machine Learning, pattern matching, and
blocklist-based classification methods. Moreover, it provides basic data fusion
algorithms and more advanced Dempster-Shafer Theory principles. Last but
not least, WIF provides reporters for high explainability and active learning
approaches.

The strength of WIF is that even if WIF does not contain the needed clas-
sifier, combinator, or reporter, the user can implement it on its own and use it
just the same as if it was part of WIF. However, we plan to add more classifica-
tion, data fusion, and reporting capabilities in the future. Unfortunately, it is
out of the scope of this thesis. Nevertheless, our ideas for future WIF-related
development are as follows:

MLPack MLPack is highly efficient C++ library for Machine Learning. A
new classifier using MLPack can provide much faster throughput than
the one based on scikit-learn.

Combinators Supply more combinators to the WIF, such as a combinator
for a weighted average.

Database Reporting A reporter which sends data to a database (SQLite
and others) could be used for permanent data storage and easy-to-use
analysis of WIF-based detection methods.
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Chapter 5
Network Classification Prototypes

With the WIF designed and ready-to-be-used, we can now design detectors
for network traffic classification and threat detection based on the newly cre-
ated library. The development and functionality of WIF-based detectors are
described in this chapter, emphasizing the usage of WIF.

5.1 Introduction

Several network traffic detectors will be designed and based on the Weak Indi-
cation Framework. It will allow us to verify the architecture, functionality, and
the overall implementation of the WIF. The detectors described in this chapter
were chosen based on the consultation with the thesis supervisors. Detectors
are implemented as NEMEA modules that use the WIF library. Implemented
modules are far more complex than as described in this thesis. Unfortunately,
the full description is out of the scope of this thesis. We would kindly reference
the reader to the Section C and the attached source codes.

5.2 Cryptomining Detector

Cryptomining Detector is a C++ implementation of the DeCrypto system [74],
previously described in Section 3.6. It is the first detector based on the WIF
library. The Cryptomining detector is a stream-wise NEMEA detection module
that processes flows from the input and sends to its output only flows with
confirmed cryptomining communication.

The repository structure of this detector is similar to the WIF library’s
repository. CI/CD is utilized in a similar way: code style compliance and
common programming errors are checked via clang tools. Furthermore, RPM
build is set up, and the RPM package can be created by calling make rpm.

The Cryptomining detector has one input unirec interface from which it
receives incoming flow data. Similarly as in [74], the module has a prefilter in
place: at least eight packets in both directions are required. Otherwise, the
flow is dropped. Two interfaces are used to send data from the detector. The
detector uses the primary output unirec interface to send out the miner flows.
The secondary output unirec interface is used for interconnection with Active
Learning Framework (ALF), described in Subsection 3.2.1.
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As described in Section 3.6, DeCrypto internally uses three weak detectors
and a so-called Meta classifier to process their outputs, as shown on the Fig-
ure 5.1. The first weak detector is called the Stratum detector and performs
pattern-matching detection of the Stratum mining protocol. The weak de-
tector called TLS SNI Classifier detects cryptomining-related keywords in the
TLS SNI field. Lastly, ML Classifier performs statistical-based detection via
Machine Learning and provides the probability of a flow being a cryptominer.
Then, the Meta Classifier processes the outputs of the previously mentioned
weak detectors and provides the final prediction. The weak detectors are im-
plemented as simple wrapper classes over the classifiers and combinators from
the WIF library.

Flows
Prefilter

Stratum Detector

TLS SNI Classifier

ML Classifier

Secondary
Output Interface

Meta Classifier

Data for ALF

Primary
 Output Interface

Miner Flows

Input Interface

Figure 5.1: Architecture of the Cryptomining detector

Stratum detector consists of two RegexClassifier classes. One is used
for the detection of Stratum requests, and the other one is used for the de-
tection of Stratum responses. The regex patterns for both Stratum request
and response are taken from the [78]. Moreover, both RegexClassifier in-
stances use the operational mode ANY. Since RegexClassifier also requires an
instance of a combinator for combining results from multiple source features,
a sum combinator is used in both of them.

TLS SNI classifier also consists of two RegexClassifier classes. One is
used for matching short cryptocurrency names (variants of btc, eth, xmr,
and rvn as in [78]). The other one is used for matching suspicious mining
pool keywords (mine, pool, mining as in [78]). Moreover, an instance of the
AverageCombinator is used for combining the result of the two instances of
the RegexClassifier.

ML classifier uses one of the ScikitMlClassifier and AlfClassifier
classes, depending on the command line arguments. The AlfClassifier is
used when --use-alf is supplied as the command line argument; otherwise, an
instance of the ScikitMlClassifier is used. When the ScikitMlClassifier
is used, output class probabilities are obtained from this classifier and used
further in the detection process. When the ALF classifier is used, the ML
features for each classified flow, the output probability array, and the times-
tamp of the last model load (for ML model versioning) are sent to the sec-
ondary output unirec interface via the UnirecReporter instance from inside
the AlfClassifier. These data are sent to the Active Learning Framework.
When the new ML model is detected on the disk, it is reloaded, and the Cryp-
tomining detector uses the new version, keeping the model output the best as
possible.

Meta classifier contains the previously described detectors, invokes them,
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and performs the combination and the final detection. BinaryDSTCombinator
class combines the TLS SNI score and the ML probability via the Dempster-
Shafer Theory. Then, flows where cryptomining was detected are sent to the
output unirec interface.

The Cryptomining detector requires Python libraries to be available in the
system. We used the Python3.8 development package, which also contains
Python.h header file and development package of numpy11. These dependen-
cies are required to successfully establish communication between the C++ de-
tector and the ScikitMLClassifier via the Python C API. Furthermore, NE-
MEA libraries (libtrap, libunirec, libunirec++) are required. The libstdc++fs
is required for working with the filesystem. The pthread library is needed for
the WIF::Timer class. Lastly, the Cryptomining detector depends, of course,
on the WIF library.

The Cryptomining detector uses the identical detection process as the orig-
inal DeCrypto system but achieves higher throughput. The performance and
evaluation are described in the Chapter 6. However, it contains a new feature:
the option for interconnection with ALF to keep the used ML model up-to-date.
The detection process remained the same as in the original implementation.

5.3 Tor Detector

Tor Detector (TorDer) is a detector of Tor communication12. The Tor project
provides a list of Tor relay node IP addresses13 for others to connect. However,
it can also be used to detect such communication. A stand-alone detector was
developed for this purpose because we would implement the same functionality
twice (once in TunDer, once in MalDer; described later) otherwise. This way
TunDer and MalDer only process an existing field with the result of the Tor
communication detection.

The detector’s high-level architecture is shown in Figure 5.2. It processes all
incoming flows, performs detection, and sends them to its output interface with
new fields describing the detection result. As also depicted in the Figure 5.2,
the source file with Tor relays can be updated periodically. The TorDer will
automatically detect and load newer versions.

OrchestratorInput Interface
Flows

Tor Relays File

Periodical checks for
new version Load new nersion when

change is detected

Output Interface
Flows

Figure 5.2: Architecture of the Tor detector

The detector has one input unirec interface for receiving incoming flow
data. Each flow must contain both SRC IP and DST IP fields with an unirec
type called ipaddr. The Tor detector checks if either SRC IP or DST IP field

11https://numpy.org
12https://www.torproject.org
13https://onionoo.torproject.org/summary?running=true
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contains a Tor relay node IP address. The WIF library performs the actual
detection via an instance of the IpPrefixClassifier class. The detection
output is true/false encoded into values one/zero and appended to the flow
record. Moreover, additional information is provided, such as the direction in
which the Tor relay was detected. The value -1 indicates that the Tor relay was
detected in SRC IP, and the value 1 indicates that the Tor relay was detected
in DST IP.

Tor relay IP addresses are loaded from a file from disk. The file path is pro-
vided as a command line argument. The file must contain one IP address per
line. Empty lines and lines starting with # (comments) are skipped. In addi-
tion, the Timer and FileModificationChecker classes from the WIF library’s
utils section are used for periodical checking for a new file version. Therefore,
an additional CRON script can be set up to update the used blocklist (for
example) once per day, and TorDer will automatically use the newest version
of Tor relays.

The flows on the detector’s output interface have two new unirec fields with
the detection result: TOR DETECTED and TOR DIRECTION. The TOR DETECTED
field is of type uint8 and holds either 0 or 1. The TOR DIRECTION is of type
int8 and holds -1 if Tor relay was detected in SRC IP, or 1 if Tor relay was
detected in DST IP).

The Tor detector requires the NEMEA libraries (libtrap, libunirec, and li-
bunirec++). It also depends on the stdc++fs, pthread, and, of course, the WIF
library. CMake is used for the build process, and RPM is used for packaging
and distribution.

5.4 Tunnel Detector

Tunnel Detector (TunDer) is a NEMEA module designed and developed from
scratch. It is not an implementation of another system that was already de-
signed. TunDer aims to detect communication tunnels, such as Virtual Private
Networks (VPNs), Tor, and more. The detector is distributed as the RPM
package.

The Tunnel detector follows a weak-detector architecture, shown in Fig-
ure 5.3. However, TunDer, rather than performing the detection itself, aggre-
gates information over time instead. Once in a while, the detector goes through
the results of weak detectors for each IP address. The decision to send an alert
to the output interface is made based on what combination of indicators was
triggered.

A significant difference from other detectors is that TunDer does not per-
form detection for every received flow. Rather than that, the user needs to
provide a configuration file with IP ranges, which the TunDer will observe.
TunDer only works with flows with at least one IP address (SRC or DST IP)
from one of the provided IP ranges. Otherwise, the flow is dropped and not
processed.

Moreover, the Tunnel detector works in time intervals. Internal indicator
stores are empty after the start of the detector. The first time window starts,
and the stores are updated based on the incoming flows. The time window
expires when a flow with a timestamp in the TIME LAST field is received and
the time difference from the window start is greater than the window size.
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Figure 5.3: TunDer architecture

Then, the detector goes through the weak-detector results for each seen IP
address. The results of each detector are passed into rules. If a rule is satisfied,
an alert representing this rule is sent to the output interface. The default time
window size is 15 minutes (900 seconds).

5.4.1 Data Stores

Weak detectors need some data storage to hold information about the detection
for each IP address. The Tunnel detector uses two types of data stores for such
purpose: BinaryStore and CounterStore. The binary store is a std::vector
of uint8 t. Values in this store can only be either 1 or 0 (representing if an
event was or was not observed in the time window). The counter store holds
a std::vector of uint16 t. Its values are counters representing the number
of seen events. Both store types are pre-allocated to the size supplied in the
constructor’s argument. When a store is cleared, all of its members are set to
0. No additional (re-)allocation is done.

We need to translate the observed IP address to an index for effective mem-
ory access. Extremely fast non-cryptographic hash algorithm xxHash14 is used
to map IP addresses to XXH64 hash t (or IpKey) values. The main component
of the Tunnel detector, Orchestrator, performs this translation. Data stores
then use hash maps to translate XXH64 hash t to an actual unsigned index to
a std::vector or another container.

5.4.2 Weak Detectors

TunDer comprises several weak detectors: detectors of default ports, detector
of Tor, detector of communication with IP addresses on user-provided blocklist,
and detectors processing confidence level fields of OpenVPN, WireGuard, and
SSA (described later). Every detector holds information from seen flows for
each IP address. Weak detectors internally use stores for holding the informa-
tion.

There are two weak detectors based on ports. The OpenVpnPortDetector
looks for flows with OpenVPN default port 1194. The WireGuardPortDetector
looks for flows with port 51820, the well-known port used by Wireguard. Both
detectors hold a counter for the number of seen flows with the default port seen.

14https://xxhash.com
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If the number of seen flows with the default port exceeds the needed threshold,
the result of the detection is positive. Otherwise, the result is negative.

The following three weak detectors are processing CONF LEVEL fields from
ipfixprobe plugins15. The CONF LEVEL stands for confidence level and ranges
from 0 − 100. It expresses confidence in the plugin about a flow’s affiliation
to a group it is meant to detect. For example, the OpenVPN plugin appends
OVPN CONF LEVEL to a flow expressing confidence that the flow is an OpenVPN
communication. The same applies to the WG CONF LEVEL and WireGuard com-
munication. Lastly, SSA CONF LEVEL detects SYN-SYN ACK-ACK sequences,
and its values are only 0 (SSA not seen) or 1 (SSA seen).

As mentioned in the previous paragraph, the next three weak detectors are
processing OVPN CONF LEVEL, WG CONF LEVEL field, and SSA CONF LEVEL. Each
detector processes one of the listed fields. Similarly to port detectors, counters
are used to count the seen flows. Moreover, a minimal confidence threshold can
be set: the counter is not updated if the confidence level does not exceed the
needed confidence threshold. At the end of the time window, the number of
seen flows must be greater or equal to the defined threshold (positive result).
Otherwise, the result is negative.

In addition, the detector processing OVPN CONF LEVEL also looks for the
100% confidence level. The result of this detector can be NEGATIVE, POSITIVE,
or RESULT OVPN 100. It is then supplied to rules as any other result and requires
no special handling.

Another weak detector is the Tor communication detector. It processes the
output fields of TorDer (described in Section 5.3). Again, counters are used,
and the minimal number of seen flows with detected Tor communication can
be set.

The last weak detector performs IP blocklist classification and is based on
a user-provided blocklist. It uses IpPrefixClassifier class from the WIF
library. The threshold for a number of the seen flows communicating with
blocklisted IP addresses can be set. Therefore, users can provide their own
blocklist based on the specific traffic they want to detect, and TunDer will
perform the detection.

CONF LEVEL OPVN 100 (5.1)
CONF LEVEL OVPN ∧ CONF LEVEL SSA (5.2)

CONF LEVEL WG ∧ CONF LEVEL SSA (5.3)
CONF LEVEL OVPN ∧ DEFAULT PORT OVPN (5.4)

CONF LEVEL WG ∧ DEFAULT PORT WG (5.5)
TOR (5.6)

BLOCKLIST (5.7)

5.4.3 Export
When the time window ends, detection results of weak detectors are obtained
and passed to the rules. Then, each satisfied rule produces an alert on the
output interface with the information about the IP address from the observed

15https://github.com/CESNET/ipfixprobe
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ranges, results, explanations of all weak detectors, and the string representation
of the matched rule. The detectors are reset, and a new time window starts.

A system for rule matching is also implemented directly in the Tunnel
detector. Abstract class Rule defines a common interface, shown on listing 8.
The constructor (line 6) takes a string representation of the rule. The virtual
method result() on line 8 indicates if the rule was satisfied or not. The
method registerWeakResult() serves to supply a result of a weak detector
(the first argument DetectorID indicates the result from which the detector is
being registered). BasicRule extends this class and takes an ID of the detector
it represents. If the result of the detector with the same ID is registered, it
is saved. Otherwise, nothing is done. This rule is satisfied if the detector it
represents is positive. Otherwise, it is negative. Then, AndRule and OrRule
classes are provided. These classes take a vector of pointers to other rules.
The AndRule is satisfied if all the supplied rules are also satisfied. The OrRule
requires at least one rule to be satisfied. Moreover, these advanced logical rules
can automatically build their string explanation by joining the underlying rule
explanations with suitable logical characters (&&, ||).

1 // Note: virtual keywords, std namespace,
2 // and parameter names are omitted
3 // for increased code readability
4 class Rule {
5 public:
6 Rule(const std::string& explanation)
7 ˜Rule() = default;
8 bool result() const = 0;
9 void registerWeakResult(DetectorID, DetectionResult) = 0;

10 const std::string& explanation() const noexcept;
11 };

Listing 8: Rule Interface

Every rule is attempted for each IP address. The first rule (5.1) is satisfied
when at least one flow with OPVN CONF LEVEL with value 100 was seen. Rules
(5.2), respectively (5.3), is satisfied when both detectors of SSA and OpenVPN
confidence level, respectively WireGuard confidence level, are positive. Rules
(5.4), respectively (5.5) is satisfied when both detectors of default port and
OpenVPN confidence level, respectively WireGuard confidence level, are posi-
tive. Rule (5.6) is satisfied when a Tor detector is positive. Finally, rule (5.7)
is satisfied when the blocklist detector is positive.

5.4.4 Build Dependencies
The Tunnel detector depends on the same libraries as the Tor detector: the
NEMEA libraries (libtrap, libunirec, and libunirec++), stdc++fs, pthread,
and the WIF library.
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5.5 Malware Detector

Malware Detector (MalDer) is a C++ implementation of the BOTA system
based on the WIF library. The original BOTA system was introduced in [73]
and is described in Section 3.5. Its purpose is to reveal botnet malware target-
ing IoT devices like Mirai, Gafgyt, and Tsunami. The detector is distributed
as the RPM package.

MalDer uses a similar architecture as the Tunnel detector: flows from only
supplied IP ranges are processed, multiple indicators are investigated by their
corresponding weak detectors, the module as a whole works in time windows,
and rules are matched for each seen IP address after the time window expires.
However, the BOTA system (and MalDer) also works in 5-minute windows.
The Figure 5.4 shows a high-level visualization of the Malware detector with
all its weak detectors.
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Figure 5.4: MalDer architecture

As mentioned earlier, the Malware detector also requires a configuration
file with IP ranges to be observed. Received flows that do not belong to any of
the observed IP ranges are dropped. Again, blank lines and comments (lines
starting with #) are filtered out. IP ranges must be provided in CIDR format
(Subnet Address/Mask Length, such as 10.0.0.0/24).

5.5.1 Data Stores

Weak detectors use stores to hold information about observed IP addresses and
events. The same BinaryStore and CounterStore classes are used as in the
Tunnel detector. Furthermore, two new types of stores were designed for the
Malware detector.

UniqueStore is a templated store class for observing a number of unique
values. For example, it can be used to track the number of unique destination
ports (with the template argument uint16 t) where an IP address was con-
necting. Another use case is to observe with how many unique IP addresses the
observed IP address was communicating. It is used in weak detectors handling
anomalous traffic.

AnomalyStore is an advanced store utilizing Welford and Brown algorithms.
It holds a cumulative sum of a metric over time. The current state of the
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algorithms is updated via the new observations and can provide a prediction
for the next value. This store is also used in the anomaly detectors. Its exact
usage is described later.

The same process for translating IP address to an index is used as in the
Tunnel detector, described in Subsection 5.4.1. Firstly, IP address is translated
into an XXH64 hash t (IpKey) value. Data stores then perform translation from
an IpKey to an unsigned value used for accessing the data.

5.5.2 Weak Detectors

The Malware detector consists of the eight following weak detectors: anomaly
detectors of a number of transferred bytes, packets, and the number of unique
IP addresses and ports used for communication, and detectors of Command &
Control communication, DHT, Stratum, and Tor protocols.

Weak detectors of DHT and Stratum protocols use the RegexClassifier
from the WIF library. The used regex patterns are taken from the orig-
inal BOTA implementation in [73]. Each of these weak detectors uses the
BinaryStore. If the store contains the value 1, the representing event (de-
tection of Stratum, DHT) already happened. Therefore, no additional work
must be done. On the other hand, the stored value 0 means that the corre-
sponding event has not yet occurred. Therefore, the weak detector will perform
the detection. If the event was detected, the corresponding value is updated.

The weak detector of Tor communication processes the output of the Tor
detector (described in Section 5.3): TOR DETECTED. It does not perform any
detection on its own. The binary store is utilized in the exact same way as in
the weak detectors of Stratum and DHT protocols.

A weak detector called CNCDetector performs statistical detection of Com-
mand & Control communication, hence its name CNC. This weak detector
internally uses the ScikitMlClassifier from the WIF library and AdaBoost
ML model proposed in [73]. ML bridge must also be provided. The Malware
detector uses the same Python bridge as the Cryptomining detector. Simi-
larly as in all previously described weak detectors, binary store is utilized for
tracking if C&C communication was already detected for each IP address.

Furthermore, several weak detectors perform anomaly detection. The par-
ent abstract class AnomalyDetector handles the actual anomaly detection;
meanwhile, its child classes are customized to observe concrete metrics. Anomaly
detectors work in their own time intervals of one-minute windows. This means
that the anomaly detector finished five one-minute time windows in one five-
minute window of the whole BOTA system. An anomaly can occur during
every one-minute window, and a maximum of 5 anomalies can be seen in one
5-minute BOTA window.

For the period of 1 minute, the value of the observed metric is updated
by incoming flows (for example the number of transferred bytes from the re-
ceived flow is added to the current value of all transferred bytes by this IP
address). When the time window expires, anomaly detection is performed.
AnomalyStore (with Brown and Welford algorithms) is used for getting a pre-
diction of the observed metric. If the current value is greater than the predicted
value, it is considered an anomaly, and the detector increments the number of
anomalies. Then, AnomalyStore is updated with the current value to reflect it
in the prediction the next time the window ends.
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Such detection settings produced many anomalies. However, MalDer fol-
lows the proposed mechanism in BOTA: an additional criterion for an anomaly
to be considered an actual anomaly. The metric value must also exceed a min-
imum threshold. For example, the observed value X would be considered an
anomaly, but it does not exceed the minimum threshold Y (X < Y ). Therefore,
the result in that time window is not anomalous, and the number of anomalies
seen is not incremented. For example, if the number of transferred bytes was
10 000 and the predicted value was 7500, it would be considered an anomaly.
However, it is not greater than 1 000 000 (the default bytes anomaly threshold)
and, therefore, not considered an anomaly.

When the 5-minute BOTA window expires, the result of the anomaly detec-
tor must be determined. This is done by comparing the number of anomalies
seen with the number of anomalies needed to be positive (currently set to one).
Then, the number of anomalies is reset, and a new time window starts.

Four weak detectors for anomaly detection are part of the Malware detec-
tor. Anomaly detection is performed in the part class AnomalyDetector. Its
children differ in stores used and how they work with the received flow. One
for observing each of the following metrics:

Bytes The sum of the number of bytes from all the received flows for a par-
ticular IP address. Performed by BytesAnomalyDetector.

Packets The sum of the number of packets from all the received flows for a
particular IP address. Performed by PacketsAnomalyDetector.

IP Addresses The number of unique destination IP addresses to which the
observed IP address connected. Performed by IpAnomalyDetector.

Ports The number of unique destination ports to which the observed IP ad-
dress connected. Performed by PortsAnomalyDetector.

5.5.3 Export
After the 5-minute window expires, a process similar to that of the Tunnel
detector takes place. Result of every weak detector is registered into the rule
mechanism; see Subsection 5.4.3. An alert is created and sent to the output
unirec interface for every satisfied rule. The rules are same as in the Section 3.5
and [73] and are also shown on (5.8), (5.9), and (5.10). Detectors are reset, and
a new time window starts. The output alert contains the target IP address,
the string representation of the matched rule, and results and explanations of
each weak detector.

C&C ∧ (Ab ∨ Ap ∨ Adip ∨ Adp) (5.8)
Tor ∧ (Ab ∨ Ap ∨ Adip ∨ Adp) (5.9)

DHT ∧ Stratum (5.10)

Furthermore, the maximum number of observed IP addresses at once can
be set via input argument. It means that when a new flow is received, in-
ternal data stores and translation objects can be full. Least Recently Used
(LRU) cache is used to address this issue. The least recently used IpKey is ob-
tained from the LRU cache and premature detection is performed. Then, this
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key is removed from the internal structures for data storage and IP-to-index
translation, making a free spot for a newly received flow.

5.5.4 Build Dependencies
The Malware detector depends on the NEMEA libraries (libtrap, libunirec, and
libunirec++), stdc++fs, pthread, and the WIF library. In addition, Python3
libraries and numpy are required.

5.6 Discussion

The detectors described in this chapter were designed and developed later than
the Weak Indication Framework, and all of them use features provided by WIF.
However, several features were identified as suitable to become part of the WIF
during the detectors’ development.

The first identified feature suitable for becoming part of WIF are data
stores. Both TunDer and MalDer use BinaryStore and CounterStore to keep
information about observed IP addresses. Since detection methods can also
be based on an aggregation of information, it would be beneficial for WIF to
contain prepared classes for storing information with an IP address object as
a key.

Rule matching is another possible improvement identified. Both TunDer
and MalDer use rules representing which weak detectors have to produce a
positive result for an alert to be sent to an output interface. The WIF with
similar rule-matching functionality can further speed up the development of
new modules and reduce the need to re-implement the code. Furthermore,
rules used by both detectors are now hard-coded. Reading and parsing rules
from a configuration file would make WIF-based modules more flexible and
make deploying detectors to different networks easier.

Weak Indication Framework currently provides classifiers with detection
methods. However, every implemented detector uses wrapper classes, which
usually implement some pre-filtering, storing the data, and providing explana-
tory strings. Again, both TunDer and MalDer use Orchestrator class for
invoking detectors, managing the time window, and rule matching. Moreover,
abstract WeakDetector class serves as a general detector class with the common
interface of methods such as: accept(), update(), result(), and explain().
WIF could provide a similar class to ease the development. Not only detection
methods would be prepared, but also a general structure for detection modules.
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Chapter 6
Evaluation

Verifying that the implemented software in previous chapters works correctly
and that the output alerts contain a valid and truthful description of a detected
event is essential. Therefore, this chapter describes the evaluation process.
The basic functionalities of each detector are verified, followed by performance
evaluation. A description of metrics and methodology is also provided.

6.1 Metrics & Methodology

Evaluation of detection and classification processes is usually performed on
labeled data. Therefore, the correctness of output labels can be verified, and
statistics can be calculated. Data label and output classification label can have
one of the following relationships:

True Positive (TP): positive result marked correctly as positive

False Positive (FP): negative result marked incorrectly as positive

True Negative (TN): negative result marked correctly as negative

False Negative (FN): positive result marked incorrectly as negative

Runtime is measured by standard time utility of UNIX systems. The flows
per second (FPS) metric is then calculated as the total number of processed
flows divided by the runtime in seconds. All performance and timings tests
were performed on a single virtual machine with the parameters shown in
Table 6.1. Detectors in the CESNET environment typically run on virtual
machines with similar parameters; therefore, performing efficiency evaluation
and other testing in a similar environment is ideal. We could achieve better
results with the more powerful non-virtual machine. However, we want to test
the detectors in the environment most likely to be used for deployment. This
will give us realistic numbers, which can be expected when deployed.

Each detector was run 100 times when evaluating its performance. The
GNU’s time utility was used to measure the run time. Then, the flows per
second metric were calculated as the number of flows processed by the detector
divided by the runtime in seconds (elapsed part of the time’s output). Mini-
mum, maximum, average, and median values for both metrics are provided.
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Table 6.1: Parameters of the machine used for testing

Parameter Value
System Oracle Linux 8
Processor Intel(R) Xeon(R) Gold 6226R
Num. of CPU cores 4
CPU frequency 2.90 GHz
L1 data cache size 32 K
L1 instruction cache size 32 K
L2 cache size 1024 K
L3 cache size 22528 K
RAM size 5.8 GB
Swap size 2 GB

Table 6.2: DeCrypto parameters used for evaluation

Parameter Value
DST threshold 0.44
ML threshold 0.996
Buffer size 100 000
ML model data symmetry.pickle
Debug/verbose mode Enabled

6.2 Cryptomining Detector

6.2.1 Correctness

Cryptomining detector is based on the DeCrypto system presented in [74]. For-
tunately, [74] also presents two datasets that we can use to verify that our C++
implementation produces the same output as the original DeCrypto system.
Moreover, we can compare the performance of both implementations.

Firstly, we verified that both implementations of the DeCrypto detector pro-
duce the same results. Two datasets from [78] were used: design with 2 094 903
flows and evaluation with 1 075 576 flows. The same settings were used for
both implementations, shown in the Table 6.2. The datasets contain traffic
captured directly on the national CESNET3 network. The desing dataset
contains traffic from December 2021 until February 2022. The evaluation
dataset contains traffic from February 2022 until March 2023.

We expect both implementations to produce the same output. Moreover,
the original ML model from [78] was used. The Table 6.3 shows numbers of TP,
FP, FN, and TN from both implementations (the original one is marked as the
Python-based and the new is marked as the WIF-based. As we can see, both
implementations provide the same results. The table with detailed results of
weak detectors is available in Section A.1. Therefore, the newly implemented
WIF-based C++ variant works correctly.

6.2.2 Throughtput

Then, we decided to measure the throughput and performance of both imple-
mentations. Firstly, we created a sample from the design dataset on which the
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Table 6.3: DeCrypto results

Dataset Result Python-based WIF-based Same?
design TP 557 692 557 692 D
design FP 6 6 D
design FN 25 864 25 864 D
design TN 966 156 966 156 D
evaluation TP 278 964 278 964 D
evaluation FP 5 5 D
evaluation FN 58 827 58 827 D
evaluation TN 489 115 489 115 D

tests will be performed. This sample contains 250 000 miner flows and 250 000
of non-miner flows in a random order. Therefore, the dataset is balanced, and
the order of flows is random, simulating real traffic coming into the detector.
Then, each detector was run 100 times, and its runtime was measured via the
GNU’s time utility. The statistics are calculated from the elapsed output of
the command showing the total time needed for a program to run.

The Table 6.4 provides the overview of the results. Both runtime in seconds
and flows per second statistics are provided. We can see the dramatic and
significant improvement: the newly implemented C++ version is 7.5 times more
effective than the original Python implementation. Therefore, it has sufficient
throughput to operate on national high-speed networks where thousands of
flows per second are sent to the detector.

Table 6.4: Performance of DeCrypto systems

Seconds
Variant Min [s] Average [s] Median [s] Max [s]
Python-based 30.77 32.25 31.98 34.94
WIF-based 4.42 4.58 4.55 5.05

Flows per second
Variant Min [fps] Average [fps] Median [fps] Max [fps]
Python-based 14 310.25 15 502.96 15 637.22 16 249.59
WIF-based 99 009.9 109 070.28 109 890.11 113 122.17

6.3 TorDer

6.3.1 Correctness
TorDer is a simple module that performs blocklist-based detection. Therefore,
we will first asses if the detector works correctly. A simple blocklist and a
special trapcap file for the NEMEA system will be created. TorDer will be run
with the generated files, and its output will be evaluated.

A blocklist was generated containing 1000 IPv4 and 1000 IPv6 randomly
generated addresses. Moreover, a flow data file was created with the following:
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5000 IPv4 and 5000 IPv6 addresses from the blocklist together with 10 000
IPv4 and 10 000 IPv6 addresses not on the blocklist for the in the SRC IP field.
An IP address is present in the DST IP field which is not on the blocklist.
We expect that 10 000 flows will be marked as Tor communication and 20 000
will be marked as non-Tor. TorDer ran with the following data, and blocklist
produced the expected 10 000 Tor flows and 20 000 non-Tor flows. Therefore,
the expected output was obtained, and we can say that the Tor detector works
correctly.

6.3.2 Thoughtput
Then, we decided to evaluate the performance of the Tor detector. The same
script for blocklist and data generation was used to create a blocklist with
50 000 IPv4 and 50 000 IPv6 addresses and test data with 500 000 flows on the
blocklist and 500 000 flows not on the blocklist for each IP version, totaling
to 1 000 000 blocklisted flows and 1 000 000 non-blocklisted flows. Again, we
run the detector 100 times with the generated test data and blocklist. The
statistics of measured runtimes are provided in the Table 6.5. As we can see,
TorDer achieves very high throughput and can serve even very large networks
where tens of thousands of flows are sent to the detector each second.

Table 6.5: Performance of Tor detector

Seconds
Min [s] Average [s] Median [s] Max [s]
3.01 3.12 3.1 5.69

Flows per second
Min [fps] Average [fps] Median [fps] Max [fps]
395 430.58 723 882.8 725 806.45 747 508.31

6.4 TunDer

6.4.1 Correctness
A file with specially crafted flow data was created for each rule internally
matched by TunDer. Each file contains three records: the initial flow with all
the fields zeroed, the second field specially crafted to match the targeted rule,
and the third flow outside the aggregation window so TunDer will perform
rule matching. Adequate blocklist and IP range definition files were created
as well. If TunDer works correctly, each output file should contain exactly
one alert representing the matched rule it was specially crafted for. Moreover,
a file that should trigger no rule (R8 NO RULE) was crafted to verify that no
unexpected alerts are sent to the output. The Table 6.6 shows test results. We
can see that all tests have been passed, and TunDer’s rule matching works as
expected.

The Tunnel detector itself does not implement any advanced or complex de-
tection mechanism; instead, it aggregates information together during a specific
time period. Blocklist-based detection and detection of defined port numbers
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6.4. TunDer

Table 6.6: TunDer rule tests

File Targeted Rule Passed?
R1 OPVN 100 OVPN CONF LEVEL 100 SEEN D
R2 OPVN AND SSA CONF OVPN AND SSA CONF D
R3 WG AND SSA CONF WG AND SSA CONF D
R4 TOR TOR D
R5 BLOCKLIST BLOCKLIST D
R6 OVPN CONF AND PORT OVPN CONF AND PORT D
R7 WG AND PORT WG CONF AND PORT D
R8 NO RULE None D

take place, but both methods are elementary methods for network classifica-
tion, and the previous tests of rules proved their correctness. Furthermore,
the detection of OpenVPN and WireGuard protocols and SSA sequence is per-
formed directly in the flow exporter, and TunDer only works with the finished
probabilities. Therefore, we cannot test these methods since they are not di-
rectly part of our detector.

6.4.2 Throughtput

The performance of the Tunnel detector was evaluated by running the detector
100 times on data captured directly on the CESNET3 network. A filter for
capture was used so that only flows from the CESNET IP ranges (later used
in the detector) were captured with at least three packets in both directions.
This will ensure that the data used for performance testing will be processed by
TunDer and not dropped (TunDer’s prefilter drop flows, which do not contain
any IP address from defined protected ranges, see Section 5.4). Before any
performance testing, we put a debug print of the number of processed flows
to ensure that all 2 225 000 captured flows were processed. After we confirmed
that all the flows would be processed, the debug print was removed. The
Table 6.7 shows the measured times and flows per second. We can see that
even though the Tunnel detector is more complex than the TorDer and contains
more detectors, it still achieves high throughput and can be deployed to large-
scale national-level networks.

Table 6.7: Performance of TunDer detector

Seconds
Min [s] Average [s] Median [s] Max [s]
3.21 3.34 3.31 3.51

Flows per second
Min [fps] Average [fps] Median [fps] Max [fps]
641 025.64 673 755.35 679 758.31 700 934.58
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6. Evaluation

6.5 MalDer

6.5.1 Correctness
Firstly, the basic functionality of the Malware detector will be tested. Specially
crafted flow data will be used to verify that each rule works correctly and is
matched when expected. MalDer uses three rules, but two of them contain the
following part: (Ab ∨ Ap ∨ Adip ∨ Adp). We created four versions of one rule,
which uses this clausula for each anomaly detector to verify that all possibilities
work (rules R2a—R2d in the Table 6.8). Moreover, a file that should trigger
no rule (R4 NO RULE) was crafted to verify that no unexpected alerts are sent
to the output. The Table 6.8 shows that all tests were passed, meaning that
every weak detector in MalDer and the rule matching works correctly and as
expected.

Table 6.8: MalDer rule tests

File Targeted Rule Passed?
R1 DHT AND STRATUM DHT AND STRATUM D
R2a TOR AND ANOMALY BYTES TOR AND ANOMALY BYTES D
R2b TOR AND ANOMALY PACKETS TOR AND ANOMALY PACKETS D
R2c TOR AND ANOMALY IP TOR AND ANOMALY IP D
R2d TOR AND ANOMALY PORT TOR AND ANOMALY PORT D
R3 CNC AND ANOMALY CNC AND ANOMALY D
R4 NO RULE None D

6.5.2 Throughtput
The performance of the Malware detector was evaluated on the same data
captured for evaluating TunDer; see Section 6.4 for more information. The
test data contains only flows from protected ranges, meaning that MalDer will
drop no flow, and all flows will be processed. Therefore, the number will show
the actual number of flows the detector can process per second. The Table 6.9
shows the measured times and flows per second. The Malware detector has a
significantly lower throughput than the TorDer and TunDer. However, it is far
more complex than any of the other detectors. Still, when a pre-filter filters out
short flows representing scans and similar short flows holding no information,
it can be used on large-scale networks. Moreover, we can still consider the
measured throughput a success because the original BOTA implementation
was not deployed on the CESNET3 network due to performance issues.

6.6 Discussion

Each detector based on the WIF was thoroughly tested: basic functionality
tests performed on specially crafted data, and performance tests showing the
theoretical number of flows that detectors can processThe tests showed that
the Weak Indication Framework can be used to develop highly efficient detec-
tors capable of operating on high-speed national-level networks and that the
produced output alerts provide reliable and meaningful output.
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6.6. Discussion

Table 6.9: Performance of MalDer detector

Seconds
Min [s] Average [s] Median [s] Max [s]
41.15 43.79 43.73 50.3

Flows per second
Min [fps] Average [fps] Median [fps] Max [fps]
44 731.61 51 457.66 51 452.1 54 678.01

In addition, the efficiency evaluation was performed in an environment very
close to the real-world deployment. Therefore, it is reasonable to expect similar
flows per second performance as measured. The data used for testing was also
captured on the national network CESNET3 and resembled real-world traffic.
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Chapter 7
Deployment

7.1 Targeted Network

The developed detectors target the CESNET3 network. The CESNET3 net-
work is a national research and educational network operated by CESNET,
the Czech National research and education network (NREN) operator. The
network is depicted on the Figure 7.1. We can see that the CESNET3 is
a high-speed network with backbone lines reaching speeds up to 400 Gbps.
Moreover, the network has more than half a million daily users.

Figure 7.1: National network CESNET3

Network probes with the ipfixprobe software are used to monitor the CES-
NET3 network. Captured network flow telemetry is then sent to the central
collector server as messages in IPFIX format. The central collector serves as a
proxy. Flow data are distributed from the proxy collector to other servers for
processing.

The processing servers use the NEMEA system for stream-wise network
traffic classification and threat detection. All detectors implemented in this
thesis were deployed to the same virtual server in the CESNET infrastructure.
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7. Deployment

The server receives the flow data from the proxy collector from the CESNET3
network and processes it in real time.

Alerts produced by threat detectors are sent to a central database system
called Warden. Network security operators from the CSIRT team then access
the stored alerts when an incident occurs. Mentat is another system developed
by CESNET that is used to browse and access the alert database.

7.2 Cryptomining Detector

The Cryptomining detector was deployed to the CESNET3 network several
months ago. Since then, alerts from this detector have been sent to the Warden
system in CESNET. The detector produces around 400 alerts per hour (see the
Section B.1 in the Appendix). We consider this number to be reasonable when
we take into account the size of the network. The alert of the Cryptomining
detector is shown on the Figure 7.2, as it can be seen in the Mentat system.

The same settings were used as when the original DeCrypto implementation
was deployed in [78]. Therefore, we did not have to experiment with the detec-
tor’s settings. Moreover, we did not encounter any problems while deploying
the Cryptomining detector.

Figure 7.2: Screenshot of alert in the Mentat web interface

7.3 Tor Detector

The Tor Detector was deployed to the CESNET3 network during the winter
of 2023. However, its output is not sent to the SIEM systems. Tunnel and
Malware detectors are connected to the TorDer and further process the flows
from its output. The Tor detector is a simple module with no additional
parameters, so no setting adjustments had to be made. The only other task
was to set up a CRON job to update the Tor relay spreadsheet file, which we
successfully did.
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7.4. Tunnel Detector

7.4 Tunnel Detector

The Tunnel detector was deployed to the CESNET3 around the same time
as the Tor detector. Its output was thoroughly examined during the months,
and multiple settings were adjusted. Moreover, we experimented with different
combinations of rules. For example, the result of our experiments is the rule
satisfied when OpenVPN confidence level equal to 100 was seen (described
in the Section 5.4). The minimal thresholds for anomaly detectors were also
adjusted multiple times during the deployment.

Furthermore, I connected via the WireGuard VPN to the CESNET infras-
tructure while the TunDer was running, and my public IP address produced
an alert that detected WireGuard usage. The thesis supervisor, Ing. Karel
Hynek, Ph.D., performed the same test with the same result. We consider
this a success story, proving that the detector works correctly and can provide
meaningful and truthful output even on large networks.

7.5 Malware Detector

The Malware detector was the last detector deployed to the CESNET3 net-
work. Thanks to its deployment on live traffic, several segmentation faults were
discovered and fixed.

At first, the detector produced too many alerts, mainly due to anomaly
detection. Thresholds with minimal anomaly values were adjusted to miti-
gate this problem. Such measures lowered the number of alerts produced to a
feasible number. Moreover, alerts describing anomalous traffic became much
more meaningful because alerts with low values were no longer produced. Fur-
thermore, the BOTA instance was run on the same live data as the Malware
detector. The outputs of both detectors were identical, so we concluded that
the Malware detector works correctly.

7.6 Summary

After all the detectors were deployed, our virtual collector with the NEMEA
system looked like the Figure 7.3. Thanks to the deployment notes, several
errors were fixed. The detectors would not have been able to run 24/7 without
the opportunity to deploy them directly to CESNET’s monitoring infrastruc-
ture.

Tor Detector Tunnel Detector

Malware Detector

   ipfixcol2udp/4739

Cryptomining
Detector

IPFIX
messages

Alert Forwarder Mentat

Alert Forwarder Local Storage

Detection processFlow collecting process Reporting process

Figure 7.3: Server with deployed detectors
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Conclusion

The main goal of this thesis was to research the state-of-the-art methods for
network traffic classification and threat detection based on multiple classifica-
tion indicators and meta classifiers. Based on the collected knowledge, this
thesis describes a design of a novel library called Weak Indication Framework
(WIF) containing the chosen methods useful for further development of reli-
able classifiers and detectors. This new technology has been developed and
evaluated using several different use cases during this thesis. As a result, the
following detectors have been developed and deployed in a production environ-
ment: Cryptomining detector, TorDer, TunDer, and MalDer. Each of these
detectors is efficient enough to operate on the national network CESNET3
with half a million users. Moreover, the designed detectors are not only proof-
of-concept as initially expected, but every one of them is a production-ready
detector capable of reporting meaningful alerts even on large-scale networks.

Even though WIF met the criteria set by the thesis assignment, we iden-
tified possible features and enhancements that would further increase WIF’s
ability to accelerate the development process of detection modules. Our future
plans are to implement features for storing and aggregating information over
time, such as storage stores of binary information (an event (not)seen), counters
(number of bytes/packets transferred over time), and more. Moreover, infor-
mation is typically aggregated over an IP address. Therefore, utils for mapping
an IP address to a store key would be useful as well. The described possible
improvements were not part of the initial requirements and are out-of-scope of
this thesis. However, we plan to add them in the near future.

To sum up, this thesis thoroughly surveys detection and classification meth-
ods for network traffic monitoring, an efficient C++ WIF library is proposed,
and several detectors capable of operation on national-level networks with
meaningful output usable by network security operators via the SIEM sys-
tem were developed. Moreover, the developed software is ready to be used and
deployed by others to monitor ISP, corporate, or household-level networks.
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Appendix A
Evaluation

This chapter contains detailed results from the evaluation of the Cryptomining
detector and the comparison with the previous Python implementation.

A.1 Comparison of DeCrypto implementations

This section contains detailed results of both C++ and Python-based imple-
mentations of the DeCrypto detector on both the Design dataset, available in
the Table A.1, and the Evaluation dataset, available in the Table A.2.

Table A.1: Comparison of DeCrypto implementations on the Design dataset

Detector Result Python WIF Same?
Stratum TP 466558 466558 D
Stratum FP 0 0 D
Stratum FN 0 0 D
Stratum TN 0 0 D
DST TP 1363 1363 D
DST FP 0 0 D
DST FN 0 0 D
DST TN 401070 401070 D
ML TP 89771 89771 D
ML FP 6 6 D
ML FN 25864 25864 D
ML TN 565086 565086 D
Meta TP 557692 557692 D
Meta FP 6 6 D
Meta FN 25864 25864 D
Meta TN 966156 966156 D
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A. Evaluation

Table A.2: Comparison of DeCrypto implementations on the Evaluation
dataset

Detector Result Python WIF Same?
Stratum TP 262197 262197 D
Stratum FP 0 0 D
Stratum FN 0 0 D
Stratum TN 0 0 D
DST TP 1456 1456 D
DST FP 0 0 D
DST FN 0 0 D
DST TN 254027 254027 D
ML TP 15311 15311 D
ML FP 5 5 D
ML FN 58827 58827 D
ML TN 235088 235088 D
Meta TP 278964 278964 D
Meta FP 5 5 D
Meta FN 58827 58827 D
Meta TN 489115 489115 D
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Appendix B
Deployment Notes

This chapter contains additional information about the produced alerts by the
Cryptomining detector when deployed to the CESNET3 network.

B.1 Alerts from Cryptomining Detector

The Figure B.1 shows the number of produced alerts per hour when the Cryp-
tomining detector was deployed on the national CESNET3 network operated
by Czech NREN called CESNET.

Figure B.1: Number of alerts from the deployed Cryptomining detector
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Appendix C
User Manual

This chapter contains help sections from the developed network traffic classifi-
cation prototypes.

C.1 Cryptomining Detector

DeCrypto - v2.1.2
Help
========
DeCrypto has one input interface with incoming flow data. The
primary output interface contains standard alerts. The secondary
output interface contains ML features and flow info - if and only
if the --use-alf is specified. Otherwise this interface should be
set to ’b:’.

Example without ALF: decrypto -i u:flowData,u:alerts,b:
Example with ALF: decrypto -i u:flowData,u:alerts,u:alfData

-b
Python Bridge Path [str]
Default: /opt/decrypto/runtime/bridge.py

-d
Enable debug mode
Default: false

-f
Flow Buffer Size [unsigned]
Default: 50000

-h
Display help section [-]
Default: false

-m
ML Model Path, pickle format[str]
Default: /opt/decrypto/runtime/rf.pickle
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C. User Manual

--dst
DST Threshold [0..1]
Default: 0.03

--ml
ML Threshold [0..1]
Default: 0.99

--no-rst-fin
Filter flows with empty SNI and RST/FIN flags
Default: false

--use-alf
Send ML features and flow info for ALF to the
secondary output interface
Default: false
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C.2. Tor Detector

C.2 Tor Detector

TorDer - v1.1.2
Help
========
TorDer has one input interface with incoming flow data. The primary
output interface contains copy of the input flow with new fields
describing detection result. TOR DETECTED contains 1, if either SRC IP
or DST IP was found on current Tor relays file blocklist, 0 otherwise.
Moreover, TOR DIRECTION describes the direction: value 1 is present,
if DST IP is Tor relay, -1 is SRC IP is Tor relay. Value 0 is set,
when Tor was not detected.

--tick-interval
Interval in seconds, in which Tor relays file is checked
for changes [unsigned]
Default: 15

--tor-relays-file
Tor relays file path (formatted as one IP per line) [str]
Default: None

Args must be always passed separated by space:
OK: --tick-interval 10

FAIL: --tick-interval10
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C.3 Tunnel Detector

TunDer - v1.2.1
Help
========
TunDer is a detector of covert communicaton tunnels.
It uses OVPN,WG,SSA CONF LEVEL fields for detection of OpenVPN and
WireGuard. It consists of multiple weak detectors: CONF LEVEL
Detector for both OVPN, WG and SSA, Default Port Detector for both
OVPN and WG, Tor Detector, and Blocklist Detector. Every detector
can be customized: threshold for number of positive flows, which
has to be seen in the time window, to consider detector in this time
window to be positive. Moreover, a probability threshold can be set
for CONF LEVEL detectors, to define needed minimal value of CONF LEVEL
field, to consider flow positive. Results of weak detectors
are observed for each IP address defined as observed. When time interval
expires, rule matching takes place and every satisfied rule for each
observed IP address generates an alert on the output interface, which
describes results and explanations for each weak detector.

-d
Enable debug mode [-]
Default: false

-h
Display help section [-]
Default: false

-p
Enable pre-export [-]
Default: false

--flow-store-size
Flow Store Size [unsigned]
Default: 1000000

--time-window-size
Time Window Size of TunDer in seconds [unsigned]
Default: 900

--ovpn-port-threshold
Threshold for OVPN Port Detector [unsigned]
Default: 5

--wg-port-threshold
Threshold for WireGuard Port Detector [unsigned]
Default: 5

--ovpn-conf-proba-threshold
Minimal OVPN CONF LEVEL value considered positive [unsigned]
Default: 50

--ovpn-conf-threshold
Threshold for OVPN CONF LEVEL Detector [unsigned]
Default: 5
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--wg-conf-proba-threshold
Minimal WG CONF LEVEL value considered positive [unsigned]
Default: 50

--wg-conf-threshold
Threshold for WG CONF LEVEL Detector [unsigned]
Default: 5

--ssa-conf-proba-threshold
Minimal SSA CONF LEVEL value considered positive [unsigned]
Default: 50

--ssa-conf-threshold
Threshold for SSA CONF LEVEL Detector [unsigned]
Default: 5

--tor-threshold
Threshold for Tor Detector [unsigned]
Default: 5

--ip-ranges-file
Path to observed IP ranges file [string]
Default: /opt/tunder/ipRanges.txt

--blocklist-file
Path to blocklist file [string]
Default: /opt/tunder/blocklist.txt

--blocklist-tick-interval
Interval in seconds, in which blocklist file is checked
for changes [unsigned]
Default: 30

--blocklist-threshold
Threshold for Blocklist Detector [unsigned]
Default: 5

Args must be always passed separated by space:
OK: --tick-interval 10

FAIL: --tick-interval10
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C.4 Malware Detector

MalDer - v1.2.1
Help
========
Malware Detector (MalDer) is a C++ implementation of BOTA.

-h
Display help section [-]
Default: false

--bytes-threshold
Threshold for bytes anomaly detector [unsigned]
Default: 1000000

--ip-store-size
IP Store Size [unsigned]
Default: 1000000

--packets-threshold
Threshold for packets anomaly detector [unsigned]
Default: 10000

--ports-threshold
Threshold for port anomaly detector [unsigned]
Default: 1000

--ip-threshold
Threshold for IP anomaly detector [unsigned]
Default: 100

--ip-ranges-file
File with observed IP ranges [string]
Default: /opt/malder/ipRanges.txt

--ml-bridge-file
File with ML bridge [string]
Default: /opt/malder/bridge.py

--ml-model-file
File with ML model in pickle format [string]
Default: /opt/malder/ab.pickle

--cnc-buffer-size
Buffer size for CNC detector [unsigned]
Default: 10000

Args must be always passed separated by space:
OK: --tick-interval 10

FAIL: --tick-interval10

88



Appendix D
Contents of the Attached Archive

docs/..........................................Doxygen documentation
rpms/...................................................RPM packages
sources/ ...................................... folder with source codes

libwif/.......................sources of Weak Indication Framework
cryptominingDetector/............sources of Cryptomining detector
torDetector/................................sources of Tor detector
tunnelDetector/ ......................... sources of Tunnel detector
malwareDetector/.......................sources of Malware detector

tests/.................................scripts and data used for testing
cryptominingDetector/ ....................... cryptomining specific
torDetector/...........................................Tor specific
tunnelDetector/.....................................tunnel specific
malwareDetector/..................................malware specific

text/.............................................thesis-related sources
overleafProject.zip............project exported from Overleaf.com
thesis.pdf................................this thesis in PDF format

89


	Introduction
	Network Communication Protocols
	ISO/OSI Model
	TCP/IP Model
	Description of Selected Protocols
	IP
	TCP
	UDP
	TLS
	DNS
	OpenVPN
	WireGuard


	Network Monitoring
	Deep Packet Inspection
	Flow-based Monitoring
	Flow Exporter
	Flow Collector

	Network Traffic Analysis
	Threat Detection
	NEMEA


	Classification Methods
	Pattern Matching
	Machine Learning
	Machine Learning in Network Domain
	Description of Selected Supervised ML Models
	Description of Selected Unsupervised ML Models

	Anomaly Detection
	Data Fusion
	Kalman Filter
	Dempster-Shafer Theory

	BOTA
	DeCrypto
	VPN Detection

	Weak Indication Framework
	Introduction
	Development Environment & Process
	Architecture
	Data Structures
	Classifiers
	IP Prefix Classifier
	Regex Classifier
	Scikit ML Classifier
	ALF Classifier

	Combinators
	Basic Combinators
	Binary DST Combinator

	Reporters
	Unirec Reporter

	Utils
	Discussion

	Network Classification Prototypes
	Introduction
	Cryptomining Detector
	Tor Detector
	Tunnel Detector
	Data Stores
	Weak Detectors
	Export
	Build Dependencies

	Malware Detector
	Data Stores
	Weak Detectors
	Export
	Build Dependencies

	Discussion

	Evaluation
	Metrics & Methodology
	Cryptomining Detector
	Correctness
	Throughtput

	TorDer
	Correctness
	Thoughtput

	TunDer
	Correctness
	Throughtput

	MalDer
	Correctness
	Throughtput

	Discussion

	Deployment
	Targeted Network
	Cryptomining Detector
	Tor Detector
	Tunnel Detector
	Malware Detector
	Summary

	Conclusion
	Bibliography
	Evaluation
	Comparison of DeCrypto implementations

	Deployment Notes
	Alerts from Cryptomining Detector

	User Manual
	Cryptomining Detector
	Tor Detector
	Tunnel Detector
	Malware Detector

	Contents of the Attached Archive

